POLITECNICO DI TORINO

Collegio di Ingegneria Meccanica, Aerospaziale, dell'Autoveicolo e della Produzione

Corso di Laurea Magistrale in Ingegneria AUTOMOTIVE ENGINEERING (INGEGNERIA DELL'AUTOVEICOLO)

Tesi di Laurea Magistrale

Ergonomics and Industry 4.0

Relatore

.....

firma del relatore (dei relatori) prof. CAVATORTA MARIA PIA (DIMEAS)

Candidato

firma del candidato Fanzhen ZENG

Settembre 2018

Abstract

With the development of industrial technology, industry 4.0 has become the mainstream trend of modern industry. Under the influence of the wave of industry 4.0, the production and management methods of traditional industries are bound to change. In this context, more emerging technologies have emerged, covering a wide range of industries. Ergonomics is one of the key areas. Musculoskeletal disorders and other problems in industrial production involving human beings have attracted increasing attention. Therefore, how to solve the problem of ergonomics better by emerging technologies in industry 4.0 will become an important topic in the study of ergonomics in the new era, which is also the focus of this paper.

In this paper, a brief history and connotation of the development of industry 4.0, as well as the development requirements of ergonomics in the new era and the common features of the emerging technologies of man-machine engineering in industry 4.0 are introduced. Industrial exoskeletons, virtual reality and augmented reality and collaborative robots three chapters are the focus of this paper to discuss. These three types of technologies are also the most representative of the connotation requirements of industry 4.0 in the ergonomic technology market. By introducing the existing or prototype products technical data of various markets, as well as the corresponding studies in the field of ergonomics, this paper compares and summarizes how various emerging technologies can better serve industry 4.0 in ergonomics.

Keyword : Industry 4.0, ergonomics, industrial exoskeletons, virtual reality, augmented reality, collaborative robots.

Contents

1 INTRODUCTION
1.1 Industry 4.03
1.2 Ergonomics4
1.3 Ergonomics in industry 4.05
2 NEW TECHNOLOGIES IN THE FIELD OF ERGONOMICS IN INDUSTRY 4.07
3 INDUSTRIAL EXOSKELETONS
3.1 Upper limps industrial exoskeletons8
3.1.1 Passive shoulders/arms assisted industrial exoskeletons
3.1.2 Active shoulders/arms assisted industrial exoskeletons
3.1.3 Active hands assisted industrial exoskeletons
3.2 Trunk-assisted industrial exoskeletons
3.2.1 Passive trunk-assisted industrial exoskeletons21
3.2.2 Active trunk-assisted industrial exoskeletons
3.3 Lower body industrial exoskeletons
4 VIRTUAL REALITY AND AUGMENTED REALITY
4.1 Virtual Reality
4.1.1 Console HMD
4.2 Augmented Reality 46
4.2.1 AR glasses
5 COLLABORATIVE ROBOTS
5.1 Single-arm Collaborative Robots
5.2 Dual-arm Collaborative Robots
6 CONCLUSIONS
Reference74

1 INTRODUCTION

Rapid development of industry is often accompanied by the excessive use and waste of resources. Nowadays, mankind needs to face the problem of resource shortage. Industrial production has also led to many serious environmental problems, such as global warming. In this context, industry 4.0 was born. Under the industrial 4.0 environment, the traditional industrial production mode will be changed, and the corresponding industrial production environment will be changed. In the new industrial production environment, the realization of man-machine engineering principles will also face new challenges. Advances in the field of ergonomics have made the principles of ergonomics more and more important in industrial production. In the industry 4.0 environment, more new technologies about the implementation of ergonomics principles will emerge, which is also the focus of this paper.

1.1 Industry 4.0

In the history of mankind, three times of industrial revolution changed human's life. In the first industrial revolution, the mechanical power represented by the steam engine replaced the traditional manual labor which leaded to the large-scale factory production and the rapid development of capital economy of the end of 19th century. At the beginning of the 20th century, the application of the electric power took the place of the steam power, mass production and assembly lines appeared. In the 1970s, information and digital technology improved the quality and speed of the control and production. In 2011, the concept of "Industry 4.0" was revived at the Hannover Fair. Innovations in industry 4.0 mainly are cyber-physical systems, the Internet of things, cloud computing and cognitive computing. Smart plants, smart control, smart products are the creations of industry 4.0.^[1]

Figure 1.1 History of industrial revolutions ^[2]

Under the environment of industry 4.0, smart factory aims to produce precise,

high-quality and personalized intelligent products, so as to achieve the efficiency and cost of mass production in small batch production of single parts. Intelligent production can carry out large-scale small batch customization for enterprise customers, or small batch single product customization for individual users. Factory production in industry 4.0 environment has the following characteristics:

- Intelligent production/customized production: the Internet of things can connect the production equipment and management information system. We can get the data in the production process and get better production efficiency and product quality through analysis. In addition, industry 4.0 will also bring personalized customized production in intelligent production. RFID technology provides convenience for products that require personalized customization. After the machine recognizes RFID, the controller can operate the robot hand to make changes in certain positions, such as spray painting patterns, product finalization, specification changes, etc. This process of producing different products in the same production line can make great differences between customized products with the progress of industry 4.0 and the improvement of technology.
- Production by servicing: smart products can collect user data, which manufacturers can obtain, and a new business model can be born that charges for services. By collecting product data, enterprises can better serve customers. The products manufactured by the factory can not only realize the functions of the product itself, but also send data to the factory so that the manufacturer can monitor its operation status and its loss, so as to better serve the customers after sale.
- Cloud factory: in the era of intelligent manufacturing, information is concentrated in the cloud. Through data analysis, we can see which factories are operating at full capacity and which are idle. These idle factories can then sell their capacity to produce for others in need. In this way, the production efficiency of industrial production will be greatly improved, which also makes it possible to realize small order production.

1.2 Ergonomics

Ergonomics is one of the cornerstones of the realization of the industry 4.0. Between the late 19th and early 20th centuries, ergonomics focused on human training to adapt the usages of the machines. During this period, main concentrations were on the psychology. From World War II to the 1960s, more factors like physiology, anthropometry, and biomechanics were applied in the ergonomics research, the importance of machinery and procedures to meet the needs of people became the major requirement. Starts from the '60 s, nowadays ergonomics emphasizes studying the "human - machine – environment" system as a unified entity, it continuously increased its importance in its applications through the industrial production.^[3]

Ergonomics is a multidisciplinary cross discipline, is the core issue of research on different operation coordination between human, machine and environment. Its research methods and evaluation methods involve many fields such as psychology, physiology, medicine, anthropometry, aesthetics and engineering technology. Purpose of such study is through the application of interdisciplinary knowledge, to guide the work of equipment, working way and working environment design and transformation, so as to make the operations in efficiency, safety, health, comfort, etc.

1.3 Ergonomics in industry 4.0

In industrial 4.0, wide range of data sources and classification of fine, strong correlation, updated in real time, continuous time of big data technology; Cloud platform technology with unified data centralization, safe and reliable service, powerful function and real-time online; The whole-time and region-wide interconnection of Internet of things technology has a significant impact on the study of physiological human factors, cognitive human factors and organizational human factors, which is embodied in human-machine interaction, task and work design, personalized design, safety, health, comfort design, organization and management.

As the traditional equipment and workpiece change to the intelligent device and the intelligent workpiece, the interaction mode between the person and the equipment and the workpiece also change. In industry 4.0, all the IT controls installed in the production equipment, the processing artifacts, and the available devices of the crew are connected to the enterprise private cloud, controlled by the same smart terminal. In the context of intelligent man-machine interaction, intelligent devices will be guided by real-time information and take the initiative to select the most suitable object when needed and make interactive requests, and the interactive mode is also multidimensional. Because all devices are connected to the network, the interaction can be carried out in a variety of environments, which can be used for both remote interaction with mobile intelligent devices and on-site interaction. It can interact with input devices such as keyboard and touch screen, as well as voice recognition and gesture control. In addition, the basic decision-making ability and visualized presentation of information of smart devices will enable people to get rid of boring and stylized decision-making and move to more advanced intuitive and innovative decision-making. The nature of work, content and load will change fundamentally.

In the intelligent working space and environment, a large number of sensors collect environmental data in real time, and face recognition technology can remember personal characteristics. Wearable devices can monitor human state and collect data (humidity, brightness, noise, etc.), reflecting the personalized environment adjustment and providing a healthy and scientific work/life environment. The intelligent terminal can give hints on employees' working habits and operations. When employees have irregular operations, they will remind operators by voice or other information, and terminate their operations, so as to form a code of conduct control. On the other hand, the focus of employees' tasks has changed, such as changing from acquiring information to understanding information, and screening information to integrating information. And the routine work decreases, but the design class worker increases.

2 NEW TECHNOLOGIES IN THE FIELD OF ERGONOMICS IN

INDUSTRY 4.0

Industry 4.0 integrates advanced technologies such as wired/wireless network, IT control, Internet of things technology, various wearable devices, big data, cloud computing, etc., which enriches the interactive mechanism of human and machine and environment. Under the influence of the industry 4.0, revolutions of system of "human - machine - environment" will continuously happen. With the development of ergonomics, how to make the "human-machine-environment" system work more harmoniously is a major research issue in industry 4.0. New technologies in ergonomics are now emphasizing how they can be better part of the system, not just how people used to adapt machines or machines to people. In the industry 4.0 environment, the new technologies related to ergonomics are mostly wearable devices. Informatization is the first feature of these emerging technologies. As we can see, technologies such as exoskeletons, assisted robots and AR/VR are all used by a large number of sensors. These sensors are used to collect various kinds of information in practical applications, and these information data will be recorded or used to adjust the deviation in actual use, so as to make the system operation more accurate and accurate. Interconnectivity is the second characteristic of these emerging technologies. Based on information technology, devices and devices will be connected through cloud technology. Not only are manufacturing and processing equipment connected, but various wearable devices will also be connected in the 4.0 environment. The application of interconnection technology provides a basis for the communication between equipment and equipment. Information such as the running state, working content and health status of the equipment can be shared among devices, making each small "human-machine-environment" system interconnected into a large system, so as to improve production efficiency and facilitate control. Innovation is the third characteristic of these emerging technologies. The units of small "human-machine-environment" systems provide the potential for production innovation. According to different production requirements, the reasonable scheduling and splicing of each unit will help to form a new production system, so as to better meet customer orders. In the field of ergonomics: exoskeletons, virtual reality and augmented reality, collaborative robots and other new technologies are leading the innovation of ergonomics.

3 INDUSTRIAL EXOSKELETONS

Because of the high frequency of physical labor, workers are often susceptible to Work-Related Musculoskeletal Disorders (WMSDs). The current industrial exoskeleton research is mainly based on the basic principles of ergonomics, which aim at reducing or even avoiding the occurrence of WMSDs through the mechanical structure or driving mode of the exoskeleton itself. The development of industrial exoskeletons is of great significance for improving production safety, reducing the risk of worker fatigue and injury, and improving productivity of the industry.

The industrial exoskeletons available in the market are mainly active and passive. The difference between them is that whether there is power drive or not, and this difference also makes them have different advantages and disadvantages. Also according to the different functionalities that the industrial exoskeletons want to realize, the industrial exoskeletons can be divided into different body segment using. Mainly they are: upper limps industrial exoskeletons, trunk-assisted industrial exoskeletons, lower body industrial exoskeletons.

3.1 Upper limps industrial exoskeletons

The upper limps industrial exoskeletons aim at the power of the shoulders, arms or hand to enhance or better stress distribution. For the industrial exoskeletons of the arm assisting, they can be divided into the passive ones and the active one; most of the industrial exoskeletons for hand assisting are active ones or prototypes.

3.1.1 Passive shoulders/arms assisted industrial exoskeletons

These types of industrial exoskeletons are without actuators. They enhance arm muscle or better distribution of arm loads by different mechanical devices such as springs, levers, etc., to achieve improved arm performance. Examples are:

- Name ShoulderX SuitX Company **Available on Market/Prototype** Available on market Price Around €3300 Active/Passive Passive **Energy Store Mechanism** Mechanical support structure(leverage) **Body Segment** Shoulders/arms Weight 5.4 kg Suitable Physique 5%~95% Suitable for of human dimensions, such as user height, waist size, shoulder width, chest depth, and arm length Shoulders, waist, arms **Connection Points on Body Human Movement Following** Adjustable
- ShoulderX by SuitX

Related research/test	Rating the perceived exertion (BORG
	RPE10) in tool using task simulation.
	Avg. fatigue time without shoulderX:
	2m15s ; Avg. fatigue time with
	shoulderX: 15m30s

Figure 3.1 ShoulderX by SuitX ^[5]

• EksoVest by Eksobionics

Name	EksoVest
Company	Eksobionics
Available on Market/Prototype	Available on market
Price	Around €5000
Active/Passive	Passive
Energy Store Mechanism	Mechanical support structure
Body Segment	Shoulders/arms
Weight	4.3kg
Suitable Physique	Height: 152~193cm
Connection Points on Body	Shoulders, waist, arms
Human Movement Following	20" of adjustment
Related research/test	Research in using the exoskeletons in the
	drilling and wiring tasks in different
	working height level

Table 3-2-1	EksoVest	characteristics	6
-------------	----------	-----------------	---

Related research of the EksoVest				
Subjects	6 healthy males and 6 healthy females			
	Mean and SD		Female	Male
		Age	22.5 years \pm	32.5 years
			1.5	± 11.8
		Mass	$63.8 \text{ kg} \pm 6.2$	72.6 kg \pm
				9.1
		Stature	169.7 cm \pm	$179 \text{ cm} \pm$

			5.2 3
Experimental	Independent With (EXOS) and without (FRE		With (EXOS) and without (FREE)
Design	esign variables an exoskeleton		an exoskeleton
			Shoulder height and an overhead
			work height
	Measurement	t	Muscle activity (EMG: the anterior
			and middle deltoid, and the
			descending trapezius)
			Perceived discomfort (RPD score
			neck, shoulder, upper arm, forearm,
			upper back, low back, and leg)
			Donning & doffing time, shoulder
			ROM, postural control, and slip &
			trip risk tests
			3D spine forces
	Treatment		Repetitive drilling
			Light assembly
Testing	Drilling	Drilling _{HEAVY} Subjects were asked to complete the drilling job with 5.9kg drilling tool at shoulder	
Protocol	DIMINGHEAVI		
		separat	-
	DrillingLIGHT		ts were asked to complete the drilling
			th 3.36kg drilling tool at shoulder
		-	and an overhead work height
		separat	_
	Wiring	Subject	ts were asked to connect five pairs of
	_	wires a	according to their colors at shoulder
		height	and an overhead work height
		separat	ely
	Work Task co	onditions	s was counter-balanced using 3×3
	Latin squares,	the total	l experiments took 3.1 hour with two
	sessions(weari	ing the ex	xoskeletons and working task)
		Resu	ılts
U		2	nged the level of perceived discomfort
	arm in different		
-			activity of shoulder groups were
-	significantly reduced (up to \sim 45% and \sim 50%, respectively to different		
working he	0,00		
	-		hen using the exoskeletons, but the
-		•	n overhead work;
• Overall dor	nning time is 67	7.1 (18.1)	sec, overall doffing time is 17.4 (4.3)
sec.;			

- Shoulder ROM was reduced with exoskeletons (4.3° (2.6%) in flexion and 16.2° (10%) in abduction);
- Using the exoskeletons reduced spine loading at the lumbosacral joint, particularly at the shoulder work height and during the drilling task; but it also increased peak lateral shear force (FLAT) during the wiring task.

Table 3-2-2 Related research of the EksoVest [7].[8]

Figure 3.2 EksoVest by Eksobionics [9]

• Passive Arms by Robo-Mate

1 assive 7 mins by Robb ivide	1
Name	Passive Arms
Company	Robo-Mate
Available on Market/Prototype	Prototype
Price	-
Active/Passive	Passive
Energy Store Mechanism	Springs mounted in support arms
Body Segment	Arms
Weight	3.7 kg/arm
Suitable Physique	Height: 160~180cm
Connection Points on Body	Shoulders, waist, arms
Human Movement Following	-
Related research/test	Study of static holding and arm exertions
	in lab. Muscle activity, perceived
	musculoskeletal effort, contact pressure,
	local perceived pressure were measured

Table 3-3-1	Passive	Arms	characteristics	[10]
--------------------	---------	------	-----------------	------

Related research of the Passive Arms			
Subjects	4 healthy male and 4 healthy female		
	Mean and SDAge $38 \text{ years } \pm 10$		
		Mass	$72.6 \text{ kg} \pm 7.87$
		Stature	$1761 \text{ mm} \pm 50$
Experimental	Independent	LOAD (0 kg and 2 kg)	

Design	variables	SYSTEM (with/without		
		exoskeletons)		
	Measurement	Muscle activity (EMG: Biceps		
		Brachii, Medial Deltoid,		
		Erector Spinae at level L3 and T9,		
		Rectus Abdominis, Biceps Femoris,		
		Rectus Femoris, Tibialis Anterior		
		and Gastrocnemius) and perceived		
		effort of the arms, trunk and legs.		
		Additionally, local perceived		
		pressure		
		and usability for the 'with		
		exoskeleton' conditions		
	Treatment	Holding the load(2 kg with		
		cylindrical diameter 5 cm)/no load		
		overhead at a fixed height when		
		standing upright, with shoulder and		
		elbow flexed at 90°, wrist in a		
		neutral position and hand closed		
Testing	Number of the test	3 times holding with LOAD*2,		
Protocol		SYSTEM*2		
	Time of the test	Tasks were repeated three times for		
		each condition with a rest of at least		
		1 min and 5 min between trials		
	Res			
	• • •	ad) was significantly reduced(muscle		
•		eps Brachii were reduced by 62% and		
-	ctively) with exoskeleton			
-	• No significant negative effects on the lower body with exoskeletons			
U,	using;			
• Perceived effort of the arm was significantly reduced(41%) with				
exoskeleto	•			
 No eviden 	ce of significantly increa	asing of muscle activity and perceived		

 No evidence of significantly increasing of muscle activity and perceived trunk and leg effort when using the exoskeletons.

 Table 3-3-2 Related research of the Passive Arms

Figure 3.3 Passive Arms by Robo-Mate [12]

Research of the Passive Arm shows its good functionality in overhead holding task: With the help of the Passive Arm, when performing the overhead holding, the muscle activity of Biceps Brachii , Rectus Abdominis and Medial Deltoid of the users are decreased significantly comparing to the holding without this exoskeleton. Moreover, there is no significant muscle activity of the trunk and the lower body when using it. Also, according to the user's point of view, the Passive Arm using is comfortable with low pressure.^[111] Same requests of these exoskeletons development are also need to be highlighted. To be lighter, more comfortable, and cheaper are the main direction of the further study. Surveys of the real industrial using also need to be performed to have a further improving.

Name	AIRFRAME
Company	Levitate
Available on Market/Prototype	Available on market
Price	-
Active/Passive	Passive
Energy Store Mechanism	System of pulleys
Body Segment	Shoulders/arms
Weight	_
Suitable Physique	Custom-fitted
Connection Points on Body	Shoulders, waist, arms
Human Movement Following	Full range of motion
Related research/test	Study of the AIRFRAME using in the
	static task and the precision task, to record
	the time of completion of the tasks of
	operators and their fatigue perception.

• AIRFRAME by Levitate

Table 3-4-1 AIRFRAME characteristics [13]

Related research of the AIRFRAME	
Subjects 31 healthy male	

	Mean and SD	Age	51.5 years ± 4.7
		Mass	$81.6 \text{ kg} \pm 9.1$
		Stature	174.9 cm \pm
			4.3
Experimental	Independent	with (EXOS) and v	vithout (FREE)
Design	variables	an exoskeleton	
	Measurement	Maintenance time, vi	ideo assessment
		of posture, fatigue	or discomfort
		sensation in static tas	k
		Endurance time, nur	nber of actions
		and fatigue or disco	
		1	nual material
		handling task	
		Number of arches	-
		operator, execution	-
		assessment of post	-
		discomfort sensation	n in precision
		task	
	Treatment	Static task	
		Repeated manual manual manual	aterial handling
		task	
		Precision task	• 1 / • 1
Testing	Static task	Maintaining standing	
Protocol		extended arms (90° v	
		the trunk) while hold spoiler (3.5kg) placed	-
		forearm	
	Repeated manual	Moving an object(3	$(1 \ kg)$ between
	material handling task	two positions	in different
	material nanoling task	heights(0.9 m from	
		worker's should	
		movement pace is	U ,,
		maximum duration	
		600s	
	Precision task	Tracing a continue	ous wavy line
		between two premar	5
		paper fixed on a bill	
		at a height with	
		subject's shoulder	-
		pen; the predominan	t arm is almost
		extended and the ta	ask ended with
		the subject's will	l or at the
		premarked guides	

Results Due to limitation of the size of the exoskeletons, only 29 subjects' data • analysis were completed; • During static task, no substantial differences of the posture was detected, static posture maintaining mean time were 183.9 s(EXOS) and 246.2 s(FREE), 25 subjects increased the holding time, 26 subjects were found that the exoskeleton perceived less fatigue; During repeated manual material handling task,12 operators endured the whole 600s task with/without exoskeleton, 11 operators decreased operation while 6 operators increased it, operators experienced some discomfort when using the exoskeletons; During the precision task, no substantial differences of posture were • detected, 6 operators(FREE) filled all the 135 arches, while the number of operators increased to 19(EXO), subjects agreed to that the using of

exoskeletons was beneficial for perceived fatigue and precision of the

Table 3-4-2 Related research of the AIRFRAME [14]

Figure 3.4 AIRFRAME by Levitate [15]

Name	Stronger
Company	EXHAUSS
Available on Market/Prototype	Available on market
Price	-
Active/Passive	Passive
Energy Store Mechanism	Springs mounted in support arms
Body Segment	Shoulders/arms
Weight	9 kg
Suitable Physique	-
Connection Points on Body	Shoulders, waist, arms

• Stronger by EXHAUSS

execution

Human Movement Following	-
Related research/test	Study of using in manual handling task, muscle activity, upper limb kinematics, postural balance and cardiac cost were measured.

Related research of the Stronger					
Subjects	4 healthy male and 4 healthy female				
	Mean and S	SD .		Female	Male
			Age	31 years ± 2	$\begin{array}{c} 33 \text{ years } \pm \\ 2 \end{array}$
			Mass	$62 \text{ kg} \pm 10$	$78 \text{ kg} \pm 10$
			Stature	$166 \text{ cm} \pm 4$	$179~\mathrm{cm}~\pm$
					3
Experimental	-			KOS) and with	out (FREE)
Design	variables		an exosk		~
	Measureme	ent		activity (EMC	
				Triceps Brac	
				Tibialis Anterior)
			Heart rat	nb kinematics	
				d exertion	
			Perceived		
	Traatmont			fting and lov	vering task
	Treatment		(LIFT)	itilig and lov	vering task
			· · ·	with load ca	rrving task
			(WALK)		ing task
			Box uns	tacking and st	acking task
			(STACK)	
Testing	LIFT	Load(5 k	tg for wo	men, 9kg for	man) lifting
Protocol		from low	to high pl	atform, and vic	e versa for 3
			-	ate; 5 minutes f	
	WALK	-		tance of 30 m a	-
				-handled toolbo	
	men and 8 kg for women); four times repeated		-		
				etween each r	epetition; 5
			or recover	•	DO X 25
	STACK		-	cking 4 boxes (8	
		- U		8 kg for women	·
			-	ator on its longi	tudinal axis;
	5 min work period				
	Results				

Table 3-5-1 Stronger characteristics	
--------------------------------------	--

- During LIFT and STACK, the muscle activity of the deltoid anterior was significantly lower with exoskeletons using;
- During LIFT, the muscles activity of the triceps brachii and tibialis anterior significantly increased with exoskeletons using;
- During WALK, the muscle activity of triceps brachii was significantly decreased with exoskeletons using;
- During LIFT, compared to FREE, the cardiac cost tended to increase with exoskeletons using;
- For all tasks, the upper limb kinematics were significantly different

Table 3-5-2 Related research of the Stronger [17]

Figure 3.5 Stronger by EXHAUSS [18]

3.1.2 Active shoulders/arms assisted industrial exoskeletons

This type of industrial exoskeletons usually has a drive. They enhance shoulders/arms function through different power drives.

• Active Arms by Robo-Mate

Name	Active Arms	
Company	Robo-Mate	
Available on Market/Prototype	Prototype	
Price	_	
Active/Passive	Active	
Actuator Type	-	
Battery/Power Source	Outsource: 110/230 V	
Body Segment	Shoulders/arms	
Weight	2.3. kg/arm	
Operation Temperature	-	
Operation Time	-	
Suitable Physique	Height: 160~180cm	
Connection Points on Body	Shoulders, wrist, arms	

Human Movement Following	-
Related research/test	-

Table 3-6 Active Arms characteristics [19]

Figure 3.6 Active Arms by Robo-Mate [20]

3.1.3 Active hands assisted industrial exoskeletons

As mentioned earlier, many of these exoskeletons are still in the prototype stage. With the help of a motor or gas driver, they can improve grip strength and loosen the fingers of the user who has a finger joint problem. Examples are:

SEM Glove by Bioservo		
Name	SEM Glove	
Company	Bioservo	
Available on Market/Prototype	Available on Market	
Price	Around €7400	
Active/Passive	Active	
Actuator Type	Motor	
Battery/Power Source	Lithium polymer batteries	
Body Segment	Hand	
Weight	700 g	
Sensors	Pressure-sensitive sensors in fingertips	
Suitable Physique	Suitable for left/right hand, size:	
	XS/S/M/L/XL	
Connection Points on Body	Fingers, palm	
Human Movement Following	-	
Related research/test	-	

• SEM Glove by Bioservo

 Table 3-7 SEM Glove characteristics
 [21]

Figure 3.7 SEM Glove by Bioservo [22]

ExoHand by Festo	
Name	ExoHand
Company	Festo
Available on Market/Prototype	Prototype
Price	-
Active/Passive	Active
Actuator Type	Pneumatic actuators: 8 DFK-10 cylinders
	per hand
Battery/Power Source	-
Body Segment	Hand
Weight	-
Sensors	8 linear potentiometers(displacement
	sensors) per hand, 16 pressure sensors per
	hand
Suitable Physique	-
Connection Points on Body	Fingers, palm
Human Movement Following	-
Related research/test	-

 Table 3-8 ExoHand characteristics

Figure 3.8 ExoHand by Festo [24]

• RoboGlove by GM/NASA

RoboGlove
GM/NASA
Prototype
-
Active
Brushless motor, gear head and ball screw
assembly
-
Hand
-
1 hall-effect sensor in each joint; 16
tendon tension sensors in palm; 1
phalange sensor in each finger
-
Fingers, palm
-
Application in tool using and object
holding, and showed it can provide steady
load around 15-20 lbs. and a maximum 50
lbs.

Table 3-9 RoboGlove characteristics [25]

Figure 3.9 RoboGlove by GM/NASA [26]

The RoboGlove is developed by General Motors and NASA. It was inspired by the humanoid robot Robonaut 2 (R2). RoboGlove is a light-weighted device which is used for improving the strength of the user's fingers and palm, endurance, and also for the rehabilitation. Integrated by the technologies of the tactile sensing, on-board processing and miniaturized electronics, the RoboGlove can provide a stead load around 15-20 lbs. and a maximum 50 lbs. With the fingertip input command, the tests of the device showed its ability to provide the suitable gripping force for crimping the wire harness, also the ability to help to maintain a powered grasp for a long duration and diversely the relaxing. ^[26]

3.2 Trunk-assisted industrial exoskeletons

The trunk-assisted industrial exoskeletons are mainly used for protecting the user's spine by better allocation of the load when in the lifting operation, and reducing the user's fatigue.

3.2.1 Passive trunk-assisted industrial exoskeletons

Without actuators, these exoskeletons are designed to protect the user's spine while carrying out the lifting job, and by simple mechanical structure, the load is better distributed to the user's torso, some of them also provide chest support. Examples are:

V2 by Laevo		
Name	V2	
Company	Laevo	
Available on Market/Prototype	Available on market	
Price	Around €2070	
Active/Passive	Passive	
Energy Store Mechanism	Mechanical support structure(leverage)	
Body Segment	Trunk	
Weight	V2.4: 2.5kg; V2.5: 2.8kg	
Suitable Physique	Custom-fitted/XS~XL(5 sizes)	
Connection Points on Body	Shoulders, waist, arms, thighs, chest	
Human Movement Following	Kneeing, squatting, stretching outwards	
	and upwards, twisting, walking	
Related research/test	Study of static holding and simulated	
	assembly in lab. Muscle activity, trunk	
	posture, discomfort in the back, legs and	
	chest were measured(Local Perceived	
	Discomfort Scale)	

V2 by Laevo

Table 3-10-1 V2 characteristics [27]

Related research of the V2				
Subjects	9 healthy male and 9 healthy female			
	Mean and SD	Age	25 years ± 8	
		Mass	$71 \text{ kg} \pm 12.4$	
		Stature	$1.76 \text{ m} \pm 0.1$	
Experimental	Independent	with (EXOS) and v	with (EXOS) and without (FREE)	
Design	variables	an exoskeleton		
	Measurement	Muscle activity (EMG: Trapezius		
		pars Ascendens(ΓA), Erector	
		Spinae Longissimus	s(ESL), Erector	
		Spinae Illiocostalis(ESI), Obliquus	
		External Abdomini	s(OA), Rectus	

		Abdominis, Biceps Femoris(RA), Biceps Femoris(BF)
		Trunk posture
		Discomfort in the back, legs and
		chest(LPD)
	Treatment	Picking, placing and removing 10
		pairs of pins in a fixed order using
		the left and right hand
		simultaneously(Assembly
		Simulation)
		Hanging down the hands vertically
		with maintaining forward flexed
		trunk posture (40°)
Testing	Picking, placing and	Picking 2 pins from 15 cm below
Protocol	removing(Assembly	the Trochanter Major of the
	Simulation)	subjects and placing at a fixed
		position at shoulder height; When picking and placing, subjects
		adopted a 40° trunk flexion;
		Between pick and place, subjects
		adopt an upright neutral posture,
		with the hands hanging alongside
		the body for 30 s; Ten
		work cycles on the beat of a
		metronome
		(2/3 Hz).
	Static holding	Subjects rated their discomfort
		score when performing the static
		holding every 30 s, when rated 2 on
		the Borg scale, stop measurement
		and record the endurance time.
Results		

- Due to technical failure , only 17 subjects' data analysis were completed;
- During simulated assembly, significant reduction of the muscle activity(38% of ESI, 35% of ESL, 44% of TA, 20% of BF) was captured with the use of exoskeletons;
- During static holding, significant reduction of the muscle activity(44% of ESI, 37% of ESL, 50% of TA) was captured with the use of exoskeletons;
- During the simulated assembly, significantly lower LPD ratings of the back region and significantly higher discomfort of the chest region were found with the use of the exoskeletons;
- During static holding, the endurance time of holding with/without exoskeleton are $(9.7 \pm 4.9 \text{ min})$ and $(3.2 \pm 1.8 \text{ min})$ respectively.

Table 3-10-2 Related research of the V2^[28]

Figure 3.10 V2 by Laevo ^[29]

There are some studies of the previous version of the V2. Researchers designed an assembly task and a holding task for the volunteers. Participants simulated the assembly task with the bending forward posture and the static holding task. Results of the electromyography of the muscle showed that the muscle activities of the back, abdomen and legs are significantly decreased when using the exoskeletons. Also, from the level of the discomfort rated by the users, lower discomfort of the back could be found when using the exoskeletons. Moreover, the endurance time of the work is increased with the help of the exoskeletons. However, research also found that the knees of the users are in an over-extended position when wearing exoskeleton; this might be a risk when the longer task is performing. The weakening of the back muscle can also be a potential problem. ^[29]

I LA by Ligoskeletoli	-	
Name	FLX	
Company	ErgoSkeleton	
Available on Market/Prototype	Available on market	
Price	Around €360	
Active/Passive	Passive	
Energy Store Mechanism	Mechanical support structure(leverage)	
Body Segment	Trunk	
Weight	1.13kg	
Suitable Physique	S/M/L(3 sizes)	
Connection Points on Body	Shoulders, waist, back	
Human Movement Following	Free movement(mainly for postural	
	support)	
Related research/test	-	

• FLX by ErgoSkeleton

Table 3-11 FLX characteristics [30]

Figure 3.11 FLX by ErgoSkeleton [31]

• BackX by SuitX

Nomo	BackX	
Name	Баскл	
Company	SuitX	
Available on Market/Prototype	Available on market	
Price	Around €3300	
Active/Passive	Passive	
Energy Store Mechanism	Mechanical support structure(leverage)	
Body Segment	Trunk	
Weight	3.3kg	
Suitable Physique	Suitable for 5%~95% of human	
	dimensions, such as user height, waist	
	size, shoulder width, chest depth, and arm	
	length	
Connection Points on Body	Shoulders, waist, arms, thighs, chest	
Human Movement Following	Ajustable	
Related research/test	Measurement of lower back (L5/S1)	
	muscle activation when working	
	with/without BackX: 66% of average	
	reduction.	

Table 3-12	BackX	characteristics	[32]
------------	-------	-----------------	------

Figure 3.12 FLX by ErgoSkeleton [33]

3.2.2 Active trunk-assisted industrial exoskeletons

This type of exoskeleton is mainly carried on the user's torso, with additional devices attached to the user's shoulders, arms and thighs. Examples are:

White Suit by INNOT IT IS		
Name	Muscle Suit	
Company	INNOPHYS	
Available on Market/Prototype	Available on Market	
Price	Around €4500	
Active/Passive	Active	
Actuator Type	McKibben artificial muscles	
Battery/Power Source	Compressed air	
Body Segment Trunk		
Weight	6.6kg+1.5kg(1.5L Compressed gas tank)	
Operation Temperature	5~35℃	
Operation Time	-	
Suitable Physique	Height: 160~185cm(F size);	
	150~165cm(S size)	
Connection Points on Body	Waist, thighs	
Human Movement Following	-	
Related research/test	-	

• Muscle Suit by INNOPHYS

Table 3-13 Muscle Suit characteristics [34]

Figure 3.13 Muscle Suit by INNOPHYS [35]

	Active	Trunk	bv	Robo-Mate
-	110010	11 GIIIX	Uy.	nooo mate

Name	Active Trunk	
Company	Robo-Mate	
Available on Market/Prototype	Prototype	
Price	-	
Active/Passive	Active	
Actuator Type	-	
Battery/Power Source	Outsource: 110/230 V	
Body Segment	Trunk	
Weight	11kg	
Operation Temperature	-	
Operation Time	-	
Suitable Physique	Height: 160~180cm	
Connection Points on Body	Shoulders, hip, thighs	
Human Movement Following	-	
Related research/test	Study of dynamic lifting task in lab.	
	Muscle activity, perceived	
	musculoskeletal effort, contact pressure,	
	local perceived pressure were measured	

Table 3-14-1 Active Trunk characteristics [36]

Related research of the Active Trunk				
Subjects	12 healthy male			
	Mean and SDAge $27 \text{ years } \pm 2$		27 years ± 2	
		Mass	75.38 kg ±	
			10.1	
		Stature	$1794 \hspace{0.1in} mm \hspace{0.1in} \pm$	
			6.56	
Experimental	Independent	LOAD (7.5 kg and	LOAD (7.5 kg and 15 kg)	
Design	variables	SYSTEM (with/without		

		exoskeletons)	
	Measurement	Muscle activity (EMG: Rectus	
		Abdominis, Erector Spinae at level	
		of L3	
		vertebrae, Biceps Femoris)	
		Additionally, contact pressure,	
		perceived musculoskeletal pressure	
		and	
		usability were assessed for the 'with	
		exoskeleton' conditions	
	Treatment	Lifting a box from mid-shin height	
		to waist height	
		Lowering a box from waist height	
		to min-shin height	
Testing	Number of the test	5 times lifting with LOAD*2,	
Protocol		SYSTEM*2	
		5 times lowering with LOAD*2,	
		SYSTEM*2	
	Time of the test	Muscles of subjects were	
		maximally contracted for 3 s, there	
		was a 1-min rest period between	
		trials and minimum 5-min break	
		between treatments	
	Res		
	e participants could not c		
		tivities of Erector Spinae and Biceps	
	•	(12%-15% for Erector Spinae, 5% for	
-	, -	happened in higher load tasks;	
• Effort of	the legs was similar	when subjects working with/without	

- Effort of the legs was similar when subjects working with/without exoskeletons;
- Perceived trunk effort was significantly reduced when using the exoskeletons (9.5%-11.4%).

 Table 3-14-2 Related research of the Active Trunk [37]

Figure 3.14 Active Trunk by Robo-Mate [38]

Recent research shows that with the help of the Active Trunk, when performing the lifting activities, the muscle activity of Erector Spinae and Biceps Femoris of the users are decreased significantly comparing to the lifting without this exoskeleton. Moreover, the loading of the trunk is significantly decreased assisting by the hip extensor torque. With the acceptable loading at the lower body according to the participants, the Active Trunk shows a good usability. ^[37] However, the result of this research is based on a series of short duration experiments. Further tests should be taken to prove that its usability to the long duration situation which is more closed to the real industrial working. Such kind of exoskeleton also will be towards lightweight development, so as to better fulfill the requirement of the ergonomics principles.

• MODEL A, MODEL Y by ATOUN

Figure 3.15 MODEL A by ATOUN [39]

Name	MODEL A(AWN-03B)	
Company	ATOUN	
Available on Market/Prototype	Available on market	
Price	Around €10600	
Active/Passive	Active	
Actuator Type	High torque AC motor	
Battery/Power Source	48.1V Lithium-ion battery	
Body Segment	Trunk	
Weight	6.7kg	
Operation Temperature	0~40°C	
Operation Time Around 8 hours		
Suitable Physique	Height: 155~185cm / Weight: 50~80kg	
Connection Points on Body Shoulders, hip, thighs		
Human Movement Following	Automatic Detection: Lift, Maintain	
	Posture, Carry, Unload, etc.	
Related research/test -		

 Table 3-15 MODEL A characteristics
 [40]

Figure 3.16 MODEL Y by ATOUN [41]

Name	MODEL Y
Company	ATOUN
Available on Market/Prototype	Prototype
Price	-
Active/Passive	Active
Actuator Type	-
Battery/Power Source	-
Body Segment	Trunk
Weight	4.4kg (Including belts and batteries)
Operation Temperature	-
Operation Time	4 hours

Suitable Physique	-
Connection Points on Body	Shoulders, hip, thighs
Human Movement Following	Automatic Detection: Lift, Carry, Unload,
	etc.; Separate controllers for left and right
Related research/test	-

 Table 3-16 MODEL Y characteristics
 [42]

3.3 Lower body industrial exoskeletons

This kind of exoskeleton is mainly used for leg support when the user is working with a squatting posture. They are almost active. To make the lower body as a "chair" is the core idea of this exoskeleton.

There is a simulated research of a passive lower body industrial exoskeleton which shows the benefit of these exoskeletons:

• Pure mathematical simulation of the passive lower body industrial exoskeleton The Honda Bodyweight Support Assist Device is a lower-body passive exoskeleton; this device aims at reducing the load at the wearer leg muscle when walking. This exoskeleton is an active type, but there is simulation research of a passive exoskeleton based on the Honda parameters.

Figure 3.17 Bodyweight Support Assist Device by Honda [43]

Simulated research of the Honda				
Exoskeleton	type	Passiv	e exoskeleto	n
Body segmen	ıt	Lower	body	
Human model	Mechanical model	Planar anthropomorphic bipedal mechanism with massless feet		
	Parameters		Mass(kg)	Length(m)
		Total	61.86	1.75
		shin	4.66	0.55

		410 i ala	9.6	0.45
		thigh	8.6	
		trunk	48.6	0.75
Exoskeleton	Mechanical model	Bipedal mechanism (massive,		· · ·
model	but with massless feet) with the		,	
		same	shape and	DOF of the
		human	model	
	Parameters	Mass(kg) Length(m)		Length(m)
		Total	11.0	1.75
		shin	1.0	0.55
		thigh	2.0	0.45
		trunk	8.0	0.75
Experimental	Independent variables Length of the step and its			
Design	duration			
		With exoskeleton and without		
	skeleton			
	Measurement(Calculation)	Consumption of energy		
	Treatment	Simulation of a biped		
		transpo	orting a pay	load in a short
	time and short distance			
Testing	Using the mathematical mod	dels to s	simulate and	d calculate the
Protocol	energy consumption of a b	iped(75k	(g, 1.75m)	transporting a
	40kg payload with/without e	xoskelet	on in two o	lifferent ways:
	(1) time T varies from 0.4-0.5s with fixed length L=0.5m; (2) L			L=0.5m; (2) L
varies from 0.40-0.52m with fixed time T=0.45s				
	Results			
• In the sin	gle-support motion, the ene	rgy con	sumption of	of biped with
exoskeleton is higher than alone;				
• In the double-support motion, the energy consumption is much more higher				
than the single-support motion; during this phase, the energy consumption				
of the exoskeleton using is lower than the single-support motion;				
• The sum of the energy consumption of two phase walking shows a more				
efficient energy consumption of the using of the exoskeletons.				

 Table 3-17 Simulated research of the Honda
 [44]

There are also other types of lower body industrial exoskeleton:

• Chairless Chair by Noonee

enantess enan of noonee	
Name	Chairless Chair
Company	Noonee
Available on Market/Prototype	Prototype
Price	-
Active/Passive	Active
Motor Type	FAULHABER micro DC motor
Battery/Power Source	9V battery

Body Segment	Lower body
Weight	2kg
Operation Temperature	-
Operation Time	Around 24 hours
Suitable Physique	-
Connection Points on Body	Hip, thighs, shanks
Human Movement Following	Standing, Squatting.
Related research	-

 Table 3-18 Chairless Chair characteristics
 [45]

Figure 3.18 Chairless Chair by Noonee [46]

•	LegX	hv	SuitX
•	LUGA	Uy	SunA

Lega by Sulta	
Name	LegX
Company	SuitX
Available on Market/Prototype	Available on market
Price	Around €5000
Active/Passive	Active
Motor Type	-
Battery/Power Source	-
Body Segment	Lower body
Weight	6.2kg
Operation Temperature	-
Operation Time	-
Suitable Physique	Adjustable sizing
Connection Points on Body	Hip, thighs, shanks
Human Movement Following	Walking, ascending/descending stairs and
	squatting
Related research	-

 Table 3-19 LegX characteristics
 [47]

Figure 3.19 LegX by SuitX [48]

There are also some advanced exoskeletons which are still under development, such as full body exoskeletons and supernumerary robotic limbs. These exoskeletons are ambitious, but they now are also not practical.

Figure 3.20 Guardian XO by Sarcos [49]

Industrial exoskeletons will gradually enter industrial production in the near future. We can see that industrial exoskeletons are good at reducing the risk of the WMSDs of workers during production. Also, how to make these exoskeletons cheaper, lighter, more practical and more comfortable is the main direction of their development. With the help of the technologies in Industry 4.0, the market of the industrial exoskeletons will grow up quickly.

4 VIRTUAL REALITY AND AUGMENTED REALITY

In the industry 4.0 environment, Virtual Reality (VR) and Augmented Reality (AR) new and important tools for the realization of ergonomic principles in industrial production. With the help of various sensors and the computer simulation system, the VR creates a virtual, interactive and immersion experienced environment with multi-source information. By capturing the real world in real time, with the camera, AR is able to add a variety of graphics, video, and 3-d models to the actual environment that the device screens show, so that the virtual environment interacts with the real world.

4.1 Virtual Reality

The core of VR technology is to create a completely new immersive virtual environment, so the position trackers, data handles, motion capture system and the Head Mount Display (HMD) are universal VR technical equipment. The most important of these is the HMD, which is a visual creation device that allows the user to go directly to the virtual environment. Nowadays, in fact, the so-called VR glasses or VR headsets are refers to the HMDs. There are two kinds of HMDs: console HMD and mobile HMD.

The console HMD is with cables which are connected to the PC. With the help of PC's powerful computing power, the console HMD can present an immersive virtual environment more clearly and in real time. Moreover, devices like position trackers, data handles and motion capture system always appear with the console HMD, which also make the console HMDs more expensive. In addition to high quality images and fast dynamic responses, the console HMD also ensures the moving of the users in six degrees of freedom (3-axis rotational tracking + 3-axis positional tracking) in a virtual environment.

The mobile HMD is more like a mobile phone's functional extension device. Smartphones are now with high-speed processor, HD display, optical sensors, distance sensor, gyroscope, and accelerometer and so on. These devices are the basic needs of virtual reality environment generation. The mobile HMD uses its own optical lenses to present a more three-dimensional picture of the smartphone to the user. Generally speaking, mobile HMD can only guarantee the users to move three degrees of freedom (3-axis rotational tracking) in the virtual reality environment. The virtual images presented by mobile HMD are less clear than that of console HMD.

4.1.1 Console HMD

It is indisputable that the maximum simulation of each element of the actual production work environment is the basic requirement of the application of VR technology in the study of ergonomics in the production process. This means that the console HMD which is with the better picture quality, sensitivity and higher degree of

freedom will be the preferred device of the ergonomics research.

Nowadays, the market of console HMD is in the emerging stage, and the mature products that can be found in the market are mainly:

VIVE/VIVE Pro by HTC		
Name	VIVE	VIVE Pro
Company	HTC	HTC
Display Resolution	2160 x 1200; across	2880 x 1600; across
	two screens, 1080 x	two screens, 1440 x
	1200 per eye	1600 per eye
Dimension	199 x 122 x 122 mm	111 x 319 x 265 mm
Weight	470 g	555 g
Refresh Rate	90Hz	90Hz
Display Type	PenTile OLED	AMOLED
Field Of View	110°	110°
Tracking System	Vive Base Stations	Vive Base Stations
Room Scale Support	Yes	Yes
Built-in Microphone	Yes	Yes
Integrated Headphones	Only with optional	Yes
	Deluxe Audio Strap	
	attachment	
External Camera	Yes	Yes(Double)
Controllers	Vive controller	Vive controller
Connections	HDMI, USB 2.0, stereo	USB-C 3.0, DP 1.2,
	3.5 mm headphone	Bluetooth
	jack, Power, Bluetooth	
Sensors	SteamVR Tracking,	SteamVR Tracking,
	G-sensor, gyroscope,	G-sensor, gyroscope,
	proximity	proximity, IPD sensor
Platform	SteamVR, HTC	SteamVR, HTC
	Viveport	Viveport
Price	\$499 of whole VR	\$799 standalone
	system	
Related Research	Research of VIVE	-
	using in the	
	manufacturing planning	

• VIVE/VIVE Pro by HTC

 Table 4-1-1 VIVE/VIVE Pro characteristics
 [50]

Research of <i>HTC VIVE</i> using in the manufacturing planning			
Test	Volvo headquarter in Göteborg, Sweden		
setups			
position			
Subjects	Number of subjects	10	
	Subject background	9 workers from different actor groups of	
---------	---------------------------------------	---	
		Volvo;	
		1 senior researcher from Chalmers VR	
		research group	
Test	1) Subjects were gui	ded by training and then attended in the virtual	
process	environment of the	e factory;	
	2) Subjects were aske	ed to navigate in the virtual factory;	
	3) Subjects were aske	ed to modify, save and load the new layout;	
	4) Subjects gave fe	edback of the present layout based on their	
	knowledge;		
	5) Subjects were as	ked to fill the questionnaires with both the	
	open-ended and cl	losed-ended questions to rate their experience of	
	using the virtual to	ools and the virtual environment	
Test	Quantitative part	• Most of the subjects recommended the	
results		usage of the VR method based on the	
		results of the "potential benefit" rating;	
		• Due to the immaturity of the tool, the	
		results of the "user experience" didn't	
	show the similar results of the "pote		
		benefit", but they were still positive;	
		• Top 3 recommended application fields of	
		the VR method by the subjects are: 1)	
		layout planning, 2) training and education,	
	3) simulation;		
	Qualitative part	Results of the open questions showed:	
		• The advantages of the VR method are: 1)	
		easy using, 2) veracity, 3) closed to	
		reality;	
		• The disadvantages of the VR method are:	
		1) possibility of dizziness causing, 2)	
		problem of disorientation, 3) long time	
		adapting	
		• Possible challenges of the VR systems: 1)	
		cost, 2) organizational attitudes, 3) costly	

Table 4-1-2 Related research o	of the V	VIVE [51]
--------------------------------	----------	-----------

Figure 4.1 VIVE by HTC ^[52]

Figure 4.2 VIVE Pro by HTC [53]

• Rift by Oculus

Kint by Oculus		
Name	Rift	
Company	Oculus	
Display Resolution	2160 x 1200; across two screens, 1080 x 1200	
	per eye	
Dimension	166 x 308 x 392 mm	
Weight	4700 g	
Refresh Rate	90Hz	
Display Type	PenTile OLED	
Field Of View	d Of View 110°	
Tracking System Constellation		
Room Scale Support	Requires a third sensor	
Built-in Microphone	Yes	
Integrated Headphones	Yes	
External Camera	No	
Controllers Xbox One controller, Oculus remote, and Ocu		
	Touch controllers	

Connections	HDMI 1.3, USB 3.0, USB 2.0	
Sensors	Accelerometer, gyroscope, magnetometer,	
	Constellation tracking camera	
Platform	SteamVR, Oculus Store	
Price	\$399	
Related Research	Research of virtual riveting task with Oculus Rift	
Table 4.2.1 Diff share staristing [54]		

Table 4-2-1	Rift characteristics	[54]
-------------	----------------------	------

Research of virtual riveting task with Oculus Rift			
Test	Riveting sheet metal skins on the small to medium aircraft wings		
simulation			
Subjects	Number of subjects	9	
	Subject background	Unskilled operator	
Test	1) Adjusted the sensor camera according to the subjects heights;		
process	2) Subjects handled the tool and rivet to perform riveting in		
	turns(20 holes in 4	minutes), the avatar will do the same job by	
	following the subje	ects movement;	
	3) Checked the feasib	ility of the model orientation and the method;	
	, ,	questionnaires of : 1. the physical discomfort	
	of the body during	the task, 2. difficulties of performing the task,	
	3. reported the discomfort of the using of the HMD;		
	5) RULA, REBA and HAV protocol application to evaluate the		
	ergonomics factors	during the task.	
Test	Questionnaires	1. The most uncomfortable body parts are:	
results		right shoulder (8/10), right wrist (7/10)	
		and right elbow (5/10);	
		The less painful body part are: knees,	
		legs, left hand and elbow $(0-1/10)$;	
		2. No clear difficulties were recorded;	
	3. Some dizziness was recorded.		
	RULA, REBA and	For the main riveting posture:	
	HAV evaluation• RULA scores: 6 (medium risk. Change)		
		soon);	
		• REBA scores: 6 (required);	
		Riveting for 2.4 hours per 8 hours shift with	
		the vibration data of 5.6 m/sec^2 :	
		• HAV Total Exposure Points:	
		157(changes should be undertaken)	

 Table 4-2-2 Related research of the Rift
 [55]

Figure 4.3 Rift by Oculus [56]

PlayStation VR by Sony Name	PlayStation VR
Company	Sony
Display Resolution	1920 x 1080; across two screens, 960 x 1,080 per
Dimension	eye 187 x 185 x 277 mm
Weight	610 g
Refresh Rate	90Hz
Display Type	5.7" OLED
Field Of View	110°
Tracking System	PlayStation Camera
Room Scale Support	No
Built-in Microphone	Yes
Integrated Headphones	No
External Camera	No
Controllers	DualShock 4, PlayStation Move, Aim Controller
Connections	AUX port, HDMI output port, HDMI TV port HDMI PS4 port, USB port
Sensors	Accelerometer, gyroscope
Platform	PlayStation Store
Price	\$399 standalone
Related Research	-

 Table 4-3 PlayStation VR characteristics
 [57]

Figure 4.4 Rift by Oculus [58]

Name	Odyssey	
Company	Samsung	
Display Resolution	2880x1600; across two screens, 1440x1600 per	
	eye	
Dimension	202 x 131.5 x 111 mm	
Weight	645g	
Refresh Rate	60/90Hz	
Display Type	AMOLED	
Field Of View	110°	
Tracking System	Samsung camera	
Room Scale Support	No	
Built-in Microphone	Yes	
Integrated Headphones	ed Headphones Yes	
External Camera	Yes	
Controllers	6 DOF Controller / Xbox One Controller Support	
Connections	HDMI2.0 + USB 3.0	
Sensors	Accelerometer, gyroscope, magnetometer, proximity sensor, and IPD sensor	
Platform	Windows Mixed Reality	
Price	\$499 with controllers	
Related Research -		

 Table 4-4 Odyssey characteristics
 [59]

Figure 4.5 Odyssey by Samsung [60]

Name	HC102	
Company	ASUS	
Display Resolution	2880x1440; across two screens, 1440x1440 per	
	eye	
Dimension	200 x 220 x 150 mm	
Weight	400g	
Refresh Rate	90Hz	
Display Type	LCD	
Field Of View	95°	
Tracking System	ASUS camera	
Room Scale Support	No	
Built-in Microphone	Yes	
Integrated Headphones No		
External Camera Yes		
Controllers	6 DOF Controller / Xbox One Controller	
	Support	
Connections HDMI2.0 + USB 3.0+3.5mm Jack		
Sensors	Accelerometer, gyroscope, magnetometer, and	
	proximity sensor	
Platform	Windows Mixed Reality	
Price	\$399 with controllers	
Related Research -		

 Table 4-4 HC102 characteristics
 [61]

Figure 4.6 HC102 by ASUS [62]

Name	Explorer	
Company	Lenovo	
Display Resolution	2880x1440; across two screens, 1440x1440 per	
	eye	
Dimension	185.1 x 94.8 x 102.1 mm	
Weight	380g	
Refresh Rate	90Hz	
Display Type	LCD	
Field Of View	110°	
Tracking System	Lenovo camera	
Room Scale Support	No	
Built-in Microphone	Yes	
Integrated Headphones	ed Headphones No	
External Camera Yes		
Controllers	6 DOF Controller / Xbox One Controller	
	Support/ Keyboard and mouse	
Connections	HDMI2.0 + USB 3.0+3.5mm Jack	
Sensors	Accelerometer, gyroscope, magnetometer, and	
	proximity sensor	
Platform	Windows Mixed Reality	
Price	\$349 standalone, \$399 with controllers	
Related Research -		

 Table 4-5 Explorer characteristics [63]

Figure 4.7 Explorer by Lenovo [64]

	NT	M' 1D 1' II 1
•	Mixed Reality Headset Develo	per Edition by HP

Name	Mixed Reality Headset Developer Edition	
Company	HP	
Display Resolution	2880x1440; across two screens, 1440x1440 per	
	eye	
Dimension	338.84 x 176.02 x 127.76 mm	
Weight	843g	
Refresh Rate	90Hz when paired to HDMI 2.0 port	
	60Hz when paired to HDMI 1.4 port	
Display Type	LCD	
Field Of View	95°	
Tracking System	HP camera	
Room Scale Support	No	
Built-in Microphone	Yes	
Integrated Headphones	No	
External Camera	Yes	
Controllers	6 DOF Controller / Xbox One Controller	
	Support	
Connections HDMI2.0 + USB 3.0+3.5mm Jack		
Platform Windows Mixed Reality		
Sensors Accelerometer, gyroscope, and proximity		
Price	\$329 standlone, \$449 with controllers	
Related Research	-	

 Table 4-6 Mixed Reality Headset Developer Edition characteristics
 [65]

Figure 4.8 Mixed Reality Headset Developer Edition by HP^[66]

• Windows Mixed Reality Headset Model by Acer

Name	Windows Mixed Reality Headset Model	
Company	Acer	
Display Resolution	2880x1440; across two screens, 1440x1440 per	
	eye	
Dimension	195.8 x 94.8 x 106.59 mm	
Weight	350g	
Refresh Rate	90Hz when paired to HDMI 2.0 port	
	60Hz when paired to HDMI 1.4 port	
Display Type	LCD	
Field Of View	100°	
Tracking System	Acer camera	
Room Scale Support	No	
Built-in Microphone	Yes	
Integrated Headphones	No	
External Camera	Yes	
Controllers	6 DOF Controller / Xbox One Controller	
	Support	
Connections	HDMI2.0 + USB 3.0+3.5mm Jack	
Platform	Windows Mixed Reality	
Sensors	Accelerometer, gyroscope, magnetometer, and	
	proximity sensor	
Price	\$299 standalone, \$399 with controllers	
Related Research	-	

 Table 4-7 Mixed Reality Headset Model characteristics
 [67]

Figure 4.9 Mixed Reality Headset Model by Acer [68]

Name	Visor	
Company	Dell	
Display Resolution	2880x1440; across two screens, 1440x1440 per	
	eye	
Dimension	210 x 330 x 129 mm	
Weight	145 g	
Refresh Rate	90Hz	
Display Type	LCD	
Field Of View	110°	
Tracking System	Dell camera	
Room Scale Support	No	
Built-in Microphone	Yes	
Integrated Headphones	No	
External Camera	Yes	
Controllers	6 DOF Controller / Xbox One Controller	
	Support	
Connections	HDMI2.0 + USB 3.0+3.5mm Jack	
Platform	Windows Mixed Reality	
Sensors	Accelerometer, gyroscope, and magnetometer	
Price	\$349 standalone, \$449 with controllers	
Related Research	-	

 Table 4-8 Visor by Dell characteristics
 [69]

Figure 4.10 Mixed Reality Headset Model by Acer [70]

At this stage, the VR HMD is mainly used as a support device for virtual reality games. With the development of sensor technology, VR technology will be used more in military, medical, industrial production, commercial support and other fields. Through the accurate simulation of the industrial production process by VR technology, the ergonomic principle can be better reflected in the industrial production.

4.2 Augmented Reality

Unlike VR technology, AR technology aims to add the specified patterns or model information to the realistic environment, so the AR device should be able to capture the real environment in real time and add virtual information to the captured dynamic images.

4.2.1 AR glasses

As a special kind of HMDs, AR glasses are the core equipment of AR technology. Like its name, AR glasses are mainly composed of "frames" and "lenses". The "lens" is the display of the AR glasses, and the "frame" generally integrates the camera and the processor. Compared with VR HMDs, AR glasses have the advantages of light weight and small volume. There are some AR glasses which are available in market or are in prototype:

_ Google Glass Enterprise Edition by Google	
Name	Google Glass Enterprise Edition
Company	Google
Available on Market/Prototype	Available on Market
Weight	40g
Processors	Intel Atom
Sensors	ambient light sensor, digital compass, wink sensor, blink sensor, barometer, capacitive head sensor, hinge sensor, assisted GPS & GLONASS
Camera	8MP

• Google Glass Enterprise Edition by Google

Human Understanding	-
Connections	Wi-Fi : dual-band 2.4 + 5 GHz
	802.11a/b/g/n/ac; Bluetooth LE and HID
Storage and Memory	16-32GB for storage;
	2GB for RAM
Endurance Time	5 hours
Price	\$1735
Related Research	Research of Google Glass using in
	reducing anxiety while interacting with
	industrial robots

Table 4-9-1 Google Glass Enterprise Edition characteristics [71]
--

Research of <i>Google Glass</i> using in reducing anxiety while interacting with industrial robots		
Test field	Human-robot collaboration	
Subjects	Number of subjects	12
	Subject genders	2 females and 10 male (age: 20-35)
Test process	 Subjects wore the three prototypes of Google Glass with interface based on text, traffic light symbols and icons separately, the interface showed three statement of the system: 1. Performing the task with robot halting in secured position, 2. subjects have to perform an unsupervised activity outside the reach of the robot, 3. dangerous position of the robot; The robot grasped a heavy car engine to present before the subjects, then the subjects inserted four groups of screws and assembled an oil pan outside the reach of the robot when the robot was programming; Subjects filled the STAI questionnaire after the task to report the 	
	State and Trait Anxiety.	
Test results	 Average value of the anxiety of the personality trait state 37.00, SD: 5.26; Average value of the anxiety of the text prototype is 35.00, SD 8.32; 	
	7.30;	exiety of the icon prototype is 33.08, SD =
		Google Glass using in the human-robot ice the anxiety of the workers.

 Table 4-9-2 Related research of the Google Glass
 [72]

Figure 4.10 Google Glass Enterprise Edition by Google [73]

HoloLens by Microsoft		
Name	HoloLens	
Company	Microsoft	
Available on Market/Prototype	Available on Market	
Weight	579g	
Processors	Intel 32 bit architecture;	
	Custom-built Microsoft Holographic	
	Processing Unit (HPU 1.0)	
Sensors	IMU, environment understanding	
	cameras x 4, depth camera, ambient light	
	sensor	
Camera	2.4 MP	
Human Understanding	Spatial sound;	
	Gaze tracking;	
	Gesture input;	
	Voice support	
Connections	Wi-Fi : IEEE 802.11ac;	
	Bluetooth 4.1;	
	LE	
Storage and Memory	64GB for storage;	
	2GB for RAM	
	1GB for HPU RAM	
Endurance Time	2–3 hours of active use, or 2 weeks of	
	standby time	
Price	\$3000	
T.I.I. 4 10 II	loloLong abaractoristics [74]	

• HoloLens by Microsoft

Table 4-10 HoloLens characteristics [74]

Figure 4.10 HoloLens by Microsoft [75]

R	esearch of <i>Microsoft Holo</i>	Lens in picking simulation
Test field	Kit preparation of the	material supply for a mixed-model
	automotive assembly	
Subjects	Number of subjects	5
	Subject genders	1 females and 4 male (age: 23-35,
		inexperienced)
Test process	1) Subjects were trained	to be familiar with HMD and the paper
	list;	
	2) Subjects were asked t	to perform four configuration of the kit
	preparation each cycle : 1. Pick-by-AR in Single-kit	
	preparation, 2. Pick-by-paper in Single-kit preparation, 3.	
	Pick-by-AR in Batch	preparation, 4. Pick-by-paper in Batch
	preparation;	
	3) During the picking, the time consuming(average picking	
	/	of each picking cycle will be recorded
	by two cameras;	
		he picking errors of the operators were
		and were double-checked by the record
	of the cameras.	
Test results	• The average time consuming of the picking time $(\pm 95\%)$	
) 3.06 ± 0.13 s of the Pick-by-AR in
	_) $3.50 \pm 0.12s$ of the Pick-by-paper in
) 4.31 ± 0.23 s of the Pick-by-paper in
		n, 4) 4.80 ± 0.40 s of the Pick-by-AR in
	Single-kit preparation	i, bicking errors(wrong picking or wrong
	-	e: 1) 1 time in the Pick-by-AR in
	1 0, 0	n, 2) 5 times in the Pick-by-paper in
	• • • •	n, 3) 7 times in the Pick-by-AR in
	• • •	11 times in the Pick-by-paper in Batch
	preparation;	realized in the rick by puper in Duten
		yed the benefits of the pick-by-AR,
		vas applied in the picking with more
		er, since the weight of the HMD is
		ong-time using may also causes the

	problem of fatigue.	
--	---------------------	--

Table 4-10-2 Related research of the Microsoft HoloLens [76]

AR glasses are now entering industrial production. As a kind of auxiliary equipment, AR glasses can provide accurate and effective visual information in real time. It will appear more in industrial production activities such as warehouse activities, industrial vehicle driving, assembly activities, and human-computer interaction.

5 COLLABORATIVE ROBOTS

According to the ISO 10218-1:2011, the "collaborative operation" is defined as a workable state in which purposely designed robots can work within a defined workplace with the direct cooperation of a human ^[77] ^[78]. When performing the operation, the robot and the worker can make physical contact. For example, figure 1 shows a hand-guided artifact feeding action example. The operator guides the robot arm to the workpiece position and uses the hand guide device to make the arm grasp the workpiece in the collaborative working space. After that, he moves his arm into the automatic operating space, and once the arm crossed the security boundary, the robot will be transitioned to automatic operating mode for programmed processing.

Figure 1. Example of a hand-guided artifact feeding action [79]

Four main types of collaborative operation are defined by the ISO 10218 and ISO/TS 15066, they are: "Safety-rated monitored stop", "Hand guiding", "Speed and separation monitoring" and "Power and force limiting" ^[80].

- Safety-rated monitored stop: when performing the operation, either the robot system or the person move, but they don't move at the same time. Before the operator entering the collaborative workspace, the robot remains standstill. In this situation, the drive power of the robot will remain on, motions of the robot resumes when the worker leaves the workspace. Also, when the stop condition is triggered, protective stop happens.
- Hand guiding: when performing the operation, both the worker and the robot can move at the same time. In this situation, the robot system is directly guided by the worker. Before the worker entering the collaborative workspace, the robot system will be in a safety-rated monitored stop. The worker can grasp the robot to perform operation, and non-collaborative operation resumes after the worker leaving the workspace.
- Speed and separation monitoring: when performing the operation, worker and

robot system can concurrently perform movements in the collaborative workspace. Worker and robot system will maintain a minimum protective separation distance by the protective devices between each other at all times. In this situation, the operation speed will be lower and if the minimum protective separation distance is violated, protective stop happens.

• Power and force Limiting: when performing the operation, either intentionally or unintentionally physical contact can occur between the robot system and the worker. In this situation, robot systems are required to be design to fulfill the safety request of the power and force limiting. Incidental physical quasi-static (pressure/clamping) or transient (dynamic) contacts are possible to perform.

A collaborative robot is defined as a robot designed to interact directly with people in a collaborative area. The most important feature of cooperative robots is that they can work directly with people without using the safety fence for isolation, and their safety protection design is more demanding. The cooperative robot is flexible and user friendly. It can work closely with people, not only to save the space, but to meet the needs of the new consumer electronics industry miniaturization and precision, and to increase productivity. Collaborative robot is expected to fill the whole gap between manual assembly line and automatic production line. It used to be said that robots were replacing human labor, and robots are now more commonly seen as auxiliary tools. Rigid boundaries between inflexible automation and manual labor are being phased out. Efficient sensor, intelligent control technology and the most advanced software technology integration on the robot, ensure location and task flexibility in applications. In the actual production process, employees can use the required number of robots in different production locations and for different purposes.

Virtual research of the collaborative robots effect by ergonomics indicator		
Test field	Virtual testing	
Subjects	Number of subjects	5(3 males and 2 females)
	Age	25-30 years old
	Average height	1.72 m (SD 0.1, min 1.53 m, max 1.82
		m)
	Average body mass index	22.6 kg.m ⁻² (SD 0.8, min 21.7 kg.m ⁻² ,
		$max 23.8 \text{ kg}.\text{m}^{-2}$)

There is a virtual research which showed the main characteristics of the effect of the collaborative robot application:

Test process	1) Subjects were asked to perform ten times a drilling task(1 min each with 6 holes to drill) with 2.1 kg drill(the average normal force is 40N), they were using their right hand only to perform the
	test after training;
	 Forces sensors and motion capture system recorded the data of the subjects when they were performing the task;
	3) Transferred all the data into a virtual environment;
	4) Using the predefined formulas to calculate the correspondent
	ergonomics indicators of the virtual process;
	5) Set up the collaborative robot model and created a human-robot system;
	6) Using the virtual human-robot system to perform the drilling tasks, calculated the correspondent ergonomics indicators;
	7) Compared the results of the ergonomics indicators of the
	human-alone system and the human-robot system.
Test results	Comparing the ergonomic indicators of the human-alone system and
	the human-robot system:
	• The ergonomics indicators of the human-robot system in turns of the right arm position, back position, right arm velocity, right arm
	accuracy and dynamic balance are worse than the human-alone system;
	• The ergonomics indicators of the human-robot system in turns of
	the right arm power, right arm torque, back torque, legs torque, balance stability are better than the human-alone system.

Table 5-1 Virtual research of the collaborative robots effect [81]

According to the structure of collaborative robot, collaborative robot can be divided into single-arm collaborative robots and dual-arm collaborative robots.

5.1 Single-arm Collaborative Robots

On the basis of the similar degree of freedom of the traditional single-arm manipulator, the single-arm collaborative robots add more types of sensors to assist human interaction. Moreover, the single-arm collaborative robots have the characteristics of light weight, high safety coefficient, high sensitivity and easy programming. Therefore, we can simply think that the single-arm collaborative robot is a more intelligent single-arm robot.

The market of single-arm collaborative robot is a relatively mature collaborative robot market. At present, a considerable number of single-arm collaborative robots have been put into practical industrial production and application, and many robot companies have developed mature related products:

OR series by Oniversal Robots						
Name	UR3 UR5 UR10					
Company	Company Universal Robots		Universal Robots			
Weight	11 kg	18.4 kg	28.9 kg			
Degrees of	6	6	6			
Freedom						
Payload	3 kg	5 kg 10 kg				
Reach	500 mm	850 mm	1300 mm			
Repeatability	$\pm 0.1 \text{ mm}$	m $\pm 0.1 \text{ mm}$ $\pm 0.1 \text{ mm}$				
IP rating	IP64 IP54 IP54		IP54			
Camera	No No No		No			
Safety	TUV approved TUV approved TUV approved		TUV approved			
Price	Around \$35000 Around \$45500 Around \$56500					
Related Research	Research of UR series application of safety, interaction and					
	trust					

• UR series by Universal Robots

Table 5-2-1 UR series characteristics [82]

Resea	Research of UR series application of safety, interaction and trust				
Test field	Industrial application	ns: Safety, interaction and trust			
Subjects	Number of the subjects	the 38(36 male 2 female)			
	Prior experience of the subjects	 13% of the subjects worked with robots for more than 10 years; 8% of the subjects worked with robots for 6-10 years; 37% of the subjects worked with robots for 1-5 years; 48% of the subjects have no prior experience with robots. 			
Experiment	Subjects were asked to fill in the questionnaires after the following				
design	 Subjects were asked to fill in the questionnaires after the following test: Pointing gesture: subjects used a pointing gesture(finger extended) to show the tray position, then the cobot followed the gesture to pick up the parts and placed it on the corresponding position; Safety monitoring: when the cobot was moving, subjects were invited to reach out the cobot without direct touching, the monitoring system stopped the cobot when the distance between subjects and cobot was below a threshold; Manual guidance: subjects dragged the cobot's gripper to a position, the cobot recorded the place and returned to that place first before picking and placing parts on the trays; Collision: without the monitoring system, the cobot stopped 				

	when it hit the subjects' arms.
Experiment results	 Interaction mechanisms: 1) the "usefulness" result of the pointing test is with a lower score while other parameters like "naturalness", "ease of use" and "reliability" were very positive, 2) in the dragging test, the results of the "effort needed to drag the robot", "usefulness" and "difficulty to perform" are positive, 3) large number of subjects found the problem of the effort acceptability of moving the robot; Safety: high agreement of the safety issue can be found by the subjects' perspectives; Workers opinion: ranking of the important issues of the cobot
	is: safety, usability, flexibility and efficiency.

Table 5-2-2 Related research of UR series [83]

Figure 5.1 UR series by Universal Robots [84]

• I5 b	y AUBO
--------	--------

Name	15
Company	AUBO
Weight	24 kg
Degrees of Freedom	7
Payload	5 kg

Reach	924 mm, 880 mm (working range)
Repeatability	± 0.05 mm
IP rating	IP54
Camera	Gigabit ethernet camera
Safety	PL d
Price	Around \$18000
Related Research	-

Table 5-3 I5 characteristics [85]

LBR IIWA series by KUK	A				
Name	LBR IIWA 7	LBR IIWA 14			
Company	KUKA	KUKA			
Weight	22.3 kg	29.9 kg			
Degrees of Freedom	7	7			
Payload	7 kg	14 kg			
Reach	800 mm	820 mm			
Repeatability	± 0.10 mm	±0.15 mm			
IP rating	IP 54	IP 54			
Camera	-	-			
Safety	Uses SafeOperation software, Complying to ISO 10218; ISO 12100; ISO 13849	Uses SafeOperation software, Complying to ISO 10218; ISO 12100; ISO 13849			
Price	Around \$70000 Around \$70000				
Related Research	Research of KUKA IIWA using in optimization of the				
	brake disc assembly process				

Table 5-4-1 LBR IIWA series characteristics [87]

Research of *KUKA IIWA* using in optimization of the brake disc assembly

process							
Test field	est field Brake disc assembly						
Task details	Working time	Vorking time8 h/shift					
	Assembly time	3 min each brake disc					
	Disc weight	c weight 5 kg					
Original	• Main assembly proc	edures: picking parts, placing parts,					
assembly	tightening screws;						
process	• The worker needs to	assemble 160 brake disc(800 kg) each					
	day by original manua	l work, considering 200 working days,					
	he will lift around 160	00 kg each year;					
	• The original manual	process time is around 180s for each					
	assembly;						
Optimization	1) Using the Analytic Hi	1) Using the Analytic Hierarchy Process (AHP) to find out the					
of the	benefits of the huma	benefits of the human-robot collaboration, which are the					
assembly	improvements in pro-	improvements in productivity, human fatigue, safety and					
process	quality;	quality;					
		Constructed a human-robot system with a stop button which control the safety during the human-robot collaboration;					
	3) Using the hierarchal t	Using the hierarchal task analysis (HTA) to decompose the assembly task and rearrange it with the cobot intervening;					
	4) Simulate all the assem) Simulate all the assembly elements in a virtual environment,					
	design the new process	design the new process by the previous results;					
	5) Found out the defects of	5) Found out the defects of the sight obstructing of the cobot and					
	tried to optimize it.						
Research	• Compared to the o	original assembly time(180 s), the					
results	human-robot system a	ssembly time was little longer(210 s);					
	• The using of the cobo	ot helps to replace all the lifting works					
		works of the assembly process, which					
	e .	he risk of the MSDs caused by the					
	frequent lifting of the brake disc.						

 Table 5-4-2 Related research of LBR IIWA
 [88]

Figure 5.3 LBR IIWA series by KUKA [89]

• OB7 by PRODUCTIVE ROBOTICS

Name	OB7
Company	PRODUCTIVE ROBOTICS
Weight	24 kg
Degrees of Freedom	7
Payload	5 kg
Reach	1000 mm
Repeatability	$\pm 0.10 \text{ mm}$
IP rating	IP64
Camera	-
Safety	Power and force limited, compliant
Price	Around \$ 20000
Related Research	-

Table 5-5 OB7 characteristics 901

Figure 5.4 OB7 by PRODUCTIVE ROBOTICS [91]

• JACO2/ MICO2 by Kinova

JACO2/ WHOOZ by KHIOVU					
Name	JACO2	MICO2			
Company	Kinova	Kinova			
Weight	4.4 kg	4.6kg			
Degrees of Freedom	6	6			
Payload	2.6 kg	2.1 kg			
Reach	900 mm	700 mm			
Repeatability	-	-			
IP rating	-	-			
Camera	-	-			
Safety	-	-			

Price	\$30000	arm	+	\$4950	\$20900	arm	+	\$4950
	gripper				gripper			
Related Research		-				-		

Table 5-6 JACO2/ MICO2 characteristics [92]

Figure 5.5 JACO2 by Kinova [93]

Figure 5.6 MICO2 by Kinova ^[94]

Speedy series by MABI		
Name	Speedy 6	Speedy 12
Company	MABI	MABI
Weight	28 kg	35 kg
Degrees of Freedom	6	6
Payload	6 kg	12 kg
Reach	800 mm	1250 mm
Repeatability	± 0.10 mm	± 0.10 mm
IP rating	IP 54	IP 54
Camera	-	_
Safety	Soft external skin, force	Soft external skin, force
	torque sensor at the base	torque sensor at the base

• Speedy series by MABI

	of the robot	of the robot
Price	-	-
Related Research	_	-

 Table 5-7 Speedy series characteristics
 [95]

Figure 5.7 Speedy 6 by MABI ¹⁹⁶¹

Figure 5.8 Speedy 12 by MABI [97]

Racer series by COMAU			
Name	Racer 3	Racer 5	Racer 5-0.80
Company	COMAU	COMAU	COMAU
Weight	30	32	32
Degrees of	6	6	6
Freedom			
Payload	3	5	5
Reach	630 mm	630 mm	809 mm
Repeatability	$\pm 0.02 \text{ mm}$	$\pm 0.03 \text{ mm}$	$\pm 0.03 \text{ mm}$
IP rating	IP54	IP54(IP65 Option)	IP54(IP65 Option)

 Racer series by COMAU 		Racer	series	by	COMAU	-
---	--	-------	--------	----	-------	---

Camera	-	-	-
Safety	-	-	-
Price	-	-	-
Related Research	-	-	-

 Table 5-8 Racer series characteristics
 1981

Figure 5.9 Racer 3 by COMAU [99]

Figure 5.10 Racer 5 by COMAU [100]

Figure 5.11 Racer 5-0.80 by COMAU [101]

TX2-60 series by STÄU	BLI	
Name	TX2-60	TX2-60L
Company	STÄUBLI	STÄUBLI
Weight	51.4 kg	52.5 kg
Degrees of Freedom	6	6
Payload	3.5 kg	2 kg
Reach	670 mm	920 mm
Repeatability	$\pm 0.02 \text{ mm}$	$\pm 0.03 \text{ mm}$
IP rating	IP65	IP65
Camera	-	-
Safety	PL e Cat. 3 (According to	PL e Cat. 3 (According to
	ISO 10218-1)	ISO 10218-1)
Price	Around \$ 40000	Around \$ 40000
Related Research	-	-

 Table 5-9 TX2-60 series characteristics [102]

Figure 5.12 TX2-60 by STÄUBLI [103]

Figure 5.13 TX2-60L by STÄUBLI [104]

• CR 4iA by FANUC

Name	CR 4iA
Company	FANUC
Weight	48 kg
Degrees of Freedom	6
Payload	4 kg
Reach	550 mm
Repeatability	$\pm 0.02 \text{ mm}$
IP rating	IP 67
Camera	-
Safety	Soft external skin, force torque sensor at
	the base of the robot
Price	Around \$ 45700
Related Research	-

Table 5-10 CR 4iA characteristics [105]

Figure 5.14 CR 4iA by FANUC [106]

• HCR-5 by HY ROBOTICS

nen s og nir nøbøries		
Name	HCR-5	
Company	HY ROBOTICS	
Weight	20 kg	
Degrees of Freedom	6	
Payload	5 kg	
Reach	915 mm	
Repeatability	$\pm 0.10 \text{ mm}$	
IP rating	IP 54	
Camera	-	
Safety	-	
Price	-	
Related Research	-	

 Table 5-11 HCR-5 characteristics
 11071

Figure 5.15 HCR-5 by HY ROBOTICS [108]

• TM5 Series by Techman Robot

Name	TM5-700		TM5-900	
Company	Techman Robot		Techman Robot	
Weight	22.1 kg		22.6 kg	
Degrees of Freedom	6		6	
Payload	6kg		4 kg	
Reach	700 mm		900 mm	
Repeatability	$\pm 0.05 \text{ mm}$		± 0.05 mm	
IP rating	IP 54		IP 54	
Camera	-		-	
Safety	150N max. H	Force	150N max.	Force
	(ISO/TS 1	5066	(ISO/TS	15066
	Compliant)		Compliant)	
Price	-		_	
Related Research				

Table 5-12 TM5 Series characteristics [109]

TM5 -700

Figure 5.16 TM5-700 by Techman Robot [110]

TM5 - 900

Figure 5.17 TM5-900 by Techman Robot [111]

P-Rob 2R by F&P Robotics	
Name	P-Rob 2R
Company	F&P Robotics
Weight	20 kg
Degrees of Freedom	6
Payload	3-5 kg
Reach	775 mm
Repeatability	± 0.10 mm
IP rating	IP 40
Camera	-
Safety	ISO/TS 15066
Price	-
Related Research	-

 Table 5-13 P-Rob 2R characteristics

Figure 5.18 P-Rob 2R by F&P Robotics [113]

• MOTOMAN HC10 by YASKAWA

Name	MOTOMAN HC10
Company	YASKAWA
Weight	47 kg
Degrees of Freedom	6
Payload	10 kg
Reach	1200 mm
Repeatability	±0.10 mm
IP rating	IP 20
Camera	-
Safety	Pending Approval for TUV certification,
	Designed to meet EN ISO 10218-1 Cat 3
	PL d. EN ISO 13849:2008 PI d
Price	Around \$ 48000
Related Research	-

Table 5-14 MOTOMAN HC10 characteristics

Figure 5.19 MOTOMAN HC10 by YASKAWA [115]

• COBOTTA by DENSO

Name	COBOTTA	
Company	DENSO	
Weight	4 kg	
Degrees of Freedom	6	
Payload	0.5 kg	
Reach	310 mm	
Repeatability	± 0.05 mm'2	
IP rating	IP 30	
Camera	-	
Safety	ISO 10218-1:2011	
	ISO/TS 15066	

	ISO 13849-1:2015 PL d
Price	-
Related Research	-

Table 5-15 COBOTTA characteristics [116]

Figure 5.20 COBOTTA by DENSO [117]

• SAWYER by RETHINK ROBOTICS

Name	SAWYER	
Company	RETHINK ROBOTICS	
Weight	19 kg	
Degrees of Freedom	7	
Payload	4 kg	
Reach	900 mm	
Repeatability	±0.10 mm	
IP rating	IP 54	
Camera	Wrist & head	
Safety	ISO 10218-1 Compliant	
Price	Around \$ 37000	
Related Research	-	

 Table 5-16 SAWYER characteristics

Figure 5.21 SAWYER by RETHINK ROBOTICS [119]

Name	APAS ASSISTANT
Company	BOSCH
Weight	230 kg
Degrees of Freedom	6
Payload	4 kg
Reach	911 mm
Repeatability	± 0.03 mm
IP rating	-
Camera	Overview & positioning camera
Safety	Certified by German Trade association
Price	-
Related Research	-

 Table 5-17 APAS assistant characteristics
 [120]

Figure 5.23 APAS assistant by BOSCH [121]

Panda by FRANKA EMIKA

Name	Panda
Company	FRANKA EMIKA
Weight	18 kg
Degrees of Freedom	7
Payload	3 kg
Reach	855 mm
Repeatability	$\pm 0.10 \text{ mm}$
IP rating	IP 30
Camera	-
Safety	PL d Cat 3. (EN ISO 13849-1:2008)
Price	Around \$ 12000
Related Research	-

Table 5-18 Panda characteristics [122]

Figure 5.24 Panda by FRANKA EMIKA [123]

5.2 Dual-arm Collaborative Robots

Compared with the single-arm collaborative robot, the dual-arm collaborative robot generally has higher freedom, better sensitivity, and greater operating space. At present, many of the dual-arm collaborative robots in the market are equipped with visual sensors that can capture environmental information in real time. Higher operating freedom also increases the programming difficulty of such collaborative robots.

The existing dual-arm collaborative robots are mainly represented by:

YUMI by ABB	
Name	YUMI
Company	ABB

Weight	38 kg
Degrees of Freedom	7
Payload	0.5 kg per arm
Reach	599 mm
Repeatability	$\pm 0.02 \text{ mm}$
IP rating	IP 30
Camera	Yes
Safety	PL b Cat B
Price	Around \$ 40000
Related Research	-

Table 5-19 YUMI characteristics [124]

Figure 5.25 YUMI by ABB [125]

• NEXTAGE by KAWADA INDUSTRIES

Name	NEXTAGE
Company	KAWADA INDUSTRIES
Weight	29 kg
Degrees of Freedom	15
Payload	1.5 kg per arm
Reach	577 mm
Repeatability	± 0.03 mm
IP rating	-
Camera	Yes
Safety	Each motor is limited to 80 W (very low)
Price	Around \$ 60000
Related Research	-

Table 5-20 NEXTAGE characteristics [126]

Figure 5.26 NEXTAGE by KAWADA INDUSTRIES [127]

	BAXTER by	RETHINK	ROBOTICS
•	DAAIEKU	Υ ΚΕΙΠΙΝΚ	RODUTICS

Name	BAXTER		
Company	RETHINK ROBOTICS		
Weight	19 kg		
Degrees of Freedom	7 per arm		
Payload	4 kg		
Reach	1260 mm		
Repeatability	± 0.10 mm		
IP rating	IP 50		
Camera	Yes		
Safety	ISO 10218-1 Compliant		
Price	Around \$ 37000		
Related Research	-		

Table 5-21	BAXTER	characteristics	[128]
------------	--------	-----------------	-------

Figure 5.27 BAXTER by RETHINK ROBOTICS [129]

The emergence of collaborative robots has changed the role of industrial robots in industrial production. They offer the possibility of robots working with workers to accomplish tasks, not just tasks alone. Future developments in collaborative robots will focus more on security, agility, and ease of programming. The human-robot collaboration trend they are leading will enable humans and robots to play a better role in industrial production. This makes ergonomic principles better reflected in the process of industrial production design and implementation, thus reducing production risks and improving production efficiency.

6 CONCLUSIONS

Under the tide of industry 4.0, various emerging technologies mentioned in this paper are good media for better application of ergonomics principles in actual industrial production. In order to realize the harmonious integration of "human-machine-environment" emphasized in the new era of ergonomics, their cognition and corresponding studies in the field of ergonomics are discussed in this paper.

In history, there were three major industrial revolutions that changed human society and industrial production patterns. They are the steam age from the 1860s to the mid-19th century, the electrical age from the second half of the 19th century to the early 20th century and the technological age after the Second World War. The birth of industry 4.0 indicates that human society will enter the "intelligent era" represented by "intelligent factories", "intelligent production" and "intelligent logistics". The main characteristics of industry 4.0 are: intelligent production/customized production, production by servicing and cloud factory.

Ergonomics, as a multidisciplinary cross discipline, involves many fields such as psychology, physiology, medicine, anthropometry, aesthetics and engineering technology. The core of the ergonomics is the coordination between human, machine and environment. In industry 4.0, ergonomics has its new features: integration of "Human - machine - environment" system, informatization, interconnection and innovation. Therefore, how to make use of the new technology born in industry 4.0 environment to better realize the requirement of ergonomics is the research focus in the field of ergonomics in the new era.

One of these new technologies is industrial exoskeletons. There are three main types of exoskeletons in the market for industrial exoskeletons: upper limps industrial exoskeletons, trunk-assisted industrial exoskeletons and lower body ind'ustrial exoskeletons. Depending on the drive type, these industrial exoskeletons can also be divided into active industrial exoskeletons and passive industrial exoskeletons. Many industrial exoskeletons are tested and studied through comparative experiments. The actual effects of industrial exoskeletons are verified through the collection of signals of various muscle activities during the execution of corresponding tasks by workers with or without an industrial exoskeletons, researches show that their application will reduce the workers muscle activities well in the actual production activities. Through its own mechanical structure or drive unit, the worker's load will be better distributed to reduce the risk of spinal injuries and muscle injuries, so as to improve the production operation comfort and production efficiency.

VR and AR technologies are the best embodiment of ergonomic informatization. HMDs are the main devices used in the field of VR and AR. There are researches on factory layout design with VR applications. Research shows that VR technology has obvious advantages in layout planning, training and education, simulation and easy using. Of course, VR technology also has disadvantages such as dizziness, disorientation and long-time adapting. VR technology can also be used to capture the physical movements of workers during actual operation, and the captured data can be synchronously input into the computer to simulate in real time with dummy, so as to make more accurate assessment of ergonomics-related attitude assessment methods. The application of AR technology shows its great development potential. There is a study on the effect of Google glasses of worker anxiety in collaboration with robots. Results show that Google glass can help to reduce anxiety when cooperating with robot. Moreover, VR equipment showed great practical value in picking operation. Pick-by-AR reduced the picking errors and increasing picking speed.

Collaborative robots create new modes of production in which humans and machines collaborate. Also, they realize the intelligent cooperation between man and machine, and their emergence defines a new production mode of cooperation between man and

machine, giving full play to the respective advantages of man and machine. According to ISO 10218 and ISO/TS 15066, four main types of collaborative operation are defined, they are "Safety-rated monitored stop", "Hand guiding", "Speed and separation monitoring" and "Power and force limiting". Single-arm collaborative robots and dual-arm collaborative robots are the main types of collaborative robots. The simulation study on collaborative robots shows the difference of the ergonomic indicators between human-alone and collaborative robots. Ergonomics indicators on most jobs and most body parts show the superiority of collaborative robots. There are also researches which show that collaborative robots can help to reduce the frequent lifting so as to reduce the risk of the MSDs.

It is predictable that more intelligent technologies will emerge in the near future. Intelligent equipment, robot and so on science and technology will solve the problem of more production activities in ergonomics, so as to reduce human in the process of production the physiological and psychological risks, and to improve production efficiency. Industry 4.0 will certainly promote the development of ergonomics. More research fields and methods of ergonomics will be explored and discovered with the help of industry 4.0.

Reference

[1]: LIAO Guang-ji, YI Shu-ping, ZHOU Jia, WEN Pei-han, XIONG Shi-quan, 2016.
Human Factors and Ergonomics under the background of Industry 4.0.
TECHNOLOGY AND INNOVATION MANAGEMENT, Vol. 37-No. 3-May. 2016
[3]: Patrick Waterson, 2011. World War II and other historical influences on the formation of the Ergonomics Research Society, Ergonomics, 54:12, 1111-1129
[4]:

https://nohio.asse.org/wp-content/uploads/sites/152/2017/11/suitX-Presentation-Ohio-Safety-Supply-Cleveland-OH-17-November-2017.pdf

[7]: Sunwook Kima, Maury A. Nussbauma,b, Mohammad Iman Mokhlespour Esfahania, Mohammad Mehdi Alemic, Saad Alabdulkarima,d, Ehsan Rashedie, Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part I –"Expected" effects on discomfort, shoulder muscle

activity, and work task performance

[8]: Sunwook Kima, Maury A. Nussbauma,b, Mohammad Iman Mokhlespour Esfahania, Mohammad Mehdi Alemic, Bochen Jiad, Ehsan Rashedie, Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part II –"Unexpected" effects on shoulder motion, balance, and spine loading

[11]: Kirsten Huysamena, Tim Boschb, Michiel de Loozeb, Konrad S. Stadlerc, Eveline Grafd, Leonard W. O'Sullivan, 2017. Evaluation of a passive exoskeleton for static upper limb activities. Applied Ergonomics 70 (2018) 148–155.

[14]: Stefania Spadaa, Lidia Ghibaudoa, Silvia Gilottaa, Laura Gastaldib and Maria
Pia Cavatortab, 2017. Investigation into the applicability of a passive upper-limb
exoskeleton in automotive industry. Procedia Manufacturing 11 (2017) 1255 –
1262

[17]: Jean Theurel, Kevin Desbrosses, Terence Roux, Adriana Savescu, 2018. Physiological consequences of using an upper limb exoskeleton during manual handling tasks. Applied Ergonomics 67 (2018) 211–217.

[25]: M. A. Diftler, C. A. Ihrke, L. B. Bridgwater, J. M. Rogers, D. R. Davis, D. M. Linn, E. A. Laske, K. G. Ensley, J. H. Lee. RoboGlove – A Grasp Assist Device for Earth and Space.

[28]: Tim Bosch, Jennifer van Eck, Karlijn Knitel, Michiel de Looze, 2016. The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Applied Ergonomics 54 (2016) 212-217.

[32]:

https://nohio.asse.org/wp-content/uploads/sites/152/2017/11/suitX-Presentation-Ohio-Safety-Supply-Cleveland-OH-17-November-2017.pdf

[37]: Kirsten Huysamena, Michiel de Loozeb, Tim Boschb, Jesus Ortizc, Stefano Toxiric, Leonard W. O'Sullivana, 2018. Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks. Applied Ergonomics 68 (2018) 125–131.

[44]: Y. Aoustin, A.M. Formalskii, 2018. Walking of biped with passive exoskeleton: evaluation of energy consumption, Multibody Syst Dyn (2018) 43:71–96

[51]: Liang Gonga, Jonatan Berglunda, Dennis Saluäärb, Björn Johansson. A novel VR tool for collaborative planning of manufacturing process change using point cloud data. Procedia CIRP 63 (2017) 336 – 341.

[55]: G.-C.Vosniakosa, J. Devilleb, E. Matsasa. On immersive Virtual Environments for assessing human-driven assembly of large mechanical parts. Procedia Manufacturing 11 (2017) 1263 – 1270.

[72]: Stefan Brending, Ali Mahmood Khan, Michael Lawo, Maik Muller, Patrick Zeising. Reducing Anxiety while Interacting with Industrial Robots. ISWC '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

[76]: Robin Hansona, William Falkenströmb, Mikael Miettinenb. Augmented reality as a means of conveying picking information in kit preparation for mixed-model assembly. Computers & Industrial Engineering 113 (2017) 570–575

[77]: ISO 10218-1 (2011) Robots and robotic devices-Safety requirements for

industrial robots-Part 1: Robots. International Organization for Standardization, Geneva

[78]: ISO 10218-2 (2011) Robots and robotic devices—Safety requirements for industrial robots—Part 2: Robot systems and integration. International Organization for Standardization, Geneva

[79]: Fujii M, Ogura Y, Murakami H, Sonehara M (2011) Proposal of human-robot collaborative system using hand guiding. J IHI Technol 51, 18–24

[80]: ISO/TS 15066: Robots and robotic devices –Collaborative robots. International Organization for Standardization, Geneva

[81]: M. Franck Multon, M. Philippe Souères, M. Ambarish Goswami, M. Guillaume Morel, M. Thomas Robert, M. Yvan Measson, M. Yvan Measson, M. Philippe Bidaud, 2015. Virtual ergonomics for the design of collaborative robots.

[83]: In[°]aki Maurtua, Aitor Ibarguren, Johan Kildal, Loreto Susperregi, Basilio Sierra, 2017. Human–robot collaboration in industrial applications: Safety, interaction and trust. International Journal of Advanced Robotic Systems July-August 2017: 1–10.

[88]: Sahar Heydaryan, Joel Suaza Bedolla, Giovanni Belingardi, 2018. Safety Design and Development of a Human-Robot Collaboration Assembly Process in the Automotive Industry. Appl. Sci. 2018, 8, 344