PoLITECNICO D1 TORINO

MASTERS OF SCIENCE IN MECHATRONIC
ENGINEERING

Validation by Simulation of a
Pick-and-Place Robot Program
Guided by a Computer Vision

System
Supervisors:
Author: Prof. Paolo Chiabert
Mohamad SBEITY Dr. Gianluca D’antonio

Eng.Luciano Cavallero

September,2018

Contents

1 Introduction 2
1.1 List of Abbreviations. 2
1.2 Thesisoutline 3
1.3 Overall Research Purpose 4
1.4 Motivation 5
1.5 Problem Formulation 6

151 RobotUR3 9

2 Literature Review 10
2.1 Computer Vision and Industrial Manipulators 10
2.2 Robot Programming 14
2.3 Motion Planning 21

3 Validation By Simulation Of a Pick and Place Robot Program 24
3.1 "Visual Components” Simulator 24
3.2 Program Vlidation oo 28

4 Implementation 38
4.1 Computer Vision System 38

4.1.1 Work Piece-auto-label L. 39
4.1.2 Annotate program 40
413 Train Program 41
4.1.4 Detect Program 43
5 Results 44
6 Conclusions And Future Works 48

1 Introduction

1.1 List of Abbreviations
SME Small and Medium Sized Enterprises
OLP Offline Programming
TCP/IP Transmission Control Protocol,Internet Protocol
hdf5 Hierarchical Data Format
X,Y,Z Work piece position in space

a, B, Rotation around X,Y,Z

1.2 Thesis outline

This work is organized as follows:
e chapter one gives an overview of the field to be studied.

e Chapter 2 discusses the background and state of the art of the field to be stud-
ied, Computer Vision guided Manipulators,Offline Programming and Motion

Planning.
e Chapter 3 discusses the methodology of the presented work.
e Chapter 4 explains the implementation part.
e chapter 5 summarize results obtained.

e chapter 6 presents conclusions and future works to be done.

1.3 Overall Research Purpose

In globalization epoch robots turn out to be of great economic and technological
importance within manufacturing, considering industrial ones, industries as a result
of the benefits that they are capable of providing. Recently these technological
developments led by industry demands drove to a noticed development of larger
amounts of these distinct robots. However, the increased order for more production
cycles and the demand for better quality requires the need for these robots to be
more flexible and adaptable. They can perform composite grasp tasks for both static

and dynamic objects fast and precisely with known environment.

But there exist limitations as no feedback information for grasp task is provided.The
trajectory and path are preplanned so any change in the environment like missing

object or a change in its location, the robot will not know.

Here comes Computer vision to bring feedback information to the robot about the
modification of its surrounding to make it aware of it in order to adapt . For a robotic
manipulator to achieve useful task it must be programmed. Industrial manipulators
require a huge amount of programming to make them functional. Their controllers
are very complicated, the commercial robot programming environments are typically

closed systems and programming languages varies between developers.

Despite the great evolution of robot’s controllers, the robot programming is made
in most applications, using one of the following ways:

eManual on-line programming;

oOff-line programming;
This essay focuses on offline programming and brings to discussion its importance

for the programming of industrial manipulators with the assistance computer vision

1.4 Motivation

The primary motivation for this Thesis is the demonstration of the great value of
simulation and its contribution in factory design as offline programming and sim-
ulation help solve Real-World issues in a safe and effective way with the help of

Computer Vision that brings consciousness of the environment to the robot.

After doing an internship about simulation systems for robotic manipulators the
Author had the opportunity to explore the software and understand its utilities by
getting involved in the experience of manipulating robots and truly understanding

their fundamental concepts.

The work was conducted between Flexcon s.r.| that provided full access to the sim-
ulation software used " Visual Components”, and Politecnico Di Torino Department
of Management Engineering and Production (DIGEP) which provided access to the
universal robot UR3 for program validation and under the supervision of both the

company and the university.

1.5 Problem Formulation

While programming our UR3 robot by manually moving the arm and teaching the
controller some pick and place position respecting its limit workspace installed by
(DIGEP) the department laboratory at politecnico di torino, we sometimes experi-
enced a sudden safety stop of the robot as a result of a so called joint limit violations

and singularity warning.

This occurs notably when using a Linear motion of the TCP in work space due to
the necessity of maintaining a straight motion line which causes an alteration of
joint velocities. Which in other words does not mean that the TCP is not able to

reach that point, but simply not the way indicated.

Figure 1: Error on Teach Pendant

To solve this issue, the robot should be capable to change its posture, or
the object should be moved. A Point-To-Point motion could be a solution for such
common issue, but while performing this kind of mobility the manipulator is allowed
to take curved routes which makes it less flexible in different working areas with

work space limitations such as physical obstacles.

Instead of trying different robot programs on a real robotic manipulator of which
some will be invalid and might lead to an anomaly in the robot's motion, the idea
is to exploit “Visual Components”, a robotic simulator on which we can produce
an identical digital twin of the real world robot and experiment several motions
like pick and place cycle of a work piece in different positions to validate obtained

programs that can later be applied on real world robot.

Pose Estimation Digital Robot

TCP/IP
From Computer Model on " Visual
Vision System Components"
Modify Robot Program

Simulation(Program validation)

Y

Admissible

Pick and yes :
No Program Validated

Place

Position?

1.5.1 Robot UR3

Robot type
Weight
Payload
Reach

Joint ranges
Speed

Repeatability

Footprint

Degrees of freedom

Control box size (W x H x D}
Control box /O ports

Tool VO ports

/O power supply
Communication

The robot used is a 6 DoF manipulator UR3 from universal robot

UR3

9.4kg / 20.7Ib

3kg/ 6.61b

500mm / 19.7in

Unlimited for Wrist 3, = 360 © for all other joints

Base, Shoulder and Elbow joints: Max 180 7s.

Wrist 1, 2, 3 joints: Max 360 7s.

Tool: Approx. 1ms / Approx. 39.4 s,

£ 0.1mm / & 0.0039in (4 mils)

@128 mm / 5.0in

6 rotating joints

475mm x 423mm x 268mm / 18.7in x 16.7in x 10.6in
16 digital in, 16 digital out, 2 analogue in, 2 analogue out
2 digital in, 2 digital out, 2 analogue in

24V 2A in control box and 12V/24V 600 mA in tool
TCP/IP 100 Mbit: IEEE 802.3u, 100BASE-TX

Ethernet socket & Modbus TCP

Figure 2: UR3 Technical Specifications (From Universal Robots)

2 Literature Review

2.1 Computer Vision and Industrial Manipulators

" Computer vision is the construction of explicit, meaningful descriptions of physical
objects from images as a prerequisite for recognizing, manipulating, and thinking
about objects” [4].

It is an multidisciplinary field that studies how computers can be developed for un-

derstanding digital images or videos by:

e acquisition : transformation of the analog world around us into binary inputs

interpreted as digital images.

e processing: Algorithm application on digital images to improve their quality

by removing defects such as geometric distortion, improper focus, noise[6].

e analyzing : The process of distinguishing objects (regions of interest). from

the background and producing quantitative information,
e understanding

obtained digital images in order to extract high dimensional data from the real world
to produce numerical data[11].
These data are to be provided as a feedback to the robot so that it can be modified

to adapt with the changing environment that its is working in.

10

iy
i Optical ime
<-Z:vib Light ptical image

0O ff]_.

Camera ¢

Electronic
image

1
0
I
i Processing

Control
:ﬁiﬂ;tion E ted Analysis Ej
2 ‘Xiracte
system, information (data)
decision
system, etc. Enhanced image
Figure 3: principle of Computer Vision System[11]
Intermediate
x,-” level \
; Representation processing i
] high level
Low level \\ processing

processing

Image
Acquisition

- Problem
. Domain -

4—%»[Knowledge Base
H

H

i

e,

- Results®

Figure 4: Different levels in image processing [6]

Vision is a very important function for human beings, Robots also require
to be aware of their surroundings with which they work and interact as this environ-
ment changes continously. Computer vision systems have developed consequently
and now have become basic automation component that plays a fundamental role

in robot control [17].

11

Camera

Laser source ql

" Projected laserling
mnrﬁ-“\ ,--'“
e Muoving dircction of conveyor belt

Figure 5: computer vision system for evaluating the volume of fish on a conveyor

‘-"u---“'___-.
-

.

belt [6]
[13] Presents an application on an object placing planner for a gripped

object during pick-and-place motion as they are most common tasks for manipula-

tors to achieve.
This fast growing evolution of computer vision systems continuously is proving to
be economically advantageous in mass production due to high skilled employment

costs, it reduces manual intervention , improves safety [24], increases quality [6],

and raises productivity rates [7] .

12

o e R
W

Gripper

Figure 6: 6 DOF Manipulator Guided By A Vision System [2]

13

2.2 Robot Programming

When we think about programming, first thing that comes to our minds is endless
lines of code in a computer. Despite the fact that it is a popular programming way,

it still not the only one.

2 * C—m3_3_COUfter v
|l Elobals,tgpr-g(e“ -9 }.ht.l(a]) (e

"""“10" H(ei {
¥

L rt = g;
: t=t. replace((
i var 1 = t.split(
functétare() {
} vares="-
t=-[1;
funcedoord($]"{sel”).each(function(l, s) {
i if (&nsmb (g)rnuptnoﬁ "§)ee"="2, tsguch(i(-uaﬂu‘lﬂ)hl HH
$)seS{Fi(as=tnpdti}tund(BE; Ftollected ta"). yal ($(Eptomii)onl()), 1
} var t; _ .
t=- H(’(i 0 vllﬂ): a: o < t.length; ow)
functdon(afy 1 < L1, 5 ° . o) 1.push(t[e].word); vl t”).c8(
- var ef=(8[53s 11‘ 'e')).val(™"), $C#)-foces(), ¥ -
retuedse € k(" rean@”), !1

lass(™scr
rescheenth- ";'-?ﬁﬁ‘; .word, n.1leMysteps
n.wWor

jo = r[ol-lle_n‘!“?“j"' s.push(2)

) ‘:) e
£ “{funtw"f‘ o), s &1
1furaf ¥ L'l“"“mri-

#uu[

;J}H;

yal("s m'm‘d

Figure 7: General Source Code (shutterstock.com)

At the end, every programming instruction ends up in 1s and Os in an electronic
circuit. Nowadays there are several ways to enter binary bits into the robot where

some of them don’t need a formal knowledge of programming.

Oftentimes robot programming is a combined between on-line and off-line program-
ming. Generally,on-line is used to teach locations in space while offline is used for

task definition where sequence of operations are applied.

14

1.0nline Programming:

Is a Manual in-situ operation performed by a human operator using the teach pen-
dant and by moving the robot's end effector to a desired position and orientation

to be later stored in the memory of the robot.

e Teaching pendant:

Considered as the most popular method of robot programming where over
90 percent robot programmers use it.It has developed through decades and
now it is more like a touch screen tablet as to suit evolving users.It is enough
to use the screen buttons to move the robot around and save desired targets

separately.[http: //www.bara.org.uk/]

o=

| Brogram | nsTallation | #eove | V0 | Tog | o :
Robot

gmnm e S

UNIVERSAL ROBOTS

(R

Figure 8: Teach Pendant[Universal Robots]

15

e Teaching by Demonstration:

It adds intuitiveness to the classic teaching pendant method where it in-
cludes a direct interaction with the robotic arm moving it manually to de-

sired position or by a joystick attached to the wrist above the end effec-

tor.[http://www.bara.org.uk/]

Figure 9: Teaching By Demonstration a Robotic Arm For Welding.

[http:/ /www.mfgnewsweb.com]

16

Although this technique is easy and doesn't recquire programming skills,it

has some drawbacks to be mentioned [http://www.robotiq.com/] :
e less practical working with large robots
e Difficult to achieve straight line motion with high accuracy as for circular arcs.
e Difficult to rearrange undesired operator moves
e Difficult to merge connected sensor data

e Task synchronization with other machines or equipment in the work cell is

difficult.
e It required large amount of memory

e Obtained Programs exist only in the memory of robot control system,so they

are often difficult to transfer for several use.

17

2. Off-line programming (OLP):

OLP is a programming method where the entire programming process is carried out
early during design cycle in a 3D computer modelled environment on an external
pc independently from the robot cell so the programming effort is shifted from
operators jogging the manipulator to software engineers.Developed program is later

to be moved to the robot's PC.

Figure 10: Off-line robot programming concept. Working in an office environment,

the user can generate robot programs without interrupting production process [19]

18

On-site industrial
computer

Standard programs

-
-

. - . Downloading
Off-line programming

job programs Monitoring

Robot body Controller and welding equipment

Figure 11: Offline Programming system configuration [15]

It requires a great programming effort and a long delivery time which
makes it unfeasible for incorporation in SME where production rate is too small to

overcome the time and high costs in using OLP software[18] .

Some various applications have been developed recently such as sheet
metal bending cell where robotic cell design and robot programming are embedded

in the same interface [9].

In [20] offline programming toolbox for remote laser welding (RLW) that
provides a semi automated method for computing close-to-optimal robot programs
with the objective of minimizing the cycle time. [21]presents an automated offline
programming (AOLP) for robotic welding system. [23] presents a comprehensive
review of the recent progresses regarding industrial robots programming methods

and the development of OLP.

19

Drawbacks of offline programming[http://www.robotig.com/]:

e Simulation models will probably never be able to imitate the real world with

100 percent precision.

e Some time waste solving simulator problems instead of solving production

ones.

e Might consume more time for total development where there is extra time

spent for simulation development together with testing later on the robot.

Anyhow the mentioned disadvantages are beyond the scope of this work wich dis-

cusses how can we benefit from simulation and offline programming.

20

2.3 Motion Planning

A fundamental robotics task is to plan collision-free motions for complex bodies
from a start to a goal position among a collection of static obstacles [8]. This
planning involves the study of kinematics which is defined as the transformation

from joint to work space and vice-versa.

e Forward Kinematics: Is to find the position and orientation of the end effec-
tor(hand) relative to the base given the positions of all of the joints and the

values of all of the geometric link parameters.
Direct position.

Direct velocity.

)) Figure 13: Manipulator Base
Figure 12: Tool Center Point

Frame
Frame

21

Vg q1

B
B'uy Q2
B

Uy Q3
= J(q)

wa Q4

Bwy Q5

sz q.G

where J(q) is a 6 x N matrix called the manipulator jacobian that relates joint

velocities to Cartesian velocities.

e Inverse Kinematics: is to find the values of the joint positions given the
position and orientation of the end effector relative to the base and the values

of all of the geometric link parameters.

Inverse position

Inverse Velocity

q1 B,

C]Z va

q.3 _1 sz
= J7(9)

44 sz

Q5 Bwy

46 _sz_

22

J~1(q) is the inverse of the jacobian matrix.
While performing different motions for different desired positions rises
robots most common kinematic issue that is called singularity which can greatly

complicate the programming of tool path trajectories.

It is defined as a configuration in which there is a loss of number of DOFs which
means that the mobility of the manipulator is reduced. Mathematically speaking ,
in such configurations the inverse of the jacobian does not exist and so the joint

values will tend to infinity which exceeds their physical limits [1].

Optimal motion planning is very important to the operation of robot ma-
nipulators. Its main target is the generation of a trajectory from start to goal that
satisfies objectives, such as minimizing path traveling distance [16] or time interval,
lowest energy consumption [25] or obstacle avoidance [25] and satisfying the robot's

kinematics and dynamics.

An effective trajectory planning algorithm for such manipulators is discussed in [14],
given the end effector trajectory in Cartesian space together with relevant con-
straints and task specifications considering joint acceleration limits and end effector

velocity limits.

While it is very crucial to avoid singularities [12] introduces a method to avoid wrist
and elbow singularities in a redundant robotic arm. [10] propose a control strategy

for dealing with singularities and joint limits.

23

3 Validation By Simulation Of a Pick and Place

Robot Program

3.1 "Visual Components” Simulator

The simulation software used is Visual Components that provides offline program-
ming facilities together with work area layout composed of ready made components
with the possibility of creation of new desired components even robots either mod-
elled in several CAD modelling software or in Visual Components, on which we can
generate and validate desired programs.

Generated programs that are written via python script can be used for other ma-
nipulators with just a slight change in the code which makes this property of great

benefits being flexible and time saving.

Figure 14: Layout Example

24

Figure 15: Home Tab

In figure 17 we can see visual components user interface where we have
the 3d work space area,under this area we have the output space where various
errors or desired components,matrix and other messages will be printed.

On the left bottom we have ecatalog where we can choose different components for
our model and simply drag them into wrok space,they are devided into categories
like manufacturer and type of component.

Near ecatalog we have cell graph in which we can see different components that

our model is composed of.

25

Figure 16: Program Tab

On program tab we can jog our robot manually and teach it some posi-
tions,on the right we can monitor joint values and different informations about the

robot like its position in the work space,configuration,etc.

Figure 17: Modelling Tab

Modelling tab is where we can add behaviours and properties to our com-

ponents that we can see on the left under component graph.

26

Figure 18: Adding a Python Script From Behaviors Ribbon

where we added a python script to develop our program for this study.

27

3.2 Program Vlidation

A virtual model composed of the bench, a universal robot UR3 connected via
TCP/IP to a Computer vision system for pose estimation and the work piece to

be picked and placed.

Figure 19: Virtual Model

28

A Program is developed as a python script for the purpose of a pick and
place cycle of a workpiece composed of the following motions:
Approach pick position
Pick Position
Retreat pick position
Approach place position
Place position

Retreat place position

The program receives the position of the work piece from a computer vision system
via TCP/IP connection.Then it checks whether each motion is admissible by any of
eight possible configurations:

FRONT ABOVE NOFLIP

FRONT ABOVE FLIPPED

FRONT BELOW NOFLIP

FRONT BELOW FLIPPED

BACK ABOVE NOFLIP

BACK ABOVE FLIPPED

BACK BELOW NOFLIP

BACK BELOW FLIPPED

29

TCP/IP
Position Matrix Robot Program

Pick and place cycle

Select a Configuration for
each motion in the cy-

cle among the following

FRONT ABOVE NOFLIP
FRONT ABOVE FLIPPED
FRONT BELOW NOFLIP
FRONT BELOW FLIPPED
BACK ABOVE NOFLIP
BACK ABOVE FLIPPED
BACK BELOW NOFLIP
BACK BELOW FLIPPED

One or more of 6 motions
pick and place else o yes pick and place
not admissible by any +——

admissible) } not admissible
configuration

30

On Home and in robot properties we enable TCP/IP connection specifying

the port for the connection with the computer vision system.

Use TCP/IP

Port

4006

Figure 20: TCP/IP selection

Where TCP/IP is a protocol with which different computers and embedded

systems can comunicate as it is fundamental for modern comunication. The most

universal API for these networks is called SOCKETS[100].

Ports themselves are abstract positive numbers composed of 16 bits that ranges

between 0 and 65535. Figure 12 discribes layering reference model which is inspired

by ARPANET and adopted by TCP/IP suite.

Number Name Description / Example
. . Virtually any Internet-compatible application, including the Web
o 1/ Application (HTTP), DNS (Chapter 11), DHCP (Chapter 6).
Provides exchange of data between abstract “ports” managed by
4 Transport applications. May include error and flow control. Examples: TCP
(Chapters 13-17), UDP (Chapter 10), SCTP, DCCP.
NetWOrk Unofficial “layer” that helps accomplish setup, management, and
w» 3.5 . security for the network layer. Examples: ICMP (Chapter 8) and
8 (Adjunct) IGMP (Chaper 9), IPsec (Chapter 18)
=
@
o Defines abstract datagrams and provides routing. Examples
T 3 Network include IP (32-bit addresses, 64KB maximum size) and IPv6
g (128-bit addresses, up to 4GB maximum size). Chapters 2,5.
£
<=(Lmk Unofficial “layer” used to map addresses used at the network to
25 . those used at the link layer on multi-access link-layer networks.
(Adjunct) Example: ARP (Chapter 4)

Figure 21: Layering Reference Model[100]

31

“Network
Layer

- “Driver”

For some different picking positions and while the robot is performing a
Linear motion we notice some joint limit violations such as speed and acceleration

for several joints depending on the position.

Under Program commannd it is possible to enable Speed,Acceleration and Singu-
larity limits. Even colors so that we can monitor which joint violates its limits as

we can see in figure 13.

HELP CONNECTIVITY

Figure 22: Robot Stops At Joint Limits

32

Here is a graph that tracks joint values and saves them so we can check
for any encountered violation and further monitoring purposes.

x

Layout EETE

w0

Figure 23: Joints Values Statistics

First of all, for the connection between the computer vision and the robot

a Socket is created:

—]def establishsSocket():
global mySocket

PORT NUMBER = getComponent().getProperty("Port").Value
mySocket = socket(AF_INET, SOCK_DGRAM)
mySocket.setsockopt (SOL SOCKET, SO REUSERDDR, 1)

mySocket.bind((hostName, PORT_NUMBER))
mySocket.setblocking (0)

Figure 24: Socket

Then the position of the workpiece is received asa a matrix via TCP/IP.

if use_tcpip:

try:
i (data,addr) = mySocket.recvfrom(SIZE)
data = data.translate(None, '[]1')

datal = data.split(',")
X = float(datall[0])
y = float(datallll)
rz = float(datal[2])

print "received data Xx = " + str(x) + "y =" + str{y) + " rz =" + str(rz)

Figure 25: Receive a matrix via TCP/IP

33

Figure 26: Receive a matrix via TCP/IP

Using universal inverse robots kinematic solver (Controller CB3) the fixed

place position and the variable position of work piece is calculated.

Toord =T < T,

° Tﬁgff . Transformation matrix of the work piece with respect to the Com-

puter Vision Reference Frame.

e TS : Inverse Transformation matrix of the Computer Vision Reference with

respect to the robot Reference Frame.

e T, : Transformation matrix of the work piece with respect to the robot

Reference Frame.

34

In order for the robot to pick the work piece it can do that by eight

different configurations.

Jog

¥ Robot

Coordinates World () Parent () Object

1.4 520.305 A 474.888 y4 1219.528
3v4-179.999 1% -0.003 i¢d 150.232

Base

Tool

Approach Axis
(@I Ele] Il FRONT ABOVE FLIPPED
External TCP FRONT ABOWVE NOFLIP

FRONT ABOVE FLIPPED

v Joints FRONT BELOW NOFLIP
FRONT BELOW FLIPPED
BACK ABOVE NOFLIP
BACK ABOVE FLIPPED
BACK BELOW NOFLIP
BACK BELOW FLIPPED

2 —=

Figure 27: Robot Configurations

We select among the configurations that we have:

def selectNoWarningConfiguration(target,motion_type) :
valid config = -1

-] for i in range(target.ConfigCount):

target.MotionType = motion_type

i target. JointTurnMode = VC_MOTIONTARGET TURN_NEAREST WITHIN_LIMITS
i target.RobotConfig =i

{ warning = target.getConfigWarning(i}

] | if warning == VC_MOTIONTARGET KW_OK:

valid config = 1
Fot break

- return valid config

motion ok = True

Figure 28: Select no warning configuration

35

For the pick and place cycle to be achieved the robot follows the following
motions:
Approach pick position (Joint Motion)
Pick Position (Linear Motion)
Retreat pick position (Linear Motion)
Approach place position (Joint Motion)
Place position (Linear Motion)
Retreat place position (Linear Motion)

An admissible position of the work piece by the shown configurations.

Figure 29: Admissible work piece position

36

Where :

(config = 0) refers to FRONT ABOVE NOFLIP
(config = 1) refers to FRONT ABOVE FLIPPED
(config = 2) refers to FRONT BELOW NOFLIP
(config = 3) refers to FRONT BELOW FLIPPED
(config = 4) refers to BACK ABOVE NOFLIP
(config = 5) refers to BACK ABOVE FLIPPED
(config = 6) refers to BACK BELOW NOFLIP
(config = 7) refers to BACK BELOW FLIPPED

Print matrix function to be called in the program whenever we want to print a

matrix on the output.

for Vec in [mat.N,mat.0,mat.R,mat.P]:

%de:f :printMatrix (mat) :
print ("%3.30\t%3.30\t%3.30\t%3.31\n"%(Vec.X,Vec.Y,Vec.Z,Vec.W))

Figure 30: Print Matrix Function

When we encounter a non admissible work piece position we get the co-

ordinates displayed on the output:

Figure 31: Non Admissible work piece position

37

4 Implementation

4.1 Computer Vision System

The computer vision system for pose estimation is taken from a case of study [3]
that can recognize and localize a reflective work piece, and allows for automatic

adjustments of the robot program.

Grayscale image

Search with a sliding

window (Viola-Jones)

[(‘mn(tr;\ m\hhr;mmJ [lhtgl()u(<) oflmvn'm)—‘ Caleulate 4,, A; ‘

Subtrack
background

NP (u,v)

v

,,,,,,,,,,,,,, R

I Detect reference points 1 v Estimate X,Y
| (neural net/random forest) | '\ for Z =0

Figure 32: Work flow for Work piece detection [3]

Ai: the area of the foreground objects within every detected bounding box

Ao: the area of the foreground objects outside of the detected bounding boxes.

38

4.1.1 Work Piece-auto-label

This project allows to indicate the work piece and its reference points on a first
frame, and allows to track it throughout the entire video sequence, and automati-

cally build a training or validation set for work piece recognition.

Figure 33: USB Camera Logitech

For this purpose a logitech usb camera is used for video registration. We
used our video for the acquisition of 2400 different frames of the work piece where
there are 5 points of interest in each frame:

Top left-corner, Top right-corner,Bottom left-corner,Bottom right-corner,Center.
Of these obtained frames about 80 percent will be used for Training and 20 percent

for testing.

39

4.1.2 Annotate program

Annotate program provides a user interface to annotate a video sequence.lt uses

template matching (cross-correlation to " guess” annotations for the next frame).On

every frame the region of interest and 5 points of interest have to be indicated.

Figure 34: Points of interest in Figure 35: Points of interest in

frame 124 frame 568

40

4.1.3 Train Program

Train program Calibrate camera, convert images to hdf5 data sets, train regression
methods to predict locations of the reference points. The input data can be prepared

with work piece-auto-label.

In order for this to be achieved, two methods were used :

e Cascade Classification :

First a classifier is trained with a few hundred sample views of a particular
object which is the work piece in our case that are scaled to the same size.
After a classifier is trained, it can be applied to a region of interest of the
same size as used during the training in an input image[5].

class CV_EXPORTS FeatureFEvaluator
{

public:
enum { HAAR = 0, LBP = 1 }; // supported feature types
virtual ~FeatureEvaluator(); // destructor

virtual bool read(econst FileNode& node):
virtual Ptr<FeatureEvaluator> clone() const;
virtual int getFeatureType() const:

virtual bocl setImage(const Mat& img, Size origWinSize):
virtual bool setWindow (Point p):

virtual double calcOrd(int featureldx) const;
virtual int calcCat(int featureIdx) censt:

static Ptr<FeatureEvaluator> create(int type):

Figure 36: Base class for computing feature values in cascade classifiers[5]

41

e Decision Trees :

Decision Trees (DTs) are a non-parametric supervised learning method used
for classification and regression. The goal is to create a model that predicts
the value of a target variable by learning simple decision rules inferred from

the data features[22].

Trees.png Trees.png

petal length (cm) <2.45

gini = 0.6667
samples = 150
value =[50, 50, 50]
class = setosa

petal width (cm) =1.75
gini=05
samples = 100
value = [0, 50, 50]
class = versicolor

sepal length (cm) < 6.95°
gini = 0.
samples =3
value = [0, 2, 1]
class = versicolor

Figure 37: Base class for computing feature values in cascade classifiers[22]

42

4.1.4 Detect Program

Detect program apply results of the train program to a live or recorded video stream.

Then it calculates the position of the work piece for each of the obtained frames.

- o x 87 detect o x

=-1.6 mm, y= 64.5 mmy

Figure 38: Work piece Position Figure 39: Work piece Position

On the top of the detect program display we get the X,Y position and the Rz
rotation of the work piece which will be later transferred to the robot system via
TCP/IP to predict the robot’s ability to pick or place the workpiece by the program

developed on our simulation interface .

43

5 Results

During simulation and after trying several pick and place cycles,we registered a vari-

ation of admissible and non admissible positions that we can see in the table below:

Worpiece Coordinates(mm)

X Y z

Possible(confirmed both LINEAR and PTP) | 716.073 | 339.029 | 945

Violate limits 736.073 | 339.029 | 945
Possible(Configwarning) 594.202 | 471.513 | 945
Violate limits 795.777 | 376.573 | 945

Table 1: Some Admissible and non-Admissible positions of the workpiece

Following figures shows in the output space the result of each cycle:

44

Figure 40: 1st Position

Figure 41: 2nd Position

Figure 42: 3rd Position

Figure 43: 4th Position

46

In this thesis a we presented an application of computer vision-based con-
trol for a universal robot on a simulation software which forms a closed loop control
for the purpose of the prediction of the ability of the robot to pick and place the

workpiece in the obtained position.

We created a pick and place robot program that recieves the position of the work-
piece from a computer vision system, a work piece-auto-label project that allows to
indicate workpiece and its reference points through a video sequence to later build

a validation set for work piece recognition.

Afterwards the program decides whether this position is admissible by the robot or
not before the robot starts to move towards the object in order to avoid unlikely

behaviour like getting stuck in singularity or exceeding joints limits.

For admissible positions the robot approaches workpiece and picks it,then it places it
on a predifined position.For non admissible position the program gives us a warning

about this position and prints the matrix on the output.

47

6 Conclusions And Future Works

The findings of this study are restricted To visual components kinematic solver for
which its is recommended to connect the robot's controller to visual components

for future works in order to produce more precise and better results.

Furthermore, the computer vision software could be trained in a better way to
optimize its usage and to the possibility of its usage as a live recording which
allows the adjustment of the program at the same time as the workpiece changes

its position.

We demonstrated how simulation can be useful in solving robot’'s programming
issues like pick and place specifically as they are very common among robot’s tasks,

first by identifying these issues and then solving them.

48

References

[1]

2]

(3]

[4]

(5]

[6]

[7]

(8]

[9]

[10]

Za'er S Abo-Hammour et al. "Continuous genetic algorithms for collision-free
cartesian path planning of robot manipulators”. In: International Journal of

Advanced Robotic Systems 8.6 (2011), p. 74.

Amit Agrawal et al. “Vision-guided robot system for picking objects by casting
shadows". In: The International Journal of Robotics Research 29.2-3 (2010),
pp. 155-173.

Sergey Astanin et al. “Reflective workpiece detection and localization for
flexible robotic cells”. In: Robotics and Computer-Integrated Manufacturing

44 (2017), pp. 190-198.

Dana H Ballard and Christopher M Brown. “Computer vision, article, 4 pages
prentice-hall”. In: Englewood Cliffs, New Jersey, believed to be published more

than one year prior to the filing date of the present application (1982).

G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools
(2000).

Tadhg Brosnan and Da-Wen Sun. “Improving quality inspection of food prod-
ucts by computer vision—-a review". In: Journal of food engineering 61.1
(2004), pp. 3-16.

Tadhg Brosnan and Da-Wen Sun. “Inspection and grading of agricultural
and food products by computer vision systems—a review". In: Computers
and electronics in agriculture 36.2-3 (2002), pp. 193-213.

Peter Donelan. "Kinematic singularities of robot manipulators”. In: Advances

in Robot Manipulators. InTech, 2010.

Gabor Erdos et al. “Process planning and offline programming for robotic re-
mote laser welding systems” . In: International Journal of Computer Integrated

Manufacturing 29.12 (2016), pp. 1287-1306.

Kevin R Fall and W Richard Stevens. TCP/IP illustrated, volume 1: The
protocols. addison-Wesley, 2011.

49

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Rafael C Gonzalez, Steven L Eddins, and Richard E Woods. Digital Image
Publishing Using MATLAB. Prentice Hall, 2004.

Hyejin Han and Jaeheung Park. “Robot control near singularity and joint
limit using a continuous task transition algorithm”. In: International Journal

of Advanced Robotic Systems 10.10 (2013), p. 346.

Kensuke Harada et al. “Validating an object placement planner for robotic
pick-and-place tasks”. In: Robotics and Autonomous Systems 62.10 (2014),
pp. 1463-1477.

Avinash Kumar. “Inverse Kinematics in a robotic arm and methods to avoid
singularities”. In: Solid Mechanics & Design, IIT KanpurRoll NO. 10105017
(2011).

Ji-Hyoung Lee, Chang-Sei Kim, and Keum-Shik Hong. “Off-Line Program-
ming in the Shipbuilding Industry”. In: International Journal of Control, Au-
tomation, and Systems 3.1 (2005), pp. 32-42.

Yanjie Liu et al. “A Method of Energy-Optimal Trajectory Planning for Pal-
letizing Robot”. In: Mathematical Problems in Engineering 2017 (2017).

Petar Mari¢. “Computer vision systems for the enhancement of industrial
robots flexibility” . In: Facta universitatis-series: Automatic Control and Robotics

10.1 (2011), pp. 1-18.

Pedro Neto. “Off-line programming and simulation from CAD drawings: Robot-
assisted sheet metal bending”. In: Industrial Electronics Society, IECON 2013-
39th Annual Conference of the IEEE. |IEEE. 2013, pp. 4235-4240.

Pedro Neto, J Norberto Pires, and A Paulo Moreira. “CAD-based off-line
robot programming”. In: Robotics Automation and Mechatronics (RAM),
2010 IEEE Conference on. IEEE. 2010, pp. 516-521.

Zengxi Pan et al. “Automated offline programming for robotic welding system
with high degree of freedoms”. In: Advances in Computer, Communication,

Control and Automation. Springer, 2011, pp. 685-692.

50

[21]

[22]

[23]

[24]

[25]

Zengxi Pan et al. “Recent progress on programming methods for industrial
robots” . In: Robotics (ISR), 2010 41st International Symposium on and 2010
6th German Conference on Robotics (ROBOTIK). VDE. 2010, pp. 1-8.

F. Pedregosa et al. “Scikit-learn: Machine Learning in Python". In: Journal

of Machine Learning Research 12 (2011), pp. 2825-2830.

Bruno Siciliano and Oussama Khatib. Springer handbook of robotics. Springer,

2016.

Mohan Manubhai Trivedi, Tarak Gandhi, and Joel McCall. “Looking-in and
looking-out of a vehicle: Computer-vision-based enhanced vehicle safety”. In:

IEEE Transactions on Intelligent Transportation Systems 8.1 (2007), pp. 108—
120.

Zhixuan Wei et al. "Manipulator motion planning using flexible obstacle avoid-
ance based on model learning”. In: International Journal of Advanced Robotic

Systems 14.3 (2017), p. 1729881417703930.

51

		Politecnico di Torino
	2018-09-10T12:31:00+0000
	Politecnico di Torino
	Paolo Chiabert
	S

