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Abstract
Quasi-optimal low-thrust orbit transfers using simplified steering laws

by Francesco Gianotto

As low-thrust manoeuvres are assuming more importance in spacecraft propulsion, the analy-

sis of this kind of transfer is essential for its understanding and control. In this sense, we want

to study simplified steering laws that are easier to perform with spacecrafts and that we can

control in each point of the transfer. The analysis starts with Lagrange planetary equations

applied with four steering laws and in case of periapsis or apoapsis centred burns, obtaining

the Keplerian orbital elements’ rates of change in one revolution. One of the most important

applications of this method concerns the Jupiter’s moons tour, a tour between the Galilean

moons that nowadays is the subject of many studies. Therefore, we analyse the coplanar

transfer between two Galilean moons, using the four steering laws, including combinations

of them, and developing algorithms in order to optimize the transfer. The benefit of using

this method is given by the direct control over the generated algorithms and the geometrical

understanding of the entire transfer.

The last part of this thesis deals with the singularity that affects the Lagrange planetary equa-

tions, with its inclination equal to zero. The innovative and central point for the resolution is

that the inclination is not a geometrical element that characterizes the orbit, but it depends

on the reference frame used. Thus, applying a rotation of the reference frame we can resolve

the singularity without having to rely on the equinoctial elements, the use of which leads to

several complications.

http://www.dimeas.polito.it/
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Introduction

Referring to space propulsion, nowadays there are two mostly used types of propulsion sys-

tems. The first one is chemical propulsion and it is characterized by high thrust and low

specific impulse. It is used for impulsive manoeuvres for which the burn time tends to zero

and it is the only propulsion system available for the launch. In general, it is preferred in

missions where the ∆V budget is not too high. The second one is electric propulsion, char-

acterized by low thrust and high specific impulse. It allows performing a transfer with less

propellant compared to the same transfer performed with an impulsive manoeuvre. Never-

theless, it requires more time to complete the manoeuvre due to longer trajectories.

Nowadays, low-thrust transfers are used in a broad spectrum of contexts, both in planetary

and interplanetary orbits, the latter one performed together with gravity assist (Schutze et

al. [1], 2009). The transfer between two circular and coplanar orbits can be obtained with a

tangential thrust that generates a spiral trajectory (Edelbaum [2], 1961). The same transfer

performed with impulsive burns could be achieved with the Hohmann transfer, a highly el-

liptical orbit tangent to the two circular orbits. The typical ∆V s for a LEO-to-GEO transfer

are about 6 km/s for the low-thrust and 3.5 km/s for the Hohmann transfer. Even if ∆V

is higher in the first case, the benefits of less propellant derive from the electric thruster’s

higher efficiency. Considering a specific impulse of respectively 3000 s and 400 s, the pro-

pellant mass for the impulsive manoeuvre is about 6 times bigger than the propellant for the

low-thrust transfer.

A limitation of the electric thruster is the high power requested. Therefore, for a deep space

mission this method of propulsion could not be appropriate. Nevertheless, the technology of

these thrusters is constantly evolving, allowing missions as Deep Space 1 to use an ion propul-

sion system (NSTAR) for the primary manoeuvres (Polk et al. [3], 2001). Nowadays, NASA

has developed the ion thruster NEXT, more powerful and efficient than NSTAR (Schmidt [4],

ix
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2008), and there are many studies about electric propulsion for small satellite missions (Ma-

nente et al. [5], 2017).

The difficulty of designing a mission with low-thrust transfer is based on finding the best way

to perform the thrust. In fact, the problem is based on optimal control, thus on optimization

with constraints on the time or on the path. The first results were given by Bryson and Ho [6]

(1975), applying an optimization to find the angle of thrust along the entire path for different

problems, as circle-to-circle transfer or orbit injection. Nowadays, there are several methods

of optimization for a wide range of problems (Conway [7], 2010), but it is not always simple

to solve them.

It is also interesting to analyse the consequence of using simple steering laws, the subject of

this thesis. In fact, it is often the only way to perform the transfer due to spacecraft imposed

constraints. The current technology does not allow performing too complex manoeuvres,

especially considering the needs of the other spacecraft subsystems. For example, we can

think about the impossibility to control directly the spacecraft’s manoeuvres in a deep space

mission, because of the distance from the Earth. Therefore, the study of these simplified

steering laws, alone or in combination, is important for its current applications. Furthermore,

it allows having a geometrical understanding of the problem, contrary to a toolbox of optimal

control on which we do not have direct control.

The developed model for the analysis of these simplified steering laws is based on the La-

grange planetary equations. Integrating them, we obtain the rates of change of the orbital

elements as functions of the steering laws and the burn angle. These results can be used for

several problems, such as the Jupiter’s moons tour. Nowadays, space agencies are able to

send spacecrafts orbiting the giants planets, and the scientific community has great interest

in studying its moons’ systems. Due to chemical thrusters performance, each transfer of a

moons’ tour has a high cost of propellant. Thus, in order to perform an entire tour, it is

necessary to use low-thrust manoeuvres or transfer with gravity assists. This thesis takes

into account the first method of low-thrust manoeuvres. In order to reduce the amount of

propellant needed, we consider a low-energy transfer as presented by Fantino and Castelli [8]

(2016), but considering a low-thrust transfer instead of impulsive transfer in the central part

of the manoeuvre.

Nevertheless, the Lagrange planetary equations used in this model have a singularity for in-

clination equal to zero. This singularity does not allow applying this model to a wide range

of problems. The original solution described in this thesis derives from the analysis of the

properties of inclination. The key point consists in a rotation of the reference frame, as the
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real problem does not lie in the orbital elements, but in an inappropriate reference frame

choice.

The following part of this thesis is organized as follows:

• Chapter 1 describes the model for performing a low-thrust transfer using simplified

steering laws. It is based on the analysis of Pollard [9] (1997), and it presents applications

for a GTO-to-GEO transfer.

• Chapter 2 deals with the coplanar transfer between the two moons of Jupiter, Europa

and Ganymede, using the model of the first chapter. It is based on the work of Fantino

and Castelli [8] (2016), and it can be included in the Jupiter’s moons tour. The transfer

is analysed above different aspects in order to find the best one.

• Chapter 3 presents a solution for solving the singular case of inclination equal to zero,

which affects the Lagrange planetary equations. This solution allows us to use this

model and in general the Lagrange equations for each kind of transfer.

The thesis ends with the Appendix A where the operations of the model presented in the first

chapter are carried out.



Chapter 1

Low-thrust transfer with

simplified steering laws

In this chapter we present the analysis of Pollard [9] (1997) and Pollard [10] (2000) (hereinafter,

POLLARD97 and POLLARD00 respectively). The method he presents allows us to calculate

the variation of the orbital elements in case of a low-thrust manoeuvre, using four simple

steering laws. It is based on the integration of the Gauss form of the Lagrange planetary

equations, simplified thanks to the steering laws, which lead to the rates of change in one

revolution and to the secular rates of change. These equations express the variation of the

Keplerian orbital elements as function of the amount and direction of the thrust.

We apply this method to a very common orbit: the geostationary transfer orbit (GTO). It

is a Hohmann transfer orbit used to reach the GEO orbit. It has high eccentricity and an

apogee of 42164 km that corresponds to the geostationary altitude. Its inclination is due

to the latitude of the launch site (28.5◦ for the Kennedy Space Center), and typically its

perigee is few hundred kilometres above sea level. This values are normally chosen in order

to minimize the launcher cost in term of ∆V .

1.1 Model description

Thanks to developments in electrical propulsion, low-thrust orbit transfers are nowadays be-

coming more interesting for many applications. Unlike impulsive manoeuvres, in order to

achieve a real benefit in term of used propellant, we have to control the intensity and the

1



Chapter 1. Low-thrust transfer with simplified steering laws 2

direction of the thrust. We can achieve this goal by using optimal control, but it requires

large computing skills, and it is often impossible to realize those manoeuvres due to practical

constraints of the spacecraft.

A way to simplify the problem is given by POLLARD97 and POLLARD00 using simple steer-

ing laws that allow us to obtain the solution with an analytic method and easier calculations.

An example of the validity of this method is the transfer between two circular and coplanar

orbits. In this case, we know that the optimal thrust for achieving the minor ∆V is tangent

to the orbit, and Pollard’s method gives the same result.

According to Pollard, we will use the geocentric equatorial coordinate system shown in Fig. 1.1,

with the unit vector Î in the plane of the Earth’s equator and toward the vernal equinox,

the unit vector Ĵ in the same plane with 90◦ to the east, and the unit vector K̂ along the

north polar axis. In addition to this, we will use a reference frame centred in the spacecraft

for the three components of the velocity: Vr in the direction of the radius vector, Vt in the

orbit plane and normal to the radius vector, Vn normal to the orbit plane in the direction

of the angular momentum vector. One of the components of acceleration f , respectively

f1 f2 f3, is associated to each velocity component, with the same reference frame. In this

analysis we will use and calculate the variation of the Keplerian orbital elements: semi-major

axis a, eccentricity e, inclination i, right ascension of the ascending node (RAAN) Ω, and the

argument of periapsis ω. In Fig. 1.1 we show all the reference systems and the parameters

used in this analysis, with the true anomaly expressed as ν.

We also report the Kepler’s equation with the relation between the time t and the eccentric

anomaly E that we will use in the next sections:

t =

√
a3

µ
(E − e sinE) (1.1)

The analysis starts with the Gauss form of Lagrange planetary equations, expressed as func-

tions of E, as presented by Burt [11] (1967). In fact, we do not want to study the variations

of the orbital elements as functions of time, but as functions of the burn angle, which is

correlated to E. The mathematical operation applied in order to obtain these equations is

simple: dx
dE = dx

dt
dt
dE , where x is any orbital element. Therefore, we have the following five

equations:
da

dE
=

2a3

µ

(
f1e sinE + f2

√
1− e2

)
(1.2)

de

dE
=
a2

µ

[
f1(1− e2) sinE + f2

√
1− e2(2 cosE − e− e cos2E)

]
(1.3)



Chapter 1. Low-thrust transfer with simplified steering laws 3

Figure 1.1: Reference systems and orbital elements

di

dE
=
a2

µ
f3(1− e cosE)

[
(cosE − e) cosω√

1− e2
− sinE sinω

]
(1.4)

dΩ

dE
=
a2

µ
f3

(1− e cosE)

sin i

[
(cosE − e) sinω√

1− e2
+ sinE cosω

]
(1.5)

dω

dE
=
a2

µ

{
1

e

[
−f1

√
1− e2(cosE − e) + f2(2− e2 − e cosE) sinE

]
−

− f3(1− e cosE) cot i

[
(cosE − e) sinω√

1− e2
+ sinE cosω

]} (1.6)

We can observe that a and e are affected by the in-plane accelerations f1 and f2, while i and

Ω by the out-of-plane acceleration f3, and ω is affected by all three components.

In order to solve these equations, we assume that the variation of each element during an

orbit’s single period is negligible. Hence, as for the integration step, we can keep constant

each element for the duration of one revolution.

We will analyse four pitch steering laws (Fig. 1.2), considering a particular configuration for

the two components of in-plane acceleration: (1) perpendicular to the orbit radius vector, (2)

tangent to the orbit path, (3) perpendicular to the major axis of the ellipse, (4) parallel to the

major axis of the ellipse. As a result of geometrical considerations for the above mentioned

cases, we are able to obtain values for f1 and f2, writing them as functions of E and f12,

where f12 =
√

(f1)2 + (f2)2 = f cosβ, in Table 1.1.
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Figure 1.2: Simplified steering laws

Table 1.1: Cases for in-plane acceleration.

f1(E) f2(E)

Perpendicular
to the orbit
radius vector
(1)

0 f12

Tangent to
the orbit path
(2)

f12 e sinE√
1− e2 cos2E

f12

√
1− e2

1− e2 cos2E

Perpendicular
to the major
axis of the
ellipse (3)

f12

√
1− e2 sinE

1− e cosE

f12(cosE − e)
1− e cosE

Parallel to the
major axis of
the ellipse (4)

f12(cosE − e)
1− e cosE

−f12

√
1− e2 sinE

1− e cosE
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Figure 1.3: Burn arc and burn angle

1.2 Rates of change in one revolution

Integrating equations 1.2 to 1.6 over the burn arc and for the chosen steering law, we obtain

the rates of change of the orbital elements in one revolution. We consider that the burn arcs

are centred in periapsis or apoapsis with the angle ranging respectively as −α ≤ E ≤ +α or

(π − α) ≤ E ≤ (π + α), where α is the burn angle as shown in Fig. 1.3.

The complete operations are carried out and available in Appendix A. The results are sum-

marised here, where apoapsis burns have σ = 1, periapsis burns σ = −1, and the function G

is:

G(σ, α, e) =
2σ sinα(1 + e2) + 3eα+ e cosα sinα√

1− e2
(1.7)

We present also the rate of change of ∆V , useful in this analysis for the comparison with

an impulsive transfer. It is obtained as ∆V = f · tburn, where tburn is the burn duration per

revolution and its equation derives from the Kepler’s equation 1.1:

tburn = 2

√
a3

µ
(α+ σe sinα) (1.8)

Unlike Pollard’s analysis, for the sake of simplicity in the current model we do not consider the

influence of the planet’s oblateness (the J2 factor) that partially affects the rates of change
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of Ω and ω in case of low orbit. We also neglect all the other perturbations, such as moons’

gravitation and solar pressure.

1.2.1 Steering law (1)

In steering law (1), the in-plane acceleration is perpendicular to the orbit radius vector. We

obtain the following equations:

∆a =
4a3

µ
f12

√
1− e2 α (1.9)

∆e = −a
2

µ
f12

√
1− e2 (4σ sinα+ 3eα+ e sinα cosα) (1.10)

∆i = −a
2

µ
f3 cosω G(σ, α, e) (1.11)

∆Ω = −a
2

µ
f3

sinω

sin i
G(σ, α, e) (1.12)

∆ω =
a2

µ
f3 sinω cot i G(σ, α, e) (1.13)

∆V = 2

√
a3

µ

√
(f12)2 + (f3)2 (α+ σe sinα) (1.14)

1.2.2 Steering law (2)

In steering law (2), the in-plane acceleration is tangent to the orbit path. We obtain the

following equations:

∆a =
4a3

µ
f12

∫ α

0

√
1− e2 cos2E dE (1.15)

∆e =
4a2

µ
f12(1− e2)

∫ α

0

cosE(1− e cosE)√
1− e2 cos2E

dE (1.16)

In case of apoapsis-centred burn, the limits of the integral are π and π + α.

The expressions ∆i, ∆Ω, ∆ω, ∆V are the same as in case (1).
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1.2.3 Steering law (3)

In steering law (3), the in-plane acceleration is perpendicular to the major axis of the ellipse.

We obtain the following equations:

∆a = −4σa3

µ
f12

√
1− e2 sinα (1.17)

∆e =
a2

µ
f12

√
1− e2 (4σe sinα+ 3α+ sinα cosα) (1.18)

The expressions ∆i, ∆Ω, ∆ω, ∆V are the same as in case (1).

1.2.4 Steering law (4)

In steering law (4), the in-plane acceleration is parallel to the major axis of the ellipse. We

obtain the following equations:

∆a = 0 (1.19)

∆e = 0 (1.20)

∆ω =
a2

µ

[
f12

√
1− e2

e
(−2σe sinα− 3α+ sinα cosα) + f3 sinω cot i G(σ, α, e)

]
(1.21)

The expressions ∆i, ∆Ω, ∆V are the same as in case (1).

1.2.5 Application for GTO

From the obtained equations, we can see that the component f3 does not affect a and e, and

the component f12 does not affect i and Ω. If we want to obtain the variations of i and Ω,

we have to introduce the out-of-plane component f3. This component does not affect only

i and Ω, but it alters the argument of periapsis ω too.

Considering a typical GTO with a = 24364 km, e = 0.7306, i = 28.5◦, ω = 30◦ and consider-

ing a typical acceleration f = 3 ·10−7 km/s2, composed by f12 = f3 = 2.1213 ·10−7 km/s2,

we present the rates of change as functions of the normalized burn angle α/π. We use

the standard gravitational parameter of the Earth µe = 398601 km3/s2. With these data,

Fig. 1.4 shows the comparison for a and e between the first three steering laws and in case
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Figure 1.4: Rates of change in one revolution of a and e for cases (1), (2) and (3), in
GTO orbit

of apoapsis or periapsis burns. We can observe that in steering law (2) we can modify a

in a more efficient way compared to steering law (1), both in apogee and perigee burns. In

steering law (3) the variation of a is not as effective, and with a continuous thrust (α = 180◦)

we can manage to modify e, keeping a constant.

In Fig. 1.5 it is shown the rate of change for i and Ω that is the same for all steering laws. In

Fig. 1.6 we can notice the influence of the component f12 on steering law (4) for ω. In fact,

the picture on the left represents the first three steering laws influenced only by f3, while in

the right picture steering law (4) is shown.

These results, especially the ones related to the out-of-plane component f3, vary greatly

depending on initial data. In particular, a change in i is better performed with ω = 0◦, 180◦
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Figure 1.5: Rates of change in one revolution of i and Ω, in GTO orbit

Figure 1.6: Rates of change in one revolution of ω, in GTO orbit [left: cases (1) (2) (3);
right: case (4)]

and a change in Ω is better performed with ω = 90◦, 270◦. Furthermore, apoapsis burns are

more effective than periapsis burns in i, Ω and ω changes (with α < π/2).

Finally, in Fig. 1.7 we can see the rate of change of ∆V , for apoapsis and periapsis burns.

Also for ∆V the results are the same for all steering laws.
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Figure 1.7: Rate of change in one revolution of ∆V , in GTO orbit

1.3 Secular rates of change

Following Pollard’s analysis, we can calculate the secular rates of change. In order to do this,

we only have to divide the previous equations by the orbit period, obtaining the following

results (complete operations are carried out in Appendix A).

1.3.1 Steering law (1)

da

dt
=

2f12

π

√
a3

µ
(1− e2) α (1.22)

de

dt
= −f12

2π

√
a

µ
(1− e2) (4σ sinα+ 3eα+ e sinα cosα) (1.23)

di

dt
= − f3

2π

√
a

µ
cosω G(σ, α, e) (1.24)

dΩ

dt
= − f3

2π

√
a

µ

sinω

sin i
G(σ, α, e) (1.25)

dω

dt
=
f3

2π

√
a

µ
sinω cot i G(σ, α, e) (1.26)

d∆V

dt
=

1

π

√
(f12)2 + (f3)2 (α+ σe sinα) (1.27)
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1.3.2 Steering law (2)

da

dt
=

2f12

π

√
a3

µ

∫ α

0

√
1− e2 cos2EdE (1.28)

de

dt
=

2f12

π

√
a

µ
(1− e2)

∫ α

0

cosE(1− e cosE)√
1− e2 cos2E

dE (1.29)

In case of apoapsis-centred burn, the limits of the integral are π and π + α.

The expressions di
dt ,

dΩ
dt ,

dω
dt ,

d∆V
dt are the same as in case (1).

1.3.3 Steering law (3)

da

dt
= −2σf12

π

√
a3

µ
(1− e2) sinα (1.30)

de

dt
=
f12

2π

√
a

µ
(1− e2) (4σe sinα+ 3α+ sinα cosα) (1.31)

The expressions di
dt ,

dΩ
dt ,

dω
dt ,

d∆V
dt are the same as in case (1).

1.3.4 Steering law (4)

da

dt
= 0 (1.32)

de

dt
= 0 (1.33)

dω

dt
=

1

2π

√
a

µ

[
f12

√
1− e2

e
(−2σe sinα− 3α+ sinα cosα) + f3 sinω cot i G(σ, α, e)

]
(1.34)

The expressions di
dt ,

dΩ
dt ,

d∆V
dt are the same as in case (1).

In Fig. 1.8 we can see the secular rates of a and e for the first three steering laws and for

apoapsis or periapsis burns. For these graphs we have considered a typical GTO around the

Earth (using µe) with a = 24364 km and e = 0.7306. As we can notice, they follow the same

evolution of the rates of change. For our applications we will just use the rates of change in

one revolution, as they are easier to understand and to control in our algorithm.
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Figure 1.8: Secular rates of a and e for steering laws (1) (2) and (3), in Earth orbit

1.4 Application of GTO-to-GEO transfer

In order to validate the algorithms used in the next chapter, we analyse an application of

a transfer from GTO to GEO, comparing the results of POLLARD97 for the same transfer.

It is a transfer that involves all the orbital parameters, even if when we reach the GEO the

values of e will be zero, and ω and Ω will not be defined. Therefore, the variation of these

two parameters will not be important. The difference with Pollard’s analysis is the use of the

rates of change in one revolution instead of the secular rates of change.

The data of the initial and final orbit are listed in Table 1.2. Because of the closeness to

Earth, we have to introduce the perturbation due to Earth’s oblateness (J2 factor) in equation

1.13 for the variation of ω. In fact, even if we do not care about the variation of ω, this value
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Table 1.2: GTO-GEO data

a [km] e i

GTO 24364 0.7306 28.5◦

GEO 42164 0 0◦

Figure 1.9: Evolution of a, e (left) and i (right) for a GTO-GEO transfer

appears in the equation 1.11 for the variation of i. In particular, the equation 1.13 becomes:

∆ω =
a2

µ
f3 sinω cot i G(σ, α, e) +A(a, e, i) (1.35)

where, with J2 = 0.00108263 and the Earth’s radius Re = 6738.137 km:

A(a, e, i) =
3π

2
J2

(
Re
a

)2 4− 5 sin2 i

(1− e2)2
(1.36)

As initial value of ω we take −15◦, so that it approaches to zero when i reaches zero.

In according to Pollard, we take the yaw angle β = 42.2◦, in order to reach the desired values

of a and i at the same time. For this part of the manoeuvre we use steering law (1), apogee

centred burns and burn angle α = π/2. At the end of this part we reach the desired values

of a and i, and we only have to bring e to zero. It can be done with steering law (3) and

a continuous in-plane burn (α = 180◦). In fact, as we can remember from Fig. 1.4, this

condition allows us to change e keeping the other orbital elements constant.

The evolution of the three orbital elements involved in the manoeuvre is reported in Fig. 1.9,

using µe = 398601 km3/s2 and f = 3 · 10−7 km/s2. Like POLLARD97, we obtain a total

time of 133 days, and a total ∆V of 2.40 km/s. With other values of α for the first part

of the manoeuvre, we can obtain other results with higher ∆V and lower total time or vice
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versa.

With an impulsive burn the total ∆V would be 1.84 km/s. If we convert these two results in

employed propellant mass, we can obtain that the propellant consumption for the impulsive

burn is about 6 to 10 times more than the consumption with the low-thrust transfer. In

conclusion, using a low-thrust transfer is convenient in term of employed propellant, but at

the cost of a higher total manoeuvre time.

The formulation just presented is affected by singularities, because it is referred to the classical

Lagrange planetary equations. In fact, we have singularities with i or e equal to zero, when

Ω and ω are not defined. These cases will be discussed later, while in the next chapter we

will see an application for a non-singular case, in particular a coplanar transfer with e and i

different to zero.



Chapter 2

Jupiter’s moons coplanar transfer

In this chapter we will present an application of Pollard’s theory for a transfer between two

moons of Jupiter (Europa and Ganymede). In particular, the method will be applied for

a transfer between two coplanar orbits with e 6= 0. Thus, only the variation of a and e

is studied. The objective of the method is to find how to better perform this manoeuvre,

obtaining the ∆V and the total time of the optimal transfer.

This transfer is based on the work of Fantino and Castelli [8] (2016), where the Jupiter’s moons

tour is performed using low energy transfers in combination with impulsive manoeuvres.

Instead of these impulsive manoeuvres, using a low-thrust transfer can reduce the needed

propellant.

2.1 Jupiter’s moons tour

A possible and useful application of our method is related to the interplanetary manoeuvres

employed in the Jovian system. The exploration of Jupiter’s moons and, in particular, that

of the four Galilean moons (Io, Europa, Ganymede, Callisto), is gaining increasingly higher

scientific interest (Atkinson et al. [12], 2009), because they may contain liquid water and they

are good candidates for future human colonization. With this purpose, the past and future

missions deal with the problem of the transfer between two moons or even of a tour among

different moons. The simplest method for performing this tour is using impulsive burns, but

it is also the most expensive in term of propellant. Gravity assists can help to reduce the

amount of employed propellant, at the cost of higher transfer time.

15
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Table 2.1: Jupiter’s orbits data

Initial orbit Final orbit Average orbit

a [km] 778054.59 900986.45 839522.02

e 0.118548 0.143747 0.1311475

µj [km3s−2] 126654432.567

Another method exploits the low-energy trajectories between the libration points of the three-

body problems composed by Jupiter and each moon (Koon et al. [13] 2001). The basic idea

is to move along the stable and unstable invariant manifolds trajectories of two moons that

have an intersection. Thus for example, the transfer from the outer to the inner moon starts

from the point L1 of the outer moon, it follows the unstable manifold until the intersection

with the stable manifold of the inner moon, and it ends in the point L2 of the inner moon. A

simplification of this method is presented by Fantino and Castelli [8] (2016) and it allows us

to save computing time. It is based on dividing the transfer in two different parts: the first

one when we are close to the moon and we apply the three-body problem; the second one

when we are far enough away from the moon and we consider only the influence of Jupiter.

It is considered a coplanar transfer, thus obtaining the trajectory from the planar Lyapunov

orbits for the inner and outer moon respectively around L2 and L1. These trajectories lead to

different orbits defined by the orbital elements, looking for orbits with an intersection point

that allows the transfer between the two orbits with an impulsive burn. This solution is viable

for a single transfer between only two moons, but it would assume a too high cost if we

want to perform a complete tour of the moons. Instead of the impulsive burn a low-thrust

manoeuvre can be used, therefore we can apply the method developed in the previous chapter.

2.2 Europa-Ganymede coplanar transfer

We consider a transfer between Europa and Ganymede, disregarding Io for its high level of

radiation, and we assume coplanar orbits thanks to the fact that the two moons have a

little difference of inclination between each other. This hypothesis implies that we have to

change only a and e, without considering i ω and Ω, and as the fourth steering law does

not affect a and e, it will not be considered. Data of the two orbits taken from Fantino and

Castelli’s analysis are listed in Tab. 2.1, and as we can see, we want to move from the inner
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moon Europa to the outer moon Ganymede. The average orbit contains the average values

between the initial and final orbits, and we will use these values in the next sections. µj is

the gravitational parameter of Jupiter.

Our objective is to determine how to better perform this manoeuvre, calculating the ∆V and

the total transfer time. First of all, we define the thrust mode as the combination of a steering

law and a periapsis or apoapsis centred burns. In order to simplify control over the problem

and the developed algorithm, we will use the rates of change equations in one revolution (1.9

to 1.18). For the solution of this problem, we have to pay attention to two different aspects

that we will discuss: the first one concerns the hypothesis of a and e constant for several

revolutions; the second one concerns the method of performing the transfer, for example

applying determinate steering laws.

Regarding the first aspect, the equations just mentioned have been obtained assuming that

the orbital parameters were constant during one revolution, and their formulation presents

a and e as known values. Thus, applying them we can proceed in two different ways: we

can update for each revolution the values of a and e knowing the variation of these two

parameters, or we can keep a and e constants for all the revolutions. The second method

is obviously less accurate, but it requires less computing time. In this analysis we want to

calculate if the accuracy of the second method can be acceptable or not in respect to the

first one. In order to reduce the error we will use the average values of the orbits instead of

the initial values.

For the second aspect of the problem, we will study how to perform the transfer, firstly

searching if it is possible to do the manoeuvre with the same steering law and with the same

α. We will call the solution single thrust mode. Secondly searching if there are other options

using different steering laws and different values of α. In particular, we will analyse the

situation with two different modes of thrust, so it will be called double thrust mode.

Once we obtain the solution or the solutions, we will calculate the total ∆V and the total

time of the manoeuvre, comparing the solutions in order to find the best one.

Finally, we will calculate the propellant mass for the best case, assuming realistic data of the

thruster.

2.2.1 Jupiter secular rates of change

In order to make a comparison with the graphs of the Earth orbit obtained in the previous

chapter (Fig. 1.8), we represent in Fig. 2.1 the equation of the secular rates of a and e for
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Figure 2.1: Secular rates of a and e for different cases, initial orbit around Jupiter

apoapsis and periapsis centred burns (1.22, 1.23, 1.28, 1.29, 1.30, 1.31) as functions of α/π,

assuming that the orbital parameters do not change, so maintaining the values of the initial

orbit. The first three steering laws are shown, because as the Earth orbits the fourth case

does not affect a and e. The value of acceleration used now is f12 = 1 · 10−7 km/s2, less

compared to the Earth orbit because the electrical power of a spacecraft around Jupiter is

less than the one around the Earth. Even if the evolution of the graphs is the same for both

cases, we can notice that now the steering laws (1) and (2) give almost the same results

because of the low eccentricity of the orbit.
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Figure 2.2: Rates of change of a and e in one revolution, average orbit around Jupiter

2.2.2 Jupiter rates of change in one revolution

A more appropriate graph could be that portrayed in Fig. 2.2, illustrating the variations of

a and e in a single revolution, which are stated in the equations 1.9, 1.10, 1.15, 1.16, 1.17,

1.18. These graphs show how orbital parameters vary in a single revolution as functions of

α/π and for the first three steering laws. The values of a and e used in the equations are the

ones referred to the average orbit (Tab. 2.1). We will use these graphs, and consequently

the related equations of the rates of change, because with them it is easier to search the

number of revolutions needed to perform a required ∆areq or ∆ereq, with a determinate α.

In particular, after the selection of α and the steering law, we found in the graph the relative
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∆a or ∆e and as a first approximation the total number of revolutions n will be (for a):

n =
∆areq

∆a
(2.1)

2.3 Orbit transfer with single thrust mode

Knowing the rates of change, we want to find a way to perform the orbital transfer between

the two orbits in a reasonable period of time and with a low ∆V . The total variations of the

transfer for a and e are the following, using the values in Tab. 2.1:

∆areq = afin − ain = 122934.86 km (2.2)

∆ereq = efin − ein = 0.025199 (2.3)

2.3.1 Burn angle and number of revolutions for the single thrust mode

We want to study a simple case where we perform the manoeuvre with a single thrust mode,

therefore with α constant and a single steering law during the entire manoeuvre. In order

to do so, we want a and e to reach the desired value at the same time. For each steering

law, and considering the periapsis or apoapsis burns, we calculate the number of revolutions

that we need to obtain ∆areq and ∆ereq as functions of α. To better explain this, Fig. 2.3

represents two examples of the graphs that can be obtained. Each point of the map gives the

total variation ∆atot or ∆etot as functions of α and n. The black lines are isolines spaced of

10000 km for a (left graph) and 0.01 for e (right graph). The red line in the right graph is

the isoline for ∆etot = 0, while the magenta isoline represents the conditions necessary for α

and n to achieve ∆areq and ∆ereq. In order to reduce the error, these particular graphs are

made using the average values of the orbits (Tab. 2.1) and for this reason they are accurate

only near the magenta lines, where we really obtain those average values.

The magenta isolines are the ones that interest us, because if one of them exists it means that

we are able to achieve the required variation in a fixed number of revolutions. Nevertheless,

in order to perform the transfer with a single thrust mode, we have to obtain ∆areq and

∆ereq at the same time. The solutions of this problem are given by the intersection points

of the isolines of a and e for a determinate thrust mode. All these points will be the possible

modes for performing the transfer in a single thrust mode, with a determinate α and in a
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Figure 2.3: ∆atot (left) and ∆etot (right) as functions of burn arc and number of
revolutions, periapsis burn, steering law (1)

Table 2.2: Results of burn angle and number of revolutions for single thrust mode

Case α/π n

Case (1), periapsis 0.7772 27.1784

Case (2), periapsis 0.8057 26.0819

specific number of revolutions. In Fig. 2.4 we can appreciate the results for some cases. The

upper graphs represent the two only cases with a solution. The coordinates of the intersection

points are listed in Tab. 2.2, including the relative error between the two calculation methods.

The lower graphs represent two cases without a possible solution.

2.3.2 Delta V and total time for the single thrust mode

As previously stated, the next step would be calculating the total ∆V and total time of the

manoeuvre. As regards the first task, we use equation 1.14, while for the second one we

calculate the orbital period and we multiply it for the number of revolutions. The solutions

for the two cases found in the previous section are listed in 2.3.
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Figure 2.4: Graphs of ∆areq and ∆ereq for single thrust mode

Table 2.3: Results of ∆V and total time for single thrust mode

Case ∆V [m/s] total time [days]

Case (1), periapsis 875.7529 135.0914

Case (2), periapsis 875.6735 129.6411
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Figure 2.5: ∆atot (left) and ∆etot (right) as functions of burn arc and number of
revolutions, periapsis burn, steering law (1)

2.4 Comparison of average and updated values

The results obtained assuming a and e constant during all the manoeuvres must be validated.

In fact, although the total variations would not seem to be that significant, by using the values

of the initial orbit or the values of the final orbit we can reach a difference of the ∆a in a

single revolution of 2560 km, and of 0.0015 for the ∆e. With a large number of revolutions,

these differences could be not acceptable.

A more accurate method consists on updating the values of a and e after each revolution,

adding the terms ∆a and ∆e. Therefore, differently from before now these terms vary for

each revolution just because of the variation of a and e. The algorithm is more complex, but

the results are more precise as we can see in Fig. 2.5. The meaning of the isolines is the same

described in section 2.3.1 for Fig. 2.3, but now we can see that with a high n and high α the

total variation diverges because the orbits become much larger. In fact, here the results are

accurate for every point of the graphs, and not only near the magenta lines.

Then, the process followed is the same of the previous section, looking for all the possible

points of intersection for each thrust mode. The solutions of this method, together with a

comparison and the relative error between the two methods is listed in Tab. 2.4.

In order to calculate ∆V and the total time of the manoeuvre, the process is slightly more

complex. Now, for each revolution we have a different value of ∆V and period, thus we

have to calculate them in each revolution, adding all together at the end. The solutions and
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Table 2.4: Comparison results of burn angle and number of revolutions for single thrust
mode

Case Updated orbit Average orbit Relative error

Case (1) 0.7779 0.7772 0.090 % (α/π)
Periapsis 27.6624 27.1784 1.750 % (n revolutions)

Case (2) 0.8064 0.8057 0.087 % (α/π)
Periapsis 26.5568 26.0819 1.788 % (n revolutions)

Table 2.5: Comparison results of ∆V and total time for single thrust mode

Case Updated orbit Average orbit Relative error

Case (1) 882.3645 875.7529 0.749 % (∆V [m/s])
Periapsis 135.9590 135.0914 0.638 % (total time [days])

Case (2) 882.4398 875.6735 0.767 % (∆V [m/s])
Periapsis 130.4997 129.6411 0.658 % (total time [days])

the comparison between the two calculation methods with the relative errors are presented in

Tab. 2.5.

We can notice that the errors made using the approximation of constants a and e are enough

small, and this allows us to use this hypothesis for the next operations.

2.5 Orbit transfer with double thrust mode

In the previous sections we found a possible solution for our problem, but that did not establish

whether it referred to the minimum ∆V or the minimum total time of orbital transfer. For

this reason, we will focus on the search for other possible solutions and then compare them.

Differently from before, here we choose to analyse the transfer using two different thrust

modes, remembering that with thrust mode we identify a combination of a steering law and

periapsis or apoapsis centred burns. As demonstrated previously, we can use the values of the

average orbit for a and e, keeping them constant for the entire manoeuvre. This hypothesis

allows us to make an important simplification in the operations, as we are able to analytically

resolve the following system of equations:


n1∆atot1 + n2∆atot2 = ∆areq

n1∆etot1 + n2∆etot2 = ∆ereq

(2.4)

where:
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Table 2.6: Minimum ∆V and minimum total time for double thrust mode

Min ∆V [m/s] 874.1793
Total time [days] 198.4386

∆V [m/s] 875.6736
Min total time [days] 129.6411

• n1, n2 are the numbers of revolutions for the first and the second thrust mode, un-

knowns of the system;

• ∆atot1, ∆atot2, ∆etot1, ∆etot2 are the variations of a and e for the first and the second

thrust mode, functions only of α;

• ∆areq, ∆ereq are the required variations of a and e (eq. 2.2, 2.3).

From which we obtain: 
n2 =

∆ereq∆atot1−∆areq∆etot1
∆atot1∆etot2−∆atot2∆etot1

n1 =
∆areq−n2∆atot2

∆atot1

(2.5)

It is important to point out the absence of the single thrust mode’s solution, which would

suppose the denominator of the equation of n2 in Eq. 2.5 to be equal to zero.

We must notice that even α can present differences between the two cases. For each combi-

nation of two thrust modes and for each pair of burn angles, we calculate the two values of

n, eliminating all the solutions with at least one of the n < 0, and all the solutions with an

excessive number of revolutions, because the total time will be unacceptable. Therefore, we

obtain 28 possible combinations of two thrust modes that allow us to perform the manoeu-

vre.

Knowing the number of revolutions and the burn angle used for each case, we can easily

calculate the total ∆V and the total time of the manoeuvre. In Tab. 2.6 we can appreciate

the results of the minimum ∆V and minimum total time, considering that all the solutions

with the total number of revolutions higher than 40 (200 days) have been discarded. As we

notice, the solution with the minimum ∆V is not preferable. In fact, it is only 1.5 m/s lower

than the ∆V obtained with the single thrust mode (875.674 m/s), but it implies a significant

increase in the number of days over the total time. The condition of minimum total time

gives the same results as the single thrust mode, as it is obtained with both thrust modes in

periapsis centred burns and in the steering law (2), and it also gives the same value of the

burn angle (α/π = 0.806).
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Figure 2.6: Total ∆V in function of burn angles for double thrust mode

Figure 2.7: Total time in function of burn angles for double thrust mode
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In Fig. 2.6 and Fig. 2.7 the results are shown for the case with the minimum total time. The

abscissa and ordinate hold a representation of the normalized burn angles of the first and

second thrust mode respectively. We can notice that the variation of total ∆V is quite small

between each point of the graphs, while the total time of the manoeuvre presents a larger

variation. For this reason, the best solution could be the one with the minimum total time.

We have to underline that the entire problem of finding the optimal solution is case depen-

dent, therefore for each new problem we have to analyse the results and adopt the appropriate

conclusion.

2.6 Propellant mass

In conclusion, we can assume that the result of the single thrust mode is acceptable, and it

gives an easier method to find a quasi-optimal solution. For these results we can calculate

the propellant mass required for our transfer. Assuming a dry mass of mf = 500 kg and a

specific impulse Isc = 3000 s:

c = Isp g0 = 3000 · 9.81 = 29430 m/s (2.6)

and using the Rocket equation (eq. 2.7) with ∆V = 882.44 m/s (from Tab. 2.5), where

m0 = mf +mp is the initial mass, mp the propellant mass:

mf

m0
= e−

∆V
c = 0.9705 (2.7)

mp = m0 −mf = 15.219 kg (2.8)

We obtain a propellant mass of 15.219 kg.

We can compare these results with the same transfer performed with an impulsive manoeuvre,

obtained by Viale [14] (2016). In that case, Viale obtained a ∆V of 881.4 m/s. Considering a

chemical thruster with Isc = 400 s and the same dry mass of the previous case, the propellant

mass would be 125.9 kg, much bigger than the propellant mass for the low-thrust transfer.
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Singular case of inclination zero

The Lagrange planetary equations are affected by singularities when e or i are equals to zero.

The case of e = 0 is an intrinsic singularity of the problem, but for our purpose it is not much

interesting. In fact, it affects only a particular case: the orbital element ω with the steering

law (4) when f12 is different to zero (see equation 1.21). Furthermore, ω is not defined when

e = 0, thus its variation does not have great importance.

If i = 0◦, we have a singularity in equation 1.12 for the presence of sin i at the denominator,

but also ω is not defined. For this reason, both equations 1.11 and 1.13 are not applicable,

and we cannot obtain mathematically the variation of i when actually it could exist. In

order to solve this problem, we have to analyse the nature of the orbital element i. i is

not a geometrical element that characterizes the orbit, but it is an angular parameter that

represents the position of the orbit compared to an external reference frame. If i = 0◦, the

reference frame is not appropriate and we have to change it, for example applying a rotation

around one of the axes. We will discuss a method to perform this rotation and an application

in the case in which the longitude of the periapsis ω̄ is known.

3.1 From state vector to orbital elements

A possible solution is based on realizing a rotation around the unit vector Î of an angle ϕ

(see Fig. 1.1 for the reference system). In order to do so, we can write the various factors

as vectors, applying the operations for passing from the state vector to the orbital elements

(Bate, Muller and White [15], 1971).

28
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• First of all, we transform the state vector with the rotation matrix. Therefore, we have

to know the position and the velocity of a certain point of the orbit.

~r′ =


r′X

r′Y

r′Z

 =


1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ



rX

rY

rZ

 (3.1)

~V ′ =


V ′X

V ′Y

V ′Z

 =


1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ



VX

VY

VZ

 (3.2)

• The norm of the distance and the velocity will be:

r′ =
√
~r′ · ~r′ (3.3)

V ′ =
√
~V ′ · ~V ′ (3.4)

• The radial velocity:

V ′r =
~r′ · ~V ′
r′

=
(
r′XV

′
X + r′Y V

′
Y + r′ZV

′
Z

)
/r′ (3.5)

• The specific angular momentum:

~h′ = ~r′ × ~V ′ =

∣∣∣∣∣∣∣∣∣
Î Ĵ K̂

r′X r′Y r′Z

V ′X V ′Y V ′Z

∣∣∣∣∣∣∣∣∣ (3.6)

The norm of which is:

h′ =
√
~h′ · ~h′ (3.7)

• The inclination:

i′ = cos−1

(
h′Z
h′

)
(3.8)

It has to lie between 0◦ and 180◦.
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• The vector of the node line:

~N ′ = K̂ × ~h′ =

∣∣∣∣∣∣∣∣∣
Î Ĵ K̂

0 0 1

h′X h′Y h′Z

∣∣∣∣∣∣∣∣∣ (3.9)

The norm of which is:

N ′ =
√
~N ′ · ~N ′ (3.10)

• The RAAN depends on the sign of N ′Y , so:

Ω′ =


cos−1

(
N ′

X
N ′

)
if N ′Y ≥ 0

360◦ − cos−1
(
N ′

X
N ′

)
if N ′Y < 0

(3.11)

• The eccentricity vector:

~e′ =
1

µ

[
~V ′ × ~h′ − µ

~r′

r′

]
=

1

µ

[(
V ′2 − µ

r′

)
~r′ − r′V ′r ~V ′

]
(3.12)

The norm of which is:

e′ =
√
~e′ · ~e′ (3.13)

• The argument of periapsis depends on the sign of e′Z , so:

ω′ =


cos−1

(
~N ′·~e′
N ′e′

)
if e′Z ≥ 0

360◦ − cos−1
(
~N ′·~e′
N ′e′

)
if e′Z < 0

(3.14)

After all these operations, we obtain the orbital elements in the new reference frame. Together

with a that does not change after the rotation, we are able to apply the equations of the

rates of change as in the previous chapter.

3.2 From orbital elements to state vector

When the transfer is performed, we have to apply the opposite procedure to obtain the orbital

elements in the initial reference system. In order to do this, we pass from the orbital elements

to the state vector of any point of the orbit. The choice of this point does not affect the
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result, so we will take the periapsis (ν = 0). The equations used are the following:


r′x = r′(cos Ω′ cosω′ − sin Ω′ cos i′ sinω′)

r′y = r′(sin Ω′ cosω′ − cos Ω′ cos i′ sinω′)

r′z = r′(sin i′ sinω′)

(3.15)


V ′x = −

√
µ
a

√
1+e′

1−e′ (cos Ω′ sinω′ + sin Ω′ cos i′ cosω′)

V ′y = −
√

µ
a

√
1+e′

1−e′ (sin Ω′ sinω′ + cos Ω′ cos i′ cosω′)

V ′z = −
√

µ
a

√
1+e′

1−e′ sin i′ cosω′

(3.16)

In order to obtain the state vector in the initial reference frame, we have to apply the inverse

rotation matrix to the state vector.

~r =


rX

rY

rZ

 =


1 0 0

0 cosϕ sinϕ

0 − sinϕ cosϕ



r′X

r′Y

r′Z

 (3.17)

~V =


VX

VY

VZ

 =


1 0 0

0 cosϕ sinϕ

0 − sinϕ cosϕ



V ′X

V ′Y

V ′Z

 (3.18)

Finally, using again equations 3.3 to 3.14 we obtain the orbital elements expressed in the

original reference frame after the manoeuvre.

3.3 Application of inclination = 0

Taking into account an orbit with i = 0◦, a way to calculate the state vector is knowing the

longitude of the periapsis ω̄ (we remember that ω̄ = ω + Ω), which is fixed also in case of

i = 0 (see Fig. 3.1). In fact, we can write the position and velocity as:

~r = r cos ω̄ Î + r sin ω̄ Ĵ + 0 K̂ (3.19)

~V = −V sin ω̄ Î + V cos ω̄ Ĵ + 0 K̂ (3.20)
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Figure 3.1: Reference system for an orbit with i = 0

Table 3.1: Orbit data after the rotation

e′ i′ ω′ Ω′

0.7306 30◦ 15◦ 0◦

Where r is the module of the distance to the periapsis, and V is the module of the velocity

in the periapsis and it can be obtained as:

V =

√
µ

(
2

r
− 1

a

)
(3.21)

Applying the equations of the previous sections for an Earth orbit with r = 6563 km, a =

24364 km, ω̄ = 15◦ and ϕ = 30◦ we obtain the results listed in Tab. 3.1. A proof that the

results are correct is given by Ω. In fact, it has to be 0◦ because the rotation is done around

the unit vector Î and the node line will be along that direction. Another proof is given by

the value of e that does not have to change after the rotation.

Finally, we notice that using ω̄ to find the state vector, the solution is simple: i′ = ϕ and

ω′ = ω̄.



Conclusion

The exploration of the solar system is a topical issue for space missions, including the explo-

ration of Jupiter’s moons. Nowadays, there are many mission proposals to make this tour

possible using viable methods of transfer and interesting trajectories. One of the purposes of

this thesis was to find a way to perform the Jupiter’s moons tour, benefiting from low-thrust

transfers. The starting point was the analysis of low-thrust transfers using simplified steering

laws, based on the work of Pollard [9]. This method allows to geometrically control the entire

problem, knowing the variation of the Keplerian orbital elements for each revolution. In ad-

dition, we know that these steering laws give a quasi-optimal result, as they are the optimal

solution for easier cases. Furthermore, it is a more feasible method in the integration within

a spacecraft, thanks to the simplicity of the steering laws. We have validated the algorithms

used to calculate the variation of the orbital elements, comparing the case of GTO-to-GEO

transfer with Pollard results. After validating the algorithms, we have analysed the Jupiter’s

moons tour. The low-thrust transfer is part of the work of Fantino and Castelli [8], based

on a low energy transfer in case of coplanar orbits. The entire transfer can be divided into

two parts: the first one employing the invariant manifolds when the spacecraft is near to

one of the moons (three-body problem); the second one that uses the low-thrust transfer

to move between two coplanar and Keplerian orbits (two-body problem). This second part

was solved using the method and the previously developed algorithms, in particular for the

coplanar transfer between Europa and Ganymede. The purpose of these algorithms was to

find the best steering case and burn angle, and to calculate the ∆V and the total time of

the transfer. In order to validate the hypothesis and the results, we have studied different

cases. First, we have seen that using the average values between the initial and final orbit

gives an acceptable error compared to updating these values after each revolution (relative

error lower than 0.8%). The total ∆V obtained for the best transfer is 882.4 m/s and the

total time of the transfer is 130.5 days. Furthermore, we have analysed the same transfer

33
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using a combination of steering laws. In order to solve the system of equations, we studied

the transfer using two distinct steering cases and two distinct burn angles. We obtained that,

for this specific problem, the best transfer is the same as we had using a single steering law.

However, for a general case, thanks to this method, we are able to obtain different results

of ∆V and total time of transfer. The limitation of this method is that if we want to use

three distinct steering laws we have to resolve an underdetermined system of three equations.

Future developments could take into account this problem. Another interesting development

could be considering the 3D version of the moons’ transfer. Instead of the Lyapunov orbits,

it is based on the Halo orbits of two Galilean moons (Fantino et al. [16], 2018). Therefore,

the low-thrust transfer has to consider a 3D manoeuvre that affects all the orbital elements.

The other important result obtained in this thesis deals with the singularity that affects the

Lagrange planetary equations. In particular, we found a method that allows us to use these

equations even when the inclination is equal to zero. This method is based on the properties

of inclination that depend on the reference frame used. We applied an appropriate rotation

of the reference frame around the axis Î, and used the operations needed to pass from the

state vector to the orbital elements. With these operations we were able to find the orbital

elements after the rotation. The method is highly efficient and if the longitude of the periapsis

is known, the result after the rotation is immediate: i′ = ϕ and ω′ = ω̄.

A possible future work could deal with the singularity of eccentricity equal to zero. Never-

theless, this singularity does not particularly affect our model since when e = 0 the argument

of periapsis is not defined. For this reason, we can assume that the periapsis or the apoapsis

is in the most appropriate point of the orbit, in order to obtain the variation of the orbital

elements that we want to achieve. In other words, we can apply the thrust considering the

centre of the burn arc where it is more convenient.

In conclusion, in this thesis we have achieved two important objectives. We have developed

an algorithm that deals with orbital transfers using one or two simplified steering laws, ap-

plying it to the exploration of Jupiter’s moons, and we have solved the problem of Lagrange

planetary equations singularity with inclination equal to zero. These results are presented

here in an innovative and original way, being of great interest for the scientific community.





Appendix A

Operations for secular rates

equations

Solving these calculations we have to remember that the integrals are centred with α = 0 at

the periapsis or α = π at the apoapsis. For this reason the odd functions and the functions

with a rotational symmetry with respect to the point α = π, like ’sinα’ or ’cosα sinα’, give

no contribution to the integral.

A.1 Case 1

For the first case, with the in-plane accelerations perpendicular to the orbit path, we have

f1 = 0 and f2 = f12.

A.1.1 Semi-major axis da
dE

Starting from Eq. 1.2:
da

dE
=

2a3

µ

(
f1e sinE + f2

√
1− e2

)
with steering case 1, we obtain:

da

dE
=

2a3

µ
f12

√
1− e2

∆a =

∫ α

−α

(
2a3

µ
f12

√
1− e2

)
dE
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∆a =
4a3

µ
f12

√
1− e2 α

In order to obtain the secular rates of change we have to divide by the orbit period:

da

dt
=

1

2π

√
µ

a3

(
4a3

µ
f12

√
1− e2

)
α

da

dt
=

2f12

π

√
a3

µ
(1− e2) α

In case of apoapsis-centred burn, the limits of the integral are π − α and π + α, and we

obtain the same result.

A.1.2 Eccentricity de
dE

Starting from Eq. 1.3:

de

dE
=
a2

µ

[
f1(1− e2) sinE + f2

√
1− e2(2 cosE − e− e cos2E)

]
with steering case 1, we obtain:

de

dE
=
a2

µ
f12

√
1− e2(2 cosE − e− e cos2E)

∆e =

∫ α

−α

(
a2

µ
f12

√
1− e2(2 cosE − e− e cos2E)

)
dE

∆e =
a2

µ
f12

√
1− e2

(
4 sinα− 2eα− e

2
(2α+ 2 sinα cosα)

)
In order to obtain the secular rates of change we have to divide by the orbit period:

de

dt
=

1

2π

√
µ

a3

a2

µ
f12

√
1− e2 (4 sinα− 3eα− e sinα cosα)

de

dt
=
f12

2π

√
a

µ
(1− e2) (4 sinα− 3eα− e sinα cosα)

In case of apoapsis-centred burn, the limits of the integral are π − α and π + α, and we

obtain:
de

dt
=
f12

2π

√
a

µ
(1− e2) (−4 sinα− 3eα− e sinα cosα)
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A.1.3 Inclination di
dE

Starting from Eq. 1.4:

di

dE
=
a2

µ
f3(1− e cosE)

[
(cosE − e) cosω√

1− e2
− sinE sinω

]

we obtain with all the steering cases (because it is not function of f1 or f2):

∆i =

∫ α

−α

(
a2

µ
f3(1− e cosE)

[
(cosE − e) cosω√

1− e2
− sinE sinω

])
dE

∆i =
a2

µ
f3

[
2(sinα− eα) cosω√

1− e2
− e(α+ sinα cosα) cosω√

1− e2
+

2e2 sinα cosω√
1− e2

]
In order to obtain the secular rates of change we have to divide by the orbit period:

di

dt
=

1

2π

√
µ

a3

a2

µ

cosω√
1− e2

f3

[
2(sinα− eα)− e(α+ sinα cosα) + 2e2 sinα

]
di

dt
=
f3

2π

√
a

µ

cosω√
1− e2

[
2 sinα(1 + e2)− 3eα− e sinα cosα

]
In case of apoapsis-centred burn, the limits of the integral are π − α and π + α, and we

obtain:
di

dt
=
f3

2π

√
a

µ

cosω√
1− e2

[
−2 sinα(1 + e2)− 3eα− e sinα cosα

]

A.1.4 RAAN dΩ
dE

Starting from Eq. 1.5:

dΩ

dE
=
a2

µ
f3

(1− e cosE)

sin i

[
(cosE − e) sinω√

1− e2
+ sinE cosω

]

we obtain with all the steering cases (because it is not function of f1 or f2):

∆Ω =

∫ α

−α

(
a2

µ
f3

(1− e cosE)

sin i

[
(cosE − e) sinω√

1− e2
+ sinE cosω

])
dE

∆Ω =
a2

µ
f3

1

sin i

[
2(sinα− eα) sinω√

1− e2
− e(α+ sinα cosα) sinω√

1− e2
+

2e2 sinα sinω√
1− e2

]
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In order to obtain the secular rates of change we have to divide by the orbit period:

dΩ

dt
=

1

2π

√
µ

a3

a2

µ

sinω

sin i

1√
1− e2

f3

[
2(sinα− eα)− e(α+ sinα cosα) + 2e2 sinα

]
dΩ

dt
=
f3

2π

√
a

µ

sinω

sin i

1√
1− e2

[
2 sinα(1 + e2)− 3eα− e sinα cosα

]
In case of apoapsis-centred burn, the limits of the integral are π − α and π + α, and we

obtain:

dΩ

dt
=
f3

2π

√
a

µ

sinω

sin i

1√
1− e2

[
−2 sinα(1 + e2)− 3eα− e sinα cosα

]

A.1.5 Argument of periapsis dω
dE

Starting from Eq. 1.6:

dω

dE
=
a2

µ

{
1

e

[
−f1

√
1− e2(cosE − e) + f2(2− e2 − e cosE) sinE

]
−

− f3(1− e cosE) cot i

[
(cosE − e) sinω√

1− e2
+ sinE cosω

]}

with steering case 1, we obtain:

dω

dE
=
a2

µ

{
f12

e
(2− e2 − e cosE) sinE − f3(1− e cosE) cot i

[
(cosE − e) sinω√

1− e2
+ sinE cosω

]}

∆ω =

∫ α

−α

(
a2

µ

{
f12

e
(2− e2 − e cosE) sinE−

− f3(1− e cosE) cot i

[
(cosE − e) sinω√

1− e2
+ sinE cosω

]})
dE

∆ω = −a
2

µ
f3 cot i

[
2(sinα− eα) sinω√

1− e2
− e(α+ sinα cosα) sinω√

1− e2
+

2e2 sinα sinω√
1− e2

]
In order to obtain the secular rates of change we have to divide by the orbit period:

dω

dt
= − 1

2π

√
µ

a3

a2

µ

sinω√
1− e2

f3 cot i
[
2(sinα− eα)− e(α+ sinα cosα) + 2e2 sinα

]
dω

dt
= − f3

2π

√
a

µ

sinω√
1− e2

cot i
[
2 sinα(1 + e2)− 3eα− e sinα cosα

]
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In case of apoapsis-centred burn, the limits of the integral are π − α and π + α, and we

obtain:

dω

dt
= − f3

2π

√
a

µ

sinω√
1− e2

cot i
[
−2 sinα(1 + e2)− 3eα− e sinα cosα

]

A.2 Case 2

For the second case, with the in-plane accelerations tangent to the orbit path, we have

f1 = f12 e sinE√
1−e2 cos2 E

and f2 = f12

√
1−e2

1−e2 cos2 E
.

A.2.1 Semi-major axis da
dE

Starting from Eq. 1.2:
da

dE
=

2a3

µ

(
f1e sinE + f2

√
1− e2

)
with steering case 2, we obtain:

da

dE
=

2a3

µ

(
f12e sinE√

1− e2 cos2E
e sinE + f12

√
1− e2

1− e2 cos2E

√
1− e2

)

∆a =

∫ α

−α

[
2a3

µ
f12

(
e2 − e2 cos2E + 1− e2

√
1− e2 cos2E

)]
dE

∆a =
2a3

µ
f12

∫ α

−α

√
1− e2 cos2E dE

In order to obtain the secular rates of change we have to divide by the orbit period:

da

dt
=

1

2π

√
µ

a3

2a3

µ
f12

∫ α

−α

√
1− e2 cos2E dE

da

dt
=
f12

π

√
a3

µ

∫ α

−α

√
1− e2 cos2E dE

In case of apoapsis-centred burn, the limits of the integral are π − α and π + α, and we

obtain the same result.
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A.2.2 Eccentricity de
dE

Starting from Eq. 1.3:

de

dE
=
a2

µ

[
f1(1− e2) sinE + f2

√
1− e2(2 cosE − e− e cos2E)

]
with steering case 2, we obtain:

de

dE
=
a2

µ

[
f12e sinE√

1− e2 cos2E
(1− e2) sinE + f12

√
1− e2

1− e2 cos2E

√
1− e2(2 cosE − e− e cos2E)

]

∆e =

∫ α

−α

[
a2

µ
f12(1− e2)

(
e sin2E + 2 cosE − e− e cos2E√

1− e2 cos2E

)]
dE

∆e =
a2

µ
f12(1− e2)

∫ α

−α

2 cosE − 2e cos2E√
1− e2 cos2E

dE

In order to obtain the secular rates of change we have to divide by the orbit period:

de

dt
=

1

2π

√
µ

a3

a2

µ
f12(1− e2)2

∫ α

−α

cosE(1− e cosE)√
1− e2 cos2E

dE

de

dt
=
f12

π

√
a

µ
(1− e2)

∫ α

−α

cosE(1− e cosE)√
1− e2 cos2E

dE

In case of apoapsis-centred burn, the limits of the integral are π − α and π + α.

A.2.3 Inclination di
dE

We reach the same result as in case 1 because it is not function of f1 or f2. See A.1.3.

A.2.4 RAAN dΩ
dE

We reach the same result as in case 1 because it is not function of f1 or f2. See A.1.4.
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A.2.5 Argument of periapsis dω
dE

Starting from Eq. 1.6:

dω

dE
=
a2

µ

{
1

e

[
−f1

√
1− e2(cosE − e) + f2(2− e2 − e cosE) sinE

]
−

− f3(1− e cosE) cot i

[
(cosE − e) sinω√

1− e2
+ sinE cosω

]}

with steering case 2, we obtain:

dω

dE
=
a2

µ

{
1

e

[
− f12 e sinE√

1− e2 cos2E

√
1− e2(cosE − e) + f12

√
1− e2

1− e2 cos2E
(2− e2−

− e cosE) sinE

]
− f3(1− e cosE) cot i

[
(cosE − e) sinω√

1− e2
+ sinE cosω

]}

∆ω =

∫ α

−α

{
a2

µ

f12

e

√
1− e2

1− e2 cos2E
sinE

[
−e(cosE − e) + (2− e2 − e cosE)

]}
dE−

−
∫ α

−α

{
a2

µ
f3(1− e cosE) cot i

[
(cosE − e) sinω√

1− e2
+ sinE cosω

]}
dE

With the first integral we obtain:

∣∣∣∣a2

µ

f12

e

√
1− e2

[
e2 − 2

e
arcsin(e cosE)− 2

e

√
1− e2 cos2E

]∣∣∣∣α
−α

= 0

The result of the first integral is zero even in case of apoapsis-centred burn, with the limits

of the integral π − α and π + α.

Finally, we need to solve the second integral and the result is the same as in case A.1.5.

A.3 Case 3

For the third case, with the in-plane accelerations perpendicular to the major axis of the

ellipse, we have f1 = f12

√
1−e2 sinE

1−e cosE and f2 = f12(cosE−e)
1−e cosE .

A.3.1 Semi-major axis da
dE

Starting from Eq. 1.2:
da

dE
=

2a3

µ

(
f1e sinE + f2

√
1− e2

)



Appendix A. Secular rates 43

with steering case 3, we obtain:

da

dE
=

2a3

µ

(
f12

√
1− e2 sinE

1− e cosE
e sinE +

f12(cosE − e)
1− e cosE

√
1− e2

)

∆a =

∫ α

−α

[
2a3

µ
f12

√
1− e2

(
e− e cos2E + cosE − e

1− e cosE

)]
dE

∆a =
4a3

µ
f12

√
1− e2 sinα

In order to obtain the secular rates of change we have to divide by the orbit period:

da

dt
=

1

2π

√
µ

a3

4a3

µ
f12

√
1− e2 sinα

da

dt
=

2f12

π

√
a3

µ
(1− e2) sinα

In case of apoapsis-centred burn, the limits of the integral are π − α and π + α, and we

obtain:
da

dt
= −2f12

π

√
a3

µ
(1− e2) sinα

A.3.2 Eccentricity de
dE

Starting from Eq. 1.3:

de

dE
=
a2

µ

[
f1(1− e2) sinE + f2

√
1− e2(2 cosE − e− e cos2E)

]
with steering case 3, we obtain:

de

dE
=
a2

µ

[
f12

√
1− e2 sinE

1− e cosE
(1− e2) sinE +

f12(cosE − e)
1− e cosE

√
1− e2(2 cosE − e− e cos2E)

]

∆e =

∫ α

−α

[
a2

µ
f12

√
1− e2

(
1− 3e cosE + cos2E + 2e2 cos2E − e cos3E

1− e cosE

)]
dE

∆e =
a2

µ
f12

√
1− e2

∫ α

−α

(
cos2E − 2e cosE + 1

)
dE

∆e =
a2

µ
f12

√
1− e2 (α+ sinα cosα− 4e sinα+ 2α)
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In order to obtain the secular rates of change we have to divide by the orbit period:

de

dt
=

1

2π

√
µ

a3

a2

µ
f12

√
1− e2 (−4e sinα+ 3α+ sinα cosα)

de

dt
=
f12

2π

√
a

µ
(1− e2) (−4e sinα+ 3α+ sinα cosα)

In case of apoapsis-centred burn, the limits of the integral are π − α and π + α, and we

obtain:
de

dt
=
f12

2π

√
a

µ
(1− e2) (4e sinα+ 3α+ sinα cosα)

A.3.3 Inclination di
dE

We reach the same result as in case 1 because it is not a function of f1 or f2. See A.1.3.

A.3.4 RAAN dΩ
dE

We reach the same result as in case 1 because it is not a function of f1 or f2. See A.1.4.

A.3.5 Argument of periapsis dω
dE

Starting from Eq. 1.6:

dω

dE
=
a2

µ

{
1

e

[
−f1

√
1− e2(cosE − e) + f2(2− e2 − e cosE) sinE

]
−

− f3(1− e cosE) cot i

[
(cosE − e) sinω√

1− e2
+ sinE cosω

]}

with steering case 3, we obtain:

dω

dE
=
a2

µ

{
1

e

[
− f12

√
1− e2 sinE

1− e cosE

√
1− e2(cosE − e) +

f12(cosE − e)
1− e cosE

(2− e2−

− e cosE) sinE

]
− f3(1− e cosE) cot i

[
(cosE − e) sinω√

1− e2
+ sinE cosω

]}

∆ω =

∫ α

−α

a2

µ

f12

e

[
sinE(cosE − e)(e2 − 1 + 2− e2 − e cosE)

1− e cosE

]
dE−

−
∫ α

−α

{
a2

µ
f3(1− e cosE) cot i

[
(cosE − e) sinω√

1− e2
+ sinE cosω

]}
dE



Appendix A. Secular rates 45

With the first integral we obtain:

|sinE(cosE − e)|α−α = 0

The result of the first integral is zero even in case of apoapsis-centred burn, with the limits

of the integral π − α and π + α.

Finally, we need to solve the second integral and the result is the same as in case A.1.5.

A.4 Case 4

For the fourth case, with the in-plane accelerations parallel to the major axis of the ellipse,

we have f1 = f12(cosE−e)
1−e cosE and f2 = −f12

√
1−e2 sinE

1−e cosE .

A.4.1 Semi-major axis da
dE

Starting from Eq. 1.2:
da

dE
=

2a3

µ

(
f1e sinE + f2

√
1− e2

)
with steering case 4, we obtain:

da

dE
=

2a3

µ

(
f12(cosE − e)

1− e cosE
e sinE +

−f12

√
1− e2 sinE

1− e cosE

√
1− e2

)

∆a =

∫ α

−α

[
2a3

µ
f12

(
e cosE sinE − e2 sinE − sinE + e2 sinE

1− e cosE

)]
dE

∆a = −2a3

µ
f12

∫ α

−α
sinE dE = 0

In case of apoapsis-centred burn, the limits of the integral are π − α and π + α, and we

obtain the same result.

A.4.2 Eccentricity de
dE

Starting from Eq. 1.3:

de

dE
=
a2

µ

[
f1(1− e2) sinE + f2

√
1− e2(2 cosE − e− e cos2E)

]
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with steering case 4, we obtain:

de

dE
=
a2

µ

[
f12(cosE − e)

1− e cosE
(1− e2) sinE +

−f12

√
1− e2 sinE

1− e cosE

√
1− e2(2 cosE − e− e cos2E)

]

∆e =

∫ α

−α

[
a2

µ
f12(1− e2)

(
cosE sinE − 2 cosE sinE + e cos2E sinE

1− e cosE

)]
dE

∆e = −a
2

µ
f12(1− e2)

∫ α

−α
cosE sinE dE = 0

In case of apoapsis-centred burn, the limits of the integral are π − α and π + α, and we

obtain the same result.

A.4.3 Inclination di
dE

We reach the same result as in case 1 because it is not a function of f1 or f2. See A.1.3.

A.4.4 RAAN dΩ
dE

We reach the same result as in case 1 because it is not a function of f1 or f2. See A.1.4.

A.4.5 Argument of periapsis dω
dE

Starting from Eq. 1.6:

dω

dE
=
a2

µ

{
1

e

[
−f1

√
1− e2(cosE − e) + f2(2− e2 − e cosE) sinE

]
−

− f3(1− e cosE) cot i

[
(cosE − e) sinω√

1− e2
+ sinE cosω

]}

with steering case 4, we obtain:

dω

dE
=
a2

µ

{
1

e

[
− f12(cosE − e)

1− e cosE

√
1− e2(cosE − e) +

−f12

√
1− e2 sinE

1− e cosE
(2− e2−

− e cosE) sinE

]
− f3(1− e cosE) cot i

[
(cosE − e) sinω√

1− e2
+ sinE cosω

]}
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∆ω =

∫ α

−α

a2

µ

f12

e

√
1− e2

(
−2 + 3e cosE + cos2E − e2 cos2E − e cos3E

1− e cosE

)
dE−

−
∫ α

−α

{
a2

µ
f3(1− e cosE) cot i

[
(cosE − e) sinω√

1− e2
+ sinE cosω

]}
dE

With the first integral we obtain:

∆ω =
a2

µ

f12

e

√
1− e2

∫ α

−α

(
−2 + e cosE + cos2E

)
dE =

=
a2

µ

f12

e

√
1− e2 (2e sinα− 3α+ sinα cosα)

The second integral give the same result of case A.1.5. Finally, by summing the two integrals

and dividing by the orbit period, we obtain:

dω

dt
=

1

2π

√
a

µ

{
f12

√
1− e2

e
(2e sinα− 3α+ sinα cosα)−

− f3
sinω√
1− e2

cot i
[
2 sinα(1 + e2)− 3eα− e sinα cosα

]}

In case of apoapsis-centred burn, the limits of the integral are π − α and π + α, and we

obtain:

dω

dt
=

1

2π

√
a

µ

{
f12

√
1− e2

e
(−2e sinα− 3α+ sinα cosα)−

− f3
sinω√
1− e2

cot i
[
−2 sinα(1 + e2)− 3eα− e sinα cosα

]}
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