
POLITECNICO DI TORINO

Master of Science in Electronic Engineering

Master Thesis

Speed Enhancement

Methods for
HEVC Interpolation Filters

Supervisors:

Prof. Maurizio Martina

Prof. Guido Masera

Candidate:

Stefania Preatto

September, 2018

Abstract

Video sequences are largely di�used and have several applications worldwide. As a matter
of fact, the necessity for a pro�cient video coding standard is required, by replacing the HM
reference model with the HEVC project. The interpolations �lters of this system represent
the bottleneck for the CPU time: therefore an hardware implementation is strictly necessary
in order to ful�ll a short time coding requirement.
The purpose of this work of thesis is to �nd an appropriate internal architecture for the adders
that are involved in the �ltering operation, in order to further increase the throughput of the
system. After a �rst analysis on input data statistics, several techniques are applied to en-
hance the e�ciency of the entire system. Both exact and approximate adders are introduced,
with a further examination on the impact of these choices on the performances of the reference
system.
In the following, Ch.1 aims to give a general introduction of video coding, HEVC interpola-
tion �lters and to present the starting hardware reference structure. In Ch.2 parallel-pre�x
adders topologies are introduced to solve the time e�ciency issue for the Chroma Legacy ar-
chitecture, while Ch.3 explores the adoption of adaptive approximate computing with Generic
Accuracy Con�gurable adders for the Luma Legacy architecture. Finally in Ch.4 the di�erent
adders topologies, presented in the previous sections, are applied to the approximate DCT-IF
architectures in order to enhance performances.

i

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor Prof. Maurizio
Martina for the continuous support of my work, for his patience, motivation and advice he
has provided me through these months. Besides being an admirable teacher, he is a man of
extreme kindness and availability who is always prepared to help and listen to his students. I
would also like to thank Prof. Maurizio Masera for his useful and constructive teaching which
allows me to have solid basis and method to face new issues in projects and work.
Thanks to people who stand by me, your sustain was worth more than I can express on
paper. Heartfelt thanks go to Phil, for supporting and strengthening me both in university
and in everyday experiences. Special mention to my closest friends Elvio, Chiara, Damiano,
Francesca, Monica and Erica, for standing next to me during this journey: there is no distance
that can separate a true friendship.
Last but not the least, I wish to thank my family, my parents Marzia and Roberto and
my brother Luca, for always supporting and encouraging me throughout my life. Thanks
to my dad, for imparting me passion and dedication to work and electronics. Finally I am
particularly grateful to my grandparents, Nino and Renata: this experience would not have
been possible without them.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures iv

List of Tables v

1 Introduction to HEVC Interpolation Filters 1

1.1 Video Compression . 1
1.1.1 Video Representation . 1
1.1.2 Video Structure . 2

1.2 High E�ciency Video Coding . 3
1.2.1 HEVC Structure and Coding . 3
1.2.2 Software timing analysis . 5

1.3 Fractional Sample Interpolation . 6
1.3.1 Filter Design . 6

1.4 Hardware Architecture for Interpolation Filters 8
1.4.1 2D DCT-IF Legacy Architecture Rescheduling 8
1.4.2 A multiplier less solution for DCT-IF 1D Architecture 10
1.4.3 Architecture Implementation . 13

Datapath . 13
FSM . 13

1.4.4 Processing Element . 16

2 Chroma Legacy Architecture 17

2.1 Data Analysis . 17
2.2 Cut Architecture . 19

2.2.1 Filter Design . 19
2.2.2 Interpolation Filter Output . 19
2.2.3 HEVC Output . 22

2.3 Parallel & Pre�x Adders . 24
2.3.1 General Structure . 24
2.3.2 Han-Carlson Adder . 26

Approximate Han-Carlson Architecture 26
2.3.3 Ladner-Fischer Adder . 27

Approximate Ladner-Fischer Architecture 28
2.3.4 Interpolation Filters Output . 29

iii

Contents

2.3.5 Design Synthesis Results . 31

3 Luma Legacy Architecture 32

3.1 Data Analysis . 32
3.2 Parallel & Pre�x Architecture . 33
3.3 Carry Save Adder Architecture . 34

3.3.1 Filter Design with CSA . 34
3.4 Generic Accuracy Con�gurable Adders . 37

3.4.1 Complementary Modules in Arithmetic Datapaths 37
3.4.2 General Structure . 38

3.5 Simulations . 42
3.5.1 Filter Output . 42
3.5.2 HEVC Output . 44

3.6 Design Synthesis Results . 53

4 Approximate Computing on DCT-IF architecture 54

4.1 General Structure . 54
4.2 Hardware Design . 57

4.2.1 Adders Topologies . 63
4.3 Simulation . 63
4.4 Design Synthesis Results . 64

Conclusion 66

Appendices 67

A Parallel & Pre�x Adders 67

B Generic Accuracy Con�gurable Adders 78

Bibliography 80

iv

List of Figures

1.1 RGB and YUV images of Mountains, 1280x894 2
1.2 Group of pictures with I, B, P frames . 3
1.3 HEVC Block Diagram, �gure courtesy of A.Giannini [2] 4
1.4 HM16.15 [6] Encoding time results from Software Pro�ling [2] 5
1.5 HM16.15 [6] Decoding time results from Software Pro�ling [2] 6
1.6 Fractional sub-sampled block with 1/4th pixel accuracy 7
1.7 Parallel Interpolation �lter architecture with intermediate bu�er 8
1.8 Parallel Interpolation �lter with rescheduled architecture 8
1.9 Filter vertical and horizontal rescheduling, �gure courtesy [2] 9
1.10 FIR Filter standard architecture . 10
1.11 FIR Recon�gurable Luma Legacy Half Filter [2] 11
1.12 FIR Recon�gurable Chroma Legacy Filter [2] 12
1.13 Datapath Luma Legacy [2] . 14
1.14 Control Unit Filter Legacy [2] . 15
1.15 Luma top level Processing Element . 16

2.1 Chroma Legacy Partial Input Data Statistics 18
2.3 Chroma Legacy Filter 4/8h 1/8v Output for 10 and 13 bit cuts 19
2.2 FIR Recon�gurable Cut Chroma Legacy Filter 20
2.4 Chroma Legacy Filter 4/8h 5/8v Output for 10 and 13 bit cuts 21
2.5 PSNR degradation with Chroma cut computing (BasketballDrive[17], 1920x1080,

50 Hz, Low Delay) . 23
2.6 PSNR degradation with Chroma cut computing (BasketballDrive[17], 1920x1080,

50 Hz, Random Access) . 23
2.7 Parallel & Pre�x Adder Block Diagram . 25
2.8 Han-Carlson parallel-pre�x block . 26
2.9 Approximate Han-Carlson version 1 . 27
2.10 Approximate Han-Carlson version 2 . 27
2.11 Ladner-Fischer parallel-pre�x block . 28
2.12 Approximate Ladner-Fischer parallel-pre�x block 28
2.13 Approximate Ladner-Fischer and Han-Carlson comparison for 32-bits output 29
2.14 Chroma Legacy Filter Output, Han-Carlson Approximate Adder topology . . 30
2.15 Chroma Legacy Filter Output, Ladner-Fischer Approximate Adder topology . 30

3.1 Luma Legacy Partial Input Data Statistics . 32
3.2 CSA tree 3 operands dot notation . 34
3.3 CSA tree 4 operands dot notation . 35
3.4 Architecture with multi-operand additions schematic 35

v

List of Figures

3.5 Luma Legacy Architecture with CSA . 36
3.6 Scheme Principle of Complementary Module 37
3.7 Architecture of GeAr and CGeAr, k=2 . 38
3.8 Architecture of Carry Generator Unit for P=2 39
3.9 Architecture of GeAr and CGeAr k=3, P=0 40
3.10 Luma Legacy Architecture with adaptive approximate con�guration 41
3.11 Luma Legacy Filter Output, Han-Carlson Approximate Adder topology . . . 43
3.12 Luma Legacy Filter Output, GeAr k=3 P=0 43
3.13 Hardware-Software behavior . 44
3.14 Probability Density Function for error distribution k=2, P=0 45
3.15 Probability Density Functions for error distribution k=3, P=0 46
3.16 Data statistic adders 1 and 2 . 47
3.17 Data statistic adders 3 and 4 . 47
3.18 Data statistic subtractor 6 . 47
3.19 PSNR degradation with Luma approximate computing HEVC encoder (BasketballDrive[17],

1920x1080, 50 Hz, Low Delay) . 48
3.20 PSNR degradation with Luma approximate computing HEVC encoder (BasketballDrive[17],

1920x1080, 50 Hz, Random Access) . 49
3.21 PSNR degradation Encoder-Decoder Combinations (BasketballDrive[17], 1920x1080,

50 Hz, Low Delay) . 50
3.22 PSNR degradation Encoder-Decoder Combinations (BasketballDrive[17], 1920x1080,

50 Hz, Random Access) . 50
3.23 PSNR degradation Encoder-Decoder Combinations (BasketballDrill[17], 832x480,

50 Hz, Low Delay) . 51
3.24 PSNR degradation Encoder-Decoder Combinations (BasketballDrill[17], 832x480,

50 Hz, Random Access) . 51
3.25 PSNR degradation Encoder-Decoder Combinations (RaceHorses[17], 416x240,

30 Hz, Low Delay) . 52
3.26 PSNR degradation Encoder-Decoder Combinations (RaceHorses[17], 416x240,

30 Hz, Random Access) . 52

4.1 Approximate DCT-IF on decoder side . 54
4.2 Approximate DCT-IF on encoder side . 55
4.3 Approximate DCT-IF on both encoder and decoder side 55
4.4 Approximate DCT-IF PSNR degradation (BasketballDrive[17], 1920x1080, 50

Hz, Low Delay) . 56
4.5 Approximate DCT-IF PSNR degradation (BasketballDrive[17], 1920x1080, 50

Hz, Random Access) . 56
4.6 Datapath Luma Approximate [2] . 58
4.7 Recon�gurable approximate luma 5-tap �lter [2] 59
4.8 Recon�gurable approximate luma 3-tap �lter [2] 60
4.9 Recon�gurable approximate chroma 2-tap �lter with GeAr [2] 61
4.10 Recon�gurable approximate chroma 4-tap �lter with GeAr [2] 62

vi

List of Tables

1.1 Filter coe�cients for luma fractional sample interpolation [3] 6
1.2 Filter coe�cients for chroma fractional sample interpolation [3] 7
1.3 New coe�cients table for sum and shifts . 10

2.1 Mean and Standard Deviation for Chroma Legacy Input Data Adders second
stage �lter . 18

2.2 Chroma Legacy Comparison RMSD for di�erent LSBs cuts, 8 bits out 21
2.3 Chroma Legacy Comparison RMSD for di�erent LSBs cuts, 16 bits out 21
2.4 Performances and Area of Parallel&Pre�x Adders 25
2.5 Chroma Legacy Comparison RMSD, 16 bits out 29
2.6 Chroma Legacy Filter Synthesis results with clock gating 31
2.7 Chroma Legacy relative percentage comparisons with the original design . . . 31

3.1 Mean and Standard Deviation for Luma Legacy Input Data second stage �lter 33
3.2 Luma Legacy Comparison RMSD, 16 bits out 42
3.3 Mean and standard deviation for Gaussian distributions k=3, P=0 46
3.4 Mean and standard deviation for Logistic distributions k=3, P=0 46
3.5 Error Figures of Merit with gaussian noise . 48
3.6 Luma Legacy Filter Synthesis results with clock gating 53
3.7 Luma Legacy relative percentage comparisons with the original design 53

4.1 Approximate architecture Coe�cients replaced by sums and shifts 57
4.2 Comparison RMSD Chroma Approximate Architecture 2-tap, 16 bits out . . 63
4.3 Comparison RMSD Luma Approximate Architecture 3-tap, 16 bits out 63
4.4 Comparison RMSD Luma Approximate Architecture 5-tap, 16 bits out 63
4.5 Power results with approximate DCT-IFs compared to the legacy DCT-IFs . . 64
4.6 Chroma Approximate Synthesis results with clock gating 64
4.7 Luma Approximate Synthesis results with clock gating 65
4.8 Luma Approximate relative percentage comparisons with the original design . 65

vii

Chapter 1

Introduction to HEVC Interpolation

Filters

High resolution video is expanding very rapidly in the last few years. As a consequence, a
fast coding process is required to achieve suitable results for real time encoding, by replacing
the HM reference model with the HEVC project. The interpolations �lters of this system
represent the bottleneck for the CPU time: therefore an hardware implementation is strictly
necessary in order to ful�ll a short time coding requirement.
This chapter aims to give a general introduction of video coding and HEVC interpolation
�lters and to present the starting hardware reference structure to improve the performances
of the entire system.

1.1 Video Compression

Video sequences are largely di�used and have several applications worldwide. As a matter of
fact, the necessity for a pro�cient video coding standard is required.
Since objects tend to move between consecutive frames, block-based motion compensation is
the mostly adopted technique to take this movement into account. Each frame is divided into
blocks of pixels and for every block to be predicted the encoder looks for the closest match in
the reference frame.

1.1.1 Video Representation

The evolution of video representation from black-and-white to color television (RGB) implies
the problem of backward compatibility, which was faced with the creation of a composite
color signal(YUV). This last one is composed of three di�erent factors:

� a luminance component Y that correlates to black and white television:

Y = 0.299R+ 0.587G+ 0.114B

with R, G, B, respectively red, green and blue components

� two chrominance signals Cb(U) and Cr(V):

Cb = B − Y
Cr = R− Y

1

Chapter 1. Introduction to HEVC Interpolation Filters

Figure 1.1: RGB and YUV images of Mountains, 1280x894

1.1.2 Video Structure

A modern video sequence is based on a similar idea to the one introduced by the MPEG-1
video standard [1] that listed three di�erent frame types:

� I frames: coded with no reference to past frames. Indeed it's important to notice that
sometimes it's possible to decode a sequence starting from the �rst frame, while in other
cases it's not necessary to access the video sequence from the very beginning but from
a random point;

� B frames (Bidirectionally predictive coded): introduced for prediction of both past and
future frames;

� P frames (Predictive coded): used to forecast previous coded pictures exploiting motion
compensation prediction.

B and P slices are introduced to improve the compression e�ciency. Di�erent frames are
included in a group of picture (GOP) that is the smallest random access unit in the video
sequence.

2

Chapter 1. Introduction to HEVC Interpolation Filters

Figure 1.2: Group of pictures with I, B, P frames

1.2 High E�ciency Video Coding

Over the years video coding standards have evolved as a result of the development of two
renowned standards: ITU-T, which presented the H.261 and H.263, and ISO/IEC, that pro-
duced the MPEG-1,MPEG-4, H.262/MPEG-2, H.264/MPEG-4 AVC. This this last one is the
main predecessor of HEVC project.
High E�ciency Video Coding has been introduced to �x the raised use of parallel process-
ing architectures and the increased video resolution, which is required in many applications
targeting di�erent devices (e.g. mobile phones, tablets or PCs).

1.2.1 HEVC Structure and Coding

Let's analyze the HEVC execution �ow. Each input image is divided into pixel blocks and
the prediction generated by means of the previous processed frames (that are stored within
the Decoded Prediction Bu�er) is subtracted each time from the new input frame; the output
of this operation passes through transformation and quantization before being processed with
entropy coding and given as output bit stream. Here a list of the main features of the HEVC
design:

� Transformation: A two-dimensional Discrete Cosine Transform (DCT) is used execut-
ing a 1D transformation �rst on rows and then on columns. The prediction residual (out
of the subtraction) is coded using two block transforms: a DCT and a DST (Discrete
Sine Transform). The latter is necessary as inverse transformation, together with the
inverse quantization, to provide the decoded frame to the motion compensation;

� Quantization: required to deal with the wide variation of values out of the DCT. The
Quantization Parameter (QP) is fundamental in determining the block partitioning,
since the lower the QP, the smaller the variations to be captured, so the higher the
required bitrate;

� Intrapicture prediction (Intrapicture Estimation and Intrapicture Compensation):
used in order to code the �rst frame and every random access point in a video sequence.
Its main aim is to exploit the spatial dependency between two neighboring blocks,

3

Chapter 1. Introduction to HEVC Interpolation Filters

supporting directional, planar and DC prediction modes. It uses some prediction from
region-to-region in the same picture without any dependence on the other pictures;

� Interpicture prediction: is applied to all the other frames. A motion vector (MV) is
chosen to predict the samples of each block; the employment of motion compensation will
lead the encoder and the decoder to generate identical interpicture prediction signals;

� Motion Estimation (ME): given as input the new frame to be encoded and the pre-
vious reconstructed frames, it creates the Motion Vector which is sent to the Motion
Compensation and to the entropy coding;

� Motion Compensation (MC): generates the prediction pixel block. While Motion
Vector exploits quarter-sample precision, fractional-sample positions are interpolated
through 7-tap or 8-tap �lters;

� Entropy Coding: based on Context Adaptive Binary Arithmetic Coding (CABAC).
The basic idea is to determine a separate probability model for each symbol that is
coded as a bin; this is processed by dividing a range of representation in two subranges
and selecting the one where the symbol is as a new range.

Figure 1.3: HEVC Block Diagram, �gure courtesy of A.Giannini [2]

4

Chapter 1. Introduction to HEVC Interpolation Filters

1.2.2 Software timing analysis

Since HEVC is intended as the newest video coding standard that is designed to achieve coding
e�ciency and data loss �exibility, a timing and complexity analysis should be carried out.
With the HM reference software for HEVC [6], as presented in [2], the encoding time reaches
more than ten hours. Even if this is not intended to provide a real model of an HEVC encoder,
it's useful to provide some important informations on the most time consuming components.
The obtained results are shown in �gures 1.4 and 1.5.

Figure 1.4: HM16.15 [6] Encoding time results from Software Pro�ling [2]

As far as simulations are concerned, it comes out that the interpolation �lters seem to
be the bottleneck for both the encoding and the decoding processes: indeed the percentage
of CPU time spent on the interpolation �lters increases with the Quantization Parameter.
They are employed for two main aims: to enhance the encoding quality in Motion Compen-
sation and to recover the predicted block from the Motion Vector and the already processed
frames in Motion Estimation. Therefore it seems strongly suggested to provide an hardware
implementation for the proposed HEVC interpolation �lters in order to obtain an acceptable
real-time encoding.

5

Chapter 1. Introduction to HEVC Interpolation Filters

Figure 1.5: HM16.15 [6] Decoding time results from Software Pro�ling [2]

1.3 Fractional Sample Interpolation

As reported in the previous section, interpolation �lters represent the most expensive compu-
tational block at both decoder and encoder's side when a high QP is required. The analysis
and the implementation of an hardware accelerator for fractional sample interpolation is pre-
sented in [2].

1.3.1 Filter Design

A single separable interpolation process for all fractional pixels is applied in HEVC: this
will lead to a reduced error because just one rounding process is applied with respect to its
predecessor H.264/AVC algorithm. Di�erent order �lters are applied:

� Luma Interpolation: an eight-tap �lter is used for pixels at half-samples position, while
a seven-tap is employed for quarter-sample pixels. Coe�cients are reported in table 1.1.

-3 -2 -1 0 1 2 3 4

h�lter[i] -1 4 -11 40 40 -11 4 -1

q�lter[i] -1 4 -10 58 17 -5 1 -

Table 1.1: Filter coe�cients for luma fractional sample interpolation [3]

6

Chapter 1. Introduction to HEVC Interpolation Filters

� Chroma Interpolation: since this signal is smoother with respect to the Y component,
four four-tap �lters are su�cient to accomplish the interpolation. Coe�cients are listed
in table 1.2. These last ones are used to interpolate from the 1/8th to the 4/8th fractional
position; by mirroring values for �lter3[1-i], �lter2[1-i] and �lter1[1-i], the 5/8th, 6/8th

and 7/8th fractional positions are obtained by symmetry.

-1 0 1 2

�lter1[i] (1/8) -2 58 10 -2

�lter2[i] (2/8) -4 54 16 -2

�lter3[i] (3/8) -6 46 28 -4

�lter4[i] (4/8) -4 36 36 -4

Table 1.2: Filter coe�cients for chroma fractional sample interpolation [3]

Figure 1.6: Fractional sub-sampled block with 1/4th pixel accuracy

An example of integer and fractional sample luma interpolation is presented in �gure
1.6. The Ai,j position (upper-case letter) stands for an integer pixel, while fractional sub-
pixels (lower-case letters) are obtained interpolating horizontally (a0,j , b0,j , c0,j) and vertically
(d0,0, h0,0, n0,0) the integer neighboring pixels with equations presented in [3].

7

Chapter 1. Introduction to HEVC Interpolation Filters

1.4 Hardware Architecture for Interpolation Filters

As explained in section 1.2.2 an hardware implementation for Interpolation �lters is required
in order to speed up the encoder/decoder execution time. The reference architecture that is
the basis of this work of thesis can be retrieved open-source at [7].

1.4.1 2D DCT-IF Legacy Architecture Rescheduling

Since each luma and chroma prediction block interpolation is executed by means of two sep-
arable 1-D �lters, �rst for the horizontal and then for the vertical direction, a bu�er seems to
be necessary between the two �ltering operations: this will produce a very high throughput
with the drawback of a big amount of required memory (as represented in �gure 1.7).

Figure 1.7: Parallel Interpolation �lter architecture with intermediate bu�er

The basic idea which is proposed in [2] is explained as following: it's not strictly necessary
to wait for the entire prediction block to be partly sub-sampled in order to start a new �ltering
process. Thus, this can lead to a di�erent scheduling: the �rst �lter begins as soon as three
data are ready as input and it sub-interpolates one pixel per cycles: the same mechanism is
followed by the second stage �lter that receives as input the pixels coming out from the �rst
stage. In this way the required memory is reduced, because there's no need to store an entire
prediction block in a bu�er. If the bu�er is placed before the 1st stage �lter, a throughput of
1-pixel per cycle is reached independently from the dimensions of the prediction block.

Figure 1.8: Parallel Interpolation �lter with rescheduled architecture

In the proposed architecture, instead of proceeding with the original �rstly horizontal
and then vertical scheduling, the involved rescheduling provides columns as input of the �rst
stage �lter and rows for the second stage. In this way the same throughput is reached, with a
further reduction in memory storage: in particular a memory reduction of 18.3x is gained with

8

Chapter 1. Introduction to HEVC Interpolation Filters

respect to the original parallel architecture (�gure 1.7) and 1.8x less memory is occupied than
the original horizontal and then vertical HEVC scheduling. The new scheduling execution
�ow is presented in �gure 1.9.

Figure 1.9: Filter vertical and horizontal rescheduling, �gure courtesy [2]

9

Chapter 1. Introduction to HEVC Interpolation Filters

1.4.2 A multiplier less solution for DCT-IF 1D Architecture

A Discrete Cosine Transform is based on a FIR �lter standard architecture: this consists in
the accumulation of di�erent multiplications by �xed coe�cients of a series of samples shifted
in time domain:

y[n] =
N∑
i=0

Bi · xi[n− i] (1.1)

Figure 1.10: FIR Filter standard architecture

Since multiplications represent a higher computational cost with respect to sum, a multiplier-
less solution is proposed similarly to [8], in order to shorten the critical path by increasing the
throughput. The basic idea consists in replacing the starting architecture presented in 1.10
with an alternative that employs no more than additions and shift operations. Therefore,
changing the internal architecture is responsible for a modi�cation of the �lter coe�cients
with sum and shifts, as presented in table 1.3.

shifts | coe� 1 2 4 5 6 10 11 16 17 28 36 40 46 54 58

x + + + +

x << 1 + + + + - - +

x << 2 + + + - +

x << 3 + + + - -

x << 4 + + +

x << 5 + + + +

x � 6 + +

Table 1.3: New coe�cients table for sum and shifts

The new proposed sum and shifts DCT architectures are reproduced in �gures 1.11 and
1.12, where the black numbers represent the �rst stage �lter while the blue ones stand for the
second stage �lter.

10

Chapter 1. Introduction to HEVC Interpolation Filters

Figure 1.11: FIR Recon�gurable Luma Legacy Half Filter [2]

11

Chapter 1. Introduction to HEVC Interpolation Filters

Figure 1.12: FIR Recon�gurable Chroma Legacy Filter [2]

12

Chapter 1. Introduction to HEVC Interpolation Filters

1.4.3 Architecture Implementation

Datapath

The 2D interpolation �lter datapath is composed by several elements, as �gured in picture
1.13.

� Address counter (CNT): is a programmable counter that has the purpose to point a
SRB shift register. In order to start the �ltering process, the lines to be used are �lled
by this counter;

� Shift Register Bank (SRB): represents the input bu�er. A shift register is placed at
each row of the SRB. Once he receives as input the row to be provided to the routing
unit from the counter, the pointed shift register shifts its content;

� Routing Unit (RtU): used to redirect the output of the memory bank toward the
correct inputs of the �lter;

� DCT-IF: consists in the recon�gurable architecture presented in the previous subsection
(�gures 1.11 and 1.12);

� Shift Register (SR): has the purpose to temporarily store data coming out from the
�rst stage �lter. A Serial Input Parallel Output Register is employed;

� Rounding Unit: applies a round to the half-up, if required, at the output of the second
stage DCT-IF �lter;

� Clipping Unit: necessary to deal with saturation arithmetic if a �lter output on 8-bit
unsigned is required.

FSM

The control unit is composed by a programmable counter (SCNT) that is shared between two
main Finite State Machines (as represented in �gure 1.14):

� FSM1: handles both 1D and 2D �ltering operations since it controls the �rst stage
�lter(8 bits input). It's also in charge to provide the starting signal to FSM2 if a second
interpolation is required. Otherwise it directly provides the output setting if a 1D
interpolation is demanded by the user;

� FSM2: necessary to handle a 2D �ltering operation, because it controls the second
stage �lter (16 bits input);

� Shared Counter (SCNT): used both by FSM1, to count how many lines are �lled by
the Shift Register Bank, and by FSM2, to control how many partly interpolated �lters
are present in the 2nd stage shift register. The Shared Counter can be used with muxes
to handle its sharing, because lines count by FSM1 and FSM2 isn't simultaneously.

Further informations on the detailed implementation of the two FSMs can be retrieved in [2].

13

Chapter 1. Introduction to HEVC Interpolation Filters

Figure 1.13: Datapath Luma Legacy [2]

14

Chapter 1. Introduction to HEVC Interpolation Filters

Figure 1.14: Control Unit Filter Legacy [2]

15

Chapter 1. Introduction to HEVC Interpolation Filters

1.4.4 Processing Element

The Datapath and the Control Unit constitute the �nal Processing Element (PE) at the top
level of the luma computation. Receiving as input a set of signals, it provides as output a
signal Vout in correspondence of a valid output of the �lter.

Figure 1.15: Luma top level Processing Element

Here a list of its input signals:

� Vin: signal that is sampled to start the �ltering process;

� InData: is 8-bit unsigned pixel input;

� horVer : if it's 0 a 1D �ltering is required, otherwise a 2D �ltering is necessary;

� 8or7, 7or8 : sets the interpolation �lter to be selected for the two �ltering stages. If
"00" a 8-tap half-pel �lter is required, else if "10" a 7-tap 1/4th quarter-pel �lter, else
if "01" a 7-tap 3/4th quarter-pel �lter, otherwise the FSM reaches the idle state;

� ModAddr_IN : determines the input modulus of the Adder Counter;

� ME_MCBi : if '0' the out is 8-bit unsigned, otherwise the full precision is required and
a 16-bit output is provided.

Even if this �nal solution is able to provide higher throughput than the original software
architecture, some improvements can be applied at di�erent levels of the design. The purpose
of this work of thesis is to �nd an appropriate internal architecture for the adders that are
involved in the �ltering operation, in order to further increase the throughput of the system.

16

Chapter 2

Chroma Legacy Architecture

Chroma Interpolation shows a similar process to the luma components. Since this signal is
smoother with respect to the luma, four four-tap �lters are required. In this chapter di�erent
solutions are applied to the adders that compose the second stage of �ltering, which is the
most time consuming part because a signi�cant number of bits is involved.
After a �rst analysis of input data statistics, a simple solution that consists in cutting the
LSBs of each adder and subtractor component of the second stage �lter is applied and its
results in terms of precision are analyzed at the output of the entire HEVC structure. Then
parallel-pre�x topologies are introduced to solve the time e�ciency issue, whereas this �rst
solution is too lossy in terms of precision of the system.

2.1 Data Analysis

A simulation of the entire behavior of the chroma legacy interpolation �lters architecture is
carried out in order to extrapolate input values for every adder inside the circuit. In this way,
a histogram plotting the input data distributions is obtained per each sum and the mean and
the standard deviation are computed in order to evaluate data trends from a quantitative
point of view. These two �gures of merits are �gured out throughout the following formula,
given an input array A of N samples:

µ =
1

N

N∑
i=1

Ai

σ =

√√√√ 1

N − 1

N∑
i=1

|Ai − µ|2
(2.1)

In particular, standard deviation is essential in order to get a handle on whether the data
are close to the average or if they are spread out over a wide range. Since the initial idea
involves the application of Variable Latency Adders to improve the throughput of the system,
there is a strict relation between VLAs' performances and the assumptions concerning input
signal statistics: in particular, the error rate increases for a uniform distribution with respect
to a half uniform and half Gaussian statistic with a low enough standard deviation.
Hence, a sequence of di�erent input �les have been executed one after the other in a single
simulation, in order to estimate the input statistics for di�erent combinations of requested
sub-pixels, and to reproduce the software behavior of the architecture. Results in terms of

17

Chapter 2. Chroma Legacy Architecture

evaluated �gures of merits and a slice of the obtained data statistics are presented in table
2.1 and �gure 2.1.

Mean µ Std_Dev σ

FS2_op1_A 361685.36 117794.10
FS2_op1_B 148893.35 75044.59
FS2_op2_A 19277.23 6933.43
FS2_op2_B 58379.34 47596.22
FS2_op3_A 24875.84 6680.12
FS2_op3_B 45145.87 14816.59
FS2_op4_A 14387.09 1140.54
FS2_op4_B 14382.55 1074.29
FS2_op5_A 510536.00 59661.13
FS2_op5_B 69800.18 39375.84
FS2_op6_A 70015.84 12993.40
FS2_op6_B 24114.41 6956.69
FS2_op7_A 90634.36 19416.66
FS2_op7_B 28765.10 2148.81
FS2_op8_A 560143.67 43205.23
FS2_op8_B 98954.85 21945.68

Table 2.1: Mean and Standard Deviation for Chroma Legacy Input Data Adders second stage
�lter

Figure 2.1: Chroma Legacy Partial Input Data Statistics

18

Chapter 2. Chroma Legacy Architecture

2.2 Cut Architecture

From the analysis of the statistics of the input data of each adder of the second stage �lter,
it can be noticed that almost all of them are within the range [104 : 106]: this corresponds
to additions and/or subtractions that could be theoretically computed for values down to the
13th bit as upper limit.

2.2.1 Filter Design

Several versions have been developed, starting from the original addends of the operations and
cutting from each input of every single adder a �xed number of bits. This �xed amount of bits
is obtained by removing the LSBs for each sum to achieve a lower (which implies in principle
faster) parallelism, as depicted in �gure 2.2. This straight-forward operation is repeated for
an increased number of bits: the �rst version consists in cutting the 10 Least Signi�cant Bits
from each adder input, up to a last version that involves a 13 bits truncation. It is expected
that cutting a higher number of bits will lead to a less and less precise result, so a measure
of the signal degradation must be carried out.

2.2.2 Interpolation Filter Output

For each truncation, a simulation of the expected �lter output is implemented: some signi�cant
samples among �lter outputs are depicted in �gures 2.3 and 2.4.

Figure 2.3: Chroma Legacy Filter 4/8h 1/8v Output for 10 and 13 bit cuts

19

Chapter 2. Chroma Legacy Architecture

Figure 2.2: FIR Recon�gurable Cut Chroma Legacy Filter

20

Chapter 2. Chroma Legacy Architecture

Figure 2.4: Chroma Legacy Filter 4/8h 5/8v Output for 10 and 13 bit cuts

As far as simulations are concerned, the Root Mean Square Deviation has been computed
in order to evaluate how much the signal out of the �lter is degraded due to the cut operation:

RMSD =

√∑n
i=1(xi,correct − xi,cut)2

n
(2.2)

with n the number of samples.

Simulations are performed for two di�erent conditions and the obtained results for each
simulation are reported in the following tables:

� RMSD for 8 bits out: the output is provided as 8-bit unsigned, as the input format,
passing throughout the rounding and clipping unit, as it's required by both Motion
Compensation and Motion Estimation

4/8v,4/8h 4/8v,1/8h 4/8v,2/8h 4/8v,3/8h 4/8v,5/8h 4/8v,6/8h 4/8v,7/8h

cut10 0.40384 0.36577 0.62029 0.64424 0.6607 0.63199 0.3737
cut11 0.56596 0.50967 0.9956 1.0602 1.0486 1.0078 0.50292
cut12 1.2543 0.75584 1.2824 1.4717 1.4856 1.3188 0.73686
cut13 2.1653 1.4201 3.256 3.6966 3.6689 3.3254 1.356

Table 2.2: Chroma Legacy Comparison RMSD for di�erent LSBs cuts, 8 bits out

� RMSD for 16 bits out: the output is kept to higher precision, without being a�ected
by any clipping/rounding operations, as it is required by the Motion Compensation
bi-prediction case

4/8v,4/8h 4/8v,1/8h 4/8v,2/8h 4/8v,3/8h 4/8v,5/8h 4/8v,6/8h 4/8v,7/8h

cut10 17.158 12.287 22.006 24.923 25.018 22.064 12.553
cut11 36.562 26.428 45.722 50.979 51.195 45.856 26.563
cut12 77.423 41.924 80.728 92.152 92.979 82.433 41.769
cut13 136.94 86.815 208.98 235.76 233.39 212.21 83.359

Table 2.3: Chroma Legacy Comparison RMSD for di�erent LSBs cuts, 16 bits out

21

Chapter 2. Chroma Legacy Architecture

2.2.3 HEVC Output

An analysis of the coding e�ciency of the entire HEVC system is executed in order to quantify
the e�ects of the cutting operations on the �nal outcome of the system with respect to the
case with absolute precision. A slight modi�cation is performed on the software reference code
[6] in order to let it perform the same cut operations as the proposed hardware architecture.
The quality and the bit-rate data are exploited to plot the rate-distortion curve of an encoder:
the Peak Signal to Noise Ratio (PSNR) is calculated as metric to quantify the quality of the
encoder. Per each frame the combined PSNRY UV is computed as the weighted sum of a
luma (PSNRY) and two chroma (PSNRU , PSNRV) signals [9]:

PSNRY UV =
6PSNRY + PSNRU + PSNRV

8
(2.3)

where each component (e.g. PSNRY) is evaluated as:

PSNRi = 10 log10

(
(2B − 1)2

MSE

)
, i = Y, U, V (2.4)

The MSE expresses the mean square error, that is related to the previous results which are
obtained as output of the �lter simulations. For each simulation, the total PSNR is calculated
as the average of the PSNR of each frame.
The obtained curve interpolates four rate-distortion points, which are collected for di�erent
QP values (22, 27, 32, 37), with a shape-preserving piecewise cubic interpolation. As it can be
shown from the obtained results, Motion Estimation is strongly in�uenced by the quantization
parameter: if a small QP is chosen (-q 22) small variations are more likely captured and a
higher bitrate is required. As a consequence, the higher is the bitrate, the higher will be the
complexity of the �lter.
The HEVC reference encoder supports three distinct kinds of con�gurations, each of them
relies on a di�erent prediction structure:

� All Intra: all frames are encoded as I-type. There is not the adoption of any temporal
prediction and the QP value doesn't change between consecutive frames;

� Low Delay: frames are encoded in order. The �rst frame is encoded using I-slices, while
all the successive frames are of B or P type. It emulates videoconferencing environment;

� Random Access: frames are encoded through a picture reordering with random-access
of the �gure. Frames are only of I or B type. It mirrors the broadcasting environment.

Simulations are carried out for Low Delay and Random Access con�gurations for the
reference �le BasketBallDrive.yuv as depicted in �gures 2.5 and 2.6.

22

Chapter 2. Chroma Legacy Architecture

Figure 2.5: PSNR degradation with Chroma cut computing (BasketballDrive[17], 1920x1080,
50 Hz, Low Delay)

Figure 2.6: PSNR degradation with Chroma cut computing (BasketballDrive[17], 1920x1080,
50 Hz, Random Access)

As it can be observed from pictures above, the cut approximation is a too rough com-
putation inside the interpolation process, that causes a high degradation of the output �lter
performances. Thus, this solution is discarded because a more precise implementation is
required.

23

Chapter 2. Chroma Legacy Architecture

2.3 Parallel & Pre�x Adders

The general starting structure of an adder computes the sum of two n-bits addends A=an−1an−2...a0
and B=bn−1bn−2...b0 through the following expressions:

si = ai ⊕ bi ⊕ ci−1
ci = aibi + aici−1 + bici−1

(2.5)

This implements a general structure like a Ripple-Carry Adder (RCA): the main problem with
this con�guration concerns timing, since the carry computation represents the bottleneck in
the critical path evaluation. Parallel Pre�x Adders (PPAs) have been introduced in order to
speed-up performances of this operation. Indeed they achieve di�erent trade-o�s in terms of
speed, complexity and fan-out.

2.3.1 General Structure

In parallel-pre�x addition the sum operation is split in three main steps:

1. Pre-Processing : generate and propagate bits are derived from addends bits:

gi = aibi pi = ai ⊕ bi (2.6)

2. Pre�x-Processing : solving the parallel-pre�x problem all the G,P couples are obtained
from 0 to all the possible positions:

(g[i:k], p[i:k]) = (g[i:j], p[i:j])&(g[l:k], p[l:k]) = (g[i:j] + g[l:k]p[i:j], p[i:j]p[l:k]) i ≥ l ≥ j ≥ k
(2.7)

3. Post-Processing : carry is computed from G,P and exploited to determine the output
sum bits:

ci = G[i:0] + P[i:0]c0 si = pi ⊕ ci−1 (2.8)

Among di�erent blocks, the pre�x-processing represents the most complex part: it consists
into a network where the operator & is combined in such a way that all the generate and
propagate terms extended to blocks of contiguous bits. What characterizes parallel pre�x
adders is the fact that all the carry bits are computed in parallel, provided that the associative
property is satis�ed.
Di�erent kinds of PPAs [10] are distinguished depending on the way the tree of generating
and propagating bits is organized:

� Brent-Kung : is composed by the lowest number of generate and propagate units, that
results into a low area. However it is characterized by a maximum logic depth that
implies on higher delay;

� Kogge-Stone : is built of a very high number of propagate and generate blocks but a
minimum fan-out. This results in large occupied area but low delay;

� Han-Carlson : aims to reach a trade-o� between the characteristics of the Brent-Kung
and Kogge-Stone topologies. Indeed it is intended to exploit both the lower area of the
�rst one and the higher speed of the latter;

24

Chapter 2. Chroma Legacy Architecture

� Ladner-Fischer : wants to reach a lower depth of critical path, at the cost of a higher
fan-out;

� Sklansky : shows similar characteristics to the Ladner-Fischer, what changes is just the
inner con�guration.

Table 2.4 summarizes the trend of area and time for di�erent adders:

Area Delay

Brent-Kung 2n− 2− log2(n) 2 log2(n)− 2
Kogge-Stone n log2(n)− (n− 1) log2(n)
Han-Carlson n

2 log2(n) log2(n) + 1
Ladner-Fischer 2n− 2− log2(n) 2 log2(n)− 1

Sklansky n
2 log2(n) log2(n)

Table 2.4: Performances and Area of Parallel&Pre�x Adders

Figure 2.7: Parallel & Pre�x Adder Block Diagram

25

Chapter 2. Chroma Legacy Architecture

2.3.2 Han-Carlson Adder

The Han-Carlson adder represents a good trade-o� between complexity, fanout and perfor-
mances. It's mainly divided in two blocks: while the outer rows are Brent-Kung graphs (blue
circles), the inner ones are Kogge-Stone type (white circles). In this way it is able to reach
the same speed performance as the Kogge-Stone by dissipating a lower power and occupying
a lower area.
The general scheme is presented for a number of bits equal to 22 as represented in �gure 2.8
(that is the maximum number of bits to be applied in the proposed architecture), which can
be easily applied to a lower number of bits by pruning MSBs columns.

Figure 2.8: Han-Carlson parallel-pre�x block

Approximate Han-Carlson Architecture

Two approximate versions of the starting Han-Carlson parallel and pre�x architecture are
proposed: the �rst one is obtained by deleting the very last row of Kogge-Stone adder, while
the second one by removing the two last rows of the Kogge-Stone. The two alternative
structures are presented in �gures 2.9 [11] and 2.10.

26

Chapter 2. Chroma Legacy Architecture

Figure 2.9: Approximate Han-Carlson version 1

Figure 2.10: Approximate Han-Carlson version 2

2.3.3 Ladner-Fischer Adder

This kind of adder has been introduced in order to shorten the critical path of the tree of
pre�x operators together with the Sklansky adder. It presents a reduced critical path with
the drawback of a higher fan-out, which is a crucial issue in timing, since the delay is directly
proportional to the fan-out of a gate.
A slightly di�erent version of the original adder is proposed [12], where the �rst two levels
and the last one are Brent-Kung type (blue circles), while the inner rows are Ladner-Fischer
topology (white circles), as depicted in �gure 2.11.

27

Chapter 2. Chroma Legacy Architecture

Figure 2.11: Ladner-Fischer parallel-pre�x block

Approximate Ladner-Fischer Architecture

The approximate version of the architecture is retrieved by deleting the last two rows of the
Ladner-Fischer part and by modifying the remaining third row of the parallel-pre�x block in
picture 2.12.

Figure 2.12: Approximate Ladner-Fischer parallel-pre�x block

Referring to the results of paper [12], whose synthesis outcomes have been obtained em-
ploying the same technology as the one that is adopted in the proposed work of thesis, it is
expected that the Ladner-Fischer outperforms in performances the Han-Carlson architecture
for adders whose maximum number of bits is 32.

28

Chapter 2. Chroma Legacy Architecture

Figure 2.13: Approximate Ladner-Fischer and Han-Carlson comparison for 32-bits output

However the required number of bits for the performed operations is variable and lower
or equal to 22 bits, so simulations are required to return a good estimation of the proposed
architecture.

2.3.4 Interpolation Filters Output

The proposed adder architecture is applied to all the sums that characterize the second stage
�lter: this one is employed for the 2D interpolation and it is characterized by a higher number
of bits with respect to the �rst stage.
Hence, all the di�erent input �les have been executed one after the other in a single simulation,
in order to make an assessment of the RMSD and of the number of errors that are present
on a total amount of 7168 samples and to compare the two di�erent versions of approximate
adders.

RMSD # errors % errors

HC_Approximate v1 0 0 0%
HC_Approximate v2 296.78 104 1.45%
LF_Approximate 509.14 264 3.68%

Table 2.5: Chroma Legacy Comparison RMSD, 16 bits out

As expected the Ladner-Fischer approximate architecture shows a higher error bit-rate
with respect to the Han-Carlson topology, a drawback which is necessary in order to obtain
better results in terms of performances and area.
Since the �rst approximate version of Han-Carlson adder, where just one row is pruned,
shows a null Root Mean Square Deviation, the version with two cut levels will be the one to
be synthesized in the following steps.

29

Chapter 2. Chroma Legacy Architecture

Figure 2.14: Chroma Legacy Filter Output, Han-Carlson Approximate Adder topology

Figure 2.15: Chroma Legacy Filter Output, Ladner-Fischer Approximate Adder topology

30

Chapter 2. Chroma Legacy Architecture

2.3.5 Design Synthesis Results

Di�erent versions of the implemented adders are inserted in the complete interpolation �lter
architecture which is synthesized in UMC 65 nm library at 1.2 V.
Some time constraints like input and output delay, clock uncertainty, output load from the
chosen technology library, are set to provide a more realistic evaluation of power, area and
timing for the proposed design. The clock gating technique is applied in order to improve
performances and reduce the occupied area with a lower power consumption with respect to
a non-gated solution.
Simulations have been performed for a 32x32 pixel block concerning chroma legacy architec-
ture. Dynamic power dissipation is evaluated on the produced net-list after synthesis, by
extracting the nodes activities from back-annotated simulation of Mentor Modelsim and com-
puting power consumption with Synopsys Design Compiler.
The obtained synthesis results are reported in table 2.6. Precisely the fmax parameter is rep-
resentative of the maximum operating frequency that allows to achieve a zero slack with the
Design Compiler tool, while area and power are evaluated at the lowest between the operating
frequencies of Luma Legacy and Chroma Legacy architecture, in order to provide accurate
comparisons among di�erent implementations.

fmax [MHz] Area [µm2] 1 Power [mW] 1

PE correct 680.27 14822.64 2.966
PE HC correct 689.66 15457.32 3.040
PE HC approx 684.93 16388.28 3.494
PE LF correct 694.44 15366.60 3.013
PE LF approx 689.66 15804.36 3.176

Table 2.6: Chroma Legacy Filter Synthesis results with clock gating

It can be noticed that the Ladner-Fischer correct architecture shows the best improvements
in performances, at the cost of a negligible area overhead and power dissipation, therefore it
will be the one adopted for computation. The area increment with approximate architec-
tures can be justi�ed as a lower freedom for the synthesizer to optimize the design, given a
lower number of available blocks; however it's not easy to understand the internal algorithms
that Synopsys DC applies. As a consequence it is not necessary to apply a speculative ap-
proach to a system that shows better synthesis results with an exact architecture. Indeed the
Ladner-Fischer correct topology shows the most suitable outcomes with an improvement in
performances of 2.08% with a 3.66% area overhead and an increased 1.58% power consump-
tion.

∆fmax [%] ∆A [%] ∆P [%]

PE HC +1.38 +4.28 +2.49
PE HC App +0.69 +10.56 +17.80

PE LF +2.08 +3.67 +1.58
PE LF App +1.38 +6.62 +7.08

Table 2.7: Chroma Legacy relative percentage comparisons with the original design

1Area and Power are evaluated at tck=1.70 ns, that is the worst case for the entire interpolation �lters

architecture, i.e. luma legacy structure

31

Chapter 3

Luma Legacy Architecture

Di�erently from chroma design, in luma architecture each DCT-IF stage is composed of a
mirrored structure: the same tree of adder is repeated two times to reply the behavior of a
8/7 order FIR �lter, therefore a much higher complexity is considered with respect to the
previous architecture. After a data analysis that highlights uniform statistics as input of
each adder, the same strategy is adopted with Parallel & Pre�x Adders in both exact and
approximate structure as for the chroma case. Then multi-operand carry save adders are
used to improve the system performances. As alternative approach, adaptive approximate
computing with Generic Accuracy Con�gurable adders is applied.

3.1 Data Analysis

A �rst data analysis is executed as for the chroma legacy architecture, in order to understand
which are the data statistics that characterize di�erent adders in the Datapath.
As before, the attention is focused on the second stage �lter, because a higher number of bits,
so a more signi�cant parallelism is concerned in the interpolation process. The same �gures
of merits, mean and standard deviation, whose expressions are reported in section 2.1, are
evaluated in the current analysis.

Figure 3.1: Luma Legacy Partial Input Data Statistics

32

Chapter 3. Luma Legacy Architecture

Mean µ Std_Dev σ

F1S2_op1_A 22594.80 15385.50
F1S2_op1_B 241323.54 236912.59
F1S2_op2_A 263907.37 249696.62
F1S2_op2_B 66236.01 55632.48
F1S2_op3_A 57834.47 29693.66
F1S2_op3_B 48348.82 35814.56
F1S2_op4_A 7565.25 3354.41
F1S2_op4_B 50271.50 27152.30
F1S2_op5_A 15084.20 6695.82
F1S2_op5_B 33264.63 32462.33
F1S2_op6_A 330140.37 226679.46
F1S2_op6_B 89959.78 60880.38
F2S2_op1_A 23360.10 16021.03
F2S2_op1_B 249629.39 240984.54
F2S2_op2_A 272988.43 254350.90
F2S2_op2_B 64973.82 55198.69
F2S2_op3_A 58843.28 30487.74
F2S2_op3_B 49511.69 36452.86
F2S2_op4_A 7672.37 3475.38
F2S2_op4_B 51171.26 27794.15
F2S2_op5_A 15303.70 6808.13
F2S2_op5_B 34207.99 32954.44
F2S2_op6_A 337962.25 231828.03
F2S2_op6_B 92281.41 62508.84

Table 3.1: Mean and Standard Deviation for Luma Legacy Input Data second stage �lter

Picture 3.1 and the high dispersion of standard deviation in table 3.1 underline that
here is the case of a uniform distribution. This conveys that an approximate approach is
expected be more e�cient than speculation, since a larger amount of errors will characterize
the architecture, as explained in paper [12].

3.2 Parallel & Pre�x Architecture

A �rst idea is to apply the same approach as in the chroma legacy architecture, by replacing
all the adders that compose the second stage �lters (because the structure is mirrored, as
already mentioned) with Parallel & Pre�x architectures. Thus, both precise and approximate
Han-Carlson and Ladner-Fischer topologies are applied to the DCT-IF datapath in order to
improve the di�erent characteristics of the interpolation �lters. Then their performances are
evaluated both in terms of precision and concerning area, speed and power consumption.

33

Chapter 3. Luma Legacy Architecture

3.3 Carry Save Adder Architecture

The CSA is a topology of adder whose key idea consists in the employment of the full adder
as a compressor. Indeed, given a full adder, all the inputs have the same weight (ai, bi, ci):
thus, for 3 di�erent input operands of N bits, the output si per each bit has a weight equal
to 2i, while the output carry is 2i+1 and it will be propagated to an other full adder. In this
way every stage is able to reduce the number from three to two operands.
If a multi-operand adder is concerned, a tree of compressor can be exploited with two di�erent
notations: either a Dadda tree or a Wallace tree can be handled to reach this goal.

3.3.1 Filter Design with CSA

Concerning the proposed architecture a Dadda tree is applied to the DCT-IF structure. This
structure identi�es the number of operands that can be added at every stage of the tree:
starting from the bottom of the structure, with d1=2, that is the number of wanted rows at
the end of the tree, the number of operands that are required in the previous level follows
equation 3.1 in order to derive the total number of levels in the tree:

dj+1 =

⌊
3

2
dj

⌋
(3.1)

The Dadda approach is used to add half and full adders only if it is required: this will limit the
hardware complexity and the delay of the structure with respect to the Wallace architecture.
This last follows a ASAP approach, by allocating compressors each time tree lines of products
are found.
The �lter design for the Luma Legacy architecture is depicted in �gure 3.5: in this case a
multi-operand 3 to 1 tree of compressor is adopted for the upper inputs, while a 4 to 1 Dadda
tree is handled for the remaining addends.
In a more detailed way, carry select adders are employed until the last level, while the last row
is a generic two operands adder. The two structures are presented both with the schematic
and with the dot notation in �gures: 3.2, 3.3 and 3.4.

Figure 3.2: CSA tree 3 operands dot notation

34

Chapter 3. Luma Legacy Architecture

Figure 3.3: CSA tree 4 operands dot notation

Figure 3.4: Architecture with multi-operand additions schematic

35

Chapter 3. Luma Legacy Architecture

Figure 3.5: Luma Legacy Architecture with CSA

36

Chapter 3. Luma Legacy Architecture

3.4 Generic Accuracy Con�gurable Adders

An approximate computing approach is applied in order to earn in speed, area and energy
e�ciency with the drawback of a lower accuracy, exploiting the error tolerance that char-
acterize an application like video-coding. Indeed in this case the output is not required to
have the maximum precision, but some approximation can be accepted under certain quality
constraints in signal processing.

3.4.1 Complementary Modules in Arithmetic Datapaths

A particular kind of adder shows the feature of accuracy recon�gurability. This particular
module is composed of di�erent parts: a precise mode and one or more non-precise modes.
An additional Error Detection and Correction (EDC) network is added in order to track the
error and to reduce it at the output by selecting consequent appropriate operations.
One possibility consists in the adoption of Complementary Modules [13]: to either cancel or
at least reduce the error introduced by the previous approximate operation, a complementary
module is chosen in the current addition. This method results e�cient because it exploits the
arithmetic operation itself to correct the error without any area overhead that can be induced
by an additional error correction network. The working principle scheme is represented in
�gure 3.6.

Figure 3.6: Scheme Principle of Complementary Module

The key idea of this network follows this principle: if the approximate adder A1 commits
an error +ε, the addition A2b is selected as subsequent block to decrease this inaccuracy,
since it introduces a variation −ε in principle; otherwise sum A2a, namely SAM (Standard
Approximate Module), is employed as successive operation. This selection is allowed thanks
to an error detection (ED) signal that is predicted during the �rst approximate computation.
If A2b, namely CAM (Complementary Approximate Module), is chosen, the cumulative error
will be partially or completely deleted.

37

Chapter 3. Luma Legacy Architecture

The following elements are needed in the implementation of an adaptive recon�gurable data-
path:

� Approximate modules in standard and complementary version: to have errors with same
magnitudes and opposite polarities;

� Error Detection (ED) signal: to highlight the necessity of a complementary module in
the following operation;

� Mechanism to switch between the standard or complementary approximate component.

One of the main applications of this scheme of principle is the sum-of-products, which implies
on operations that are typical of signal processing, as in the concerned environment of this
work of thesis.

3.4.2 General Structure

AGenericAccuracy Con�gurable (GeAr) [14] adder supports a generic model for block-based
adders which exploit multiple sub-adders units of equal length and a error correction unit to
provide accurate results when it is required.
Given two N-bits operands to be added, a GeAr computes the sum through k sub-adders that
perform the sum operation in parallel. Let R be the number of resultant bits contributing
to the �nal sum and P the number of previous bits used for the carry prediction for each
sub-adder. A part from the �rst one which computes the precise sum over L=R+P (L ≤ N),
all the other sub-adders are R-bit blocks whose carry-in is generated by a Carry Generator
Unit. This last consists in a P-bits Carry Look-Ahead adder.
Given a generic N-bit Generic Accuracy Con�gurable adder, denoted as GeAr(N,R,P), the
number of sub-blocks k is computed as:

k =
N − L
R

+ 1 (3.2)

The architecture of a Generic Accuracy Con�gurable adder is illustrated in �gure 3.7.

Figure 3.7: Architecture of GeAr and CGeAr, k=2

38

Chapter 3. Luma Legacy Architecture

A Standard GeAr adder discern from a Complementary GeAr (CGeAr) by just the input
carry cin. Indeed an excess carry-in is propagated to the next adder in order to compensate
the de�ciency of the �rst operation if it provides some error. Since the carry-in of a GeAr
is always set to 0 for the MSBs block, it will give an output that is always lower than the
correct result; thus in the successive addition this carry will be set to 1, such that the CGeAr
will provide a result that is greater than the precise sum, by reducing the overall error.
This is the main improvement of this architecture: the previous inexact sum is in some ways
balanced by the current imprecise sum, without the addition of any error correction network.
For what concerns the error detection mechanism, it just requires two additional gates. Indeed
the prediction carry bit (cp) is computed by the carry prediction logic of the Carry Look Ahead
adder, so there is no additional logic required, through the following formula:

cp =
P−1∏
k=0

A[k]⊕B[k] (3.3)

The expression that is used for the prediction carry takes part in the carry generation process
(cg) as propagation term P, following this rule:

cg = cin,L = G(R,L−1) + P(R,L−1) · cin (3.4)

Therefore the error detection signal can be evaluated for the jth sub-adder as follows:

EDj = cpj · (cinj ⊕ coutj−1) (3.5)

This means that the error detection mechanism needs just additional XOR and AND gates
to be estimated.
In particular, an example of the Carry Look Ahead Generator Unit is proposed for P=2, as
depicted in �gure 3.8, where:

� Generation and Propagation Unit (GPU): computes the generate and propagate bits
gi, pi starting from ai, bi;

� Parallel and Pre�x Unit (PPU): providesG,P bits, given gi, pi, with a tree-like structure.

Figure 3.8: Architecture of Carry Generator Unit for P=2

39

Chapter 3. Luma Legacy Architecture

Since CGeAr and GeAr di�erentiate only for the carry input signal, the logic circuits that
change the cin for the ith+1 adder will exploit the error detection signal of the previous GeAr
block:

cini+1,j = cini,j ⊕ EDi,j (3.6)

As a �nal result, the design of a faster architecture is implemented, with a lower produced
error at the cost of a little area overhead.
An alternative to the partition into two di�erent sub-blocks involves three distinct sub-adders
based on the same principle as before. The operating scheme is presented in �gure 3.9.

Figure 3.9: Architecture of GeAr and CGeAr k=3, P=0

Since the DCT-IF structure is composed by a tree of adders and not by consecutive
sums, the majority of adders are chosen with an adaptive approximate con�guration. In
particular, four out of �ve adders are replaced by recon�gurable structures (yellow additions),
as presented in �gure 3.10.

40

Chapter 3. Luma Legacy Architecture

Figure 3.10: Luma Legacy Architecture with adaptive approximate con�guration

41

Chapter 3. Luma Legacy Architecture

Two di�erent con�gurations have been designed with CGeAr, one with P=0, the other
with P=2. In particular the P=0 architecture is chosen in order to let the carry propagation
chains of di�erent sub-adders as close as possible to each others, in order to fully shorten the
critical path. As matter of fact, for a Generic Accuracy Con�gurable Adder GeAr(22,10,2),
while the LSBs L-bits precise sub-adder computes the sum on 12 bits, the R-bit approximate
sub-adder performs its operation on 10 bits. On the other hand in a GeAr(22,11,0), the
carry propagation paths are exactly the same length. Thus, this will fully enhance the speed
performances on the sum computation, with identical paths for the di�erent subcomponents.
Moreover, a slightly di�erent con�guration is adopted for the case P=0, since in the carry
generator unit the Carry Look-Ahead adder is replaced by the carry generation only on the
(L− 1)th bit, which implies on a lower area overhead:

cg = AL−1 ·BL−1 + cin · (AL−1 ⊕BL−1)

cp = AL−1 ⊕BL−1
(3.7)

However for a �xed number of L bits, the greater is P, the lower will be the error probability,
with the drawback of a higher power dissipation and occupied area. So it is expected that for
a the case P=0, the number of errors is higher even if a shorter critical path is concerned.

3.5 Simulations

3.5.1 Filter Output

Hence, interpolation �lters system has been simulated in order to obtain an estimation of the
number of errors that are present on a total amount of 36864 samples and to and to evaluate
the Root Mean Square Deviation introduced by the approximate adders.

RMSD # errors % errors

HC_Approx 4539.3 1424 3.86%
LF_Approx 13954 4553 12.35%

GeAr k=2, P=0 26.99 28220 76.55%
GeAr k=2, P=2 43.16 20877 56.63%
GeAr k=3, P=0 236.02 34817 94.45%
GeAr k=3, P=2 236.2 33760 91.58%

Table 3.2: Luma Legacy Comparison RMSD, 16 bits out

As expected, since a uniform statistic is taken into account, a higher error rate for par-
allel & pre�x architectures is obtained with respect to the chroma legacy architecture if an
approximate approach is adopted for the adders in the �lter design.
For what concerns the adaptive recon�gurable architectures that employ the GeAr adders,
even if for a lower P a higher number of errors is accomplished, the standard deviation results
lower than the case of 2 P-bits. Therefore, the GeAr(N,R,0) will be the one employed for the
successive analysis of performances.

42

Chapter 3. Luma Legacy Architecture

Figure 3.11: Luma Legacy Filter Output, Han-Carlson Approximate Adder topology

Figure 3.12: Luma Legacy Filter Output, GeAr k=3 P=0

43

Chapter 3. Luma Legacy Architecture

3.5.2 HEVC Output

From the previous section it is noticeable that the architecture which includes Generic Ac-
curacy Con�gurable adder is the one responsible for the lowest computed RMSD besides it
accomplishes the highest percentage of errors, so it could be interesting to verify its e�ect in
terms of PSNR degradation on the entire HEVC system.
In principle the hardware architecture representation must perform exactly the same opera-
tions as the proposed software code. For the proposed architecture, this implies on recon�g-
uring the entire software design which characterizes the luma interpolation process including
among the di�erent adders the ones which relate to an adaptive recon�gurable architecture.
Since this process is complex and requires a lot of time, an approximation can be performed
in order to speed up this modi�cation. If a small enough error ε is accomplished on the hard-
ware interpolation �lters architecture, the same operation can be obtained by the software
model adding a variation ε′ with the same probability distribution with a negligible di�erence
between the two designs. This will be the procedure applied on this work of thesis, as depicted
in �gure 3.13.

Figure 3.13: Hardware-Software behavior

44

Chapter 3. Luma Legacy Architecture

First of all it is necessary to identify the probability density function that characterizes the
interpolation process. The deviation from the correct value is computed per each sample, than
its distribution is plotted as histogram. Two possible distributions are taken into account:

� Normal Distribution (bell curve): a continuous probability dispersion to represent ran-
dom variables characterized by unknown distributions [15]:

f(x|µ, σ2) =
1√

2πσ2
e
−

(x− µ)2

2σ2 (3.8)

� Logistic Distribution: a continuous probability dispersion with is similar in shape to the
normal distribution but with heavier tails:

f(x|µ, σ) =
e

x− µ
σ

σ

1 + e

x− µ
σ

2 (3.9)

The obtained probability density functions for k=2,P=0 are presented in �gure 3.14. Fitting
data with the object probability function, the logistic distribution shows a mean µ =11.43
and a standard deviation σ=14.14, while the bell curve has µ=12.15 and σ=24.11, which
are exactly equal to the statistics of the obtained results. Therefore the normal distribution
results a more appropriate choice to model the behavior of the error statistic.

Figure 3.14: Probability Density Function for error distribution k=2, P=0

The probability density functions are evaluated also for the architecture k=3,P=0. Also
in this case the Gaussian distribution seems to better approximate the error trend, with the
di�erence that it is composed by the superposition of three normal density functions with
similar standard deviation and di�erent mean. The obtained values are presented both in
tabular (Tab:3.3, Tab:3.4) and in graphical shape (Fig:3.15).

45

Chapter 3. Luma Legacy Architecture

Gaussian 1 Gaussian 2 Gaussian 3

µ -41.09 214.23 472.73
σ 41.98 42.51 41.63

Table 3.3: Mean and standard deviation for Gaussian distributions k=3, P=0

Logistic 1 Logistic 2 Logistic 3

µ -39.14 216.27 475.05
σ 25.11 25.41 24.92

Table 3.4: Mean and standard deviation for Logistic distributions k=3, P=0

Figure 3.15: Probability Density Functions for error distribution k=3, P=0

Let's analyze these results more in detail, by extracting the error out of each addition
that composes the second stage �lter. It can be noticed that the deviation from the correct
outcome concerns values equal to 16384 and 128 for adders 1 and 2 that compute a 22-bit
sum (Fig. 3.16): these results correspond to the positions where the adder is partitioned in
di�erent parts. Actually each inexact adder is composed by three sub-units, where the �rst
sum is a precise L-bits addition, while the other two approximate operations compute the
output on almost R-bit addends. If N equals 22 and P amounts to 0, it follows that the LSBs
are computed up to the bit of weight 26, while the intermediate addition involves values from
27 up to 213. Therefore the bits which are mostly a�ected by an imprecise computation are
the ones of weight 27 and 214, as highlighted by the obtained error. Similar results are reached
for the error committed by 20-bit adders whose weight is 26 and 212.
These outcomes match at the �lter subtraction, whose error values are combinations of num-
bers that are all multiples of 2. Since the Luma architecture consists in two mirrored stages of
�lters, their outputs are summed up in a �nal addition. Hence the last operation consists in
shifting the output of 6 right positions, thus decreasing the weight of the obtained deviation
from 215 to 29 and so on. This justi�es the three gaussian curves.

46

Chapter 3. Luma Legacy Architecture

Figure 3.16: Data statistic adders 1 and 2

Figure 3.17: Data statistic adders 3 and 4

Figure 3.18: Data statistic subtractor 6

47

Chapter 3. Luma Legacy Architecture

Moreover a random noise is generated following the three Gaussian statistics of �gure 3.15
and random permutations are performed to make it more reliable with respect to a real random
statistic. This deviation is added to the correct outputs of the interpolation �lters architecture
which are compared to the one obtained by the system with con�gurable adders: the Root
Mean Square Deviation, the Mean Square error (Eq:3.10) and the maximum error with respect
to the precise outcomes are evaluated. As reported in table 3.5, the obtained deviation adding
noise seems not to distance the one achieved with the approximate architecture.

MSE =

∑n
i=1(xi,correct − xi,cut)2

n
(3.10)

Correct+Noise GeAr Architecture

RMSD 235.22 236.02
MSE 55330 55707

Max Error 608.65 516

Table 3.5: Error Figures of Merit with gaussian noise

Therefore the model with the noise composed by three Gaussian distributions represents
reasonably well the behavior of the architecture with the approximate adders. This error
is inserted in the HM software [6] in order to have a more precise idea of the e�ect that
this recon�gurable architecture can have one the PSNR of HEVC. An analysis of the coding
e�ciency of the entire HEVC system is executed basing on the same concepts of section 2.2.3.
The noise is introduced in the HM code pursuing the following strategy: three Gaussian noises,
each one with its mean and standard deviation as in table 3.3, are generated through the Box-
Muller algorithm with a seed di�erent from zero. Then they are merged into a single noise
vector which is added to the �ltered data, provoking a distortion from the correct behavior.

Figure 3.19: PSNR degradation with Luma approximate computing HEVC encoder
(BasketballDrive[17], 1920x1080, 50 Hz, Low Delay)

48

Chapter 3. Luma Legacy Architecture

Figure 3.20: PSNR degradation with Luma approximate computing HEVC encoder
(BasketballDrive[17], 1920x1080, 50 Hz, Random Access)

As highlighted in �gures 3.19 and 3.20, the obtained PSNR curve with generic accuracy
recon�gurable adders shows a limited distortion with respect to the correct architecture. In
particular the PSNR degradation is less than a dB for higher QP (-q 37, -q 32), while it
increases when a lower QP (-q 22) is involved, so small variations are more likely captured.
Moreover it can also be noticed that the GeAr architecture presents a less pronounced distor-
tion when the Low Delay prediction structure is employed.
For the sake of completeness the PSNR that is achieved with the previous Chroma cut archi-
tecture is reported in �gure. It is noticeable that the PSNR with GeAr adders introduces a
Signal-to-Noise-Ratio that is way more higher with respect to the previous cut architecture.
It is remarkable to notice that the obtained analysis is carried out as a worst case evaluation
for the proposed architecture. Indeed the three Gaussian distributions are achieved through
Modelsim simulations that neglect the 1D interpolation, whose results are always correct,
since the second stage approximate �lter is not involved. This assumption is not applied to
the HEVC reference software, obtaining a PSNR distortion that is larger than the one that
will be recovered in reality. As a conclusion, the obtained results show that the PSNR with
the proposed architecture is representative that an acceptable distortion is introduced in the
original interpolation �lters architecture, resulting in tolerable approximate results as output
of the entire HEVC system if both an approximate encoder and decoder are employed.
Furthermore a complete analysis of the HM system is carried out for all the possible con�gura-
tions with the proposed architecture. In addition to the entire correct and approximate archi-
tecture, two hybrid conditions are added (correct encoder and approximate decoder and vice-
versa) in order to explore all the possibilities. In particular, three di�erent sequences which
belong to distinct classes (because of disparate resolution) are analyzed: BasketballDrive.yuv
(Class B, 1920x1080, 500 Frames, 50 Hz frame rate), BasketballDrill.yuv (Class C, 832x480,
500 Frames, 50 Hz frame rate), RaceHorses.yuv (Class D, 416x240, 300 Frames, 30 Hz frame
rate).

49

Chapter 3. Luma Legacy Architecture

Figure 3.21: PSNR degradation Encoder-Decoder Combinations (BasketballDrive[17],
1920x1080, 50 Hz, Low Delay)

Figure 3.22: PSNR degradation Encoder-Decoder Combinations (BasketballDrive[17],
1920x1080, 50 Hz, Random Access)

50

Chapter 3. Luma Legacy Architecture

Figure 3.23: PSNR degradation Encoder-Decoder Combinations (BasketballDrill[17],
832x480, 50 Hz, Low Delay)

Figure 3.24: PSNR degradation Encoder-Decoder Combinations (BasketballDrill[17],
832x480, 50 Hz, Random Access)

51

Chapter 3. Luma Legacy Architecture

Figure 3.25: PSNR degradation Encoder-Decoder Combinations (RaceHorses[17], 416x240,
30 Hz, Low Delay)

Figure 3.26: PSNR degradation Encoder-Decoder Combinations (RaceHorses[17], 416x240,
30 Hz, Random Access)

As shown in �gures, it could be concluded that if just an approximate encoder is applied,
the PSNR gets worse especially for a higher bitrate, while performances degrade in a signi�cant
way if an approximate decoder is employed. All in all, the solution with approximate encoder
and decoder results the best choice for an acceptable PSNR as output of the entire system.

52

Chapter 3. Luma Legacy Architecture

3.6 Design Synthesis Results

The di�erent interpolation �lters structures with the proposed adders architectures have been
synthesized with the same conditions as the Chroma Legacy case, as presented in section
2.3.5. Also in this case the clock-gating technique is employed in order to enhance the overall
performances of the system.

fmax [MHz] Area [µm2] 2 Power [mW] 2

PE correct 588.24 57166.92 9.950
PE HC correct 591.72 60995.88 11.652
PE HC approx 588.24 63935.28 12.706
PE LF correct 595.24 58959.36 11.254
PE LF approx 588.24 62618.40 12.261

PE CSA 588.24 58930.56 11.092
PE GeAr P=0 k=2 595.24 59286.96 11.115
PE GeAr P=0 k=3 602.41 57878.28 10.589
PE GeAr P=2 k=3 591.72 61360.92 11.394

Table 3.6: Luma Legacy Filter Synthesis results with clock gating

As far as parallel & pre�x adders are concerned, none among the proposed architecture
seems to be the best choice for the case of the Luma Legacy Architecture. Beside the Ladner-
Fischer correct topology outperforms its competitors in all the characteristics, the drawback
in terms of power dissipation is not worth to be used.
Regarding the architecture with Carry save adders, it results unfavorable, because it provides
the same maximum frequency as the original solution, with the drawback of a higher area
overhead and power consumption.
If an approximate approach with generic accuracy con�gurable adders is employed, it ensues
to obtain better performances with respect to the previous techniques. In particular the Pro-
cessing Element with GeAr structures characterized by P=0, k=3, shows the most suitable
outcomes with an improvement in performances of 2.41% with negligible drawbacks in terms
of area overhead (1.24%) and power consumption (6.42%). Therefore this approximate archi-
tecture will be the one chosen as new reference structure, since it allows to worth performances
with an acceptable accuracy with respect to the correct case.

∆fmax [%] ∆A [%] ∆P [%]

PE HC +0.59 +6.70 +17.11
PE HC App +0.00 +11.84 +27.70

PE LF +1.19 +3.14 +13.11
PE LF App +0.00 +9.54 +23.23
PE CSA +0.00 +3.09 +11.48

PE GeAr P=0 k=2 +1.19 +3.71 +11.71
PE GeAr P=0 k=3 +2.41 +1.24 +6.42
PE GeAr P=2 k=3 +0.59 +7.34 +14.51

Table 3.7: Luma Legacy relative percentage comparisons with the original design

2Area and Power are evaluated at tck=1.70 ns, that is the worst case for the entire interpolation �lters

architecture, i.e. luma legacy structure

53

Chapter 4

Approximate Computing on DCT-IF

architecture

The approximate architecture has been introduced in order to reduce the computational
complexity of interpolation �lters, by reaching a good trade-o� between a good quality of
video-coding and energy consumption. The number of taps is dynamically reduced as pre-
sented in [2], to succeed in this purpose. Indeed a lower order for the �lters consists both
in a reduced power dissipation and in a higher maximum frequency, with the drawback of a
lower precision in the data out of the interpolation process. The same adders topologies as
presented in the previous sections are applied to the approximate architectures in order to
enhance performances.

4.1 General Structure

Three di�erent solutions are analyzed and their e�ects are evaluated at the output of the
entire HEVC system:

� Approximate HEVC Decoder: since the fractional sample interpolation represents
the most expensive block in terms of computation at the decoder side, an approxi-
mate solution is proposed as depicted in �gure 4.1. In this case the obtained PSNR is
substantially lower than the legacy structure;

Figure 4.1: Approximate DCT-IF on decoder side

54

Chapter 4. Approximate Computing on DCT-IF architecture

� Approximate HEVC Encoder: a lower accuracy approach is also applied at the
encoder side, because interpolation �lters show a relevant percentage in this part of the
HEVC process, too. Here the analysis has been carried out for both random-access and
low-delay con�gurations: for the latter the approximate approach could not be a reliable
choice because a too high degradation is obtained at the output of the system.

Figure 4.2: Approximate DCT-IF on encoder side

� Approximate HEVC Encoder & Decoder: as for the generic accuracy con�gurable
adders in the luma legacy structure, this solution results the most convenient to be
applied, since it allows to achieve a lower degradation than the previous two case, with
acceptable values in the PSNR evaluation for the entire architecture.

Figure 4.3: Approximate DCT-IF on both encoder and decoder side

55

Chapter 4. Approximate Computing on DCT-IF architecture

The three di�erent solutions are simulated through the HM software [6], whose results are
reported in �gures 4.4 and 4.5:

Figure 4.4: Approximate DCT-IF PSNR degradation (BasketballDrive[17], 1920x1080, 50 Hz,
Low Delay)

Figure 4.5: Approximate DCT-IF PSNR degradation (BasketballDrive[17], 1920x1080, 50 Hz,
Random Access)

56

Chapter 4. Approximate Computing on DCT-IF architecture

4.2 Hardware Design

An architecture that exploits recon�gurable �lters is adopted, as proposed in [2]. In particu-
lar the 7/8-taps �lters of the luma legacy architecture are replaced by 5-tap and 3-tap �lters,
while the 4-tap �lters of chroma legacy structure are �anked by 2-tap components. New
coe�cients are de�ned and this results in di�erent sum and shift operations for the DCT-IF
structure, as presented in table 4.1.

shifts | coe� 1 2 4 5 6 7 9 14 20 23 32 40 41 48 50 54 57

x + + - + - + +

x � 1 + + - + +

x � 2 + + + + +

x � 3 + + - + + -

x � 4 + + + + +

x � 5 + + + + + + +

x � 6 +

Table 4.1: Approximate architecture Coe�cients replaced by sums and shifts

The datapath changes with respect to the legacy architecture: above all, several par-
allel �lter branches are presented, each one associated to a speci�c recon�gurable DCT-IF
implementation. If a �lter should not be used in the computation, its input is set to zero
by the referring routing unit, in order to avoid the employment of demultiplexers as input
of these lasts. The FSMs aren't signi�cantly changed from the starting legacy architecture.
The overall datapath for the luma architecture is shown in picture 4.6. Also in this case a
multiplier-less solution for the interpolation �lters is adopted.

57

Chapter 4. Approximate Computing on DCT-IF architecture

Figure 4.6: Datapath Luma Approximate [2]

58

Chapter 4. Approximate Computing on DCT-IF architecture

Figure 4.7: Recon�gurable approximate luma 5-tap �lter [2]

59

Chapter 4. Approximate Computing on DCT-IF architecture

Figure 4.8: Recon�gurable approximate luma 3-tap �lter [2]

60

Chapter 4. Approximate Computing on DCT-IF architecture

Figure 4.9: Recon�gurable approximate chroma 2-tap �lter with GeAr [2]

61

Chapter 4. Approximate Computing on DCT-IF architecture

Figure 4.10: Recon�gurable approximate chroma 4-tap �lter with GeAr [2]

62

Chapter 4. Approximate Computing on DCT-IF architecture

4.2.1 Adders Topologies

As in the legacy architectures, the di�erent proposed adders topologies have been applied to
the approximate DCT-IF structure. For what concerns the chroma approximate, both parallel
and pre�x solutions and complementary modules with generic accuracy con�gurable adders
are handled to improve performances. Regarding the luma approximate only the parallel and
pre�x solutions are involved in performances enhancement. For both the architectures both
in the legacy part and in the reduced order tap one the original adders are replaced with the
proposed ones.
The parallel and pre�x adders take the place of all the involved sums in the �ltering process,
while the GeAr adders replace the majority of the interested additions, represented as yellow
circles in �gures 4.9, 4.10.

4.3 Simulation

All the di�erent input �les have been simulated one after the other in a single simulation, in
order to make a rough estimation of the total RMSD and of the number of errors that are
present on a total amount of samples (7168 for Chroma Approximate Architecture, 36864 for
the Luma one) and to compare the di�erent versions of approximate adders. Simulation results
are presented in table 4.2 for the chroma case: as before, the Generic Accuracy Con�gurable
Accuracy adders outperform the Parallel & Pre�x approximate solutions in terms of precision.

RMSD # errors % errors

HC_Approx 48.4 1 0.01%
LF_Approx 998.54 4553 63.52%

GeAr k=2, P=0 2.982 249 3.47%
GeAr k=3, P=0 33.372 1949 27.19%

Table 4.2: Comparison RMSD Chroma Approximate Architecture 2-tap, 16 bits out

Tables 4.3 and 4.4 present the accuracy results for the luma case:

RMSD # errors % errors

HC_Approx 670.52 320 0.87%
LF_Approx 1838.4 1291 3.50%

Table 4.3: Comparison RMSD Luma Approximate Architecture 3-tap, 16 bits out

RMSD # errors % errors

HC_Approx 2449.5 1305 3.54%
LF_Approx 4500.8 4148 11.25%

Table 4.4: Comparison RMSD Luma Approximate Architecture 5-tap, 16 bits out

For what concerns parallel and pre�x solutions, the inexact architectures produce a low
percentage of errors with respect to the total amount, however it's still a high deviation with
respect to the original architecture.

63

Chapter 4. Approximate Computing on DCT-IF architecture

4.4 Design Synthesis Results

Approximate DCT-IF interpolation �lters are more e�cient in terms of energy and power
consumption than the legacy ones. The proposed architectures are synthesized using the
same power saving techniques (clock gating and switching activity reduction schemes). As
reported in table 4.5, as the approximated structure is faster than the legacy one, the power
dissipation is reduced. Concerning the luma case, a −8.92% and a −25.8% of power reduction
is obtained with the 5-tap or the 3-tap �lter respectively. The same behavior is obtained with
the chroma processing element, where a −27.3% power reduction is achieved using a 2-tap
�lter instead of the legacy 4-tap one.

Power [mW] ∆%

Luma Legacy 9.950 −
Luma 5-tap 9.062 −8.92%

Luma 3-tap 7.384 −25.8%

Chroma Legacy 2.966 −
Chroma 2-tap 2.157 −27.3%

Table 4.5: Power results with approximate DCT-IFs compared to the legacy DCT-IFs

The di�erent interpolation �lters structures with the proposed adders architectures have
been synthesized with the same conditions as the Legacy case, as presented in section 2.3.5,
with the employment of the clock gating technique.
Regarding the Chroma Approximate synthesis results none among the explored solutions with
Parallel & Pre�x architecture shows any improvements with respect to the original proposed
architecture, as presented in table 4.6. Therefore, for what concerns these adders, neither
Han-Carlson/Ladner-Fischer nor Generic Accuracy Recon�gurable topology are able to reach
better results and these solutions are discarded in this case.

fmax [MHz] Area [µm2] 3 Power 2-tap[mW] 3

PE correct 684.93 17183.52 2.157
PE HC correct 675.68 18917.64 2.412
PE HC approx 675.68 19707.12 2.379
PE LF correct 680.27 18700.92 2.323
PE LF approx 675.68 19126.08 2.354

PE GeAr k=2 P=0 662.25 17974.80 2.314
PE GeAr k=3 P=0 684.93 17621.28 2.225

Table 4.6: Chroma Approximate Synthesis results with clock gating

Results for the Luma Approximate architecture are reported in tables 4.7 and 4.8.

3Area and Power are evaluated at tck=1.70 ns, that is the worst case for the entire interpolation �lters

architecture, i.e. luma legacy structure

64

Chapter 4. Approximate Computing on DCT-IF architecture

fmax [MHz] Area [µm2] Power 3-tap [mW] 3 Power 5-tap [mW] 3

PE correct 591.7 64017.00 7.384 9.062
PE HC correct 595.2 63670.32 7.057 9.131
PE HC approx 602.4 66632.04 7.475 10.167
PE LF correct 602.4 66105.36 7.468 9.391
PE LF approx 595.2 66482.64 7.461 9.725

Table 4.7: Luma Approximate Synthesis results with clock gating

After having synthesized the di�erent architectures with Synopsys Design Compiler, the
main advantages both in terms of speed and concerning power and area are obtained through
the Han-Carlson correct architecture. Beside this adder topology is not providing the best
speed enhancement, it is the one and only that improves frequency performances with a lower
area overhead and a remarkably reduced power consumption when a 3-tap interpolation is
required. Moreover it is noticeable to observe that this is a correct design, so the enhancement
in performances is obtained without any loss in precision.

∆fmax [%] ∆A [%] ∆P 3-tap [%] ∆P 5-tap [%]

PE HC +0.59 −0.54 − 4.43 +0.76
PE HC App +1.81 +4.08 +1.23 +12.19

PE LF +1.81 +3.26 +1.14 +3.63
PE LF App +0.59 +3.85 +1.04 +7.32

Table 4.8: Luma Approximate relative percentage comparisons with the original design

65

Conclusion

Besides the improvements introduced by the HEVC project in compression e�ciency with
respect to the previous standards, software solutions show limitations in real-time encoding
and decoding. The interpolations �lters of this system represent the bottleneck for the CPU
time: therefore an hardware implementation is strictly necessary in order to ful�ll a short
time coding requirement.
The starting architecture introduces several optimizations, namely, i) the amount of memory
have been halved, ii) multipliers have been substituted with sums and shifts. The optimized
multiplier-less two-dimensional �lter architecture exploits hardware recon�guration, through-
put adaption and clock gating, o�ering a good energy-quality trade-o�. Even if this �nal
solution is able to provide higher throughput than the original software architecture, some
improvements can be applied at di�erent levels of the design: thus an appropriate internal
architecture for the adders that are involved in the �ltering operation is proposed.
In the two Legacy architectures, a �rst data analysis is carried out in order to apply both
exact and approximate architectures. Several models for the adder con�gurations are applied:
after a performance and precision evaluation, the best solution is chosen. Concerning the
Chroma Legacy architecture, parallel & pre�x correct adders con�guration that employs a
Ladner-Fischer pre�x-processing stage results the most convenient choice in terms of speed
enhancement, at the cost of a negligible area overhead and power dissipation. As regards the
Luma Legacy architecture, the adoption of an approximate solution involving Generic Accu-
racy Con�gurable Adders is proposed: the e�ect of this inexact solution in terms of PSNR
degradation on the entire HEVC system is evaluated. Results show that the solution with
approximate encoder and decoder appears the best choice for an acceptable PSNR as output
of the entire system.
An approximate DCT-IF stating architecture has been introduced in order to reduce the com-
putational complexity of interpolation �lters, by reaching a good trade-o� between a good
quality of video-coding and energy consumption, by dynamically reducing the number of
taps. Indeed a lower order for the �lters consists both in a reduced power dissipation and in
a higher maximum frequency, with the drawback of a lower precision in the data out of the
interpolation process. For the Luma Approximate structure, a slight speed improvement with
a reduction in power and occupied area is earned through the employment of Han-Carlson
correct adders, while for the Chroma Approximate architecture the starting structure is main-
tained.
Further improvements are still achievable in the proposed architecture: for example pipelin-
ing can be applied to further improve the system performances achieving a higher number of
fractional pixels per second.
The implemented architectures are fully standard compliant, addressing the 1-D and 2-D
interpolation process of all the di�erent luma and chroma prediction unit sizes adopted by
HEVC.

66

Appendix A

Parallel & Pre�x Adders

Han Carlson Exact Architecture

1 library IEEE;

2 use IEEE.std_logic_1164.all;

3 use IEEE.numeric_std.all;

4 entity Han_Carlson_Correct_Adder_Nbits is

5 generic(N:positive :=22);

6 port(

7 In1 , In2 :IN std_logic_vector(N-1 downto 0)

; -- adder inputs

8 out_A :OUT std_logic_vector(N-1

downto 0) -- adder output

9);

10 end entity Han_Carlson_Correct_Adder_Nbits;

11

12 architecture structural of Han_Carlson_Correct_Adder_Nbits is

13

14 component GP_Unit is

15 port(

16 A,B :IN std_logic;

17 G,P :OUT std_logic

18);

19 end component;

20

21 component ParalPrefix_Unit is

22 port(

23 G1,G0,P1,P0 :IN std_logic;

24 G01 ,P01 :OUT std_logic

25);

26 end component ParalPrefix_Unit;

27

28 signal gen_bits , prop_bits : std_logic_vector(N-1 DOWNTO 0);

29 signal G_s1 , P_s1 : std_logic_vector(N/2-1

downto 0);

67

Appendix A. Parallel & Pre�x Adders

30 signal G_s2 , P_s2 : std_logic_vector(N/2-2

downto 0);

31 signal G_s3 , P_s3 : std_logic_vector(N/2-3

downto 0);

32 signal G_s4 , P_s4 : std_logic_vector(N/2-5

downto 0);

33 signal G_s5 , P_s5 : std_logic_vector(N/2-9

downto 0);

34 signal G_s6 , P_s6 : std_logic_vector(N-1 downto

0);

35 signal c_i_min1 : std_logic_vector(N-1 downto

0);

36

37 begin

38

39 -- BLOCK 1: gi,pi GENERATION

40 gp_gen: for i in N-1 downto 0 generate

41 GP_U: GP_Unit port map(A=>In1(i), B=>In2(i), G=>

gen_bits(i), P=>prop_bits(i));

42 end generate gp_gen;

43

44 ---

45 --BLOCK 2: parallel & prefix problem with Han -Carlson

Architecture

46

47 --outer row: Brent&Kung architecture

48 PP0_s1: for i in 1 to N/2 generate

49 PP0_U1: ParalPrefix_Unit port map(G1=>gen_bits (2*

i-1),G0=>gen_bits (2*i-2),P1=>prop_bits (2*i-1),

P0=>prop_bits (2*i-2),G01=>G_s1(i-1),P01=>P_s1(i

-1));

50 end generate PP0_s1;

51

52 --inner rows: Kogge -Stone architecture

53 PP0_s2: for i in 1 to N/2-1 generate

54 PP0_U2: ParalPrefix_Unit port map(G1=>G_s1(i),G0

=>G_s1(i-1),P1=>P_s1(i),P0=>P_s1(i-1),G01=>G_s2

(i-1),P01=>P_s2(i-1));

55 end generate PP0_s2;

56

57 PP0_S3: for i in 1 to N/2-2 generate

58

59 middleBit_s3: if i>1 AND i<=N/2-2 generate

60 PP0_U3: ParalPrefix_Unit port map(G1=>G_s2(i),G0

=>G_s2(i-2),P1=>P_s2(i),P0=>P_s2(i-2),G01=>G_s3

(i-1),P01=>P_s3(i-1));

61 END generate middleBit_s3;

62

68

Appendix A. Parallel & Pre�x Adders

63 LSBs_s3: if i=1 generate

64 PP0_U3: ParalPrefix_Unit port map(G1=>G_s2(i),G0

=>G_s1(i-1),P1=>P_s2(i),P0=>P_s1(i-1),G01=>G_s3

(i-1),P01=>P_s3(i-1));

65 END generate LSBs_s3;

66

67 end generate PP0_s3;

68

69

70 PP0_s4: for i in 1 to N/2-4 generate

71

72 middleBit_s4: if i>2 AND i<=N/2-4 generate

73 PP0_U4: ParalPrefix_Unit port map(G1=>G_s3(i+1),

G0=>G_s3(i-3),P1=>P_s3(i+1),P0=>P_s3(i-3),G01=>

G_s4(i-1),P01=>P_s4(i-1));

74 END generate middleBit_s4;

75

76 LSB1_s4: if i=2 generate

77 PP0_U4: ParalPrefix_Unit port map(G1=>G_s3(i+1),

G0=>G_s2(i-2),P1=>P_s3(i+1),P0=>P_s2(i-2),G01=>

G_s4(i-1),P01=>P_s4(i-1));

78 END generate LSB1_s4;

79

80 LSB0_s4: if i=1 generate

81 PP0_U4: ParalPrefix_Unit port map(G1=>G_s3(i+1),

G0=>G_s1(i-1),P1=>P_s3(i+1),P0=>P_s1(i-1),G01=>

G_s4(i-1),P01=>P_s4(i-1));

82 END generate LSB0_s4;

83

84 end generate PP0_s4;

85

86 --last row Kogge -Stone to be pruned for the

approximate version

87 PP0_s5: for i in 1 to N/2-8 generate

88

89 middleBit_s5: if i>=3 AND i<=N/2-8 generate

90 PP0_U5: ParalPrefix_Unit port map(G1=>G_s4(i+3),

G0=>G_s3(i-3),P1=>P_s4(i+3),P0=>P_s3(i-3),G01=>

G_s5(i-1),P01=>P_s5(i-1));

91 END generate middleBit_s5;

92

93 LSB1_s5: if i=2 generate

94 PP0_U5: ParalPrefix_Unit port map(G1=>G_s4(i+3),

G0=>G_s2(i-2),P1=>P_s4(i+3),P0=>P_s2(i-2),G01=>

G_s5(i-1),P01=>P_s5(i-1));

95 END generate LSB1_s5;

96

97 LSB0_s5: if i=1 generate

69

Appendix A. Parallel & Pre�x Adders

98 PP0_U5: ParalPrefix_Unit port map(G1=>G_s4(i+3),

G0=>G_s1(i-1),P1=>P_s4(i+3),P0=>P_s1(i-1),G01=>

G_s5(i-1),P01=>P_s5(i-1));

99 END generate LSB0_s5;

100

101 end generate PP0_s5;

102

103 --final row: Brent&Kung architecture

104

105 PP0_s6: for i in 1 to N/2 generate

106

107 MSB_odd: if i=N/2 generate

108 G_s6 (2*i-1) <= G_s5(i-9);

109 P_s6 (2*i-1) <= P_s5(i-9);

110 END generate;

111

112 MSB_s6: if i>8 AND i<=N/2-1 generate

113 PP0_U6: ParalPrefix_Unit port map(G1=>gen_bits (2*

i),G0=>G_s5(i-9),P1=>prop_bits (2*i),P0=>P_s5(i

-9),G01=>G_s6 (2*i),P01=>P_s6 (2*i));

114 G_s6 (2*i-1) <= G_s5(i-9);

115 P_s6 (2*i-1) <= P_s5(i-9);

116 END generate MSB_s6;

117

118 middle_s6_s4: if i>4 AND i<=8 generate

119 PP0_U6: ParalPrefix_Unit port map(G1=>gen_bits (2*

i),G0=>G_s4(i-5),P1=>prop_bits (2*i),P0=>P_s4(i

-5),G01=>G_s6 (2*i),P01=>P_s6 (2*i));

120 G_s6 (2*i-1) <= G_s4(i-5);

121 P_s6 (2*i-1) <= P_s4(i-5);

122 END generate middle_s6_s4;

123

124 middle_s6_s3: if i>2 AND i<=4 generate

125 PP0_U6: ParalPrefix_Unit port map(G1=>gen_bits (2*

i),G0=>G_s3(i-3),P1=>prop_bits (2*i),P0=>P_s3(i

-3),G01=>G_s6 (2*i),P01=>P_s6 (2*i));

126 G_s6 (2*i-1) <= G_s3(i-3);

127 P_s6 (2*i-1) <= P_s3(i-3);

128 END generate middle_s6_s3;

129

130 middle_s6_s2: if i=2 generate

131 PP0_U6: ParalPrefix_Unit port map(G1=>gen_bits (2*

i),G0=>G_s2(i-2),P1=>prop_bits (2*i),P0=>P_s2(i

-2),G01=>G_s6 (2*i),P01=>P_s6 (2*i));

132 G_s6 (2*i-1) <= G_s2(i-2);

133 P_s6 (2*i-1) <= P_s2(i-2);

134 END generate middle_s6_s2;

135

70

Appendix A. Parallel & Pre�x Adders

136 middle_s6_s1: if i=1 generate

137 PP0_U6: ParalPrefix_Unit port map(G1=>gen_bits (2*

i),G0=>G_s1(i-1),P1=>prop_bits (2*i),P0=>P_s1(i

-1),G01=>G_s6 (2*i),P01=>P_s6 (2*i));

138 G_s6 (2*i-1) <= G_s1(i-1);

139 P_s6 (2*i-1) <= P_s1(i-1);

140 G_s6 (2*i-2) <= gen_bits(i-1);

141 P_s6 (2*i-2) <= prop_bits(i-1);

142 END generate middle_s6_s1;

143

144 end generate PP0_s6;

145

146 ------------------------------------

147 --BLOCK 3: Carry computation

148 c_i_min1 (0) <= '0';

149 Cin_gen: for i in 1 to N-1 generate

150 c_i_min1(i) <= G_s6(i-1) OR (P_s6(i-1) AND

c_i_min1 (0)); --since c0=0 because we're just

considering additions

151 end generate Cin_gen;

152

153 ------------------------------------

154 --BLOCK 4: Sum computation

155 Sum_gen: for i in 0 to N-1 generate

156 out_A(i) <= prop_bits(i) XOR c_i_min1(i);

157 end generate Sum_gen;

158

159

160 end structural;

./Appendix/vhdl�les/Han_Carlson_Correct_Adder_Nbits.vhd

Ladner Fischer Exact Architecture

1 library IEEE;

2 use IEEE.std_logic_1164.all;

3 use IEEE.numeric_std.all;

4 entity Ladner_Fisher_Nbit_correct is

5 generic(N:positive :=22);

6 port(

7 In1 , In2 :IN std_logic_vector(N-1 downto 0)

; -- adder inputs

8 out_A :OUT std_logic_vector(N-1

downto 0) -- adder output

9);

10 end entity Ladner_Fisher_Nbit_correct;

11

12 architecture structural of Ladner_Fisher_Nbit_correct is

71

Appendix A. Parallel & Pre�x Adders

13

14 component GP_Unit is

15 port(

16 A,B :IN std_logic;

17 G,P :OUT std_logic

18);

19 end component;

20

21 component ParalPrefix_Unit is

22 port(

23 G1,G0,P1,P0 :IN std_logic;

24 G01 ,P01 :OUT std_logic

25);

26 end component ParalPrefix_Unit;

27

28 signal gen_bits , prop_bits : std_logic_vector(N-1 DOWNTO 0);

29 signal G_s1 , P_s1 : std_logic_vector(N/2-1

downto 0);

30 signal G_s2 , P_s2 : std_logic_vector (4 downto

0);

31 signal G_s3 , P_s3 : std_logic_vector (4 downto

0);

32 signal G_s4 , P_s4 : std_logic_vector (3 downto

0);

33 signal G_s5 , P_s5 : std_logic_vector(N/2-9

downto 0);

34 signal G_s6 , P_s6 : std_logic_vector(N-1 downto

0);

35 signal c_i_min1 : std_logic_vector(N-1 downto

0);

36

37

38

39 begin

40

41 -- BLOCK 1: gi,pi GENERATION

42 gp_gen: for i in N-1 downto 0 generate

43 GP_U: GP_Unit port map(A=>In1(i), B=>In2(i), G=>

gen_bits(i), P=>prop_bits(i));

44 end generate gp_gen;

45

46 ---

47 --BLOCK 2: parallel & prefix problem with Ladner -Fisher

Architecture

48

49 -- first two rows: Brent&Kung architecture

50 PP0_s1: for i in 1 to N/2 generate

72

Appendix A. Parallel & Pre�x Adders

51 PP0_U1: ParalPrefix_Unit port map(G1=>gen_bits (2*

i-1),G0=>gen_bits (2*i-2),P1=>prop_bits (2*i-1),

P0=>prop_bits (2*i-2),G01=>G_s1(i-1),P01=>P_s1(i

-1));

52 end generate PP0_s1;

53

54 PP0_s2: for i in 0 to 4 generate

55

56 MSB_22_20_s2: if i=4 AND N/2>=10 generate

57 PP0_U2: ParalPrefix_Unit port map(G1=>

G_s1 (2*i+1),G0=>G_s1 (2*i),P1=>P_s1 (2*

i+1),P0=>P_s1 (2*i),G01=>G_s2(i),P01=>

P_s2(i));

58 end generate MSB_22_20_s2;

59

60 MSB_18_s2: if i=4 AND N/2<10 generate

61 G_s2(i) <= '0';

62 P_s2(i) <= '0';

63 end generate MSB_18_s2;

64

65 middleBit_s2: if i<4 generate

66 PP0_U2: ParalPrefix_Unit port map(G1=>

G_s1 (2*i+1),G0=>G_s1 (2*i),P1=>P_s1 (2*

i+1),P0=>P_s1 (2*i),G01=>G_s2(i),P01=>

P_s2(i));

67 end generate middleBit_s2;

68

69 end generate PP0_s2;

70

71 -- inner rows: Ladner -Fisher architecture

72

73 PP0_s3: for i in 0 to 4 generate

74

75 MSBs_s3: if i=4 AND N/2=11 generate

-- for MSB of N/2=11 one

more operator is needed

76 PP0_U3: ParalPrefix_Unit port map(G1=>G_s1 (2*i+2)

,G0=>G_s2(i),P1=>P_s1 (2*i+2),P0=>P_s2(i),G01=>

G_s3(i),P01=>P_s3(i));

77 END generate MSBs_s3;

78

79 MSB_18_s3: if i=4 AND N/2<11 generate

80 G_s3(i) <= '0';

81 P_s3(i) <= '0';

82 end generate MSB_18_s3;

83

84 middleBitEven_s3: if ((i mod 2) = 0) AND i<=3

generate --for even numbers

73

Appendix A. Parallel & Pre�x Adders

85 PP0_U3: ParalPrefix_Unit port map(G1=>G_s1 (2*i+2)

,G0=>G_s2(i),P1=>P_s1 (2*i+2),P0=>P_s2(i),G01=>

G_s3(i),P01=>P_s3(i));

86 END generate middleBitEven_s3;

87

88 middleBitOdd_s3: if ((i mod 2) /= 0) AND i<=3

generate --for odd numbers

89 PP0_U3: ParalPrefix_Unit port map(G1=>G_s2(i),G0

=>G_s2(i-1),P1=>P_s2(i),P0=>P_s2(i-1),G01=>G_s3

(i),P01=>P_s3(i));

90 END generate middleBitOdd_s3;

91

92 end generate PP0_s3;

93

94

95 -- last two rows of Ladner -Fisher to be pruned in

approximate version

96

97 PP0_s4: for i in 0 to 3 generate

98

99 middleBit_s4: if i>1 AND i<=3 generate

100 PP0_U4: ParalPrefix_Unit port map(G1=>G_s3(i),G0

=>G_s3 (1),P1=>P_s3(i),P0=>P_s3 (1),G01=>G_s4(i),

P01=>P_s4(i));

101 END generate middleBit_s4;

102

103 LSB1_s4: if i=1 generate

104 PP0_U4: ParalPrefix_Unit port map(G1=>G_s2(i+1),

G0=>G_s3 (1),P1=>P_s2(i+1),P0=>P_s3 (1),G01=>G_s4

(i),P01=>P_s4(i));

105 END generate LSB1_s4;

106

107 LSB0_s4: if i=0 generate

108 PP0_U4: ParalPrefix_Unit port map(G1=>G_s1(i+4),

G0=>G_s3 (1),P1=>P_s1(i+4),P0=>P_s3 (1),G01=>G_s4

(i),P01=>P_s4(i));

109 END generate LSB0_s4;

110

111 end generate PP0_s4;

112

113 PP0_s5: for i in 0 to N/2-9 generate

114

115 middleBit_s5: if i=2 generate

116 PP0_U5: ParalPrefix_Unit port map(G1=>G_s3(i+2),

G0=>G_s4 (3),P1=>P_s3(i+2),P0=>P_s4 (3),G01=>G_s5

(i),P01=>P_s5(i));

117 END generate middleBit_s5;

118

74

Appendix A. Parallel & Pre�x Adders

119 LSB1_s5: if i=1 generate

120 PP0_U5: ParalPrefix_Unit port map(G1=>G_s2(i+3),

G0=>G_s4 (3),P1=>P_s2(i+3),P0=>P_s4 (3),G01=>G_s5

(i),P01=>P_s5(i));

121 END generate LSB1_s5;

122

123 LSB0_s5: if i=0 generate

124 PP0_U5: ParalPrefix_Unit port map(G1=>G_s1 (8),G0

=>G_s4 (3),P1=>P_s1 (8),P0=>P_s4 (3),G01=>G_s5(i),

P01=>P_s5(i));

125 END generate LSB0_s5;

126

127 end generate PP0_s5;

128

129

130 --final row: Brent&Kung architecture

131

132 PP0_s6: for i in 1 to N/2 generate

133

134 MSB_odd: if i=N/2 generate

135 G_s6 (2*i-1) <= G_s5(i-9);

136 P_s6 (2*i-1) <= P_s5(i-9);

137 END generate;

138

139 MSB_s6: if i>8 AND i<=N/2-1 generate

140 PP0_U6: ParalPrefix_Unit port map(G1=>gen_bits (2*

i),G0=>G_s5(i-9),P1=>prop_bits (2*i),P0=>P_s5(i

-9),G01=>G_s6 (2*i),P01=>P_s6 (2*i));

141 G_s6 (2*i-1) <= G_s5(i-9);

142 P_s6 (2*i-1) <= P_s5(i-9);

143 END generate MSB_s6;

144

145

146 middle_s6_s4: if i>4 AND i<=8 generate

147 PP0_U6: ParalPrefix_Unit port map(G1=>gen_bits (2*

i),G0=>G_s4(i-5),P1=>prop_bits (2*i),P0=>P_s4(i

-5),G01=>G_s6 (2*i),P01=>P_s6 (2*i));

148 G_s6 (2*i-1) <= G_s4(i-5);

149 P_s6 (2*i-1) <= P_s4(i-5);

150 END generate middle_s6_s4;

151

152

153 middle_s6_s3: if i>2 AND i<=4 generate

154 PP0_U6: ParalPrefix_Unit port map(G1=>gen_bits (2*

i),G0=>G_s3(i-3),P1=>prop_bits (2*i),P0=>P_s3(i

-3),G01=>G_s6 (2*i),P01=>P_s6 (2*i));

155 G_s6 (2*i-1) <= G_s3(i-3);

156 P_s6 (2*i-1) <= P_s3(i-3);

75

Appendix A. Parallel & Pre�x Adders

157 END generate middle_s6_s3;

158

159 middle_s6_s2: if i=2 generate

160 PP0_U6: ParalPrefix_Unit port map(G1=>gen_bits (2*

i),G0=>G_s2(i-2),P1=>prop_bits (2*i),P0=>P_s2(i

-2),G01=>G_s6 (2*i),P01=>P_s6 (2*i));

161 G_s6 (2*i-1) <= G_s2(i-2);

162 P_s6 (2*i-1) <= P_s2(i-2);

163 END generate middle_s6_s2;

164

165 middle_s6_s1: if i=1 generate

166 PP0_U6: ParalPrefix_Unit port map(G1=>gen_bits (2*

i),G0=>G_s1(i-1),P1=>prop_bits (2*i),P0=>P_s1(i

-1),G01=>G_s6 (2*i),P01=>P_s6 (2*i));

167 G_s6 (2*i-1) <= G_s1(i-1);

168 P_s6 (2*i-1) <= P_s1(i-1);

169 G_s6 (2*i-2) <= gen_bits(i-1);

170 P_s6 (2*i-2) <= prop_bits(i-1);

171 END generate middle_s6_s1;

172

173 end generate PP0_s6;

174

175 ------------------------------------

176 --BLOCK 3: Carry computation

177 c_i_min1 (0) <= '0';

178 Cin_gen: for i in 1 to N-1 generate

179 c_i_min1(i) <= G_s6(i-1); -- OR (P_s6(i-1) AND

c_i_min1 (0)); -- I can neglect the or gate

since due to addition c0=0

180 end generate Cin_gen;

181

182 ------------------------------------

183 --BLOCK 4: Sum computation

184 Sum_gen: for i in 0 to N-1 generate

185 out_A(i) <= prop_bits(i) XOR c_i_min1(i);

186 end generate Sum_gen;

187

188

189

190 end structural;

./Appendix/vhdl�les/Ladner_Fisher_Correct_Adder_Nbits.vhd

Generate Propagate Unit

1 library IEEE;

2 use IEEE.std_logic_1164.all;

3 use IEEE.numeric_std.all;

76

Appendix A. Parallel & Pre�x Adders

4

5 entity GP_Unit is

6 port(

7 A,B :IN std_logic;

8 G,P :OUT std_logic

9);

10 end entity GP_Unit;

11

12 architecture structure of GP_Unit is

13

14 begin

15

16 G <= A AND B;

17 P <= A XOR B;

18

19 end structure;

./Appendix/vhdl�les/GP_Unit.vhd

Parallel & Pre�x Unit

1 library IEEE;

2 use IEEE.std_logic_1164.all;

3 use IEEE.numeric_std.all;

4

5 entity ParalPrefix_Unit is

6 port(

7 G1,G0,P1,P0 :IN std_logic;

8 G01 ,P01 :OUT std_logic

9);

10 end entity ParalPrefix_Unit;

11

12 architecture structure of ParalPrefix_Unit is

13

14 begin

15

16 G01 <= G1 OR (P1 AND G0);

17 P01 <= P0 AND P1;

18

19 end structure;

./Appendix/vhdl�les/ParalPre�x_Unit.vhd

77

Appendix B

Generic Accuracy Con�gurable

Adders

GeAr Adder k=3 P=0

1 library IEEE;

2 use IEEE.std_logic_1164.all;

3 use IEEE.numeric_std.all;

4 entity GeAr_Adder_Nbits is

5 generic(N:integer :=22; R:integer :=7; P:integer :=0); -- L=R+

P, N=R+L

6 port(

7 In1 , In2 :IN std_logic_vector(N-1 downto 0)

; -- adder inputs

8 c_in ,c_in1 :IN std_logic;

9 c_out ,c_out1 :OUT std_logic;

10 out_A :OUT std_logic_vector(N-1

downto 0) -- adder output

11);

12 end entity GeAr_Adder_Nbits;

13

14 architecture structural of GeAr_Adder_Nbits is

15

16 --signals

17 signal temp : std_logic_vector(N-1

downto 2*R+P-1);

18 signal temp1 : std_logic_vector (2*R+P

downto R+P-1); --it includes carry -in and carry -out to be

used

19 signal sum1_MSB : std_logic_vector(

N-1 downto 2*R+P);

20 signal sum1_middle : std_logic_vector (2*R+P

-1 downto R+P);

21 signal cg_o , cp_o ,cg_o1 , cp_o1 : std_logic;

22 signal ED,ED1 : std_logic;

78

Appendix B. Generic Accuracy Con�gurable Adders

23 signal sum1_LSB : std_logic_vector(

R+P downto 0); --it includes carry -out to be used

24 begin

25

26 ----BLOCK 1: MSBs ------------------------

27 --SUM for Most Significant Bits

28 temp <= std_logic_vector(signed(In1(N-1 downto 2*R+P)&'1')+

signed(In2(N-1 downto 2*R+P)&cg_o));

29 sum1_MSB <= temp(N-1 downto 2*R+P);

30

31 --carry generation for Most Significant block with CG Unit

32 cg_o <= (In1(2*R+P-1) and In2(2*R+P-1)) or (c_in and (In1(2*R+P

-1) xor In2(2*R+P-1)));

33 cp_o <= In1(2*R+P-1) xor In2(2*R+P-1);

34

35 --Error detection for c_in unit

36 ED <= (temp1 (2*R+P) xor c_in) AND cp_o;

37 c_out <= c_in xor ED;

38

39 -----BLOCK 2: middle bits ---------------------

40 --SUM for intermediate Bits

41 temp1 <= std_logic_vector(signed('0'&In1(2*R+P-1 downto R+P)

&'1')+signed('0'&In2(2*R+P-1 downto R+P)&cg_o1)); --temp1(2R+P

)=carry out

42 sum1_middle <= temp1 (2*R+P-1 downto R+P);

43

44 --carry generation for Most Significant block with CG Unit

45 cg_o1 <= (In1(R+P-1) and In2(R+P-1)) or (c_in1 and (In1(R+P-1)

xor In2(R+P-1)));

46 cp_o1 <= In1(R+P-1) xor In2(R+P-1);

47

48 --Error detection for c_in unit

49 ED1 <= (sum1_LSB(R+P) xor c_in1) AND cp_o1;

50 c_out1 <= c_in1 xor ED1;

51

52 ----BLOCK 3: LSBs ------------------------

53 --SUM for Least Significant Bits

54 sum1_LSB <= std_logic_vector(signed('0'&In1(R+P-1 downto 0)) +

signed('0'&In2(R+P-1 downto 0))); --sum1_LSB(R+P)=c_out ,

sum1_LSB(R+P-1:0)=out_A(R+P-1:0)

55

56 --sum out is composed of outcomes of the three sub -blocks

57 out_A <= sum1_MSB(N-1 downto 2*R+P)&sum1_middle (2*R+P-1 downto R

+P)&sum1_LSB(R+P-1 downto 0);

58

59 end structural;

./Appendix/vhdl�les/GeAr_Adder_Nbits_P0_3Blocks.vhd

79

Bibliography

[1] K. Sayood. Introduction to Data Compression - Third Edition, pp 571-614. San-Francisco,
CA, USA:Morgan Kau�man Publishers Inc., 2005. 2

[2] A.Giannini. Complexity analysis and optimized interpolation �lter hardware architecture
for HEVC. Turin, Dec 2017. 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 54, 57, 58, 59, 60, 61, 62

[3] G.J.Sullivan, J-R Ohm, W-J.Han, T. Wiegand. Overview of the High E�ciency Video
Coding (HEVC) Standard. IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 22, pp. 1649-1668, Dec 2012. 6, 7

[4] F. Bossen, B. Bross, K. Suhring, D. Flynn. HEVC Complexity and Implementation Anal-
ysis. IEEE Transactions on Circuits and Systems for Video Technology,vol.22, pp. 1685-
1696, Dec 2016.

[5] G. Pastuszak. High-Speed Architecture of the CABAC Probability Modeling for
H.265/HEVC Encoders. In 2016 International Conference On Signals and Electronic Sys-
tems (ICSES), Sept 2016.

[6] ITU-T Video Coding Experts Group and ISO/IEC Moving Picture Experts Group.
HM16.15. https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.15/
5, 6, 22, 48, 56

[7] A. Giannini Interpolation Filters. https://github.com/Jak94/InterpolationFilters 8

[8] C. M. Diniz, M. Sha�que, S. Bampi, J. Henkel A recon�gurable hardware architecture
for fractional pixel interpolation in high e�ciency video coding. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 34, pp. 238-251, Feb
2015. 10

[9] J. R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand Comparison of the
coding e�ciency of video coding standards - including high e�ciency video coding (hevc).
IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, pp. 1669-1684,
Dec. 2012. 22

[10] M. Macedo, L. Soares, B. Silveira, C. M. Diniz, E. A. C. da Costa Exploring the Use of
Parallel Pre�x Adder Topologies into Approximate Adder Circuits. IEEE Transactions on
Circuits and Systems, pp. 298-301, 2017. 24

[11] D. Esposito, D. De Caro, E. Napoli, N. Petra, A. G. M. Strollo Variable Latency Spec-
ulative Han-Carlson Adder. IEEE Transactions on Circuits and Systems, vol. 62, pp.
1353-1359, May 2015. 26

80

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.15/
https://github.com/Jak94/InterpolationFilters

Bibliography

[12] D. Esposito, D. De Caro, A. G. M. Strollo Variable Latency Speculative Parallel Pre�x
Adders for Unsigned and Signed Operands. IEEE Transactions on Circuits and Systems,
vol. 63, pp. 1200-1209, Aug 2016. 27, 28, 33

[13] S. Mazahir, O. Hasan, M. Sha�que Adaptive Approximate Computing in Arithmetic Dat-
apaths. IEEE Design and Test, pp. 1-8, 2017. 37

[14] M. Sha�que, W. Ahmad, R: Ha�z, J. Henkel A low latency generic accuracy con�gurable
adder. in Proc 52nd Annual Des. Autom. Conf., p.86, 2015. 38

[15] G. Casella, R. L. Berger Statistical Inference (2nd ed.) p.102. Duxbury Advanced Series,
2001. 45

[16] E. Nogues, D. Menard, and M. Pelcat Algorithmic-level approximate computing applied
to energy e�cient hevc decoding IEEE Transactions on Emerging Topics in Computing,
vol PP.,no 99, pp. 1-12, 2016

[17] F. Bossen Common test conditions and software reference con�gurations Joint Collabo-
rative Team on Video Coding (JCT-VC) of ITU-T SG 16 Wp 3 and ISO/IEC JTC 1/SC
29/WG 11, Geneva, January 2013. 12th meeting.

23, 48, 49, 50, 51, 52, 56

81

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction to HEVC Interpolation Filters
	Video Compression
	Video Representation
	Video Structure

	High Efficiency Video Coding
	HEVC Structure and Coding
	Software timing analysis

	Fractional Sample Interpolation
	Filter Design

	Hardware Architecture for Interpolation Filters
	2D DCT-IF Legacy Architecture Rescheduling
	A multiplier less solution for DCT-IF 1D Architecture
	Architecture Implementation
	Datapath
	FSM

	Processing Element

	Chroma Legacy Architecture
	Data Analysis
	Cut Architecture
	Filter Design
	Interpolation Filter Output
	HEVC Output

	Parallel & Prefix Adders
	General Structure
	Han-Carlson Adder
	Approximate Han-Carlson Architecture

	Ladner-Fischer Adder
	Approximate Ladner-Fischer Architecture

	Interpolation Filters Output
	Design Synthesis Results

	Luma Legacy Architecture
	Data Analysis
	Parallel & Prefix Architecture
	Carry Save Adder Architecture
	Filter Design with CSA

	Generic Accuracy Configurable Adders
	Complementary Modules in Arithmetic Datapaths
	General Structure

	Simulations
	Filter Output
	HEVC Output

	Design Synthesis Results

	Approximate Computing on DCT-IF architecture
	General Structure
	Hardware Design
	Adders Topologies

	Simulation
	Design Synthesis Results

	Conclusion
	Appendices
	Parallel & Prefix Adders
	Generic Accuracy Configurable Adders
	Bibliography

		Politecnico di Torino
	2018-09-10T07:20:36+0000
	Politecnico di Torino
	Maurizio Martina
	S

