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Introduction

This master thesis work is collocated in the general �eld of model order re-
duction for numerical simulations, that, explained in few words, is a �eld
concerning the development of numerical methods aiming to speed up the
computation, paying the price of the introduction of controllable error in the
simulation. More precisely, we work with the reduced basis (RB) techniques,
recognised to be e�cient and consolidated methods in the model order re-
duction �eld. Hence, they are very frequently employed and there is a rich
literature about them very easy to access for those interested. Nevertheless,
in order to have a self-consistent work that should be understood by anyone
with knowledges in numerical analysis and �nite element method (FEM), we
start this thesis with a chapter describing from a mathematical point of view
the reduced basis methods. In writing the chapter we consulted the book of
A. Quarteroni [19], since it contains a self-consistent and compact summary
over the reduced basis that perfectly adapts to this thesis matters.
Actually there are cases in which reduced basis techniques lose their e�ciency,
that is trying to apply them in the contest of non-linear1 parametrized par-
tial di�erential equations (PDEs). Non-linear PDEs are often necessary in
the simulation of complex physical and industrial process.
To recover the e�ciency of the reduced basis methods several approaches
have been proposed during the time but, until know, for what we know, all
of them show drawbacks which compromise their use in some applications.
Chapter 2 explores the state of art of this non-linear reduction techniques, for
which was coined the term hyper-reduction methods, highlighting the issues
in which they stumble. We refer to part of the work presented in [10] for this
chapter.
It is exactly in the topic of hyper-reduction where the core our work lives.

1It would be better to say "non-a�ne", continuing the read will be clear the reason of

this statement.
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Introduction

Indeed we readapt a method, called FOCUSS, proposed in the contest of
sparse signal reconstruction to the contest of Model Order Reduction for
non-linear parametrized PDEs; this new technique is such that overcomes
the issues of the other hyper-reduction methods. The power and e�ciency of
the readapted FOCUSS is accurately tested on three problems, numerically
implemented through Matlab. The �rst problem is built �ad hoc� and we
have called it the polynomial test case, whose reason would be clear after the
presentation of the problem. The second and the third are two typical FEM
problems involving non-linear PDEs, one concerning the thermal di�usion,
the other the poro-elasticity. On all these three problems, we measure not
only the performances but also we compare them with some of the other
hyper-reduction techniques results mentioned in Chapter 2.
Chapter 3 is written, at �rst, to describe the modi�cations done on the FO-
CUSS' version of [8] and then to test it on the polynomial problem. Instead
in Chapter 4 we report the results of applying FOCUSS on the two problems
coming from a FEM discretization. In both these last two chapters we also
dedicate some space to topics directly related to our works, such as the use
of the `1-norm in the contest of vector sparsi�cation or the construction of
snapshots matrix for the second reduction stage.

2



Chapter 1

Model Order Reduction: the

Reduced Basis method

The constant increase of available computational power, accompanied by the
progressive improvement of algorithms for solving large linear systems, make
nowadays possible the numerical simulation of complex, multiscale and mul-
tiphysics phenomena by means of high-�delity (or full-order) approximation
techniques such as the �nite element method, �nite volumes, �nite di�er-
ences or spectral methods. However, this might be quite demanding, because
it involves up to O(106 − 109) degrees of freedom and several hours (or even
days) of CPU time, also on powerful hardware parallel architectures.
High-�delity approximation techniques can become prohibitive when we ex-
pect them to deal quickly and e�ciently with the repetitive solution of partial
di�erential equations (PDEs). This is, e.g., the case of PDEs depending on
parameters, the so called parametrized PDEs. The nature of the input pa-
rameters depend on which kind of physical model the PDEs refers, e.g., (i)
in nonlinear viscous �ows governed by Navier-Stokes equations the Reynolds
number can be varied to study the �ow, (ii) the conductivity in the nonlinear
thermal di�usion or (iii) the permeability in a poroelasticity model (which
is, indeed, the benchmark utilized in Chapter 4). In these three cases, evalu-
ating the behaviour of the system by means of a high-�delity technique, such
as the �nite element (FE) method, is computationally expensive because it
entails the solution of very large (nonlinear) algebraic systems, arising from
the discretization of the underpinning PDE.
Concerning this type of problems, reduced-order modelling � alternatively
named model order reduction in the literature � is a generic expression used

3



Chapter 1. Model Order Reduction: the Reduced Basis method

to identify any approach aimed to replace the high-�delity problem by one
featuring a much lower numerical complexity with the introduction of an
error in relation to the high-�delity solution; this error can be kept below a
prescribed tolerance. Reduced-order model (ROM), given an instance of the
parameter, is able to evaluate the solution at a cost that is independent from
the dimension of the original high-�delity problem. The ROM techniques
basic idea is the assumption, often veri�ed by reality, that the behaviour of
a complex system can be described by a small number of dominant modes.
In particular, among the reduced-order modelling techniques, a remarkable
instance is represented by reduced basis (RB) methods. The strategy is to re-
solve the high-�delity problem only for few instances of the input parameters
during an O�ine phase computationally onerous, with the aim of building a
set of base solutions (i.e. a reduced base), of a much smaller dimension com-
pared to the number of degree of freedom (Dof) of the high-�delity problem.
These base functions will correspond to the numerical solutions of the high-
�delity problem for speci�c values, appropriately selected, of the parameters.
After that, for every new vector of the input parameters, the corresponding
solution will be searched through an opportune linear combination of the
functions of the reduced base. The unknown coe�cients of this combination
will be obtained during the Online phase thanks to the solution of a reduced
problem generated through a Galerkin projection on the reduced space; this
Online stage will only require the solution of a linear system with an associ-
ated small dimension matrix.
It is important to underline that the RB methods do not replay the high-
�delity methods, but they are built over these. Therefore the reduced solution
does not approximate directly the exact solution of the problem but rather
its high-�delity approximation.

1.1 Parametrized PDEs

Before introducing the main features of the reduced basis methods, it is use-
ful to set up the theory for the general problem. Let's indicate with D ⊂ Rp,
p ≥ 1, a set of input parameters that may describe the physical properties of
the system, boundary condition, source terms, or the geometry of the com-
putational domain. The problems treated by ROM methods can be described
theoretically in the following way:
given µ ∈ D, evaluate the variable of interest s(µ) = J(u(µ)) where u(µ) ∈

4



Chapter 1. Model Order Reduction: the Reduced Basis method

V = V (Ω) is the solution of the following parametrized PDE

L(µ)u(µ) = F (µ); (1.1)

where Ω ⊂ Rd, d = 1, 2, 3 stays for a regular domain, V is an opportune
Hilbert space, V ′ its dual, L(µ) : V → V ′ a di�erential operator of the
second order and F (µ) ∈ V ′. The weak formulation of the problem (1.1) is
given by: �nd u(µ) ∈ V = V (Ω) such that

a(u(µ), v;µ) = f(v;µ) ∀v ∈ V, (1.2)

where the bilinear form is obtained from L(µ),

a(u, v;µ) = V ′ 〈L(µ)u, v〉V ∀u, v ∈ V, (1.3)

while
f(v;µ) = V ′ 〈F (µ)u, v〉V (1.4)

is a linear and continuum form. It is assumed that, for every µ ∈ D, a(·, ·;µ)
is continuum and coercive, that is ∃ γ̄, α0 > 0:

γ(µ) = sup
u∈V

sup
v∈V

a(u, v;µ)

‖u‖V ‖v‖V
< γ̄ < +∞, α(µ) = inf

u∈V

a(u, u;µ)

‖u‖2
V

≥ α0. (1.5)

The functional J , which associate the unknown quantities of the equations
with the variable of interest, is a linear and continuum form over V . Under
these standard assumptions on a and f , (1.2) admits an unique solution,
thanks to the Lax-Milgram theorem.
Finally another hypothesis is introduced, that is fundamental to ensure the
computational e�ciency of a reduced basis method: it is required that the
parametric dependence of the bilinear form a and of the linear form f is
a�ne in relation to µ, which means that the two forms can be expressed as:

a(w, v;µ) =

Qa∑
q=1

Θq
a(µ)aq(w, v) ∀v, w ∈ V, µ ∈ D, (1.6)

f(v;µ) =

Qf∑
q=1

Θq
f (µ)f q(w) ∀w ∈ V, µ ∈ D, (1.7)

where Θq
a : D → R, q = 1, ..., Qa and Θq

f : D → R, q = 1, ..., Qf , are only
functions of µ, while aq : V × V → R, f q : V → R are respectively bilinear

5



Chapter 1. Model Order Reduction: the Reduced Basis method

and linear forms independent from µ. All of these quantities independent
from µ will be evaluated O�ine, making the Online computation strongly
less expensive.
Although the evaluation of the variable of interest had been one of the reasons
for the development of the RB methods, for the purpose of this thesis it is
enough to focus on the evaluation of the solution u(µ); for more details on
the evaluation of the variable of interest it is remained to [18, 23].

1.1.1 A preliminary example

It is useful to introduce a simple example of parametrized problem which
belongs to the case of physical parameters; more complex problems, which
include both physical and geometrical parameters, require a deeper treat-
ment, whose references can be found in [20]. In this example will be shown
how bilinear and linear operator of a parametrized problem can be written
according (1.6) and (1.7).
Let's consider a process of di�usion, advection and reaction of a substance
inside a domain Ω ∈ R2, on its boundary Dirichlet homogeneous conditions
are imposed for simplicity; the concentration u of this substance satis�es the
following problem{

−∇ · (K∇u) + b · ∇u+ au = f in Ω,

u = 0 in ∂Ω,
(1.8)

where:

• K ∈ R2×2 is a symmetric and positive de�nite matrix, which character-
izes the di�usion property of the substance;

• b is a given advection �eld such that ∇ · b = 0;

• a > 0 is a positive coe�cient of reaction.

For the analysis of this kind of problem it is reminded to Chapter 12 of [19].
In this case we are interested to solve the problem (1.8) for di�erent values of
the di�usion coe�cients, of the advection �eld and of the reaction coe�cient.
An example of parametrized coe�cients is given by:

K =

(
µ1 0
0 µ2

)
, b =

(
cosµ3

sinµ3

)
, a = µ4, f = 1 + µ5

6



Chapter 1. Model Order Reduction: the Reduced Basis method

which describes a variable di�usion (anisotropic if µ1 6= µ2), an advection
�eld with constant modulus but di�erent direction (inclined with an angle
of µ3 respect the horizontal) and, more generally, di�erent regimes where,
depending on the values of the parameters µ1, µ2 e µ4, the transport and/or
the reaction can be dominant compared to the di�usion. At the same time,
the variation of the parameter µ5 represents a di�erent contribute of the
source term. Taking for example

µ1, µ2 ∈ (0.05, 1), µ3 ∈ (0, 2π), µ4 ∈ (0, 10), µ5 ∈ (0, 10)

problem (1.8) is well de�ned for every choice of µ ∈ D = (0.01, 1)2×(0, 2π)×
(0, 10)2. A variable of interest can be the average of the concentration over
the domain, given by

s(µ) =

∫
Ω

u(µ)dΩ.

Now the problem (1.8) can be re-written according the weak formulation
(1.2) taking V = H1

0 (Ω),

a(w, v;µ) =µ1

∫
Ω

∂w

∂x

∂v

∂x
dΩ + µ2

∫
Ω

∂w

∂y

∂v

∂y
dΩ

+ cos(µ3)

∫
Ω

∂w

∂x
vdΩ + sin(µ3)

∫
Ω

∂w

∂y
vdΩ + µ4

∫
Ω

wvdΩ (1.9)

and

f(v;µ) = (1 + µ5)

∫
Ω

vdΩ. (1.10)

It can be easily observed that this problem is coercive for every choice of
µ ∈ D, since −1/2∇ · b + a = µ4 > 0. In the examined case, a vector of
p = 5 parameters describes the physical properties of interest; both a and
f are a�ne in relation to µ, which means that they satisfy the property of
a�ne parametric dependence (1.6)-(1.7): indeed in this case Qa = 5, Qf = 1,

Θ1
a(µ) = µ1, Θ2

a(µ) = µ2, Θ3
a(µ) = cos(µ3), Θ4

a(µ) = sin(µ3), Θ5
a(µ) = µ4,

Θ1
f (µ) = 1 + µ5,

7



Chapter 1. Model Order Reduction: the Reduced Basis method

and

a1(w, v) =

∫
Ω

∂w

∂x

∂v

∂x
dΩ, a2(w, v) =

∫
Ω

∂w

∂y

∂v

∂y
dΩ,

a3(w, v) =

∫
Ω

∂w

∂x
vdΩ, a4(w, v) =

∫
Ω

∂w

∂y
vdΩ, a5(w, v) =

∫
Ω

wvdΩ,

f 1(v) =

∫
Ω

vdΩ.

1.2 Main features of a reduced basis method

As previously observed, the term reduced order model for a parametrized PDE
(as (1.2)) stays for any technique that, in function of the examined problem,
aims to reduce the dimension of the algebraic system resulting from the dis-
cretization of the PDE. This can be achieved in two ways: (i) simplifying the
physical model which is expressed by the set of parametrized PDEs, and (ii)
trying to reduce the degrees of freedom of the discrete problem associated
with the equations.
The reduced basis methods (RB) are a particular case of ROM methods, in
which the solution is obtained through a projection of the high-�delity prob-
lem on a subspace of small dimension; that subspace is generated by a set
of base functions which are typically global and strongly dependent from the
examined problem, rather than in a space generated by a much larger num-
ber of base functions (which can be local, when the problem is treated with
�nite element, and global, when treated with spectral methods). According
to this, it is clear that RB methods belong to the second category of reduced
order model techniques since they reduce the degrees of freedom related to
the high-�delity problem leaving unchanged the physical model.
In this section it will be used the strong form (1.1) of the di�erential prob-
lem in order to underline the essential components of an RB method; it is
important to remark that the RB method shown here can be built starting
from any numerical discretization technique, and not necessarily from the
ones based on the weak form of the problem.
The aim of a RB method for PDE is to evaluate, in a very e�ciently com-
putational way, an approximation of small dimension of the solution of the
PDE. The most common techniques to build a reduced bases space in the
case of parametrized PDE, as the proper orthogonal decomposition (POD)
or the greedy algorithm, allow therefore to determine the reduced solution

8
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through a projection on an opportune subspace of small dimension. The main
features of a reduced model can be summarized as follows:

• high-�delity discretization technique: as previously observed, the aim is
not to replace an high-�delity discretization technique with a reduced
model.
In the case of problem (1.1), the approximation high-�delity can be
expressed in the following compact way: given µ, evaluate sh(µ) =
f(uh(µ)) where uh(µ) ∈ V Nh is such that

Lh(µ)uh(µ) = Fh(µ); (1.11)

V Nh ⊂ V stays for a �nite dimensional space with a big dimension Nh,
Lh(µ) an opportune discrete operator and Fh(µ) a given known term.
Instead, the weak formulation of the problem is based on the Galerkin
approximation of (1.2): �nd uh(µ) ∈ V Nh such that

a(uh(µ), vh;µ) = f(vh;µ) ∀vh ∈ V Nh . (1.12)

• Galerkin Projection: an RB method is based on the selection of a re-
duced basis, obtained from a set of solutions of the high-�delity problem
{uh(µi)}Ni=1, the so called snapshots, and on the evaluation of a reduced
approximation uN(µ) expressed through a linear combination of such
base functions, whose coe�cients are calculated thanks to a projection
on the space RB

VN = span{uh(µi), i = 1, ..., N}, (1.13)

where N = dim(VN) � Nh. Therefore the reduced problem can be
expressed as follow: given µ ∈ D, evaluate sN(µ) = f(uN(µ)), where
uN(µ) ∈ VN solve

a(uN(µ), vN ;µ) = f(vN ;µ) ∀vN ∈ VN . (1.14)

Lower is the value of the dimension N , more e�cient, in term of com-
putational speed, is the solution of the reduced problem. Note that the
RB solution and the RB variable of interest are only an approximation,
for a given Nh, of the high �delity solution uh(µ) and of the output
sh(µ) (indeed, only indirectly, of u(µ) and s(µ)).
Naturally, problem (1.14) can be also interpreted in an operatorial form
as

LN(µ)uN(µ) = FN(µ). (1.15)

9
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• O�ine/Online procedure: under opportune assumption, the generation
of the database of snapshots can be done O�ine only once, and can
be completely separated from every new request of input-output eval-
uation for a new instance of µ, which is done in the Online phase.
Obviously the aim of the Online phase is to solve the reduced problem
for values of µ ∈ D not selected during the O�ine phase. Note that the
computational e�ort of the O�ine phase has to be such that it is well
compensated by the reduction of the problem to evaluate, so that the
entire procedure is e�cient from a computational point of view. The
level of e�ciency reached strongly depends from the examined problem.

• Error estimation: it is possible to relate to a RB method with a poste-
riori error estimation ∆N(µ), accurate and not expensive to evaluate,
in such way that

‖uh(µ)− uN(µ)‖V ≤ ∆N(µ) ∀µ ∈ D, , N = 1, ..., Nmax; (1.16)

and in the same way it is possible to derive expressions for the estimator
∆s
N(µ) of the error on the variable od interest, such that

|sh(µ)− sN(µ)| ≤ ∆s
N(µ).

These estimators can be used not only to verify the accuracy of the
approximation RB, but also to sample the parametric space in an op-
portune way during the phase of the construction of the reduced base.

1.3 The reduced basis method

In this section there are more details about the generation of the reduced
problem, while, in Section 1.5 are described the main strategies used for the
construction of the reduced basis space.
A reduced basis (RB) approximation is typically obtained through a Galerkin
projection (or Petrov-Galerkin if the solutions space and the test functions
space are di�erent) on an N -dimensional space VN which has to approximate
the manifold

Mh = uh(µ) ∈ V Nh : µ ∈ D (1.17)

made by the set of the high-�delity solutions for every value of the input pa-
rameters in the parametric domain D. If the manifold has a small dimension

10
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and is enough regular, it is reasonable to assume that each of its points, which
correspond to a solution uh(µ) for a value of µ ∈ D, is well approximated
by a linear combination of a relative small number of snapshots. Given an
optimal way to select the snapshots, which will be discuss later, it has to be
ensured that is possible:

1. to �nd a good combination of the selected snapshots to obtain the RB
solution;

2. to represent the RB space through an opportune base;

3. to evaluate the coe�cients of the development on the reduced basis in
a extremely e�cient way.

The way to overcome each of these problems is shown in the following sec-
tions.

1.3.1 Reduced bases spaces

The most popular way to build a reduced space is the one concerning the use
of solutions "snapshots" of the high-�delity problem, the spaces generated in
this way are sometimes called RB Lagrangian spaces. References for di�erent
kind of approaches can be �nd in [17] and [13].
Given a positive integer number Nmax, it is possible to de�ne a succession of
RB spaces V RB

N , generic or one contained into the other, with 1 ≤ N ≤ Nmax,
such that each V RB

N is an N -dimensional subspace of V Nh , which means

V RB
1 ⊂ V RB

2 ⊂ ...V RB
Nmax

⊂ V Nh . (1.18)

To de�ne such succession it is introduced, for a given N ∈ 1, ..., Nmax, a
sample

SN = {µ1, ...,µN} (1.19)

of elements µn ∈ D, with 1 ≤ n ≤ N , which can be selected opportunely (see
Section 1.5). For each of these elements is associated the snapshot uh(µ

n) ∈
V Nh . Therefore the corresponding RB spaces are given by

V RB
N = span{uh(µn), 1 ≤ n ≤ N}. (1.20)

Note that, for construction, the spaces V RB
N satisfy (1.18) and the sets of

samples (1.19) are one inside the other S1 = {µ1} ⊂ S2 = {µ1,µ2} ⊂ · · · ⊂
SNmax .

11
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1.3.2 Galerkin projection

The reduced problem is now built thanks to a Galerkin projection: given
µ ∈ D, �nd uN(µ) ∈ V RB

N ⊂ V Nh such that

a(uN(µ), vN ;µ) = f(vN ;µ) ∀vN ∈ V RB
N (1.21)

and, eventually, evaluate the variable of interest sN(µ) = J(uN(µ)). The
problem (1.21) is the Galerkin-reduced basis (G-RB) approximation of prob-
lem (1.2). Taking (1.12) and subtracting (1.21), one get the property

a(uh(µ)− uN(µ), vN ;µ) = 0 ∀vN ∈ V RB
N , (1.22)

which is the Galerkin orthogonality for the reduced problem (see Chapter 4
of [19]).
Let's consider now the discrete equations associated to the Galerkin approx-
imation (1.21). First of all it is important to choose carefully the base of the
reduced space; indeed a bad choice of the base can lead, even for small di-
mension N , to system strongly ill-conditioned, since the snapshots of (1.20)
become more and more collinear with the increasing of N in the case in
which the space V RB

N rises errors which goes rapidly to zero. To avoid an
ill-conditioned reduced system it is generally applied the orthonormalization
technique of Gram-Schmidt to the set of snapshots uh(µ

n), 1 ≤ n ≤ Nmax

and respect the scalar product (·, ·)V , in such way to obtain orthonormal base
functions ζn, 1 ≤ n ≤ Nmax, such that (ζn, ζm)V = δnm, 1 ≤ n,m ≤ Nmax,
where δnm is the Kronecker delta.
The set {ζn}n=1,...,N is chosen as the base of the space V RB

N , for each 1 ≤
N ≤ Nmax. The base functions chosen in this way are not snapshots of the
high-�delity problem, but they generate the same space:

VN = span{ζ1, ..., ζn} = span{uh(µ1), ..., uh(µ
N)}. (1.23)

Substituting the expression

uN(µ) =
N∑
m=1

u
(m)
N (µ)ζm (1.24)

in equation (1.21) and choosing as test function vN = ζn, the following alge-
braic system is obtained

N∑
m=1

a(ζm, ζn;µ)u
(m)
N (µ) = f(ζn;µ), 1 ≤ n ≤ N, (1.25)
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whose unknows are the RB coe�cients u
(m)
N (µ), 1 ≤ m,n ≤ N .

1.3.3 O�ine-Online procedure

The system (1.25) is usually a very low dimension one, however it involves
quantities related to the high-�delity Nh-dimensional space, as the base func-
tions ζn, 1 ≤ b ≤ N . Using these quantities to assemble the sti�ness RB ma-
trix for each value of µ leaves the cost of the single evaluation input-output
µ → sN(µ) too high. The problem is overcome thanks to the previous as-
sumption of parametric a�ne dependence. For the sake of simplicity, f is
considered not to depend on the parameter µ.
Thanks to (1.6), the system (1.25) can be expressed as follow,(

Qa∑
q=1

Θq
a(µ)Aq

N

)
uN(µ) = fN , (1.26)

where (uN(µ))m = u
(m)
N (µ), (Aq

N)mn = aq(ζn, ζm), (fN)n = f(ζn), for 1 ≤
m,n ≤ N . Therefore the computation requires an expensive O�ine phase,
µ-independent, to execute only once, and an Online phase extremely e�cient,
to run for each selected value of µ ∈ D:

• in the O�ine phase, �rst, the snapshots uh(µ
n) are computed, then

the base functions ζn through Gram-Schmidt orthonormalization, 1 ≤
n ≤ Nmax; after this there is the assembly and memorization of the
structures

f(ζn), 1 ≤ n ≤ Nmax, (1.27)

aq(ζn, ζm), 1 ≤n,m ≤ Nmax, 1 ≤ q ≤ Qa. (1.28)

Therefore the cost of the O�ine operations depends on Nmax, Qa, and
Nh;

• in the Online phase, the structure de�ned in (1.28) are used to form

Qa∑
q=1

Θq
a(µ)aq(ζn, ζm), 1 ≤ n,m ≤ N ; (1.29)

and the resulting linear system N × N (1.26) is solved to compute

the weights u
(m)
N (µ), 1 ≤ m ≤ N . Therefore, the cost of the Online

13



Chapter 1. Model Order Reduction: the Reduced Basis method

operations is O(QaN
2) concerning the evaluation of the sum (1.29);

O(N3) for the solution of the system (1.26), note that the RB matrix
obtained are full. The storage cost of the structures, which are necessary
during the Online phase is O(QaN

2
max)+O(Nmax) operations, thanks to

condition (1.18): for every given value of of N , it is possible to extract
the RB matrix of dimensions N ×N as the main under-matrix of the
correspondent matrix of dimensions Nmax ×Nmax.

The Online cost to evaluate uN(µ) (and, it can be easily seen, also to evaluate
the variable of interest sN(µ)) results independent form Nh, implying two
consequences: �rst, if the dimension N is small, the output will be very fast;
second, Nh can be chosen relatively big to make the error ‖u(µ)− uh(µ)‖V
enough small, without in�uencing the Online cost.

1.4 Algebraic and geometric interpretation of

the RB problem

To better understand the RB method is useful to clarify which relation-
ships exist between the Galerkin-reduced basis (G-RB) approximation and
the Galerkin-high-�delity (1.12) approximation from both an algebraic and
geometric point of view. More information can be found in [20].
Let's indicate with uh(µ) ∈ RNh and uN(µ) ∈ RN the vectors of the de-
grees of freedom associated to the functions uh(µ) ∈ V Nh and uN(µ) ∈ V RB

N ,
respectively, which are given by

uh(µ) = (u
(1)
h (µ), ..., uNh

h (µ))T , uN(µ) = (u
(1)
N (µ), ..., uNh

N (µ))T .

With {ϕ̃r}Nh
r=1 the Lagrangian nodal base of V

Nh is indicated, therefore ϕ̃r(xs) =
δrs, and {wr}Nh

r=1 indicates a set of weights such that
∑Nh

r=1 wr = |Ω| and
{xr}Nh

r=1 represents the set of discretization nodes, r, s = 1, ..., Nh
1. Such base

results to be orthogonal in relation to the discrete scalar product

(uh, vh)h =

Nh∑
r=1

wruh(xr)vh(xr).

1Note that the set of discretization nodes is usually not equal but proportional to Nh

since it depends from how many quadrature nodes are considered in each single element

of the mesh.
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It is useful to normalize the base functions de�ning

ϕr =
1
√
wr
ϕ̃r, (ϕr, ϕs)h = δrs, r, s = 1, ..., Nh. (1.30)

Thanks to the orthonormality of the base functions, the following relations
v

(r)
h = (vh, ϕ

r)h, for r = 1, ..., Nh, hold.

1.4.1 Algebraic interpretation of the problem

First, it is highlighted the algebraic connection between the problem (G-RB)
(1.21) and Galerkin-high-�delity (1.12), which has important consequences
on the computational aspects connected with a RB method.
In matrix form, the problem (G-RB) (1.25) can be written as

AN(µ)uN(µ) = fN , (1.31)

where fN = (f
(1)
N , ..., f

(N)
N )T , f

(k)
N = f(ζk), (AN(µ))km = a(ζm, ζk;µ), with

k,m = 1, ..., N . On the other side, the Galerkin-high-�delity problem (1.12)
in matrix form is given by

Ah(µ)uh(µ) = fh, (1.32)

with fh = (f
(1)
h , ..., f

(N)
h )T , being f

(r)
h = f(ϕr) if the integral is exactly eval-

uated, or f
(r)
h = (f, ϕr)h if the integral is computed through a quadrature

formula, while (Ah(µ))rs = a(ϕs, ϕr;µ), for r, s = 1, ..., Nh. For simplicity,
the dependence on µ can be avoid by now.
Let's de�ne V ∈ RNh×N the transformation matrix, whose components are
given by

(V)rk = (ζk, ϕ
r)h, r = 1, ..., Nh , k = 1, ..., N. (1.33)

Thanks to this de�nition, it is possible to prove these identities:

fN = VT fh, AN = VTAhV, (1.34)

indeed

(VTAhV)km =

Nh∑
r,s=1

(V)Tkr(Ah)rs(V)sm =

Nh∑
r,s=1

(ζk, ϕ
r)ha(ϕs, ϕr)(ζm, ϕ

s)h

=a

(
Nh∑
s=1

(ζm, ϕ
s)hϕ

s,

Nh∑
r=1

(ζk, ϕ
r)hϕ

r

)
= a(ζm, ζk) = (AN)km
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and, in the same way,

(VT fh)
(k) =

Nh∑
r=1

(V)Tkr(fh)
(r) =

Nh∑
r=1

(ζk, ϕ
r)hf(ϕr)

=f

(
Nh∑
r=1

(ζk, ϕ
r)hϕ

r

)
= f(ζk) = (fN)k. (1.35)

Using (1.34), every matrix coming from the discretization and a�ne decom-
position of the problem, which is independent from µ given by Aq

N , can be
assembled only once in the O�ine phase after the high-�delity matrix Aq

h has
been evaluated.
The vectorial representation of the error between the solution of the problem
(G-RB) and the Galerkin-high-�delity approximation is

eh = uh − VuN . (1.36)

Likewise, the vectorial representation of the residual of the high-�delity prob-
lem, evaluated on the (G-RB) solution, is

rh(uN) = fh − AhVuN . (1.37)

The following lemma gives the main algebraic connection between the (G-
RB) problem and the Galerkin-high-�delity approximation:

Lemma 1.1 The following algebraic relations hold:

Aheh = rh(uN), (1.38)

VTAhuh = fN , (1.39)

VT rh(uN) = 0, (1.40)

where eh and rh(uN) are de�ned by (1.36) and (1.37), respectively.

Proof. Equation (1.38) comes directly from (1.36) and (1.32).
Multiplying from the left (1.32) for VT , (1.39) is obtained, thanks to (1.34).
Finally, (1.40) comes from (1.37) using the identities in (1.34) and the prob-
lem (1.31).
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1.4.2 Geometric interpretation of the problem (G-RB)

To characterize geometrically the solution uN of the problem (G-RB) as
well as the error (1.36), it can be used the fact that the base matrix V
de�ned by (1.33) identi�es an orthogonal projection on the subspace VN =
span{v1, ...,vN} of RNh , generated by the columns of V. Note that dim(VN) =
N since the columns of V are linearly independent. With the assumption
that the base functions {ζk}k=1,...,N are orthonormal in relation to the scalar
product (·, ·)h, which means

(ζk, ζm) =

Nh∑
j=1

wjζk(xj)ζm(xj) = δkm, (1.41)

follows that
VTV ∈ RN×N , VTV = IN (1.42)

where IN stays for the identity matrix of dimension N .

Lemma 1.2 The following statements hold:

1. the matrix Π = VVT ∈ RNh×Nh is a projection matrix from RNh on the
subspace VN ;

2. the matrix INh
− Π = INh

− VVT ∈ RNh×Nh is a projection matrix
from RNh on the subspace V⊥N , being this last one the subspace of RNh

orthogonal to VN ;

3. the residual rh(uN) satis�es

Πrh(uN) = 0, (1.43)

which means that rh(uN) belongs to the orthogonal space (VN)⊥.

Proof. The �rst property is a direct consequence of the orthonormal property
(1.42): indeed

∀wN ∈ VN ∃ vN ∈ RN | wN = VvN .

Therefore, ∀vh ∈ RNh , ∀wN ∈ VN ,

(Πvh,wN)2 = (Πvh,VvN)2 = (VTvh,VTVvN)2 = (vh,VvN)2 = (vh,wN)2.

Second statement directly comes from the �rst, while (1.43) from (1.40).
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Thanks to the supposition of an orthonormal base, the error eh = uh −
VuN can be decomposed in the sum of two orthogonal terms:

eh = uh − VuN = (uh −Πuh) + (Πuh − VuN)

= (INh
−Π)uh + V(VTuh − uN) = eV⊥N

+ eVN
. (1.44)

The �rst term, orthogonal to VN , takes into account that the high-�delity
solution does not necessary belong to the subspace VN , while the second
one, which stays in VN , relays to the fact that a di�erent problem from the
original one is resolved. Indeed the following result holds

Proposition 1.1 The high-�delity representation of uN ∈ RN , de�ned by
ũh(µ) = VuN(µ) ∈ RNh, solves the "equivalent" high-�delity problem

VVTAh(µ)VVT ũh = VVT fh(µ). (1.45)

The matrix VVTAh(µ)VVT has rank equal to N and its pseudo-inverse of
Moore-Penrose is given by

(VVTAh(µ)VVT )† = VA−1
N (µ)VT . (1.46)

1.5 Construction of the reduced spaces

In this section, two techniques to sample the parametric space and to eval-
uate the snapshots necessary to build the reduced base are presented. Both
techniques are later used in the problems treated in this master thesis work.
The �rst technique presented is the greedy algorithm origninally introduced
in [18, 22]. It is based on the idea to select, at each step, the element repre-
senting a local optimal in relation to an opportune indicator of the error. The
second method is the so called proper orthogonalized decomposition (POD).
This technique was created with the aim to speed up the solution of time-
dependent problems and only later has been extended to parametric problems
(in the �rst applications time was considered as the only parameter).

1.5.1 Greedy algorithm

From an abstract point of view, a greedy algorithm is a general procedure
which allows to approximate each element of a compact set K of an Hilbert
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space V through a subspace of K with a given dimension N ≥ 1. This
subspace has to be built choosing opportunely some elements of K. Basically
the idea is to search for the elements {x1, ..., xN} in K such that every x ∈ K
is well approximated by the elements of the subspace KN = span{x1, ..., xN}.
In the case of construction of the reduced base K = Mh, where Mh is the
manifold of the solutions de�ned in (1.17) and the greedy algorithm has the
following form:

µ1 = arg max
µ∈D
‖uh(µ)‖V ;

given µ1, ...,µN−1,

set VN−1 = span{uh(µ1), ..., uh(µ
N−1)}; (1.47)

evaluate µN = arg max
µ∈D

d(uh(µ), VN−1);

iterate until arg max
µ∈D

d(uh(µ), VNmax) < ε∗tol.

ε∗tol is a �xed tolerance, while d(uh(µ), VN−1) indicates the distance between
uh(µ) and the subspace VN−1; it is given by

d(uh(µ), VN−1) =
∥∥uh(µ)− ΠVN−1

uh(µ)
∥∥
V
, (1.48)

which means that in the stepNth the selected snapshot uh(µ
N) is the element

of the manifold which is worst approximated by its orthogonal projection on
VN−1. The elements of the set {uh(µ1), ..., uh(µ

N)}, generated thanks to the
greedy algorithm, are then orthonormalized in relation to the scalar product
(·, ·)V , giving therefore an orthonormal base {ζ1, ..., ζN} of VN .
However, if it is performed with this descriptions, the greedy algorithm (1.47)
would still be impracticable from a computational point of view: indeed, in
each step the selection of the optimal snapshot would require the solution of
an optimization problem, in which the evaluation of arg maxµ∈D d(uh(µ), VN−1)
requires the evaluation of the high-�delity solution uh(µ) for every µ ∈ D,
leading to an excessive high cost.
In the practice, this cost is strongly reduced by substituting the search of a
maximum over D with the maximum over a very large sample Ξtrain ⊂ D,
of cardinality |Ξtrain| = ntrain, which is necessary to select the reduced space
or to train the RB approximation. Nevertheless, the solution of many high-
�delity problems (ntrain problems) is still required.
Another simpli�cation consists on substituting the approximation error with
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a posteriori estimator of the error ∆N−1(µ) such that,

‖uh(µ)− uN(µ)‖V ≤ ∆N(µ) ∀µ ∈ D (1.49)

and which is easy to evaluate. The RB-greedy algorithm has then the follow-
ing pseudo-code:

S1 = µ1;

evaluate uh(µ
1);

V1 = span{uh(µ1)};
for N = 2, ...

µN = arg max
µ∈Ξtrain

∆N−1(µ);

εN−1 = ∆N−1(µN);

if εN−1 ≤ ε∗tol
Nmax = N − 1;

end;

evaluate uh(µ
N);

SN = SN−1 ∪ {µN};
VN = VN−1 ∪ span{uh(µN)};

end.

Basically at the Nth iteration of the algorithm, among all the possible can-
didates uh(µ), µ ∈ Ξtrain, the element, whose posteriori estimation (1.49)
indicates to be the worst approximated by the solution of the RB problem
associated to the space VN−1, is added to the set of the already selected
snapshots.

1.5.2 Proper Orthogonal Decomposition (POD)

An alternative technique to the greedy algorithm for the construction of the
reduced spaces in the case of parametrized problems is the proper orthogonal
decomposition (POD). This technique reduces the dimensionality of a sys-
tem transforming the starting variables into a new set of variables unrelated
between them (called modes POD, or principal component), such that the
�rst modes describe well a good portion of the energy carried by the original
variables.
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From an algebraical point of view, the POD technique is based on the use of
the singular values decomposition (SVD), whose modality of application is
going to be clari�ed now.
Considering a set of ntrain vectors snapshots {u1, ...,untrain} belonging to RNh ,
the snapshots matrix U ∈ RNh×ntrain

U = [u1 u2 ... untrain ],

with ntrain = |Ξtrain| � Nh, can be formed. Clearly it is true that

uj = (u
(1)
j , ..., u

(Nh)
j ) ∈ RNh , u

(r)
j = uh(xr;µ

j)⇔ uh(x;µj) =

Nh∑
r=1

u
(r)
j ϕr(x).

(1.50)
The decomposition in singular values of U is given by

VTUZ =

(
Σ 0
0 0

)
,

where V = [ζ1 ζ2 ... ζNh
] ∈ RNh×Nh and Z = [ψ1 ψ2 ... ψntrain ] ∈

Rntrain×ntrain are orthogonal matrices and Σ = diag(σ1, ..., σr), being σ1 ≥
σ2 ≥ ... ≥ σr. The integer r ≤ ntrain indicates the rank of U, which results
strictly less than ntrain if the snapshots are linearly dependent. It can be
written

Uψi = σiζi and UTζi = σiψi, i = 1, ..., r

or, equivalently,

UTUψi = σ2
iψi and UUTζi = σ2

1ζi, i = 1, ..., r; (1.51)

therefore σ2
i , i = 1, ..., r are the not zero eigenvalues of the correlation matrix

C = UTU,
Cij = uTi uj, 1 ≤ i, j ≤ ntrain,

listed in ascending order. For every N ≤ ntrain, the POD base of dimension
N is de�ned as the set of the �rst N left singular vectors ζ1, ..., ζN of U or,
alternatively, as the set of vectors

ζj =
1

σ j
Uψj, 1 ≤ j ≤ N (1.52)

obtained from the �rst N eigenvectors ψ1, ...,ψN of the correlation matrix
C.
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Chapter 1. Model Order Reduction: the Reduced Basis method

For construction, the POD base is orthonormal. Furthermore, if {z1, ..., zN}
indicates an arbitrary set of N orthonormal vectors in RNh and ΠZN

w is the
projection of the vector w ∈ RNh on ZN = span{z1, ..., zN}, which means

ΠZN
u =

N∑
n=1

πnZN
(u)zn, with πnZN

(u) = uTzn,

the POD base (1.52) generated by the set of snapshots u1, ...,untrain can be
characterized as the solution of the following minimum problem:

min{E(z1, ..., zN), zi ∈ RNh , zTi zj = δij ∀1 ≤ i, j ≤ N}

with E(z1, ..., zN) =
∑ntrain

i=1 ‖ui − ΠZNui
‖2

2 .

(1.53)

Basically the POD base minimizes, among all the possible sets of N or-
thonormal vectors {z1, ..., zN} in RNh , the sum of the square of the errors
E(z1, ..., zN) between every snapshot ui and its projection ΠZN

ui on the
subspace ZN . The quantity E(z1, ..., zN) is often called as POD energy.
The POD technique construction just presented is based on the so called
snapshots method, introduced by Sirovich [27]. It is also possible to prove
that

E(ζ1, ..., ζN) =
r∑

i=N+1

σ2
i ; (1.54)

which expresses the fact that the error made by the POD base of dimension
N in the approximation of the set of snapshots is equal to the sum of the
square of the singular values corresponding at the r−N modes not selected
for the construction of the base. Therefore, it is possible to de�ne Nmax in
such a way that E(ζ1, ..., ζN) ≤ ε∗tol, where ε

∗
tol is a given tolerance. To do

this, is enough to choose Nmax as the smallest value of N such that

I(N) =
N∑
i=1

σ2
i

/ r∑
i=1

σ2
i ≥ 1− δ, (1.55)

which means that the energy carried by the last r −Nmax modes is equal to
δ > 0, where δ can be chosen as small as wanted. The key feature of this
procedure is that, even if δ is usually a very small value (typically δ = 10−β

with β = 3, 4, ...,), in many cases Nmax is relatively small (much lower than
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Chapter 1. Model Order Reduction: the Reduced Basis method

r).
To conclude note that, in a lot of applications, the POD approach for the
construction of the reduced space can result more expensive, from a com-
putational point of view, than the greedy algorithm. Indeed, this last one
only requires to evaluate N , typically few, solutions of the high-�delity prob-
lem, while the POD requires the evaluation of ntrain, possibly many, solutions
high-�delity to determine the snapshots matrix, in addition to the solution of
an eigenvalue problem for the correlation matrix C ∈ RNh×Nh . Nevertheless,
the POD results in a more general technique, and it is also applicable to
those problems where is not possible to derive a posteriori estimation of the
error that is essential for the e�ectiveness of a greedy algorithm. Moreover,
(1.55) provides useful information about the content of energy neglected by
the selected POD modes to build the reduced base, which is an indication,
in L2-norm rather than V -norm, of the approximation error.

23



Chapter 2

Non-a�ne model order reduction

via hyper-reduction

In the previous chapter the focus has been pointed on the reduced basis
method, which is the most popular approach for Galerkin projection based
Model Order Reduction. In order to take advantage of the speeding in com-
putational time due to the projection of our problem on a subspace of dimen-
sion N strongly lower compared to the one Nh of the high-�delity problem,
a fundamental hypothesis has been made: the parametric dependence of the
bilinear form and of the linear form, coming from the weak formulation, has
to be a�ne in relation to µ, allowing to write them as in (1.6) and (1.7).
This is a very restrictive hypothesis. Indeed, if we want to build models that
are truly representative of the physical phenomena, it is necessary, most of
the times, to introduce a dependence of the parameters of our models from
some quantities related to the variables of the problem.
For example, in (1.8) we could have that the di�usivity coe�cients µ1 and
µ2 are directly dependent from u and in this case it is clear that the a�ne
decomposition (1.6) is not possible since we cannot extract anymore the de-
pendence from the parameters of the bilinear form a(w, v;µ) and put it in
the scalar functions Θq

a(µ).
What we lose without the assumption of a�ne dependence of the equations
from the parameters is the possibility to pre-compute O�ine the reduced op-
erators Aq

N , and therefore to write our problem in the form (1.26) for which
the solution has a computational cost which depends on N instead of Nh as
the original discretized equations.
To �x this problem, the most popular techniques involve the use of a second
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Chapter 2. Non-a�ne model order reduction via hyper-reduction

reduction stage. As the �rst reduction stage works directly on the high-�delity
approximation simplifying its computation, the second reduction stage works
on the �rst reduction stage approximation, speeding its evaluation always
trough an opportune "simpli�cation" of the reduced problem. Since the sec-
ond reduction stage is a simpli�cation of an already simpli�ed discretization,
the error it introduces in relation to the high �delity approximation, directly
sums up with the one of the �rst reduction stage.
Compared to the �rst reduction stage, for which there are methods (e.g. re-
duced basis) whose use is considered standard since they works well for large
part of the problems, the second stage of dimensionality reduction, for which
[24] coined the term hyper-reduction, is far more challenging and is nowadays
a topic of discussion in the model reduction community. The classi�cation
of hyper-reduction methods in [10] is reported here. It is described in detail
because having in mind which are the di�erent techniques developed to treat
the second stage of reduction is a crucial passage to fully understand the
contribution of this work.

2.1 Classi�cation of "hyper-reduction" meth-

ods

Let Fh ∈ RNh denote the full-order term carrying a general, nona�ne rela-
tionship with both the input variable and the state variable, e.g. something
coming from a �nite element discretization like

Fh = Ah(µ(u)),

with Ah(µ(u)) ∈ RNh×Nh and u ∈ RNh . The corresponding projection onto
the reduced order space will be represented by F ∈ Rm (m � Nh), the
connection between these two variables being the matrix of basis vector Φ ∈
RNh×m (F = ΦTFh). The approaches to treat with the approximation of Fh

can be broadly classi�ed as nodal vector approaches and integral approaches.

2.1.1 Nodal vector approximation approaches

In this type of approaches, the approximation is given by replacing the �nite
element vector Fh by a low-dimensional interpolant Fh ≈ RFFh

z , with RF ∈
RNh×m interpolation matrix, and Fh

z the entries of Fh corresponding to the
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Chapter 2. Non-a�ne model order reduction via hyper-reduction

degrees of freedom (z ⊂ {1, 2, ..., Nh}) at which the interpolation takes place.
The interpolation matrix is obtained following the procedure of computing
a basis matrix for Fh, and then determining, through an o�ine phase, a
set of indices so that the error is minimized over a set of representative
snapshots of Fh. Some of the most famous methods which belong to this
category are: the Empirical Interpolation Method (EIM) [4], the Discrete
Empirical Interpolation Method (DEIM) [7], the Best Point Interpolation
Method (BPIM) [15] and the Missing Point Estimation Method [3].

2.1.2 Integral approximation approaches

In a �nite element context, F can be regarded, not only as a projection of a
large vector into a reduced-order space (F = ΦTFh), but also as the result
of integrating over the concerned domain Ω ∈ Rd, with d = 2 or 3, the
corresponding reduced-order variable f = ΦT fh (fh : Ω→ RNh), i.e.:

F = ΦT

∫
Ω

fh dΩ =

∫
Ω

f dΩ. (2.1)

Knowing this, the problem can be now viewed as the approximation of an
integral, rather than the approximation of a vector. There are two possible
ways to treat integral approximation: (1) looking for a low-dimensional ap-
proximation of the integrand or (2) approximating the integral itself as a
weighted sum of the integrand evaluated at optimal sampling points.

1. Interpolation of the integrand. These methods follow, basically, the
same procedure described for vector approximation approaches with
the important di�erence that now the interpolant is not built for the
integral but directly for the integrand ; which means that if we make
f(x) ≈

∑
g∈z Rg(x)f(xg), where Rg (g ∈ z) stands for the interpolation

functions, then we can write

F =

∫
Ω

fdΩ ≈
∑
g∈z

Qg︷ ︸︸ ︷(∫
Ω

RgdΩ

)
f(xg) =

∑
g∈z

Qgf(xg). (2.2)

Hence, the integral can be approximated as a sum of the product of ma-
trix weights Qg (which can be computed O�ine once the interpolation
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base has been decided) and the integrand evaluated at the interpolat-
ing points xg ∈ z which have to be chosen among the Gauss points
of the underlying �nite element mesh. An example of this approach is
presented in [9] or [11].

2. Cubature methods. The last approach to be discussed relays to the cu-
bature methods. The integral is approximated as a �nite sum of positive
scalar weights {wg}mg=1 times the integrand evaluated at appropriately
chosen sampling points:

F ≈
m∑
g=1

wgf(x̄g). (2.3)

The �rst scheme of this type was proposed by An. et al. (2009) [26];
this strategy consists on determining, among the integration points of
the FE mesh, a reduced set of points and associated positive weights so
that the integration error is minimized over a set of representative sam-
ples of the integrand. The motivation behind constraining the weights
to be positive scalars, is that, in doing so, the contribution to the Jaco-
bian matrix due to the nonlinear term, inherits the spectral properties
of its full-order counterpart. For example, in a structural problem, if
the FE sti�ness matrix is symmetric and positive de�nite, one would
wish to have these properties also in reduced-order counterpart. Note
that this desirable attribute is not enjoyed by the other two approaches
presented previously. Indeed, interpolatory schemes ruin the symmetry
and, depending on the location of the sampling points, may also de-
stroy the positive de�niteness of �nite element sti�ness matrices [11, 2].
As a consequence, such schemes tend to be less robust than the �nite
element models they intend to approximate.
All the cubature methods search for a sparse representation of the vec-
tor containing the weights associated to the integration points of the
FE mesh. The word sparse means that if the number of integration
points of the FE mesh is O(Nh), then the number of points m for the
reduced quadrature rule has to be such that m � Nh. This sparsity
should be introduced explicitly, for example through a heuristic sequen-
tial point selection process [10] or with an approximate `0 optimization
[6]; in both cases, the main problem is that they require the solution
of non-negative least-square problems which can be computationally
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expensive. Another way to obtain sparse vectors was proposed by Ryu
and Boyd in [25] and it consists in replacing the `0-norm with the use of
the `1-norm; this norm naturally yields quadrature rules that are sparse
and furthermore the o�ine problem can be cast as a linear program
(LP) e�ciently treated by the SIMPLEX algorithm [25, 16, 30] or it
can be cast with the LASSO algorithm [29]. We believe that the spar-
si�cation thorough `1-norm, although demonstrated to work for some
test problems in the papers above mentioned, has an intrinsic problem
with the objective it wants to reach which limits its e�ciency.
In Chapter 3 we clarify the motivation of the precedent statement as
well as the reasons why `1-norm provides naturally sparse vector solu-
tions in many other contexts of application.
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Chapter 3

Hyper-reduction through the

FOCUSS algorithm

This chapter is the core of our work, indeed here we present FOCUSS, which
is an algorithm originally introduced by Irina F. Gorodnitsky and Bhaskar
D. Rao [8] for the sparse signal reconstruction and that we had the intuition
to adapt as a cubature method for the hyper-reduction. We present some
modi�cations made to their version of FOCUSS algorithm in order to ensure
the positiveness of the weights and to overcome some numerical problems.
Through the simple example of the polynomial problem, we show how to use
this algorithm to get sparse quadrature rules and its e�ciency respect the
`1-norm minimization algorithm LASSO. We also compare this method with
the heuristic approach of [10], the nodal vector interpolation method EIM
[4] and the dual SIMPLEX algorithm used in [25, 16, 30]; the result of this
comparison evidences the fact that the FOCUSS algorithm is the only one
able to recover the Gauss-Legendre quadrature rule, which, for a given family
of polynomial functions of degree n, is the more sparse quadrature rule able
to exact integrate the family of functions.
Before proceeding with the introduction of FOCUSS and the explanation of
how it works, the problem of �nding a sparse quadrature rule is introduced
from a generic point of view. Furthermore, we dedicate the second section to
highlight why the `1-norm minimization is usually involved in the contest of
vector sparsi�cation.
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Chapter 3. Hyper-reduction through the FOCUSS algorithm

3.1 From the evaluation of integrals to the so-

lution of undetermined linear system

Let's take a family of scalar functions F with �nite cardinality |F| = m
de�ned over Ω ⊂ RN with Ω open, limited and connected; we demand that
each element fi of F is at least integrable over Ω, therefore we require fi ∈
L∞(Ω) for i = 1, ..,m since we deal with a bounded domain.
Suppose we want evaluate∫

Ω

fi dΩ ∀i = 1, ..,m; (3.1)

as a �rst idea we can use an high accuracy quadrature formula involving n
points with n >> m,∫

Ω

fidΩ ≈
n∑
j=1

fi(xj)wj ∀i = 1, ..,m. (3.2)

For our purposes we can consider the values gotten with (3.2) as the exact
values of (3.1) and we can collect them in a vector b ∈ Rm, while the values
fi(xj) and wj are collected respectively in a matrix A ∈ Rm×n and in a vector
w ∈ Rn, therefore we can rewrite expression (3.2) as the algebraical equation

Aw = b. (3.3)

If we imagine not having the vector of weights w, we can look at (3.3) as a
linear system

Ax = b, (3.4)

where A is the coe�cients matrix of the linear system, x the vector con-
taining the unknowns and b the vector of known terms. The system (3.4)
is underdetermined since m << n and therefore it admits ∞n−q solutions
where q ≤ m is the rank of the matrix A. Obviously w is a solution of (3.4)
but now we can look for solutions of the system which are "sparse", that
is, solutions where the number of non zero entries is less or equal to m. We
also wish that each non zero entry of x is positive, the need of this constrain
has been clari�ed in the previous chapter when we have spoken about the
cubature methods.
In order to get a sparse solution of the system with positive non zero entries,
we propose the use of the algorithm FOCUSS, the general idea under this
algorithm and all the improvements made to adapt it to our necessities are
reported in Section 3.3.
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3.2 Sparse solution through `1-norm minimiza-

tion

The most natural way to require that a vector x ∈ Rn is sparse, which means
that the number of non-zero entries m has to be such that m� n, is to ask
that its `0-norm is minimum. With `0-norm we mean the norm that counts
the number of non-zero elements of a vector; note that we should avoid to
state `0 as a norm since it does not satisfy the property ‖αx‖`0 = |α| · ‖x‖`0 .
Unfortunately, it is quite complicated and there are not e�cient algorithms
to express the minimization of an objective vectorial function through the
`0-norm.
The most popular way to overcome the algorithmic implementation issues of
the `0-norm is to replace it with the `1-norm which has already been men-
tioned in Chapter 2 and allows to cast e�ciently the problem as a linear
programming one. It is now necessary to give the idea of why `1-norm suc-
ceeds also in providing sparse vectors.
If we limit ourselves to only look at the minimization of the `1-norm of a
vector, the reason why this should give us a sparse representation of the vec-
tor is absolutely not clear. What we should do is to look to an undetermined
system as (3.4) and the `1-norm penalty as a whole. To clarify the meaning
of this expression, let's take a concrete example.
Suppose we want to �nd a line that matches a set of points in 2D space. We

Figure 3.1: Shape of the `1 ball.
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know that at least 2 points are needed to �x a line. In the case the training
data has only one point, we have in�nite solutions: every line that passes
through the point is a solution. Suppose the point is at [10, 5]; a line is
de�ned as a function y = ax + b. Then the problem is to �nd a solution to
this equation:

[10 1]×
(
a

b

)
= (5),

therefore all the points of the line b = 5− 10a are possible solutions.
Now if we draw all points that have a `1-norm equals to a constant c, they
form the shape of Figure 3.1. The shape looks like a tilted square, in high
dimension space it would be an octahedron. Notice that on this red shape
not all points are sparse, but only the ones on the tips. Now the way to �nd
a sparse solution is enlarging this red shape from the origin by giving an
ever-growing c to "touch" the line. The key intuition is that the touch point
is most likely at a tip of the shape. Since the tip is a sparse point, the solution
de�ned by the touch point is also a sparse solution. As an example, in the
graph of Figure 3.2, the red shape grows 3 times until it touches the blue line
b = 5− 10a. The touch point [0.5, 0], as it can be seen, is at a tip of the red
shape and is a sparse vector. Therefore we say that, by �nding the solution
point with the smallest `1-norm, (0.5), out of all possible solutions (points
on the blue line), we �nd a sparse solution [0.5, 0] for our problem. At the

Figure 3.2: Touched point.
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Figure 3.3: No sparse recovery case.

touch point, the constant c is the smallest `1-norm you could �nd within all
possible solutions.
The intuition of using `1-norm is that the shape formed by all points whose
`1-norm equals to a constant c has many tips (spikes) that happen to be
sparse (they lay on one of the axes of the coordinate system). Now if we
grow this shape to touch the solutions we �nd for our problem (usually a
surface or a cross-section in high dimension), the probability that the touch
point of the 2 shapes is at one of the �tips� or �spikes� of the `1-norm shape is
very high. This is why `1-norm minimization of an objective function, under
linear constrain such us (3.4), works in recovering sparse vectors.
Unfortunately, `1-norm does not always touch the solution at a tip. Indeed,
suppose we still want to �nd a line out of 2D points, but this time, the only
training data is a point [1, 1000]. In this case, the solution line b = 1000− a
is in parallel to one of the edges of the `1-norm shape as shown by Figure 3.3.
Eventually, they touch on an edge, not by a tip. Not only we cannot have a
unique solution this time, but most of the regularized solutions are still not
sparse.
But again, the probability of touching a tip is very high. And this is even more
correct for high dimension, real-world problems. Indeed, when the coordinate
system has more axes, the `1-norm shape has more tips.
Now the question becomes: is the `1-norm the best kind of norm to �nd a
sparse solution? We have already said that the best option would be to use
directly the `0-norm but then we should face other problems. By the way,
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Figure 3.4: Shape of the 3D ball for di�erent norms.

there is still a class of norms which can be considered; it turns out that
the `p-norm with 0 < p < 1 gives the best result. This can be explained
by looking at the shapes of di�erent norms in Figure 3.4. When p < 1, the
shape is more �scary�, with more sharp, outbreaking spikes. Whereas when
p = 2, the shape becomes a smooth, non-threatening ball. Unfortunately,
the direct use of the `p-norm to minimize the objective function has the
same implementation complications of `0. Nevertheless, something can still
be done with an �indirect� `p-norm minimization approach and indeed, this
is the content of the next section.

3.3 FOCUSS

When we are in front of a system like (3.4) we know that the solution is not
unique, but if we ask for the minimum norm solution xmn, that is the one
minimizing the `2-norm, the following proposition provides a way to express
it uniquely.

Proposition 3.1 One particular solution of the undetermined system (3.4),
assuming A full rank so that AAT is invertible, is

xmn = A+b, (3.5)

where A+ = AT (AAT )−1 denotes the Moore-Penrose inverse1 [5]. This so-
lution is the one that minimizes ‖x‖`2, i.e. xmn is the solution of the opti-

1Note that the Moore-Penrose inverse is more generally de�ned as AH(AAH)−1. In

this context, since there are no complex quantities involved, it is enough to consider the

transport matrix.
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mization problem:

min
x∈Rn
‖x‖`2

subject to Ax = b. (3.6)

Proof. Substituting (3.5) in (3.4) it is clear that xmn is a solution of the
system. Now suppose Ax = b, therefore A(x− xmn) = 0 and

(x− xmn)Txmn = (x− xmn)TAT (AAT )−1b

= (A(x− xmn))T (AAT )−1b

= 0

i.e., (x− xmn) ⊥ xmn, so

‖x‖2
`2 = ‖x + xlm − xlm‖2

`2 = ‖xlm‖2
`2 + ‖x− xmn‖2

`2 ≥ ‖xmn‖
2
`2 ,

which means that xmn has the smallest `2-norm among all the solutions of
(3.4).

Unfortunately, the minimum norm solution does not provide a sparse solu-
tion. Rather, it has the tendency to spread the energy among a large number
of entries of x instead of putting all the energy into just a few entries; nev-
ertheless, it is the starting point to understand the idea under FOCUSS.
Suppose that instead the `2-norm we search for a solution which minimize
the `p-norm with 0 < p < 1, for this kind of solution the entries xj which
are very small (xj � 1) are strongly penalized since the elevation to a power
less than 1 gives to them a greater contribution to the norm that has to be
minimized compared the elevation to power 2 as in the `2-norm, see Figure
3.5. Unfortunately, there is not a simple expression as (3.5) to �nd the mini-
mum `p-norm solution since `p is not an Hilbert spaces if p 6= 2; nevertheless,
something can be done replacing the minimization of ||x||`2 with the mini-
mization of the weighted norm ||W−1x||`2 , where W is a square invertible
matrix. The solution minimizing this norm is given by

x = W((AW)+)b. (3.7)

In FOCUSS W is chosen properly in order to obtain something approximat-
ing, implicitly, the minimization of an `p-norm. It is an iterative algorithm
which starts from a given initial solution x0 and at each step k the matrix
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Figure 3.5: Shapes of the 1D polynomial functions xp and of the unit balls
when making use of the ‖·‖`p-norms.

W is de�ned, using the Matlab syntax for functions, as W = diag(xpk−1);
then the solution xk is computed as in (3.7). After some iterations of the
algorithm we have xk−1 ≈ xk and consequentially the objective minimized
at each step becomes

||W+xk||2`2 =
n∑

i=1,(xi)k−1 6=0

(
(xi)k

(xi)
p
k−1

)2

≈
n∑
i=1

(xi)
2−2p
k

that corresponds to minimizing the `2−2p-norm. Since we said that small
entries will go to zero when they are elevated by a power between 0 and
1, we need to require that 0 < 2 − 2p < 1, which brings to the constrain
0.5 < p < 1. The convergence of the algorithms to a sparse solution is proven
in [8], we only underline that in general there are many sparse solutions for
system (3.4) and the one obtained through FOCUSS strongly depends from
the choice of the starting solution x0. Given the space Rn, one has to think
that all the sparse solutions of (3.4) are points of this space which are basins
of attraction of the algorithm, therefore the algorithm will automatically
converge to the sparse solution whose basin of attraction contains x0.
The �rst version of FOCUSS, the one which is also presented in [8], is reported
in Algorithm 1.

3.3.1 How to adapt FOCUSS to be an e�cient cubature
method

FOCUSS, as it is provided in Algorithm 1, is not optimal for our propose
since:
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Algorithm 1 FOCUSS

Input: A, b, x0, p, maximum iteration I, tolerance for convergence tol
Output: x

1: for k = 1 to I do
2: W = diag(xpk−1)
3: AWWATy = b⇒ y (Solve)
4: xk = WWATy
5: e = ‖xk − xk−1‖ / ‖xk‖
6: if e < tol then
7: break
8: end if
9: end for

• theoretically, most of the entries of xk asymptotically converge to zero
but never reach it, cause we work in �nite precision arithmetic;

• nothing ensures that, even if taking an initial solution with positive
entries, the entries remain positive for the �nal solution;

• A can be ill-conditioned, therefore the algorithm can be unstable due
to the solution of the associated linear system of (AAT )−1.

The �rst problem can be easily overcome by approximating to zero the entries
of the solution that are smaller than a prescribed tolerance. For the second
problem, since FOCUSS is based on the repeated application of linear contin-
uous operators, we can introduce the dependence from a pseudo-time τ , and
we can formulate FOCUSS as an algorithm which discretizes the ordinary
di�erential (ODE) equation

dx

dτ
= F (x, τ) (3.8)

whose discrete version is

∆x

∆τ
= WWAT (AWWAT )−1b− x. (3.9)

Note that taking ∆τ = 1 we recover the standard version of FOCUSS. In
order to keep all the entries positive, we can use a method to solve ODE
which is able to adapt the discrete step ∆τ to not obtain negative entries in
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the solution, e.g. ode23 or ode45 of Matlab.
Another approach to enforce positiveness of the entries of the solution is
based on the under relaxation. Indeed, given the solution of step k, if it has
negative entries while the solution at step k − 1 has not, we can impose

xk = αxk + (1− α)xk−1; (3.10)

where α is such that the largest negative entry j of xk becomes zero, i.e.

α = − (xj)k−1

(xj)k − (xj)k−1

. (3.11)

This is repeated until all the entries of xk are non-negative.
Note that, since (xj)k−1 is negative, we speak of under-relaxation cause it
holds that 0 ≤ α ≤ 1; moreover, the new xk de�ned by (3.10) is a linear
combination of two vector solutions of (3.4), and therefore it is still a solution
of the same system.
We decided to use the under-relaxation on FOCUSS in the following way:
�rst we run the version without constraints on the non-negativeness of the
weights, then, if the �nal solution x has some negative entries, we run again
the algorithm but with a version where the under-relaxation is implemented.
We do not run directly the "under-relaxation FOCUSS" for two reasons: (i)
if at step k an entry is negative, it does not mean that the �nal values of the
entry will be negative, (ii) to force an entry to be zero from one side ensures
the non-negativeness of the weights at each step of the algorithm, but from
the other side, it makes us lose the bias information of the matrix A when
we initialize with a uniform value in all the entries of the initial solution. We
explain the meaning of this last observation at the end of this subsection.
For the third problem two solutions are already provided in [8], in particular
the one regarding the Tikhonov Regularization is always implemented in our
versions of FOCUSS. It consists in replacing problem (3.6) with the following
one

min
x∈Rn

[
‖Ax− b‖2

`2 + λ
∥∥W−1x

∥∥2

`2

]
, (3.12)

where λ is the regularization parameter that has to be chosen before solving
(3.12). Basically, setting in a proper way λ, we decide if we prefer to integrate
well the family of functions chosen or to have a quadrature rule with a greater
number of zero entries. Indeed, with a high value of λ, it will be better for
the objective of our minimization to have a solution with more zero entries.
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Problem (3.12) is solved in the same way done by the �rst version of FOCUSS
and the system to determine iteratively is

W−1x = AT
W (AWAT

W + λI)−1b, (3.13)

where AW = AW. Now the good conditioning of the system that has to be
solved is enforced by the addition of the term λI.
The Tikhonov Regularization will be used for a comparison with the LASSO
algorithm of Matlab that aims to minimize an object as (3.12), with the only
di�erence in the term multiplying λ that in LASSO is replaced with the `1-
norm of x.
Here we propose two other approaches which proved to work well in our test
problems. This approaches are related with the methods described in Section
1.5 for the construction of a reduced base. Matrix A is ill-conditioned when
some of its rows are almost collinear, this means that we don't need of all the
rows of the matrix and therefore the strategies presented in Section 1.5 can
be useful to �nd a base which generates the space containing all the rows.
Once the base has been found we can build a new matrix which will be well
conditioned.
The �rst approach is related with the POD method since it involves the
use of the orthogonal matrix U, coming from a truncated singular values
decomposition. The di�erence with the POD is that now we do not directly
take U as the matrix containing our base but we use it as a preconditioner
for system (3.4); this will also provide a signi�cant reduction in the number
of rows of A.
The other approach is based on a reduction of the total number of rows of A
selecting the ones whose linear combinations are able to well approximate the
other rows; this selection is performed through a greedy algorithm. At each
step we put the selected rows in the new matrix Â and then we orthogonalize
it to get Φ, whose condition number will be equal 1.
Last modi�cation made on Algorithm 1 comes from this re�ection: given two
columns of matrix A, c1 and c2, such that c1 ≈ βc2 with β >> 1, they
are clearly linear dependent but c2 has more probability to be chosen (i.e.
to be related with a not nil entry) since the associated entries of the vector
of weights has to be greater than the one associated to c1. If one wishes
not giving any priority preference to one column over the others which are
linearly dependent from it, some operations are necessary. There are two
ways to achieve this result: (i) we scale the columns of A in order to keep as
uniform as possible the range of values of the entries of each column or (ii)
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we choose an initial solution x0 such that value of each entry xi is inversely
proportional to the norm of the corresponding A columns. Clearly, the choice
of one of the two approaches excludes the use of the other since if we rescale
the values of the columns we just need to take an x0 with a uniform value
of the entries and if we choose the initial solution according to the values
of the columns, rescaling these columns will bring back to the problem we
highlighted above.
For the �rst strategy we follow the approach used in [14] while for the second
one we refer to [8]. Note that the scaling is not a mandatory process, indeed
we can interpret the fact that some columns have larger entries than other
ones as a kind of "a priori information" carried by the matrix that we can
catch choosing an initial solution which has the same value in all the entries.
This topic concerning the scaling is more important than what it seems.
Indeed, the result of a scaling operation changes the basin of attraction of
the sparse solution of the system and therefore an initialization from the
same x0 can lead to two di�erent �nal solutions if once we apply a scaling
and the other time no. We only give a general idea about the in�uence of
the scaling, enough to understand some choices made in our applications; if
one wants to go deeply on this topic it is strongly recommended to read the
section about the basin of attraction in [8].
Taking into account some of the adjustments we have described, Algorithm
2 provides the continuum version of FOCUSS. Note that the event function
myEventsFcn is implemented exactly as odefun with the addition of the
conditions to stop the computation of ode23 when a maximum values of t
is reached or when the changes in the solution are lower than a prescribed
tolerance.

3.3.2 On the O�ine number of computational opera-
tions of FOCUSS

The principal computational e�ort of each iteration of FOCUSS is given by
the matrix multiplication AWAT

W , where we remember AW ∈ Rm×n. Conse-
quentially the operation has a cost of O(m2n) arithmetic computation. We
should multiply this cost for the total number of iterations kc necessary for
the convergence of the algorithm, but since in each iteration we delete the
rows of the matrix AW associated with the components of x already con-
verged to zero, the �nal total number of operations it is expected to be less
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Algorithm 2 CONTINUOUS FOCUSS

Input: A, b, x0, p, λ, I, tol
Output: x

1: n← size(A, 2)
2: S(i) = 1/(norm(A(:, i))

√
n), i = 1, ..., n

3: S ← diag(S)
4: A← AS
5: tspan← [0 inf]
6: options=odeset(`RelTol', 10−2, `AbsTol', tol, `NonNegative', `vector',

`Events', @(t, x) myEventsFcn(t, x, A, b, λ, p, I, tol))
7: [t,X] =ode23(@(t, x) odefun(t,x,A,b,λ,p),tspan,x0,options);
8: x← SX(end, :)T

9: for i = 1 to n do
10: if |x(i)| <tol·max|x| then
11: x(i)← 0
12: end if
13: end for

than O(kcm
2n).

We point that the number of operations involved in the SIMPLEX algorithm
to solve a linear programming problem is of the same order of the one of
FOCUSS. Indeed, it requires in each iteration i to compute B−1Ni with
B−1 ∈ Rm×m and Ni ∈ Rm×n.

3.4 Polynomial test case

For this test problem we take as F a set of polynomial functions with the same
degree, de�ned over the domain [−1, 1]. Note that choosing this interval is
not restrictive since once we know a quadrature rule over [−1, 1] we can use
it for every generic interval [a, b], indeed∫ b

a

f(x) dx =
b− a

2

∫ 1

−1

f

(
b− a

2
x+

a+ b

2

)
dx ≈

≈ b− a
2

N∑
i=1

wif

(
b− a

2
xi +

a+ b

2

)
; (3.14)
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Algorithm 3 ODEFUN

Input: t x A, b, p, λ
Output: f

1: xk−1 ← x
2: [m, n]← size(A)
3: xk ← zeros(n, 1)
4: L← λspeye(m)
5: wi ← (x2p

i )k−1, i = 1, ..., n
6: ind← �nd(w2)
7: w ← w(ind)
8: A← A(:, ind)
9: (Adiag(w)AT + L)y = b⇒ y (Solve)
10: xk(ind) = wATy
11: f = xk − xk−1

and therefore the relation of nodes and weights with the ones over the interval
[−1, 1] is

w̄i =
b− a

2
wi and x̄i =

b− a
2

xi +
a+ b

2
∀i = 1, ..., N. (3.15)

The exact value of (3.1) is calculable by the use of a Gauss-Legendre (GL)
quadrature rule, indeed if we choose a rule of this type involving t points we
are able to integrate exactly every polynomial function with degree d less
or equal 2t − 1. Taking n points where we evaluate each polynomial of F,
which total number we remember to be m with m� n, we obtain the system
(3.4) where the vector of the exact integrals b is computed using the Gauss-
Legendre quadrature rule. In particular, t can be taken such that t < m and
consequentially one sparse solution of (3.4), assuming to evaluate the poly-
nomial also in the Gauss-Legendre points, is given by the Gauss-Legendre
quadrature rule.

3.4.1 FOCUSS applied on the polynomial test case

In this subsection we show the results obtained with some of the di�erent ver-
sions of our algorithm. For now, we consider t = 10 Gauss-Legendre points,
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Figure 3.6: Evolution of the solution weights using FOCUSS without
columns' scaling. One can see how the algorithm perfectly catches the Gauss-
Legendre quadrature rule.

101 polynomials with random coe�cients of degree d = 19 and n = 2000 eq-
uispaced points, plus the Gauss-Legendre ones, where the polynomials have
been evaluated. The matrix obtained in this way is of dimension 101× 2000,
in order to reduce the number of rows so to enforce sparsity in the solution
(the number of non zero entries found has to be less or equal to the num-
ber of rows of the matrix), a snapshot selection through greedy approach is
adopted and it allows to reduce the number of rows to only 20, that is also
the dimension of the vectorial space of polynomial of degree 19. The value of
p taken is 0.7 while λ = 0 since we run the computation with Φ. No scaling is
adopted over the columns of Φ and the initial solution x0 is chosen such that
it has the same value in all the entries and its norm is equal to the measure
of the domain, i.e. 2.
Figure 3.6 shows the most important result we obtained with FOCUSS. With
the set up previously described, FOCUSS is not only able to �nd a sparse
solution but it also, among all the sparse quadrature rule, catches the Gauss-
Legendre one which, using only 10 nodes, is the most sparse solution possible
beyond that being able to exact integrate all the polynomial functions with
degree less or equal 19. To get the Gauss-Legendre quadrature rule is funda-
mental the decision of not applying a scaling operation so that we can take
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Figure 3.7: Evolution of the solution weights using our cubature algorithm
FOCUSS with the application of the scaling operations on the columns.

advantage of the information carried by the matrix Φ.
Figure 3.7 shows the result when a scaling operation is applied. It can be seen
that we always get a sparse quadrature rule, but not any more the Gauss-
Legendre one; note that this does not mean that scaling the columns is not
possible to get the Gauss-Legendre rule, rather according to [8] the proba-
bility to get the more sparse solution (as is the G.L. rule for our problem)
taking a random initial solution is maximized in this way, but the uniform
initialization does not converge anymore to the Gauss-Legendre quadrature
rule.
From the two previous �gures it is also possible to observe the evolution of
the weights. At the begin the solution is �attened in all the domain to then
shows peaks around those that are the points of the quadrature rule to which
it converges.
We showed that setting the problem as we described, the algorithm we pro-
pose is able to recover the Gauss-Legendre quadrature rule. This represents a
step forward compared to some of the other known algorithms, indeed using
EIM [4], HEURISTIC [10] and dual-SIMPLEX [16] methods, with the same
set up, we do not recover the G.L. rule as reported by Figure 3.8. The other
three techniques are able to �nd a sparse quadrature rule but not the Gauss-
Legendre one, as instead we are able to do with FOCUSS. Moreover, we have
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Figure 3.8: Sparse quadrature rule obtained with: FOCUSS, HEURISTIC,
SIMPLEX and EIM algorithms: among all, only FOCUSS is able to recover
the G.L. rule and it is also shown the fact that EIM returns negative weights.

the proof of what we have already mentioned in Chapter 2, the interpolation
then integration methods, such as EIM, cannot ensure the positivity of the
weights.

3.4.2 Comparison between the implicit `p-norm min-
imization of FOCUSS and the explicit `1-norm
minimization of LASSO

In this subsection we point the attention on the comparison between the
implicit `p-norm minimization of FOCUSS and the explicit `1-norm mini-
mization of LASSO algorithm.
Before showing the results of our conclusion we believe we need to clarify
a statement used in the previous chapter, i.e.: `1-norm based minimization
algorithms have an intrinsic problem in the context of sparse quadrature rule
recovery.
In Section 3.2 of this chapter we have already highlighted, for a general con-
text, that a minimization through `p-norm would be most desirable than the
`1. Moreover, in the framework of sparse quadrature rule recovery, the power
of the `1 approach is further limited by this constrain: we require that the
rule is at least able to exactly integrate constant functions. This means that,
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if the function is equal one in all the domain and the weight are constrained
to be positive

|Ω| =
∫

Ω

1dΩ =
n∑
j=1

wj = ||w||`1 , (3.16)

it follows that the `1-norm of the vector of the weights has to be equal to the
measure of the domain of integration. Equation (3.16), if not already included
by (3.4), it is usually imposed as an additional constraint when searching for
a sparse quadrature rule, consequentially minimizing the `1-norm loses its
meaning if we already know which has to be the value of the norm. The
strength of FOCUSS is that it replaces the use of `1-norm with an implicit
`p-norm for which there are no constrains to take into account (indeed, none
of the equations of (3.4) can be interpreted as a constrain on the `p-norm).
Here, using this simple test problem, we show that the performance of FO-
CUSS with Tikhonov Regularization (3.12) totally overcomes the ones of
LASSO in terms of residual and number of non zero elements of the solution.
The objective function minimized by LASSO is

min
x∈Rn

[
1

2n
‖Ax− b‖2

`2 + λ ‖x‖`1
]

; (3.17)

the value of λ we selected for this test goes from 10−4 to 100, the quadrature
rules found with both the methods for di�erent λ are tested computing the
relative residual norm

‖Ax− b‖`2
‖b‖`2

.

Results are shown in Figure (3.9).
From this example it is clear that FOCUSS works much better than LASSO
since it provides a better residual and more sparse solutions. Indeed, for the
lower values of λ, LASSO is not even able to recover sparsity. We also report
the fact that, even if we set a greater number of maximum iterations and a
lower relative tollerance for convergence than the FOCUSS' ones, the LASSO
algorithm is not able to converge and it always reaches the maximum number
of iterations.
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Figure 3.9: Comparison between the FOCUSS' L-curve (left) and the
LASSO's L-curve (right).
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FEM applications

To test the e�ciency of FOCUSS as an hyper-reduction technique, we ap-
plied the �nite elements method (FEM), through Matlab, on two di�erent
physical problems combined with the reduced basis approach. The �rst is a
simple Poisson equation de�ned over a 2D square, the main variable is the
temperature and the non-linear parameter is the thermal conductivity κ. The
second, more complex problem, is related to the poro-elasticity and it is also
de�ned over a 2D domain. Here the parameters we consider are four, the one
de�ned with a non-linearity is the permeability κ1.
The structure we follow in the chapter is: (i) �rst we explain our strategy
for the �nite elements discretization, (ii) we clarify how to build the reduced
base for hyper-reduction and then (iii) we give the complete description of
the two chosen problems and we report the results we obtained using our
quadrature rule. We also test some of the other quadrature methods previ-
ously mentioned in order to make a comparison with FOCUSS.

4.1 Assembly of the discrete operator through

Finite Elements Method

For the applications chosen, the physical 2D domains have been discretized
with a mesh of triangular elements using the open source software Gmsh.
From the �le generated by Gmsh we have the number of mesh nodes Nn and

1In the literature we refereed to both thermal conductivity and permeability are indi-

cated with the Greek letter κ, we remark that there is no correlation between these two

parameters.
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the number of triangular elements Nele.
The FEM discretization has been performed in Matlab through the pre writ-
ten function fem_assemble_test1 which makes use of the piecewise linear
test functions. It performs the integrations over each element with a quadra-
ture rule involving 4 nodes, which generates automatically a global rule of
Nw = 4Nele nodes, and takes as input arguments the topology of the mesh,
understood as triangular elements associated with the respective nodes, and
the coordinates of the nodes. The outputs are four sparse matrices Dx,Dy, In
and Q de�ned as follow:

Dx ∈ RNw×Nn [Dx]ij =
∂φj
∂x

(xi),

Dy ∈ RNw×Nn [Dy]ij =
∂φj
∂y

(xi),

In ∈ RNw×Nn [In]ij = φj(xi),

Q ∈ RNw×Nw [Q]ik = wiδik; (4.1)

where φj for j = 1, ..., Nn are the piecewise linear test functions and wi for
i = 1, ..., Nw are the weights of the global quadrature rule.
It remains to clarify why fem_assemble_test1 returns these four matrices
instead of directly assembling the discrete operator of our problem. To un-
derstand this we make use of an example.
Let us consider the sti�ness matrix K in the simple case in which it relays
to the discretization of the bilinear form a(u, v;µ) when the parameter µ is
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constant respect the domain. This means we can write, ∀v ∈ V :

a(u, v;µ) =

∫
Ω

µ∇u · ∇v dΩ = µ

Nele∑
k=1

∫
Tref

∇u · ∇vJk dS =

≈ µ

Nele∑
k=1

∫
Tref

∇

(
Nn∑
j=1

ujφj

)
· ∇ (φi) Jk dS =

= µ

Nn∑
j=1

uj

Nele∑
k=1

∫
Tref

∇φj · ∇φiJk dS ≈

≈ µ
Nn∑
j=1

uj

Nele∑
k=1

4∑
l=1

∇φj(xl) · ∇φi(xl)Jk(xl)wl =

≈ µ
Nn∑
j=1

Kijuj ∀i = 1, ..., N. (4.2)

This in matrix form is equivalent to the matrix-vector product µKu. Now,
looking at the expression of Kij and de�ning wk·l = Jk(xl)wl we have

Kij =

Nele∑
k=1

4∑
l=1

∇φj(xl) · ∇φi(xl)wk·l =

=

Nele∑
k=1

4∑
l=1

(
∂φj
∂x

(xl)
∂φi
∂x

(xl) +
∂φj
∂y

(xl)
∂φi
∂y

(xl)

)
wk·l =

=
Nw∑
k·l=1

(
∂φj
∂x

(xk·l)
∂φi
∂x

(xk·l) +
∂φj
∂y

(xk·l)
∂φi
∂y

(xk·l)

)
wk·l =

=
Nw∑
k·l=1

([Dx]k·l,jQk·l,k·l[Dx]k·l,i + [Dy]k·l,jQk·l,k·l[Dy]k·l,i) ; (4.3)

and therefore the sti�ness matrix can be written as

K = DT
xQDx + DT

y QDy. (4.4)

The same procedure can be repeated for any discrete operator coming from
a bilinear form of second order di�erential equations. Another example can
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be given considering the mass matrix M, for which

Mij =
Nw∑
k·l=1

(φj(xk·l)φi(xk·l)) wk·l.

It follows that its expression using (4.1) becomes

M = InTQIn. (4.5)

Now the implementation advantages of having only these four matrices should
be clear. Instead of writing a complicated function assembling every possible
operator for partial di�erential equations of the second order, we have a
function which only build 4 sparse matrices and then allows to builds every
operator we could need for problems of the second order.

4.1.1 Galerkin projection for the �rst reduction stage

When the a�ne decomposition (1.26) is possible, the �rst reduction stage, i.e.
the Galerkin projection of the problem on a subspace of low dimension, can
be algebraically interpreted as in (1.34). Regarding this expression we only
have to add the decomposition of the discrete operators we de�ned above.
For example, the reduced sti�ness matrix KN can be easily expressed in this
way

KN = VTDT
xQDxV + VTDT

y QDyV; (4.6)

where V is the transformation matrix de�ned in (1.33).
We observe that the reduced sti�ness matrix is not sparse anymore but it
conserves the spectral properties of the original operator. Indeed, from (4.6)
it is immediate to verify the symmetry and, since the weights in the diagonal
matrix Q are all positive, it is also ensured that KN is positive de�nite.

4.2 The second reduction stage in FEM trough

hyper-reduction

What we showed in the previous section works if our problem admits the
a�ne decompositions (1.6) and (1.7), in this section we explain how the
second reduction stage has to be performed in order to overcome the non-
linearity of the parameters.
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Suppose we make use of M quadrature points for each element, so that we
have a total of Nw = Nele×M quadrature points for our problem. Because of
the non-linear dependence of our problem from the parameters, our FEM ma-
trices will directly depend from them, implying that we cannot pre-compute
O�ine the reduced operators since we have to rebuild the matrices every
time we change the values of the parameters.
To solve this problem the idea is to speed up the computation of the reduced
operators by strongly reducing the number of quadrature nodes involved on
their computation. To perform this, we collect snapshots of the reduced ma-
trices as we collect snapshots of the solution for the �rst reduction stage.
Indeed, given s set up of parameters µ, we evaluate the reduced operators
s times and for each of them we collect their coe�cients in a vector b. This
vector, in the case of relying to a symmetric matrix (as usually is the sti�-
ness matrix), has ((N + 1)×N)/2 entries for each choice of µ. Clearly, each
coe�cient of the reduced matrix comes from approximation of integrals in
all the domain followed by the Galerkin projection on the reduced space. For
example

(KN)i,j = V(:, i)TDT
xQDxV(:, j) + V(:, i)TDT

y QDyV(:, j), (4.7)

where for the sake of simplicity we used the Matlab notation. Note that (4.7)
does not take care of the non-linearity, in such case we could have something
like this

(KN)i,j = V(:, i)TDT
xCQDxV(:, j) + V(:, i)TDT

y CQDyV(:, j), (4.8)

where C is a diagonal matrix and each of its diagonal entries corresponds to
the evaluation of the parameter (for example a conductivity coe�cient which
depends from the temperature) in one of the quadrature points.
In (4.8) if we �x a quadrature node, we can collect the value found in one
of the rows entries of a matrix A. Repeating this for every coe�cient of
the reduced operator and every snapshots, we obtain a matrix of dimension
[(N + 1) ·N · S/2]×Nw which forms a system like (3.4) where the unknows
are the weights of a global quadrature formula. An algorithm able to �nd
sparse solutions can now be applied on the system so as to obtain a sparse
quadrature rule.
Some further clari�cations are necessary to well pose the problem. First of
all, as in the toy problem of Chapter 3, we do not work normally with all
the matrix A but we adopt a selection of the most "signi�cant" rows of the
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matrix in the ways already described in Chapter 1. Second, the process of
�nding the sparse quadrature rule has to be performed O�ine, in this way
we can use in the Online phase the new simpli�ed rule. Third, a di�erent
quadrature is required for each operator in which a parameter with a non-
linear dependence is involved.

4.3 First FEM problem application: the ther-

mal di�usion

The problem we consider is the following{
−∇ · (κ∇t) = 10 on Ω,

t = 0 on ∂Ω,
(4.9)

where t is the temperature, κ the thermal conductivity and Ω a square on
the unit side.
As it can be observed the problem is very simple, the only deviation from
the standard Poisson problem is in the conductivity κ, de�ned as follows:

κ(t) =

{
1 + µ1t, if x ∈ Ω1

µ2 + µ2t
2, if x ∈ Ω \ Ω1

(4.10)

where Ω1 is a circle of radius 0.25 centred in Ω and µ1, µ2 are the two pa-
rameters on which the conductivity depends. In Figure 4.1 we show the mesh
created for the domain of the problem, consisting in Nele = 8288 elements for
a total of Nw = 33152 quadrature points. For �xed values of µ1 and µ2 the
non-linearity of the equation is solved thanks to a loop, which means that
we start from an uniform value of the temperature t0 in all the domain (0
for example) and in this way we compute the conductivity κ(t0) and after
the new temperature t1. We repeat this until at step k the norm of the dif-
ference between the temperatures tk and tk−1 is smaller than a prescribed
tollerance. This technique is commonly used when dealing with non linearity
in parametrized partial di�erential equations discretization.
The tests of FOCUSS and the comparison with the other hyper-reduction
methods for this application has been mostly performed with three scripts.
The �rst is used to build the database containing the snapshots of the so-
lution t and of the reduced sti�ness matrix KN . The second computes the
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Figure 4.1: Mesh considered for the domain Ω of the thermal conduction
problem.

sparse quadrature formulas, and �nally in the third script we compare the
high-�delity solution with the reduced and hyper-reduced ones in terms of
H1

0-norm relative error and computational time.
Note that, making use of what exposed in Section 4.1, the approximation of
the H1

0-norm of a function u is easily evaluated as

‖u‖2
H1

0
≈ uTDT

xQDxu + uTDT
y QDyu.

4.3.1 Results

We built the database with a uniform train sampling Ξtrain of the parametric
domain performed with 196 elements, then we applied the POD method for
the construction of both the bases of �rst and second reduction stage and
�nally the comparison among high-�delity, reduced and hyper-reduced solu-
tions have been realized taking an uniform test sample Ξtest of 36 elements.
The result shown now testi�es the e�ciency of FOCUSS on this problem.
From Figure 4.2 we can see that the extra error introduced using the reduced
quadrature rule is of several order smaller than the error committed with the
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Figure 4.2: H1
0-norm of the errors between the high-�delity solution (HFS)

and the hyper-reduced solution (HRS, with nw = 454 quadrature points), the
high-�delity solution and the simple reduced basis solution (RBS, with N = 7
modes) and the hyper-reduced solution and the reduced basis solution (left).
Computational time demanded for the high-�delity, simple reduced basis and
hyper-reduced solutions (right). Results collected using FOCUSS.

reduced basis approximation, furthermore the time demanded by the hyper-
reduced solution is also strongly less than the one for the high-�delity and
simple reduced-basis solutions (which are more or less of the same order of
seconds).
To obtain these pictures we used 7 modes and a 454 quadrature rules points,
for both the two reduction stages we worked with the proper orthogonalized
decomposition (POD). Both values are quite high for a simple problem like
this one, indeed the errors we get are extremely low, especially the quadra-
ture error which is several orders minor than the one that can be considered
acceptable for most of the applications. Nevertheless, we decided to take such
values in order to show that our algorithm is able to �nd a rule which pushes
the error very low keeping the boost in computational time.
Table 4.1 proofs that low errors appear also for quadrature rule with less
nodes than 454, provided that the number of reduced basis functions is also
taken lower than 7. We observe that reasonable results for applications are
provided with the only use of N = 3 modes and nw = 15 quadrature points.
Finally we can comment Figure 4.3 which is about the comparison of the per-
formance of FOCUSS against the cubature methods introduced in Chapter 2
and then used for the comparison in the polynomial test problem. A greedy
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N nw max
µ∈Ξtest

‖tN(µ)− twN(µ)‖H1
0

‖th(µ)‖H1
0

max
µ∈Ξtest

‖th(µ)− twN(µ)‖H1
0

‖th(µ)‖H1
0

1 2 7.62 · 10−2 3.10 · 10−1

2 8 3.00 · 10−3 1.87 · 10−1

3 15 6.40 · 10−3 1.87 · 10−2

4 30 8.33 · 10−4 6.50 · 10−3

5 60 2.13 · 10−4 2.05 · 10−3

6 80 1.88 · 10−4 2.00 · 10−3

7 100 9.76 · 10−5 2.16 · 10−4

Table 4.1: Thermal conduction example: the number of reduced-basis
functions N , the number of reduced quadrature points nw, the max-
imum di�erence in the reduced-basis approximation, over the test set
Ξtest, using the exact quadrature rule and the reduced quadrature,

maxµ∈Ξtest

‖tN (µ)−twN (µ)‖
H1
0

‖th(µ)‖
H1
0

, and the error in the hyper-reduction approxima-

tion, maxµ∈Ξtest

‖th(µ)−twN (µ)‖
H1
0

‖th(µ)‖
H1
0

.

selection has been applied before calling the hyper-reduction algorithms.
The maximum quadrature error over the test sample chosen has the same
trend with almost the same values for all the methods, the only exception
is for the EIM which does not show a signi�cant improvement in the error
when passing from a rule of 250 nodes to one with 400. In Table 4.2 we report
those values for the di�erent quadrature rules.
The main di�erences can be observed in the plot of the computational time
demanded for the O�ine stage in which the reduced quadrature is computed.
The EIM method is the fastest until the number of quadrature points is kept
under 150 and then its time graph grows signi�cantly, more than the one
of the other methods. We also have to remember that the interpolation-
integration methods, like EIM, have the strong drawback of not insuring the
positiveness of the weights, indeed in these simulations we found several neg-
ative weights in the sparse rules recovered by EIM. FOCUSS and HEURIS-
TIC show the same trend and very close values until nw = 250 quadrature
points but, then, the chart of HEURISTIC algorithm stands out. This hap-
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Figure 4.3: Comparison of hyper-reduction methods, over di�erent nw, con-
cerning the maximum di�erence in the reduced-basis approximation, over
the test set Ξtest, using the exact quadrature rule and the reduced quadra-

ture, maxµ∈Ξtest

‖tN (µ)−twN (µ)‖
H1
0

‖th(µ)‖
H1
0

(left). Computational time necessary in the

O�ine stage for the recover of the sparse quadrature rule with nw nodes
(right). Results obtained with N = 7 reduced basis functions.

pens because HEURISTIC makes use of the constrained non-negative least
square method to ensure the positiveness of the weights which require a high
computational e�ort. The more nodes are necessary, the more frequently
the algorithm has to call the constrained non-negative least square method.
SIMPLEX chart shows a similar trend compared FOCUSS but the time it
requires is signi�cantly higher for every nw considered.
From the two �gures we can extrapolate this �nal consideration: there is
no method which provides better performances than the others in terms of
quadrature error but, in terms of computational time demanded, FOCUSS
appears to be the optimal one. Indeed, it has an uniform increase (in the
logarithmic scale) with respect to the number of quadrature points while
HEURISTIC and EIM are hard time demanding with the growth of nw and
SIMPLEX, even if it shows the same trend of FOCUSS, always requires more
time than FOCUSS in the computation of the sparse rule.
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nw FOCUSS HEURISTIC EIM SIMPLEX

10 1.18 · 10 2 2.27 · 10 2 5.68 · 10 1 1.84 · 10−1

50 1.59 · 10−3 9.00 · 10−4 4.13 · 10−4 1.00 · 10−3

100 6.33 · 10−5 1.71 · 10−5 6.62 · 10−5 1.70 · 10−5

150 2.73 · 10−6 2.37 · 10−6 5.76 · 10−6 9.13 · 10−7

250 3.56 · 10−8 2.51 · 10−8 5.87 · 10−8 3.35 · 10−8

400 6.42 · 10−9 2.01 · 10−9 3.90 · 10−8 4.49 · 10−9

Table 4.2: The FOCUSS, HEURISTIC, EIM and SIMPLEX hyper-reduction
methods comparison with respect to the maximum di�erence in the reduced-
basis approximation, over the test set Ξtest, using the exact quadrature rule

and the reduced quadrature with nw nodes, maxµ∈Ξtest

‖tN (µ)−twN (µ)‖
H1
0

‖th(µ)‖
H1
0

.

4.4 Second FEM problem application: the poro-

elasticity benchmark

Being a quite more complex problem than the simple thermal conduction,
we made use of the 2D poro-elasticity benchmark model presented in [12].
The equations describing this problem are:

−µ∆̃u− (λ+ µ)∇(∇ · u) +∇p = g(x, t) on Ω,

Sṗ+∇ · u̇− κ

η
∆p = f(x, t) on 0 < t < T,

(4.11)

where ∆̃ represents the vector Laplace operator, λ and µ are the Lamé coef-
�cients, S the storage parameter, κ the permeability of the porous medium,
η is the dynamic viscosity of the �uid, u is the displacement vector and p
is the pore pressure. The right-hand term g is the density of applied body
forces and the source term f represents a forced �uid extraction or injection
process. Here, Ω denotes a square 2D domain with a circular cavity on the
bottom-left corner; mesh created through Gmsh and boundary conditions
imposed following [28]. Domain, mesh and boundary conditions are all visi-
ble in Figure 4.4.
The two Lamé coe�cients are related with the material properties of the
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Figure 4.4: 2D domain with circular cavity considered for the poro-elasticity
problem. Mesh created with Gmsh (left) and boundary conditions imposed
(right).

porous media such as the Young's modulus E and the Poisson's ration ν by

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

Both the E and ν are considered as parameters of the problem together with
the storage parameter S and the permeability κ, for a total number of 4
parameters. The parameter we selected to introduce the non linearity is the
permeability κ, we made it dependent on the porosity parameter φ, which is
�xed as φ = 0.008, and on the variation of the volume of the solid, that is the
trace of the deformation tensor ε. Given these dependences, the expression
of κ is

κ = κref
(tr(ε) + φ)3

(1 + tr(ε))(1− φ)2
. (4.12)

where kref is the permeability at time t = 0.
In the following subsections we focus on the implementation issues in terms
of �nite elements and reduced basis method of the poro-elasticity benchmark
to show then the results obtained testing on this problem FOCUSS. Also
here the main part of the work has been performed with three scripts, one
for the construction of the database (snapshots matrices), one for the recover
of the sparse quadrature rules and �nally one to test the e�ciency of the
sparse rules computing the L2-norm relative error introduced by the reduced
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quadrature rule and the computational time.
.

4.4.1 FEM implementation issues

In this subsection we explain how we deal with the poro-elasticity benchmark
implementation through FEM in Matlab; for the sake of simplicity we forget,
for the moment, about the non linearity introduced in κ.
The mesh we used at �rst consists of N = 888 nodes and Nele = 1586
elements for a total of Nw = 6344 quadrature points. No forcing functions
have been considered, therefore g = 0 and f = 0. Since the problem is time
dependent, we took as time solver the Matlab function ode23t, the discrete
equations in which it works are 0 0 0

0 0 0
MT

1 MT
2 SU

u̇
v̇
ṗ

 =

−µK− (λ+ µ)S1 −(λ+ µ)S3 M1

−(λ+ µ)S2 −µK− (λ+ µ)S4 M2

0 0 −κ/ηK

u
v
p

+ cd + cn; (4.13)

where, remembering what seen in Section 4.1, we have

K = DT
xQDx + DT

y QDy, U = InTQIn;

M1 = DT
xQIn, M2 = DT

y QIn;

S1 = DT
xQDx, S2 = DT

y QDx;

S3 = DT
xQDy, S4 = DT

y QDy; (4.14)

while cd and cn are respectively the vectors carrying the Dirichlet and Neu-
mann boundary conditions.
It is well known that by choosing the same approximation space, as we do,
for displacements and pressure, strong non-physical oscillations may appear
in the approximation of the pressure �eld; this oscillations manifest them-
selves when the element size h is not small enough compared to the time
step τ . The oscillatory behaviour of the FEM can be minimized if stabilized
methods are used. For our numerical implementation of the poro-elasticity
benchmark, we retained to be optimal the stabilized method proposed in [1],
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Figure 4.5: Pressure at T=10−6 seconds when no stabilization methods are
applied (left) and when the perturbation term β∆ṗ, which brings to stabi-
lization, is applied (right).

indeed, it consists on the addition of a perturbation term β∆ṗ, with param-
eter β = h2/4(λ + 2µ), to the �ow equation and therefore, according to the
way of discretization we performed in (4.13), we only need to add in the mass
matrix on the left side the term βK to stabilize our discretization.
In Figure 4.5 we �nd the oscillations that manifests when no stabilization
methods are applied and the stabilized solution achieved following [1] for
T = 10−6 seconds. Note that, to highlight the oscillatory behaviour, we am-
pli�ed the values of the pressure in those nodes which do not refer to the
Dirichlet boundary conditions of a 4 · 103 factor for both the imagines.
Now that all the aspects concerning the discretization of (4.11) and the sta-
bilization of the problem have been clari�ed, we can present in Figure 4.8
the pictures of the displacements and of the pressure for T = 100; we have
chosen such time because it is big enough so that the system can reach a
stationary con�guration. In Figure 4.6 is shown how the mesh is deformed
by the application of the Neumann boundary conditions, making use of 103

as ampli�cation factor.
The last imagine we want to present, in Figure 4.7, is a vector plot of the
velocity of the �uid in the porous material when a stationary state is reached
(T= 100). We decide to show this picture because we think that it is very ef-
�cient in giving the intuition about the physical meaning of equations (4.11);
indeed, remembering that the velocity of the �uid q in a porous media is
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Figure 4.6: Domain's deformation due to the application of the Neumann
boundary conditions. A scaling factor of 103 has been used to better show
the �nal deformation result.

given by the Darcy's law

q = −κ
η
∇p in Ω; (4.15)

we can observe how the application of the stresses in the right and top sides
of the domain makes the �uid �ow towards the hole in the bottom-left corner,
where no stresses are applied. This is also possible since on the bottom and
left sides a no �owing condition, ∇p = 0, is imposed. Obviously, the length
of the vectors is proportional to their modulus and it can be seen how it
increases in the nearby of the circular cavity. This is coherent with the plot
of the pressure in Figure 4.6, indeed it is almost �at in the proximity of the
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y

Figure 4.7: Vector plot of the �uid velocity q in the domain of the porous
media.
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Figure 4.8: The two displacements and the pressure when T= 100.

right and top sides while it strongly decreases going to the cavity where the
pressure is zero.
Note that all the imagines are obtained considering the non linearity intro-
duced in (4.12) for the permeability, in the following subsection we explain
how this has been treated in the numerical implementation.

4.4.2 Reduced Basis implementation issues

As we declaimed before, the vector of the parameters µ we considered for the
poro-elasticity benchmark, is made of four components: the Young's modulus
E, the Poisson's ratio ν, the storage capability S and �nally the permeability
κ, which is also the one where the non-linearity has been introduced (4.12).
For each of these parameters a reference value has been considered, see Table
4.3, and the snapshots matrix has been constructed selecting the value of each
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Reference parameters
Eref νref Sref κref

3 · 1010 [Pa] 2 · 10−1 [-] 1 · 10−6 [Pa−1] 1 · 10−1 [m2]

Table 4.3: Parameters' reference value of the poro-elasticity benchmark.

parameter, such as the Poisson's ratio, in the following way

ν = νref + U(−1, 1)νref, (4.16)

where U(−1, 1) is the uniform distribution between −1 and 1. The �uid dy-
namic viscosity is instead chosen to be �xed and equal to η = 1 ·10−3 [Pa·s].
Note that we are challenging a time dependent problem, therefore the snap-
shots matrix has to be constructed collecting also the solution at each step
of the time discretization for a given µ. Then, from such matrix, we can
build the reduced space, using for example POD or a greedy algorithm or
even both of them distinguishing the time snapshots from the parameters
snapshots as suggested in [21]. For the poro-elasticity problem we made use
of the POD algorithm in the construction of the reduced space.
The last words we spend for this subsection concern how the non-linearity in
the permeability has been treated. From the de�nition we gave of it (4.12),
it is clear that κ changes both in space and in time, therefore the matrix
in the right side of (4.13) is not any more constant since κ cannot be eval-
uated outside the matrix K. As for the thermal di�usion, the solution are
loops to solve the non-linearity, but, this time we can take advantage of the
use of ode23t and compute the permeability directly inside odefun. In each
step the matrix K is evaluated like the example in (4.8) where now C is the
diagonal matrix which evaluates the permeability on each quadrature point.

4.4.3 Results

The comparison among high-�delity, reduced and hyper-reduced solutions
have been realized taking a test sample Ξtest of 20 vectors of parameters µ,
selected according expression (4.16); the modes used for all three the vari-
ables are 7 while the reduced rule is made of 500 nodes. The result we now
show testi�es the e�ciency of FOCUSS also on this problem.
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Figure 4.9: L2-norm of the errors between the high-�delity solution (HFS)
and the hyper-reduced solution (HRS, with nw = 500 quadrature points),
the high-�delity solution and the simple reduced basis solution (RBS, with
N = 7 modes) and the hyper-reduced solution and the reduced basis solution
(left). Computational time demanded for the high-�delity, simple reduced
basis and hyper-reduced solutions (right on the bottom). Results collected
using FOCUSS for the poro-elasticity benchmark at time T= 100 s where the
variables are: horizontal displacement u, vertical displacement v and pressure
p.

From Figure 4.9 we can extrapolate several observations. First, the error due
to the combination of the two stages of reduction is not signi�cantly in�u-
enced by the quadrature error introduced with the reduced rule; moreover the
computational time is reduced. This means that FOCUSS succeed, as well as
in the thermal di�usion, also in the poro-elasticity benchmark even if, com-
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N nw max
µ∈Ξtest

‖pN(µ)− pwN(µ)‖L2

‖ph(µ)‖L2

max
µ∈Ξtest

‖ph(µ)− pwN(µ)‖L2

‖ph(µ)‖L2

1 2 8.22 · 10−2 6.50 · 10−1

2 10 1.91 · 10−1 8.47 · 10−1

3 100 5.90 · 10−2 2.15 · 10−1

4 150 4.51 · 10−2 8.88 · 10−2

7 250 9.50 · 10−3 2.71 · 10−2

Table 4.4: Poro-elasticity benchmark at T= 100s for the pressure variable.
The number of reduced-basis functions N , the number of reduced quadrature
points nw, the maximum di�erence in the reduced-basis approximation, over
the test set Ξtest, using the exact quadrature rule and the reduced quadrature,

maxµ∈Ξtest

‖pN (µ)−pwN (µ)‖
L2

‖ph(µ)‖L2
, and the error in the hyper-reduction approxima-

tion, maxµ∈Ξtest

‖ph(µ)−pwN (µ)‖
L2

‖ph(µ)‖L2
.

pared the �rst application, here the errors are quite larger. This is probably
due to the fact that the poro-elasticity is a quite more complex problem,
which involves a mechanic-hydraulic coupling and a dynamic, therefore there
is a necessity of a larger number of modes, compared to the thermal conduc-
tion, to achieve smaller error in the reduced basis approximation. It can be
also observed how the quadrature error is much smaller for the two displace-
ments variables than for the pressure; this is because the non-linearity in the
permeability acts directly on the pressure and only secondarily, through the
coupling, on the two displacements.
For this reason, in Table 4.4, we only considered the pressure to prove that
also a reduced quadrature rule with less nodes than 500 can not substan-
tially in�uence the total error, provided that the number of reduced basis
functions is also taken lower than 7. All the errors have been evaluated at
T= 100 seconds.
Another interesting aspect, which can be observed in the poro-elasticity
benchmark, is the evolution of the errors along the time, since until now
we limited ourselves to evaluate the errors for the solutions at T= 100 sec-
onds. Table 4.5 collects the results we found using the quadrature rule of 500
nodes.
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Evolution in time of the errors

T max
µ∈Ξtest

‖tN(µ)− twN(µ)‖L2

‖th(µ)‖L2

max
µ∈Ξtest

‖th(µ)− twN(µ)‖L2

‖th(µ)‖L2

u v p u v p
10−6 1.4 · 10−9 1.4 · 10−10 1.5 · 10−8 3.1 · 10−2 2.3 · 10−2 3.8 · 10−5

10−5 2.0 · 10−8 2.3 · 10−9 1.4 · 10−7 2.4 · 10−2 1.6 · 10−2 6.1 · 10−4

10−3 7.0 · 10−7 1.3 · 10−7 1.2 · 10−5 3.2 · 10−2 1.9 · 10−2 5.8 · 10−3

10−1 2.1 · 10−5 5.6 · 10−6 4.3 · 10−4 3.6 · 10−2 3.2 · 10−2 3.2 · 10−2

10+1 5.9 · 10−5 2.4 · 10−5 1.3 · 10−3 4.4 · 10−2 1.3 · 10−3 1.7 · 10−1

10+2 4.6 · 10−5 5.0 · 10−6 8.8 · 10−4 6.5 · 10−2 4.0 · 10−2 1.4 · 10−2

Table 4.5: Poro-elasticity example: evolution along the time T of the
maximum di�erence in the reduced-basis approximation, over the test
set Ξtest, using the exact quadrature rule and the reduced quadrature,

maxµ∈Ξtest

‖tN (µ)−twN (µ)‖
L2

‖th(µ)‖L2
, and of the error in the hyper-reduction approx-

imation, maxµ∈Ξtest

‖th(µ)−twN (µ)‖
L2

‖th(µ)‖L2
. All the errors have been computed with

the same reduced quadrature rule of nw = 500.

The error in the hyper reduction approximation does not signi�cantly change
for the two displacements going forward in time, while it increases for the
pressure. The "surprising" element is the quadrature error, that, for all the
variables, is of several orders lower in the �rst instants of time to then grow
up to the values we already observed in Figure 4.9; this testi�es that the
dynamic of the problem acts as an ampli�cation factor for the quadrature
error introduced with the reduced rule. The error of the quadrature is higher
for the pressure variable than for the displacements in all the instants of
time considered in the table; we have already commented this phenomena
for T = 100 observing that the non-linearity directly acts on the pressure
and only "indirectly" on the displacements.
We now can look at Figure 4.10, which is about the comparison of the per-
formance of FOCUSS compared to the other cubature methods used until
now. This time the POD technique has been applied before calling the hyper-
reduction algorithms.
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Figure 4.10: Comparison of hyper-reduction methods, over di�erent nw, con-
cerning the maximum di�erence in the reduced-basis approximation, over the
test set Ξtest, using the exact quadrature rule and the reduced quadrature for

the pressure variable, maxµ∈Ξtest

‖pN (µ)−pwN (µ)‖
L2

‖ph(µ)‖L2
(left). Computational time

necessary in the O�ine stage for the recover of the sparse quadrature rule
with nw nodes (right). Results obtained with N = 7 reduced basis functions
for the pressure.

The plot referring to the maximum quadrature error over the test sample
chosen shows di�erent behaviours compared to the one of the thermal dif-
fusivity. First of all, the trend is not the same for each method as in the
thermal problem, in particular HEURISTIC and EIM work signi�cantly bet-
ter with a rule of 150 nodes than one of 200, a result not intuitive since
the more nodes we use, the better errors we should obtain. We can explain
this phenomena. Indeed, during the computation we have observed that with
these two algorithms the problem stated to be ill-conditioned if a rule of 200
or more nodes was demanded; this is also con�rmed looking at the plot of
the computational time: as the number of nodes increases, HEURISTIC and
EIM require an always higher computational time compared to FOCUSS and
SIMPLEX. We conclude that the irregular trend shown by HEURISTIC and
EIM is due to the perturbation caused by the instability that rises when a
too high number of nodes is demanded. Moreover, it has also been observed
here, as in the thermal di�usion, that EIM does not ensure the positiveness
of the weights.
Another interesting result, which seems to con�rm our statement concerning
the ine�ciency of the `1-norm minimization in the context of sparse quadra-
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ture recovery, is the fact that during the computation of rules with more than
100 nodes, we have experimented the failure of the dual-SIMPLEX algorithm
of Matlab. Indeed, even by using very large tolerances for the convergence of
the method, the call of the algorithm returned to us an error message when
rules with 150 and 200 nodes were demanded.
In conclusion, from our tests on the poro-elasticity benchmark, it appears
that FOCUSS is the best method among the ones we used, concerning the
trade-o� between precision and computational time demanded in O�ine
stage of sparse rule recovering.
The last results we present in this work aim to show what happens when the
mesh is re�ned. We used the Gmsh option refine by splitting to create a
new mesh, from the previously used one, with N = 3361 nodes, Nele = 6344
elements and Nw = 25376 quadrature points. Then, we built a new database
containing the snapshots matrices with the objective of �nding a new reduced
base and a new quadrature rule of 500 nodes. At this point we tested our rule
de�ned on the re�ned mesh on a test sample Ξtest of 10 parameters vector
µ. Figure 4.11 shows what we obtained.
The reduced rule produces quadrature errors of approximately an order
greater than the ones produced when we used the coarse grid, but it is still
lower than the one of the reduced basis approximation. Since the number of
degrees of freedom strongly increased compared to before, and the reduced
rule is always made by the same number of nodes, the boost on the compu-
tational time given by the hyper-reduction is greater for these simulations.
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Figure 4.11: Re�ned grid. L2-norm of the errors between: the high-�delity
solution (HFS) and the hyper-reduced solution (HRS, with nw = 454 quadra-
ture points), the high-�delity solution and the simple reduced basis solution
(RBS, with N = 7 modes) and the hyper-reduced solution and the reduced
basis solution (left). Computational time demanded for the high-�delity, sim-
ple reduced basis and hyper-reduced solutions (right on the bottom). Results
collected using FOCUSS for the poro-elasticity benchmark at time T= 100 s
where the variables are: horizontal displacement u, vertical displacement v
and pressure p.
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future works

In this work we presented the problem of recovering the e�ciency of the Re-
duced Basis method when dealing with non-linear PDEs and we mentioned
all the methods which try to �x this problem like the empirical interpola-
tion method (EIM), the empirical cubature method (HEURISTIC) or the
dual-simplex based methods. We underlined that it is still not clear which
method should be recommended among the others since all of them show
drawbacks, such as: the presence of negative weights, high computational ef-
fort demanded in the O�ine stage or luck of precision in the approximation
of the non-linearity.
For this reason we proposed a new hyper-reduction algorithm, which con-
vergence to sparse quadrature rules is proved in [8], with the ambition of
overcoming all the issues of the others hyper-reduction techniques. From all
the tests we did on the three problems proposed, our implementation of FO-
CUSS always succeeded in returning a sparse quadrature rule with positive
weights. About the comparison with other hyper-reduction methods, for both
FEM problems, our method was the best in the trade-o� of the number of
weights of the reduced rule against computational time to compute such rule,
while in terms of precision the performances of the rules found with FOCUSS
were lined with the ones of the other methods. It is also remarkable the result
found for the polynomial test problem where our algorithm was the only one
able to recover the Gauss-Legendre quadrature rule, that is the more sparse
and exact integrating rule for the problem considered.
To conclude this master thesis we would like to suggest possible extensions of
this work. Firstly, to complete the work on FOCUSS, it would be necessary
to have an estimation of the error introduced with the sparse quadrature
rule recovered. Such estimation would also simplify the comparison with the
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other methods. Another aspect that could be interesting to investigate, at
least in a deeper way than what we did here, are the performances of the
sparse rules when the number of nodes required is �xed but the mesh is re-
�ned time after time. With the poro-elasticity benchmark we tried to do this
for one simple re�nement of the mesh previously used and we observed that,
�xed the number of nodes, the reduced quadrature loses an order of accuracy
in relation to the high-�delity solution. What we suppose that would happen
if the mesh was re�ned again and again is that the accuracy of the reduced
rule would not be altered. This hypothesis comes from the fact that the re-
�nement of the grid in�uences the high-�delity solution in such a way that it
is closer to the one that is the "true" solution of problem, while the variation
of quadrature points in the reduced rule acts only on the error between the
high-�delity solution and its approximation via hyper-reduction; therefore,
if the re�nement produces changes in the high-�delity solution of values of
order less than the error carried by the reduced quadrature, we should not
experiment signi�cantly variations in the quadrature error when keeping the
same number of nodes in the reduced rule.
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