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Summary

The aim of this thesis is to find an optimal power allocation strategy for the transmitting nodes
in a network scenario which comprises two sources, a single relay and a single destination. The
main problem which is present in such network configurations is the self-interference phenomenon
created by the relay, which attempts to transmit and receive at the same time on the same frequency
band. Finding the correct power level (both at sources and relay) which allows the overall rate
maximization is a theme of great interest, since many wireless applications present this problem
and the use of relays is expected to increase in the near future. The strategy found in this work
contemplates the use of Half-Duplex or Full-Duplex transmission modes at the relay. Moreover it is
proved that such strategy has interesting performances with respect to other solutions provided in
similar scenarios, but which require more precise information about the relay to be known at the
sources.

The novelty introduced here is the presence of multiple sources, which raises issues of fairness.
The fairness concern is addressed and integrated into the system model provided. All these topics
are mathematically described and solved, and the theoretical part is supported with numerical results
which confirm the validity of the provided model.
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Chapter 1

Introduction

Communications channels which include relays are becoming increasingly important in the
wireless field. They may find applications in the next generation mobile communication standards
like 5𝐺: a relay can extend the coverage of an antenna by repeating its signal in areas in which holes
are present, so where the conformation of the territory makes the signal weak or inexistent, as well
as making stronger the connection for users who are positioned far way from the base station of a
particular cell. Placing a relay instead of an antenna is less expensive and furthermore it does not
modify the cell grid of an area. Another application can be V2I communications, where vehicles
can communicate directly with each others but they can also rely on roadside units (RSUs) which
act exactly as a relay. In addition the RSUs can add useful information to the original transmitted
signal, so this type of relay needs to modify the received signal. All these examples fall in the area
of multi-hop multi-user communications.

Such an importance placed the relay at the center of many studies. There are different cooperative
schemes for a relay, which make them more suitable for different environments. Here they are listed
in order of increasing complexity:

• Amplify-and-Forward (AF): the relay acts as a simple repeater, so it takes the incoming signal
and transmits it towards the destination. A drawback for this forwarding technique is that
it amplifies everything that it receives, so when there is a lot of noise added to the useful
information, the noise is amplified too. This may not be the best solution for too much noisy
channels, and even when the noise level is low, a decode-and-forward (DF) relaying technique
is preferred in terms of performance.

• Compress-and-Forward (CF): also known as Estimate-and-Forward or Quantize-and-Forward.
The received signal is estimated without being decoded, then the estimate is compressed
(through quantization) and forwarded to the destination. There is more complexity inside a
relay of this type than for AF, since some signal processing is performed. The estimation of
the incoming signal is more accurate when the channel conditions are good, hence there is
high SNR. In the high SNR region the CF relay tends to behave as a DF relay, while in the
low SNR region the performances are comparable to an AF relay.

• Decode-and-Forward (DF): this cooperative scheme is the most complex one. The relay
decodes the signal received, applying signal processing tools to recover information, hence
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1 – Introduction

it more robust to noise, since the relay acts as an intermediate destination which makes
decisions on the received bits. After having decoded the signal that comes from the source,
the relay re-encodes the information and it sends that to the destination. The destination then
decodes the received signal. The decision made at the relay is critical, since it determines the
performances of the overall link. As in the case of the other relaying strategies, the quality of
the channel greatly impacts the outcomes of the transmission.

Figure 1.1. Examples of relay applications

There are some ”hybrid” relays which adapt themselves to channel conditions and change
accordingly their cooperative scheme, but of course they are more complex. There are also examples
in which a combination of modalities is used, as in [1], where CF and DF are mixed and they turn
out to be efficient in a particular type of network.
By allowing those intermediate transmitters to manipulate in some way the signal, security issues
may arise, since the link between source and destination is split into several links and information
is ”seen” by relays which try to decode data or the signal is simply eavesdropped by other relays.
Some of this problems are addressed and analyzed in [2, 3].
Besides the employed forwarding techniques, a relay can also work in three different transmission
modes:

• Half-Duplex (HD): the relay either transmits or receives, but it cannot perform both the
operations at the same time. It is the simpler case to treat, since the relay cannot create
interference with itself.

• Full-Duplex (FD): the relay can transmit and receive at the same time, in the same frequency
band. FD relays are more complex than HD relays since their transmitted signal may interfere
with the received one, creating the so called self-interference phenomenon. This case is the
one of interest in this work since it is the key concept around which this thesis revolves.

• X-Duplex (XD): simply it is a combination of the two previously described modes, in which
the relay is able to work in both FD and HF modes based on the needs of the transmission or
the networks status. Actually this is the kind of relay considered in this thesis, since it offers
more flexibility inside a network such as the ones illustrated as examples in the beginning of
the introduction.
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1 – Introduction

Having assumed an additive white Gaussian noise model for the channel, a lot of work has been
developed towards finding optimal transmission strategies and bounds with those three cooperative
schemes. In particular the HD transmission mode has been studied a lot because of its minor
complexity, since by definition does not have the problem of the self-interference [4, 5, 6, 7, 8].
Considering the FD case, a number of variants have been studied. The simplest case is the one in
which self-interference is neglected, as in [9], that derived the capacity of the FD channel in such
conditions. Instead, when self-interference is taken into account, the problem is way more complex
and needs proper models. Self-interference is of great interest nowadays, since the technology now
allows powerful methods to suppress it without compromising the integrity of the useful information
[10, 11]. The signal emitted from the relay loops back to its input, and it is modeled as a Gaussian
additive noise which has a variance proportional to the instantaneous transmit power of the relay
[12]. In particular, in [13] the aim is to maximize the instantaneous and average spectral efficiency
of a two-hop network, where the relay can dynamically and optimally change its transmission
mode (HD or FD) with both the AF and DF relaying protocols. That means that the relay switches
mode by observing the channel conditions, and it selects HD mode to improve the quality of the
transmission by removing self-interference. In [14] a relay with multiple transmitting antennas
and a single receiving one is considered, working with AF cooperative scheme. When the relay
is subject to constraints on average transmit power, it is found that this configuration outperforms
the HD-AF relay in terms of end-to-end signal-to-interference-plus-noise ratio (SINR). In [15],
Gaussian inputs are assumed and then achievable rate and bound are derived for both CF and
DF relaying protocols. In [12] the case of a two-hop X-duplex channel was analyzed in detail,
and a complete description of optimal power allocation strategies was given. That scenario was
comparable to the one investigated in [16], where the residual self-interference was modeled as a
Gaussian random variable with a variance directly proportional the to amplitude of the transmitted
symbol at the relay. The constraints imposed in [16] are the limitations of the average transmit
power at source and relay up to certain maximum values. The result of this work is that, for what
concerns the source, the optimal conditional probability distribution of the source input, given
the relay input, is Gaussian, while for the relay the input can be either finite (described by delta
functions) or Gaussian, where the latter case occurs only when the relay-destination link is the
bottleneck link. Those distribution allow the system to achieve capacity, assuming that the source
knows exactly at each instant which symbol the relay is transmitting. To this purpose a buffer can be
used, which maintains synchronization between source and relay by holding the data decoded by
the relay. This data is re-encoded by the relay in the next available channel use, and if the source
has the same encoder, it can predict which symbol will be transmitted by the relay.
The novelty of the scheme proposed in [12] consider a more practical case in which there is no total
awareness at the source of the symbols transmitted at the relay. In fact, a DF network operating in
X-Duplex mode is considered, with a residual self-interference with variance dependent on the relay
transmit power. Now the source is only aware of the transmit power distribution adopted by the
relay in a precise time frame [12]. This solution is more practical and useful in those scenarios in
which the physical-layer or the link-layer are modified by the relay in order to add some information
or encryption. The relay still decodes data from the source and forwards it to the destination, but
the synchronicity between source and relay cannot be maintained. Since the source knows the
power distribution at the relay, the relay operational mode can be controlled and switched by simply
setting the correct power level at the source. A Gaussian input distribution is assumed at both
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1 – Introduction

source and relay, with a defined maximum variance. An optimization problem is formulated for
this scenario, and it aims to maximize the achievable data rate. The system has different solutions
based on the operational region in which the relay works, and those regions are delimited by power
thresholds. The main result is that the optimal probability density function of the relay transmit
power is discrete, composed of either one or two delta functions [12]. Those delta functions give all
the necessary information to the system to set the correct power level at source and relay, and also
the duration of such setting. A delta function consists of two parameters: the coefficient and the
position in which it is centered. That is very few data to exchange between nodes. The resulting
optimal communication strategy consists of time frames in which the relay works in FD or HD
for a given fraction of time. The obtained performance closely approaches that of communication
strategies which assume perfect knowledge at the source of the relay transmitted symbols.
What this thesis aims to do is to extend and generalize the work developed in [12]. In fact it adapts
such analysis to the case of multiple sources, which is a more realistic scenario. Considering multiple
sources means that the synchronicity between sources and relay cannot be maintained, even without
considering transformations applied to the data by the relay, of which the source is not aware. In
fact the relay receives information from a set of sources and then such information is re-transmitted
taking into consideration data priority, First-Come-First-Served policy or any other scheduling
policy. Each source is not aware of the data transmitted by the other sources, so it cannot predict
which symbol will be transmitted by the relay in a certain time slot. For such reason it is proposed a
strategy in which only the power allocation policy at the relay is known at the sources. The work
focuses on the particular case of two sources, but the results can be extended to 𝑛 sources with more
complex mathematical models. The system model and the optimization problem are formulated in
Chapter 2. The power allocation strategy found in Chapter 3 is completely similar to the one in [12],
in fact it is described by a discrete pdf, which means FD/HD operational modes allocated during
precise time frames. In Chapter 4 a new parameter is introduced, since it is related to multiple
sources scenarios. Such parameter describes fairness among sources, which is a very important
issue: there may be scenarios in which some user must have priority on others, for QoS reasons, and
others in which there must be total equity. In Chapter 5, the network model described in Chapter 2
(in the particular case of two sources) is simulated with Matlab, and various plots and performances
are shown in order to validate the mathematical results found in Chapters 3 and 4.
To summarize, the thesis is divided into two main parts: the first part, in which the model is presented
and an optimal mathematical solution is provided, and the second part, in which simulation of the
model assumed are implemented in order to provide graphs and numerical results.

4



Chapter 2

Overview and methodology

2.1 System Model

This model analyzes a more complex scenario with respect to the case described in [12]. We
consider a network scenario with 3 different type of nodes: source nodes 𝑠𝑖, relay node 𝑟 and
destination node 𝑑. The communication channel connecting the source to the destination can be
divided in two parts: the first hop is the channel which connects source(s) and relay, while the second
hop is the one connecting relay and destination. This network model is of paramount importance in
real world applications, since a relay can receive information by multiple users who want to reach
the same destination.

Figure 2.1. System model overview

The existence of the relay is of primary importance, since there is no direct link between the

5



2 – Overview and methodology

sources and the destination, so they must rely on it to establish communication.
All the channels, both the ones from the different sources to the relay and the one from the relay to
the destination, are independent, memoryless block fading channels, and all of them are considered
to be subject to additive Gaussian noise. We consider a generic set of channels, where each channel
from the source 𝑠𝑖 to the relay 𝑟 has channel gain ℎ𝑖, while the channel from 𝑟 to 𝑑 has gain ℎ0.
Sources and relay work on a frame-by-frame basis of length T, during which the channel gains are
assumed to be constant. The relay has three operational modes:

• HD-RX mode: while the sources transmit, the relay receives only.

• HD-TX mode: the relay transmits towards the destination, while the sources are silent.

• FD mode: the sources transmit, while the relay transmits and receives at the same time

The most interesting case actually is the last one, since when the relay is transmitting it creates
self-interference which is summed to the signal received from the multiple sources. Those signals
can be formalized as follows: the signal received by the relay from the sources is denoted by 𝑦 and
is given by

𝑦 =
𝑛

∑
𝑖=1

√𝑃𝑖ℎ𝑖𝑥𝑖 + 𝜈 + 𝑛𝑟 (2.1)

while similarly the signal received by the destination node is

𝑧 = √𝑝ℎ0𝑥0 + 𝑛𝑑 (2.2)

where

• ℎ𝑖 is the channel gain of the source 𝑖-relay link, while ℎ0 is the channel gain of the relay-
destination link. As previously stated, the nodes in the system communicate on a per-frame
basis, which lasts a specific time 𝑇, where 𝑇 is chosen sufficiently small in order to guarantee
static channel conditions.

• 𝑥𝑖 and 𝑥0 are respectively the symbols transmitted by the source 𝑖 and the relay. The symbols
transmitted at both sources and relay are assumed to be Gaussian distributed, with zero mean
and unit variance, which means that 𝔼[|𝑥𝑖|2] ≤ 1 and 𝔼[|𝑥0|2] ≤ 1. 𝑝𝑖 is defined as the
transmit power at the source 𝑖, while 𝑝 is the relay transmit power. From that, it derives the
instantaneous power of the sources, 𝑝𝑖|𝑥𝑖|2, and the instantaneous power of the relay, 𝑝|𝑥0|2.
We assume 𝑝𝑖 and 𝑝 to have support in the ranges [0, 𝑝𝑚𝑎𝑥

𝑖 ] and [0, 𝑝𝑚𝑎𝑥], respectively. The
transmit power is assumed to be independent of the transmitted symbol, for all the transmitting
nodes in the system.

• 𝑛𝑟 and 𝑛𝑑 represent a Gaussian noise with zero mean and variance 𝑁0

• 𝜈 is the instantaneous residual self-interference at the relay. Typically 𝜈 is modeled as a
Gaussian noise with variance proportional to the instantaneous power of the relay 𝑝. So
𝜈 = √𝛽𝑝 ⋅ 𝐺, where 𝛽 is the self-interference attenuation factor at the relay and 𝐺 ∼ 𝒩 (0,1).
This interference model is linear and it is the worst case one, and it is the same assumed also
in [15, 16, 17, 18]. The self-interference is called residual because it is the one which still
persists after digital and analog suppression.
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2.2 – Bounds for capacity region

We define 𝑓(𝑝), as the probability density function which represents the power allocation
distribution at the relay. While 𝑝𝑖(𝑝) represents the power allocation distribution at the source 𝑖,
but as it was previously stated, it is directly linked to power set at the relay. We define the average
transmit power both at the sources and at the relay, constraining them to some target values:

̄𝑝 = 𝔼𝑝𝔼𝑥0
[𝑝|𝑥0|2] = 𝔼𝑝[𝑝] = ∫

𝑝𝑚𝑎𝑥

0
𝑝𝑓(𝑝)d𝑝 (2.3)

̄𝑃𝑖 = 𝔼𝑝𝔼𝑥𝑖
[𝑝𝑖|𝑥𝑖|2] = 𝔼𝑝[𝑝𝑖] = ∫

𝑝𝑚𝑎𝑥

0
𝑝𝑖(𝑝)𝑓 (𝑝)d𝑝 (2.4)

where 𝔼[⋅] is the average operator. As anticipated before, the power level at the relay is limited to a
maximum value. The above expressions have been derived assuming that the transmit power and
the transmitted symbol are independent and that the variance of the transmitted symbol is unitary.
Such system model is the generalization of the single user case provided in [12].

2.2 Bounds for capacity region

The model described in the previous section is also called MARC (Multiple-Access Relay
Channel) and it is described in [19]. In [19] some capacity bounds are given for such network model.
We will use those bounds as a starting point. Over those bounds some ulterior assumptions will
be made, which are present in our model, as it will be developed later on. In order to do that, it is
useful to define a system model equivalent to the one of the previous section, but described from an
information theory point of view. We will identify the relay with the number 0, while the sources
are associated to numbers 1, 2, ...,𝐾. Time is defined by 𝑡 ∈ [𝑛], which are the channel uses.
For a complex-valued two-hop degraded AWGN MARC we have:

• 𝑊𝑘 ∈ 2𝑛𝑅𝑘, ∀𝑘 ∈ [𝐾] is the message set, uniform and independent across users

• 𝑋𝑘,𝑡 = enc𝑘,𝑡(𝑊𝑘), ∀𝑘 ∈ [𝐾] is the encoder belonging to source 𝑘. Each encoder is subject to
a power constraint given by 1

𝑛 ∑
𝑡∈[𝑛]

|𝑋𝑘,𝑡(𝑊𝑘)|2 ≤ 1, ∀𝑘 ∈ [𝐾]. This constraint is equivalent

to the one in 2.4.

• 𝑌𝑡 = √|𝑋0,𝑡(𝑌 𝑡−1)|2𝜈 + ∑
𝑘∈[𝐾]

ℎ𝑘𝑋𝑘,𝑡(𝑊𝑘) + 𝑁1,𝑡 is the output at the relay, where the first

term is the self-interference while the second one is the useful information received by the
sources, weighted by the channel gain (which is different for each source-relay link). The
last term is the noise present on the first hop. Also the relay encoder is subject to the power
constraint 1

𝑛 ∑
𝑡∈[𝑛]

|𝑋0,𝑡(𝑌 𝑡−1)|2 ≤ 1. This constraint is equivalent to the one in 2.3. 𝜈 is the

self-interference which was already defined before.

• 𝑍𝑡 = ℎ0𝑋0,𝑡(𝑌 𝑡−1) + 𝑁2,𝑡 is the output at the destination. The first term represents the
information transmitted by the relay weighted by the channel gain of the channel between
relay and destination, while the second term is the noise level on the second hop.

• (�̂�1, ..., �̂�𝐾) = dec(𝑍𝑛) is the joint decoder at the destination.

7



2 – Overview and methodology

• 𝐶 = ConvHull {(𝜌11, ..., 𝜌1𝐾) ∶ lim
𝑛→∞

P [∪𝑘∈[𝐾]{�̂�𝑘 ≠ 𝑊𝑘} = 0]} is the capacity region

(set of rate-tuples), assuming 𝑁𝑖 ∼ (0, 𝜎2
𝑖 ) and static channel gains. Rate 𝜌1𝑖 is the rate

between source 𝑖 and the relay.

Furthermore we assumed a degraded channel, which can be modeled as a Markov chain in which
each state information knowledge is based only on the information coming from the previous state.
In fact

𝑓𝑌,𝑍|𝑋0,𝑋1,...,𝑋𝐾
(𝑦, 𝑧|𝑥0, 𝑥1, .., 𝑥𝐾) = 1

𝜋(𝜎2
1 + 𝛽|𝑥0|2)

𝑒
−

|𝑦−∑𝑘∈[𝐾] ℎ𝑘𝑥𝑘|2

𝜎2
1+𝛽|𝑥0|2 1

𝜋(𝛽)
𝑒

− |𝑧−ℎ0𝑥0|2

𝜎2
2

⟺ 𝑓𝑌 |𝑋0,𝑋1,...,𝑋𝐾
𝑓𝑍|𝑋0,𝑌 (2.5)

2.2.1 Single user case

It is useful to derive capacity and related bound for the single user case, because it is more
immediate and allows a better understanding when it comes to the multi user case. Since the relay
channel with a single source (𝐾 = 1) belongs to the class of degraded memoryless channels,
according to [16, 12], we have that

𝐶(𝛽) = sup
𝑃𝑋1,𝑋0

min(𝐼(𝑋1; 𝑌 |𝑋0), 𝐼(𝑋0; 𝑍)) (2.6)

= sup
𝑃𝑋0,0≤𝑝1(⋅)∶𝔼[𝑝1(𝑋0)]≤1

min
(

𝔼𝑋0 [
log

(
1 +

|ℎ1|𝑝1(𝑋0)
𝜎2

1 + 𝛽|𝑋0|2 )]
, 𝐼(𝑋0; 𝑍)

)
(2.7)

= sup
𝑃𝑋0

min
(

𝔼𝑋0 [
log+

(
𝜂

|ℎ1|2

𝜎2
1 + 𝛽|𝑋0|2 )]

, 𝐼(𝑋0; 𝑍)
)

(2.8)

The capacity is given by the superior of the minimum between the mutual information on the first
hop given what the relay transmits (there is knowledge of the symbols transmitted by the relay at
the source) and the mutual information on the second hop. 𝑃𝑋0

is the power distribution at the relay,
while 𝑃𝑋1

is the one at the source. 𝑝1(⋅) and 𝑝0(⋅) are the transmission power at the single source
and the transmission power at the relay respectively. Using Shannon capacity formula we obtain
2.7, under the constraint of the average power and also considering power values greater or equal
than zero (practical values in real applications). 2.8 comes from the Lagrange optimization method,
necessary to solve the problem. The solution coming from the Lagrangian gives an expression for
the power used by the source to transmit, knowing the relay transmitted symbol 𝑋0

𝑝1(𝑋0) =
[

𝜂 −
𝜎2

1 + 𝛽|𝑋0|2

|ℎ1|2 ]

+

∶ 𝔼𝑋0 [[
𝜂 −

𝜎2
1 + 𝛽|𝑋0|2

|ℎ1|2 ]

+

]
≤ 1 (2.9)
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Such system is capacity achieving. Capacity can be upper bounded when we consider the ideal case
in which there is no self-interference. In fact

𝐶(𝛽) = sup
𝑃𝑋0,0≤𝑝1(⋅)∶𝔼[𝑝1(𝑋0)]≤1

min
(

𝔼𝑋0 [
log

(
1 +

|ℎ1|2𝑝1(𝑋0)
𝜎2

1 + 𝛽|𝑋0|2 )]
, 𝐼(𝑋0; 𝑍)

)
(2.10)

≤ sup
𝑃𝑋0,0≤𝑝1(⋅)∶𝔼[𝑝1(𝑋0)]≤1

min
(

𝔼𝑋0 [
log

(
1 +

|ℎ1|2𝑝1(𝑋0)
𝜎2

1 + 0 )]
, 𝐼(𝑋0; 𝑍)

)
(2.11)

≤ sup
𝑃𝑋0,0≤𝑝1(⋅)∶𝔼[𝑝1(𝑋0)]≤1

min
(

log
(

1 +
|ℎ1|2𝔼[𝑝1(𝑋0)]

𝜎2
1 + 0 )

, 𝐼(𝑋0; 𝑍)
)

(2.12)

= sup
𝑃𝑋0

min
(

log
(

1 +
|ℎ1|2

𝜎2
1 )

, 𝐼(𝑋0; 𝑍)
)

(2.13)

≤ min
(

log
(

1 +
|ℎ1|2

𝜎2
1 )

, log
(

1 +
|ℎ0|2

𝜎2
2 ))

= 𝐶(0) (2.14)

As it was anticipated in the introduction, we consider a practical case in which the symbols trans-
mitted by the relay are not known at the sources. Gaussian inputs are assumed, as it was done in the
system model chapter. Furthermore it is introduced a time sharing random variable 𝑄, which is an
auxiliary variable and it is not part of the channel variables. In our specific case 𝑄 = 𝑝, the transmit
power level at the relay. For this reason, from now on 𝑝0(𝑝) = 𝑝. In addition we have conditionally
independent gaussian inputs, thus

𝑃𝑋1,𝑋0,𝑝 = 𝑃𝑝𝑃𝑋0|𝑝𝑃𝑋1|𝑝 = 𝑃𝑝 ⋅ 𝒩 (𝑋0; 0, 𝑝) ⋅ 𝒩 (𝑋1; 0, 𝑝1(𝑝))

⟺ 𝑋𝑗 = √𝑝𝑗(𝑝)𝐺𝑗 ∶ 𝐺𝑗 ∼ 𝒩 (0,1) 𝑖𝑖𝑑, 0 ≤ 𝑝𝑗(⋅) ∶ 𝔼𝑝[𝑝𝑗(𝑝)] ≤ 1 (2.15)

Such assumptions allows us to write a lower bound for capacity, which is

𝐶 = sup
𝑃𝑋1,𝑋0𝑝

min(𝐼(𝑋1; 𝑌 |𝑋0, 𝑝), 𝐼(𝑋0; 𝑍|𝑝)) (2.16)

≥ sup
𝑃𝑝,0≤𝑝𝑗(⋅)∶𝔼[𝑝𝑗(𝑝)]≤1,𝑗∈[0∶1]

min (𝔼𝑝,𝐺0 [
log

(
1 +

|ℎ1|2𝑝1(𝑝)
𝜎2

1 + 𝛽𝑝|𝐺0|2 )]
, (2.17)

𝔼𝑝 [
log

(
1 +

|ℎ0|2𝑝
𝜎2

2 )] )

≥ sup
𝑃𝑝,0≤𝑝𝑗(⋅)∶𝔼[𝑝𝑗(𝑝)]≤1,𝑗∈[0∶1]

min (𝔼𝑝 [
log

(
1 +

|ℎ1|2𝑝1(𝑝)
𝜎2

1 + 𝛽𝑝𝔼[|𝐺0|2])]
, (2.18)

𝔼𝑝 [
log

(
1 +

|ℎ0|2𝑝
𝜎2

2 )] )

= sup
𝑃𝑝,0≤𝑝0(⋅)∶𝔼[𝑝]≤1

min (𝔼𝑝 [
log+

(
𝜂

|ℎ1|2𝑝1(𝑝)
𝜎2

1 + 𝛽𝑝 )]
,𝔼𝑝 [

log
(

1 +
|ℎ0|2𝑝

𝜎2
2 )] ) (2.19)
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2 – Overview and methodology

2.17 is obtained assuming Gaussian inputs and their related properties. We can further lower bound
with Jensen’s inequality, which allows to take inside the first term the average operator regarding
𝐺0, and this is done in 2.18. In the end the problem can be solved again trough Lagrange method,
which is formulated in 2.19. The solution is given for

𝑝1(𝑝) =
[

𝜂 −
𝜎2

1 + 𝛽𝑝
|ℎ1|2 ]

+

∶ 𝔼𝑝 [[
𝜂 −

𝜎2
1 + 𝛽𝑝
|ℎ1|2 ]

+

]
≤ 1 (2.20)

Such solution corresponds to a classical waterfilling policy. We can notice how the solution for the
power allocation at the source does not depend anymore on the symbol transmitted at the relay,
which is not known, but it depends on the new variable 𝑝. Furthermore the solution for the power
distribution of the source in [12] is coincident with the derivation just provided.

2.2.2 MARC capacity bounds

Now we can extend the reasoning done for the single user case to a multiple user environment.
Let 𝒫 (𝑜𝑢𝑡) be the set of input distribution (as in [19]) of the form

𝒫 (𝑜𝑢𝑡) ∶=
{

𝑃𝑋0,𝑋1,...,𝑋𝐾,𝑝 = 𝑃𝑝 ⋅ ∏
𝑘∈[𝐾]

𝑃𝑋𝑘|𝑝 ⋅ 𝑃𝑋0|𝑋1,...,𝑋𝐾,𝑝, |𝑝| ≤ 2(2𝐾 − 1)
}

(2.21)

From this input distribution we can derive an outer bound for capacity, since it is assumed that sources
know exactly what relay is transmitting. We already discussed how in a multiple sources scenario
such assumption is not realistic, since it is necessary to have all the transmitters synchronized and
aware of the scheduling applied at the relay. An outer bound comes from Theorem 1 in [19], which
uses cut-sets. From that we have

𝐶 ⊆ ∪𝒫 (𝑜𝑢𝑡)

⎧⎪
⎨
⎪⎩

𝜌𝒮 ≤ 𝐼(𝑋0,𝑋𝒮; 𝑍|𝑝,𝑋𝒮 𝑐),
𝜌𝒮 ≤ 𝐼(𝑋𝒮; 𝑍, 𝑌 |𝑝,𝑋𝒮 𝑐,𝑋0),
∀𝒮 ⊆ [𝐾]

(2.22)

= ∪𝒫 (𝑜𝑢𝑡)

⎧⎪
⎨
⎪⎩

𝜌𝒮 ≤ 𝐼(𝑋0; 𝑍|𝑝,𝑋𝒮 𝑐),
𝜌𝒮 ≤ 𝐼(𝑋𝒮; 𝑌 |𝑝,𝑋𝒮 𝑐,𝑋0),
∀𝒮 ⊆ [𝐾]

(2.23)

𝜌𝒮 represent the union of the rate-tuple of the sources belonging to 𝒮 ⊆ [𝐾], a subset of active
sources. The first inequality is related to the second hop, while the second inequality is related to the
first hop. 𝑋𝒮 𝑐 is the complementary set of 𝑋𝒮 in 𝒮. This passage from 2.22 to 2.23 is done keeping
in mind that we are considering a degraded channel, so in the first inequality the dependency on 𝑋𝒮
disappears, as well as 𝑍 in the second inequality.
An inner bound on the capacity can be found too. Now we do not assume anymore that sources
know what relay is transmitting. To this end we define again a set of input distribution, which comes
from the DF region described by equation 8 in [19]:
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2.2 – Bounds for capacity region

𝒫 𝑖𝑛𝐷𝐹 = {𝑃𝑋0,𝑋1,...,𝑋𝐾,𝑉1,...,𝑉𝐾,𝑝 = 𝑃𝑝 ⋅ ∏
𝑘∈[𝐾]

𝑃𝑉𝑘|𝑝𝑃𝑋𝑘|𝑝,𝑉𝑘
⋅ 𝑃𝑋0|𝑝,𝑉1,...,𝑉𝐾}; (2.24)

In this first set it appears the auxiliary random variable 𝑉𝑖, which allows cooperation between the
𝑖 − 𝑡ℎ source and the relay. In our system model we do not have such variables, so we need to
eliminate them.

𝒫 𝑖𝑛𝐷𝐹 𝑛𝑜𝑉 = {𝑃𝑋0,𝑋1,...,𝑋𝐾,𝑝 = 𝑃𝑝 ⋅ ∏
𝑘∈[𝐾]

𝑃𝑋𝑘|𝑝 ⋅ 𝑃𝑋0|𝑝}; (2.25)

𝒫 𝑖𝑛𝐷𝐹 𝑛𝑜𝑉 𝐺𝑎𝑢𝑠𝑠 = {𝑃𝑋0,𝑋1,...,𝑋𝐾,𝑝 = 𝑃𝑝 ⋅ ∏
𝑘∈[𝐾]

𝒩 (𝑋𝑘; 0, 𝑝𝑘(𝑝)) ⋅ 𝒩 (𝑋0; 0, 𝑝), (2.26)

0 ≤ 𝑝𝑖(⋅) ∶ 𝔼[𝑝𝑖(⋅)] ≤ 1, 𝑖 ∈ [0 ∶ 𝐾]};

In the last step we assumed again to use Gaussian inputs. Then we have

𝐶 ⊇ ∪𝒫 (𝑖𝑛𝐷𝐹 )

⎧⎪
⎨
⎪⎩

𝜌𝒮 ≤ 𝐼(𝑋0,𝑋𝒮; 𝑍|𝑝,𝑋𝒮 𝑐,𝑉𝒮 𝑐),
𝜌𝒮 ≤ 𝐼(𝑋𝒮; 𝑍, 𝑌 |𝑝,𝑋𝒮 𝑐,𝑉[𝐾],𝑋0),
∀𝒮 ⊆ [𝐾]

(2.27)

= ∪𝒫 (𝑖𝑛𝐷𝐹 )

⎧⎪
⎨
⎪⎩

𝜌𝒮 ≤ 𝐼(𝑋0; 𝑍|𝑝,𝑋𝒮 𝑐,𝑉𝒮 𝑐),
𝜌𝒮 ≤ 𝐼(𝑋𝒮; 𝑌 |𝑝,𝑋𝒮 𝑐,𝑉[𝐾],𝑋0),
∀𝒮 ⊆ [𝐾]

(2.28)

⊇ ∪𝒫 (𝑖𝑛𝐷𝐹 𝑛𝑜𝑉 )

⎧⎪
⎨
⎪⎩

𝜌𝒮 ≤ 𝐼(𝑋0; 𝑍|𝑝,𝑋𝒮 𝑐),
𝜌𝒮 ≤ 𝐼(𝑋𝒮; 𝑌 |𝑝,𝑋𝒮 𝑐,𝑋0),
∀𝒮 ⊆ [𝐾]

(2.29)

⊇ ∪𝒫 (𝑖𝑛𝐷𝐹 𝑛𝑜𝑉 𝐺𝑎𝑢𝑠𝑠)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜌𝒮 ≤ 𝔼𝑝 [log (1 + |ℎ0|2𝑝
𝜎2

2 )] ,

𝜌𝒮 ≤ 𝔼𝑝,𝑋0 [log (1 + ∑𝑘∈𝒮 |ℎ𝑘|2𝑝𝑘(𝑝)
𝜎2

1+𝛽|𝑋0|2 )] ,

∀𝒮 ⊆ [𝐾]

(2.30)

⊇ ∪𝒫 (𝑖𝑛𝐷𝐹 𝑛𝑜𝑉 𝐺𝑎𝑢𝑠𝑠)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜌𝒮 ≤ 𝔼𝑝 [log (1 + |ℎ0|2𝑝
𝜎2

2 )] ,

𝜌𝒮 ≤ 𝔼𝑝 [log (1 + ∑𝑘∈𝒮 |ℎ𝑘|2𝑝𝑘(𝑝)
𝜎2

1+𝛽𝑝 )] ,

∀𝒮 ⊆ [𝐾]

(2.31)

2.27 is obtained assuming 𝒫 𝑖𝑛𝐷𝐹 distribution. 2.28 comes from considering a degraded channel
again, so the mutual information on the first hop is measured between 𝑋𝒮 and 𝑌 (second inequality)
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and the one on the second hop is measured between 𝑋0 and 𝑍 (first inequality). 2.29 eliminates
the presence of the auxiliary variables 𝑉, while 2.30 comes from the Gaussian inputs assumption.
Ultimately 2.31 is obtained through Jensen’s inequality, which allows to state 𝔼𝑋0|𝑄[|𝑋0|2] =
𝑝0(𝑝) = 𝑝. The inequalities in 2.31 are a generalization of the single user case. In order to obtain the
single user case, so 𝐾 = 1, we must consider equation 2.28 and substitute 𝑉1 = 𝑋0. In fact when
there is a single source, there is knowledge at each instant of the transmitted symbol at the relay, so
we can consider as the unique auxiliary variable the transmitted symbol itself.

2.3 Maximum achievable rate on first hop

In the previous section we found bounds for the capacity of our MARC model. From 2.31 it
is possible to understand that the rate over the network is the minimum between the rate on the
first hop and the rate on the second hop. The rates are upper bounded by the capacity values on the
related links, which are averaged over 𝑝. We are going to write explicitly such expected values in
2.31, but first we introduce some terminology related to rates, which is used throughout the thesis.
We start by defining the instantaneous rates, with relay and sources power fixed, can be defined:

𝜌1𝑖 ≤ 𝐶1𝑖 = log
(

1 +
𝑝𝑖(𝑝)|ℎ𝑖|2

𝑁0 + 𝛽𝑝 )
(2.32)

is the instantaneous rate between source 𝑖 and relay, as if no other sources were present. Instead

𝜌2 = log
(

1 +
𝑝|ℎ0|2

𝑁0 )
(2.33)

is the instantaneous rate on the relay-destination link. It is also necessary to define the total instanta-
neous rate from the sources to the relay, which is:

𝜌1 ≤ 𝐶1 = log
(

1 +
∑𝑛

𝑖=1 |ℎ𝑖|2𝑝𝑖(𝑝)
𝑁0 + 𝛽𝑝 )

(2.34)

What is interesting for us is to find the achievable rate region on the first hop (which is the
critical part in the system), which comprehends all the possible rate combinations for a given set of
sources. This region is expected to be a 𝑛-dimensional convex polytope, defined by a set of 2𝑛 − 1
equations. To prove that we start by considering 𝑛 sources:

• 𝒮 ⊆ 𝒩 ∶ 𝒮 could be any subset of 𝒩, which is the set that comprehends all the 𝑛 sources. It
is realistic to assume that there may be some sources which are active and some others which
are not.

• 𝒮 ≠ ∅ ∶ it is the case in which all the sources are inactive, which is excluded since it is
useless.

• 𝜌𝒮 = ∑
𝑖∈𝒮

𝜌1𝑖 ∶ 𝜌𝒮 is the sum of the instantaneous rates coming from each source belonging

to 𝒮. Each rate is computed by ignoring the presence of the other sources belonging to the
subset, as if the considered source and the relay are not aware of the other ones.
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2.3 – Maximum achievable rate on first hop

• 𝐶𝒮 = log (1 + ∑𝑖∈𝒮 |ℎ𝑖|2𝑝𝑖
𝑁0+𝛽𝑝 ) ∶ 𝐶𝒮 is the capacity of the subset 𝒮

The following condition then must be satisfied:

∀𝒮 ⊆ 𝒩, 𝒮 ≠ ∅ ⟹ 𝜌𝒮 ≤ 𝐶𝒮 (2.35)

Such condition guarantees that, considering any possible subset of 𝒩 (excluding the empty set), the
sum of the rates coming from each source separately never overcomes the capacity of the whole
subset. Since that condition must be satisfied for any possible combination of the 𝑛 sources, except
one, a set of 2𝑛 − 1 constraints on the rate is created. Such set completely describes the convex
polytope, which allows to understand the possible performances of the system.
Such set of constraints shapes the convex polytope represented in 2.2. A couple (𝜌11, 𝜌12) defines a
point in the achievable rate region. Working on any red line means that the sum of the two rates
remains constant. The aim is to reach the dominant face of the region (blue edge).

Figure 2.2. Multiuser channel achievable rate region (first hop)

From now on, it is useful to define the average rates, which are average over the relay transmit
power 𝑝. The average rate for a single source is given by

𝑅1𝑖(𝑓, 𝑝𝑖) ≤ ∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝)𝜌1𝑖 d𝑝 = ∫

𝑝𝑚𝑎𝑥

0
𝑓(𝑝) log

(
1 +

𝑝𝑖(𝑝)|ℎ𝑖|2

𝑁0 + 𝛽𝑝 )
d𝑝 (2.36)

while the average rate on the relay-destination link is

𝑅2(𝑓 ) = ∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝)𝜌2 d𝑝 = ∫

𝑝𝑚𝑎𝑥

0
𝑓(𝑝) log

(
1 +

𝑝|ℎ0|2

𝑁0 )
d𝑝. (2.37)
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𝑅𝒮, which appears in 2.31, is defined as

𝑅𝒮(𝑓, 𝑝𝑖 ∀𝑖 ∈ 𝒮 ) ≤ ∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝) log

(
1 +

∑𝑖∈𝒮 |ℎ𝑖|2𝑝𝑖(𝑝)
𝑁0 + 𝛽𝑝 )

d𝑝 (2.38)

We are interested in the particular case in which all the sources are active and want to transmit, so
we have that 𝒮 = 𝒩. Consequently the total average rate from the sources to the relay is:

𝑅1(𝑓, 𝑝1, ..., 𝑝𝑛) ≤ ∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝)𝜌1 d𝑝 = ∫

𝑝𝑚𝑎𝑥

0
𝑓(𝑝) log

(
1 +

∑𝑛
𝑖=1 |ℎ𝑖|2𝑝𝑖(𝑝)
𝑁0 + 𝛽𝑝 )

d𝑝 (2.39)
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Chapter 3

Optimal power allocation at the sources
and at the relay

3.1 Problem Formulation

The aim of this thesis is to find the optimal power allocation, both at the multiple sources and at
the relay, which ensures the highest achievable rate from the sources to the destination node. Because
of the self-interference that occurs at the relay, the rates over the sources-relay links depend on the
relay transmit power. The overall rate is the minimum between the rate on the relay-destination link
and the sum rate achieved over the sources-relay links. In particular we are going to focus on the
multiuser case which has two sources.
The maximum achievable rate is then defined as follows:

𝑅 ≜ max
𝑓(⋅),𝑝1(⋅),𝑝2(⋅)

min{𝑅1(𝑓, 𝑝1, 𝑝2),𝑅2(𝑓 )} (3.1)

= max
𝑓(⋅)

min { max
𝑝1(⋅),𝑝2(⋅)

𝑅1(𝑓, 𝑝1, 𝑝2),𝑅2(𝑓 )} (3.2)

where the last equality comes from the fact that only 𝑅1 depends on 𝑝1 and 𝑝2.
In order to solve this problem it is necessary to maximize 𝑅 with respect to 𝑝1 and 𝑝2 in the first
place, and then maximize it over 𝑓(⋅). In order to find the power allocation policies in the achievable
region in 2.31, we need to divide the optimization into two separated steps.

3.2 Optimal power allocation at the sources

The first step is to maximize the rate over the power allocation at the two sources, according to
3.2. The maximization over 𝑓(⋅) will be done later on, so we start by maximizing over 𝑝1 and 𝑝2,
considering 𝑓(⋅) as given.
A similar problem was analyzed in [20], where a multiuser channel is considered. Such channel
corresponds exactly to the first hop of our system model. However there are some differences which
lead to a different solution. In [20] the channel conditions are constantly measured in order to obtain
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a precise SNR for each channel. The channel with the best SNR has the right to transmit until another
channel becomes the best one. If the received power from a source is below a certain threshold, then
such source cannot transmit (it may be that all the sources cannot transmit). The adopted policy can
be interpreted as water-filling, since more power is allocated for the channels with good conditions.
In our system model we have static channel gains, so they do not change over time. The channel
conditions vary over time because of the different power level at the relay, which entails different
amounts of self-interference. Such variation is ”proportional” for all the channels, since they all will
be affected by the relay transmission. This is the main difference from [20], even tough the scenario
is very similar. In fact in [20] the Lagrange method allows to find the set of inequalities described
by Equation 9 inside such paper. The fact that the channel gain are random variables guarantees
that the average power constraints are met over time (that means that all the sources except one can
remain silent), while in our case the channel gains are static but what changes is the power level at
the relay, which affects all the channels in the same way. Such proportionality can be eliminated
trough Lagrange derivation, and the only way to met the average power constraints is to allow all
the sources to transmit at the same time. All of this can be observed in the Lagrange derivation,
which is provided in the following.
Then the maximization problem w.r.t. 𝑝1 and 𝑝2 can be formulated as follows:

P0 ∶ 𝑅1(𝑓 ) = max
𝑝1(⋅),𝑝2(⋅)

𝑅1(𝑓, 𝑝1, 𝑝2) s.t.

(𝑎) ∫
𝑝𝑚𝑎𝑥

0
𝑝1(𝑝)𝑓 (𝑝)d𝑝 = ̄𝑃1; (𝑏) 0 ≤ 𝑝1(𝑝) ≤ 𝑝𝑚𝑎𝑥

1

(𝑐) ∫
𝑝𝑚𝑎𝑥

0
𝑝2(𝑝)𝑓 (𝑝)d𝑝 = ̄𝑃2; (𝑑) 0 ≤ 𝑝2(𝑝) ≤ 𝑝𝑚𝑎𝑥

2

recalling that 𝑅1(𝑓, 𝑝1, 𝑝2) = ∫𝑝𝑚𝑎𝑥

0 𝑓(𝑝) log (1 + |ℎ1|2𝑝1+|ℎ2|2𝑝2
𝑁0+𝛽𝑝 )d𝑝. The constraints imposed by

(a), (b), (c) and (d) are the same ones that we imposed in the system model section. We reported
them here to stress their importance.
Since the solution of this problem is not trivial, we apply the Lagrange multipliers technique.
Since the optimization problem contains inequality constraints we also impose the KKT conditions
[21]. The KKT approach is a generalization of the Lagrange’s one, since it allows also inequality
constraints. The procedure is explained in detail in appendix A.
As said previously, it is better to focus on the sum of the powers. Recalling from the Appendix A
the definition

𝑃𝑠(𝑝) ≜ |ℎ1|2𝑝1(𝑝) + |ℎ2|2𝑝2(𝑝) (3.3)

in the end we have

𝑃𝑠(𝑝) =
|ℎ1|2

𝜆1
− (𝑁0 + 𝛽𝑝) (3.4)

with 𝑃𝑠(𝑝) ≥ 0 and 𝑃𝑠(𝑝) ≤ |ℎ1|2𝑝𝑚𝑎𝑥
1 + |ℎ2|2𝑝𝑚𝑎𝑥

2 ≜ 𝑃 𝑚𝑎𝑥
𝑠 . 𝜆1 is the Lagrange multiplier

defined in A.
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3.2 – Optimal power allocation at the sources

The solution for 𝑃𝑠(𝑝) is:

𝑃𝑠(𝑝) = min
{[

|ℎ1|2

𝜆1
− (𝑁0 + 𝛽𝑝)

]

+

, |ℎ1|2𝑝𝑚𝑎𝑥
1 + |ℎ2|2𝑝𝑚𝑎𝑥

2 }
(3.5)

= 𝛽 min
{[

|ℎ1|2

𝛽𝜆1
−

𝑁0
𝛽

− 𝑝
]

+

,
𝑃 𝑚𝑎𝑥

𝑠
𝛽 }

(3.6)

= 𝛽 min{[𝜔 − 𝑝]+,𝒫 𝑚𝑎𝑥
𝑠 } (3.7)

where the operator [⋅]+ ≜ max{0, ⋅}. Furthermore some new parameters are defined:

𝒫 𝑚𝑎𝑥
𝑠 ≜

𝑃 𝑚𝑎𝑥
𝑠
𝛽

(3.8)

is the maximum power sum weighted by 1
𝛽 and

𝜔 ≜
|ℎ1|2

𝛽𝜆1
−

𝑁0
𝛽

(3.9)

is the a function of the Lagrange multiplier 𝜆1. If 𝑓(⋅) is given, and that is the assumption we made
in this first part, the optimal value of 𝜔 can be found by substituting 3.7 into P0-(a).

Figure 3.1. Transmission power sum of the sources: 𝜔 ≥ 𝒫 𝑚𝑎𝑥
𝑠 (left) and 𝜔 < 𝒫 𝑚𝑎𝑥

𝑠 (right)

The two case are illustrated in 3.1. Having fixed 𝜔, for an increasing relay transmit power the
power at the sources is lowered since the self-interference at the relay is higher and higher. After
the critical point 𝜔 = 𝑝 the self-interference is too high and the most convenient thing to do for the
sources it to not transmit at all. For simplicity, 𝑝𝑚𝑎𝑥

1 and 𝑝𝑚𝑎𝑥
2 are assumed as very large values, such

that 3.7 can be reduced to
𝑃𝑠(𝑝) = 𝛽[𝜔 − 𝑝]+ (3.10)

Such assumption has practical relevance when the sources don’t have strict limits on transmit power,
so when they are macro-cell Base Station (BS) for example.
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3 – Optimal power allocation at the sources and at the relay

Since a parameter of fundamental interest is the average rate, by substituting the optimal solution
in the expression of the average rate 𝑅1(𝑓, 𝑝1, 𝑝2) (which comes from 3.2) the dependency on 𝜔 is
highlighted:

𝑅1(𝑓 ) = ∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝) log (1 +

𝛽[𝜔 − 𝑝]+

𝑁0 + 𝛽𝑝 ) = ∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝) log (1 +

𝛽0[𝜔 − 𝑝]+

1 + 𝛽0𝑝 ) (3.11)

where 𝛽0 ≜ 𝛽
𝑁0

.

Furthermore also the average sum power is of interest for us, and the dependency on 𝜔 can be
found by substituting 𝑃𝑠(𝑝) in P0-(a) (or P0-(b), it is the same)

∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝)

𝛽[𝜔 − 𝑝]+ − |ℎ2|2𝑝2(𝑝)
|ℎ1|2 d𝑝 = ̄𝑃1 (3.12)

the fraction is then divided into two terms

∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝)𝛽[𝜔 − 𝑝]+d𝑝 − ∫

𝑝𝑚𝑎𝑥

0
𝑓(𝑝)|ℎ2|2𝑝2(𝑝)d𝑝 = |ℎ1|2 ̄𝑃1 (3.13)

and on the second term constraint (c) is used

∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝)𝛽[𝜔 − 𝑝]+d𝑝 − |ℎ2|2 ̄𝑃2 = |ℎ1|2 ̄𝑃1 (3.14)

and finally with simple math operations

∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝)[𝜔 − 𝑝]+d𝑝 =

|ℎ1|2 ̄𝑃1 + |ℎ2|2 ̄𝑃2
𝛽

≜ ̄𝒫𝑠 (3.15)

After the maximization of the rate 𝑅1 w.r.t. 𝑝1 and 𝑝2 we need to optimize the rate w.r.t. 𝑓(⋅).
To this end we rewrite the maximization problem P0 as:

P1 ∶ 𝑅 = max
𝑓(⋅)

min{𝑅1(𝑓 ),𝑅2(𝑓 )} s.t.

(𝑎) 𝑅1(𝑓 ) = ∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝) log (1 +

𝛽0[𝜔 − 𝑝]+

1 + 𝛽0𝑝 ) d𝑝

(𝑏) 𝑅2(𝑓 ) = ∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝) log(1 + 𝑣𝑝)d𝑝

(𝑐) ∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝)[𝜔 − 𝑝]+d𝑝 = ̄𝒫𝑠

(𝑑) ∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝)d𝑝 = 1; ∫

𝑝𝑚𝑎𝑥

0
𝑝𝑓(𝑝)d𝑝 = ̄𝑝; 0 ≤ 𝑝 ≤ 𝑝𝑚𝑎𝑥

where 𝑣 ≜ |ℎ2|2

𝑁0
. The constraints of the problem are:
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3.3 – Optimal power allocation at the relay when 𝜔 ≥ 𝑝𝑚𝑎𝑥

• (a) is the average rate on the first part of the communication link, therefore between the
sources and the relay, which was derived in 3.11.

• (b) is the average rate on the second part of the communication link, therefore between the
relay and the destination.

• (c) represents the constraint on the average power of the sources, which was found in 3.15.

• (d) simply defines 𝑓(⋅) as a distribution with mean value ̄𝑝 and support in [0, 𝑝𝑚𝑎𝑥].

𝜔 is the free parameter in the problem, but also 𝑓(⋅) need to be chosen in an optimal way. Due
to the presence of the non linear operator [⋅]+ in (a) and (c) we have to consider two separate cases:

(i) The easier case is for 𝜔 ≥ 𝑝𝑚𝑎𝑥, because it allows to get rid of the [⋅]+ operator, since its
argument is always greater than (or equal to) zero. In fact, according to 3.2, the non linearity
of the function is avoided, letting the problem to be easier.

(ii) When 𝜔 < 𝑝𝑚𝑎𝑥 the situation is more complex, from a mathematical point of view, and some
additional assumptions must be done. In this thesis such particular case is not treated, but it
can be analyzed in future work.

The two previously mentioned cases are illustrated in 3.2. As it is shown, for 𝜔 ≥ 𝑝𝑚𝑎𝑥 the

Figure 3.2. Transmission power sum of the sources: 𝜔 ≥ 𝑝𝑚𝑎𝑥 (left) and 𝜔 < 𝑝𝑚𝑎𝑥 (right)

function which describes the sources power is linear and easy to deal with, while in the other case
the discontinuity is still present and a different approach is required to deal with that.

3.3 Optimal power allocation at the relay when 𝜔 ≥ 𝑝𝑚𝑎𝑥

As it was said in the previous section, by assuming 𝜔 ≥ 𝑝𝑚𝑎𝑥 we can remove the non-linear [⋅]+

operator from 3.10. First of all, by using the definitions provided in P1-(d) and plugging them into
P1-(c), 𝜔 can be written as:

∫
𝑝𝑚𝑎𝑥

0
𝜔𝑓(𝑝)d𝑝 − ∫

𝑝𝑚𝑎𝑥

0
𝑝𝑓(𝑝)d𝑝 = ̄𝒫𝑠 (3.16)
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3 – Optimal power allocation at the sources and at the relay

then by using the constraints coming from (d)

𝜔 − ̄𝑝 = ̄𝒫𝑠 (3.17)

and finally
𝜔 = ̄𝒫𝑠 + ̄𝑝 (3.18)

By substituting this value for 𝜔 in 3.11 we obtain a new expression for the rate:

𝑅1(𝑓 ) = ∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝) log (

1 + 𝛽0𝑝 + 𝛽0(𝜔 − 𝑝)
1 + 𝛽0𝑝 ) d𝑝 (3.19)

= ∫
𝑝𝑚𝑎𝑥

0
log(1 + 𝛽0( ̄𝒫𝑠 + ̄𝑝))𝑓 (𝑝)d𝑝 − ∫

𝑝𝑚𝑎𝑥

0
𝑓(𝑝) log(1 + 𝛽0𝑝)d𝑝 (3.20)

= log(1 + 𝛽0( ̄𝒫𝑠 + ̄𝑝)) − ∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝) log(1 + 𝛽0𝑝)d𝑝 (3.21)

Moreover an equivalent way to write the condition 𝜔 ≥ 𝑝𝑚𝑎𝑥 is ̄𝒫𝑠 ≥ 𝑝𝑚𝑎𝑥 − ̄𝑝 ≜ 𝒫0, which comes
from 3.18. This is an important definition, since it defines a power threshold.
The next step is to lower and upper bound the two rates 𝑅1(𝑓 ) and 𝑅2(𝑓 ), , whose expressions are
given by 3.21 and P1-(b), so that three different regions of operability will be found.

3.3.1 Bounding the rates

To find the bounds the following lemma is used, which is exactly the same lemma used in [12]:

Lemma 4.1. Let 𝜙(𝑝) be a continuous concave function and 𝑓(𝑝) be a probability distribution,
both with support in [𝑎, 𝑏]. Let ∫𝑏

𝑎 𝑝𝑓(𝑝)d𝑝 = 𝑚. Then,

𝑏 − 𝑚
𝑏 − 𝑎

𝜙(𝑎) + (1 − 𝑏 − 𝑚
𝑏 − 𝑎 ) 𝜙(𝑏) ≤ ∫

𝑏

𝑎
𝑓(𝑝)𝜙(𝑝)d𝑝 ≤ 𝜙(𝑚) (3.22)

The lower bound holds with equality when 𝑓(𝑝) = 𝑏−𝑚
𝑏−𝑎 𝛿(𝑝 − 𝑚) + (1 − 𝑏−𝑚

𝑏−𝑎 ) 𝛿(𝑝 − 𝑏), while the
upper bound holds with equality when 𝑓(𝑝) = 𝛿(𝑝 − 𝑚), where 𝛿(⋅) is the Dirac delta.

The proof of this lemma is reported in Appendix B.

By observing that 𝑓(𝑝) is a distribution with mean ̄𝑝 and that in general a function of the type
log(1 + 𝑐𝑝), with 𝑐 > 0 is concave, the following bounds can be found. At first the lower bound is
applied to 3.21 and P1-(b):

𝑅1 ≤ log(1 + 𝛽0( ̄𝒫𝑠 + ̄𝑝)) −
̄𝑝

𝑝𝑚𝑎𝑥 log(1 + 𝛽0𝑝𝑚𝑎𝑥) ≜ 𝑟𝑚𝑎𝑥
1 (3.23)

𝑅2 ≥
̄𝑝

𝑝𝑚𝑎𝑥 log(1 + 𝑣𝑝𝑚𝑎𝑥) ≜ 𝑟𝑚𝑖𝑛
2 (3.24)

Both 3.23 and 3.24 hold with equality when

𝑓(𝑝) = (1 −
̄𝑝

𝑝𝑚𝑎𝑥 ) 𝛿(𝑝) +
̄𝑝

𝑝𝑚𝑎𝑥 𝛿(𝑝 − 𝑝𝑚𝑎𝑥). (3.25)
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3.3 – Optimal power allocation at the relay when 𝜔 ≥ 𝑝𝑚𝑎𝑥

In a similar way, by using the upper bound on the two rates we obtain:

𝑅1 ≥ log(1 + 𝛽0( ̄𝒫𝑠 + ̄𝑝)) − log(1 + 𝛽0 ̄𝑝) ≜ 𝑟𝑚𝑖𝑛
1 (3.26)

𝑅2 ≤ log(1 + 𝑣 ̄𝑝) ≜ 𝑟𝑚𝑎𝑥
2 (3.27)

with the equality that holds when
𝑓(𝑝) = 𝛿(𝑝 − ̄𝑝). (3.28)

3.3.2 P1 solution

The four bounds of the rates which were obtained in the previous section allow a subdivision of
the problem P1 into three distinct working regions.

1) 𝑟𝑚𝑖𝑛
2 ≥ 𝑟𝑚𝑎𝑥

1 : in this case 𝑅 = 𝑟𝑚𝑎𝑥
1 . The optimal relay power distribution is the one found in 3.25,

so
𝑓 ⋆(𝑝) = (1 −

̄𝑝
𝑝𝑚𝑎𝑥 ) 𝛿(𝑝) +

̄𝑝
𝑝𝑚𝑎𝑥 𝛿(𝑝 − 𝑝𝑚𝑎𝑥). (3.29)

Furthermore, from the inequality 𝑟𝑚𝑖𝑛
2 ≥ 𝑟𝑚𝑎𝑥

1 , the power threshold which defines this region can
be found, along with the average rate value

𝑟𝑚𝑖𝑛
2 ≥ 𝑟𝑚𝑎𝑥

1

by substituting 3.24 and 3.23 in the inequality

̄𝑝
𝑝𝑚𝑎𝑥 log(1 + 𝑣𝑝𝑚𝑎𝑥) ≥ log(1 + 𝛽0( ̄𝒫𝑠 + ̄𝑝)) −

̄𝑝
𝑝𝑚𝑎𝑥 log(1 + 𝛽0𝑝𝑚𝑎𝑥)

and by solving it for ̄𝒫𝑠

̄𝒫𝑠 ≤ 𝒫1 ≜ 1
𝛽0

[(1 + 𝛽0𝑝𝑚𝑎𝑥)(1 + 𝑣𝑝𝑚𝑎𝑥)]
̄𝑝

𝑝𝑚𝑎𝑥 −
1 − 𝛽0 ̄𝑝

𝛽0
(3.30)

So 𝑅 is equal to 3.23:

𝑅 = log(1 + 𝛽0( ̄𝒫𝑠 + ̄𝑝)) −
̄𝑝

𝑝𝑚𝑎𝑥 log(1 + 𝛽0𝑝𝑚𝑎𝑥) (3.31)

2) 𝑟𝑚𝑖𝑛
1 ≥ 𝑟𝑚𝑎𝑥

2 : now 𝑅 = 𝑟𝑚𝑎𝑥
2 . The optimal relay power distribution comes from 3.28 and it is

𝑓 ⋆(𝑝) = 𝛿(𝑝 − ̄𝑝). (3.32)

Similarly to case 1), from the condition that defines this case is obtained

𝑟𝑚𝑖𝑛
1 ≥ 𝑟𝑚𝑎𝑥

2

by substituting 3.26 and 3.27 in the inequality

log(1 + 𝛽0( ̄𝒫𝑠 + ̄𝑝)) − log(1 + 𝛽0 ̄𝑝) ≥ log(1 + 𝑣 ̄𝑝) ≜ 𝑟𝑚𝑎𝑥
2
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3 – Optimal power allocation at the sources and at the relay

and by solving for ̄𝒫𝑠

̄𝒫𝑠 ≥ 𝒫2 ≜ ̄𝑝𝑣
1 + 𝛽0 ̄𝑝

𝛽0
(3.33)

along with the rate, which is equal to 3.27

𝑅 = log(1 + ̄𝑝𝑣). (3.34)

3) If the two previous conditions do not hold, we need to solve the problem by setting 𝑅 = 𝑅1 = 𝑅2.
This problem is more difficult to solve. Its solution provides the expression for the rates in the
range 𝒫1 ≤ ̄𝒫𝑠 ≤ 𝒫2. We therefore rewrite P1 as:

P2 ∶ 𝑅 = max
𝑓(⋅)

𝑅1(𝑓 ) = log(1 + 𝛽0( ̄𝒫𝑠 + ̄𝑝)) − min
𝑓(⋅) ∫

𝑝𝑚𝑎𝑥

0
𝑓(𝑝) log(1 + 𝛽0𝑝)d𝑝 s.t.

(𝑎) 𝑅2(𝑓 ) = 𝑅1(𝑓 ) = ∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝) log(1 + 𝑣𝑝)d𝑝

(𝑏) ∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝)d𝑝 = 1; ∫

𝑝𝑚𝑎𝑥

0
𝑝𝑓(𝑝)d𝑝 = ̄𝑝; 0 ≤ 𝑝 ≤ 𝑝𝑚𝑎𝑥

Constraint (a) can be rewritten as

∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝) log[(1 + 𝛽0𝑝)(1 + 𝑝𝑣)]d𝑝 = log(1 + 𝛽0( ̄𝒫𝑠 + ̄𝑝)) (3.35)

In order to find an optimal solution to this problem it is necessary to apply the following theorem,
which again is the same used in [12].

Theorem 4.1. Consider the following constrained minimization problem:

𝑅 = min
𝑓(⋅) ∫

𝑏

𝑎
𝑓(𝑝)𝜙(𝑝)d𝑝 s.t. (3.36)

(𝑎) ∫
𝑏

𝑎
𝑓(𝑝)𝜓(𝑝)d𝑝 = 𝑐

(𝑏) ∫
𝑏

𝑎
𝑝𝑓(𝑝)d𝑝 = 𝑚

(𝑐) ∫
𝑏

𝑎
𝑓(𝑝)d𝑝 = 1

(𝑑) 𝑓(𝑝) ≥ 0,∀𝑝 ∈ [𝑎, 𝑏]

where 𝜙(𝑝) = log(1 + 𝛾1𝑝), 𝜂(𝑝) = log(1 + 𝛾2𝑝), 𝜓(𝑝) = 𝜙(𝑝) + 𝜂(𝑝) and 𝑓(𝑝) is a probability
distribution with support in [𝑎, 𝑏], 𝑎 > 0. Moreover, 𝛾1 > 0, 𝛾2 > 0, 𝑚 ∈ [𝑎, 𝑏] and 𝑐 are constant
parameters. Then, the minimizer has the following expression

𝑓 ⋆(𝑝) =
⎧⎪
⎨
⎪⎩

𝑝𝑏−𝑚
𝑝𝑏−𝑎 𝛿(𝑝 − 𝑎) + 𝑚−𝑎

𝑝𝑏−𝑎 𝛿(𝑝 − 𝑝𝑏) if 𝛾1 > 𝛾2
𝑏−𝑚
𝑏−𝑝𝑎

𝛿(𝑝 − 𝑝𝑎) + 𝑚−𝑝𝑎
𝑏−𝑝𝑎

𝛿(𝑝 − 𝑏) if 𝛾1 ≤ 𝛾2
(3.37)

where 𝑝𝑎 ∈ [𝑎,𝑚] and 𝑝𝑏 ∈ [𝑚, 𝑏] are obtained by replacing 3.37 in 3.36-(a).
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3.3 – Optimal power allocation at the relay when 𝜔 ≥ 𝑝𝑚𝑎𝑥

The proof of the theorem is given in C. By using Theorem 4.1 in the specific case of P2, the
condition 𝛾1 ≤ 𝛾2 becomes 𝑣 ≥ 𝛽0, which leads to the optimal power distribution at the relay:

𝑓 ⋆(𝑝) =
𝑝𝑚𝑎𝑥 − ̄𝑝
𝑝𝑚𝑎𝑥 − 𝑝𝑎

𝛿(𝑝 − 𝑝𝑎) +
̄𝑝 − 𝑝𝑎

𝑝𝑚𝑎𝑥 − 𝑝𝑎
𝛿(𝑝 − 𝑝𝑚𝑎𝑥) (3.38)

where 𝑝𝑎 is a value of 𝑝 which can be obtained by replacing 𝑓 ⋆(𝑝) defined in 3.37 into P2-(a),
which means solving the following equation for 𝑝𝑎

[
(1 + 𝛽0𝑝𝑎)(1 + 𝑝𝑎𝑣)

(1 + 𝛽0𝑝𝑚𝑎𝑥)(1 + 𝑝𝑚𝑎𝑥𝑣)]

𝑝𝑚𝑎𝑥− ̄𝑝
𝑝𝑚𝑎𝑥−𝑝𝑎 =

1 + 𝛽0( ̄𝒫𝑠 + ̄𝑝)
(1 + 𝛽0𝑝𝑚𝑎𝑥)(1 + 𝑝𝑚𝑎𝑥𝑣)

. (3.39)

Similarly, when 𝑣 < 𝛽0:

𝑓 ⋆(𝑝) =
𝑝𝑏 − ̄𝑝

𝑝𝑏
𝛿(𝑝) +

̄𝑝
𝑝𝑏

𝛿(𝑝 − 𝑝𝑏) (3.40)

and by applying the same substitution done before, the following equation must be solved to find
𝑝𝑏

[(1 + 𝛽0𝑝𝑏)(1 + 𝑝𝑏𝑣)]
̄𝑝

𝑝𝑏 = 1 + 𝛽0( ̄𝒫𝑠 + ̄𝑝). (3.41)

The most important deduction that can be done from these results is that the optimal power
allocation at the relay 𝑓 ⋆(𝑝) is discrete. This means that a time division strategy can be adopted: in
fact 𝑓 ⋆(𝑝) is always made of one or two delta functions. In particular, the value in which the delta
function is centered defines the power level of the relay, while the coefficient establish the duration
of the transmission with such power level. In the case of two probability masses, the transmission
time is divided into two phases whose time fractions are given by the coefficient of the deltas. A
graphical representation is given in 3.3.

Figure 3.3. Optimal communication strategy. The time frame is divided into two phases (A and B),
with the associated parameters: 𝑝𝐴 and 𝑝𝐵 define the relay transmit power of the corresponding phase,
while 𝑡𝐴 and 𝑡𝐵 the duration of the phase

Once the relay power allocation is chosen, the correspondent 𝑓 ⋆(𝑝) is placed into 3.15, to obtain
the sources optimal power level. Thus, the relay needs to communicate to the sources only those
few parameters which define the delta functions, making it easy from a practical implementation
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3 – Optimal power allocation at the sources and at the relay

point of view: such quantities will be sent to sources through a very small overhead (of course it is
fundamental the synchronization at the frame level between sources and relay). Furthermore, we
observe that the expressions for 𝑓(⋅) only depend on the channel gain ℎ0, while the power allocation
at the sources depends exclusively on the channel gains ℎ1 and ℎ2.

In 3.1 all the results are collected for the case ̄𝒫𝑠 ≥ 𝒫0 according to the regions defined by the
power thresholds, and they can be summarized as follows:

• for ̄𝒫𝑠 ≤ 𝒫1 the communication strategy adopted at the relay is FD during phase A, while
HD-RX in phase B. That means that in phase A both sources and relay are transmitting, while
in phase B the relay receives only.

• when 𝒫1 < ̄𝒫𝑠 < 𝒫2 two case must be distinguished. If 𝑣 ≥ 𝛽0, then the relay works in FD
in both the two phases, although with different paramters. If 𝑣 < 𝛽0 the relay works in FD
during phase A, but in HD-RX during phase B.

• for ̄𝒫𝑠 ≥ 𝒫2 the relay works in FD mode all time, maintaining the same parameters for
the whole duration of the transmission time allocated. In particular both sources and relay
transmit at their average power level.
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3.3 – Optimal power allocation at the relay when 𝜔 ≥ 𝑝𝑚𝑎𝑥

Table 3.1. OPTIMAL POWER ALLOCATION AND RATE FOR ̄𝒫𝑠 ≥ 𝒫0.

𝑣 ≥ 𝛽0 Phase A Phase B

𝑡𝐴 𝑃𝑠,𝐴 𝑝𝐴 𝑡𝐵 𝑃𝑠,𝐵 𝑝𝐵

̄𝒫𝑠 ∈ [𝒫0,𝒫1] ̄𝑝
𝑝𝑚𝑎𝑥 𝛽( ̄𝒫𝑠 + ̄𝑝 − 𝑝𝑚𝑎𝑥) 𝑝𝑚𝑎𝑥 1 − ̄𝑝

𝑝𝑚𝑎𝑥 𝛽( ̄𝒫𝑠 + ̄𝑝) 0

̄𝒫𝑠 ∈ (𝒫1,𝒫2) ̄𝑝−𝑝𝑎
𝑝𝑚𝑎𝑥−𝑝𝑎

𝛽( ̄𝒫𝑠 + ̄𝑝 − 𝑝𝑚𝑎𝑥) 𝑝𝑚𝑎𝑥 𝑝𝑚𝑎𝑥− ̄𝑝
𝑝𝑚𝑎𝑥−𝑝𝑎

𝛽( ̄𝒫𝑠 + ̄𝑝 − 𝑝𝑎) 𝑝𝑎

̄𝒫𝑠 ∈ [𝒫2,∞) − − − 1 𝛽 ̄𝒫𝑠 ̄𝑝

𝑣 < 𝛽0 Phase A Phase B

𝑡𝐴 𝑃𝑠,𝐴 𝑝𝐴 𝑡𝐵 𝑃𝑠,𝐵 𝑝𝐵

̄𝒫𝑠 ∈ [𝒫0,𝒫1] ̄𝑝
𝑝𝑚𝑎𝑥 𝛽( ̄𝒫𝑠 + ̄𝑝 − 𝑝𝑚𝑎𝑥) 𝑝𝑚𝑎𝑥 1 − ̄𝑝

𝑝𝑚𝑎𝑥 𝛽( ̄𝒫𝑠 + ̄𝑝) 0

̄𝒫𝑠 ∈ (𝒫1,𝒫2) ̄𝑝
𝑝𝑏

𝛽( ̄𝒫𝑠 + ̄𝑝 − 𝑝𝑏) 𝑝𝑏 1 − ̄𝑝
𝑝𝑏

𝛽( ̄𝒫𝑠 + ̄𝑝) 0

̄𝒫𝑠 ∈ [𝒫2,∞) 1 𝛽 ̄𝒫𝑠 ̄𝑝 − − −

Rate R

̄𝒫𝑠 ∈ [𝒫0,𝒫1] log(1 + 𝛽0( ̄𝒫𝑠 + ̄𝑝)) − ̄𝑝
𝑝𝑚𝑎𝑥 log(1 + 𝛽0𝑝𝑚𝑎𝑥)

̄𝒫𝑠 ∈ (𝒫1,𝒫2); 𝑣 ≥ 𝛽0 log(1 + 𝛽0( ̄𝒫𝑠 + ̄𝑝)) − 𝑝𝑚𝑎𝑥− ̄𝑝
𝑝𝑚𝑎𝑥−𝑝𝑎

log(1 + 𝛽0𝑝𝑎) − ̄𝑝−𝑝𝑎
𝑝𝑚𝑎𝑥−𝑝𝑎

log(1 + 𝛽0𝑝𝑚𝑎𝑥)

̄𝒫𝑠 ∈ (𝒫1,𝒫2); 𝑣 < 𝛽0 log(1 + 𝛽0( ̄𝒫𝑠 + ̄𝑝)) − ̄𝑝
𝑝𝑏

log(1 + 𝛽0𝑝𝑏)

̄𝒫𝑠 ∈ [𝒫2,∞); 𝑣 < 𝛽0 log(1 + ̄𝑝𝑣)
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Chapter 4

Fairness among sources

An aspect which has not been discussed yet is fairness among sources. It is important inside a
network to control the relations between sources, giving a sort of priority to them. There may be
scenarios in which some sources should transmit at their maximum rate, and we are not interested
in maximizing the rate sum. To this end different operability regions will be highlighted in the
achievable rate polytope from 2.2. Moreover, as we will discuss later in this Chapter, total fairness
among sources does not imply optimality, and we will propose an approach to insert such 𝛼 parameter
in our already existing system model. In the end the optimal power allocation, both at sources and
relay, will be of the same form found in Chapter 3, but some extra constraints related to 𝛼 may
restrict the acceptability of such solutions.

4.1 General considerations

In our considered network mode, fairness can be set by introducing a parameter,𝛼, which binds
the instantaneous rates as follows

𝜌11 = 1
𝛼

𝜌12 (4.1)

The relation can be visualized as a straight line of slope 𝛼, which passes through the origin of the
Cartesian plane.
Some values of 𝛼 bound specific regions in the convex polytope in 2.2. Such regions are highlighted
in 4.1.

The three regions are (if we consider only the possible values inside the polytope):

• 𝐴1 is the yellowish region: its upper green edge represents the set of points in which 𝑆2 works
at its maximum rate 𝐶12 while 𝑆1 works at a rate value 𝜌11 < 𝐶1 − 𝐶12. Hence 𝑆1 is penalized
with respect to 𝑆2.

• 𝐴2 is the reddish region. Along its red edge the sum rate is maximized. In general here sources
do not work at their maximum rate, except when the extremes of this region are considered.

• 𝐴3 is the blueish region. Only along its green edge 𝑆1 works at its maximum rate 𝐶11 while
𝑆2 works at a rate value 𝜌12 < 𝐶1 − 𝐶11. Hence here 𝑆2 is penalized with respect to 𝑆1.
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4 – Fairness among sources

Figure 4.1. Working regions defined by 𝛼

Observe that 𝛼 = 1 imply perfect fairness among the two sources. The line 𝜌12 = 𝜌11, however
can belong to any of the three regions 𝐴1, 𝐴2 and 𝐴3, whose shape depend on the system param-
eters. Such dependency is related in particular to the channel gains. The next step is to find the
corresponding range of values of 𝛼 for each region, once the remaining system parameters are fixed.
It is expected that for 𝛼 that tends to 0 also 𝑅12 tends to zero and 𝑅11 = 𝐶11, while for 𝛼 going to
∞, 𝑅11 goes to 0 and 𝑅12 = 𝐶12. Starting with region 𝐴1, the following system of equations must
be introduced:

⎧⎪
⎨
⎪⎩

𝜌11 = 1
𝛼 𝜌12

𝜌12 = 𝐶12

𝜌11 + 𝜌12 = 𝐶1

(4.2)

recalling that 𝐶11 = log (1 + |ℎ1|2𝑝1
𝑁0+𝛽𝑝 ), 𝐶12 = log (1 + |ℎ2|2𝑝2

𝑁0+𝛽𝑝 ) and 𝐶1 = log (1 + |ℎ1|2𝑝1+|ℎ2|2𝑝2
𝑁0+𝛽𝑝 ).

This system is necessary to find the slope 𝛼 of the straight line which passes through the boundary
point between 𝐴1 and 𝐴2. The other boundary value of 𝛼 for 𝐴1 is trivial and it is ∞. The solution
of 4.2 is

𝛼1 =
𝐶12

𝐶1 − 𝐶12
=

log (1 + |ℎ2|2𝑝2(𝑝)
𝑁0+𝛽𝑝 )

log
(

1+ |ℎ1|2𝑝1(𝑝)+|ℎ2|2𝑝2(𝑝)
𝑁0+𝛽𝑝

1+ |ℎ2|2𝑝2(𝑝)
𝑁0+𝛽𝑝 )

=
log (1 + |ℎ2|2𝑝2(𝑝)

𝑁0+𝛽𝑝 )

log (1 + |ℎ1|2𝑝1(𝑝)
|ℎ2|2𝑝2(𝑝)+𝑁0+𝛽𝑝 )

(4.3)

A similar reasoning can be done for 𝐴3, which has a trivial bound for 𝛼 that is 0 and the other one
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4.2 – Bounds on source power

can be found by solving the following system:

⎧⎪
⎨
⎪⎩

𝜌12 = 𝛼𝜌11

𝜌11 = 𝐶11

𝜌11 + 𝜌12 = 𝐶1

(4.4)

which has solution

𝛼2 =
𝐶1 − 𝐶11

𝐶11
=

log
(

1+ |ℎ1|2𝑝1(𝑝)+|ℎ2|2𝑝2(𝑝)
𝑁0+𝛽𝑝

1+ |ℎ1|2𝑝1(𝑝)
𝑁0+𝛽𝑝 )

log (1 + |ℎ1|2𝑝1(𝑝)
𝑁0+𝛽𝑝 )

=
log (1 + |ℎ2|2𝑝2(𝑝)

|ℎ1|2𝑝1(𝑝)+𝑁0+𝛽𝑝 )

log (1 + |ℎ1|2𝑝1(𝑝)
𝑁0+𝛽𝑝 )

(4.5)

In the end the three regions are associated with the following values of 𝛼:

• 𝐴1 ⇒ 𝛼1 < 𝛼 < ∞

• 𝐴2 ⇒ 𝛼2 ≤ 𝛼 ≤ 𝛼1

• 𝐴3 ⇒ 0 < 𝛼 < 𝛼2

where 𝛼1 and 𝛼2 are defined respectively in 4.3 and in 4.5
Now, if 𝛼 is chosen so that it belongs to region 𝐴1 for example, it is possible to notice how the
rate of the source 𝑆1 is significantly lower than its maximum. That means that much of the power
transmitted by source 𝑆1, 𝑝1(𝑝), is wasted. In order to avoid this energy waste, the source powers
should be adjusted and optimized depending on the choice of the parameter 𝛼.

4.2 Bounds on source power

A better approach to find an optimal solution is to fix the 𝛼 coefficient, and consequently the
related straight line, which defines the desired fairness conditions. Then the polytope previously
described can be reshaped in order to let the straight line fall into the region 𝐴2, where the sum of
the rates is constant (4.2). In such conditions the rate achieved on the sources-relay link is described
by:

𝜌1(𝑝1, 𝑝2, 𝑝) = log
(

1 +
𝑝1(𝑝)|ℎ1|2 + 𝑝2(𝑝)|ℎ2|2

𝑁0 + 𝛽𝑝 )
(4.6)

while the average rate is given by 𝑅1(𝑓, 𝑝1, 𝑝2) = ∫𝑝𝑚𝑎𝑥

0 𝜌1(𝑝1, 𝑝2, 𝑝) d𝑝. We also recall that the
source transmit power should satisfy the constraints

∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝)𝑝𝑖(𝑝)d𝑝 = ̄𝑃𝑖 (4.7)

To solve the problem of maximization of 𝑅1 the following variable is defined

𝑃𝑠(𝑝) = 𝑝1(𝑝)|ℎ1|2 + 𝑝2(𝑝)|ℎ2|2 (4.8)
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so that the maximization problem becomes

P2: 𝑅1(𝑓 ) = max
𝑝1,𝑃𝑠 ∫

𝑝𝑚𝑎𝑥

0
𝑓(𝑝) log (1 +

𝑃𝑠(𝑝)
𝑁0 + 𝛽𝑝) d𝑝 𝑠.𝑡. (4.9)

(𝑎) ∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝)𝑃𝑠(𝑝)d𝑝 = ∫

𝑝𝑚𝑎𝑥

0
𝑓(𝑝)|ℎ1|2𝑝1(𝑝) + ∫

𝑝𝑚𝑎𝑥

0
𝑓(𝑝)|ℎ2|2𝑝2(𝑝) = ̄𝑃𝑠 (4.10)

(𝑏) ∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝)𝑝1(𝑝)d𝑝 = ̄𝑃1 (4.11)

(4.12)

where ̄𝑃𝑠 = ̄𝑃1|ℎ1|2 + ̄𝑃2|ℎ2|2. The constraint (a) is simply the extension of the average power
constraints on single sources to their power sum. The maximization problem is solved in a totally
equivalent way as it was done in the previous section, by following the procedure in appendix A.
Now the Lagrangian depends only on a single variable and has the form

ℒ(𝑃𝑠) = 𝑓(𝑝) log (1 +
𝑃𝑠(𝑝)

𝑁0 + 𝛽𝑝) − 𝜇𝑓(𝑝)𝑃𝑠(𝑝) (4.13)

and can be solved for 𝑃 with the equation 𝜕ℒ(𝑃𝑠)
𝜕𝑃𝑠

= 0. The solution obtained is

𝑃𝑠(𝑝) = 1
𝜇

− 𝑁0 − 𝛽𝑝 (4.14)

Considering that 𝑃 ≥ 0, similarly to subsection 3.2, the final solution is:

𝑃𝑠(𝑝) = [
1
𝜇

− 𝑁0 − 𝛽𝑝]

+
= 𝛽[𝜔 − 𝑝]+ (4.15)

where 𝜔 = 1
𝜇𝛽 − 𝑁0

𝛽 , i.e., 1
𝜇 = 𝑁0 + 𝛽𝜔. Again there are two cases to consider: 𝜔 ≥ 𝑝𝑚𝑎𝑥 and

𝜔 < 𝑝𝑚𝑎𝑥. Since the former case avoids the non linearity part of the function, it is simpler to treat.
The behavior of 𝑃𝑠(𝑝) is the same as that reported in 3.2 .

4.2.1 𝜔 ≥ 𝑝𝑚𝑎𝑥

In this case it it possible to get rid of the operator [⋅]+, since the working power region of the
relay belongs to the linear part of the function 𝑃𝑠(𝑝). Then we have

𝑃𝑠(𝑝) = 𝛽(𝜔 − 𝑝) (4.16)

and
𝑅1(𝑓 ) = log(𝑁0 + 𝛽𝜔) − min

𝑝1 ∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝) log(𝑁0 + 𝛽𝑝)d𝑝 (4.17)

is obtained by substituting 4.16 into the expression of 𝑅1. By substituting 4.16 into 4.10, the average
power constraint becomes

∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝)𝑃 (𝑝)d𝑝 = ∫

𝑝𝑚𝑎𝑥

0
𝑓(𝑝)𝛽(𝜔 − 𝑝)d𝑝 = 𝛽(𝜔 − ̄𝑝) = ̄𝑃𝑠 (4.18)
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which provides

𝜔 =
̄𝑃𝑠

𝛽
+ ̄𝑝 (4.19)

We now need to impose constraints on 𝑝1 and 𝑝2. It is important to remember that we always
work on the dominant face of the achievable rate region (for the first hop) where the sum rate is
maximized, in order to avoid energy waste. In this region the total rate is maximized. As it is shown
if 4.2, a certain 𝛼 = 𝑐 is chosen. Such slope 𝛼 does not allow the corresponding straight line to fall
inside the optimality region. Instead of changing 𝛼, the region is reshaped, and that can be done
differently, based on the availability of network resources.

Figure 4.2. Region reshape once 𝛼 is fixed.

Given 𝑃𝑠(𝑝), let 𝜌𝑖(𝑝) the rate achieved by source 𝑖. By working on the dominant face of the
achievable rate region it is needed to impose 𝜌1(𝑝) + 𝜌2(𝑝) = 𝜌𝑠(𝑝) where

𝜌𝑠(𝑝) = log (1 +
𝑃𝑠(𝑝)

𝑁0 + 𝛽𝑝) = log (
𝑁0 + 𝛽𝜔
𝑁0 + 𝛽𝑝 ) (4.20)

Moreover since it was imposed 𝜌2(𝑝) = 𝛼𝜌1(𝑝) (fairness condition) it follows that

𝜌1(𝑝) = 1
1 + 𝛼

𝜌𝑠(𝑝) (4.21)

𝜌2(𝑝) = 𝛼
1 + 𝛼

𝜌𝑠(𝑝) (4.22)

Now, since 𝜌𝑖(𝑝) ≤ log(1 + 𝑇𝑖) (maximum achievable rate for the source 𝑆𝑖), where 𝑇𝑖 = 𝑝𝑖|ℎ𝑖|2

𝑁0+𝛽𝑝 , we
need to satisfy

log(1 + 𝑇1) ≥ 1
1 + 𝛼

𝜌𝑠(𝑝); (4.23)

log(1 + 𝑇2) ≥ 𝛼
1 + 𝛼

𝜌𝑠(𝑝). (4.24)
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i.e.,

𝑇1 ≥ (
𝑁0 + 𝛽𝜔
𝑁0 + 𝛽𝑝 )

1
1+𝛼

− 1 (4.25)

𝑇2 ≥ (
𝑁0 + 𝛽𝜔
𝑁0 + 𝛽𝑝 )

𝛼
1+𝛼

− 1 (4.26)

By adding 𝑇1 to the second inequality we obtain

𝑇1 + 𝑇2 ≥ (
𝑁0 + 𝛽𝜔
𝑁0 + 𝛽𝑝 )

𝛼
1+𝛼

− 1 + 𝑇1 (4.27)

which can be rewritten as

1 + 𝑇1 + 𝑇2 − (
𝑁0 + 𝛽𝜔
𝑁0 + 𝛽𝑝 )

𝛼
1+𝛼

≥ 𝑇1 (4.28)

Since 1 + 𝑇1 + 𝑇2 = 1 + 𝑃𝑠(𝑝)
𝑁0+𝛽𝑝 = 𝑁0+𝛽𝜔

𝑁0+𝛽𝑝 it follows

𝑇1 ≤
𝑁0 + 𝛽𝜔
𝑁0 + 𝛽𝑝

− (
𝑁0 + 𝛽𝜔
𝑁0 + 𝛽𝑝 )

𝛼
1+𝛼

(4.29)

In conclusion 4.25 and 4.26 can be rewritten as

(
𝑁0 + 𝛽𝜔
𝑁0 + 𝛽𝑝 )

1
1+𝛼

− 1 ≤ 𝑇1 ≤
𝑁0 + 𝛽𝜔
𝑁0 + 𝛽𝑝

− (
𝑁0 + 𝛽𝜔
𝑁0 + 𝛽𝑝 )

𝛼
1+𝛼

(4.30)

By recalling that 𝑇1 = 𝑝1(𝑝)|ℎ2|2

𝑁0+𝛽𝑝 , the inequality in 4.30 can be expressed as

[(
𝑁0 + 𝛽𝜔
𝑁0 + 𝛽𝑝 )

1
1+𝛼

− 1
]

(𝑁0 + 𝛽𝑝) ≤ 𝑝1(𝑝)|ℎ1|2 ≤ 𝑁0 + 𝛽𝜔 − (𝑁0 + 𝛽𝑝) (
𝑁0 + 𝛽𝜔
𝑁0 + 𝛽𝑝 )

𝛼
1+𝛼

(4.31)

or

(𝑁0+𝛽𝜔)
1

1+𝛼 (𝑁0+𝛽𝑝)
𝛼

1+𝛼 −(𝑁0+𝛽𝑝) ≤ 𝑝1(𝑝)|ℎ1|2 ≤ 𝑁0+𝛽𝜔−(𝑁0+𝛽𝜔)
𝛼

1+𝛼 (𝑁0+𝛽𝑝)
1

1+𝛼 (4.32)

For simplicity we define

𝐿(𝑝) = (𝑁0 + 𝛽𝜔)
1

1+𝛼 (𝑁0 + 𝛽𝑝)
𝛼

1+𝛼 − (𝑁0 + 𝛽𝑝) (4.33)

and
𝑈(𝑝) = 𝑁0 + 𝛽𝜔 − (𝑁0 + 𝛽𝜔)

𝛼
1+𝛼 (𝑁0 + 𝛽𝑝)

1
1+𝛼 . (4.34)

From 4.32 we obtain
𝐿(𝑝) ≤ 𝑝1(𝑝)|ℎ1|2 ≤ 𝑈(𝑝) (4.35)
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4.2 – Bounds on source power

Figure 4.3. Lower and upper bound for 𝑝1(𝑝)
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Those bounds are represented in 4.3, in particular for 𝜔 = 6 and 𝛼 = 1. Any value of 𝑝1 selected
between the lower bound and the upper bound assures the rate maximization with the specific ratio
imposed by 𝛼. Depending on the system parameters, there may not be a solutions in some cases,
and this happens when the required power falls outside of the bounds. In such cases the fairness
constraints cannot be satisfied. Subsequently a procedure completely analogue to what has been
developed in Subsections 3.3.1 and 3.3.2 now is applied. As it happened in Chapter 3, different
solutions are found depending on which average source power level is applied. As in Subsection
3.3.2, there are three working regions and as many related solutions. Regarding the first two cases,
which are the easier ones in mathematical terms, they solutions remain the same: the first one is a
discrete probability density function made of two delta functions, one centered in 𝑝 = 0 and the
other one in 𝑝 = 𝑝𝑚𝑎𝑥. The second one is again a discrete pdf, but with a single delta function
centered in 𝑝 = ̄𝑝. The third case, the most complex one, again maintains pretty much the same form,
with some minor changes in the formulation of the problem that needs to be maximized (actually it
is minimized for the minus in front of the objective function). Now the problem is:

P3 ∶ 𝑅 = max
𝑓(⋅)

𝑅1(𝑓 ) = log(𝑁0 + 𝛽𝜔) − min
𝑓(⋅) ∫

𝑝𝑚𝑎𝑥

0
𝑓(𝑝) log(𝑁0 + 𝛽𝑝)d𝑝 s.t.

(𝑎) 𝑅2(𝑓 ) = 𝑅1(𝑓 ) = ∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝)[𝜌1(𝑝) − 𝜌2(𝑝)]d𝑝

(𝑏) ∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝)d𝑝 = 1; ∫

𝑝𝑚𝑎𝑥

0
𝑝𝑓(𝑝)d𝑝 = ̄𝑝; 0 ≤ 𝑝 ≤ 𝑝𝑚𝑎𝑥

(𝑐) ∫
𝑝𝑚𝑎𝑥

0
𝑓(𝑝)𝑝1(𝑝)d𝑝 = ̄𝑃1; 𝐿(𝑝) ≤ 𝑝1(𝑝)|ℎ1|2 ≤ 𝑈(𝑝)

This new problem has one more constraint w.r.t. P2 formulated in Subsection 3.3.2 Moreover
it contains the inequality 𝐿(𝑝) ≤ 𝑝1(𝑝)|ℎ1|2 ≤ 𝑈(𝑝) which imposes the fairness condition. Such
similarity in the formulation of the problem hint that the maximizer 𝑓 ⋆ is composed of two delta
functions whose positions, 𝑝1 and 𝑝2, are in the range [0, 𝑝𝑚𝑎𝑥]. Each delta function carries two
degrees of freedom (i.e., position and weight) which are determined by the constraints. Besides this
fact, the procedure for solving P3 follows that outlined in Appendix C.
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Chapter 5

Numerical results

In this final chapter, numerical evaluations are provided to support the theory developed in the
previous chapters.
One of the parameters of much interest is the rate of course. We want to compare our rate perfor-
mances with other systems which make different hypotheses on the behavior of the relay, as it was
done in [12]. Here they are listed:

• Ideal Full-Duplex: this is the case in which the network always work in FD mode and the relay
does not suffer from self-interference. This is only ideal because self-interference cannot be
eliminated completely, even with the finest techniques, and for that reason it is considered as
an upper-bound to all the other methods. Any other transmission mode adopted could not do
better than this.

𝑅FD-Ideal = min
{

log (1 +
̄𝑃𝑠

𝑁0 ) , log
(

1 +
̄𝑝|ℎ0|2

𝑁0 )}
(5.1)

• Full-Duplex with the knowledge of instantaneous power (IP) of the relay at the source: Sources
always transmit at their average power sum ̄𝑃𝑠 and also the relay always transmits at its average
power ̄𝑝. HD is not contemplated in this model, provided in [16]. The main difference with
the model proposed in this thesis, to stress it again, is that in our case the source is only aware
of the average power of the relay, and also HD mode is used in some cases.

𝑅FD-IP = min
⎧⎪
⎨
⎪⎩

∫
+∞

−∞
log (1 +

̄𝑃𝑠

𝑁0 + 𝛽𝑥2 )
𝑒− 𝑥2

2 ̄𝑝

√2𝜋 ̄𝑝
d𝑥, log

(
1 +

̄𝑝|ℎ0|2

𝑁0 )

⎫⎪
⎬
⎪⎭

(5.2)

• Half-Duplex: the relay either transmits or receives, so this is the worst case considered. This
model was also used as comparison in [16] and the transmission is divided into two time
fractions, 𝑡 and 1 − 𝑡.

𝑅HD = max
̄𝑝

𝑝𝑚𝑎𝑥 ≤𝑡≤1
min

{
(1 − 𝑡) log (1 +

̄𝑃𝑠
(1 − 𝑡)𝑁0 ) , 𝑡 log

(
1 +

̄𝑝|ℎ0|2

𝑡𝑁0 )}
(5.3)

It must be a lower bound with respect to the system we provide, since in the worst case the
X-Duplex solution works in HD.
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The scenario that is taken into consideration is analogous to the one assumed in [12]. To evaluate
the goodness of all the considerations done previously, we try to obtain the same results found in
[12], even if now two sources are assumed instead of one.

The parameters for the basic scenario, which were used also in [12], are:

• 𝑑 = 500 m is the distance which separates both sources from the relay, and also the relay and
the destination node.

• 𝑓𝑐 = 2.4 GHz is the carrier frequency at which the signal is transmitted.

• |ℎ0|2 = (
𝑐

4𝜋𝑓𝑐 )
2

𝑑−𝛾 is the general formula for the gain associated to a channel, where 𝛾 is set to

3. To obtain the same channel conditions that were present in [12], we set |ℎ1|2 = |ℎ2|2 = |ℎ0|2

2 .

• 𝑁0 = −151 dBW is the noise power, which is assumed to be the same for all receivers in
the network. The signal bandwidth is 𝐵 = 200 kHz and the power spectral density is 204
dBW/Hz.

• the relay parameters are: ̄𝑝 = −10 dBW and 𝑝𝑚𝑎𝑥 = −7 dBW, with the self-interference
attenuation factor 𝛽 = −135 dB.

• the average power at the sources is assumed equal, so ̄𝑃1 = ̄𝑃2. To obtain the power thresholds
defined in Subsection 3.3.2 it is necessary to remember that 𝒫𝑠 = 𝑃𝑠(𝑝)

𝛽 ⟶ 𝑝1(𝑝) = 𝑝2(𝑝) =

𝒫𝑠
𝛽

|ℎ1|2+|ℎ2|2 . Since we are considering 𝑃𝑠(𝑝) (made of 𝑝1 and 𝑝2) and not 𝒫𝑠, it is necessary

to scale all the power values related to 𝒫𝑠 by 𝛽
|ℎ1|2+|ℎ2|2 . In particular the thresholds values

becomes coincident with the ones of [12], which are: 𝒫0 = −24 dBW, 𝒫1 = −14.23 dBW
and 𝒫2 = −3.04 dBW.

• the average power at the sources is assumed equal, so ̄𝑃1 = ̄𝑃2.

Since 𝑣 = |ℎ0|2

𝑁0
≈ 30 dB and 𝛽0 = 𝛽

𝑁0
≈ 16 dB, the case 𝑣 > 𝛽0 must be considered. Furthermore,

since only the situation 𝜔 ≥ 𝑝𝑚𝑎𝑥 was analyzed in this thesis, the sources power sum used in all the
simulations is always ̄𝑃𝑠 ≥ 𝒫0.
The rate performances are provided in 5.1, assuming 𝛼 = 1. First of all it is possible to notice how
the curve has a different trend inside the three different power regions, which are [𝒫0,𝒫1], (𝒫1,𝒫2]
and (𝒫2,∞). This is what we expect since for each region the maximizer 𝑓 ⋆ assumes a different
form, as indicated in 3.1. Furthermore, all the rates obtained are identical to the ones that were
illustrated in [12]: this is important since it means that even if there are two sources present in the
network, the total rate is still maximized and there are no losses regarding the performances. As
it was predicted, the ideal FD curve is an upper-bound for all the rates, while the HD curve is a
lower-bound. In fact, for very low power levels, our system coincides to the HD one. The system
which is aware of the instantaneous power, FD-IP, outperforms the X-Duplex configuration only
for power levels greater than ̄𝑝 = −10 dBW, and the gain in performances is not so relevant. Again
this is very important, because our proposed solution has outstanding performances for low powers,
compared to the other solutions, and for higher power levels it is still a great competitor. In fact
the minimal loss in rate performance is balanced by the fact that only the average power of the
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relay is known at sources, and that requires way less complex transmission mechanisms which are
translated in lower costs.

Figure 5.1. Rate performances with different transmission systems

Similarly 5.2 shows the optimal powers at sources and relay for the two phases highlighted in
3.1, which come along with the rates depicted in 5.1. In particular here it is plotted the sum of the
transmit powers of the two sources. The obtained results are in agreement with the ones found in
[12], which confirms one more time the validity of the proposed system for multiple sources.

In fact, the total power coming from the sources should not overcome the optimal power in the
case of a single source, with the system settings that were imposed previously. All this curves are
illustrated in 5.2. Similarly also the phase durations are shown in 5.3.

By observing those two graphs, it is possible to observe that for 𝒫0 ≤ ̄𝑃𝑠 ≤ 𝒫1 the time
fraction associated to both phases is equal, while the two sources transmit in all the phases, with the
respective powers.

The relay instead transmits only during phase 𝐴. When 𝒫1 < ̄𝑃𝑠 ≤ 𝒫2, the relay works in
FD in both phases, while the sources transmit with a power level which becomes more and more
coincident for both the phases. The phase durations start to diverge, one goes to 0 and the other one
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Figure 5.2. Optimal source and relay transmit powers for phase A (solid lines) and
phase B (dashed lines)

Figure 5.3. Phase durations
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Figure 5.4. Rate performances with different fairness coefficients

goes to 1. In fact, when ̄𝑃𝑠 > 𝒫2, there is a single phase of duration 1, in which the relay and the
sources transmit at their average values.
Now that we have verified that the system works correctly, by doing the comparison with the single
source case provided in [12], we can introduce variations on the fairness coefficient.
By varying the fairness coefficient 𝛼 we change the proportionality between the rates of the two
sources, letting one of the two being favored. In 5.4 it is possible to observe how different 𝛼s affect
the rate curves.

𝛼 = 1 and 𝛼 = 0.5 provide the same rate curve, which is the maximum obtainable rate curve.
That means that the average power level provided by the sources is always sufficient to guarantee
such rate relationship. In the other cases in 5.4 in which 𝛼 is smaller or greater than the previous
values, it is possible to notice how the rate is zero up to a certain power value, and then it reaches the
maximum possible rate (the curve for 𝛼 = 1): that means that the lower average power values are
not sufficient to ensure the condition defined by 𝛼, but when the power level is high enough, the total
rate is maximized with such relationship between the two sources. That happens always assuming

̄𝑃1 = ̄𝑃2. For example for 𝛼 = 0.3 the threshold value is ̄𝑃1 ≈ −13.5 dB, for 𝛼 = 3 it is ̄𝑃1 ≈ −16
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dB and for 𝛼 = 4 it is ̄𝑃1 ≈ −9 dB. A more detailed explanation of the phenomena is given in 5.5.
By converting the 𝛼 values to the corresponding angles with the arc tangent function, we have on
the X axis angle values that go from 0 to 𝜋

2 , while on the Y axis the minimum power level required
for the corresponding 𝛼. When the angle tends to 0, so 𝛼 → 0, the required power values tends to
∞, as it was already discussed when the fairness coefficient was introduced. Similarly, that happens
also when the angle approaches 𝜋

2 , so when 𝛼 → ∞. Intuitively, the graph is symmetric around
𝛼 = 1, which corresponds to the angle 𝜋

4 . In fact the relationship defined by 𝛼 is simply inverted if
the angle is 𝑥 or 𝜋

2 − 𝑥.

Figure 5.5. Minimum required power ̄𝑃1 as a function of 𝛼

In 5.6, for different fixed average power values, it is shown the range of alphas for which the
system has a solution. As expected, by increasing the average power level the rate becomes higher
and also the range of supported 𝛼s in wider. In our results, when the network cannot support the
desired fairness conditions we set to 0 the achievable rate (𝑅 = 0). Viceversa, if there is availability
of power, the power level can be increased in order to obtain the wanted proportionality between
sources.

It is also interesting to observe how performances change as the channel gains vary. To this end
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Figure 5.6. Range of 𝛼s for a fixed ̄𝑃1 = ̄𝑃2

we considered random channel gains on the source(i)-relay links and on the relay-destination link.
All the other parameters used before remain the same (including 𝛼 = 1), while the channel gains are
Gaussian random variables of the form |ℎ̂11|2 = |ℎ̂12|2 = |ℎ1|2

2 ⋅ |𝜂|2, where 𝜂 is a Gaussian random
complex number with 0 mean and unit variance. In 5.7 are provided three different plots for three
different channel configurations, where the dashed lines are the thresholds, the solid lines are the
achieved rates and the dashed-dotted lines are the upper bound rates coming from the ideal FD.
Here are the channel configurations listed:

• Red: |ℎ1|2 = 4.1665𝑒−13, |ℎ2|2 = 1.6733𝑒−13 and |ℎ0|2 = 1.9251𝑒−12.

• Green: |ℎ1|2 = 4.3169𝑒−14, |ℎ2|2 = 3.47623𝑒−13 and |ℎ0|2 = 7.3278𝑒−13.

• Blue: |ℎ1|2 = 2.8627−13, |ℎ2|2 = 7.4921𝑒−14 and |ℎ0|2 = 4.9413𝑒−13.

All the plotted rates depends on the channel gain in some way: in fact the thresholds and the
achievable rate have different values based on the channel configuration. The red one allows the
highest rate among the three, and it assures the equity among sources for all power levels. The green
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Figure 5.7. Rates and thresholds for different channel parameters

and blue configurations have lower rates and also cannot always guarantee the condition 𝛼 = 1. That
happens because the achievable rates on each link are a function of the corresponding channel gain.
In fact different channel gains define a particular network configuration, which has its own peculiar
achievable rate region (convex-polytope): that happens because the achievable rate region depends
on the instantaneous rates of the sources, which are a function of the channel gains. Changing the
channel gain is also a synonym of changing the distance between nodes in the network. In 5.8
the source nodes are placed with increasing equal distance from the relay. The plots are done for
different fixed average power values at the sources. By increasing that power, the system transmits
at its maximum rate for longer distances, and from a certain critical distance value the rate starts
to decrease exponentially. The dashed part of the curve represents the rate value for 𝜔 < 𝑝𝑚𝑎𝑥, or
equivalently ̄𝑃𝑠 < 𝒫0. This particular case has not been analyzed in this thesis, but intuitively the
rate continues to decrease until at some point it becomes null, since the nodes are too much distant
to sense each others.

Finally, we let the channel gains be random (both the ones belonging to the source-relay links
and the one belonging to the relay-destination link, which follow respectively the relationships
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Figure 5.8. Rate values for increasing distance between sources and relay

|ℎ̂11|2 = |ℎ̂12|2 = |ℎ1|2

2 ⋅ |𝜂|2 and |ℎ̂2|2 = |ℎ1|2 ⋅ |𝜂|2, with 𝜂 defined previously) for different average
power levels at the sources (always assuming ̄𝑃1 = ̄𝑃2), the result is the one depicted in 5.9. It is
assumed 𝛼 = 1. The aim is to obtain an average behavior of the network. By increasing the average
power at sources the rate, with various different channel configurations, increases, until a certain
threshold.

From the point the curve stops increasing and assumes values in a sort of flat region. The
behavior of this quite smooth curve is totally similar to the behavior of any curve with fixed channel
parameters. By increasing the number of iterations 𝑁 the resulting curve would be smoother.

43



5 – Numerical results

Figure 5.9. Rate value averaged on 𝑁 = 1000 random realizations of the channels
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5.1 Conclusion

To conclude this numerical part, in which all the mathematical derivations developed in the
first part of the thesis, it is possible to observe that the X-Duplex system proposed and discussed is
a very good competitor with respect to all the other solutions provided in the papers which treat
similar scenarios. The rates achieved are quite outstanding and inferior to the rate achieved when the
instantaneous power of the relay is known at the sources only for high power levels, and moreover
that difference can be justified by the lower complexity required for our system, in which only the
average power of the relay is known at the sources. Furthermore it has been proved that the system
can be adapted to a multiple sources scenario, in which the performances are not affected negatively
but reach the same values obtained in the much simpler scenario. Also the fairness concern has
been deeply analyzed and the results shown allow to understand how the power provided at the
source has a primary role in guaranteeing the condition imposed by the fairness coefficient 𝛼.
Some work can still be done: for example the part regarding 𝜔 < 𝑝𝑚𝑎𝑥 has not been developed, and
by doing that the behavior of the system for any power would be known.
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Appendix A

Optimization of the source transmit
power

First of all we recall that the problem we want to solve is

P0 ∶ 𝑅1(𝑓 ) = max
𝑝1(⋅),𝑝2(⋅)

𝑅1(𝑓, 𝑝1, 𝑝2) s.t.

(𝑎) ∫
𝑝𝑚𝑎𝑥

0
𝑝1(𝑝)𝑓 (𝑝)d𝑝 = ̄𝑃1; (𝑏) 0 ≤ 𝑝1(𝑝) ≤ 𝑝𝑚𝑎𝑥

1

(𝑐) ∫
𝑝𝑚𝑎𝑥

0
𝑝2(𝑝)𝑓 (𝑝)d𝑝 = ̄𝑃2; (𝑑) 0 ≤ 𝑝2(𝑝) ≤ 𝑝𝑚𝑎𝑥

2

The Lagrangian is defined as:

ℒ(𝑝1, 𝑝2) = 𝑓(𝑝) log
(

1 +
|ℎ1|2𝑝1 + |ℎ2|2𝑝2

𝑁0 + 𝛽𝑝 )
− 𝜆1(𝑓 (𝑝)𝑝1(𝑝) − ̄𝑃1) − 𝜆2(𝑓 (𝑝)𝑝2(𝑝) − ̄𝑃2)−

− 𝜇1(𝑝)(𝑝1(𝑝) − 𝑝𝑚𝑎𝑥
1 ) + 𝜇2(𝑝)𝑝1(𝑝) − 𝜇3(𝑝)(𝑝2(𝑝) − 𝑝𝑚𝑎𝑥

2 ) + 𝜇4(𝑝)𝑝2(𝑝) (A.1)

where 𝜇1(𝑝),𝜇2(𝑝),𝜇3(𝑝),𝜇4(𝑝) ≥ 0 and 𝜆1, 𝜆2 are all KKT multipliers.

The KKT conditions comes from the partial derivatives of the Lagrangian with respect to 𝑝1
and 𝑝2 which are set equal to zero:

1.
|ℎ1|2

𝑁0 + 𝛽𝑝
⋅

𝑓(𝑝)

1 + |ℎ1|2𝑝1(𝑝)+|ℎ2|2𝑝2(𝑝)
𝑁0+𝛽𝑝

− 𝜆1𝑓(𝑝) − 𝜇1(𝑝) + 𝜇2(𝑝) = 0 (A.2)

2.
|ℎ2|2

𝑁0 + 𝛽𝑝
⋅

𝑓(𝑝)

1 + |ℎ1|2𝑝1(𝑝)+|ℎ2|2𝑝2(𝑝)
𝑁0+𝛽𝑝

− 𝜆2𝑓(𝑝) − 𝜇3(𝑝) + 𝜇4(𝑝) = 0 (A.3)

while the slackness conditions are:

3. 𝜇1(𝑝)(𝑝1(𝑝) − 𝑝𝑚𝑎𝑥
1 ) = 0
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4. 𝜇3(𝑝)(𝑝2(𝑝) − 𝑝𝑚𝑎𝑥
2 ) = 0

5. 𝜇2(𝑝)𝑝1(𝑝) = 0

6. 𝜇4(𝑝)𝑝2(𝑝) = 0

along with the already existing conditions imposed by (a), (b), (c) and (d).
By looking at the conditions 5 and 6, it is obvious to require 𝑝1(𝑝) and 𝑝2(𝑝) greater than zero,
otherwise the source will be inactive. As a consequence 𝜇2(𝑝) and 𝜇4(𝑝) must be equal to zero.
Having said that, we define

𝑃𝑠(𝑝) ≜ 𝑝1(𝑝)|ℎ1|2 + 𝑝2(𝑝)|ℎ2|2 (A.4)

so that A.2 and A.3 reduce to:

𝑓(𝑝) ⋅ [
1

𝑁0 + 𝛽𝑝 + 𝑃𝑠(𝑝)
−

𝜆1

|ℎ1|2 ] = 0 (A.5)

𝑓(𝑝) ⋅ [
1

𝑁0 + 𝛽𝑝 + 𝑃𝑠(𝑝)
−

𝜆2

|ℎ2|2 ] = 0 (A.6)

Since 𝑓(𝑝) ≠ 0 is given and the first term inside the brackets is equal for both equations, the
solution is:

𝜆1

|ℎ1|2 =
𝜆2

|ℎ2|2 = 1
𝑁0 + 𝛽𝑝 + 𝑃𝑠(𝑝)

(A.7)

From A.7 there is a dependency between the two multipliers, so in the end is possible to use
only one multiplier. Ultimately, the solution is

𝑃𝑠(𝑝) =
|ℎ1|2

𝜆1
− (𝑁0 + 𝛽𝑝) (A.8)

which is also the optimal sum-power allocation at the sources.
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Appendix B

Proof of Lemma 4.1

The upper bound

∫
𝑏

𝑎
𝑓(𝑝)𝜙(𝑝)d𝑝 ≤ 𝜙(𝑚)

comes from Jensen’s inequality and it is the easiest to prove. In fact from the definition of the Dirac
delta function and from its property of translation, the equality holds when

𝑓(𝑝) = 𝛿(𝑝 − 𝑚). (B.1)

For the lower bound, since the function 𝜙(𝑝) is concave in 𝑝 ∈ [𝑎, 𝑏], also it is greater than the
straight line that connects the points 𝜙(𝑎) and 𝜙(𝑏), which has equation 𝜙(𝑏)−𝜙(𝑎)

𝑏−𝑎 (𝑝 − 𝑎) + 𝜙(𝑎).
Therefore we have

∫
𝑏

𝑎
𝑓(𝑝)𝜙(𝑝)d𝑝 ≥ ∫

𝑏

𝑎
𝑓(𝑝) [

𝜙(𝑏) − 𝜙(𝑎)
𝑏 − 𝑎

(𝑝 − 𝑎) + 𝜙(𝑎)] d𝑝 = 𝜙(𝑎) (
𝑏 − 𝑚
𝑏 − 𝑎 ) + 𝜙(𝑏) (

𝑚 − 𝑎
𝑏 − 𝑎 )

= 𝑏 − 𝑚
𝑏 − 𝑎

𝜙(𝑎) + (1 − 𝑏 − 𝑚
𝑏 − 𝑎 ) 𝜙(𝑏)

and here the equality holds, for the same aforementioned reasons, when

𝑓(𝑝) = 𝑏 − 𝑚
𝑏 − 𝑎

𝛿(𝑝 − 𝑎) + (1 − 𝑏 − 𝑚
𝑏 − 𝑎 ) 𝛿(𝑝 − 𝑏). (B.2)
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Appendix C

Discrete probability density function

This appendix follows a complete analogous procedure as in Appendix D of [12]. The mini-
mization problem in 3.36 can be solved by applying the Euler-Lagrange formula. This allows to get
rid of the integral functions, so the Lagrangian is defined as follows

ℒ(𝑓(𝑝)) = 𝑓(𝑝)𝜙(𝑝) + 𝜆1(𝑓 (𝑝)𝜓(𝑝) − 𝑐) + 𝜆2(𝑝(𝑓 (𝑝) − 𝑚) + 𝜆3(𝑓 (𝑝) − 1) − 𝜇(𝑝)𝑓(𝑝) (C.1)

where the first term is the functional to be minimized. The second, the third and the fourth terms
comes from the constraints imposed by (a), (b) and (c), which are associated with the Lagrange
multipliers 𝜆1, 𝜆2 and 𝜆3 respectively. The last term comes from the inequality of the constraint (d),
and for the presence of this inequality the KKT conditions are used. 𝜇(𝑝) ≥ 0 is the KKT multiplier
associated to the condition (d). Such condition can be rewritten as −𝑓(𝑝) ≤ 0, that is the standard
form for a minimization problem. The KKT condition consequently is

𝜕ℒ
𝜕𝑓

= 𝜙(𝑝) + 𝜆1𝜓(𝑝) + 𝜆2𝑝 + 𝜆3 − 𝜇(𝑝) = 0 (C.2)

⇒ 𝜇(𝑝) = 𝜙(𝑝) + 𝜆1𝜓(𝑝) + 𝜆2𝑝 + 𝜆3 (C.3)

along with the conditions imposed by (a), (b), (c), (d), 𝜇(𝑝) ≥ 0 and the slackness condition
𝜇(𝑝)𝑓(𝑝) = 0.
The function defined in C.3 identifies a family of continuous functions, described by the parameters
𝜆1, 𝜆2 and 𝜆3. It is required by the conditions imposed previously that 𝜇(𝑝) ≥ 0, ∀𝑝 ∈ [𝑎, 𝑏], but
also that 𝜇(𝑝)𝑓(𝑝) = 0. Three possible behaviors for 𝜇(𝑝) can be considered:

• 𝜇(𝑝) > 0, ∀𝑝 ∈ [𝑎, 𝑏], so, in order to comply to the slackness condition, 𝑓(𝑝) must be equal
to 0 (∀𝑝 ∈ [𝑎, 𝑏]), which is a solution of no interest, because it means that the relay is always
silent hence the rate 𝑅 is 0.

• 𝜇(𝑝) = 0, ∀𝑝 ∈ [𝑎, 𝑏]. However this is impossible since 𝜇(𝑝) contains non-constant terms
such as 𝜙(𝑝) and 𝜓(𝑝). This does not allow to find a non-zero measure subset of [𝑎, 𝑏] for
which 𝜇(𝑝) = 0.

• 𝜇(𝑝) is strictly positive in [𝑎, 𝑏] (and 𝑓(𝑝) is 0 consequently), except for a a discrete set of
points 𝑝𝑖 ∈ [𝑎, 𝑏], for which 𝜇(𝑝𝑖) = 0 and 𝑓(𝑝) > 0.
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This is the only feasible option. It indicates that the maximizer 𝑓(⋅) is a discrete distribution: in
particular it is composed of a set of probability masses located at 𝑝𝑖 with magnitude 𝜋𝑖. In order to
find the number of probability masses, the first derivative of 𝜇(𝑝) should be analyzed

𝜇′(𝑝) =
𝑘1𝑝2 + 𝑘2𝑝 + 𝑘3

(1 + 𝛾1𝑝)(1 + 𝛾2𝑝)
(C.4)

where 𝑘1, 𝑘2 and 𝑘3 depend on 𝜆1, 𝜆2, 𝜆3, 𝛾1 and 𝛾2. Since the numerator in C.4 is a polynomial in
𝑝 of degree two, it means that it can have up to two distinct solutions for 𝑝 in [𝑎, 𝑏], which are local
minima or maxima of the function 𝜇(𝑝). If the minimizer of 3.36 is called 𝑓 ⋆(𝑝), then multiple
cases are contemplated, by using Fermat and Weierstrass theorems:

1. The function has only one solution 𝑝𝑎 ∈ [𝑎, 𝑏], which is not a local minimum or maximum.
The 𝑝𝑎 must be equal to 𝑎 or 𝑏. Therefore the single probability mass has the form 𝑓 ⋆(𝑝) =
𝜋1𝛿(𝑝 − 𝑎) (or, 𝑓 ⋆(𝑝) = 𝜋1𝛿(𝑝 − 𝑏)). That cannot be the solution because it has only one
degree of freedom, 𝜋1, which is not sufficient to satisfy the constraints (a), (b) and (c) at the
same time.

2. 𝜇(𝑝) has again a single solution 𝑝𝑎 ∈ [𝑎, 𝑏], which now is a local minimum, so the minimizer
would be 𝑓 ⋆(𝑝) = 𝜋1𝛿(𝑝 − 𝑝𝑎). 𝑝𝑎 and 𝜋1 establish two degrees of freedom which again are
not enough to satisfy the constraints imposed by (a), (b) and (c) all together.

3. 𝜇(𝑝) has two solutions, 𝑝𝑎 and 𝑝𝑏 ∈ [𝑎, 𝑏], and none of them is a local minimum. That
means that 𝑝𝑎 is located in 𝑎 and 𝑝𝑏 is located in 𝑏, so that the minimizer becomes 𝑓 ⋆(𝑝) =
𝜋1𝛿(𝑝 − 𝑎) + 𝜋2𝛿(𝑝 − 𝑏). The degrees of freedom are again two, 𝜋1 and 𝜋2, and for the same
reason given in point 2, this solution is not acceptable.

4. The last case is when 𝜇(𝑝) has two solutions, 𝑝𝑎 and 𝑝𝑏 ∈ [𝑎, 𝑏], and one of them is a local
minimum. The expression of the minimizer can be two: 𝑓 ⋆(𝑝) = 𝜋1𝛿(𝑝 − 𝑎) + 𝜋2𝛿(𝑝 − 𝑝𝑏)
or 𝑓 ⋆(𝑝) = 𝜋1𝛿(𝑝 − 𝑝𝑎) + 𝜋2𝛿(𝑝 − 𝑏). Both the expressions are characterized by a triplet of
degrees of freedom ({𝜋1,𝜋2, 𝑝𝑎} and {𝜋1,𝜋2, 𝑝𝑏} respectively) which are sufficient to meet
the constraints imposed by (a), (b) and (c).

The minimizer expression is given in point 4 of the list, but actually they are two, so which must
be chosen in 3.37 is decided by the constant parameters 𝛾1 and 𝛾2. To show the dependency on those
two parameters, the minimizer formula can be generalized into a family of distributions of the type

𝑓 ⋆(𝑝, 𝑥, 𝑦) = 𝜋(𝑥, 𝑦)𝛿(𝑝 − 𝑥) + [1 − 𝜋(𝑥, 𝑦)]𝛿(𝑝 − 𝑦) (C.5)

where 𝜋(𝑥, 𝑦) = 𝑦−𝑚
𝑦−𝑥 > 0, with 𝑚 ≤ 𝑦 ≤ 𝑏 and 𝑎 ≤ 𝑥 ≤ 𝑚. The two expressions in 3.37 are given

by 𝑓 ⋆(𝑝, 𝑎, 𝑝𝑏) and 𝑓 ⋆(𝑝, 𝑝𝑎, 𝑏) respectively. Using this definition in 3.36-(a), the constraint can be
rewritten as

𝐹 (𝑥, 𝑦) = ∫
𝑏

𝑎
𝑓 ⋆(𝑝, 𝑥, 𝑦)𝜓(𝑝)d𝑝 = 𝜋(𝑥, 𝑦)𝜓(𝑥) + [1 − 𝜋(𝑥, 𝑦)]𝜓(𝑦) = 𝑐 (C.6)

and similarly the cost function becomes

𝐺(𝑥, 𝑦) = ∫
𝑏

𝑎
𝑓 ⋆(𝑝, 𝑥, 𝑦)𝜙(𝑝)d𝑝 = 𝜋(𝑥, 𝑦)𝜙(𝑥) + [1 − 𝜋(𝑥, 𝑦)]𝜙(𝑦). (C.7)
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Since it must hold that 𝜓(𝑝) = 𝜙(𝑝) + 𝜂(𝑝), it must also hold 𝐹 (𝑥, 𝑦) = 𝐺(𝑥, 𝑦) + 𝐻(𝑥, 𝑦), so it is
necessary to define

𝐻(𝑥, 𝑦) = 𝜋(𝑥, 𝑦)𝜂(𝑥) + [1 − 𝜋(𝑥, 𝑦)]𝜂(𝑦) (C.8)

Now some observations can be done:

• 𝐹 and 𝐺 are increasing functions of 𝑥 and decreasing functions of 𝑦 [22].

• 𝐹 (𝑥, 𝑦) = 𝑐 is the implicit equation of a curve, which will be called from now on 𝑦𝑐(𝑥), with
𝑎 ≤ 𝑥 ≤ 𝑝𝑎 and 𝑝𝑏 ≤ 𝑦 ≤ 𝑏. Having defined 𝐹𝑥 = 𝜕𝐹

𝜕𝑥 and 𝐹𝑦 = 𝜕𝐹
𝜕𝑦 , the derivative of the

function 𝑦𝑐(𝑥) is 𝑦′
𝑐(𝑥) = 𝑑𝑦𝑐(𝑥)

𝑑𝑥 = − 𝐹𝑥
𝐹𝑦

. Using the just given definitions it can be stated that
𝑦′

𝑐(𝑥) > 0. By applying a similar reasoning to the function 𝐺(𝑥, 𝑦) = 𝑡, which again is the
implicit equation of 𝑦𝑡(𝑥), it can be demonstrated that 𝑦′

𝑡 is positive too.

• If the constant 𝑐 is fixed, then it exist a value of 𝑡 such that the two curves 𝑦𝑐(𝑥) and 𝑦𝑡(𝑥)
meet in a common point (𝑥∗, 𝑦∗).

The goal is to find the shared point 𝑃 which gives the minimizer of the cost function. First of all, a
general point 𝑃 is considered, excluding the extremal points, so 𝑃 ≠ (𝑎, 𝑝𝑏) and 𝑃 ≠ (𝑝𝑎, 𝑏). Then
two cases can be distinguished:

• If 𝑦′
𝑐(𝑥) > 𝑦′

𝑡 (𝑥) in 𝑃, it means that 𝑡 is not the global minimum of the cost function in 3.36.
Then it must exists a value 𝜖 > 0 for which the intersection of the two curves 𝑦𝑐(𝑥) and 𝑦𝑡−𝜖(𝑥)
happens at 𝑃 ′ = (𝑥∗ +Δ𝑥, 𝑦∗ +Δ𝑦), and in such point the cost function 𝐺(𝑥∗ +Δ𝑥, 𝑦∗ +Δ𝑦) =
𝑡−𝜖 it is lower then in 𝑃. This is true for all the points 𝑃 = (𝑥∗, 𝑦∗), so in the end the minimizer
is found exactly in the extreme point which was excluded before, giving as a minimizer
𝑓 ⋆(𝑝, 𝑝𝑎, 𝑏) with a minimum 𝐺(𝑝𝑎, 𝑏).

• With a totally equivalent reasoning, in the case in which 𝑦′
𝑐(𝑥) < 𝑦′

𝑡 (𝑥) at 𝑃, the minimizer is
found in the other extremal point and it is 𝑓 ⋆(𝑝, 𝑎, 𝑝𝑏) with the minimum 𝐺(𝑎, 𝑝𝑏).

The problem now is to understand which minimizer must be chosen among the two. There are
some parameters which discriminate the choice, in particular they are 𝛾1 and 𝛾2. In order to do a
comparison between the two derivatives 𝑦′

𝑐(𝑥) and 𝑦′
𝑡 (𝑥), the definitions of 𝐹, 𝐺 and 𝐻 must be

used. In fact 𝑦′
𝑐(𝑥) = − 𝐹𝑥

𝐹𝑦
= − 𝐺𝑥+𝐻𝑥

𝐺𝑦+𝐻𝑦
and 𝑦′

𝑡 (𝑥) = − 𝐺𝑥
𝐺𝑦

where the partial derivatives of 𝐺 and 𝐻
are introduced, according to the notation used for 𝐹. The expressions of 𝐺𝑥, 𝐺𝑦, 𝐻𝑥 and 𝐻𝑦 can be
easily derived also by observing that 𝜕𝜋

𝜕𝑥 = 𝜋𝑥 = 𝜋
𝑦−𝑥 and 𝜕𝜋

𝜕𝑦 = 𝜋𝑦 = 1−𝜋
𝑦−𝑥 .

In the case 𝑦′
𝑐(𝑥) ≥ 𝑦′

𝑡 (𝑥), the expression becomes

−
𝐺𝑥 + 𝐻𝑥
𝐺𝑦 + 𝐻𝑦

≥ −
𝐺𝑥
𝐺𝑦

⟹ −
𝐺𝑥
𝐺𝑦

≤ −
𝐻𝑥
𝐻𝑦

(C.9)

Now it can be observed that 𝜙(𝑝) and 𝜂(𝑝) are the same function of the type log(1 + 𝛾𝑝), the former
with 𝛾 = 𝛾1 and the latter with 𝛾 = 𝛾2. Since 𝐺 depends on 𝜙(𝑝) and 𝐻 depends on 𝜂(𝑝), it means
that − 𝐺𝑥

𝐺𝑦
= 𝜁(𝛾1) and − 𝐻𝑥

𝐻𝑦
= 𝜁(𝛾2), where 𝜁 is a function which depends on the parameter inside

the brackets. An important property of the function 𝜁(𝛾) is that it is an increasing function of 𝛾. In
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fact, by imposing 𝜁 ′(𝛾) ≥ 0 and after doing some calculations and simplifications, it comes out that
log (

1+𝛾𝑦
1+𝛾𝑥 ) (2 + 𝛾𝑦 + 𝛾𝑥) ≥ 2𝛾(𝑦 − 𝑥). The right hand side of the previous inequality is a positive

function, linear with 𝛾 (𝛾 ≥ 0). The left hand side instead is a convex positive function, tangent to
the right hand side when 𝛾 = 0. That proofs the increasing behavior of 𝜁 with 𝛾. Therefore if 𝛾1 ≤ 𝛾2,
then − 𝐺𝑥

𝐺𝑦
≤ − 𝐻𝑥

𝐻𝑦
and consequently 𝑦𝑐(𝑥) ≤ 𝑦𝑡(𝑥). Viceversa, if 𝛾1 > 𝛾2, then 𝑦𝑐(𝑥) < 𝑦𝑡(𝑥).
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