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Nomenclature

µE Bearing friction coefficient

µp Housing pins friction coefficient

µs Output rollers friction coefficient

ψ Angular position of output shaft

ϕ Angular position of input shaft

Cs Output constant load (torque)

CXi
, CYi Components of the forces exchanged between disk and pins

e Eccentricity

i Gearbox ratio

Kc Amplitude factor of forces exchanged between output rollers and disk

Ks Amplitude factor of forces exchanged between housing pins and disk

kcy Linear/Non-linear stiffness constant

MCi
Net torque exchanged between disk and pins

mcy Cycloidal disc mass

MSj
Net torque exchanged between disk and rollers

Nc Number of output rollers

p Exponent of non-linearity

r1 Primitive radius

r2 Pins distribution radius

rc Housing pins radius
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rc Output rollers radius

Rs Roller distribution radius

SXj
, SYj Components of the forces exchanged between disk and rollers

x Correction coefficient

z1 Number of teeth of cycloidal plate

z2 Number of housing pins
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Abstract

The main aim of the following work is to underline the essential keys to figure
the cycloidal reducer’s dynamic behaviour out. In order to make an useful and
meaningful contribution, the research work should be divided in two pivotal parts:
the experimental one and the computational and modelling one. The experimental
measurements on the dynamics of the reducer were performed by the researchers
of Lodz’s polytechnic University (Lodz, Poland), while the modelling work was ac-
complished by the author of this thesis with the fundamental guide of the prof.
Jean-Luc Dion and the prof. Nicolas Peyret (SUPMECA, Saint Ouen, Ile-de-Paris).
The fruit-full collaboration between the two researcher institutes (SUPMECA and
Lodz) lead to an important contribution to the topic and, at the end, this allows us
to publish a scientific article (Mechanism and Machine Theory, Elsevier).
The personal contribution- given to the topic of dynamic analysis of the cycloidal
reducer- consists in finding out a mathematical model able to fit the experimental
efficiency. The modelling work has the following pivotal points:

• Analysing the experimentation obtained through the test bench in Lodz and
comparison with PSA’s experimentation (one of the starting point was the
experimentation done at PSA). All these let to understand fully the particu-
larities of the dynamic behaviour of the machine and it allows to start thinking
about the kinematic and dynamic analysis;

• Writing the kinematic and dynamic equations for the rigid bodies of the re-
ducer. Moreover, a particular focus is given to the geometric features of the
cycloidal disc;

• Comparing the efficiency coming from the rigid bodies model with the exper-
imental efficiency. The rigid bodies model permits to get a first optimization
process of the main features of the machine and to describe effectively the
dynamics of the exchanged forces;

• Because of the lack of correspondence between experimental data and theo-
retical previsions with the rigid bodies model, some elastic dynamic effects
has to be kept into account (linear stiffness model and non-linear stiffness
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model). The best suiting model lets to have a dynamic optimization of the
main features of the machine.

The sequence of the chapters follows with minutia the path followed by the candidate
in addressing the issue. Moreover, the aforesaid sequence aims to guide the reader
to what were the main reasons that justified the most important choices of the thesis
work.
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Abstract (Italian version)

L’obiettivo principale del seguente lavoro di tesi è quello di individuare le chiavi es-
senziali di interpretazione della dinamica del riduttore cicloidale. Questa macchina
presenta caratteristiche tecnologicamente interessanti: ridotto ingombro con ele-
vato rapporto di riduzione, -se ben progettata- a regime livello di vibrazione min-
imo. Per rendere il lavoro incisivo ed efficace, si reputa necessario riferirsi a due
metodi di indagine: quello sperimentale e quello computazionale e modellistico. Il
lavoro di indagine sperimentale -sebbene in parte compiuto dal SUPMECA (Institut
Supèrieur de Mècanique de Paris)- è quello che fa riferimento a quanto ottenuto dai
colleghi del Politecnico di Lodz (Lodz University of Technology), con i cui ricerca-
tori c’è stata un’importante collaborazione per la stesura di un articolo che riguarda
in parte le tematiche affrontate in questo lavoro di tesi. La parte modellistica e
computazionale è stata invece svolta dal candidato sotto la supervisione del prof.
Jean-Luc Dion e dal prof. Nicolas Peyret. La proficua e piena collaborazione tra
i due istituti di ricerca (SUPEMCA e Lodz) ha consentito di dare un importante
contributo al tema. Il contributo personale -dato al tema dell’analisi dinamica del
riduttore cicloidale- consiste nell’aver posto le basi di un modello matematico in
grado di giustificare gli andamenti sperimentali dell’efficienza. Il lavoro di model-
lazione ha i seguenti punti cardine:

• Analisi dei risultati ottenuti dalla sperimentazione proveniente da Lodz, con-
frontando con i risultati ottenuti in un banco prova analogo al centro ricerca
PSA. Questo confronto ha consentito di comprendere appieno le peculiarità
della dinamica della macchina in questione, ponendo le basi per la scrittura
delle equazioni cardine;

• Scrittura delle equazioni cinematiche e dinamiche per corpi più rilevanti del
riduttore (considerandoli perfettamente rigidi). Inoltre, una particolare atten-
zione merita il disco cicloidale e la sua peculiare geometria;

• Confronto dei risultati esiti dalla sperimentazione e quelli proveninti dalle sim-
ulazioni. Il modello a corpi rigidi (rigid bodies model) permette di ottenere
un primo processo di ottimizzazione dei parametri geometrici principali della
macchina. A causa della mancanza di corrispondenza tra dati sperimentali
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e previsioni teoriche con il modello a corpi rigidi, vengono introdotti effetti
elastici dinamici, prima lineari (linear stiffness model) e poi non lineari (non-
linear stiffness model). Quest’ultima introduzione consente di ottenere una
significativa corrispondenza fra sperimentazione e previsioni teoriche.

La scansione dei capitoli segue con minuziosità il percorso seguito dal candidato
nell’affrontare la questione. Inoltre, la suddetta scansione vuole guidare il lettore a
quale siano state le principali motivazioni che hanno giustificato le scelte più rilevanti
che contraddistinguono il lavoro di tesi in questione.
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Chapter 1

Introduction to cycloidal reducers

In this first chapter, the industrial and technological context - that motivates the
profitable work about the cycloidal reducers- will be introduced. To fully understand
the operating principles of the reducer, some information about history, technolog-
ical context, main constructive elements are presented. Moreover, we are going to
estimate the gear ratio and the parameters that have impact on it, because of know-
ing that one of the best properties of the cycloidal gearbox consists exactly in high
speed ratio in a small size. The background presented in this chapter allows to get
a general overview of the basic features of the reducer.

1.1 Constructive elements and main features of

the reducer

Cycloidal speed reducers belong to the newest generation of mechanical gears. The
good performances encourage increasingly applications in modern engineering. The
contexts, where the cycloidal gearbox could replace the traditional gearboxes, are
robust system, robots and all the applications that require high speed and high gear
ratio in a small size. The high speed ratio is provided by the peculiarities of the
structure that is summarised (without the housing) in figure 1.1.
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1.1. Constructive elements and main features of the reducer

Figure 1.1: Cycloidal reducer with the main elements highlighted (Lodz’s machine)

Figure 1.2: Cycloidal reducer: front view (Lodz’s machine)
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1.1. Constructive elements and main features of the reducer

Then- with regard to the tested machine- we have all the mechanical parts rep-
resented in the figure 1.3.

Figure 1.3: Cycloidal reducer: technical draws of Lodz’s machine
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1.1. Constructive elements and main features of the reducer

The cycloidal gearbox consists in four main elements:

1. Input shaft: it involves the lower torque and the higher speed and it is coupled
directly with the cycloidal plates. Moreover, the input shaft has two eccentric
rollers bearings - as figure 1.3 shows-;

2. Cycloidal plates: there is the possibility of adding more than one plate, in
order to reduce the strains on the cycloidal plates themselves- especially for
high loads-. However, the disks must be mounted in such way to decrease
vibrations. Due to the introduction of the eccentric bearing, there is an ec-
centricity between the axes of the input shaft and the cycloidal plate, which
are mounted out-of-phase. This eccentricity lets the disks centres rotate in the
housing, making the engagement possible. The cycloidal wheels are equipped
with teeth whose number is lower than the housing pins, causing the reverse
orbit rotation within the housing itself;

3. Housing with internal pins: the pins (that stay in fixed state) mesh with the
teeth of the cycloidal disks;

4. Output shaft with rollers: the rollers are coupled with the cycloidal disks
through the internal lobes which makes possible to transfer the motion from
the plates to the output shaft. Furthermore, the output shaft involves the
higher torque and the lower speed.

Then, the high-speed shaft is linked to the cycloidal plates through a key connection,
this rigid connection causes the eccentric cycloid gear rotation. This lets the disks
roll over the ring gear pins (housing pins). The junction between the output rollers
and the plates by the internal holes makes the rotation of the output shaft possible.
These holes are bigger that the dimension of the output rollers and this allows the
rollers to rotate around the holes themselves. All these engagements explain why
the rotation of the output shaft has the same direction of the rotation of the input
shaft. Analysing these main features, it appears clear that the cycloidal gearboxes
in comparison with the traditional ones have a more complex structure, with the
adding of new kind of elements to replace the gears. Moreover, it is possible to
get high gear ratio with a single stage, which affects the overall dimensions of the
gearbox. In some applications, the dimension could be one of the most restrictive
design and in-service condition.
Between the traditional gearboxes and the cycloidal drive, the precision needed in
the applications will become one of benchmarks for the design choice. If backlash
and positioning accuracy are crucial, then cycloidal gearboxes offer the best choice.
In ratios from 3 : 1 to 100 : 1, planetary gearboxes offer the best torque density,
weight and precision. Anyways, if the required ratio goes beyond 100 : 1, cycloidal
gearboxes hold advantages because stacking stages are unnecessary, so the gearbox
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1.2. Planetary representations and Gear ratio

can be shorter and less expensive.
Conversely, cycloidal reducers are larger in diameter for the same torque but are not
as long. The compound reduction cycloidal gear train handles all ratios within the
same package size, so higher-ratio cycloidal gear boxes become even shorter than
planetary versions with the same ratios.
Backlash, ratio, and size provide engineers with a preliminary gearbox selection.
But choosing the right gearbox also involves bearing capacity, torsional stiffness,
shock loads, environmental conditions, duty cycle and life.
Both cycloidal and planetary reducers are appropriate in any industry that uses ser-
vos or stepper motors. And although both are epicyclical reducers, the differences
between most planetary gearboxes consist more in gear geometry and manufacturing
processes rather than in principles of operation.
To summarise all the discussions, we can enumerate the benefits of planetary gear-
boxes:

1. High torque density (especially for lower loads);

2. Load distribution and sharing between planet gears;

3. High efficiency;

4. Low input inertia;

5. Low backlash;

6. Low cost.

In opposition, for the cycloidal gearboxes we have as benefits:

1. Zero or very-low backlash stays relatively constant during life of the applica-
tion;

2. Rolling instead of sliding contact;

3. Shock-load capacity;

4. Ratios exceeding 200 : 1 in a compact size;

5. Quiet operation.

1.2 Planetary representations and Gear ratio

The first step before analysing the experimentation and setting the mathematical
model able to describe the dynamic behaviour of the cycloidal reducer, consists in

5



1.2. Planetary representations and Gear ratio

achieving the overall gear ratio. This goal will be got through the analogy with the
epicyclical gearing.

Figure 1.4: Cycloidal reducer whose elements are presented in analogy with epicycli-
cal gearing

Referring to figure 1.4, we may compare analogous elements:

1. the housing with its fixed pins plays the role of the ring;

2. the output rollers with the low-speed shaft and the cycloidal plate -all these
elements are moving at the same speed due to the homo-kinetic of the coupling
between the rollers and the internal holes- stay for the planet wheels;

3. the input shaft, instead, has the role of the carrier.

Anyways, we can describe the motion referring to the carrier - as Willis formula’s
approach suggests-:

ωS − ωC
ωR − ωC

=
z1
z2

(1.1)

where:
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1.2. Planetary representations and Gear ratio

1. ωR is the rotational speed of the housing as analogous to the ring;

2. ωC is the rotational speed of the input shaft as analogous to the carrier;

3. ωS is the rotational speed of the cycloidal plate(s) as analogous to the planet
wheels;

4. z1 is the number of teeth of the cycloidal plate;

5. z2 is the number of housing pins;

The most common working condition has the housing in a fixed state, then:

ωR = 0 (1.2)

1− ωS
ωC

=
z1
z2

(1.3)

i =
ωC
ωS

=
z1

z2 − z1
(1.4)

Where i indicates the gearbox ratio. As demonstrated, the gearbox ratio depends
only on the number of the teeth of the cycloidal plate and of the number of housing
pins.
The number of disks mounted does not affect the kinematic of the transmission: if
we did again all the passages on the system shown in the figure 1.5(with two plates
in series), we would obtain that the overall gearbox ratio is the same of a single stage
of the gearbox. In other words, the adding of more than one disk lets to reduce both
the vibration level and mechanical stress for each disk, but it does not affect the
overall gearbox ratio.
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1.3. Literature context on cycloidal reducer

Figure 1.5: Cycloid gear kinematic: R stands for the ring/housing pins, S for plan-
etary wheels/cycloidal plate and C for the carrier/input shaft

1.3 Literature context on cycloidal reducer

This study has been performed with the support of PSA Automotive in the technical
context of electric car developments. Compacity, high speed ratio are important
benefit of this technology. In this work, we highlight some possible way to optimise
the efficiency of the cycloidal drive. The cycloidal drive -through the important
experimentation made during the last years and the new interest in applications -
has shown relevant operating properties: long and reliable working life, large range of
gear ratio in comparison with the traditional gearboxes, if it is well designed minimal
vibrations and low noise, high overload capacity, reverse applications as a reducer,
high efficiency with increasing load, compact design with small size. All these reasons
encourage both the experimentation and the computational work with the main
purpose to find the pivotal features to raise up the efficiency. The first achievement
is that a new design has to take account of the experimental data analysis. T.
Mackic et al.([1]) investigated the influence of geometrical parameters on the cycloid
drive efficiency. They summarized that the optimum choice of design parameters
has a significant impact on its efficiency. M. Blagojevic et al.([8]) developed a
model of cycloid drive which takes into account only the friction in contact of the
cycloid disc and housing rollers, while occurrence of friction in other locations was
neglected. They noticed that the appearance of friction has a significant impact on
the core strength parameter of the cycloidal speed reducer. In an other paper M.
Blagojevic et al. ([2]) introduce a dynamic model of the cycloid drive which take

8



1.4. Technological variants and applications

into consideration the elastic connection with stiffness and dumping between: input
shaft with eccentric cam – cycloid gear, cycloid gear – housing roller and cycloid
gear – output shaft pin. The simulation shows that the biggest influence on dynamic
operating of the cycloid drive comes from the coefficient of the damping during the
contact between the cycloid gear tooth and the central gear roller as well as from its
stiffness. For the main geometric modelling of the cycloidal disk the main approach
is highly inspired by the classical one ([4],[5],[10],[5], [17]). Moreover, the basic
of kinematic analysis has as staring point the work of J.H. Shin and S.M. Kwon
([7]) whose great intuition is to apply the Kennedy theorem on the cycloidal disc
and to introduce an mathematical analysis on cycloidal disc’s kinematic. In order
to understand fully the technological context of applications, some fundamental
lectures are [13], [?] and [14].

1.4 Technological variants and applications

The name Cyclo derives from Kyklos- the Greek word for circle and refers to the
cycloidal disk, whose outer profile describes a cycloidal curve. The unique operating
principle was invented in 1931 by the German engineer Lorenz Braren (1886-1953) -
that was a German designer, entrepreneur and genealogist- and the ingenious design
has continued its progressive development up to the present day. In order to realise
the path-breaking extent of the cycloidal drive in applications, we should make a
summary of the main differences between the cycloidal gearboxes and the traditional
one -as the following table shows-.

Table 1.1: Difference between cycloidal gearboxes and traditional ones

Cycloidal drive Planetary gearbox
Four main components: input shaft, cy-
cloidal disc, housing with pins and out-
put shaft

Three main members: sun gear, multi-
ple satellite or planet gears and an in-
ternal ring gear

Cycloidal Gears are very good for ex-
tremely heavy loads

Planetary Gears may run at higher
speeds

Cycloidal Gears work at higher ratio’s
allowing them to be driven with less
power

Planetary Gears will work with very low
ratios

Cycloidal Gears are best in applications
for high positioning accuracy and when
a minimum lost motion is required

Planetary Gears are good if positioning
accuracy and lost motion are not a con-
cern

Every times we should choose- for a particular application- whether to resort or not
to the cycloidal drive, it is compulsory keeping into account the following issues:

1. Environmental conditions (operating temperature, dust, ...);
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1.4. Technological variants and applications

2. Physical size, generally, any shape or space requirements;

3. Maintenance and lubrication access;

4. Torsional rigidity of the main elements of the reducer itself.

5. Kind of duty cycle.

According to the aforementioned conditions, we can finally define the typical field
of applications for the cycloidal drive and the planetary gearboxes:

Table 1.2: Gearbox industrial applications

Cycloidal drive Planetary gearbox Both
Machine tools Linear actuators Printing
Robotics Textile machines Automotive
Tool changers Material Handling
Tilt System Packaging machine

Nowadays, the most relevant manufacturers of cycloidal gearboxes are Sumitomo
([15]) and Nabtesco ([17]). In order to figure this technology out, we are going to
take a look of one example from the commercial catalogue of Sumitomo.
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1.4. Technological variants and applications

Figure 1.6: Sumitomo Drive 6000 ([15])

Referring to the model of the figure 1.6, since analysing the technical data we
become aware of the extremely revolutionary properties of this reducer: for example
for a reducer 0,37kW , it is possible to have ratios variable between 25 and 731 with
maximum size between 70 mm and 102 mm.
As Sumitomo ([15]) declares - to make the final summary- we can enumerate the
pivotal benefits of this technology:

1. Extreme shock overload capacity:
Since the cycloidal gearbox’s system distributes the load to numerous cycloid
teeth, it can withstand extreme momentary intermittent shock overloads in
emergency situations;
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1.4. Technological variants and applications

2. Compact size;

3. Overall economy:
Competitive initial cost, high reliability, long life and minimum of mainte-
nance;

4. Capacity for frequent start- stop and severe reversing:
the inertia the cycloidal speed reducer is reduced to a minimum, so that it
responds quickly in these applications;

5. Low noise:
when compared with the sliding tooth contact of conventional helical gears,
the cycloidal system provides reduced noise level;

6. High efficiency at high ratios:
torque transmitting parts have a rolling action with minimal friction;

7. No thermal factor limitations:
Almost friction-less operation all but eliminates the conventional limitations
due to heat;

8. High durability:
Tests on cycloidal reducers show negligible wear after 50,000 hours, and expe-
rience shows that future wear and tear is insignificant;

All in all, the most important disadvantage is the not extremely high efficiency
especially at low load, the main goal of this work is to focus on the geometrical
feature and the dynamic operating conditions that could let the efficiency raise up.
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Chapter 2

Geometrical characterization and
design of the cycloidal plate

Having assimilating all the peculiarities of the cycloidal reducers, a specific focus has
to be given to the main geometrical features of the different elements forming a part
in the cycloidal gearbox. Then, the fundamental goal of this chapter is to underline
the specific features by raising the awareness of how the geometry impacts on the
gearbox’s performance. Undoubtedly, the geometry of the cycloidal plate will have
a specific role due.

2.1 Analytical determination of the cycloidal ge-

ometry (theoretical and working profile)

The principal aim of this section is to summarize all the geometrical equations
applied to cycloidal disc in order to get the mathematical equations of teeth pro-
file. Firstly, it should be explained how the geometrical elements of the cycloidal
wheel are obtained by generating equations for the teeth profile, equations for basic
diameters and other geometrical features. Then, two fundamental definitions are
introduced to design the cycloidal plate: the theoretical profile and the working one
(referring to figure 2.1):

1. The theoretical profile is the curve achieved by rolling without slipping of a
circle C0 (rolling circle with radius rw0 and centre O0) on the other circle C1

(basic circle with radius r1 and centre O1): the trajectory of the point Oc

(distant e0 from O0 and moving with the circle C0) must be considered the
theoretical profile of the cycloidal disc.

2. The working profile is an equidistant curve from the theoretical profile obtained
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2.1. Analytical determination of the cycloidal geometry (theoretical and working profile)

considering the successive envelope positions of C0 rotating on C1. This curve
represents the real external technological profile of the cycloidal plate.

Referring to figure 2.1, the theoretical and working profile are shown in their setting.

Figure 2.1: Design of the teeth profile of cycloidal disk: C0 rolling circle, C1 basic
circle, P working profile, T theoretical profile ([5])

Before getting the main geometrical equations, a specific topic is introduced
about the epicycloid curve: this curve is produced by tracing the path, generated
by a chosen point of a select circle, called epicycle. This is rolling without slip-
ping around another fixed circle. We may have three kind of epicycloids: normal,
shortened and extended. Looking at figure 2.2, to generate the normal epicycloid,
point Oc is moving with the circle with radius r0, rolling without slipping around
the guiding circle with radius r1. Moreover, we have that e0 = r0.
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2.1. Analytical determination of the cycloidal geometry (theoretical and working profile)

Figure 2.2: Curve generating for normal epicycloid([5])

Referring to figure 2.3, the geometry is produced in the same way as the normal
epicycloid, except that Oc lies in the perimeter of rolling circle. In fact, we have
e0 < rc.

Figure 2.3: Curve generating for normal shortened([5])
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2.1. Analytical determination of the cycloidal geometry (theoretical and working profile)

The basic geometry could be defined by quantities in Table 2.1.

Table 2.1: Main geometrical quantities to define the external profile of the cycloidal
plate

Symbol Short definition
r0 Radius of epicycloid
e0 Epicycloids epicycle
rc Housing pins radius
r1 Primitive radius
ϕ Rotation angle of epicycle/of input

shaft
ψ Rotation angle of the wheel

In order to determine the teeth profile, two moving Cartesian coordinate systems
are needed: ξO0η is linked to the generating circle C0 and XO1Y is connected with
the basic circle (figure 2.1). Since rc is the radius of the housing pins, the equation
of the profile generating curve in the system ξO0η is:

ξ2 + (η + e0)
2 = r2c (2.1)

Where e0 -the construction distance between Oc and O0 -is called also eccentricity of
the profile cutting instrument. At the same time, e0 is related to the module circle
and it is linked to the radius of C0, according to:

m = 2r0 (2.2)

e0 =
m

2
(1− x) (2.3)

Where m is the module circle and it is used as a base linked to the parameters of
the profile cutting instrument. Moreover, x is the coefficient of modification that
could be demonstrated to be one of the most impacting geometrical feature of the
reducer because of its effect on efficiency. We can add the following relationships:

rwo = r0 =
m

2
(2.4)

a = r1 + rwo =
mz1

2
+
m

2
=
m

2
(z1 + 1) (2.5)

To understand fully the forming process of the cycloidal disc, we should focus more
on the process of profile cutting. At first, we define a as the distance between O1

and O0 and X as the profile cutting instrument that could be expressed as:

X = x
m

2
(2.6)

Where x could be positive or negative, so we can have:
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2.1. Analytical determination of the cycloidal geometry (theoretical and working profile)

1. x = 0 no modification;

2. 0 < x < 1 positive gears;

3. x < 0 negative gears;

4. x = 1 border gears

If we are referring to transmissions with a difference of teeth - between cycloidal
plate’s teeth and housing pins- equal to one, the practical choice is to have only
positive coefficient of modification; this is to avoid that the teeth profile will be
undercut. Referring to figure 2.4, we can define the following geometrical features:

1. Step of pith profile p:
p indicates the distance between two homonymous points of the profile.

p = πm (2.7)

2. Pitch diameter s:

s = 2πr1 (2.8)

3. Diameter of the theoretical dedendum circle dTf1 :

dTf1 = 2(r1 +X) = m(z1 + 1) (2.9)

4. Diameter of the theoretical addendum circle dTa1 :

dTa1 = dTf1 + 2(2e0) = m(z1 + 2− x) (2.10)

5. Diameter of the working profile dedendum circle df1 :

df1 = dTf1 − 2rc = m

(
z1 + x− rc

m

)
(2.11)

6. Diameter of the working profile addendum circle da1 :

da1 = dTa1 − 2rc = m

(
z1 + 2− x− rc

m

)
(2.12)
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Figure 2.4: Gear dimensions([5])

The analyses of the formulas lead to the following conclusions:

1. The modification of the profile cutting instrument does not change the diam-
eter of the pitch circle of the epicycloidal wheel;

2. By increasing x the tooth depth decreases;

3. The addendum and the dedendum circles coincide and the tooth depth is equal
to zero when x is equal to 1.

Once all the geometrical features have been introduced, we are going to get the
mathematical formulation of the theoretical and working profile. To make a sum-
mary - as it is clear in figure 2.1 -, there are the fixed reference system X1O1Y1, the
rotating ones XO1Y and ξO0η. It is possible to link all these reference systems:[

~ξ
~η

]
=

(
cosψ − sinψ
sinψ cosψ

) [
~X1

~Y1

]
(2.13)
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2.1. Analytical determination of the cycloidal geometry (theoretical and working profile)

[
~X1

~Y1

]
=

(
cosϕ − sinϕ
sinϕ cosϕ

) [
~X
~Y

]
(2.14)

[
~ξ
~η

]
=

(
cosϕ cosψ − sinϕ sinψ − cosψ sinϕ+ sinψ cosϕ
cosψ sinϕ+ sinψ cosϕ cosϕ cosψ − sinψ sinϕ

) [
~X
~Y

]
(2.15)

[
~ξ
~η

]
=

(
cos(ψ + ϕ) − sin(ψ + ϕ)
sin(ψ + ϕ) cos(ψ + ϕ)

) [
~X
~Y

]
(2.16)

The rotations of the circle C1 and of the circle C0 are not independent, but rather
they are kinematically linked by the following relation, remembering that the number
of teeth of the cycloidal disc is indicated with z1 (ψ and ϕ shown in figure 2.1):

ψ

ϕ
=

r1
raw

= z1 (2.17)

The theoretical profile is the path of point Oc and it must be obtained by rolling
without slipping of C0 on C1, we can use the vector sum addition to get the theo-
retical profile:

−−−→
O1Oc =

−−−→
O1O0 +

−−−→
O0Oc = a

−→
Y1 − e0~η (2.18)

−−−→
O1Oc = a(sinϕ ~X + cosψ~Y )− e0

[
sin(ψ + ϕ) ~X + cos(ψ + ϕ)~Y

]
(2.19)

After some mathematical passages, we could gain the coordinates of the trajectory
of the theoretical profile:{

XT = a sinϕ− eo sin(ψ + ϕ) = a sinψ − e0 sin
[
ψ(1 + z1)

]
YT = a cosϕ− eo cos(ψ + ϕ) = a cosψ − e0 cos

[
ψ(1 + z1)

] (2.20)

XT =
m

2

[
(z1 + 1) sinϕ− (1− x) sin(ϕ(z1 + 1))

]
YT =

m

2

[
(z1 + 1) cosϕ− (1− x) cos(ϕ(z1 + 1))

] (2.21)

These equations make sense only if 0 < x < 1. After that, we might get the
equations for working profile: the working profile could be defined as the trajectory
of the points equidistant from the theoretical profile. It is well-known that:

−−−→
O1Oc =

[
XT

YT

]
(2.22)

Then, we can get the tangent vector to theoretical profile as follows (figure 2.5):

~t =
1

‖
−−−→
O1Oc ‖

d
−−−→
O1Oc

dϕ
(2.23)
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~t =
1√(

d

dϕ
XT

)2

+

(
d

dϕ
YT

)2

d
−−−→
O1Oc

dϕ
(2.24)

Figure 2.5: Geometric definition of the construction elements of working profile(P)
by knowing the theoretical profile (T)

Because ~t and ~n are reference versors of orthogonal axes (figure 2.5), we could
obtain the normal versor from the theoretical profile by knowing ~t and, then, the
trajectory of the point C:

~n · ~t = ~n ·
[
tx
ty

]
= 1 =⇒ ~n =

[
ty
−tx

]
(2.25)

Then: −−→
OcC = rc~n (2.26)

Finally, after some mathematical passages we are going to get the mathematical
formulation of the working profile.

XW = XT + rc

d

dϕ
YT√(

d

dϕ
XT

)2

+

(
d

dϕ
YT

)2

YW = YT − rc

d

dϕ
XT√(

d

dϕ
XT

)2

+

(
d

dϕ
YT

)2

(2.27)

The main formulas of the theoretical profile and of the working one can be introduced
in Matlab in order to lay the foundations of the following modelling work.
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Figure 2.6: Matlab graphics to evaluate working and theoretical profile

Figure 2.7: Matlab graphics to evaluate working and theoretical profile with rolling
circles
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2.2. Theoretical and working curvature radius of the cycloidal profile

2.2 Theoretical and working curvature radius of

the cycloidal profile

To study the manufacturing practicability and the functionality of the cycloidal
plate, it is important to analyse in detail the particular shape of the teeth in coupling
with the pins. So, we are going to make a mathematical study on the external
profile of the cycloid. At first, we are going to estimate the curvature radius of the
theoretical profile ρT -using a well-known geometrical relationship to calculate the
curvature radius since a curve given parametrically-:

ρT =
(X ′T

2 + Y ′T
2)3/2

X ′T Y
′′
T − Y ′T X ′′T

(2.28)

Where:

• X ′T =
dXT

dϕ
and Y ′T =

d2YT
dϕ

;

• X ′T =
d2XT

dϕ2 and Y ′′T =
d2YT

dϕ2 .

By using the equations of the theoretical profile (2.21), the equation of the theoretical
curvature radius will be [5]:

ρT (ϕ) =
m

2
(z1 + 1)

[1 + (1− x)2 − 2(1− x) cos(z1ϕ)]3/2

1 + (1− x)2(z1 + 1)− (1− x)(z1 + 2) cos(z1ϕ)
(2.29)

At this point, it is immediate to write the mathematical equation of the working
curvature radius ρW and to get the graphic of figure 2.9:

ρW (ϕ) = ρT (ϕ)− rc (2.30)

Figure 2.8: Convex and concave section
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Figure 2.9: Working curvature radius ρW versus rotation angle ϕ

It is useful to analyze the trend of the curve ρW in order to evaluate any critical
issues and design limits on the coupling of the teeth with the pins. By studying the
trend of ρW (ϕ) (figure 2.9), we may deduce:

1. Where the sign of ρW varies with a jump, then there is the transition of shape
from convex (ρW > 0) to the concave (ρW < 0);

2. When the shape is concave, it should be avoided that |ρW | > rc as it would
correspond to the physical condition of entry in the wheel in a concave sec-
tion too small to guarantee the punctual contact foreseen with the housing
pins, therefore, this contact would not be functional for the purpose of the
transmission.

For the second points- in our case of analysis- we have rc = 8,5 mm and- as it is
deducible looking at the figure 2.9- the contact between wheel and pins is guaranteed.
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2.3 Distinctive meshing angles

We are going to introduce the pressure angle αW that is the angle between the tooth
profile and a radial line to its pitch point. In involute teeth, it is defined as the angle
formed by the radial line and the line tangent to the profile at the pitch point. The
importance of the pressure angle consists in its giving the direction normal to the
tooth profile, and because the pressure angle is strictly linked to the mechanical
stresses introduced. According to [5], we have:

αW (ϕ) = arcsin
cos(z1ϕ) + x− 1√

1 + (1− x)2 − 2(1− x) cos(z1ϕ)
(2.31)

In figure 2.10,the pressure angle αW is plotted as a fuction of the rotation of the
plate ψ = z1ϕ with different coefficients x. It is obvious that its maximum value is
90◦ and it can be positive or negative. Moreover, looking at figure 2.10, by increasing
the value of x we obtain higher average values of the angle αW during transmission.

Figure 2.10: Pressure angle αW

Another pivotal geometrical quantity in the analysis of the transmission is the
transmitting angle θ, because of possible jamming. The transmitting angle is the
angle between the direction of the net thrust exchanged between plate and housing
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pin and the direction of the speed of the contact point seen belonging to plate. It
must satisfy the following condition:

θmax ≤ θallowable (2.32)

The introduction of θallowable is necessary to avoid that- in order to guarantee the
motion’s transmission- we have excessive excitement. Sometimes it is better to use
γ- known as angle of motion transfer- instead of θ, where γ is the complementary
of θ. Consequently, the relationship (2.32) will become:

γmin ≥ γallowable (2.33)

In figure 2.11 it is possible to deduce the effects of correction coefficient x on the
angle of motion transfer. The figure is obtained by the following formula for different
x values:

γ(ϕ) = arcsin
(1− x) sin (z1ϕ)√

1 + (1− x)2 − 2(1− x) cos (z1ϕ)
(2.34)

Figure 2.11: Angle of motion transfer γ

By raising up x we may have values of γ not appropriate for the motion, in fact,
it is recommended γallowable = 30◦ during the decisive phases of motion.Finally, we
should specify the values of the remaining parameter - except x- to uniquely define
the external cycloidal profile:
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Table 2.2: Main parameters to uniquely define the external geometry of the cycloidal
disk

Symbol Short name Value
rc pin’s radius 8,5 mm
z1 teeth number 19
r1 primitive radius 91,2 mm

2.4 Parametric analysis on cycloidal plate

In this last section, the main goal is to make a parametric analysis in order to
evaluate how the four basic parameters to define the plate’s geometry impact on
the general shape of the plate itself. Table 2.3 makes a summary of these four
parameters and the starting value of each one: the simulations are based on varying
only one parameter at a time, setting the others at the basic value.

Table 2.3: Main parameters to uniquely define the external geometry of the cycloidal
disk

Symbol Short name Value
rc pin’s radius 8,5 mm
x correction coefficient 0,37
z1 teeth number 19
r1 primitive radius 91,2 mm

The first simulation is obtained by varying rc, the pins radius. The simulations were
performed by varying only rc but the same results would come out if we decided to

varying
rc
r1

. As we can see in figure 2.13, if we increase rc compared to r1, we will

get external profile not technologically feasible (the last condition corresponds to

rc = 25mm or
rc
r1

= 0,27). Moreover, by raising
rc
r1

we are going to get less sinuous

forms that may not favor mechanical coupling between pins and cycloidal wheel:
this is deducible analysing the figure 2.13.
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Figure 2.12: Effect on plate geometry of varying rc

In the second simulation (figure 2.13) we can take into consideration the influence
of the correction coefficient x. This effect - as we have said before- consists mainly in
the reduction of the depth of the teeth. This condition strongly hinders the coupling
with the risk that the pins do not go to roll on the profile of the wheel but end up
jumping on this.
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Figure 2.13: Effect on plate geometry of varying x

In the last simulations- figure 2.14-, we have varied the number of teeth z1
while the other parameters are maintained constant. This variation has, to a lesser
extent, meaning in the design process because z1 is determined by the desirable gear
ratio. Anyways, in order to have a suitable shape for the cycloidal wheel, we should
evaluate the right dimensions of the other parameters since setting z1.
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Figure 2.14: Effect on plate geometry of varying z1
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Chapter 3

Kinematic and dynamic analysis:
rigid model bodies

The main aim of this chapter is to build the bases of a first model to explain the
dynamic behaviour of the cycloidal reducer. The proposed model is the simplest ob-
tained by imposing the perfect rigidity of the bodies; for this reason it is named rigid
bodies model. Furthermore, the basic kinematics of this model will be maintained
in the following models, while some modifications are introduced in the dynamic
analysis. Then, the starting point consists in kinematic laws applied to the most
relevant points of the coupling bodies, Afterwards, a particular focus will be made
on the forces distribution and, finally, through two different approaches (analytical
method and Newton’s one) we are going to get the fundamentals laws to solve the
dynamic problem. Using two different approaches lets to understand - by two dif-
ferent points of view, the first one more concise, the second one more intuitive - all
the dynamics of the reducer.

3.1 Kinematic analysis

Before presenting all the main formulas of the kinematic analysis, the reference sys-
tems should be made clear: we have the fixed reference system X0OY0 whose center
belongs to the input shaft axis, the second one X1O1Y1 has the center coincident
with the cycloidal plate’s center and it is moving with the plate itself (figure 3.1).
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3.1. Kinematic analysis

Figure 3.1: Reference systems used

Figure 3.2: Setup of the cycloidal disk and of point of contact A (between cycloidal
disk and a single housing pin), the main elements: 1 housing pin, 2 input shaft, 3
cycloidal plate
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3.1. Kinematic analysis

We are going to introduce the Kennedy theorem for the future developments: it
states that the three instant centres shared by three rigid bodies in relative planar
motion to another (whether or not connected), all lie on the same straight line -more
details are in Appendix A-. Figure 3.2 shows the chosen setting: part 1 is the housing
pin in contact, part 3 is the cycloidal plate, finally part 2 is the input shaft. It is
well-known that O is the centre of input shaft rotation, while O1 is the geometrical
centre of the cycloidal disc. Part 2 has a rotating motion to the body 1 (fixed) on
the centre O; then the point O is the instantaneous centre of velocity (IVC) of the
body 2, so I12 = O. Moreover, part 3 has a rotating motion to body 2 on the centre
O1, then the point O1 is the instantaneous centre of velocity of body 3 relatively to
body 2, so I23 = O1. Therefore, we will obtain- by applying the Kennedy theorem-
the position of I31. In fact, I31 is located at the intersection of the straight (OO1)
and the normal to the tangent at the point of contact A between cycloidal disk and
housing pin. Since getting the position of the instantaneous centres of velocity I31,
we are going to write the Rivals theorem to get the velocity of the point O1:

−−−−→
VO1∈2/1 =

−−→
OO1 ×−−→ω2/1 (3.1)

−−−−→
VO1∈3/1 =

−−−→
I13O1 ×−−→ω3/1 (3.2)

While
−−−−→
VO1∈2/1 is the speed of the the point O1 in-built with the body 2 relatively

to the body 1,
−−−−→
VO1∈3/1 is the speed of the the point O1 in-built with the body 3

relatively to the body one 1. Anyways, it must be valid that:

−−−−→
VO1∈2/1 =

−−−−→
VO1∈3/1 (3.3)

Getting to the main point:

ω3/1 (Q− e) = −ω2/1 e (3.4)

ω3/1

ω2/1

= − e

Q− e
(3.5)

Where e is the eccentricity between the axis of the input shaft and the other one of
cycloidal wheel, while Q is the length of the segment I31O. Then, while it appears
clear that ω2/1 is the input speed of the mechanism, we should focus more on the
contact between the internal lobes of the cycloidal disc and the rollers in-built with
the output shaft. This contact could be demonstrated to be homo-kinetic, so the
angular speed between the cycloidal plate and the output shaft is just the same.
Then, ω3/1 is the output speed. All these remarks allow us to demonstrate by
knowing ω3/1/ω2/1 = (z2 − z1)/z1:

Q =
z2e

z2 − z1
(3.6)
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The following achievements should guide to the derivation of the coordinate of point
A - point of contact between the housing pin and the cycloidal disk- and its speed.
Referring to figure 3.3, point A must belong to the line I31O0 with a distance from
O0 as equal to the radius of housing pins rc, while r2 is the distribution radius of
the housing pins. We are able to deduce the position of the point A and the point
I31 referring to the figure 3.5: {

XA = r2 − rc cosχ

YA = rc sinχ
(3.7)

{
XI31 = Q cosψ

YI31 = Q sinψ
(3.8)

Where we can get χ from basic of trigonometry applied to figure 3.3:

χ = arctan

(
Q sinψ

r2 −Q cosψ

)
= arctan

(
sinψ

r2/Q− cosψ

)
(3.9)

Figure 3.3: Setup of the cycloidal plate and of point of contact A (between cycloidal
disc and a single housing pin)

For the following works on dynamics, it is relevant knowing the velocity of the
point of contact A: −−−−→

VA∈3/1 =
−−→
I31A×−−→ω3/1 (3.10)
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Where:

−−→
I31A =

 r2 − rc cosχ−Q cosψ
rc sinχ−Q sinψ

0

 (3.11)

By using some remarkable relations from goniometry:

−−→
I31A =



r2 − rc

r2
Q
− cosψ√

r2
Q
− 2 cosψ

−Q cosψ

rc
sinψ√

r2
Q
− 2 cosψ

−Q sinψ

0


(3.12)

Then, we may move on to evaluate the velocity of the point A, referring this velocity
to the rotating Cartesian system:

−−−−→
VA∈3/1 =

−−→
I31A×−−→ω3/1 =



r2 − rc

r2
Q
− cosψ√

r2
Q
− 2 cosψ

−Q cosψ

rc
sinψ√

r2
Q
− 2 cosψ

−Q sinψ

0


×

 0
0
ω3/1

 (3.13)

−−−−→
VA∈3/1 =

−−→
I31A×−−→ω3/1 =



ω3/1

rc sinψ√
r2
Q
− 2 cosψ

−Q sinψ


−ω3/1

r2 − rc
r2
Q
− cosψ√

r2
Q
− 2 cosψ

−Q cosψ


0


(3.14)

In this way we have defined all the kinematics of the reducer by putting the pivotal
achievements to fully resolve the dynamics.
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3.2. Distribution of forces

Figure 3.4: Velocity of point A (dimensionless)

3.2 Distribution of forces

The first step -that should be made before applying the fundamental dynamic laws-
is to define the forces acting upon the cycloidal disc. The kind of interactions of the
cycloidal disc between the other bodies are:

1. The force (normal Ex and tangential components (1− µE)Ey) exchanged be-
tween the cycloidal disk and the input shaft through the intermediate bearing;

2. The forces exchanged (normal FN,i and tangential components µpFN,i) between
the cycloidal disk and the housing pins in contact;

3. The forces exchanged (normal Fk,j and tangential components µsFk,j) between
the cycloidal disc and the output rollers.

35



3.2. Distribution of forces

Figure 3.5: Distribution of forces exchanged between cycloidal plate and other
bodies[1]

We are going to introduce the following hypotheses of the first model that we call
rigid bodies model:

1. The output torque is constant;

2. All the bodies are strictly rigid, or better, no deformations are taken into
account in this model;

3. Input speed is constant and output speed will be got through the gear ratio;

4. Input torque is unknown and it is going to be determined by solving the
dynamic problem;

5. We are going to refer to a gearbox with only one disk- as the experimentation
shows- the number of wheels does not impact on the trend of efficiency.
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3.2. Distribution of forces

Without clearance between disk and pins, half of them are loaded and the others
not at one time. Classically ([5],[6],[3]) the load distributions could be estimated by
using the outcome of Kennedy theorem:

FN,i(ψi) =


Fmax,N

r2
Q

sinψi√
1 +

(
r2
Q

)2

− 2
r2
Q

cosψi

for 0 ≤ ψi ≤ π

0 for π ≤ ψi ≤ 2π

(3.15)

It should be added the load distributions linked to the contact between rollers and
cycloidal plate at one time:

Fk,j(ψj) =

{
Fmax,k sinψj for 0 ≤ ψj ≤ π

0 for π ≤ ψj ≤ 2π
(3.16)

We are going to demonstrate equation (3.15) as the outcome of Kennedy theorem.
The main reference of all the following steps is figure 3.6.

Figure 3.6: Setup of the geometry of the contact between cycloidal wheel and pin

From the literature ([5],[6],[3]), it is well-known:

FN,i(ψi) =

{
Fmax,N sinαK for 0 ≤ ψi ≤ π

0 for π ≤ ψi ≤ 2π
(3.17)
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3.3. Torques distribution

We can apply some geometrical remarks- looking at figure 3.15-:

αK = π − ψ − χ = π − ψ − arctan

(
sinψ

r2/Q− cosψ

)
(3.18)

After some mathematical passages, it is possible to demonstrate:

sinαK =
r2
Q

sinψi√
1 +

(
r2
Q

)2

− 2
r2
Q

cosψi

(3.19)

Figure 3.7: Forces of contacts versus input shaft rotation angle

3.3 Torques distribution

In order to obtain the relationship to estimate Fmax,k, a balance of torques acting on
the cycloidal disk should be introduced. Referring to figure 3.6, we should observe
that:

1. The normal force of contact between the cycloidal disk and the output pins is
acting along the direction of the segment AP applied at the point of contact
A;

2. The normal force of contact between the cycloidal disk and the output rollers
is directed along the direction of the segment O1N .

The value of the real central disc’s torque could be expressed by:

−→
T2 =

z2/2∑
i=1

(
−−→
O1A× FN,i

−→
AP

‖
−→
AP ‖

)
·
−→
Z (3.20)
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3.3. Torques distribution

Where ~Z in the versor normal to the plane which contains X1O1Y1 and X0OY0.
Moreover:

−→
AP

‖
−→
AP ‖

= − 1

‖
−→
AP ‖



r2 − rc

r2
Q
− cosψ√

1 +

(
r2
Q

)2

− 2
r2
Q

cosψ

−Q cosψ

rc
sinψ√

1 +

(
r2
Q

)2

− 2
r2
Q

cosψ

−Q sinψ

0


(3.21)

−−→
O1A =

−−→
O1P +

−→
PA =



r2 − rc

r2
Q
− cos√

1 +

(
r2
Q

)2

− 2
r2
Q

cosψ

− e cosψ

rc
sinψ√

1 +

(
r2
Q

)2

− 2
r2
Q

cosψ

− e sinψ

0


(3.22)

Finally ([3]):

T2 = r22Fmax,N

z2/2∑
i=1

(
1− e

Q

)∫ ψ2i

ψ2(i−1)

sin2 ψ2j

‖
−→
AP ‖

 rc√
1 +

(
r2
Q

)2

− 2
r2
Q

cosψ − 1

 dψ

(3.23)
In the end, we have got a mathematical expression for the normal forces of contact
between the cycloidal disk and the output rollers and between the housing pins and
the cycloidal disc. Moreover, it has been proposed a theoretical direct way to find
the maximum values of the exchanged forces without recalling the dynamic laws.
Anyways, in simulations we are going to get these values from solving the dynamic
problem. The approach above shows the most impacting geometrical features that
have strict influence on the maximum values of exchanged forces.
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3.4. Main dynamic equations derived from analytical mechanics

3.4 Main dynamic equations derived from analyt-

ical mechanics

We are going to apply the dynamic principles in the form of analytical mechanics.
Therefore, no elastic properties are introduced in dynamics, or better, we are going
to admit that the values of the acting forces do not involve any deformations and
these do not affect the efficiency and the overall dynamics of the reducer. We should
remind that X1O1Y1 is the mobile reference system, while X0OY0 is the fixed one.
Then, the reference system X1O1Y1 is clearly not inertial, while the reference system
X0OY0 - because of being fixed- is undoubtedly inertial.
As the fundamentals of analytic mechanics suggest, the first step consists in writing
the kinematic torsor of the cycloidal plate referring to X0OY0:{

CCy/R0

}
=

{
eϕ̇
−→
Y1 | −

ϕ̇

z1

−→
Z

}
X0OY0

(3.24)

The mathematical formulation explains how the cycloidal plate is moving on the
plane where its motions is included.
So the cycloidal plate - moving with the reference system X1O1Y1- is revolving
around the centre O1 at a speed, that in steady state, is the output nominal speed
of the reducer. Moreover, the point O1 is revolving around the fixed point O at a
speed that in steady state is the input speed. So, the kinematic torsor contains all
these information about the motion of the cycloidal plate.
With the kinematic torsor, the dynamic torsor of the cycloidal plate could be written
-through the mathematical derivative of the kinematic torsor adding the contribution
of the inertia (mass and moment of inertia) of the cycloidal disc- :{

DCy/R0

}
=

{
−mcyeϕ̇

2−→X1 +mcyeϕ̈
−→
Y1 | −

Izz
z1
ϕ̈
−→
Z

}
X1O1Y1

(3.25)

Where mcy is the mass of the cycloidal plate, while Izz is its moment of inertia

referred to the rotation axis
−→
Z . Nevertheless, despite the mathematical derivation

of the torsors above, in order to understand fully the dynamics, a physical analysis
should be introduced:

1. −mcyeϕ̇
2−→X1 may be interpreted as the dynamic force linked to the centripetal

acceleration and its inertia to this kind of motion;

2. mcyeϕ̈
−→
Y1 may be interpreted as the dynamic force linked to the tangential

acceleration and its inertia to this kind of motion;

3. −Izz
z1
ϕ̈
−→
Z may be interpreted as the dynamic torque linked to angular acceler-

ation of the disc and its inertia to this kind of motion.
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3.4. Main dynamic equations derived from analytical mechanics

Once the dynamic torsor of the cycloidal disk is defined, the main dynamic inter-
actions between the cycloidal wheel and the other bodies could be analyzed. In the
previous sections the dynamics of the exchanged forces has been kept into account.
Then, in order to model the forces exchanged between the input shaft and the cy-
cloidal plate, we should take into account the balance on the input shaft coupling
- through the bearing - with the cycloidal plate. By applying the balance, it is
consequential to admit that the exchanged force can be broken up into two com-

ponents along
−→
X1 and

−→
Y1. The point of application of these components is placed

on the centre of the input shaft O, so- due to this shifting in action point of the−→
Y1 component- we must have also a torque exchanged between the input shaft and
cycloidal disc. This must be considered the input torque entering in the reducer.
Then:{

ECy/R0

}
=
{
Ex
−→
X1 + sgn(ω0)(1− µE)Ey

−→
Y1 | (1− µE)Eye

−→
Z
}
X0OY0

(3.26)

Where:

1. Ex is the X1 -component of constraint force that is not involving any torque
on the cycloidal disc;

2. Ey(1 − µE) is the Y1 -component of constraint force, decreased by the value
of the friction force. This component is involving torque on the cycloidal disc
(input torque);

3. (1 − µE)Eye is the input torque exchanged between cycloidal disc and input
shaft.

Besides, the action of the housing pins on the cycloidal disc is analised. Since the
analysis of the previous sections, we know that there is a particular distribution of
acting forces on cycloidal disc due to the contact with the housing pins. It is clear
that half of the pins are loaded, the others are not exchanging forces. Moreover, it
is demonstrated that this kind of interaction involves a factor of amplitude that - at
this stage- is introduced in the equations as Kc. Then, for each instant we should

sum all the coupling force exchanged with each pins, in such way we get
−→
COi

that

can be broken up in the two components along
−→
X1 and

−→
Y1. So we can write the

torsor in the moving reference system X1OY1 (where i stays for the i-th pin):{
OCy/R0

}
=
{−→
COi

= Kc

∑
iCXi

−→
X1 +Kc

∑
iCYi
−→
Y1 | 0

−→
Z
}
X1O1Y1

(3.27)

In order to apply the fundamental dynamic laws, the torsor must be referred to the
inertial reference system X0OY0:{

OCy/R0

}
=
{−→
COi

= Kc

∑
iCXi

−→
X1 +Kc

∑
iCYi
−→
Y1 |

∑
i

(−−→
OAi ×

−→
COi

)}
X0OY0

(3.28)
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3.4. Main dynamic equations derived from analytical mechanics

In fact, we should add - as equation 3.28 shows- the torque around O introduced
by the distribution of forces liked to the contact with housing pins. By solving the
expression of torque, we will get:{

OCy/R0

}
=
{−→
COi

= Kc

∑
iCXi

−→
X1 +Kc

∑
iCYi
−→
Y1 |

∑
iKcMCi

−→
Z
}
X0OY0

(3.29)

Lastly, the focus should be for the action of the output rollers on the cycloidal
disk. Also in this case, the previous discussion about the distribution of coupling
forces between cycloidal plate and output rollers, allows to introduce the factor of
amplitude Ks. In the same way, the torsor of this action related to X1OY1 can be
written as (where j stays for the j-th pin):{

OSy/R0

}
=
{−→
SOj

= Ks

∑
j SXj

−→
X1 +Ks

∑
j SYj
−→
Y1 | 0

−→
Z
}
X1O1Y1

(3.30)

For the same reason, we refer the torsor to the reference system X0OY0:{
OSy/R0

}
=
{−→
SOj

= Ks

∑
j SXj

−→
X1 +Ks

∑
j SYj
−→
Y1 |

∑
j

(
Ks
−−→
OSj ×

−→
SOj

)}
X0OY0

(3.31){
OSy/R0

}
=
{−→
SOj

= Kc

∑
j SXj

−→
X1 +Kcµs

∑
j Sxj
−→
Y1 | Ks

∑
iMsj

−→
Z
}
X0OY0

(3.32)

After introducing all the interactions through the torsor,it is possible to explain in
detail the forces at work on the cycloidal disk. In the main equations there are two
coefficients Kc and Ks that are strictly linked to the maximum value of the forces
exchanged - coming from Fmax,N and Fmax,k of equations (3.15) and (3.16)-, while
Ks can be obtained by the balance on the output shaft, Kc is unknown parameter
determinable after solving the dynamic problem. The terms inside the sums are tied
to the geometrical distribution of forces.
The idea of introducing the torsor’s formulation comes from the issue to define in a
strict and incisive way the interactions.
With the contact forces on the cycloidal disc, it is the time to apply the fundamental
principles of dynamics: it is possible to have two different and alternative formula-
tions, the Lagrange-Euler equation or the virtual work principle.
The starting step is to individuate the Lagrangian generalized coordinates able to
make us describe the plate’s motion. These must be linearly independent: the cy-
cloidal plate is a rigid body moving on a plane. So x1, y1 (coordinates of the position
of O1 referring to X0OY0) and θZ (angular rotation around thetaZ) are the gener-
alized coordinates of this dynamic problem applied on cycloidal plate. The main
equations of Euler-Lagrange is well-known:

d

dt

∂L
∂q̇k
− ∂L
∂qk

= Qk with k = 1,2,3 (3.33)
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3.4. Main dynamic equations derived from analytical mechanics

Where q1 = x1, q2 = y1 and q3 = θZ , while L is the Lagrangian of the system
(cycloidal plate) and Qk is due to the interactions of cycloidal plate with the other
bodies (housing pins, input shaft, output rollers). As it is well-know, the Lagrangian
L could be obtained by summing the kinetic energy and the potential energy linked
to the possible conservative forces acting. Afterwards, it is immediate to write the
Lagrangian of the cycloidal disk because of its consisting only on kinetic energy of
a rigid body translating and rotating on a plane:

L = T − V = T =
1

2
mcyẋ

2
1 +

1

2
mcyẏ

2
1 +

1

2
Izz θ̇

2
Z (3.34)

Then:
d

dt

∂L
∂q̇1

=
d

dt

∂L
∂ẋ1

= mcyẍ1 (3.35)

d

dt

∂L
q̇2

=
d

dt

∂L
∂ẏ1

= mcyÿ1 (3.36)

d

dt

∂L
∂q̇2

=
d

dt

∂L
∂θ̇Z

= Izz θ̈Z (3.37)

While:
∂L
∂q1

=
∂L
∂x1

= 0 (3.38)

∂L
∂q2

=
∂L
∂y1

= 0 (3.39)

∂L
∂q3

=
∂L
∂θZ

= 0 (3.40)

We are going to evaluate Q1, Q2 and Q3:

δ−→rk = δx1
−→
X1 + δy1

−→
Y1 + δθZ

−→
Z (3.41)

Q1 =
N∑
k=1

−−→
Fnc,k ·

∂−→rk
∂q1

=
N∑
k=1

−−→
Fnc,k ·

−→
X1 (3.42)

Q1 =
N∑
k=1

−−→
Fnc,k ·

−→
X1 = Kc

∑
i

CX,i +Ks

∑
j

SX,j + Ex (3.43)

Q2 =
N∑
k=1

−−→
Fnc,k ·

∂−→rk
∂q2

=
N∑
k=1

−−→
Fnc,k ·

−→
Y1 (3.44)

Q2 =
N∑
k=1

−−→
Fnc,k ·

−→
Y1 = Kc

∑
i

CY,i +Ksµs
∑
j

SX,j + (1−E)Ey (3.45)
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3.4. Main dynamic equations derived from analytical mechanics

Q3 =
N∑
k=1

−−→
Fnc,k ·

∂−→rk
∂q3

=
N∑
k=1

−−→
Fnc,k ·

−→
Z (3.46)

Q3 =
N∑
k=1

−−→
Fnc,k ·

−→
Z = Kc

∑
i

MC,i +Ks

∑
j

MS,j + e(1−E)Ey (3.47)

The following kinematic relationship hold:
ẍ1 = −eϕ̇2

ÿ1 = eϕ̈

θZ =
ϕ

z1

(3.48)

The first two equations of (3.48) describe the particular motion of the point O1

around O (not uniform circular motion generally). The last one is the equation of
the gear ratio between the input angular position and the output angular position.
Then, the following equations are the final result:

Kc

∑
iCXi

+Ks

∑
j SXj

+ Ex +mcyeϕ̇
2 = 0

Kc

∑
iCyi +Ksµs

∑
j SXj

+ Ey(1− µE)−mcyeϕ̈ = 0

Kc

∑
iMCi

+Ksµs
∑

jMSj
+ Eye(1− µE) +

Izz
z1
ϕ̈ = 0

(3.49)

The same equations could be obtained starting off by the torsor’s formulation in
order to apply the virtual work principle for each linearly independent directions.
It is renowned that the Lagrangian-Euler equation is equivalent to the virtual work
principle.
Along the ~X1 direction: ∑(−→

F ·
−−→
δX1

)
= 0 (3.50)

Kc

∑
i

CXi
+Ks

∑
j

SXj
+ Ex +mcyeϕ̇

2 = 0 (3.51)

Along the ~Y1 we are going to have:∑(−→
F ·
−→
δY1

)
= 0 (3.52)

Kc

∑
i

Cyi +Ksµs
∑
j

SXj
+ Ey(1− µE)−mcyeϕ̈ = 0 (3.53)

Regarding the balance to the rotation around the axis ~Z∑(−→
MZ ·

−→
δθZ

)
= 0 (3.54)
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Kc

∑
i

MCi
+Ksµs

∑
j

MSj
+ Eye(1− µE) +

Izz
z1
ϕ̈ = 0 (3.55)

Finally, we have a system of equations:
Kc

∑
iCXi

+Ks

∑
j SXj

+ Ex +mcyeϕ̇
2 = 0

Kc

∑
iCyi +Ksµs

∑
j SXj

+ Ey(1− µE)−mcyeϕ̈ = 0

Kc

∑
iMCi

+Ksµs
∑

jMSj
+ Eye(1− µE) +

Izz
z1
ϕ̈ = 0

(3.56)

This dynamic problem can not be resolved because the number of unknown param-
eters (Ex, Ey, Kc, Ks, ϕ and their first and second derivatives) is bigger than the
number of equations. Anyway, we may apply the virtual work principle to the input
shaft: ∑(−→

MZ ·
−→
δθZ

)
= 0 (3.57)

Ks

∑
i

Msj

−→
Z − IzzOS

z1
ϕ̈
−→
Z + Cs

−→
Z = 0 (3.58)

Where IzzOS
is the moment of inertia of the output shaft, while Cs is the constant

output load imposed on the output shaft. Then:

Kc

∑
iCXi

+Ks

∑
j SXj

+ Ex +mcyeϕ̇
2 = 0

Kc

∑
iCyi +Ksµs

∑
j SXj

+ Ey(1− µE)−mcyeϕ̈ = 0

Kc

∑
iMCi

+Ksµs
∑

jMSj
+ Eye(1− µE) +

Izz
z1
ϕ̈ = 0

Ks

∑
jMsj −

IzzOS

z1
ϕ̈− Cs = 0

(3.59)

By now, the dynamic problem is still not solvable because the larger number of
unknown variables (five) in comparison with the equations (four). The main aim
of this dynamic analysis is to simulate the real working condition of the cycloidal
reducer at the test bench. Then, the measurements are taken in a steady state to
estimate the efficiency.
At that point the hypothesis of steady state for the input are proposed, this allows
to write the following relationships:

ϕ̈(t) = 0; ϕ̇(t) = ω0 (3.60)

Consequently: 
Kc

∑
iCXi

+Ks

∑
j SXj

+ Ex +mcyeω
2
0 = 0

Kc

∑
iCyi +Ksµs

∑
j SXj

+ Ey(1− µE) = 0

Kc

∑
iMCi

+Ksµs
∑

jMSj
+ Eye(1− µE) = 0

Ks

∑
jMsj − Cs = 0

(3.61)
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The first three equations of the system (3.61):

Kc

∑
i

CXi
+Ks

∑
j

SXj
+ Ex +mcye ω

2
0 = 0 (3.62)

Kc

∑
i

Cyi +Ksµs
∑
j

SXj
+ Ey(1− µE) = 0 (3.63)

Kc

∑
i

MCi
+Ksµs

∑
j

MSj
+ Eye(1− µE) = 0 (3.64)

It can be reduced to an algebraical system in the form:∑iCXi
1 0∑

iCYi 0 1− µE∑
iMCi

0 (1− µE)e

 Kc

Ex
Ey

 =

−mcye ω
2
0 −Ks

∑
j SXj

−Ksµs
∑

j SXj

Ks

∑
jMsj

 (3.65)

We can evaluate Ey analytically by using Cramer’s rule, then:

Ey =

det

(∑
iCYi −Ksµs

∑
j SXj∑

iMCi
Ks

∑
jMsj

)
det

(∑
iCYi 1− µE∑
iMCi

(1− µE)e

) (3.66)

Ey =

Ks

(∑
iCYi

∑
jMsj + µs

∑
j SXj

∑
iMci

)
(∑

iCYie−
∑

iMci

)
(1− µE)

(3.67)

We can also add the main equation of torque balance acting on output shaft, where
CS is the output torque (Tout), and we can add the analytic solution of the system
to get the input torque (Tin):

Tout = CS = Ks

∑
j

MSj
(3.68)

−→
Tin =

(
Ey(1− µE)

−→
Y1

)
×
(
e
−→
X1

)
(3.69)

−→
Tin = Ey(1− µE)e

−→
Z (3.70)

Tin = Ey(1− µE)e (3.71)

Tin = Ks e

∑
iCYi

∑
jMsj + µs

∑
j SXj

∑
iMci∑

iCYie−
∑

iMci

(3.72)
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So with these elements we can evaluate the instantaneous efficiency of gearbox trans-
mission:

η =
Tout ωout
Tin ωin

(3.73)

ωout
ωin

=
1

z1
(3.74)

η =
Tout
Tin

1

z1
(3.75)

η =
Ks

∑
jMSj

e Ey (1− µE)

1

z1
(3.76)

η =

∑
jMSj

(∑
iCYie−

∑
iMci

)
e z1

(∑
iCYi

∑
jMsj + µs

∑
j SXj

∑
iMci

) (3.77)

Then, we are going to simulate a working condition in which the input speed and
the output load are imposed, the output speed is determined by the gear ratio
and, finally, the input torque is obtained by solving the dynamic problem. This
operating condition is comparable with the working state reproduced through the
test’s bench. Moreover - as the equation 3.77 shows - with the hypothesis of rigid
bodies the efficiency does not depend on the constant output load (whose factor
of amplitude is Ks). For this main reason we should focus on other mathematical
models.

3.5 Main dynamic equations derived from New-

ton method

Even if the analytic method is extremely concise, proposing also briefly the Newton
method could allow to achieve a better comprehension of the dynamic behaviour of
the reducer, seeing the acting forces in free body diagram. We are going to propose
the Newton’s method applied to the cycloidal disk with the main hypotheses of the
rigid bodies model. Then, this approach is alternative to the analytic mechanics.
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Figure 3.8: Free-body diagram of cycloidal disk with the applied forces and torques
(rigid bodies model)

According to figure 3.8, writing the relative acceleration formula is immediate:

−→aO1 = −→aO +−−−→aO1/O,n +−−−→aO1/O,t (3.78)

Where:

1. −→aO1 is the absolute acceleration of the point O1 - centre of the moving reference
system X1O1Y1-;

2. −→aO is the absolute acceleration of the point O - centre of the fixed reference
system X0OY0. It is clear that −→aO =

−→
0 ;

3. −−−→aO1/O,n is the normal acceleration of the point O1 related to X0OY0;

4. −−−→aO1/O,t is the tangential acceleration of the point O1 related to X0OY0.

Moreover, It is well-known that the point O1 is moving along a circumference of
radius e and centre in O. Since knowing that and referring to the bases of X1O1Y1,
we get:

−→aO1 = −eϕ̇2 −→X1 + eϕ̈
−→
Y1 (3.79)
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With the acceleration of point O1, we can get the inertial force applied to the disc
relating all the dynamic equations to the movable (and not inertial) reference system
X1O1Y1. Then:

−→
Fin = −mcy

−→aO1 = mcyeϕ̇
2 −→X1 −mcyeϕ̈

−→
Y1 = −Fin,X1

−→
X1 + Fin,Y1

−→
Y1 (3.80)

After getting the inertial forces acting on the cycloidal disk with the purpose to
refer the dynamic equations to X1O1Y1, the focus should be for the coupling forces
exchanged with cycloidal disk with others bodies. Referring to the figure 3.8, we
have:

1. COi,X and COi,Y , that are the axis components of the resultant of the forces
exchanged between the housing pins and the cycloidal disc -at one time-;

2. SOj ,X and SOj ,Y , that are the axis components of the resultant of the forces
exchanged between the output rollers and the cycloidal disc -at one time-;

3. EX and Ey(1 − µE), that are the axis components of the resultant force ex-
changed between the input shaft and the cycloidal disc -at one time-;

4. Kc

∑
iMc,i, that is the torque - related to O1- imposed by the distribution

of forces exchanged between the housing pins and the cycloidal disc -at one
time-;

5. Kc

∑
jMs,j, that is the torque - related to O1- imposed by the distribution

of forces exchanged between the output rollers and the cycloidal disc -at one
time-;

6. Izz
ϕ̈

z1
, that is the torque linked to the plate’s moment of inertia.

By applying the balance of forces in the two independent directions-
−→
X1 and

−→
Y1- and

the balance of the overall torques acting on a point O1 about the axis
−→
Z , we get

the same equations as before.
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Chapter 4

Experimentation on dynamic
behaviour and on performances

In this chapter we focus on the methodology of the experimental part of this work.
We should point out that the following measurements are coming from the Lodz’s
test bench, the main part of the experimentation were made in partnership between
SUPMECA and University of Lodz. Anyway, we have got acquainted with a similar
experimental bench provided by PSA. Moreover, the experimental analysis has a
cardinal role in the following modelling and computational works, for this reason,
we concentrate on the main outcomes of the measurements. The last part of this
chapter is dedicated to the results of simulations of the previous rigid bodies model
in order to check if there is overlapping between previsions and experimentation and
which parts of the mathematical model must be developed to adapt the modelling
to the experimentation.

4.1 Test Bench

A two discs drive was used in this research work (figures 4.1,4.2,4.3,4.4). Each disc
has 19 teeth (z1) and cooperates with housing equipped in 20 teeth(z2). In this case
the total ratio of the gear is:

i =
ωin
ωout

=
z1

z2 − z1
= 19 (4.1)

The main parameters of the cycloidal reducer are presented in the following table:

Table 4.1: Basic data of the tested cyclo gearbox

Rotational speed of input shaft 1500 rpm
Power 7,5 kW
Gear box ratio 19 -
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4.1. Test Bench

In order to increase the gearbox efficiency brass washer were introduced. It lowers
the friction between the parts.

Figure 4.1: Tested cycloidal drive: cyclo gearbox

Figure 4.2: Tested cycloidal drive: cycloidal plate
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4.1. Test Bench

Figure 4.3: Tested cycloidal drive: output shaft and output rollers

Figure 4.4: Tested cycloidal drive: housing with pins

The cycloid drive was tested on the bench assembled at AML (figure 4.5).
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4.1. Test Bench

Figure 4.5: 1-cycloidal gearbox, 2-planetary gear set, 3-electric motor, 4-torque and
speed meters, 5-clutch (Radex N50), 6-inverters, 7-inverter control system, 8-data
acquisition system, 9-oil temperature sensor

The test rig consists of:

1. Two electrical motors “3” (200 kW each), which can operate as motor or
generator. The common DC voltage cable allows the transmission of electrical
energy from the generator to the engine. In this way, the external power
supply is charged only to cover energy losses much smaller than appear in the
working drive system.

2. Two ABB frequency converters “5”, which in the power supply has the rectifier
bridge and input filter to reduce harmonic distortion from an external power
supply.

3. The CPU “7” (Fig. 3.), which allows to plan and execute an experiment.
Changing the parameters of electrical machines can be realized by step, trape-
zoidal or sinusoidal function. A limitation of electrical parameters are: fre-
quency converters and motors “3”.
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4.1. Test Bench

4. The CPU “8”, to capture, archive and process data from the test bench. This
unit operates separately from the CPU “7” to prevent mutual interference and
increase safety.

5. An oil cooling system were used to keep the desired temperature inside the
cycloid housing.

6. The oil temperature sensor were mounted at the bottom of the cycloid gear
housing. It allows for observation of oil average temperature during bench
operation.

In order to reduce the vibration of test rig components, a set of laser sensors “Shaf-
tAlign” made by Prüftechnik was used to coaxial setting of all shafts and clutches
in the drive line. After reaching the required accuracy in setting the cooperating
connections, the test can be started. The control system “7” allows to set up the
speed on the input shaft and the torque on the output shaft. So when the torque
increased at the braking side, the speed was kept at the constant level. Conversely,
if the speed increased, the torque on the braking unit could be constant. Of course
during transient conditions, the torque and speed can vary due to the moment of
inertia.
The measurement system consists of:

1. Two torque and speed sensors HBM T40b, which were mounted on the input
and output shaft of the cycloidal gearbox.

2. Temperature sensor which measure the oil temperature in the gearbox.

Figure 4.6: Data acquisition system
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4.2. Methodology and results

A schematic view of the data acquisition hardware is shown in figure 4.6.

4.2 Methodology and results

Tests were carried out at constant torque on the output shaft of the tested gear.
The speed increased from 0 rpm to the maximum value was kept constant for 20 s
and then decreased to 0 rpm again. A sample of acquired data is shown on the
figure 4.7.

Figure 4.7: A sample of measured signals

The torques and speed values acquired during these 20 s were averaged. The
archived values were used to calculate the instant efficiency according to the formula:

η =
Tout ωout
Tin ωin

(4.2)

The viscosity of the oil was checked on a separate test bench before and after the
test.
We report the detailed experimental data obtained at the input speed of 1200 rpm
to give an example of the most relevant measures (directly measured and indirectly
obtained) that we have focused on:
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4.3. Processing of experimental data

Table 4.2: Measurements at 1200 rpm

viscosity oil temp. nin nout speed ratio Tin Tout η
mm2/s ℃ rpm rpm - Nm Nm -
41,1 34,4 1202,0 63,2 19,01 2,99 29,8 0,52
39,8 35,2 1202,0 63,2 19,01 5,99 82,7 0,73
43,9 32,8 1199,0 63,1 19,00 8,71 126,9 0,77
42,1 33,8 1202,0 63,2 19,01 11,41 173,7 0,80
42,3 33,7 1202,0 63,2 19,01 13,86 222,2 0,84
41,5 34,1 1202,0 63,2 19,01 16,35 268,0 0,86
41,0 34,4 1202,0 63,2 19,01 18,82 313,9 0,88
39,3 35,5 1202,0 63,2 19,01 21,31 355,8 0,88
40,1 35,0 1202,0 63,2 19,01 23,54 400,7 0,90
39,4 35,4 1202,0 63,2 19,01 26,28 449,2 0,90

The data for input speed as equal to 1000 rpm:

Table 4.3: Measurements at 1000 rpm

viscosity oil temp. nin nout speed ratio Tin Tout η
mm2/s ℃ rpm rpm - Nm Nm -
42,1 33, 1001 52,7 19,00 3,01 30,7 0,54
41,1 34,4 1001 52,7 19,00 6,11 83,2 0,72
44,4 32,5 1001 52,7 19,00 9,02 131,9 0,77
45,0 32,1 1001 52,7 19,00 11,45 178,9 0,82
44,1 32,6 1001 52,7 19,00 13,70 219,8 0,84
44,2 32,6 1001 52,7 19,00 16,66 271,1 0,86
43,0 33,3 1001 52,7 19,00 19,07 316,9 0,87
42,2 33,7 1001 52,7 19,00 21,58 361,9 0,88
42,0 33,9 1001 52,7 19,00 24,14 408,2 0,89
41,9 33,9 1001 52,7 19,00 26,67 450,5 0,89

4.3 Processing of experimental data

We are going to analyze the experimental data coming from the measurements taken
at the test bench: it should be noted that the data taken are more than the quantities
(speed and torque) used to evaluate the efficiency: we are focusing only on the data
absolutely necessary to evaluate the efficiency.
The measurements got through the test bench, have been taken at different input
speeds set by the inverters of the control system. This is motivated by the interest
in discovering whether the dynamic behaviour is changing with varying the input
speed. All information are summarized in the graphic of the figure 4.8.
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4.3. Processing of experimental data

Figure 4.8: Efficiency as a function of output load (experimental data)

It is immediate that the efficiency does not significantly depends on the input
speed, but the dependence from the output load is very considerable: increasing the
output load leads to a higher efficiency. So the mathematical model- that we are
going to develop- should keep into account all these effects. Another way to display
the same effect of the figure 4.8, is to plot the input torque measured as a function
of the output load for different input speeds (figure 4.9): the conclusions are very
similar to those coming from figure 4.8.

Figure 4.9: Input torque as a function of output load (experimental data)
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4.4. Simulations coming from rigid bodies model

To better display the effect of variable input speed at a fixed output load, we can
analyze figure 4.10 where no important dependence from input speed is displayed.

Figure 4.10: Efficiency as a function of input speed (experimental data)

Figure 4.11: Summary schedule of the data processing

All the main idea concerning the data processing are summarized in figure 4.11.

4.4 Simulations coming from rigid bodies model

As we have already observed, the rigid bodies model is not able to explain the
dependence of efficiency on load as figure 4.12 shows.
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4.4. Simulations coming from rigid bodies model

Figure 4.12: Efficiency as a function of load (theoretical previsions from rigid bodies
model)

In order to evaluate the coherence of the used model, the coefficient of Coulom-
bian friction is allowed to change. The default value in the simulations (µ = 0,05)
is suggested by the literature in the case of contact between steel ad steel with a
lubricating film and bodies in mutual rolling. In figure 4.13 we can observe the
simulation’s results.

Figure 4.13: Efficiency as a function of load varying µ (theoretical previsions from
rigid bodies model)

Although this model is incapable of explaining the experimental results, it al-
lows to visualize in detail the dynamics of the exchanged forces. Table 4.4 gives a
summary of all the parameters introduced as an input of the simulations on Matlab.
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4.4. Simulations coming from rigid bodies model

Table 4.4: Parameters of simulation

Main geometrical reducer’s features and dynamic parameters

Cycloidal disc Housing
Symbol and description Value Symbol and description Value
z1 number of teeth 19 z2 number of housing pins 20
r1 primitive radius 91,2 mm rc housing pins’ radius 8,5 mm
x correction coefficient 0,38 r2 pins’ distribution radius 96,0 mm
e0 eccentricity 3,0 mm

Output rollers Dynamic parameters
Symbol and description Value Symbol and description Value
Rs roller distribution radius 62,0 mm mcy cycloidal disc mass 1,27 kg
Nc number of output rollers 10 µp housing pins’ friction coef. 0,05
rc output rollers’s radius 13,0 mm µs output rollers’ friction coef. 0,05

µE bearing friction coef. 0,05

Figure 4.14: Two frames from the animation of the dynamics of normal forces
obtained through Matlab

The rigid body model allows us to obtain simulations that recreate the dynamics
of forces in a really explanatory way as figure 4.14.
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4.5. Conclusions

4.5 Conclusions

The last note we would like to add in this chapter concerns the question of the
modeling of friction force. There are several models for the mathematical model-
ing of friction, the most relevant are summarized in Appendix B. However, having
observed that there is a lack of dependency on speed, it allows us to realize that
the Coulombian friction model would be able to describe effectively the exchange of
the friction forces. In fact, in this model, friction has only dependence on normal
forces since the introduction of a constant coefficient that is function of contacting
materials and other operating conditions independent of operating speeds. In the
following developed models we will still discuss the validity of the Coulombian model
in the overall mathematical model of the reducer.
As previously mentioned, in the simulations carried out it was preferred to use the
value of friction coefficient taken from the manuals. However,- using the rigid bod-
ies model- by varying the friction coefficient it is found that the saturated value
of experimental efficiency (about 0.9) is obtained with a coefficient of friction of
approximately 0.011 (figure 4.15). This could be explained by the fact that the
lubricated rolling of the various mechanical components could use less friction than
that foreseen by the manuals. Anyway, the rigid body model remains unable to
describe the change in efficiency with output load, and this is the reason why other
mathematical models will be developed.
In general, by observing the efficiency data, we discover the existence of two regions:

1. A first region for small output load values, where the variation in efficiency is
considerable;

2. A second region for high output load values, where increasing the external
load does not involve important variations on the efficiency that saturates to a
constant value; in this field the rigid bodies model could describe the physical
reality.

By averaging the data we obtain an effective reference experimental curve in first
approximation for all the input speeds. For this reason, the rigid body model is
considered effective in the optimization process as it has a low cost in terms of
processing times.
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4.5. Conclusions

Figure 4.15: Efficiency coming from rigid bodies model and experimentation
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Chapter 5

Optimization of the machine’s
main parameters with rigid bodies
model

In this chapter, it is pointed out one of the most relevant outcome from rigid bodies
model, that is the possibility of setting up a first attempt of optimization of the
machine performance. As we know, the most obvious performance consists in the
transmission efficiency: when we have to choose a reducer in a particular application,
the transmission efficiency is the critical parameter that makes possible to select a
specific model. However, another important aspect- that we should consider in
applications- is the problem of vibrations in working conditions. This is why in the
first section we are going to briefly analyze this topic and the optimization process
will keep into account both the efficiency and the parameters that describe the
vibrations (torque acyclism and the harmonic ratio).

5.1 Main vibration problems of cycloidal reducers

Although this thesis work is expressly focused on performance in terms of efficiency,
also the issue of mechanical vibrations is here mentioned. In fact, as we know, this
is a particularly important theme in mechanical design in view of applications. The
cycloidal gearbox- if well designed- can boast a minimum vibration level. However,
the eccentricity between the axes of rotation of the disk and the input shaft can
cause considerable amount of torsional vibrations. This effect is usually reduced by
introducing more than one disk, two or three, mounted in counter-phase in order
to reduce the peaks of net vibration: each disk introduces torsional vibrations asso-
ciated with the eccentricity of the axes and due to the rotation of the input shaft,
by placing the cut-off discs, these vibrations add up and tend to shrink mutually.
The experimentation carried out in Lodz has shown that the number of wheels has
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5.1. Main vibration problems of cycloidal reducers

no impact on efficiency, but it allows to reduce torsional vibrations and stresses for
each wheel. In the main model that we are developing, we may keep into account of
the vibrations effect by analyzing the input torque as a function of the simulation
time, as figure 5.1 shows.

Figure 5.1: Instantaneous input torque (output torque as equal to 300 Nm)

Having the input torque as a function of time, it is possible to evaluate a quantity
strictly linked to the vibration level that is the torque acyclism, defined as follows:

TA = max

(
Tin(t)− Tin,m

Tin,m

)
(5.1)

Where Tin(t) is the instantaneous value of input torque coming from simulation,
Tin,m is its mean value. Moreover, it is common, in vibration analysis, introducing
the Fourier transformation and we can define another quantity that describes the
vibration level linked to the spectral diagram and this is the harmonic ratio, defined
as follows:

HR = max

[
F

(
Tin(t)− Tin,m

Tin,m

)]
(5.2)

Where F indicates the Fourier transformation.
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5.2. Influence of the profile modification coefficient

5.2 Influence of the profile modification coefficient

By varying the profile modification coefficient x, an efficiency optimum is obtained
for a value around 0,09. This is coherent with the observation that a low correction
coefficient gives a larger angle of motion transfer. The transmission could become
more efficient with a low correction coefficient.
Moreover, by increasing the correction coefficient the torsional vibrations decrease
and this is why the external shape tends to become more similar to a circumference
than to a gear.

Figure 5.2: Influence of the profile modification coefficient

5.3 Influence of the pins radius

We also discover that the larger is the pins radius - in a limit imposed by the
geometry- the better is the efficiency. The increment of this quantity causes no
significant variations of the torque acyclism and of the harmonic ratio (figure 5.3).
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5.4. Influence of the teeth number

Figure 5.3: Influence of the pins radius

5.4 Influence of the teeth number

This parameter also affects the number of housing pins. The larger the number of
teeth is great, the larger is the efficiency. This analysis seems to be not so realistic.
The harmonic ratio remains constant and the torque acyclism overall declines with
a modulation of a even or odd number of teeth (figure 5.4). The variation in the
number of teeth involves the variation of the reduction ratio of the gearbox itself:
this parameter is set by the particular application to which the gearbox is applied.
We need to act on the cycloidal reducer’s geometric features and on the number of
teeth of the disk. However, due to the geometrical considerations made in chapter 2,
increasing the number of teeth must involve changes in the characteristic dimensions
of the disk.
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5.5. Influence of the output rollers number

Figure 5.4: Influence of the teeth number

5.5 Influence of the output rollers number

The efficiency no longer varies from a number of output rollers greater then five.
The torque acyclism and the harmonic ratio, after the low limit is exceeded, remain
constant with a small modulation of an even or odd number of rollers.
The effect of having a greater number of rollers is to more effectively distribute the
forces that allow the balance of the torque at the output. As well as being deducible
from the basic model equations, the number of rollers does not change the dynamic
behavior of the machine. Without any doubt, having a very small number of rollers
can lead to an increase in operating vibrations and a lower efficiency, precisely
because the balancing forces to the output torque are badly distributed (figure 5.5).
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5.6. Influence of friction coefficient

Figure 5.5: Influence of the output rollers number

5.6 Influence of friction coefficient

Lastly, the effect of the friction coefficient on the performance of the machine will
be analyzed: this is not a parameter that can be changed during the design process,
but it is markedly dependent on the working conditions. As known, this depends
on the roughness of the surfaces in contact, on the extent of surface wear, on the
presence of a lubricant film and- to a first approximation- does not depend on the
sliding speed of the bodies in contact.
Obviously, it is expected that increasing the amount of friction is going to decrease
efficiency, while the effect on the magnitude of the level of torsional vibrations in
operation is interesting. Increasing the amount of friction forces leads to increasing
vibrations because the forces balance varies. However, there is a maximum value
of the coefficient of friction above which the amount of friction can be increased to
reduce the vibration level. Anyway, in this field of friction coefficient, the values of
efficiency would be inadmissible.

68



5.7. Optimizing the gearbox’s performance

Figure 5.6: Influence of friction coefficient

It could be observed that for extremely low values of friction coefficient we have
not got efficiency as equal to one. Since the main equations of the proposed model,
we can not introduce µ = 0, so the lower µ used for simulations is equal to 0,001.
For the value of µ, the efficiency is around 0,98.

5.7 Optimizing the gearbox’s performance

In this chapter we have analyzed some effect of variations of some parameters on the
efficiency: the most impacting quantities are undoubtedly the correction coefficient
x, the friction coefficient µ and the teeth number z1. Anyways, the correction
coefficient is not allowed to be too small because if x is lowered, the external shape
of cycloidal disk tends to be a circumference, causing difficulties of meshing with the
housing pins. Moreover, the friction coefficient µ depends on the operating working
conditions and this dependence underlines how important is for the cycloidal reducer
to have the best condition in cleaning, surface finishing and maintenance. Finally,
the number of teeth z1 involves setting the gear ratio that is linked mainly to the
particular application.
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5.7. Optimizing the gearbox’s performance

Figure 5.7: Maximum efficiency value as a function of gear ratio

To summarize, if we set the values of all the geometric parameters and the friction
coefficient in a such way to raise up the efficiency, we would get a graph that draws
attention to the fact that as great is the gear ratio, as significant is the transmission
efficiency (figure 5.7). In fact, to get figure 5.7, we have set µ = 0,005 ad x = 0,1: if
z1- or equally i- was made to vary up to very high values, the gear ratio would raise
up and at the limit it would tend to become unitary.
By now, it is possible to make a comparison between theoretical efficiency values of
cyclo gearbox and typical efficiency values of traditional planetary reducers (figure
5.8).
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5.7. Optimizing the gearbox’s performance

Figure 5.8: Comparison between theoretical efficiency values of cyclo gearbox and
typical efficiency values of traditional planetary reducers
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Chapter 6

Linear and non-linear stiffness
model of the cycloidal disk

This is the key chapter where the behaviour of the cycloidal reducer is going to be
explained in order to have a significant overlap with the experimentation. So far
we have developed the basic equations and formed the rigid bodies model: we have
observed that- within the limits of the aforesaid model- the transmission efficiency
should be constant as the load varies. This behavior can be more or less satisfactory
at high loads, while it does not explain the behavior of the gearbox at low loads.
Therefore, dynamic elastic effects are introduced, mainly due to the cycloidal disk.
The proposed model deals- in a simple way- with possible elastic effects. This the
reason is why:

1. On the one hand, we will lay the foundations of a first model that takes into
account the deformability of the disk and, then, we will develop it further;

2. We want to obtain a model that starts as a slight modification of the starting
model without major modifications, precisely because the rigid bodies model
allows to describe the behavior of the gearbox with saturated efficiency;

3. Finally, the addition of elastic effects complicates the model in the main form,
this affects the cost of processing that increases exponentially as well as in-
troducing complex mathematical operations (resolutions of differential equa-
tions).

On this basis, we are going to impute all the elastic effects on the single disk in the
coupling with the input shaft, moreover, we will try not to complicate the model
immediately, however, we will come to a non-linear deformability model in order to
justify the experimentation.
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6.1. Motivations in adding an elastic mobility

6.1 Motivations in adding an elastic mobility

We are going to introduce a stiffness mobility along the direction of force transmis-
sion between the input shaft and the cycloidal disk. The main reasons why we have
introduced this stiffness mobility are summarized in the following points:

1. We would include, in such way, the overall elastic dynamic effects of the bodies
of the reducer on its dynamic behaviour;

2. Between the input shaft and the cycloidal disk there is the eccentric bearing
whose presence, in a first approximations, is included as being in-built in the
input shaft. Since referring to Hertz theory of contact, it is well-known that
the relationship between force and deformation in mechanical contact could
be strictly non-linear;

3. Because of the small axial length of the disk, the contact between the input
shaft is not attributable to the case of two cylinders of infinite length in contact,
neither to the case of two spheres in contact;

4. The idea of introducing elastic mobility only between input shaft and cycloidal
disk, could be considered the direct consequences of others works whose focus
is the analysis of strength and stress distribution. It could be proved that the
most stressed sections of cycloidal plate are those closer to the coupling with

the input shaft- in direction of the force
−→
E - so the most relevant elastic effects

must have involved by this mechanical joint;

5. The constants -that are going to be introduced- are not strictly experimental
but, coming from the simulation’s work with the main aim to demonstrate if
the proposed model, are able to explain the experimentation. They are a sort
of shape constants.

6.2 Dynamic equations with elastic properties

We should add a further hypothesis to the rigid bodies model in order to get the
stiffness model: we are using the same kinematic relationships of the previous model,
anyways this could be coherent with the resulting achievements if the displacements
along y1 are negligible.
We can refer to figure 6.1 to understand where and how we have imagined to in-
troduce an ideal spring that will involve all the aforesaid elastic effects. This ideal

spring acts along the
−→
Y1 that, as it was explained in chapter 3 - is moving with the

cycloidal wheel.
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6.2. Dynamic equations with elastic properties

Figure 6.1: Model for y1 mobility introducing a contact stiffness: the element 1
stays for the input shaft,the element 2 stays for the cycloidal disk’s internal coupling
surface (O1 is the cycloidal disc’s centre,O input shaft’s centre)
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6.2. Dynamic equations with elastic properties

In this way we have introduced an adding mobility along the direction of ex-
changed force, linked to the transmission of the torque on the input shaft.
In the fist instance, the elastic retraction force has the following mathematical defi-
nition: −−−−→

Fel(y1) = −kcy|y1|p sgn(y1)
−→
Y1 (6.1)

While the input torque could be expressed as follows:

−−−−→
Tin(y1) = (e

−→
X1)×

−−−−→
Fel(y1) = −e kcy|y1|p

−→
Z (6.2)

Where:

1. kcy is the stiffness constant;

2. p is the exponent of non-linearity in general cases; if p is posed as equal to
1, we will get the Hooke law; otherwise the relationship between force and
deformation is non-linear -as Hertz theory suggests in contact mechanics-.

With the expression of elastic force, we are interested in obtaining the expression of
associated potential energy mainly because we will have all the elements to apply
the Lagrange-Euler equation at a later stage. We should remind that θZ stays for
the angular rotation of the disk around its axis and y1 is position of O1 (center of the
disk) and coincides with the liner deformation of he spring, the potential associated
to the spring is:

V (y1, θZ) = −
∫ −−−−→
Fel(y1) · d

−→
Y1 −

∫
[
−−−−→
Fel(y1)× (e

−→
X1)] · d(θZ

−→
Z ) (6.3)

V (y1, θZ) = −
∫ −−−−→
Fel(y1) · d

−→
Y1 −

∫
(Fel(y1) e

−→
Z ) · d(θZ

−→
Z ) (6.4)

Where:

1. −
∫−−−−→
Fel(y1) · d

−→
Y1 is linked to the linear deformation along the axis of the spring

(the direction of the versor
−→
Y1);

2. −
∫
(Fel(y1) e

−→
Z ) · d(θZ

−→
Z )) is the potential energy that is born because the

action of the elastic force involves a torque (the input torque) around the axis
of the cycloidal wheel.

Then:

V (y1, θZ) =

∫
kcyy

p
1 dy1 + e kcyy

p
1

∫
dθZ (6.5)

V (y1, θZ) =
1

p+ 1
yp+1
1 + e kcyy

p
1θZ + C (6.6)
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6.2. Dynamic equations with elastic properties

Assuming that V (y1 = 0, θZ = 0) = 0, we will obtain:

V (y1, θZ) =
1

p+ 1
yp+1
1 + e kcyy

p
1θZ (6.7)

However, the expression (6.1) has a numerical problem because, if p /= 1, it could
involve complex number without physical meaning. Moreover, we will lose the de-
formation’s sign that makes valid the equation (6.1). For these reason we should
rewrite the equations (6.1) (6.9) and the equation (6.7) as follows:

−−−−→
Fel(y1) = −kcyy1 |y1|p−1

−→
Y1 (6.8)

−−−−→
Tin(y1) = (e

−→
X1)×

−−−−→
Fel(y1) = −e kcyy1 |y1|p−1

−→
Z (6.9)

V (y1, θZ) =
1

p+ 1
kcy|y1|p+1 + e kcy|y1|pθZ (6.10)

As in rigid bodies model we can write the kinematic torsor with the velocity of point
O1: {

CCy/R0

}
=

{
eϕ̇
−→
Y1 + (ẏ1

−→
Y1 − y1ϕ̇

−→
X1) |

ϕ̇

z1

−→
Z

}
(6.11)

Where:

1. eϕ̇
−→
Y1 is the absolute speed of the pint O1 referring to X0OY0;

2. ẏ1
−→
Y1 − y1ϕ̇

−→
X1 is the relative speed of the center of the cycloidal plate (the

cycloidal center is not in-built with O1 due to the introduction of the spring
referring to the X1O1Y1);

3.
ϕ̇

z1

−→
Z is the rotation angular speed of the cycloidal plate rotating around its

axis.

With the kinematic torsor, the dynamic torsor of the cycloidal plate could be written
as (referring the torsors to X0OY0):{
DCy/R0

}
=

{
mcy(−eϕ̇2 − 2ẏ1ϕ̇− ẏ1ϕ̈)

−→
X1 +mcy(eϕ̈+ ÿ1 − y1ϕ̇2)

−→
Y1 | −

Izz
z1
ϕ̈
−→
Z

}
X0OY0

(6.12)

We must remind of the derivative of rotating versors
−→
X1 and

−→
Y1:

−̇→
X1 =

d
−→
X1

dt
= ϕ̇
−→
Y1 (6.13)

−̇→
Y1 =

d
−→
Y1
dt

= −ϕ̇
−→
X1 (6.14)
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6.2. Dynamic equations with elastic properties

The torsor standing for the interactions between the input shaft and the cycloidal
disc- since submitting the previous hypotheses (elastic deformation and negligible
displacements)- is:{

ECy/R0

}
=
{
Ex
−→
X1 − kcyy1|y1|p−1

−→
Y1 | − kcyy1|y1|p−1e

−→
Z
}
X0OY0

(6.15)

All the other torsors - the one that describes the interaction between plate and pins
and the other one that stays for the interaction between plate and rollers- are in the
same form of the rigid bodies model:{

OCy/R0

}
=
{−→
COi

= Kc

∑
iCXi

−→
X1 +Kc

∑
iCYi
−→
Y1 |

∑
iKcMCi

−→
Z
}
X0OY0

(6.16)

{
OSy/R0

}
=
{−→
SOj

= Ks

∑
j SXj

−→
X1 +Ks

∑
j SYj
−→
Y1 |

∑
jKsMSj

−→
Z
}
X0OY0

(6.17)

We can write the general form of the virtual displacement:

δ−→rk = δx1
−→
X1 + δy1

−→
Y1 + δθZ

−→
Z (6.18)

By using the torsors and the virtual work principle we obtain the main equations of
the dynamic problem.
Along the ~X1 direction: ∑(−→

F ·
−−→
δX1

)
= 0 (6.19)

Kc

∑
i

CXi
+Ks

∑
j

SXj
+ Ex +mcy(eϕ̇

2 + 2ẏ1ϕ̇+ ÿ1) = 0 (6.20)

Along the ~Y1 we are going to have:∑(−→
F ·
−→
δY1

)
= 0 (6.21)

Kc

∑
i

Cyi +Ksµs
∑
j

SXj
− kcyy1|y1|p−1 +mcy(−eϕ̈+ ÿ1 − y1ϕ̇2) = 0 (6.22)

Regarding the balance to the rotation around the axis ~Z∑(−→
MZ ·

−→
δθZ

)
= 0 (6.23)

Kc

∑
i

MCi
+Ksµs

∑
j

MSj
− ekcyy1|y1|p−1 +

Izz
z1
ϕ̈ = 0 (6.24)

Then, by using equations (6.56) and (6.57) -adding the hypothesis of steady state-
we could get a system of equations whose unknown variables are Kc and y1. The
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6.2. Dynamic equations with elastic properties

unknown-variable y1 is present in the first and second derivative: anyway, by pos-
ing the right initial conditions and taking the stationary solution lets to have a
displacement y1 in a steady state.{

Kc

∑
iMCi

+Ksµs
∑

jMSj
− kcy y1 |y1|p−1 e = 0

Kc

∑
iCyi +Ksµs

∑
j SXj

− kcy y1 |y1|p−1 +mcy(ÿ1 − y1ϕ̇2) = 0
(6.25)

By making explicit the variable Kc as a function of y1 and its derivative, the
following differential equations are obtained:

Kc =
1∑
iMCi

(
−Ksµs

∑
j

MSj
+ kcy y1 |y1|p−1 e

)
(6.26)

mcyÿ1+kcyy1|y1|p−1
(

1− e
∑

iCYi∑
iMCi

)
−mcyω

2
0y1 = Ksµs

∑
j

SXj
−Ks

∑
j

MSj

∑
iCYi∑
iMCi

(6.27)
The equation above is a non-linear differential equations with time-variant coefficient
whose solution could be determined numerically by using Matlab/Simulink. So with
these elements we can evaluate the efficiency of the gearbox transmission:

Tout = Cs (6.28)

Tin = |
−→
Tin| = e kcy |y1|p (6.29)

ωout
ωin

=
1

i
=

1

z1
(6.30)

η =
Tout ωout
Tin ωin

=
Cs

z1e kcy |y1|p
(6.31)

After getting the main equations with the use of torsor linked with the virtual work
principle, we are going to obtain the same equations through solving the Euler-
Lagrange equation.
The main equation of Euler-Lagrange is well-known:

d

dt

∂L
∂q̇k
− ∂L
∂qk

= Qk (6.32)

Where q1 = x1 , q2 = y1 and q3 = θZ -with the same meaning of the rigid bodies
model- while L is the Lagrangian of the system (cycloidal plate) and Qk is due to
the interactions of cycloidal plate with the other bodies.

L = T − V (6.33)

T =
1

2
mcy

−→
VO1 ·

−→
VO1 +

1

2
Izz θ̇

2
Z (6.34)
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6.2. Dynamic equations with elastic properties

V =
1

p+ 1
kcy|y1|p+1 + e kcy|y1|p θZ (6.35)

Where
−→
VO1 can be determined using Rivals theorem:

−→
VO1 =

−→
VO +

−−−→
VO1/O,dr +

−−−→
VO1/O,rel (6.36)

−→
VO1 =

−−−→
VO1/O,dr +

−−−→
VO1/O,rel (6.37)

−→
VO1 = eϕ̇

−→
Y1 + (ẏ1

−→
Y1 − y1ϕ̇

−→
X1) (6.38)

Finally:
d

dt

∂L
∂q̇1

=
d

dt

∂T

∂ẋ1
(6.39)

d

dt

∂T

∂ẋ1
= mcy(eϕ̇

2 + 2ẏ1ϕ̇+ y1ϕ̈) (6.40)

d

dt

∂L
∂q̇2

=
d

dt

∂T

∂ẏ1
(6.41)

d

dt

∂T

∂ẏ1
= mcy(−eϕ̈+ ÿ1 + y1ϕ̇

2) (6.42)

d

dt

∂L
∂q̇3

=
d

dt

∂T

∂θ̇Z
(6.43)

d

dt

∂T

∂θ̇Z
= Izz θ̈Z = Izz

ϕ̈

z1
(6.44)

While:
∂L
∂q1

=
∂V

∂x1
= 0 (6.45)

∂L
∂q2

=
∂V

∂y1
= kcyy1 |y1|p−1 (6.46)

∂L
∂q3

=
∂V

∂θZ
= e kcyy1 |y1|p−1 (6.47)

We are going to evaluate Q1, Q2 and Q3:

δ−→rk = δx1
−→
X1 + δy1

−→
Y1 + δθZ

−→
Z (6.48)

Q1 =
N∑
k=1

−−→
Fnc,k ·

∂−→rk
∂q1

=
N∑
k=1

−−→
Fnc,k ·

−→
X1 (6.49)

Q1 =
N∑
k=1

−−→
Fnc,k ·

−→
X1 = Kc

∑
i

CX,i +Ks

∑
j

SX,j + Ex (6.50)
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6.3. Dynamic equations with elastic properties (Newton’s method)

Q2 =
N∑
k=1

−−→
Fnc,k ·

∂−→rk
∂q2

=
N∑
k=1

−−→
Fnc,k ·

−→
Y1 (6.51)

Q2 =
N∑
k=1

−−→
Fnc,k ·

−→
Y1 = Kc

∑
i

CY,i +Ksµs
∑
j

SX,j (6.52)

Q3 =
N∑
k=1

−−→
Fnc,k ·

∂−→rk
∂q3

=
N∑
k=1

−−→
Fnc,k ·

−→
Z (6.53)

Q3 =
N∑
k=1

−−→
Fnc,k ·

−→
Z = Kc

∑
i

MC,i +Ks

∑
j

MS,j (6.54)

Finally, summarizing all the steps and continuing with the substitutions of the terms,
we will obtain the three main dynamic equations:

Kc

∑
i

CXi
+Ks

∑
j

SXj
+ Ex +mcy(eϕ̇

2 + 2ẏ1ϕ̇+ ÿ1) = 0 (6.55)

Kc

∑
i

Cyi +Ksµs
∑
j

SXj
− kcyy1|y1|p−1 +mcy(−eϕ̈+ ÿ1 − y1ϕ̇2) = 0 (6.56)

Kc

∑
i

MCi
+Ksµs

∑
j

MSj
− ekcyy1|y1|p−1 +

Izz
z1
ϕ̈ = 0 (6.57)

6.3 Dynamic equations with elastic properties (New-

ton’s method)

We can obtain the free-body diagram for the stiffness model by varying the following
forces:

1. The force Ey(1 − µE)
−→
Y1 should be replaced by the elastic forces

−−−−→
Fel(y1) =

−kcyy1|y1|p−1
−→
Y1;

2. The two components of inertial force should be changed because we must take
into account the effects of y1 displacements deformations on kinematic laws.

In order to get the effective inertial force in the case of having y1 displacements,
we are going to adapt the kinematic equations, starting off by writing the relative
velocity formula:

−→
VO1 =

−→
VO +

−−−→
VO1/O,dr +

−−−→
VO1/O,rel (6.58)
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6.3. Dynamic equations with elastic properties (Newton’s method)

Where
−−−→
VO1/O,dr is the dragging velocity liked to the motion of the reference system

X1O1Y1, while
−−−−→
VO1/O0 ,dr is the relative speed related to X1O1Y1 and associated to

the displacements y1.

−→
VO1 = eϕ̇

−→
Y1 + (ẏ1

−→
Y1 − y1ϕ̇

−→
X1) (6.59)

Then:

−→aO1 =
d
−→
VO1

dt
= (−eϕ̇2 − 2ẏ1ϕ̇− y1ϕ̈)

−→
X1 + (eϕ̈+ ÿ1 − y1ϕ̇2)

−→
Y1 (6.60)

Therefore, the two axis components of inertia force should be:{
Fin,X1 = mcy(eϕ̇

2 + 2ẏ1ϕ̇+ y1ϕ̈)

Fin,Y1 = mcy(−eϕ̈+ ÿ1 + y1ϕ̇
2)

(6.61)

By applying the fundamental laws of dynamic it is immediate getting the same
equations coming from the analytic method with torsors.

Figure 6.2: Free body diagram in the case of stiffness model
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6.4. Mathematical formulation of dynamic problem

6.4 Mathematical formulation of dynamic prob-

lem

In this section the main focus is on the mathematical aspects of the following equa-
tion:

mcyÿ1+kcyy1|y1|p−1
(

1− e
∑

iCYi∑
iMCi

)
−mcyω

2
0y1 = Ksµs

∑
j

SXj
−Ks

∑
j

MSj

∑
iCYi∑
iMCi

(6.62)
The equation (6.62) is a second order non-linear differential equation. The non-
linearity of the equation is due to y1|y1|p−1 when p /= 1. Moreover, the coefficient
of y1|y1|p−1 is time-dependent, while the coefficients of the second derivative (ÿ1)
and of y1 are constant. The right term is time-dependent in a periodic way because
all the basic addenda are periodic: they are linked to the forces distribution on
the cycloidal plate and they are varying as cycloidal wheel rotates. Basic methods
for initial value problems, beginning with the simple Euler scheme, and working
up to the extremely popular Runge–Kutta fourth order method (ode45), may be
implemented by the Matlab/Simulink to solve the dynamic problem.
However, as it is known from the relevant literature, the resolution of equations
of this type can easily lead to numerical divergence. It was observed in the first
attempts to solve this equation. To override the problem of the divergence in a simple
but not optimal way from the mathematical point of view, we have reduced the
interval of discretization in time used by Simulink for the resolution of the equation.
This can be done immediately via the Simulink numerical resolution settings. In
such way, it determined a significant increase in processing times, whose effect is
amplified by the fact that the general algorithm -to get the efficiency as a function
of the load- requires a very long times to solve the differential equations whose
generic form is basically (6.62). Nevertheless, the reduction of the discretization
interval appears a fast and effective way to avoid incurring numerical problems that
would be more effectively addressed by a mathematician than by an engineer.
If it was be desirable to get an analytic solution of the equation, the Harmonic
Balance method could be introduced. This is used to calculate the steady-state
response of nonlinear differential equations when the forcing term is a period function
as in our case. However, analytic resolution falls outside the interests of this thesis
work, whose focus is on the practical aspects rather than the strictly mathematical
and numerical ones.
Furthermore, we should add that the equation (6.62) is based on the hypothesis
of steady state. We should write the Cauchy problem by setting the initial values

82



6.5. Linear stiffness model: research of the experimental stiffness coefficient

problem, that for us are in the main form:
mcyÿ1 + kcyy1|y1|p−1

(
1− e

∑
iCYi∑
iMCi

)
−mcyω

2
0y1 = F (t)

y1(t = 0) = 0

ẏ1(t = 0) = 0

(6.63)

These are not the actual initial conditions of the physical problem, but in the begin-
ning these are unknown. To solve the problem, the simulation was performed and
only at the stationary response the solution was eventually taken into account.
Finally, we have added in Appendix E a little explanation of the main blocks used
in Simulink to solve the main equation (6.62) and in Appendix D the basic phe-
nomenology of non-linear mass-spring system.

6.5 Linear stiffness model: research of the exper-

imental stiffness coefficient

So far we have developed a method to explain the dynamics considering the conse-
quences of having elastic properties concentrated on the contact between the high-
speed shaft and the cycloidal plate. The first attempt is to force the elastic property
to linear behaviour. By posing p = 1 from the general stiffness model, we are going
to obtain the so-called linear stiffness model. That model foresees the linearity of
relationship between retraction force and deformation. As the appendix C under-
lines, for two cylinders in external contact, the relationship would be really linear.
However, the equation is:

mcyÿ1 + kcyy1

(
1− e

∑
iCYi∑
iMCi

)
−mcyω

2
0y1 = Ksµs

∑
j

SXj
−Ks

∑
j

MSj

∑
iCYi∑
iMCi

(6.64)
By now, we must give a physical meaning to the stiffness constant kcy that in the
linear stiffness model we will call as linear stiffness coefficient, whose units are N/m.
The value suggested by literature is far from the real one because the real case
is particularly different from the ideal reference case of two cylinders in external
contact. In fact, we have at most two cylindrical bodies in contact, the first one in
contact with its internal surface, the second one with its external surface. However,
there are the eccentric bearing rollers in between. So we are going to estimate
whether it would be possible to carry out a value of kcy that could make possible
the overlap between experimentation and mathematical prevision.
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6.5. Linear stiffness model: research of the experimental stiffness coefficient

In order to reach that purpose, we can solve the following system:



mcyÿ1 + kcyy1

(
1− e

∑
iCYi∑
iMCi

)
−mcyω

2
0y1 = F (t)

F (t) = Ksµs
∑

j SXj
−Ks

∑
jMSj

∑
iCYi∑
iMCi

η =
CS

z1 kcy |y1|
= ηsp(Cs, ω0)

(6.65)

Where ηsp(Cs, ω0) consists in the experimental curves obtained thorough the exper-
imental test bench and we are aware that the main dependence is for the output
load Cs, rather than for the input speed ω0, while |y1| is the average value of the
deformation during the simulation time. The mathematical problem is not easily
solved by the Matlab/Simulink tools. Moreover, we can make explicit the linear
stiffness coefficient kcy as a function of the experimental efficiency:

kcy =
Cs

z1 ηsp(Cs, ω0) |y1|
(6.66)

By substituting in the main dynamic differential equation:

mcyÿ1 +
Cs

z1 ηsp(Cs, ω0) |y1|
y1

(
1− e

∑
iCYi∑
iMCi

)
−mcyω

2
0y1 = F (t) (6.67)

It would become particularly artificial to introduce an equation of this kind on
Simulink, since Simulink is a solver of time equations and whose resolution algorithm
goes on passing through successive sequences. The mean value (|y1|) of the unknown
function (|y1(t)|) in the simulation time intervals is present in the basic equation
(6.67) and with the basic blocks of Simulink is not easily possible to solve the overall
equation because of this presence. In such way we will find the specific values of
linear stiffness coefficient that makes possible to have, for each particular value of
the output load, the values of the experimental efficiency.
We discovered that- using the linear stiffness model to approximate the experimental
data- the linear stiffness coefficient has an almost square relationship with the load
(figure 6.3). We will be forced to introduce empirical relationship suggesting that
the chosen model is not able to effectively explain physical reality and experimental
data. As a physical interpretation we have that the increase of the load involves a
variation in the linear stiffness of the disk so that the experimental efficiency can be
simulated.
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6.6. Linear stiffness model: comparison between experimentation and simulations

Figure 6.3: Relationship between kcy and output load Cs in order to approximate
the experimental efficiency

6.6 Linear stiffness model: comparison between

experimentation and simulations

As a criterion to determine the validity of the model and its capability of approx-
imating the experimentation, it was to choose the model whose shape parameters
were constant and did not depend neither on the input speed, nor on the load. The
linear model can not describe the experimentation without admitting a variability of
the linear stiffness coefficient as a function of the output load. In the following sim-
ulations we can observe the effect of increasing the stiffness in determining a general
increase in transmission efficiency, this is because a more rigid system responds- at
the same stress given by the forcing F (t)- with lesser deformations and forces that
are globally produced lower. This translates into smaller input torque and higher
efficiency. The behavior of the efficiency as a function of stiffness saturates at high
value of stiffness and then reverses for high stiffness values, precisely because in the
determination of the input torque, both the stiffness and the deformation partic-
ipates. From the comparison with the experimental data, it is observed that the
increase in experimental efficiency is much greater than the theoretical forecasts
with the linear stiffness model. However, the model has two advantages: the first
is the lack of dependence of efficiency on the input speed (as the experimentation
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shows), the second is the dependence, even though small, of the efficiency on the
output torque.

Figure 6.4: Simulations’ results to evaluate the efficiency with the linear model

(p = 1) at two different speeds with kcy = 109N

m

6.7 Non-linear stiffness model: motivations

From the linear stiffness model we have concluded that a mobility along the direction
of force transmission between high-speed shaft and cycloidal plate could explain why
the efficiency depends on the output load. Although, the linearity in deformations
does not imply the same increase of efficiency as the experimentation shows. For
this reason we are going to introduce a relationship of non-linearity between force
and deformation with the main purpose to find shape constants -as we will see later
p and kcy- that let to reach an overlap between previsions and experimental data.
Physically, the following observations could clarify this new way forward:

1. The theories of contact explain that the relationship between deformation and
normal contact force may be strictly non-linear. In fact, as table 6.1 shows, in
the elementary case of contact we have that kcy depends on the geometry of
contacting bodies, on the material properties and on some sizes of the bodies.
Instead, p depends only on the geometry of contacting bodies. In the particular
case of analysis, we can not find a similar elementary case to apply the basic
equations. Anyways, we can expect that the experimental p is not too far from
the typical coefficient of the table 6.1. The same applies to kcy;

2. Another reason why we can not have the theoretical value for p consists in
the fact that we are going to consider the dynamic effects only on the contact
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between input shaft and cycloidal wheel. Actually, we have a lot of points of
contact at that time: the contacts between pins and teeth and between rollers
and plate’s lobes. Nevertheless, if all these contacts were added in dynamics,
the model would become really complicated and the processing time of the
Matlab/Simulink code would increase exponentially. Moreover, we have that
significant stressed zones of the wheel is near to the coupling with the high-
speed shaft;

3. if the model becomes reliable, we will prove that most of the dynamic effects
must be involved between input shaft and cycloidal disk and that the increase
of the efficiency could be a direct consequence of the importance of the contact
dynamics;

4. As we have already specified, the constants introduced p and kcy will be evalu-
ated to get an overlap between theoretical and experimental efficiency. These
are shape constants indeed, so for future developments we may evaluate these
experimentally and later we could check if the experimental values are near
to the values coming from the computational and modelling work. This last
check could be proved the validity of the model chosen itself.

By now, we are able to compare the effect in variation of the coefficient p by keeping
constant kcy (while p is varying). If we choose a value of kcy that does not allow
to have intersection with the line representing for the linear behaviour, we tend to
have a hardening behaviour of the spring (figure 6.5 left).
At the same time we can estimate the effect of raising up kcy, while p is imposed
equal to 2,5: for the same value of the deformation, there is a greater retraction
force. In that way, we increase the hardening behaviour of the spring (figure 6.5
right).

Figure 6.5: Effects of varying p and kcy
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More details about Hertz theory and Palmgren formula- summarized in the table
6.1- are in the Appendix C.

Table 6.1: Stiffness coefficient and exponent of non-linearity in the general theoret-
ical cases proposed

General case Stiffness coefficient kcy Exponent of non-
linearity p

Sphere and a half-space
and two spheres

(
16E∗2R

9

)3/2

3/2

Two cylinders with paral-
lel endless axes

(
π

4
E∗L

)
1

Cylinders not infinitely
long with parallel axes
(Palmgren formula)

8,075 104 N

m2
L8/9 d10/9 10/9

6.8 Non-linear stiffness model: research of the

shape factors

The procedure for calculating the coefficients kcy and p in the non-linear stiffness
model is similar to the linear case. Everything is complicated by having two con-
stants to be determined in order to obtain the overlap between theoretical and
experiential values. A variation of the non-linearity exponent p is expected around
10/9 and beyond, but not so far from this last value. Precisely because, although
it is true that we are not in the elementary cases of Appendix C, we are not so
distant from these physical conditions. The values taken from the previous model
(linear stiffness model) are the starting points of the new model and gradually we
are going to move away in small steps in order to get a significant approximation
between theoretical previsions - from the new model (non-linear stiffness model)-
and experimentation.
Afterwards, we can write the main differential equation in the general case with
p /= 1:

mcyÿ1+kcyy1|y1|p−1
(

1− e
∑

iCYi∑
iMCi

)
−mcyω

2
0y1 = Ksµs

∑
j

SXj
−Ks

∑
j

MSj

∑
iCYi∑
iMCi

(6.68)
By adding the experimental data of efficiency and the mathematical equation of
efficiency coming from the basic theory, we are going to have the following system
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of equation where the unknown variable are p and kcy:



mcyÿ1 + kcyy1|y1|p−1
(

1− e
∑

iCYi∑
iMCi

)
−mcyω

2
0y1 = F (t)

F (t) = Ksµs
∑

j SXj
−Ks

∑
jMSj

∑
iCYi∑
iMCi

η =
CS

z1kcy|y1|
p = ηsp(CS)

(6.69)

Finally, we could rewrite the differential equation by making explicit the value of
the non-linear stiffness constant kcy:

kcy =
CS

z1 ηsp(CS) |y1|
p (6.70)

mcyÿ1 +
CS

z1 ηsp(CS) |y1|
py1|y1|p−1

(
1− e

∑
iCYi∑
iMCi

)
−mcyω

2
0y1 = F (t) (6.71)

At the end, by changing gradually the value of kcy and of p and checking the overlap
between experimental efficiency and theoretical one, we get the shape values of these
constants.

6.9 Non-linear stiffness model: comparison be-

tween experimentation and simulations

In this section we are going to analyze the results coming from the non-linear stiffness
model. We have carried out that the shape constant able to get the overlap:

Table 6.2: Values of constants coming from computational work

Stiffness coefficient kcy Exponent of non-linearity p
1,5 1010N/m2,35 2,35
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Figure 6.6: Simulations’ results to evaluate the efficiency with the non-linear model

(p = 2,35) at two different speed with kcy = 1,5 1010 N

m2,35

We find a significant closeness between theoretical and experimental values of effi-
ciency with the choice summarized in table 6.2. This confirms the validity of the
hypotheses posed, admitting however that further investigations should be made to
promote the main ideas of the non-linear stiffness model (figure 6.6). Since look-
ing at the response in terms of deformation y1(t) (figure 6.7) as simulation time
changes, we may see the typical response of the spring-mass system, whose spring
is non-linear (Appendix D).
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6.9. Non-linear stiffness model: comparison between experimentation and simulations

Figure 6.7: Simulations’ results to evaluate the displacements y1 with the non-linear

model (p = 2,35) at two different speed with kcy = 1,5 1010 N

m2,35
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Chapter 7

Conclusions

The main conclusions - drawn from a critical analysis of the experimental data and
simulations from non-linear stiffness model - are:

1. The efficiency of cycloid drive rises with the load. For small loads it is almost
linear and increases very fast, but for the higher loads the efficiency curve
bends and growth slower. It has been proven that this shape of efficiency
curve can be simulated by introducing a non-linear stiffness to the model.

2. Sophisticated models that include all the dynamic elastic effects on the cy-
cloidal plate can be found in the literature ([2]). These models need several
adjustable parameters and large time for computation. This work proposed a
new approach to describe the cycloid efficiency curve where the elastic effects
is involved only between input shaft and cycloidal disc. The presented model
shows a good fitting of the experimentation;

3. The proposed equation can be used to simulate the cycloid drive efficiency in
drive trains with reasonable computational costs.

4. Input speed has a negligible impact on the efficiency - as the experimentation
and simulations show-. In fact, it is clear that -in deformations’ phenomena-
the main dependence is on the normal load than on the sliding velocity.

All in all, this work shows -firstly- that a model with rigid bodies is not able to
suit the experimentation and that elastic dynamic effects influence efficiency. This
effects have a similar dependence as Hertz theory shows. However, in order to have a
better model, a deep investigation on all the contacts acting in the gearbox reducer
should be performed. This effects do not depend on the number of disks of the
gearbox, but could make the efficiency raise up for high values of load.
In general, by observing the efficiency data, we discover the existence of two regions:
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7 – Conclusions

1. A first region for smaller output load values, where the variation in efficiency is
considerable, the aforesaid elastic effects are very relevant and the non-linear
stiffness model can explain successfully the dynamic behaviour;

2. A second region for higher output load values, where increasing the external
load does not involve important variations on the efficiency that saturates to a
constant value. In this field the rigid bodies model can satisfactorily describe
the physical reality and allows to optimize the machine’s parameters with
reasonable computational cost.

This thesis has focused on the dynamic behavior of the machine because of its
influence on efficiency. Firstly, we have analyzed the basic equations from kinematics
and dynamics, later we have payed attention to the experimentation, later we have
modified the basic model- calling other dynamic effects- in order to carry out the
best fitting model for the cycloidal reducers. The overall work can be considered
original because the attention has been also focused on the computational cost for
the model proposed in order to have a good compromise between computational
feasibility and capacity to describe the physical reality.
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Appendix A

Kennedy theorem

Figure A.1: Illustration for explanation of Kennedy theorem

The Kennedy’s theorem states that the three instant centres of velocity (IVC) shared
by three rigid bodies in relative planar motion to another (whether or not connected),
all lie on the same straight line. A concrete and intuitive example is going to be
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A – Kennedy theorem

introduced. Figure A.1 shows a four-bar linkage where we can individuate three
different moving bodies 2,3 and 4; and the fixed part, or better the frame 1. Then,

• 12 is the instantaneous centre of rotation of the motion of 2 related to 1;

• 41 is the instantaneous centre of rotation of the motion of 4 related to 1;

• 13 is the instantaneous centre of rotation of the motion of 3 related to 1;
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Appendix B

General models for kinetic friction

During the computational and modelling work, one of the first decision was to
individuate the more coherent and physical meaningful model for friction. As It
is well-known, we have three different kind of friction interactions and in the rigid
bodies model- the staring and the basic model- friction has been interpreted as the
Colombian model affirms. Anyway, several approaches have been taken into account
before choosing the Colombian model. For these reasons, we are going to introduced
the simpler models for friction - the most common ones in scientific literature- that
we have discussed about at length. Because we have solved the equations in steady
state, the most of interest is for model of dynamic friction without being interested
-for that applications- in static effect of first parting:

1. The first model considered is the Colombian one. In agreement with this, for
two dry solid surfaces sliding against one another, the magnitude of the ki-
netic friction exerted through the surface is independent of the magnitude of
the slipping velocity of the surfaces against each other. The kinetic friction
coefficient is introduced as a constant depending on the kind of material of the
sliding surfaces, on the roughness of them and on other secondary factors. In
this model, if FN is the normal force pressing the surfaces and µ is the exper-
imental and constant kinematic friction coefficient, we can write the kinetic
friction FC as follows:

−→
FC = −FN µ

−→
Vs

‖
−→
Vs ‖

(B.1)

Where
−→
Vs is the sliding velocity. Though it greatly over simplifies the frictional

phenomena it is widely used in the engineering world, when dynamic effects
are not concerned. Also, the Coulomb model is a common piece of all more
developed models.

2. The second most common model for friction is the damping friction model. In
this case the friction has a linear dependency on the sliding speed. It is strictly
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B – General models for kinetic friction

recommended to model -in a sample way- the kinetic residence of bodies mov-
ing on fluid or to quantify friction between lubricated slipping surfaces. The
damping friction FV could be evaluated as follows:

−→
FV = −β

−→
Vs (B.2)

Where β is the damping coefficient.

Finally- having introduced the Colombian model and the viscous one- It is mean-
ingful presenting the Stribeck curve. The Stribeck curve is a more advanced model
of friction as a function of velocity. Although it is still valid only in steady state,
it includes the model of Coulomb and viscous friction as built-in elements. The
Stribeck curve has been verified by comparing published results in tribology (figure
B.1).

Figure B.1: Stribeck curve
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Appendix C

Reference to Hertz theory of
contact and Palmgren formula

Classical contact mechanics is most notably associated with H. Hertz. In 1882,
Hertz solved the contact problem of two elastic bodies with curved surfaces. This
still-relevant classical solution provides a foundation for modern problems in contact
mechanics. For example, in mechanical engineering and tribology, Hertzian contact
stress is a description of the stress within mating parts. The Hertzian contact
stress usually refers to the stress close to the area of contact between two spheres of
different radius. In the particular case of analysis, we have two cylinders of reduced
axial length and with parallel axes: one in coupling with its external surface, the
other one with its internal surface. However, we will make a summary of all the
most used cases known in the literature. This is helpful to justify the experimental
shape value of the coefficient p carried out by the computational work in order to
get overlapping between experimentation and theoretical prevision. Therefore we
are planning to make a complete review of the most common cases of contact bodies
studied with Hertz theory, specifying only the final relation between the normal
force FN of contact and the depth of penetration (d) of one body (1) on an other
one(2):

1. Contact between a sphere and a half-space:

FN(d) =

(
16E∗2R

9

)3/2

d3/2 (C.1)

Where: R is the radius of the sphere, E∗ could be determined as follows,
reminding that ν is the Poisson coefficient and E is the Young coefficient:

E∗ =
1− ν21
E1

+
1− ν22
E2

(C.2)

98



C – Reference to Hertz theory of contact and Palmgren formula

2. Contact between two spheres:

FN(d) =

(
16E∗2R

9

)3/2

d3/2 (C.3)

Where:
1

R
=

1

R1

+
1

R2

(C.4)

3. Contact between two cylinders with parallel endless axes:

FN(d) =

(
π

4
E∗L

)
d (C.5)

Where L is the length of the cylinder that makes negligible the radius of the
cylinders.

Furthermore, we can add an experimental formula obtained by Palmgren for cylin-
ders not infinitely long compared to the radial dimensions but with external coupling
and parallel axes:

FN(d) = 8,075 104 N

m2
L8/9 d10/9 (C.6)

We are not in any of the cases listed, because we have two cylinders in coupling with
a very reduced coupling length compared to the radial dimensions. This appendix
is born to give us the idea of the typical values of the stiffness coefficient and the
non-linear exponent: a sort of idea of the magnitude order of quantities that will be
found through the computational work.

Table C.1: Stiffness coefficient and exponent of non-linearity in the general theoret-
ical cases proposed

General case Stiffness coefficient kcy Exponent of non-
linearity p

Sphere and a half-space
and two spheres

(
16E∗2R

9

)3/2

3/2

Two cylinders with paral-
lel endless axes

(
π

4
E∗L

)
1

Cylinders not infinitely
long with parallel axes
(Palmgren formula)

8,075 104 N

m2
L8/9 d10/9 10/9
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Appendix D

Basic phenomenology of simple
non-linear spring-mass system

In this appendix we want to lay the foundations of the basic dynamic laws applied
to mass system with non-linear spring.

Figure D.1: Simple non-linear spring-mass system

By applying the main dynamic principle to the mass-spring system when also a
sinusoidal force takes action, we are going to have:

mẍ+ kcyx
p = F (t) = F0 sin(ωt) (D.1)

To avoid numerical problem with the exponentiation, we will rewrite the equation
in the following way:

mẍ+ kcy|x|p−1 x = F (t) = F0 sin(ωt) (D.2)

100



D – Basic phenomenology of simple non-linear spring-mass system

If we posed kcy = 10, F0 = 100 N and ω = 10 rad/s, we would obtain the following
responses by varying the exponent of non linearity p (figure D.2).

Figure D.2: Non-linear spring-mass system: sinusoidal forcing
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Appendix E

Introduction to Simulink to
resolve the main dynamic equation
of non linear stiffness model

In the main equation, it is introduced also the damping effect only because adding
this kind of friction does not complicated so much both the model and the numerical
scheme to solve the differential equation. The main dynamic equation is:

mcyÿ1 + kcyy1|y1|p−1
(

1− e
∑

iCYi∑
iMCi

)
+ ccyẏ1

(
1− e

∑
iCYi∑
iMCi

)
−mcyω

2
0y1 = F (t)

(E.1)

F (t) = Ksµs
∑
j

SXj
−Ks

∑
j

MSj

∑
iCYi∑
iMCi

(E.2)

To make the mathematical and numerical procedure more linked to the physical
meanings we are going to introduce this quantities related to the kind of acting
force:

1. Elastic force:

Fel(y1) = kcyy1|y1|p−1
(

1− e
∑

iCYi∑
iMCi

)
(E.3)

2. Damping force:

Fdam(y1) = ccyẏ1

(
1− e

∑
iCYi∑
iMCi

)
(E.4)

3. Inertial force:
Fin(y1) = −mcyω

2
0y1 (E.5)

4. Forcing:

F0 = F (t) = Ksµs
∑
j

SXj
−Ks

∑
j

MSj

∑
iCYi∑
iMCi

(E.6)
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E – Introduction to Simulink to resolve the main dynamic equation of non linear stiffness model

Then we are going to get:

mcyÿ1 + Fel(y1) + Fdam(y1) + Fin(y1) = F0 (E.7)

ÿ1 =
−Fel(y1)− Fdam(y1)− Fin(y1) + F0

mcy

(E.8)

The solution in time is obtained through Simulink which employs methods of time
solution of the type of ode45 or more sophisticated. The solver allows automatic
or manual selection of the method of solution in time and the time discretization
interval. The working interface is of the type of block diagrams. Simulink, developed
by MathWorks, is a graphical programming environment for modeling, simulating
and analyzing multidomain dynamical systems. Its primary interface is a graphical
block diagramming tool and a customizable set of block libraries. It offers tight
integration with the rest of the Matlab environment and can either drive Matlab or
be scripted from it.

Figure E.1: Simulink blocks
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