
POLYTECHNIC UNIVERSITY OF TURIN
.

Master of Science in Computer Engineering

Master’s Degree Thesis

A ROS-based Platform for Autonomous Vehicles:
Foundations and Perception

Academic Advisor
Massimo Violante

Candidati
Sebastiano Barrera
Vincenzo Comito

Internship Tutor
Stefano Moccia

A.A. 2017/2018

This thesis is licensed under a Creative Commons License,
Attribution – Noncommercial – NoDerivative Works 4.0 International:
see www.creativecommons.org.

The text may be reproduced for non-commercial purposes, provided that credit
is given to the original author.

www.creativecommons.org

Contents

1 Introduction 1
1 Abstract . 1
2 Overview . 1
3 Objective Software . 3
4 State of the Art . 4

4.1 Tesla . 5
4.2 Waymo . 7
4.3 NVIDIA . 8

2 Platform Description 9
1 ROS . 9

1.1 Introduction to ROS . 9
1.2 Open Source Software . 11
1.3 Limitations . 12

2 Vehicle . 14
2.1 CAN Protocol . 14

CAN Protocol overview 15
2.2 fa_can_ros . 19

3 Sensors . 22
3.1 Cameras . 22

Camera models and basic processing 23
Camera Calibration . 26

3.2 Lidar . 28
3.3 Future trends . 29

MEMS lidars . 30
Optical Phased Array 30
Hybrid approaches . 30

3.4 Point Clouds . 30
Velodyne VLP-16 . 31
Automotive Lidar . 32
Lidar error sources and problems 34

iii

3.5 GPS . 35
GNSS Technologies, performances and source of errors 36

Differential GPS . 36
Real Time Kinematics 37

GNSS in automotive . 37
GPS sensors on the platform 37

3.6 Wheel Odometry . 38
3.7 Summary of the platform . 39

3 Localization 41
1 Problem and approach . 41
2 Theory notes: Bayesian algorithms and Kalman filtering 43
3 Theory notes: Simultaneous Localization and Mapping 47
4 Visual SLAM . 48

4.1 Cameras for visual SLAM . 48
4.2 Basics of monocular SLAM 49

Feature detection/recognition 51
4.3 ORB_SLAM2 . 54

5 Lidar SLAM and localization . 57
5.1 Iterative Closest Point . 58
5.2 Normal Distribution Transform 59

6 ROS implementation: robot_localization 61
6.1 Configuration . 63

7 Results . 64
7.1 Localization performance . 64

Around Ostbahnhof N.2 . 66
Bridge N.1 . 68

7.2 Generation of the Neue Balan map 70
7.3 Generation of Urban Scenarios map 72

4 Detection 77
1 Camera Detection . 77

1.1 Objects . 77
Deep neural networks for object recognition and detection . . 77

1.2 YOLO . 79
2 Lidar Detection and Recognition . 81

2.1 Processing point clouds with PCL 81
2.2 Clustering . 82

A few notes on data structures and search algorithms 82
KdTrees . 82
Octree . 83
Filtering . 83

iv

2.3 Euclidean Clustering . 83
Euclidean Clustering ROS node 84

2.4 Tracking with Kalman filtering 84
3 Recognition . 87

3.1 Projection methods . 87
3.2 Automotive Lidar recognition capabilities 87
3.3 Lane recognition . 88

5 Navigation 91
1 Cost and Occupancy maps . 91
2 A* . 92

6 Deployment and Continuous Integration 95
1 Similarities with the microservices paradigm 96
2 Containerization solution . 98
3 Continuous Integration . 101

3.1 User experience . 101

7 Infrastructure 105
1 Project Management . 105
2 Data collection . 107

8 Conclusions 111

9 Next steps, future work 113
1 Real-Time applications and ROS2 . 113
2 Visual odometry and image segmentation 115
3 Correlative scan matching for lidar SLAM 116

A Common Mathematical Methods 117
1 Newton’s algorithm . 117
2 Gradient Descent . 117
3 Levenberg–Marquardt . 118

B Deep Learning 121
1 Neural Networks . 121
2 Deep Neural Network . 123

C Geodetics and projections 127
1 Latitude/Longitude . 127
2 UTM . 128

v

Chapter 1

Introduction

1 Abstract

Autonomous driving (AD) and Advanced Driver-Assistance Systems (ADAS) are at
the forefront of today’s technical prospective achievements in the field of automotive
engineering, promising disruptive changes in the role of transportation in today’s
society, and in the world’s economy in general. This endeavor is fueled by the
production of new advances in research, and their swift and smooth transfer to the
industry. The present work aims at helping with the latter: it is a software and
hardware platform based on ROS (Robot Operating System) that aims to allow
researchers, students and companies in the field to share algorithms and data in the
most painless way. It provides a functionality baseline that includes sensor support,
localization, SLAM, object and lane detection, and basic navigation capabilities.
Moreover, modern practices in distributed systems engineering are applied to allow
users to easily monitor the system, diagnose problems, transfer and deploy the
system’s components.

2 Overview

Autonomous driving (AD) and Advanced Driver-Assistance Systems (ADAS) are at
the forefront of today’s technical achievements in the field of automotive engineering,
promising disruptive changes in the role of transportation in today’s society, and in
the world’s economy in general.

Generally speaking, these systems are implemented by augmenting standard ve-
hicles (typically cars, trucks) with a number of sensors that continuously scan and
collect real-time data about the surrounding environment, and (in the AD case) with
actuators that allow the system to effectively drive the car by applying commands
to vehicle’s powertrain. The effect of the commands is then observed by the sensors,

1

1 – Introduction

closing the control loop. The result is that the modern, ADAS-enabled vehicle can
be seen as a fully-fledged “robot on wheels”, with a similar theoretical background,
similar physical and logical organization, and a similar suite of on-board hardware
and software components.

The practical development of such systems is fueled by the research advances in
the field of robotics, and their swift and smooth transfer to the industry. Similarly,
companies operating in the field can provide valuable feedback to the academia in
the form of data, extensive testing, and optimization of both the software and the
hardware.

The present work aims at helping with this very “transfer”. In this thesis, we
propose a software and hardware platform built on top of ROS (Robot Operating
System) that researchers, students and companies can use to share and run programs
and data, reducing as much as possible the friction typically encountered when
putting a system together out of heterogeneous pieces.

This is achieved, in summary, by:

• building on top of ROS (Robot Operating System), which allows access to the
largest ecosystem and community currently existing in the field of robotics,
both in industry and academia;

• applying modern practices in distributed systems engineering for easy transfer,
monitoring, deployment of software components.

• providing a functionality baseline that includes sensor support, localization,
SLAM, object detection, and basic navigation capabilities.

Figure 1.1 offers an high-level overview of the perception and processing system.
The sensors and algorithms involved are described in details in the following chap-
ters.

The present study is organized as follow: After a short introduction on the
topic of autonomous driving and the current state of the art, we go through the
various sensors and devices available on our platform in chapter 2. We then discuss
the topic of localization in chapter 3, where we show how the vehicle tracks its
position on the road. In chapter 4 the techniques for detecting objects and road
users through camera and lidar are analyzed. The results of these chapters are used
in chapter 5 for path planning. Chapter 6 and chapter 7 are dedicated to modern
software engineering paradigms and support infrastructures that helped us during
the development and testing process. Finally, we review the obtained results in
chapter 8, suggesting some future works based on ideas we have not had the chance
to try out in chapter 9.

2

3 – Objective Software

Figure 1.1: Functional schema of the perception functionalities.

3 Objective Software

The work for this thesis was carried out with the blessing and support of Objective
Software GmbH1 and Objective Software Italia s.r.l.

Objective Software operates since 2006 in the field of autonomous vehicles, driver-
assistance and teleoperated driving systems, in conjunction with companies such as
BMW and Bosch.

In the context of this work, it is worth noting that Objective is the provider of
the research vehicle and sensors that constitute the hardware part of the platform
we are proposing. The vehicle is further described at section 2.

1www.objective.de

3

http://www.objective.de/en/homepage/

1 – Introduction

4 State of the Art
Self-driving cars are a hot topic, both because they are an innovative use of artificial
intelligence and because they predicted to have a deep impact on society, affecting in
many ways the consumer market, the safety of road users, and the jobs of thousands
of people. If a few years ago autonomous driving sounded like a far-fetched vision of
technological companies, today traditional car manufactures are also making their
bet on it, with ambitious plans but less optimistic predictions. No one seems to
agree on when self-driving cars will hit the roads: predictions range from twenty
to a few years, while the voice of some enthusiastic experts assert they are already
here. Such confusion is also due to the definition of self-driving vehicle, which is not
as clear as a consumer may think. Even if there is no standard definition and no
approval requirement as of today, the definitions offered by the SAE International 1

provide some insight[54]. These are comprised of six levels of automations:

Level 0 No assistance, only warnings.

Level 1 The ADAS may act on steering or gas, not at the same time.

Level 2 The gas pedal and steering wheel are controlled by the vehicle in
some circumstances, but the driver needs to pay the same level of attention
and be ready to intervene.

Level 3 The vehicle performs all the tasks (including lane/road changing,
stops etc...). The driver still needs to be focused as in previous level.

Level 4 The driver does not need to pay attention when the system has control
in some conditions.

Level 5 The system is capable of controlling the vehicle in all conditions,
driver is not required.

Most of today’s premium cars’ offerings may be described by level 1 or 2. Tesla
is about to reach level 3. Companies like Waymo are publicly against such partial
systems2, alleging that the benefits are pointless, if not harmful, as long as the driver
still needs to pay attention. Indeed, recent incidents suggest that it is too much to
ask to a driver to distrust a semi-automated system whose use is encouraged and
advertised at the same time: any human driver will eventually decrease their level
of attention, which unfortunately has proved to be fatal in some cases. Thus, an
everything or nothing approach seem the only viable way car companies should focus
on.

2https://www.wired.com/2017/01/human-problem-blocking-path-self-driving-cars/

4

https://www.wired.com/2017/01/human-problem-blocking-path-self-driving-cars/

4 – State of the Art

The current assistance systems mostly regard a single, independent functionality:

Adaptive Cruise Control (ACC) takes care of controlling the car’s speed,
by electronically acting on acceleration or brake, in order to reach a set target
velocity while keeping a safe distance from the next vehicle on the same lane.
This way, the driver can keep the foot off the gas pedal and only has to control
the steering wheel. The system is usually implemented with the use of the front
radar.

Lane Keeping Assistant (LKA) instead directly controls the steering wheel
with the aim of maintaining the vehicle centered in the current lane. It can
be seen as an automated lane departure warning system that, instead of no-
tifying the driver, changes the vehicle’s direction. These system are usually
implemented with the front camera, which is able to extract lateral distance
of the lane markings. Modern version of LKA also implement lane changing
or highway exit.

Traffic Sign Recognition (TSR), also implemented using cameras, recog-
nizes road signs and their meaning, reporting it to the user on the instrument
panel or also by controlling the speed of the vehicle accordingly. Today, deep
neural networks allow to recognize all signs with very high confidence.

These systems are more of a result of automatic control theory rather than
artificial intelligence such as that which will characterize future autonomous vehicles.
The driving task is complex: only in the latest years computers have been able
to extrapolate semantic information from visual, lidar or radar data, and still in
many cases without reaching the performance of a human. Even by having perfect
perception of the environment around the vehicle, the autonomous system still has to
deal with the complex system of rules, choices and behaviour that cannot be simply
coded with classical methods. Thus, new achievements in artificial intelligence seem
required for full level 5 automation on every scenario.

Still, subsets of the task, such as driving on highways, involve much less com-
plexity and current systems seem to behave pretty well, with long records of proven
automation with limited intervention by the driver.

We will now focus on some of the technological companies that propose different
plans. The statements of traditional automakers (except General Motors and its
Cruise subsidiary) are still generic nowadays and it is thus hard to define their
strategy.

4.1 Tesla
As a car manufacturer, Tesla is definitely the most dedicated to technological in-
novation, branding its cars as the first fully electrical, autonomous vehicles. The

5

1 – Introduction

company states to have a fully defined plan for achieving self-driving cars that will
be carried out, interestingly, not only on future vehicles but also on some of the past
models. Indeed, according to the producer1 all the vehicles already have all of the
sensors and processors needed. What is missing now is software, which is period-
ically improved and sent to vehicle thanks to over-the-air updates. The hardware
architecture proposed by Tesla is the following:

• Eight cameras around the vehicle, with different fields of view and maximal
distances.

• Twelve ultrasonic sensors

• Front radar

Figure 1.2: The sensors of the Autopilot system [Tesla]

As the number of cameras may suggest, they are the main sensor for autonomous
driving, while radar and ultrasonics have a backup and safety role. Surprisingly, the
system has no lidar, which many companies such as Ford, BMW and Audi will
probably include. The thesis here is that visual information from cameras is enough
for understanding every scenario, thanks to the use of neural networks.

The processing will be handled by the Drive PX2 system from NVIDIA, a Tegra
System-on-Chip designed specifically for the automotive industry and deep learning.
Tesla is however also partnering with AMD, so it is likely that this choice will be
reviewed.

1All the vehicles have the hardware needed for full self-driving capability - Tesla - Autopilot

6

https://www.tesla.com/autopilot?redirect=no
https://www.tesla.com/autopilot?redirect=no

4 – State of the Art

A promotional video (fig. 1.3) from Tesla shows the current results of Autopilot:
the system recognizes people and objects (blue), it detects the full road surface along
with lane markings (red and cyan), computes optical flow (green lines) and recognizes
traffic signs. These results prove that Tesla’s engineers successfully integrated the
state of the art research in a consumer product.

Figure 1.3: A snapshot from the Autopilot promotional video.

Today, the car controls the vehicle’s speed and steering angle during normal
cruise, lane changing and auto parking. The company requires the driver to be
focused in all cases; this is enforced by constantly checking that the driver’s hands
are on the wheel.

4.2 Waymo

Originally born as a Google project, Waymo is now a company belonging to the
bigger Alphabet holding. The company does not produce cars: instead it collab-
orates with FCA and Jaguar, retrofitting their vehicles with cameras, lidars and
radars and providing the control software. Lidars, in particular the top Velodyne
HDL-64, have an important role for generating the full 3D model of the environment
and objects in it.

As Waymo announced a public autonomous taxi service in Phoenix, Arizona by
the end of 2018, we can safely suppose that the system is capable of analyzing high
level information necessary for fully navigating an urban scenario, making it one of
the first systems capable of reaching level 4 or level 5 autonomy. So far, Waymo’s
vehicles have travelled for more than 11 million kilometers in driverless mode.

7

1 – Introduction

Figure 1.4: The joint use of lidars and cameras allows to find all objects and people
on the road all around the vehicle. [Waymo 360° Experience: A Fully Self-Driving
Journey - Waymo]

4.3 NVIDIA
Having successfully surfed the wave of deep learning innovation by providing dedi-
cated processors, NVIDIA today produces both embedded computers and software
for automotive applications intended for car manufacturers or Tier 1 suppliers. The
company also proposes the use of virtual testing and learning, where the autonomous
system is trained in a simulated road environment. The advantages of this system,
beyond the safety and obvious simplifications, is the scalability afforded by the large
number (thousands) of simulations can be ran at the same time. However, it is hard
to say if it system can replace, even in part, field testing on real vehicles.

8

https://www.youtube.com/watch?v=B8R148hFxPw
https://www.youtube.com/watch?v=B8R148hFxPw

Chapter 2

Platform Description

1 ROS

ROS [39], short for Robot Operating System, is a fully open-source software platform
designed for robotics, based on an unmodified GNU/Linux operating system. It
provides an abstraction for easy interoperability, basic software, and a means to
create, distribute, build and (partly) deploy software packages.

1.1 Introduction to ROS

The core feature of ROS’ design is the emphasis on distributed programming: a
ROS-based system is typically composed of processes exchanging messages following
the publisher-subscriber (aka pub-sub) pattern. Such processes are called, in ROS
terminology, nodes.

The communication between nodes, and other core system functions, are man-
aged by a single program named the “ROS master”, or “ROS core”.

The publisher-subscriber pattern can be thought of as an abstract communica-
tion mechanism, where participants (nodes) announce their wish to receive certain
messages (“subscribe”) or their intention to send them (“publish”). Moreover, in
this abstraction the messages are not explicitly targeted at nodes, but are instead
routed through virtual communication channels named topics. A topic is nothing
much more than a label that groups related messages. For example, an image pro-
cessing node may subscribe to the camera topic, signifying its interest in the raw
images captured by the camera; correspondingly, a “driver” node may announce
itself as a publisher of the camera topic, promising that it will capture camera im-
ages directly from the device, and then encode them, envelope them in a properly
formatted message, and publish them on the topic.

This abstraction layer is implemented by a protocol that also involves the ROS

9

2 – Platform Description

master. This keeps track of every node’s publications and subscriptions, and an-
nounces each new registration or deletion of publisher or subscriber to every inter-
ested node. The nodes will then open or close the corresponding connections, and
carry out the communication directly, without routing the messages’ data through
the ROS master process. The transport protocol can be based either TCP or UDP;
each node can negotiate its preference, based on reliability or performance require-
ments.

There are no limits to the number or name of topics at any given time. A topic
is created simply as soon as the first publisher or subscriber has announced itself
to the master. Subscribers and publishers to the same topic are always connected
together, no matter which one is announced first. Finally, there can be any num-
ber of publishers and subscribers to any given topic; there will be one connection
per publisher-subscriber couple connecting them directly (or “as directly” as the
underlying network stack allows).

This design generates a few useful properties:

• Network transparency. Since the communication mechanism is based on
top of the standard TCP/IP or UDP/IP network stack, its trivial to distribute
the robot’s (or vehicle’s) functionality across different physical computers. As
long as all nodes are connected to the same ROS master, this will inform
every party of each other’s network address, allowing them to reach each other
without any further configuration.

• Fault tolerance. Nodes don’t “call each other by name”: messages are al-
ways sent to, or received from, a topic. A topic simply exists as long as there
is at least one publisher or one subscriber for it; it will be created/destroyed
automatically as needed. As a consequence, the crash of a single node or a
network partition never directly causes the failure of other nodes; at worst,
the flow of messages is interrupted, possibly for just a short time. More inter-
estingly, node failures can be easily detected and monitored by the system, as
the ROS master keeps track of each node’s liveness, and can be readily queried
by standard ROS tools. This endows the system with a useful degree of fault
tolerance, to the point where a “let-it-crash” philosophy becomes practical.
This design philosophy posits that it is more desirable to have much simpler
internal designs for the nodes, and allow them to abort execution as soon as
possible and describing the mishap simply through log messages, than it is to
devise complex error recovery mechanisms on a case by case basis. The fine
granularity of a single node’s responsibility, and the observability of the failure
to monitoring tools and other nodes allows to recover from error conditions
much more effectively, and is much less error-prone to implement and main-
tain. This has been applied to great advantage in other distributed systems
architectures, such as those based on the Erlang VM.

10

1 – ROS

• Late-binding, and standard tooling. The ROS system is highly dynamic:
late-binding is a driving design principle. In other words, objects of any kind
in the system, including nodes, topics and message formats, are all simply
referred to by their name. They are typically observed, destroyed, and often
even brought into existence, by simply using the name in queries to the ROS
master. This amounts, essentially, to a very powerful decoupling mechanism.
This decoupling, in turn, allows for a whole suite of standardized command line
tools and libraries to query and manipulate each part of the system, without
relying on each other’s internals. For example, rosnode can be used to list and
query active nodes in the system, with their publications and subscriptions;
rostopic can list and get information about topics, and publish arbitrary
messages. No pre-processing or configuration is required for these tools to
interface with new nodes or topics. Another notable example is the RViz
tool, which can visualize many kinds of messages in a 3D scene, thanks to a
rich set of plugins for various message types.

On top of the primitives just described, a number of conventional tools are
implemented that provide basic services required by any robotic application. This
can be thought of as the basic or system software of other operating systems. One of
these, in particular, merits mention: the tf package for defining and communicating
transforms between frames of reference. Using the messages and nodes included
in this service, other nodes can express geometric data (state of the robot’s joints,
object’s positions, point clouds, and anything else) in whichever frame of reference
they prefer. By also communicating the rigid transforms that bind the frames of
reference to each other in a tree structure, the nodes can relate geometric data
gathered (or generated) independently. This becomes indispensable for robots that
manipulate or navigate the environment, in order to relate its own position with the
perceived landmarks.

1.2 Open Source Software
It’s in a sense our duty to note here that the almost totality of the software that we
have used (directly or as foundation for our own work) is Free and/or Open Source
Software, available under free software licenses such as GNU’s GPL and LGPL,
MIT, BSD, and others. It’s in this way that we stand on the shoulder of giants: our
achievements are fundamentally enabled by the great deal of work and effort spent
by the hundreds of contributors to the GNU/Linux OS and distributions, the ROS
framework, OpenCV, PCL, and the myriad of other software packages that we have
come to rely on.

Speaking about ROS in particular, it should be noted that ever since its in-
ception, its mission has been to enable and foster collaborative robotics software
development. As such, it fits naturally in the framework of open source software.

11

2 – Platform Description

All of the source code for the basic software is freely available; the official documen-
tation is maintained in a wiki that many people contribute to.

More notably, ROS-compatible software is usually organized in packages. These
are basic containers of source code and data, that can be distributed, built, and
installed in a standard way, with the use of a dedicated tool named Catkin. As
a consequence, the overwhelming majority of ROS software is published in source
code form, and built by the final users. The more popular packages, especially those
considered to be part of a “standard” are also built and distributed as binary Debian
packages, through the official ROS APT repository, for easier installation.

During its history, a very large number of researchers, developers, companies
and hobbyists has flocked around the ROS project, giving rise to a lively community
that, to this day, represents one of the main advantages in choosing ROS as the
foundation for new robotics projects. Together with the emphasis on late-binding
and non-command messages, this is the main factor that makes the ROS platform
a fertile ground for innovation in the field of robotics, and one of the main catalysts
for its application in industry.

1.3 Limitations

The current version of ROS, dubbed the 1.x series, suffers from some limitations,
mostly due to some unforeseen use cases. These have emerged throughout the years
due to ROS’ very popularity.

The most “wished for” feature is soft and hard real-time capabilities. The
type of robot ROS was initially designed for was a “simple” (though well built) robot
with a mobile platform for indoor exploration, and robotic arms to grab objects and
move them around to perform simple manipulation tasks. Nowadays though, there
is great demand for a standardized software platform for unmanned aerial vehicles,
submarine robots, and road vehicles (we were part of this last group). ROS seems
to be a natural fit, where much of the technology can be reused with little change,
but these newer application areas have much more stringent timing requirements.
For example, in order for an autonomous car to safely react to a life-threatening
situation, the detection of such a condition, the decision to brake and the actuation
of the command all have to be completed within a fixed time interval. Missing the
deadline for a single cycle may not necessarily be a disaster, but in order to be
considered safe at all, the system has to guarantee action within a bounded time
interval (as opposed to just, “eventually”).

ROS was not designed for any kind of real-time operation. Every message is
delivered under a “best-effort” policy, with no guarantees as to how late the message
will be when it arrives, nor how long it will take to produce a reaction. (In all fairness,
even in the current design, most messages are time-stamped, so their “staleness” at
the time of arrival can be estimated, at least roughly.)

12

1 – ROS

Another shortcoming of ROS 1.x is that it was designed to be run on com-
mon, PC-style computers, on the x86_64 and ARM architectures, with plenty of
computing power and memory to spare. For some types of robots, instead, some
prefer to run the system in part or in total on embedded systems. Typically, these
are markedly under-powered and lack an operating system, but it is much easier
to guarantee certain properties of the resulting hardware-software system. For ex-
ample, having a single program possess full control over an embedded computer’s
resources makes it much easier to guarantee the satisfaction of hard real-time re-
quirements (this ties in directly with ROS’ shortcomings for real-time), or to have
truly exhaustive testing that reliably ensures its correctness.

Moreover, ROS was designed to work in a (quasi-)reliable network, where the
chance of partition and packet loss is low to nil, such as local cabled Ethernet net-
works, or close-range wireless. On a less reliable network (e.g. a multi-robot system
deployed on the field, where radio interference may make wireless communications
shaky), messages may well be lost undetected, lowering the chance of accomplishing
the mission, or causing excessive retransmission (e.g. with TCP) and a subsequent
performance degradation.

The pain points just described are at the core of the motivation for the new
iteration of the ROS platform, called ROS 2. This version approaches these is-
sues radically, by changing some core parts of ROS’ design. Among these, is the
adoption of Object Management Group’s Data Distribution Service for real-time
systems (DDS), a standard that defines a common interface for publish-subscribe
pattern implementations. This replaces ROS 1’s custom middleware, and enables
ROS 2 to take advantage of industry-proven real-time implementations of message
passing, network standards and architectures. Moreover, the APIs (for the C++ and
Python programming languages) have been overhauled to enable new programming
architectures that enable more efficient and reliable concurrency architectures, pos-
sibly taking advantage of the limited resources of embedded systems. The package
structure, and the build and distribution systems have also been redesigned to favor
collaboration between even more disparate parts of the community.

At the time of writing, ROS 2 has reached its first non-beta release (“Ardent
Apalone”, December 2017), but is not yet ready for production use by the larger
community. The basic functionality has been implemented, but the overwhelming
majority of ROS-compatible software in existence today is not compatible with ROS
2 yet. Even though migration efforts are slowly starting to take place, we decided
to keep using the (still very popular and actively developed) ROS 1, so as to take
advantage of the larger amount of software packages available. Nonetheless, we
were interested in taking advantage in the new possibilities opened up by ROS 2’s
architecture, and we plan to test it as soon as the newer platform reaches a sufficient
degree of maturity.

13

2 – Platform Description

2 Vehicle
The research platform was built on a customized BMW 5 Series™ vehicle (F10)
fig. 2.1. Such vehicle, intended for research activities, offers direct access to the
internal communication buses thanks to connectors added in the trunk. The trunk is
also well suited to host industrial-grade computers, so that the data can be processed
directly on the vehicle and shown on a custom dashboard next to the instrumentation
panel.

Figure 2.1: The BMW 5 Series Research Vehicle provided by Objective Software

During the research, we added our own hardware to the vehicle, such as cameras
and LIDARs, during the data recording trips.

Being it a research vehicle, it was possible to retrieve real time data from one of
the CAN networks (a typical BMW car has up to 8 separate CAN networks). This
data was then integrated in the ROS system, as we will show next.

2.1 CAN Protocol
The Controller Area Network protocol is an industrial standard, born in the au-
tomotive world and later extended to other industries. Developed by Bosch, it was
standardized under ISO (ISO 11898 was published in 1993) and soon adopted by
most automakers due to its robustness and flexibility. The protocol indeed satisfied
the developers’ need to have a simple, cost-effective yet fast way to allow commu-
nication between different microcontrollers on the vehicle, where more and more
processing units are scattered around 1. The protocol is fast compared to the pre-
viously existing ones (up to 1 Mbit/s, but usually limited to 500 Kbit/s), and it is
differential, so it guarantees a high signal integrity. It works with only two cables
and many nodes can be added over the same bus. Moreover, the protocol has no
central arbiter or master, and thus no single point of failure; nodes perform the

1A typical BMW vehicle has dozens of mCUs

14

2 – Vehicle

synchronization (or medium access) logic independently. This greatly improves the
robustness of the system, since a faulty node in the network can simply be ignored
while the other functions are still available. Consider, as an example, a short range
radar module: the failure of this module will only affect parking assistance functions,
while it is still possible to drive on the road.

CAN Protocol overview

The protocol1 occupies the two bottom layer of the ISO/OSI stack, the Physical
and Data Link layer. In automotive, it is rare to see higher layer protocols, since
applications are usually designed to directly work with message-based protocols
whose messages fit CAN frames. In other industries though, it is common to have
protocols occupying higher layers of the abstractions stack, such as the CANopen
protocol.

Data is transmitted over a single bus composed by two differential lines, which
have symmetrical voltage level (see fig. 2.2).

Figure 2.2: The two opposite line in the CAN network. Dominant voltage level
corresponds to a 0 bit - [Wikipedia]

In a CAN network, nodes exchanges frames in broadcast on the same bus. Bits
are written on the positive line as a low or high voltage level. These levels are
respectively called dominant and recessive, due to the fact that, being the trans-
ducers open collectors, a given node can only impose a low voltage (dominant) level.
The high voltage level is maintained only when no node is transmitting, or they
are all transmitting a recessive bit (high impedance). For further clarifying this,

1[11] provides a more in-depth description of the protocol.

15

2 – Platform Description

let’s assume two nodes, A and B, are transmitting a bit at the same time: A tries
to transmit a recessive bit (high voltage); B, instead, is transmitting a dominant
bit (low voltage). Since the low level will be imposed on the line, the dominant
bit is successfully transmitted. The A node, sensing the resulting voltage level, ac-
knowledges that the recessive bit was not transmitted. This mechanism is also the
foundation of the arbitrage method, described in the following.

On a single transmission line, not more than one node can write in any given
moment. Collisions are avoided using a cooperative and priority-based mechanism:
when two or more nodes transmit a frame, only the node that is sending the frame
with higher priority will acquire the right to transmit, while the others will stop,
wait, and retry at a later time.

Every node will continuously listen to the bus, even during transmission, and
will compare the emitted signal level against the one observed on the wire. The two
will differ when a recessive voltage level is emitted at the same time as a dominant
level is emitted by another node.

Priority is defined by the binary content of the frame: reading the frame from
most significant bit (MSB) to the least significant (LSB), the frame with lowest
binary value has highest priority. The first sequence of bits of each frame is called
Arbitration ID, noted as (ID) in the following text. Since the ID is transmitted first,
it also determines the priority of the frame.

This means that it is possible to compare the priority of two frames at the
same time as they are still being transmitted. This is how each transmitting node
deduces whether its own message is the one with highest priority among the ones
being transmitted at that very moment. A node will stop transmitting as soon as,
while transmitting a recessive bit, a dominant bit over the network is sensed instead.

There are two ISO versions of the CAN protocol, A and B, which mainly differ
in the maximum length of the frame payload of the ID.

Since the most widely adopted version in the automotive world is A, we will
focus on this, but the same considerations can be translated to the other protocol
version.

A CAN Frame is composed by the following fields:

S
O
F

ID
R
T
R

I
D
E

R
D
L
C

Payload
C
R
C

A
C
K

E
O
F

I
F
S

Figure 2.3: Standard (11-bit Identifier) CAN frame

16

2 – Vehicle

Field Name Length (bits) Description
SOF 1 Start Of Frame. Marks beginning of frame.

IDentifier 11 ID of the can frame.
RTR 1 Remote Transmission Request. Used for indi-

cating a request
IDE 1 IDentifier Extension. Indicates whether it is a

standard or extended frame.
R 1 Reserved bit

DLC 4 Data Length Code. Length of payload, ex-
pressed in number of bytes.

Payload 0..64 Payload of the CAN frame. Length may vary
from 0 to 8 bytes

CRC 16 Cyclic Redundancy Check. Checksum of the
previous payload content.

ACK 2 ACKnowledge. Indicates correct read of data
from listener nodes.

EOF 7 End Of Frame. Marks end of frame.
IFS 7 InterFrame Space. Small buffer space where no

transmission take place

IDs are statically configured by the automaker or the component producer. Each
ID is usually associated to a set of data, and usually, given a certain ID, only one
node sends frames with this ID.

We will describe the payload from a CAN frame using the following convention:
most significant bits appear on the top left, least significant bits appear on the
bottom-right. So western style reading order reflects the order of transmission of
bits. Every octet is written on a different line.

01234567
M
S
B

Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6

L
S
B

Byte 7

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

CAN Payload

For an example on how payloads are usually structured, consider a battery sen-
sor that transmits battery information over CAN. The battery sensor will have been

17

2 – Platform Description

assigned a CAN ID, for instance 0x780. Assuming that the battery information
contains a voltage (16 bit), a temperature (16 bit) and a current (8 bit) field with
some flags (4 bits), we may imagine the following layout:

01234567

F
1

F
2

F
3

F
4Byte 0

VoltageByte 1
VoltageByte 2

TemperatureByte 3
TemperatureByte 4

CurrentByte 5

The content of the payload is not standard and must then be interpreted by
using a predefined schema. Also, the integer value expressed by a sequence of bits
must somehow be converted to a real, decimal value. Usually, this is done by using
a fixed-point representation: a linear relationship is defined that relates the real
measurement and the binary value. To this end, an offset and a multiplicative value
are predefined and used to make the conversion. For instance, the temperature
value in byte 2, 3 of the previous payload expresses a temperature in Celsius using
the following formula:

temperaturereal = 30°C + temperaturehex · 0.01°C
This conversion can happen concretely (performed by the hardware), or only

logically, by adapting the program to directly use the fixed-point representation in
computation (fixed-point arithmetic).

Many formats were defined over the year to describe payload layout and content.
Currently, for the CAN protocol, one of the most widely known formats is Vector™
DBC. Protocol specifications are intellectual property of the car maker, and are
thus not shared, though some of them are available online thanks to the reversing
attempts made by third parties 1.

Usually, measurement samples such as this one are generated periodically, for
instance every 100µs. Intrinsically eventful data, for instance, a button press, are
instead sent at the time of the event.

By knowing the exact format of the transmitted data, it is thus possible to
retrieve important vehicle information using common commercially available CAN
interfaces for computers that provide the raw data

1http://opengarages.org/index.php/Raw_link_references_for_CAN_IDs

18

http://opengarages.org/index.php/Raw_link_references_for_CAN_IDs

2 – Vehicle

2.2 fa_can_ros
Within the scope of the thesis, we are mostly interested in the following vehicle data:

• Longitudinal speed

• Yaw rate

• GPS Latitude and Longitude

• Longitudinal and lateral acceleration

These and other measurements are sent by the Dynamic Stability Control (DSC)
and Navigation microcontrollers. Thanks to the knowledge of the format, we imple-
mented a ROS node called fa_can_ros that provides the following topics:

• /vehicle/commands

• /vehicle/dynamics

• /vehicle/blinklights

• /vehicle/fuel

• /vehicle/gps

• /vehicle/powertrain

The format of these topics is vehicle-agnostic, and thus can be also used with
any other vehicle manufacturer or model with little effort, as we will show next.

The fa_can_ros node runs on the platform’s computer, reads raw CAN data
using an external CAN interface adapter fig. 2.4, performs conversions of raw data
into meaningful measurements, and finally publishes these measurements on the
related topics. Update rate is equal to the same frequency of a certain CAN message
(e.g. 1Hz for GPS, 100Hz for acceleration etc...)

Figure 2.4: CANUSB - A CAN to Serial Converter from LAWICEL

During the implementation of fa_can_ros we encountered the problem of data
deserialization: integer and float values are expressed in various bit lengths (often

19

https://www.can232.com/?page_id=16

2 – Platform Description

multiple of nibble length), values must be converted using offsets and multiplica-
tive factors, endianness must be taken into account. In order to avoid the use of
error-prone conversion of the data through manually written code, we opted to solve
the problem by implementing a C++ code generator and employing some metapro-
gramming techniques.

The code generator (written in Python) processes a CAN message description (in
YAML format) and generates a C++ header and source file for each CAN message
type. The header and source together define a self-contained C++ class that serial-
izes/deserializes the raw payload from/to a data structure containing measurements
values, hiding details on bit positions and order in the CAN message payload. The
C++ classes can then be used in the fa_can_ros program for conversion to ROS
messages using a callback dispatcher. Indeed, CAN frame are continuously read
from an abstract CanInterface, which can be a SocketCAN1 interface, a CANUSB
driver, or a binary log of a previous recording) Each CAN frame is first converted to
a C++ class instance depending on its CAN ID, selecting bits from payload (2.1) and
converting measurements (2.2), then the callback dispatcher calls the corresponding
function that takes care of converting data for ROS (2.3). The use of multiple steps
provides multiple layer of abstraction.
See fig. 2.5 for an high-level illustration of the process.

Listing 2.1: Bitmasking of a CAN payload by the auto-generated code
inline static CAN_GPS_MSG fromData (const uint8_t * data) {

CAN_GPS_MSG A;
A. LAN_BYTES = ((data [7] & 0 b11111111UL) >> 0) << 16 |

(data [6] & 0 b11111111UL) >> 0) << 8 |
(data [5] & 0 b11110000UL) >> 4) << 0);

A. LON_BYTES = ((data [2] & 0 b00001111UL) >> 0) << 16 |
(data [1] & 0 b11111111UL) >> 0) << 8 |
(data [0] & 0 b11111111UL) >> 0) << 0);

return A;
}

Listing 2.2: Conversion from fixed-point to floating-point representation of the mea-
surements
GPS translate (const CAN_GPS_MSG &A) {

GPS gps;
gps.lat = 0.0000501 * A. LAT_BYTES ;
gps.lon = 0.0000501 * A. LON_BYTES ;
return gps;

}

1https://www.kernel.org/doc/Documentation/networking/can.txt

20

https://www.kernel.org/doc/Documentation/networking/can.txt

2 – Vehicle

Listing 2.3: Last step: Conversion to ROS message
void RosConverter :: send(const GPS &obj , const std :: string &msgType ,

const ros :: Time &stamp) {
navSatFixMsg . header .stamp = stamp;
navSatFixMsg . latitude = obj.lat;
navSatFixMsg . longitude = obj.lon;
navsatFixPublisher . publish (navSatFixMsg);

}

Figure 2.5: During compile time, the YAML definitions of message types are con-
verted to C++ classes. These are then used for converting CAN messages from
payload bytes. After another conversion to ROS messages, data is published over
ROS topics

Since the data is available over ROS topics, it is easily used as input in the
localization and perception components of the system as shown in other sections.
Furthermore, this architecture can be transferred to an another vehicle in a short
time by just redefining the YAML files according to the proprietary CAN format.

21

2 – Platform Description

3 Sensors

3.1 Cameras
Image processing research has made great strides in the last years, and since the cost
of cameras has gone down it has become viable to add several of them on a vehicle,
capturing, if required, the full environment around the vehicle. Since cameras are
the closest sensor to human vision, it is an obvious choice to use them as part of the
sensory system of a self-driving car, if not the only one.

The resolution and frame rate of cameras, even commercial-grade ones, has grown
considerably. Still, these sensors have many deficiencies when compared to the
human eye: human vision can adapt to a vast array of scenarios and brightness
conditions, focusing quite easily to both close and distant objects. Cameras cannot
always guarantee this performance: brightness changes require an adaptation time
(e.g. when entering and exiting a tunnel), and scenarios with high contrast can
cause some invisible areas to appear too bright or too dark. Thus, other sensor
types or at least redundant cameras must be considered for a robust system.

Another important characteristic of cameras is Field-of-View (FoV), that is,
the extent of the area in front of the sensor that is projected to the output image.
Usually it is expressed as a horizontal and a vertical angle, the latter being smaller
since usually the images are recorded in a ’landscape’ aspect ratio. Of course, the
larger the horizontal angle, the farther the camera can see on the left or right side.
This is especially useful in turns or in overtakes. The human eyes together have an
horizontal field of view of around 210° [57], allowing to see most of the road even
without rotating the neck. In order to obtain a similar result, fisheye lens or multiple
cameras must be used.

Fisheye lens strongly distort the incoming light towards the focus and, when
coupled with a sufficiently large sensor, they can provide up to 180° FoV. For a
normal, rectilinear camera (i.e. one that presents only minor or no barrel distortions)
the field of view α along one dimension (e.g. horizontal) can be calculated by
knowing the size of the sensor d and the focal length f :

α = 2 arctan
(

d

2f

)

Instead, the formula for fisheye lenses depends on the specific type of lens. They
are distinguished by how they distorts the image: some lenses preserve angles, other
surfaces. For the most common type, the equisolid, the FoV can be calculated as:

22

3 – Sensors

α = 4 arcsin
(

d

4f

)

which turns out to be much higher for a sensor of the same size. Thus, fisheye
lenses allow for a higher field of view with smaller (and possibly less expensive)
sensors. However, the introduced distortions must be accounted for, as will be
shown in section 3.1.

Figure 2.6: (a) Figure 2.7: (b) Figure 2.8: (c)

Figure 2.9: Cameras can hardly capture the details of highly illuminated and dark
objects at the same time (a). For instance, the sensor can be regulated for the
buildings in the back (b) or the courthouse (c). Techniques such as High Dynamic
Range, however, reduce this problem. [Wikipedia]

The image processing techniques will be analyzed in chapter 4, section 4. In the
following sections, instead, we review the sensor model.

Camera models and basic processing

Before being captured by the sensor, light is deviated by the lens system, which
maps points in 3D space over the 2D surface of the sensor. It is important to know
this mapping in order to interpret the camera’s images and transform them into a
model of the 3D environment. Specifically, we need to:

• Measure distances and angles between objects.

• Reconstruct 3D objects from multiple 2D images.

• Remove the distortion effects introduced by the lenses.

A mathematical description of each stage of projection can be obtained, from the
real object’s shape, to the lenses, to the sensor. Often it is possible to simplify the
mathematical formulation of most stages. Knowing the general form of the equations
is not enough, however. We also have to find out their parameters: for instance, the

23

2 – Platform Description

magnitude of distortion and focal distances. Since these values are unique for each
sensor and lens, the manufacturer usually do not provide them. Nonetheless, it is
possible to estimate them using calibration procedures like in section 3.1.

For normal (rectilinear) lens, which only introduce minor distortions to the image
(discussed later), the pinhole camera model is used. In this model, it is assumed
that the full system of lens is replaced by a single point. This point represents the
physics of a hole in the wall of a pinhole camera (or a camera obscura), where rays of
light pass through and are projected over the sensor’s surface. Since no (non-linear)
distortion takes place, the point P is directly projected on point Q over the sensor
depending only on its position and the focal distance (note that it is assumed that
the sensor is exactly placed at the lens focus):

[
xQ

yQ

]
= − f

zP

[
xP

yP

]
(2.1)

Figure 2.10: Projection formula with pinhole camera model [Wikipedia]

As we see, this formula is pretty simple. However, actual lens introduce notable
distortions, often not immediately noticeable, but which would affect calculations.
Before understanding the implications of these distortions, it is necessary to review
how images are processed by the computer.

Even if many different encoding formats for images exist (e.g. JPEG, PNG), in
computer vision images are processed in simple bitmap form: an image is a simple
two-dimensional grid of fixed size, where each cell (named pixel) is associated to one
or more scalar values named channels. Grayscale images have a single channel, an
intensity value; RGB images have three, one for each elementary color (Red, Green,
Blue). In the space of the image, each pixel has a coordinate pair (x, y), expressed
in integer, often from the top left corner (fig. 2.11).

Cameras essentially project each 3D point to a pixel. Distortions affect the
2D coordinates of the 3D point’s projection. If we later try to use the camera’s
images estimate the position of this 3D point, our calculations will be affected by
these distortions, so they have to be taken into account. Thus, for real lenses, the
previous projection formula gets more complex. We need to consider the radial
distance r from the focus, and the radial and tangential distortion coefficients (k1..2,
and p1, p2, respectively). Also, we need to consider that the focus length on the
horizontal (x) axis is slightly different from that on the vertical (y) axis:

24

3 – Sensors

Figure 2.11: (a)

Figure 2.12

Figure 2.13: Distortion examples [OpenCV documentation]

[
y1
y2

]
=
⎡⎣x′ 1+k1r2+k2r4+k3r6

1+k4r2+k5r4+k6r6 + 2p1x
′y′ + p2(r2 + 2x′2)

y′ 1+k1r2+k2r4+k3r6

1+k4r2+k5r4+k6r6 + p1(r2 + 2y′2) + 2p2x
′y′

⎤⎦
where

x′ = xP

zP

y′ = yP

zP

r2 = x′2 + y′2

(2.2)

Fisheye have of course a different model, discussed in the next section along with
the calibration procedure.

25

2 – Platform Description

The camera we use is a UI-3060CP from Imaging Development Systems GmbH
(abbrev.: iDS), a wide-angle industrial camera with USB 3.0 interface:

Table 2.1 Characteristics of the UI-3060CP camera
Sensor CMOS IMX174LQJ-C
Resolution 1936x1216
Optical size 11.345 x 7.126 mm
Focal length 4mm
Field of view 126°
Maximum frame rate 166 frames per sec

The ROS driver for this camera is already available1. Frame rate was limited to
7 or 12 fps since the conversion and storage process by itself is a quite CPU- and
disk-intensive task.

Camera Calibration

For fisheye cameras, we use the model defined in [23]. This model was added to the
recent OpenCV 3 library and it is probably not yet mature enough for production
usage. Indeed, we obtained sufficient but not completely satisfying results.

The standard calibration procedure for a camera consists in obtaining multiple
pictures of a known model from different positions, angles and scales. Usually the
model is a checkerboard or a object that is easily recognizable and has a pattern
known with millimeter accuracy. In the case of the checkerboard, we printed it on an
A3 paper with a predetermined square length. The simple black and white geometry
allows the OpenCV library to easily detect the checkerboard even in the presence of
cluttered backgrounds. For a perfect pinhole, the corner points of the checkerboard
should have a known projection over the 2D image, given by eq. (2.1) but due to
non-linear distortions the corners are slightly offset from their expected positions.
The calibration algorithm tries to find the distortion parameters that best justify
these offsets overall on the collected images, along with linear intrinsic parameters
such as focal length and image center. Once these parameters are known, it is pos-
sible to apply the inverse distortion formula in order to cancel the distortion, or as
it is known, rectify the image. Parameters are calculated by using nonlinear least
squares, with reprojection error as the cost function to be minimized. This error
is the RMS of the 2D Euclidean distance between the detected and predicted posi-
tions of the corners, measured in pixels. Usually, in a correctly calibrated camera,

1http://wiki.ros.org/ueye_cam

26

http://wiki.ros.org/ueye_cam

3 – Sensors

this value should be less than 0.5 pixels.

Our calibration script takes as parameter an input directory where images are
stored, the size of the squares in the checkerboard pattern, and a maximum num-
ber of images to use. It is possible to specify an output directory where detected
checkerboard frame are rectified, in order to evaluate qualitatively the results of the
calibration.

Listing 2.4: fisheye calibration command
./ fisheye_calibrate --pattern_size =9x6 --square_size_mm =30

-- debug_output_dir ./ debug_output_imgs -- max_input_images 250
--input_dir 2017 -11 -16 - calibration_pngs /

The script generates a calibration matrix. The parameters should be recomputed
every time the experimental setting changes (e.g. different camera or lens), so here
we report one of the results we generated during the tests.

K =

⎡⎢⎣661.61057476 0.0 965.86940897
0.0 662.15425078 614.68159879
0 0 1

⎤⎥⎦

P =

⎡⎢⎣661.61057476 0.0 965.86940897 0.0
0.0 662.15425078 614.68159879 0.0
0.0 0.0 1.0 0.0

⎤⎥⎦
D =

[
0.02066096 0.00113071 0.00234002 −0.00137322

]

(a)
(b)

Figure 2.14: Example debug output, before and after rectification

27

2 – Platform Description

3.2 Lidar

Among the technologies that have driven the latest ten years of Autonomous Vehi-
cle research, lidar is for sure the most important one. Lidar sensors directly solve
the problem of reconstructing 3D geometries around the vehicle, with a high speed
and resolution, at the expense of higher sensor cost, which is nonetheless constantly
decreasing over the years.

While they can be implemented using many different technologies (range gated
sensors, RF modulation, etc.) current automotive lidar devices are based on the
principle of pulsed laser Time-of-Flight: they emit a short (in the order of nanosec-
onds) laser pulse that is then reflected by an external surface back to the sensor
(fig. 2.15). Travel time is accurately measured, and used to calculate the distance
travelled by light. Multiple such laser emitters and receivers are mounted on a
frame rotating on one axis (fig. 2.16). Thus, a 360° point cloud of the environment
is generated. In order to further reduce the cost and number of moving parts of the
system (and therefore its fragility), lidar manufacturers are developing solid state li-
dars based on MEMS or phased array optics. Such sensors will probably replace
the existing ones within years, making mass-production possible and thus enabling
use of lidars in retail vehicles.

Table 2.2 Comparision of lidar devices in automotive. Prices are being reduced
year by year, especially when many units are produced. For instance, the VLP-16
reached a 4000$ price in 2018, half of the original price
Product Producer Year of release Price at release (estimated) ($) N. of rays
HDL-64 Velodyne 2010 80000 64
HDL-32 Velodyne 2010 30000 32
VLP-16 Velodyne 2015 8000 16
M8 Quanergy 2017 6000 8

Usually these sensors generate point cloud data, along with intensity information,
in 3D space. Intensity depends on the surface material, incidence angle of the laser
and lightning condition of the environment, so it may vary for the same object. Still,
it is an important datum that can allow to detect lane markings.

Two lidars were used on the vehicle: a Velodyne VLP-16 (also known as PUCK)
and a roadview automotive lidar. These sensors, as many other lidars, have a similar
working principle and differ mostly for number of lasers, field of view, accuracy and
range.

28

3 – Sensors

Figure 2.15: Laser diode and receiver are mounted on a rotating frame. Distance of
measured point is given by ∆t/2 · c

Figure 2.16: Multiple laser distributed vertically allow to obtain almost a fully spher-
ical surface. Sensor usually provide points measurements in spherical coordinates.

3.3 Future trends

Rotating a laser accurately while performing range measurements requires high-
precision manufacturing. Small errors in angle can generate high inaccuracies in the
position estimation of the reflected object. Furthermore, a device that continuously
spins is bound to lower durability and higher chance of failure. A normal user ex-
pects his car to last several years while preserving most of its reliability. Thus, even
if the sales of current generation lidars are increasing worldwide, it is clear that they
will never reach mass production for standard consumers.

Big lidar companies and new startups are focusing nowadays on building the
next generation of these sensors using new principles. Generally, these sensors are
called solid state lidars since they do not include rotating components. The
complexity of the product is reduced to the single integrated circuit. Since the

29

2 – Platform Description

cost depends mostly on the research for the optimal manufacturing process and
production costs can be quite low in mass production scenarios (exactly like today
happens for processors) it is expected that these new sensors will reach a cost of
1000$ or even less. Such components will probably soon be added on many medium-
high price range vehicles along with radars in the near futures. Companies are
betting on different technologies for achieving this results:

MEMS lidars This solution exploits the use of microelectromechanical systems
(MEMS) for moving the rays instead of a classical rotating device. Infineon’s lidar
for instance moves a tiny mirror for directing the laser, controlling its inclinations
electrically. Caption and other companies follow a similar path.

Optical Phased Array These sensors are quite similar to the old phased array radar:
by accurately controlling the phase of multiple elements in a row it is possible to gen-
erate a coherent ray along only one direction, while other directions are destructed
due to interference. This is performed along two directions in the sensor produced
by Quanergy. Beyond the mentioned advantages, since the elements are controlled
by software it is possible to steer the ray in many patters, obtaining a custom field
of view or even random access on a restricted angle.

Hybrid approaches Distributing array elements along two dimensions requires a
number of elements proportional to the square of the sensor’s width, thus increasing
costs. Some solutions [21] use OPA only for one direction, while the second direction
is obtained separately using lenses that deviate the ray depending on the wavelength,
which is purposely controlled.

3.4 Point Clouds
A point cloud is particular type of 3D computer image: while a 2D image is a set
of value (pixels) densely and regularly distributed on a 2D rectangle, a point cloud
is a simple set of points in R3, often generated by a lidar or other techniques such
as stereoscopy or photogrammetry. In an image, the channels are often the Red,
Green, and Blue color intensities as sensed by a CMOS or CCD sensor. In a point
cloud instead we have a single intensity value, proportional to the energy of the
received reflected pulse. Some 3D sensors are capable of also collecting color data
with various solutions; those are called RGB-D sensors, where D stands for depth.
Such sensors, however, are rarely used in automotive applications so they will not
be treated here.

Usually, point clouds are stored in memory as an array of tuples, where each
tuple represents a different point and has at least three floating point elements for

30

3 – Sensors

the absolute position in Cartesian coordinates, plus one more for each channel. So,
in most situations there is a fourth value for the point’s intensity.

One of the main differences compared to camera images is the fact that, being
distributed in 3D space, point clouds are intrinsically ’sparse’, that is, there are
many empty volumes within the boundary of a scan, while in an image we do not
have missing pixel at any coordinates. Nonetheless, in the case of lidar and similar
sensors, no data means data: if a pulse travelled from the sensor to the reflected
object, we know not only that there is an object there, but we can also suppose
that there are no bodies along the path of the pulse (ray). We can use this absence
of data for reconstructing empty spaces. Applications of this observation in the
automotive world include detecting available lanes or free parking slots.

More details on point clouds and their processing methods can be found in
chapter 4 section 2.

Velodyne VLP-16

The smallest of VLP family, PUCK (fig. 2.17) offers 16 laser over 30°, making it
suitable for road applications even if not as powerful as the 64 or 32 lasers version.
Accuracy is around 3 cm, range up to 100 m. Being it symmetrical, it is preferably
mounted on top of the car roof, close to the center. Sensor data is sent through
a UDP stream over an Ethernet connection. Intensity value of each laser sweep is
sent along with its azimuth value (altitude is fixed for each laser). It is thus possible
to reconstruct the 3D point cloud starting from the collection of intensity values
expressed in spherical coordinates. This final conversion is performed by software.

Figure 2.17: Velodyne VLP-16. A cost-effective rotating lidar for various robotic
applications.

It is possible to configure the sensor rotation speed and return mode (i.e. a policy
for selecting one or more among multiple reflection for the same laser channel).
Throughout the thesis, the sensor was used in strongest mode, with 20 Hz (1200

31

2 – Platform Description

RPM) rotation. No software was written for acquiring data from this sensor, since
the existing ROS driver velodyne1 provided all the required functionality.

Figure 2.18: The VLP-16 mounted on top of the vehicle

Automotive Lidar

Purposely for automotive use, these kinds of lidars are mounted at bumper’s height
and around the vehicle (usually up to 4 devices; see fig. 2.19). These lidars have
a small FoV, a reduced number of lasers and a range shorter than 100m. The
data from each lidar is sent through a TCP connection, and it can be processed in
real time on a computer, that joins the inputs from all the sensors under a unique
interface.

Figure 2.19: Position of the four automotive lidars around the vehicle. Almost
360°coverage is obtained by joining the data from all the sensors.

1https://github.com/ros-drivers/velodyne

32

https://github.com/ros-drivers/velodyne

3 – Sensors

At the time of writing, there is no open-source ROS driver for this sensor, so we
wrote our own solution. We used a C++ SDK that takes care of retrieving data from
the sensors through the TCP connection and deserializes it. On top of the SDK,
we implemented a ROS layer that publishes point cloud data and object detection
results.

Listing 2.5: Excerpt from the automotive lidar ROS driver. This functions converts
a point cloud from the SDK to ROS’ PointCloud2 format

sensor_msgs :: PointCloud2 toPointcloud2Msg (
const NewScanData * scan) {

sensor_msgs :: PointCloud2 msg;
msg. header .stamp = toRosTime (getStamp (scan));
msg. header . frame_id = std :: string (" bumper_lidar ");
msg. height = 1;
msg.width = scan -> points . length ();
msg.data. reserve (scan -> points . length ()*

sizeof (int32_t)*4);
msg. is_bigendian = false;
msg. point_step = sizeof (int32_t) * 4 + 1;
msg. row_step = msg. point_step * msg.width;

msg. fields . push_back (makePointField ("x", 0,
POINT_FIELD_FLOAT32 , 1));

msg. fields . push_back (makePointField ("y", 4,
POINT_FIELD_FLOAT32 , 1));

msg. fields . push_back (makePointField ("z", 8,
POINT_FIELD_FLOAT32 , 1));

msg. fields . push_back (makePointField ("rgb", 12,
POINT_FIELD_UINT32 , 1));

msg. fields . push_back (makePointField (" intensity ", 16,
POINT_FIELD_UINT8 , 1));

msg. is_dense = true;

for(const auto& point : scan -> points) {
pushFloat32 (msg.data , point.x);
pushFloat32 (msg.data , point.y);
pushFloat32 (msg.data , point.z);

uint32_t color = chooseColorForPoint (point);

pushUInt32 (msg.data , color);
msg.data. push_back (point. intensity);

33

2 – Platform Description

}

return msg;
}

Lidar error sources and problems

The accuracy of the sensor depends on construction quality (small angle errors
of the emitted laser may be important on long distances) and rotation measure-
ments quality. These kinds of errors are often reduced by the manufacturer by
providing post-production calibration data unique to each unit.

Another source of error is multipath effect (or multipath interference), which
may cause distance overestimation due to the laser traveling a longer distance, like
in GNSS (See section 3.5 for a detailed explanation of the phenomenon).

These kinds of errors can cause mismeasurements of few centimeters. While
important in applications such as geographical survey or 3D object scanning, we
believe they are not so important since the behavior of all algorithms depends on
sets of dozens or hundred of points, where errors can be filtered out.

However, in our particular case, we had to pay attention to errors due to vi-
brations and rotation of the VLP-16 lidar. Since it rotates at high speed (1200
RPM), when not mounted correctly it follows a precession movement, which causes a
strong radial distortion on distant points. After unfortunately noticing this problem
during dataset analysis, we opted for manually filtering out points with distances
greater than 45m.

Lidar works with the assumption that line of sight between the sensor and the
reflecting object is free. This is not always the cause. Transparent or mirror-like
surfaces often cause unpredictable effects on the final point cloud. Also, they are
most likely not be detected. The F.A.Q. on the Velodyne website1 states that rain
and snow are not a big problem for lidars. On our trials however, we observed how
a mild-strong snow makes the VLP-16 mostly unusable, since it detects snowflakes
around the vehicle. We assume then that the Velodyne statements can be applied
only to 32 or 64 laser models.

Black surfaces can almost totally absorb the incident laser light. We noticed
that on long distances opaque, black cars are poorly visible for the sensor.

These results tells us that a lidar-only solution seems impractical for autonomous
vehicles, and that the support of cameras is probably essential, since it can always
work at least as a fallback.

1http://velodynelidar.com/faq.html

34

http://velodynelidar.com/faq.html

3 – Sensors

3.5 GPS
Since localization is one of the main topics of this thesis and self-driving vehicles in
general, we will review here the basic principles and related problems.

A Global Navigation Satellite System (GNSS) is a positioning system that ex-
ploits the use of multiple satellites, equipped with a high accuracy clock, that con-
tinuously transmit their own position along with a transmission time (TOT). A
receiver on the ground that can sense the signal of at least four satellites, can tri-
angulate its own position by estimating the time of flight of each satellite signal
(fig. 2.20).

Figure 2.20: Triangulation of a GPS receiver. The ToF of each signal is estimated
by the receiver.

Three signals are not enough since time is a variable too, due to the fact that
the receiver cannot have an high accuracy clock. Thus, the Time of Arrival (TOA)
is affected by the time skew ts of the receiver.

Ignoring possible corrections, in their simplest forms the equations for calculating
receiver position are the following:

c · (tT OT,1 − tT OA,1 + ts) =
√

(x1 − x)2 + (y1 − y)2 + (z1 − z)2

c · (tT OT,2 − tT OA,2 + ts) =
√

(x2 − x)2 + (y2 − y)2 + (z2 − z)2

c · (tT OT,3 − tT OA,3 + ts) =
√

(x3 − x)2 + (y3 − y)2 + (z3 − z)2

c · (tT OT,4 − tT OA,4 + ts) =
√

(x4 − x)2 + (y4 − y)2 + (z4 − z)2

Taking into account clock errors, receiver can solve by using least squares or
other optimization methods.

35

2 – Platform Description

GNSS Technologies, performances and source of errors

The ubiquitous GNSS technology, GPS, is in wide use since 1995. Since then,
GLONASS (Russian), BeiDou (Chinese) and the most recent Galileo (European)
were launched. The operating principles are almost identical, so that nowadays
one receiver can easily support all four systems at the same time. All of them
offer encrypted and public frequencies, with precision varying from 0.01 to 10 m.
Unfortunately, the accuracy of a GNSS can get much worse in many cases. Indeed,
many error sources may affect the evaluation of distance from the receiver to one
satellite. The most importance sources will be listed here:

• Propagation in troposphere and ionosphere
Speed of light is not constant. Weather conditions affect the travel time of
light through troposphere and ionosphere, thus introducing an error in the
previous equations.

• Multipath effect
This error affects the actual traveled distance of the signal, and is the most
important in urban scenario. GPS signal may bounce between buildings before
reaching the receiver, which, even if it will try to reject low SNR signal, will
perceive a fake distance between it and the satellite. This can introduce errors
directly proportional to the reflected path.

• Satellite position inaccuracies
The position of satellites, as accurate as it can be, is still affected by error.

Since the receiver uses a least-squares technique, the availability of more than
one GNSS signal improves accuracy. However, even with the new Galileo system,
accuracy cannot be better than one meter due to the previously listed problem.
Further improvements may be obtained through the use of new techniques that
exploit the use of a ground station.

Differential GPS Errors due to signal propagation in the troposphere and iono-
sphere and inaccuracies in Satellite ephemeris are highly correlated for close points
on the surface of the earth. This means that two GNSS receivers will be equally af-
fected by approximately the same error when they are close. The idea of Differential
GPS (DGPS) is to use one or multiple fixed reference stations whose position is
known with centimeter level accuracy. The reference station, knowing its position, is
able to evaluate the difference between actual and GNSS perceived position and can
thus provide correction information to other GNSS receivers. Data is usually locally
broadcast using a radio link. A mobile GNSS receiver applies the correction obtained
from the DGPS station, thus obtaining an accuracy of dozens of centimeters.

36

3 – Sensors

Real Time Kinematics Centimeter level accuracy can finally be obtained thanks to
Real Time Kinematics (RTK) sensors. Such sensors use more advanced electronics
and software for obtaining the position not only by the data within the GNSS signal,
but also from the phase-shift of the carrier wave. This means that the receiver can
theoretically differentiate distance that are a fraction of the carrier wavelength. For
instance, for the Galileo E1 signal (1575.42Hz), the wavelength is 19cm. The soft-
ware complexity relies in finding out the right distance among the possible multiple
of the wavelength. This is possible using statistical method that take the original
GNSS signal as prior and, as in DGPS, correction from the base station.

GNSS in automotive

While these technologies were indeed successfully proven and used in research or
land survey, their application in the automotive world seems impractical since that
would require the support of ground stations every few kilometers. Moreover, for an
autonomous vehicle, it is more important to know its position with relation to the
road that its absolute latitude and longitude. Thus localization techniques based on
odometry and HD maps are more promising.

Thus, RTK GNSS are used for research for ground truth data or during the
creation of HD map, since the high infrastructure costs are not high for a few units.

The series GPS in a car can be fairly inaccurate, with error usually around 1
to 20 meters. In cities, accuracy further decreases due to strong multipath effects
caused by buildings.

GPS sensors on the platform

As stated previously, we can retrieve GPS data from the vehicle using the CAN
network. Unfortunately, no accuracy nor SNR information is available. Ground
truth data is provided by an AHRS system (MTi-G-710 fig. 2.21). This sensor, other
than receiving a GPS signal at 100Hz, uses an internal Kalman filter for improving
position estimation. We used the Automotive software scenario for the internal
Kalman filter. A ROS package for this sensor is already existing and provided by
ETH Zurich1. This package also provides accuracy data and raw accelerometer
values.

Both the MTi-G-710 and its antenna were mounted on the vehicle’s roof, close
to the center in order to reduce centrifugal effects.

1https://github.com/ethz-asl/ethzasl_xsens_driver

37

https://github.com/ethz-asl/ethzasl_xsens_driver

2 – Platform Description

Figure 2.21: XSens MTi-G-710

3.6 Wheel Odometry
We do not use a specific sensor for wheel odometry, but it should be noted that
the longitudinal speed coming from CAN data is expressed with the original vehicle
wheels rotation as the zero value. We have to remind that, by itself, wheel odometry
is not a good method of localization because, being a form of dead-reckoning, its
accuracy decreases with distance, especially along the lateral axis. Moreover, cars
in realistic scenarios are strongly affected by slip, though the use of all-four wheel
speed sensor help averaging out this source of error [6].

See [6] and [25] for a report of odometry performance. Albeit error strongly
varies depending on path, the error in our first-hand experience has been of a few
dozens meters after a few kilometers when using just dead-reckoning.

However, when embedded within a Kalman filtering framework, odometry can
be a quite good source of data, as we demonstrate in section 6.

The advantage of this technique is that it can be implemented on all cars, since
all that is needed is the data from the ABS speed sensor. Such sensors are already
high quality, since they are designed for stability control and anti-lock braking ap-
plications.

In its most basic version, an example of odometry data integration is reported
in listing 2.6.

Listing 2.6: Simple integration (dead reckoning) of odometry data for calculating
2D pose
def integrate_vel (velocity_m__s , yaw_radian , dt_s):

mag = velocity_m__s * dt_s
return np.array ([mag*np.cos(yaw_radian),

mag*np.sin(yaw_radian)])

38

3 – Sensors

callback called when new odometry msg is available
def callback (self , msg):

dt_s = (msg. header .stamp -
self. last_msg_stamp). to_nsec () / 1.0 e9

self.yaw += np. deg2rad (msg. yaw_rate_deg__s) * dt_s
self.pos += integrate_vel (msg. velocity_m__s ,

self.yaw , dt_s)

Figure 2.22: Dead reckoning of the vehicle, with speed and yaw rate given by wheel
rotations

3.7 Summary of the platform

In fig. 2.23 we report the components involved and their connections. The xsens
MTi-G-710 IMU, its GPS antenna, the VLP-16 and the iDS uEye USB camera were
mounted on the front carrier rack (see section 3.7). In order to reduce the effects of
centrifugal forces, which would cause noise on IMU readings, it would be optimal
to position the IMU close to the center of gravity of the vehicle. It was not possible
to do this, but the position is still quite aligned to the center. The front camera
position allows to have a full front view, partially obstructed by the car’s front hood.
The camera is centered horizontally and parallel to the ground. The VLP-16 is also
parallel to the ground and positioned a bit on the left.

39

2 – Platform Description

Figure 2.23: Major components of the system

(a)

Figure 2.24: Camera, GPS antenna and xsens IMU mounted on top of the vehicle.

40

Chapter 3

Localization

One of the most fundamental functions of a robot that is able to navigate its envi-
ronment is the ability to observe and “learn” its surroundings, and estimate its own
position and orientation. The first is commonly known as mapping; the latter as
localization. These two basic problems can be solved separately and independently,
or come together to be solved in lockstep, in the formulation known as SLAM (Si-
multaneous Localization And Mapping).

In this thesis, we have investigated options for both mapping and localization.
We provide a few notes on the theoretical underpinnings of the problem and the
analyzed solutions, and then provide a description of the evaluated options. In the
end, we present the final results, and our final choice of software.

1 Problem and approach
Just like most complex organisms, a robot will need to observe and study its envi-
ronment, and it will do so by processing information through dedicated measuring
devices called sensors. Out of this information, the robot will then estimate its own
position and orientation relative to a map of the surrounding environment. The
problem can be mathematically expressed as the search for:

p(xt|ut, ..., u0; , xt−1, ..., x0; mt) = p(xt|ut, xt−1, mt) (3.1)
This task is valuable in and of itself, and it is a fundamental input for many

other functions in the system. Depending on the particular functions that need to
be performed, a certain degree of accuracy will be required out of this resulting
estimate.

It’s worth noting that much of the motivation for this formulation of the problem
lies on the fact that there is no “perfect” absolute positioning device that yields a
pose estimate that is sufficiently accurate, recent, and reliable in every possible
environment, for all of the typical functions of an autonomous vehicle. Typical

41

3 – Localization

examples of such demanding functions are collision avoidance with other users of
the road, maneuvers such as lane change and parking, and autonomous navigation
in indoor (or roofed) environments.

A modern GPS device will come close to such a device, but still not enough.
Moreover, all sensors will have a certain degree of sensor noise, usually explicitly
declared and quantified by the manufacturer. Another phenomena that robots often
have to deal with is sensor aliasing: this is the general situation where two different
ground truths are read as the same by a given sensor; in other words, whenever two
places “look just the same” (to the “eyes” of that sensor). Movement also generates
another source of noise, named effector noise, due to the fact that the command
coming from the computer is applied with a certain degree of uncertainty, and that
the environment itself will respond to the movement in unexpected (unmodeled)
ways (e.g. slippery or uneven road, different terrain types...).

Since localization is still of the utmost importance, the general strategy adopted
by most robots is data fusion: readings from a variety of sensors, possibly based on
different physical phenomena, are all included in the same mathematical framework
with the objective of producing an estimate that is more accurate than any single
input. In the case of a vehicle-like robot such as our research car, the most popular
types of sensors are GPS navigation devices, cameras and LIDARs. (Details on our
particular setup can be read at section 3.)

The problem can therefore be further split in two “phases”: first the readings
from each sensor are all transformed into a localization estimate; then, these esti-
mates are all collected and integrated in a single estimate that constitutes the final
belief about the robot’s own position and orientation.

Regarding the first half, different input data types call for different approaches.
We’ve tried out both algorithms that understand images (from cameras) and point
clouds (arrays of points coming from LIDARs or Time-of-Flight cameras). GPS
readings also need to be converted from a geographical frame of reference (e.g.
a latitude-longitude coordinate) into a local one. This conversion is also used to
“anchor” the final result to a geographical location (i.e. generally, position tracking
is performed, but the global localization problem is also solved to a degree).

Finally, the final integration of all sensor-specific estimates is performed by a
Kalman filter implementation dedicated to this particular task.

Considering the diverse tasks that use the localization estimate as input, different
estimates are produced each with a different error profile. We have a local estimate,
which is based on local measurements only (speed, acceleration, rate of turning), is
only valid in the near surroundings of the vehicle and accumulates error over the long
distance, but never presents any discontinuity across time steps; and then we have
a global estimate which also integrates GPS readings, which causes it to converge
automatically to more correct estimates on a geographical scale, at the cost of the
occasional apparent “jump” (time discontinuity) on the map.

42

2 – Theory notes: Bayesian algorithms and Kalman filtering

A third estimate comes from SLAM, a slightly different problem solved by differ-
ent algorithms. This estimate is anchored to a 3D map of the environment produced
simultaneously by the same algorithm. This one is a more adequate input for cases
where e.g. the vehicle needs to interact with the environment or closely watch
obstacles. This family of algorithms is explained in section 3.

2 Theory notes: Bayesian algorithms and Kalman
filtering

Reading the problem description presented in the previous section, it is evident that
the core of the issue is that the robot’s “view” of the world is always incomplete,
and subject to error-generating phenomena such as sensor noise and aliasing. The
mathematical tool for dealing with such partial knowledge is probability theory,
which means that our final resulting estimate will also have a margin of uncertainty.
In other words, the robot will have (and update) a belief about its own position and
orientation, which will hopefully be precise enough for its mission.

The most general tool for iteratively updating a belief based on new information
(or measurement) is the Bayes filter1, also known as recursive Bayesian filtering.
Keeping in mind that time is considered discrete throughout, this algorithm makes
two basic assumptions:

• Markov assumption: the current state (xt) only depends on the state at the
previous time (xt−1) and the most recent control (ut):

p(xt|ut, ..., u0; , xt−1, ..., x0) = p(xt|ut, xt−1) (3.2)

• The system is a Hidden Markov Model: at time t it has state xt but we
are only able to “read” measurement zt. The system is therefore modeled in
terms of a state transition probability (p(xt|xt−1)) and measurement probability
(p(zt|xt)).

Under this model, the algorithm can be formulated like the pseudo-code at algo-
rithm 1. For better comprehension, consider the example where the system under
estimation is a simple robot, commanded by velocity, where the state, command,
and state transition laws are as following:

xt =
[
x
y

]
ut =

[
x′

y′

]
xt+1 = xt + ut ∆t

1Where not otherwise explicitly mentioned, the bibliographical source for the entire section is
[56]

43

3 – Localization

The procedure (see algorithm 1) is composed of two steps:

• The prediction step, where the system under estimation is simulated for one
time increment, supposing that it is being subject to our control/command ut.
The computation is based on the state transfer probability p(xt|ut, xt−1) that
models how the state can evolve from the last estimate, under the command.

• The update step, where the state estimate produced at the prediction step is
corrected in order to reconcile it with the new measurement zt just acquired.
The likelihood of the measurement, coming from the system model, is utilized
during this step. The constant η simply scales the product to the [0, 1] range,
in order to convert it into a valid probability value.

This procedure is called at every time increment, supplying the last update of
the system state belief x̂t−1, and the latest value of the control and measurement
signals. The Bayes filter is the most general tool for keeping and updating beliefs
about any system that satisfies the two aforementioned assumptions, since it is valid
for any probability distribution of the system state belief.

A variant of the Bayes filter that is particularly relevant for robot localization is
called Markov localization, and is listed at algorithm 2.

Algorithm 1 The Bayes filter, or recursive Bayesian filtering algorithm.
function BayesFilter(x̂t−1, ut, zt)

▷ Prediction step
x̂∗

t ←
∫

p(xt|ut, xt−1) x̂t−1 dx
▷ Update step

x̂t ← η p(zt|xt) x̂∗
t

return x̂t

end function

Algorithm 2 Markov Localization, a variant of the Bayes filter with a map as an
additional input.

function MarkovLocalization(x̂t−1, ut, zt, m)
▷ Prediction step

x̂∗
t ←

∫
p(xt|ut, xt−1, m) x̂t−1 dx

▷ Update step
x̂t ← η p(zt|xt, m) x̂∗

t

return x̂t

end function

44

2 – Theory notes: Bayesian algorithms and Kalman filtering

Algorithm 3 EKF localization, a special case of Markov localization that can be
concretely implemented by virtue of using an Extended Kalman Filter to provide
for the probability estimates. It assumes that (1) state and output variables can
be modeled by Gaussing variables, and (2) linearization yields a sufficiently good
approximation for the state and output transfer functions.

function EKFLocalization(µt−1, Σt−1, ut, zt)
▷ Prediction step

µ̄t ← g(ut, µt−1)
Σ̄t ← Gt Σt−1 GT

t + Rt

▷ Update step
Kt ← Σ̄t HT

t (Ht Σ̄t HT
t + Qt)−1

µt ← µ̄t + Kt (zt − h(µ̄t))
return µt, Σt

end function

45

3 – Localization

The Markov Localization algorithm has one extra input m compared to the
basic Bayes filter. This represents any sort of “environment memory” kept by the
program. Examples for such a memory can be a database of locations indexed
by their appearance (for vision-based location recognition), or a large-scale point
cloud of the environment (for lidar-based implementations). The formulation of
the algorithm given in algorithm 2 is purposely abstract: as long as the program
keeps any kind of memory of past visited locations and possesses a system model (a
formulation of p(xt|ut, xt−1, m) and p(zt|xt, m)) that takes it into consideration, it
can be considered an implementation of the Markov Localization algorithm.

One practical, concrete design of Markov localization that is popular and useful
in real robots is EKF localization, named after its use of an Extended Kalman
Filter. The Extended Kalman Filter estimates the state and output of a dynamical
system modeled after the following system of equations (assuming the case of discrete
time):

xt = g(ut, xt−1) + ϵt

zt = h(xt) + δt

where g and h are the state and output transfer function respectively. The
functions g and h do not have to necessarily be linear, but need to be known and
computable point-wise, together with their first derivative. The error terms (ϵ,
δ) are assumed normally distributed. The symbols ut, xt, and zt represent the
measurements, state, and output vectors respectively. The EKF works by assuming
a Gaussian distribution for state and output posterior estimates and error terms, and
approximating g and h by their first-order Taylor expansion (i.e. by linearization):

xt ∼ N (µt, Σt)
zt ∼ N (µ̄t, Qt)

g(ut, xt−1) ≈ g(ut, µt−1) + Gt · (xt−1 − µt−1)
h(xt) ≈ h(µ̄t) + Ht · (xt − µt)

where Gt and Ht are the Jacobian matrix of g and h, respectively. Note how µt

is used as the best current guess for xt and as origin point for localization. As such,
the model is approximated by the following equations:

xt = g(ut, µt−1) + Gt · (xt−1 − µt−1) + ϵt

zt = h(µ̄t) + Ht · (xt − µt) + δt

The EKF algorithm is a special case of the Markov localization algorithm that
keeps a local posterior estimate of the state as a sequence of Gaussian variable, and
uses the EKF formulation to provide expressions for p(xt|ut, xt−1) and p(zt|xt):

46

3 – Theory notes: Simultaneous Localization and Mapping

v = xt − g(ut, µt−1)−Gt · (xt−1 − µt−1)

p(xt|ut, xt−1) =
√

det(2πRt) exp
(
−1

2vT R−1
t v

)

w = zt − h(µ̄t)−Ht (zt−1 − µ̄t)

p(zt|xt) =
√

det(2πQt) exp
(
−1

2wT Q−1
t w

)
By plugging the above equations into the abstract specification of the Markov

localization algorithm, one obtains the formulation of the EKF algorithm as repre-
sented in algorithm 3. For simplicity, the term m representing environment memory
in Markov localization is excluded, but the explicit full formalization can be found
in more specialized texts, such as [56].

3 Theory notes: Simultaneous Localization and
Mapping

The Simultaneous Localization and Mapping problem (SLAM) consists in progres-
sively building a map of the environment, and contextually finding the vehicle’s
position in it. This is significantly more difficult than the mapping and localization
problems taken separately, because of the circular dependency: mapping works from
a known ego pose (e.g. fixed, or already computed by localization), while localiza-
tion algorithms similarly assume a known map (e.g. predefined, or already detected
by sensors with sufficient confidence).

Mathematically, one can define the SLAM problem as the estimation of

p(x1:t, m | z1:t, u1:t) (3.3)
Like in the previous paragraph, here z1:t and u1:t indicate the past history and

current value of measurements (sensor readings) and control inputs. This formula-
tion is named full SLAM, and is distinguished from on-line SLAM :

p(xt, m | z1:t, u1:t) (3.4)
The difference lies in the fact that the latter only seeks to estimate the current

(most recent) pose, while the first attempts to keep (and possibly rewrite) the full
history of the vehicle’s movement. This has consequences on the structure of the
algorithms dedicated to each variant. Both are important in practice, although the
evaluated algorithms fall more often in the full category.

47

3 – Localization

To get a more concrete picture, one may look at the mutual dependence rela-
tionship between the “localization” and “mapping” parts of the problem. Mapping
uses localization as an initial hint about where to place a newly observed portion
of the environment (e.g. new sensor readings) in the map. Localization depends on
mapping for place recognition: the map is designed to offer a way to recognize al-
ready visited places, and on the event of a successful recognition, correct the current
localization estimate. In the case of full SLAM, the correction is propagated to the
past, adjusting the whole history of past poses as well. This is referred to in SLAM
literature as the Loop Closure problem.

4 Visual SLAM

4.1 Cameras for visual SLAM
Thanks to the use of binocular vision, biological mechanisms, and experience, hu-
mans are able to estimate distances and track their position while moving, especially
in a structured environment like a grid of roads.

Replicating such ability on robots became an important field of research since
the application to robots for Mars exploration, and was eventually extended to var-
ious applications such as 3D object reconstruction and mapping. This family of
algorithms can estimate distances and reconstruct geometries using multiple image
of the same scene, captured from different points. Since the projection of 3D points
over 2D images is well known, it is possible to apply inverse projection formulas
in a probabilistic way, so that more data (e.g. multiple frames, more features) can
be used to improve accuracy. For such applications, both multi-camera (especially
stereo) and single-camera setups are viable options and still being improved in re-
search. Stereo cameras directly provides two frames taken from slightly different
positions (usually they face the same direction and are separated by a small dis-
tance, typically around 10 cm), while in the monocular cameras case it is necessary
to use subsequent frame during movement.

In this thesis, we evaluate the use of a mono-camera system. While, in principle,
performance and accuracy are lower with respect to stereo systems, it is still unclear
which of these two solutions will be adopted more widely in the future. Tier 1
suppliers like Bosch already provide both products. Currently, the OEMs are divided
in this choice, with BMW, Jaguar and Subaru focusing on the first, and Volkswagen
and Toyota on the latter 1.

1statement from http://www.researchinchina.com/Htmls/Report/2016/10231.html. It

48

http://www.researchinchina.com/Htmls/Report/2016/10231.html

4 – Visual SLAM

An argument in favour of monocular cameras comes from Mobileye, which indeed
focuses entirely on this solution:

“The Mobileye mono-camera was inspired by human vision, which only
uses both eyes to obtain depth perception for very short distances,” says
Amnon Shashua, co-founder, chairman and CTO of Mobileye. “There-
fore, the added benefit of a second camera lens is only relevant for short
distances. Driving-scene interpretation is based on much longer dis-
tances. All depth-perception cues for farther distances – such as perspec-
tive, shading, texture, and motion cues, that the human visual system
uses in order to understand the visual world – are interpreted by a single
eye. Therefore, Mobileye understood that a single-lens camera could be
the primary sensor to enable autonomous driving.”

[Mobileye - About]

Due to the interests in the solutions adopted by Tesla and comma.ai and the
ease in setting up a monocular system, we favored this while aware of the better
capabilities of stereo system in some applications.

4.2 Basics of monocular SLAM

Monocular SLAM methods generally belong to two categories: feature-based or
direct. In feature-based methods, the program finds salient points (named fea-
tures) in the image that can easily be tracked between frames. As previously said,
the position of these points on the different frames are constrained by geometrical
projection. The features are then added to the map in the position that minimized
the reprojection error computed on past camera poses. In direct methods instead,
the image’s pixels are all used, and their placement in the map is estimated based
on the minimization of a photometric error. Figure 3.1 offers a general comparison
between the two approaches.

should be noted that these companies are at different stages on this research

49

https://www.mobileye.com/about/

3 – Localization

Figure 3.1: Schematic comparison of direct vs. feature-based SLAM methods. [22]

Typically, a feature-based method is composed by two processes running con-
currently. This was a central innovation of the PTAM system by Klein and Murray
[27], adopted by most of its successors.

The first process is for data acquisition and camera tracking, and runs the fol-
lowing cycle:

1. Prepare the image, by normalizing, scaling and blurring for filtering out noise
and giving more robustness to the feature detector with respect to the vari-
ability of illumination conditions.

2. Detect features.

3. Match the features with one or more of the previous frames, or with the map.

4. Compute the 3D roto-traslation of the camera that most plausibly would yield
the observed projected position of the features.

5. Add the new frame and pose to the map, together with relationships linking
it to the frames and poses already stored. These relationships form the pose
graph.

The estimation of the pose of a newly received frame is setup as a maximum like-
lihood estimation: what is sought is the roto-translation parameters that maximize

50

4 – Visual SLAM

the likelihood of a correct match, which is inversely proportional to the reprojection
error. Techniques such as random sample consensus (RANSAC) allow to quickly
evaluate many roto-translation hypotheses by considering a random subset of the
image features.

Once the most probable transform between the camera poses is accepted, usually
the algorithm optimizes the full map periodically. During this phase, if the camera
returns close to a previously visited location, the current estimate is “forced” to
coincide with the previous estimate, and the correction is then propagated to the
whole path. This is called loop closure, and it adds a strong constraint, both for the
positions and rotations along the path, see fig. 3.2.

While new poses are added to the pose graph, the other process continuously
optimizes it so as to minimize the global reprojection error. In order to perform
this optimization, a complete formulation of this error has to be available. Different
algorithms make different proposals on this regard.

Figure 3.2: When a loop is detected (between the Begin and the End positions for
instance) a constraint is added to the map, thus the global optimization algorithm reeval-
uate all the poses in the existing path (green) in order to obtain a new path (red) that
explains the loop closure.

Feature detection/recognition

There are many algorithms available for feature detection and feature match-
ing/recognition (the task of matching the same feature between different images).
They are often evaluated in terms of computational time (usually it’s in the order
of ms), robustness, recall and precision. Among the most used are SIFT, FAST,
SURF and the most recent ORB, on which the ORB-SLAM algorithm is based.

51

3 – Localization

An overview on these algorithms and their performance can be found in [18]. A
brief explanation on how these algorithms are implemented follows.

All these methods generally define a descriptor, which is a vector or bitstring
that identifies the appearance of the feature, and a distance or dissimilarity function.
Matching then happens by selecting the mutually “nearest” features based on the
distance function; for this, several methods are available for deciding which distances
to compute, and matching descriptors based on the result. For example, other than
the brute-force solution which works fine in many cases, there is FLANN, a Fast
Library for Approximate Nearest Neighbors (see [34]).

Features are detected and recognized in the image by applying simple statistical
computations in the neighborhood of a pixel. The neighborhood has fixed size, for
instance a squared patch of 17 × 17 pixels around a point. The operations may be
performed on all the pixels, scanning the image from top-left to bottom-right, or on
a subset preselected through a faster but less selective algorithm. The same opera-
tions are often performed on multiple scaled versions of the image in order to make
the algorithm robust to scale variability. The operations are very different depend-
ing on the technique, but they are usually similar to a gradient computation, since
we are interested in points similar to corners, where brightness changes consistently
and strongly in the neighborhood (think about the corners of a traffic sign, or the
tiles in a pavement). SIFT, for example, includes a convolution of the image with
a 2D difference of Gaussians function in every point. Such convolution results
in high values close to edge or corners. Only points with response (output of the
function) over a pre-defined threshold are considered.

Other algorithms such as ORB, while they also work on a squared patch around a
point, compute simple differences between pairs of pixels around the neighborhood.
The coordinates of the pairs, with respect to the center point, are precomputed
(see the original paper [48] for the machine learning techniques involved in the
computation of these point coordinates).

These differences are encoded in a binary vector of fixed length, equal to the
number of pairs, called the feature vector. This vector, when computed for the
same corner in different images, will have similar values even in presence of Gaussian
noise, brightness or orientation change. This makes the ORB descriptor very robust.

When matching features between two images, the feature vectors are compared
using Hamming distance1 and matched using brute force (all possible matches are
tested) or with the help of a nearest neighbour search.

In comparison with other feature detector and descriptor algorithms, ORB is
fast (enough for real-time tasks) due to the simplicity of the operations and has

1i.e. the number of different elements in a binary vector

52

4 – Visual SLAM

Figure 3.3: An example of precomputed pair of the ORB algorithm from the original
paper. The positions of these points seems random due to the fact that it is chosen
by optimization

Figure 3.4: When searching features, the same computation is performed around possible
salient points in the image. For each pair, in order, the brightness value of the selected pairs
of pixels are subtracted. The results are encoded in a binary vector (1 when difference
is ≥ 0, 0 when < 0) of the form [1, 0, 1, 1, . . . , 0, 0, 1]. Beyond being easy to compute,
these vectors are also easy to compare (simple Hamming distance). Note that there is
a simplification in this example: the selection of the pixels pairs is performed along the
orientation of the considered patch. This allow to have the same or similar result even if
the image is rotated.

comparable performance to SIFT, plus it is available under an open-source license.
The type of operations involved can also be easily performed in parallel on GPU.
These features have made it popular in robotics.

53

3 – Localization

Figure 3.5: Example of matching of ORB features from the OpenCV Tutorials

4.3 ORB_SLAM2
Built on top of the ORB feature detector and the g2o graph optimization algorithms,
ORB_SLAM [35] is a complete SLAM algorithm for stereo or monocular cameras.
The system tracks ORB features over the captured images and generates a graph
of poses and observations. The graph is then used for applying a fast bundle opti-
mization 1 that optimizes the poses and the created map.

The graph is composed by KeyFrame structures, which include the pose of the
camera and the ORB features of that frame. While the camera is moving, a new
KeyFrame is added to the graph every time the rototranslation between the cur-
rent frame and the last KeyFrame is enough different (i.e. small movements are
ignored, and instead incorporated in the last KeyFrame). It should be noted that
in all visual odometry algorithms it is easy to estimate translations of the camera,
unlike rotations, which pose difficulties due to the fact that projections during ro-
tations are not linear. Although adding a new KeyFrame with high accuracy helps
the algorithm follow fast rotations and movements with good performance, a large
number of keyframes would make the overall algorithm slower and raise memory us-
age, since the optimizer has to go through every pose and we would have more data
to store (such as ORB features). Thus, ORB_SLAM introduces a parallel thread
that periodically removes redundant keyframes, which are those that do not affect
the results of the bundle adjustment algorithm. This makes the system suitable for
long distances as well.

ORB_SLAM also has a feature not usually found in other SLAM algorithms:
it supports localization in a pregenerated map thanks to the matching of ORB
features. When going through the same road, the algorithm is capable of noticing

1Bundle optimization is a task very similar to SLAM, since it consists in jointly reconstruct-
ing a 3D map together with camera poses from a set of images. However, while the two topics
shares a lot in common, SLAM is distinguished because it is usually performed incrementally (as
new measurements arrive), because it is not limited to projective geometry but can incorporate
different models. [7]

54

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_matcher/py_matcher.html

4 – Visual SLAM

the same elements in the image and thus can point out the viewpoint in the map.
This is possible thanks to the bag of words approach: An index of occurrences of
every ORB feature allows to match the ORB features from the current image to any
stored keyframe. This is the same mechanism that enables loop closure.

Optimization is performed using the g2o library, which implements a variant of
Levenberg–Marquardt applied to graphs (see appendix 3 for a general description
of the algorithm).

We used ORB_SLAM2[36], an updated version from the same authors with
some improvements and support for stereo or RGB-D cameras (not used here). The
algorithm is applied using only the rectified images from the central front camera.
Our target was to reproduce similar results to the ones reported in the paper over
the KITTI1 dataset, so we positioned and tuned our camera in the most similar way.
After rectification, we crop the image in order to maintain most of the horizontal field
of view, while cropping out the hood of the vehicle and the sky. It is still important
to keep distant objects from the background in the image, since ORB_SLAM2 is
capable of using them for improving rotation estimate. This is due to distant points
not changing following a translation of the camera.

1http://www.cvlibs.net/datasets/kitti/

55

http://www.cvlibs.net/datasets/kitti/

3 – Localization

(a) (b)

(c) (d)

Figure 3.6: Sequence from one of the attached test video where ORB_SLAM2 is running.
In the top left corner of every image, the 3D viewer shows the current position of the
camera (green), the previous keyframes (blue) and the distribution of past and current
feature points.

As we can see in fig. 3.6, ORB features (indicated by green squares) are almost
uniformly distributed on the whole image. This is enforced by searching for ORB
features in every cell of a grid in which the image is divided. This distribution helps
find points distributed along the Z axis of the camera (X axis of the car) which is
really important because coplanar points do not add enough geometric constraints
during rotations. The more points are distributed in 3D space, the more accurately
we can track the pose change of the camera.

The marked features are the features that were successfully tracked in previous
frames. Usually these features are robustly detected and they come from corners
(for instance, in windows, lane markings, signs). Usually, the number of matched
features is between 50 and 300. If not enough features are tracked, then the system
will not be able to follow the camera movement any longer, causing a “camera
lost” situation. This can happen on empty environments, where all surfaces appear
uniform; for instance, a parking lot with no markings. It is a known limitation that
affects all vision-based localization systems and that highlights the fact that other
valid sources of odometry are needed for a proper implementation.

It is important to note how some features will actually have the effect of decreas-
ing the accuracy. For instance, let’s assume that some points are tracked on a close,

56

5 – Lidar SLAM and localization

moving vehicle. If the vehicle is moving, the points on the vehicle will change their
position with respect to the static points of the scenario (for instance, points be-
longing to buildings). RANSAC, as explained earlier, should recognize these points
as outliers, making the system robust to these kind of problems. However, this is
not always the case, and the points of the vehicle will affect the evaluation of the
camera movement. As suggested in section 2, hinting ORB_SLAM to ignore these
points would improve overall performance.

We observed that ORB_SLAM’s capability to optimize the pose and the path
using the previously mapped points works as expected in many situations. For in-
stance in sequence of fig. 3.7 we see the car going through a roundabout already
visited (a), but this time the system wrongly computes the camera movement as-
suming that the radius of the round is much shorter (b, c). However, while exiting
the roundabout, the system recognizes the previously known position and realigns
the whole path around the roundabout, improving it.

(a) (b)

(c) (d)

Figure 3.7: Roundabout.

5 Lidar SLAM and localization
Thanks to the high accuracy of the generated point clouds, lidars are a viable and
proved sensor to use as base for localization and mapping. Most solutions are based
on comparing multiple scans and estimating their relative pose, in a way similar to

57

3 – Localization

Structure-from-Motion algorithms. At a basic level, most methods project the 3D
points from the lidar’s scan to the horizontal plane, in order to simplify operations
and make them more intuitive to debug. In robotics, it is indeed often the case
that the robot moves on the horizontal plane. For cars, however, this solution
may not always work well, except in the short range where the vehicle does stay
approximately on a plane, i.e. such methods are fine on straight roads, but will
cause problems on hills, ramps etc.

We will analyze the most common methods and explain why we chose the
ndt_mapping package for mapping.

It must be highlighted that these methods can both work standalone (e.g. with-
out Kalman filtering and, in some cases, without odometry data) and within other
localization systems for sensor fusion (See section 6).

5.1 Iterative Closest Point
This is one of the most basic methods for lidar SLAM. It works in 3D space and it
performs quite well in structured and dense environments. As a SLAM algorithm,
ICP [3] tries to solve the following problem: given two poses and the point clouds
generated from the two pose as points of view, what is the transform (i.e. the roto-
translation) between them? By solving this problem multiple times during vehicle
movement, the algorithm can be used for reconstructing the vehicle’s path. Usually,
the accuracy of the path suffers due to the accumulated error between each pose cal-
culation, but this problem is solved using bundle adjustment techniques (see Loop
Closure at section 4.2).

The algorithm can also be used as a constituting step of a larger localization
solution. For instance, assuming that we have a highly accurate estimation of pose
(thanks, for instance, to the use of an RTK GPS; see section 3.5), we can build a
map by accumulating multiple point clouds and then aligning them. Such procedure
of aligning multiple scan is also called registration in literature.

Many improvements to the original ICP algorithm were suggested, and they do
obtain better results in some cases. We will however shortly describe the classi-
cal algorithm, which, being really common, is included in the PCL (2.1) library.
Intuitively, the algorithm works by “overlaying” two point clouds using successive
approximations (fig. 3.8). For a human, this operation is quite easy, and so it is for
the algorithm as long as the point clouds are “similar enough”. Indeed, the original
paper proves convergence, but only to a local minimum. So it is the duty of the
developer to make sure the two point clouds were generated from close positions, in
order to give a good starting point to the algorithm.

Given the new point cloud P and the model point cloud X, the ICP algorithm
finds for each point in P the closest point in X. A correspondence is assumed
between these closest points, and a measure of misalignment is calculated as the root

58

5 – Lidar SLAM and localization

Figure 3.8: Alignment of two point clouds using the ICP algorithm. The misalignment
between the model (black) and the data (green, then red) is reduced iteration after iteration
converging to a local minimum. It is not possible to determine if the algorithm converged
to the global minimum. [pointclouds.org]

mean square of the distances between the points. This is also used as the objective
function. The algorithm calculates the transformation matrix to be applied to P that
reduces the misalignment. The procedure is repeated until a certain preconfigured
tolerance is reached.

5.2 Normal Distribution Transform
Like the ICP algorithm, the Normal Distribution Transform (NDT) [4] computes
a geometrical transformation between a given point cloud and an existing model,
which is often a pregenerated map or a point cloud collection generated during
SLAM like in fig. 3.9.

The algorithm however introduces the idea of simplifying the model point cloud
by transforming it into a set of normal distributions in 2D space.

First, the space is divided in a fixed size 2D grid. Given a point cloud, each point
belongs to a cell in the grid depending on its (x, y) coordinates. Then, for every
cell containing at least three points, a 2D normal distribution is computed. The
distribution is simply computed by fitting the 2D coordinates of the points within
the cell:

mean: q = 1
n

∑
i

xi

covariance matrix: Σ = 1
n

∑
i

(xi − q) (xi − q)T

59

http://pointclouds.org

3 – Localization

Figure 3.9: The normal distribution transform allows to track the position of the vehicle
by matching the point cloud coming from the sensor (colored points) against an existing
point cloud map (grayscale) using the ndt_matching implementation from Autoware. The
map is generated using the same process described in section 7.3

At this point, we have a sum of normal distributions, which, being the normal
distribution differentiable, implies we have a piecewise differentiable function.

Given a new point cloud, it is possible to choose the optimal rotation and
translation parameters in order to match the cloud with the model by using the
standard Newton’s method (See appendix 1). More in detail, the parameters
p = (ϕ, tx, ty)T define a transform from a 2D point (x, y) in reference frame A to a
point (x′, y′) in reference frame B:

T :
(

x′

y′

)
=
(

cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

)(
x
y

)
+
(

tx

ty

)

Optimal values for the parameters p are sought that align a new scan to the
model, summarized by a grid of normal transforms. Starting from an initial estimate
p ← p0 = (ϕ0, tx,0, ty,0) we calculate a score of the match between the model and
the scan:

score (p) =
∑

i

exp
(
− (x′

i − q)T Σ−1
i (x′

i − q)
2

)

60

6 – ROS implementation: robot_localization

In other words, the “goodness” of matching is computed as the sum of the
probabilities yielded by the grid-of-Gaussians model, computed for each point of the
new point cloud and summed. The value of p that maximize the score is sought by
using successive approximations. As said before, this is possible since the objective
function is differentiable. The exact expressions of the Jacobian and Hessian matrix,
used in the Newton’s method, can be found in the original paper.

6 ROS implementation: robot_localization
Localization is an essential and ubiquitous task in robotics, as most robots need
to localize themselves or parts of them (such as a manipulator, even if the robot
does not move around an environment). As such, ROS naturally provides many
high-quality implementations of localization and SLAM algorithms, catering to a
number of different use cases. Among these, some notable options are:

• amcl, [47] which is included in the standard ROS navigation stack [46], and
provides a probabilistic 2D localization system based on the KLD-sampling
Monte Carlo localization approach [15];

• robot_localization, [33] which is a generalized Extended Kalman Filter that
supports a wide range of sensor inputs;

• Google Cartographer, [19] a real-time SLAM system by Google, mainly in-
tended for LIDAR (point cloud) and inertial sensors input, both in 2D and
3D;

• ORB-SLAM [36], a feature-based visual SLAM system, which we discussed
more in detail in section 4.3;

• LSD-SLAM [14], a direct (full image) visual SLAM system.

The first choice we made was whether to use a full SLAM system (see section 3)
or a more traditional filtering-based localization solution. We decided for the latter,
mainly on the grounds that we easily get two different types of estimates out of the
algorithm: (1) a local estimate, akin to the result of performing odometry, that is
continuous and can be considered accurate in the immediate surroundings of the
vehicle, but accumulates an error if measured against the car’s starting location; (2)
a global estimate, which may be subject to discontinuities (i.e. the vehicles seems
to “teleport” itself a few feet away every once in a while), but is generally accurate
with regards to a global (geographic scale) map.

We then chose the implementation based on a few criteria, the most important
being:

61

3 – Localization

• Compatibility with many sensor types. Our experimental vehicle is
equipped with many sensors, including cameras, LIDARs, inertial platforms,
GPS, speed meters, some being part of the vehicle’s standard equipment, and
some we installed ourselves. In theory, localization can be aided by utiliz-
ing the data from all those sensors, so we were interested in implementations
compatible with them.

• Implementation quality. ROS is not just made out of concrete components
(such as software and collaboration infrastructure on the Internet), but also
conventions. A node that does not adhere to ROS’ conventions poses many
costs and challenges: it is harder to integrate with the rest of the system,
harder to make tools for, may require modifications to its source code (and
therefore integration in our build system). These costs are non-essential, and
are ideally avoided by using software with high implementation standards.

• Documentation quality. Implementation quality would be largely useless
without good documentation that guides the user through the configuration
and tuning of the ROS nodes.

The project that best matches our requirements that we know of is robot_localization.
The software includes two complete, high-quality, well-documented implementa-
tions of filtering-based localization; one is based on an Extended Kalman Filter
(ROS node ekf_localization_node), the other on an Unscented Kalman Filter
(ukf_localization_node). Both nodes have identical interfaces with regards to
ROS parameters, topics and services, so they can be swapped with almost no ad-
ditional work (other than adapting the part of the configuration that is specific on
the type of filter).

Importantly, the package also includes tools to convert the estimate from the
vehicle’s linear frame of reference to the WGS84 geographic frame of reference (which
is significantly non-linear over a large enough scale) and vice versa. In particular,
a node named navsat_transform_node allowed us to easily bring the geographical
coordinates provided by GPS into a form compatible with the other inputs, and use
it alongside other sensors.

We evaluated our results by visualizing the location estimate overlaid over a
geographical map by using the Mapviz visualization tool [31]. Mapviz uses another
method for making localization estimates compatible with geographical data, from
the swri_transform_util package. Both are published as open source by the
Southwest Research Institute.

robot_localization is very strictly compliant to REP-103 [42] and REP-105
[43], ROS’ standardized convention for units of measure and the communication
of odometry through messages and frame of reference (in the sense of TF frames,
see section 1.1), respectively. For the purpose of localization, the most important

62

6 – ROS implementation: robot_localization

convention is that the TF tree has root in a frame named map, and that it contains
the chain of transforms map→ odom→ base_link, where:

• map is the fixed frame, conventionally rigidly attached to “the world”. Any
map of the global environment will be expressed in this frame.

• odom is also a world-fixed frame, but it differs from map in order to represent
the accumulated odometry error. The discontinuities (“teleports”) of the car’s
trajectory will also be visible in the map→ odom vector.

• base_link is the vehicle-fixed frame. It represents the current location of the
robot.

Somewhat non-intuitively, even though we have two localization estimates in-
dependently computed (global and local) that relate map and odom to the same
base_link frame, it is not possible for base_link to be represented in both frames
of reference (i.e. the TF has to be a tree, and a node can not have two parents).
Instead, there is a map → odom transform, computed from the difference between
the two estimates.

Another useful topic covered by the REP-105 specification is the convention for
representing geographical data (such as GPS). navsat_transform_node requires
GPS messages to follow this convention in order to translate them into the same
form as other inputs.

6.1 Configuration
The state estimation nodes from robot_localization are both configured in the
same way. Different message types can be used as input, in arbitrary combinations,
as long as they follow REP-103 and REP-105 [38]. We made use of the data extracted
from the car’s CAN bus by our fa_can_ros package (see section 2.2):

• GPS

• Accelerometer

• Wheel odometry

The difference between the two state estimation nodes that we run as part of
the localization service is whether or not they use the GPS feed as input. The local
estimator (odometry) does not use the GPS, and mostly integrates the velocity and
acceleration feed, while the global estimator does. Since the GPS input is relatively
precise, it is configured with correspondingly smaller values in the error covariance
matrix. As a consequence, the global estimator will follow the GPS’ lead quite close,
and be subject to the “jumps” that were already mentioned.

63

3 – Localization

This can be directly seen in the launch files for the localization service 1. Each
input must be associated to boolean mask (given as a ROS parameter), specifying
which of the state variables to which the particular input can contribute. The
complete list of state variables estimated by robot_localization is:

[x, y, z, α, β, γ, ẋ, ẏ, ż, α̇, β̇, γ̇, ẍ, ÿ, z̈] (3.5)

The dot indicates a derivative, so the variables are, in the order: position, heading
(as Euler angles), linear velocity, angular velocity and acceleration along the three
axes.

Each input is linked to a state estimation node through a collection of configu-
ration parameters. Other than the ROS topic, a boolean mask needs to be provided
that matches the state variables vector. It will have a true value whenever the
corresponding value of the state variable is to be considered. For instance, the
configuration for the wheel odometry input is the following:⎡⎢⎢⎢⎢⎢⎢⎣

true false false
false false false
true true false
false false true
false false false

⎤⎥⎥⎥⎥⎥⎥⎦ (3.6)

That is, we only use the following components from the wheel input: [x, ẋ, ẏ, γ̇].
One may ask why ẏ, i.e. lateral speed, is included, since only the longitudinal speed
is measured. This is because we can consider a simplified physical model of the car,
where lateral speed is practically 0.

7 Results

7.1 Localization performance
Usually the performances of a localization system are evaluated against a more
accurate device, which is more expensive or that needs particular installation/setup.
In our case, we used the Xsens MTi-G-710 as ground truth source. The device,
beyond providing raw accelerometer and compass data, integrates a proprietary
Kalman filter. In order to obtain the best accuracy from it, we configured it in
the ’automotive’ scenario (id=4) with the following commands, that also enable
additional outputs:

rosrun xsens_driver mtdevice.py -c if2000,oq400fw,rr,mf,vv,sw -x 4

1Further details about our concept of services are at chapter 6

64

7 – Results

The measure consists in comparing the error (RMS) of the normal GPS data
and the output of the localization system against the XSens ground truth. Results
differs of course depending on scenarios, boolean and covariance matrixes.

Unfortunately we were not be able to find optimal parameter values that would
improve the localization on both the small (tens of meters) and big scale (kilome-
ters). After various trials, we confirmed some of our expectations:

• The odometry is very accurate on small scales.

• The accuracy and the frequency of the accelerometer are not high enough for
being an valid source of information in this system. It is thus ignored, explicitly
or implicitly through the use of a covariance matrix with high entries.

• The error model of the GPS of the car is not Gaussian.

The GPS provided by the vehicle augments the original position with unknown
internal methods, and, from observing the data, we can assert the behaviour is
considerably different from standard GPS. The validity of a Gaussian model for this
data is thus valid up to a limited degree.

We believe this problem makes it impossible to improve localization in large
scales and reach a significantly better quality than GPS.

When giving more weight to the odometry instead, the system is able to also
track small movements, like lane and speed changes. These settings should be used
when we are more interested in the accuracy in a small scenario. For instance, the
map generated in section 7.2 results from these setting.

For reference, we include the path shown in the Mapviz tool and the related
error measures for some tests.

Measures are reported in meters, in the local UTM frame. Red/Orange corre-
sponds to XSens data, blue to EKF output, green to GPS.

65

3 – Localization

Around Ostbahnhof N.2

In this trial, the EKF estimates the position with only slightly improvements. The
odometry helps tracking the position during turns.

Path distance 3 485 meters
GPS X rms 5.02
EKF X rms 4.89
GPS Y rms 5.83
EKF Y rms 5.71

66

7 – Results

67

3 – Localization

Bridge N.1

Here we can see the pathological effect of GPS causing the localization system to
fail, especially around the final part of the path (section 7.1). The final error of the
EKF output is even worse that the simple GPS estimate.

Path distance 12 145 meters
GPS X rms 6.63
EKF X rms 6.94
GPS Y rms 8.97
EKF Y rms 10.79

68

7 – Results

69

3 – Localization

Figure 3.10: Example of the GPS causing the localization to fail: at point 1, the GPS
(green) tries to track the straight path, while the Xsens (orange) correctly follows
the right turn. The EKF filter output (blue) initially follows the odometry data,
detecting the right turn, but eventually the system becomes unstable due to the
wrong GPS estimate, causing oscillations. A correct state is only recovered around
point 2

7.2 Generation of the Neue Balan map

As stated in section 6, it is possible to achieve good localization results just by
using odometry and GPS data. The system, in this configuration, is able to record
point clouds during a trip, so that each point cloud scan is associated to a position
measured with high accuracy. The collected scan are then processed offline by an
optimization algorithm 1 that locally registers point clouds. The result is an high
resolution 3D map of the Neue Balan Campus (Munich), which hosts the main
headquarters of Objective Software.

1https://github.com/CPFL/Autoware/tree/master/ros/src/computing/perception/
localization/packages/lidar_localizer/nodes/ndt_mapping

70

https://github.com/CPFL/Autoware/tree/master/ros/src/computing/perception/localization/packages/lidar_localizer/nodes/ndt_mapping
https://github.com/CPFL/Autoware/tree/master/ros/src/computing/perception/localization/packages/lidar_localizer/nodes/ndt_mapping

7 – Results

Figure 3.11: 3D point cloud model of the Neue Balan campus in Munich, from four
different point of view. The system is able to maintain alignment between buildings
and roads. Of course, the laser scanner has some difficulties scanning higher and
distant points. These kind of model can be used for many scopes as explained earlier.

Figure 3.12: A promotional photo of the campus, for reference
[http://www.neuebalan.de/]

71

3 – Localization

Figure 3.13: The level of details are high enough for distinguishing trees, poles,
pavements

7.3 Generation of Urban Scenarios map

The generation works in urban scenarios as well, even if the computation of long
point cloud recording is computational intensive and requires some hours even for a
few kilometers.

72

7 – Results

Figure 3.14: 3D map of a road using the same configuration. Also vehicles are well
captured.

Figure 3.15: Birdeye view of Grünwalder Strasse, from dataset Bridge N.1

For reference, we add some comparision between the point cloud map (top) and
the 3D model from Google Maps (bottom).

73

3 – Localization

Figure 3.16: Grödner Str., 81547 München, Germany - (48.104655, 11.569883)

74

7 – Results

Figure 3.17: Grünwalder Str. 31, 81547 München, Germany - (48.107557, 11.573141)

75

76

Chapter 4

Detection

1 Camera Detection

1.1 Objects
Object recognition from camera images was an important topic well before the
idea of self-driving vehicles. The task was once performed through the use of local
image features and classical machine learning algorithms. Today these techniques
are superseded by deep neural networks (appendix B section 2) and were not used
within the thesis, so we will not discuss them here.

Deep neural networks for object recognition and detection

The following is a short overview of how neural networks are applied for the task
of object recognition and detection. A short introduction on neural network and
common terminology is provided in appendix B.

The capability of deep neural network in recognizing object are the results of
the convolutional structure that can extract features from low to increasingly higher
level. The first layers of the network are able to detect line patterns. In later stages,
simple shapes are detected, then compositions of those shapes and so on. As stated
before, the relative position of all of these features is meaningful thanks to the
convolutional stages. It is possible to know what each neuron recognizes by using
optimization methods that optimize for a single neuron, which generate images like
the ones in fig. 4.1.

In complex networks able to detect tens of categories of objects it is not always
so easy to distinguish such features for the human eye in a given network. This
makes neural network known for poor introspection and control over errors, thus
the visualization of these features is also an important topic in research.

77

4 – Detection

Figure 4.1: Deep neural network are able to recognize more and more complex
feature at each layer. Simplifying a bit, the network first recognizes elements like
lines or circles, then wheels and windows, finally vehicles [nVidia - based on [29]]

The output layer of the network and final processing functions are changed in
order to obtain different types of output. By default, the outputs of the last layer
are real values, hardly meaningful.

In the recognition case, one simple application is to assign an image to one
category of a list of predefined possibilities. For instance, deciding if in a camera
image there is a car, a truck, a bike or a person.

In order to obtain a percentage of confidence, indicating the probability that an
image belongs to one of these categories, the softmax function is applied to the
output layer. Indeed, this function will normalize the output to an array of real
values within the range (0, 1), and the sum of these values will be equal to 1. Thus,
these values can be interpreted as the probability for the image to belong to one of
the categories.

The expression for calculating this probability is for a neuron output zj is then:

P (j) = ezj∑K
k=1 ezk

For instance, given the four outputs from the neural network [2.2,−4.1, 3.92, 4.1]
after applying softmax we will have [0.0753451, 0.000138357, 0.420767, 0.50375], whose
sum is equal to 1. If our categories are car, truck, bike, person as stated before,
then we will affirm with 0.50375 confidence that the image shows a person.

78

1 – Camera Detection

Now, suppose we have an image that is not focused on a single object but on
a more varied scenario, where multiple objects are present. We are interested in
detecting all the objects, their category and their position in the image. As usual,
the position of an object in an image can be defined with a bounding box, that
is, a box centered around the object, often encoded with a tuple of four values:
(centerx, centery, width, height)

This kind of network is useful for instance when applied to multiple patches of
the image, some of which may contain an object of interest. This approach is called
region proposal. It is possible to scan all the regions one by one, from top-left to
bottom-right.

Other algorithms are able to directly identify both objects and their position
within the image. These approaches have better performance both in recognition
and timing, since they do not need to repeat inference at different scale and position
within the image.

The YOLO detector is one of these.

1.2 YOLO

The image recognition capability was built on the second iteration of the YOLO
neural network, YOLOv2[40]. As of today, this neural network achieves almost the
best performance when compared to existing solutions and yet is very light, so much
that it can run on smartphone.

The innovation of this network relies in its simple pipeline and learning approach:
No region proposal, no complex functions applied to the output, but just a network
that outputs both predicted class and bounding box directly, so that it is possible
to train it end-to-end1. As reported in the original paper [41], the use of a single
network with no additional steps in the pipeline has many advantages: the full sys-
tem is faster to execute and train and contextual informations are implicitly used
since there is no region proposal and convolutional properties are maintained on all
scales.
The network works by dividing the input image in a grid and in each cell of the grid
a class is associated. Also, in each cell a variable number of bounding boxes (usually
2) are predicted. These bounding box are characterized by the (x, y) coordinates,
relative to the cell origin, the (w, h) dimension, relative to the full normalized image
dimension, and finally the confidence, defined as Pr(Object) · IOU truth

pred , that is the

1That is, the input and output of the system corresponds to the input and output of the full
system

79

4 – Detection

probability that an object exists in the cell times the IOU1 between the prediction
and the ground truth. The training jointly optimizes for these output values, even-
tually picking only classes with higher confidence. The architecture fig. 4.2 of the
network is also simple, composed by convolutional and maxpool layers.

Figure 4.2: architecture of the original YOLO network. YOLOv2 adopts a sim-
ilar network, but empirically add some steps in order to improve accuracy while
maintaining realtime performances on high end hardware

The results of YOLO on the standard datasets are impressive, both for accuracy
and performance. On our images fig. 4.3, the network shows good qualitative per-
formance even with no further tailoring from our side. The recognized objects are
published on the image_recognition topic as an array of bounding boxes containing
the corresponding class ID and confidence probability.

1The Intersection over Union is a common measure of the quality of prediction of the
bounding box, it is defined as Area(Overlap)

Area(Union) of two bounding boxes. A good predictor should have
a bounding box close to the ground truth and with similar size, thus with IOU close to 1

80

2 – Lidar Detection and Recognition

Figure 4.3: YOLOv2 applied on our images. Generally, the detector is able to find
car, people and traffic lights in the sequence of images, but fails to detect all objects
in a single frame.

2 Lidar Detection and Recognition
There is a growing and recent literature on the problem of detecting and recognizing
objects from a point cloud. The problem is quite close to the corresponding 2D
image case and, not surprisingly, many algorithm are a transposition from 2D to 3D
space. In image processing 3D data is processed through the use of histograms,
features, euclidean metrics and recently neural networks. Some basic solution
for detection generates 2D image from 3D data. While this works, it does not
fully exploit the information provided by a laser scanner, and thus achieves lower
performance than direct 3D analysis. Tracking of recognized objects can still be
based on Kalman filtering, also here with the necessary modification for handling
3D translations and rotations.

2.1 Processing point clouds with PCL
The Point Cloud Library [49] is a collection of algorithms and utilities created for
processing point clouds. It provides functionalities for loading and saving data,
extract features and statistics, filter noise, detecting surfaces, objects and register

81

4 – Detection

multiple point clouds. Released under a BSD License, is the de facto standard
library for processing point clouds the same way OpenCV is for 2D images.

The available algorithms are usually used in a pipeline within a C++ application:
The original point cloud obtained from a sensor is filtered, features and keypoints
are detected, recognition may be performed on statistics or other metric properties.
It also offers visualization tools. The library is enriched by new state of the art
algorithms every year.

2.2 Clustering
Objects in most 3D environments, especially urban scenarios, have well defined
boundaries. Even without evaluating futures, it is easy to notice how the shape of
cars, people, buildings stand out on the road. It is thus possible to collect the points
of distinct objects from a point cloud in different clusters. After this process, we
still do not know if the cluster of points corresponds to an house or a car or any
other class of objects, but we have a well defined object that can be assumed to be
a rigid body. In the next lidar scan, the object will move or rotate, but its structure
should be mostly the same.

This is a required step for some object recognition algorithms, which are basically
classification algorithm, that tell if a set of points looks like a class of object. These
algorithm take as input a single cluster at time, and they output the probability the
object belong to a class. Usually this method is called region proposal. We will
look further in these methods in the following sections.

A few notes on data structures and search algorithms

A simple laserscanner like the VLP-16 generates hundreds of points at every scan.
For realtime applications it is necessary to use advanced data structures in order
to reduce computational complexity. Structures such as KdTree and Octree allow
algorithms that normally executes in O(n2) to reduce their complexity to O(n ·
log(n)).

It should be noted that many of these techniques are used in machine learning
in general, where the dimensionality of data can be greater than 3.

KdTrees KdTree are a data-structure that divides points in a K dimensional tree
(where K = 3 in this case). It allows so quickly solve some geometrical problems
where it is necessary to evaluate the euclidean distance between points.

A KdTree is built by splitting a node of three in two along one dimension at
time. The dimensions are alternated ciclically at every level of the tree (for instance:
X axis, Y axis, Z axis and then again X axis). Usually the median point is chosen
as middle point. This way, the final tree will be balanced.

82

http://en.wikipedia.org/wiki/BSD_licenses#3-clause_license_.28.22New_BSD_License.22_or_.22Modified_BSD_License.22.29

2 – Lidar Detection and Recognition

The structure allow quick search in a neighbours of a point. For instance, in
order to select the points within a certain radius, it is enough to go bottom-top
from one of the tree leaves until a point with distance greater than the radius is
found.

Octree Like KdTrees, octrees split points spatially by assigning them to nodes in
a tree. Each node usually represents a cube, divided in eight “sub-cubes” of equal
size, associated to lower nodes, and so on, recursively. The minimum leaf side
length is chosen by the programmer. Octree are not usually balanced, and their
usefulness relies in quickly navigating between empty and filled space. They are
often used in filtering and compression, since they can simplify a large point cloud
while maintaining the geometrical information with some losses. They are used in
navigation algorithms, where they work similarly to occupancy maps in 2D space.

Filtering Point clouds generated by a lidar are subject to many outlier points,
sometime due to sensor inaccuracies or error phenomena, some time due to the
presence of actual small bodies in the environment (rain, snow, leaves, paper etc...).
Since for the automotive cases we care about modeling large and structured bodies
such as people or trees, we filter out outliers using various techniques.

One of the most simple and often the least aggressive consists in just comput-
ing the normal distribution of each point’s neighborhood in 3D space. Standard
deviation and mean are computed, and points outside of a fraction multiple of the
standard deviation, (e.g. 1.5x), are removed.

Other filtering techniques, not always suitable depending on the final scope,
consists in algorithms based on intensity or on a model reconstruction. For instance,
surface can be reconstructed by computing the angle between multiple points. Then
points too far from the surface may be removed.

2.3 Euclidean Clustering
The basic Euclidean clustering algorithm, as the name suggest, is based on Euclidean
metrics. It works by processing all the points one by one and assign them to a cluster
when their distances are within a certain radius. The algorithm fig. 4.4 executes
this process:

1. Create an empty queue Q of points

2. For each point in the original point cloud, add the point to the queue Q and:

(a) Extract a point P from the Q. Add it to cluster Ci

(b) Add all the points within a certain radius from P to the queue Q

(c) Go to item 2a until the Q is empty. When empty, cluster Ci is completed

83

4 – Detection

3. Repeat for each remaining point in the original point cloud

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Sequence of Euclidean Clustering steps:
A non assigned point is selected (a), points within a radius are added to the queue Q (b),
then the same operation is repeat with all the points in Q (c) until the queue is empty (d).
At this point, one cluster is completed and the process is restarted for the next cluster (e)
until all the points are assigned (f)

The computational complexity of the method is reduced by using a Kdtree,
allowing neighbour search.

Once the algorithm is completed, a list of cluster is generated. This algorithm
is avaiable in PCL, see pcl::EuclideanClusterExtraction

Euclidean Clustering ROS node In the Autoware[24] framework a ROS layer was
added on top of the PCL library. The node euclidean_clustering node takes a
sensor_msgs/PointCloud2 as input and output information for each cluster (point
clouds, convex hull and bounding box).

The output of this node can then be used as input for object recognition and
tracking nodes.

2.4 Tracking with Kalman filtering
Note: for a general overview of Kalman filtering, read section 2

Euclidean clustering is performed at every lidar scan. Given two point clouds A
and B and the two set of clusters CA and CB generated by euclidean_clustering

84

http://docs.point clouds.org/trunk/classpcl_1_1_euclidean_cluster_extraction.html

2 – Lidar Detection and Recognition

it is not directly possible to define a correspondence between clusters of CA and CB.
Comparing the distance between the centroids of the clusters may not be enough
(think about two cars moving close to each other). Also, sometime we want to know
not only the position but also the velocity of a certain cluster of objects. The way
we can obtain this information is to apply a Kalman filter to each cluster. Each
cluster will have its own state (position and velocity) and the information is updated
with the output of every scan. Since most bodies move horizontally, a bidimensional
Kalman filter is used.

When a new set of cluster is generated, the problem of assignment arise: we
need to compare each cluster to each previously tracked cluster for position and
velocity compatibility. This comparison may result in a match or a rejection. In
case of match, the state of the Kalman filter is updated with the new measurements.
This gives us knowledge of the speed and direction of other cars relatively to the
ego-vehicle.

Assignment is performed in a probabilistic way, using the Hungarian Algo-
rithm. By defining a matrix of matching likelihood, the Hungarian Algorithm
choose the most probable assignments.

Autoware[24] includes some plugins for RViz useful for visualizing the detected
objects fig. 4.6, fig. 4.7. The results visualized with these plugins are shown in the
attached video.

Figure 4.6: The set of points with the same color belongs to the same cluster. A
bounding box around the cluster is generated, and that is used for estimating the
full space occupied by the vehicle, with some extra margin. Thanks to the kalman
filter, it is possible to know the relative speed of each detected box.

85

4 – Detection

(a) (b)

(c) (d)

Figure 4.5: Kalman Filter tracking.
After clustering is performed (a and b), instances of the filter are initialized (c).
State is then updated based on the data of new point clusters

Figure 4.7: The amount of laser available is enough for detecting close objects, but
not all the vehicle across a medium intersection. In this image, only the taxi is
detected, while vehicles behind it are too far or hidden.

86

3 – Recognition

3 Recognition

As stated previously, there are many recognition algorithms, most of them inspired
by the corresponding 2D case. We skipped the investigation on algorithms that
reduce 3D point clouds to 2D projections, since the density of our point cloud is
low. Still, we cite some major works here since they belong to the state of the art.

The algorithms listed here can be applied on all point cloud data. Also note that
the Automotive laser scanner solution offers already an object detection capability
in its SDK, thus we focused on the VLP-16 laser scanner.

3.1 Projection methods

Due to the fact that many recognition algorithms already exist for 2D images and
that they have good performance, it makes sense to apply these algorithms to point
cloud data, where the full cloud or just a region is projected to a surface.

In [2] point cloud data is projected to the 2D ground plane, thus obtaining a
top-bottom view that it is usually called “bird’s eye view”. Then a third image,
composed by height, intensity and density channel is created. Note however that it
is still possible to apply algorithms designed for RGB data. In the BirdNet case,
the initial VGG-16 deep neural net layers are used for extracting features from
the image. From here, the Faster R-CNN is used for region proposal and finally
recognition. Detected object may fall in the car, cyclist and pedestrian category.
Such method achieves a detection rate from 50.00% to 75.52% 1 depending on the
scenario. Instead, [51] projects the point cloud along different point of view. Instead
of using a neural network, an SVM is used for classification. [9] mixes the two above
projection method in the same architecture.

3.2 Automotive Lidar recognition capabilities

The automotive lidar software, included in the SDK, beyond providing the recon-
structed point cloud from multiple sensors, also analyzes the point cloud recognizing
peoples, vehicle, bikes etc... It also tracks their position and velocity, probably also
with the use of a kalman filter.

We used the C++ API for integrating this data with the rest of the ROS system,
so that this can be used as an alternative to the recognition capabilities previously
stated.

1See kitti dataset benchmark for detection rate definition and other metrics

87

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=bev

4 – Detection

Figure 4.8: ROS visualization of automotive lidar recognition system. Cars appear
in yellow bounding boxes

3.3 Lane recognition
The vision for autonomous vehicles in their final, commercially available form sees
them capable of performing complex maneuvers and navigating traffic while inte-
grating well with the existing road infrastructure in its usual form. Among these
capabilities are reading road markings, changing lane, and exiting from a highway.

The basic environmental information that is needed in order to reach this goal
is the recognition of lane markings, in particular of lines.

In this paper, we propose just a basic version of this capability, implemented
using simple techniques. Our algorithm will be limited to segments; other road
markings, such as text or curved lines, are not recognized.

Our method is constituted by a pipeline of three phases. First, the frontal camera
image is submitted to an image segmentation algorithm that recognizes the region
of the image where the road is seen. Then, on the selected region of the image,
Canny edge detection is applied, after which a Probabilistic Hough Transform [32]
recognizes the “most linear” edges.

The image segmentation algorithm, named KittiSeg, is based on deep learning.
It’s based on the Fast R-CNN algorithm, and can be jointly trained end-to-end to
perform the three tasks of classification, detection, and segmentation. It features
a high speed of prediction, and has reached a top ranking in the KITTI challenge.
[55]

While KittiSeg can be trained from user-provided labeled data, we directly
adopted the authors’ published model, so to avoid labeling the data manually. Kit-
tiSeg’s Python code is clean and well-written, and it was easy to adapt it to our
purpose. Thanks to libraries commonly used in Python’s ecosystem, we could easily
transform the bundled demo classification program into a ROS node, so that it feeds
the images received from a ROS topic to the algorithm. The result of classification,

88

3 – Recognition

a region of interest, is output through another ROS topic as a grayscale image.
The remaining parts of the pipeline, which are Canny edge detection and Proba-

bilistic Hough Transform, are ubiquitous in Computer Vision, and imported directly
from OpenCV.

The segmentation and recognition performance is promising, although it has
shown some failures on our dataset, and shows much margin for improvement ??.

89

4 – Detection

Figure 4.9: Results of lane detection. The green area is the region marked as “road”
by KittiSeg. Red segments are the detected road markings. The results have not
always been up to the expectation for a production autonomous driving system.
In these examples, failures usually happen because the edge detection and Hough
transform are not picking up features in the image, or due to bad segmentation.

90

Chapter 5

Navigation

Provided that a sufficiently accurate map of the environment is available, and that
all road users are correctly classified and recognized, the next step in an autonomous
car is to evaluate which trajectory to follow. Within this thesis we have deployed
a simple model not suitable for actual road, but just for open space not subject to
road rules: we still do not consider the meaning of traffic sign (thought they are
detected), we do not follow lanes. Such behaviour will be the subject of following
work that can exploit the basic work here described. Indeed the possible actions
that a vehicle can perform on the road are a subset of all the possible action on a
free space.

We highlight that the problem discussed here is about the generation of local
trajectory, of length of meters. The road planning as done by commercial GPS
navigator that computes the streets toward a goal destination is a different problem.

1 Cost and Occupancy maps
The vehicle is not able to move freely: viable path, collision with static object and
dynamic road users as well must be considered when planning a trajectory. The data
generated by sensor and the high level detectors/filters in the pipelines previously
described must be used for avoiding obstacles. A navigation algorithm uses an
high level view of the environment in order to plan a tracjectory that satisfy some
contraints.

In section 2.2 we already described a data structure useful for this problem.
Octree provide a compressed and fast-accessible way to track free and occupied
space, where for free space we intend a volume of space that can be occupied by
the ego-vehicle without intersecting other bodies. Such solution was implemented
in the Octomap library [20], which provide, amongst other features, a dynamic 3D
map that can be directly integrated in ROS and updated via the standard point

91

5 – Navigation

cloud interface. the map also takes care of probabilistically filtering invalid points
by performing a continuous integration of the received data.

For the automotive case, where vehicle move mostly horizontally and height is
not usually a problem (except for tunnels and indoor parking areas), a 2D occupancy
map is often enough for solving most navigation problem. A simple occupancy map
is made by a grid, usually with fixed cell dimension, that keeps track of occupied
and free space in metric space. Usually the dimension of each cell is little enough
to take into account all possible collision. As we will see, the grid dimension also
affects the turning capacity and the available path. A really basic map of this kind
would be implemented using a two dimensional boolean array.

However, for none-or-little computing efforts, an occupancy map can be replaced
with a cost map, which assign a value proportional to the ’traversability’ to each cell.
Such value would be use for soft-constraints or favour some trajectory against others.
Non traversable cell would still be represented with an extreme value (such as a value
higher than 250). ROS already provides a costmap system, called costmap_2d 1,
built upon a plugin architecture. Within the same package, some plugins that pro-
cess a given point cloud are avaiable. However we choosed to not use them, and
instead building our own based on the high-level information generated by the de-
tection pipeline.

Our costmap subtracts from the free space the space occupied by other road
users and static objects. An actual implementation should keep track of the road
surface, maybe detected from a camera, in order to compute all the available free
space.

The detection pipeline generates bounding boxes of pose (x, y, θ) and dimension
(w, h). Our C++ costmap plugin use this data for marking the cells within the
bounding box as non-traversable (fig. 5.1). This approach is similar to a rasterization
of vectorial geometries into pixels.

2 A*

We used the A* (A star) path planning algorithm provided by Autoware[24] for
navigation. Even if this algorithm is optimal, other algorithm should be considered
in the automotive case: algorithms such as RTT [30] or D* [52] compute non opti-
mal but heuristically optimized path in shorter time, moreover, modified versions of
these allow to recompute the path with small modifications with fewer steps when
a new obstacle appear. Replacing the A* star with these algorithm will be part of
future works.

1http://wiki.ros.org/costmap_2d

92

http://wiki.ros.org/costmap_2d

2 – A*

(a) (b) (c)

Figure 5.1: Generation of costmap from a point cloud. After processing (a) and
obtaining the bounding box (b), we mark all the corresponding cell withing the
bounding box (c)

The A* algorithm works on graphs, thought it is often easier to think about it
as an algorithm that works on a 2D grid. The algorithm is well known so we will
resume it shortly: it performs a modified depth-first search from a start cell to an
end. The search is guided by a heuristic, that assigns a priority to each unexplored
cell. The heuristic is often the simple metric distance from the current cell to the
end cell.

The bearing of the vehicle during traversal is not considered in the simple A*.
But the algorithm implemented in Autoware can be seen as three dimensional: each
cell is identified by a (x, y, θ) tuple. This way, the generated path has also a yaw
variable associated to each position. The heuristic algorithm is also slightly modified
in order to take into account reverse and turns.

In order to adjust the parameters and perform tests on ideal data, we added a
functionality for importing a costmap from an image fig. 5.2.

93

5 – Navigation

Figure 5.2: A tool for importing a costmap from an image. This allowed us to debug
and improve the existing navigation algorithm

Figure 5.3: Path generated by the A* algorithm (green). Costmap cells are marked
blue as described in section 1.

94

Chapter 6

Deployment and Continuous
Integration

One of the main goals of this project is to provide a development environment
that can foster innovation and collaboration between people coming from diverse
backgrounds, businesses, and research institutions.

The architecture of ROS goes a long way towards that goal, especially in compari-
son with monolithic (i.e. non distributed) systems that specify APIs as abstractions
on programming language primitives (e.g. object-oriented interfaces) rather than
system primitives (message passing and inter-process communication in general).

Nonetheless, the effort required to start collaborating is still non negligible, and
can be a significant source of friction, especially since it requires, unreasonably,
a decent familiarity with system administration and systems programming to all
students and researchers.

The following is a non-exhaustive list of sources of friction that lead to this kind
of frustrating experience:

• Build systems. C++ libraries are packaged and/or imported into a project
in a variety of ways. CMake is a very flexible build system generator that helps
manage this complexity, but also introduces some of its own. The Catkin tool
extends CMake and implements the standardized procedures for building and
bundling ROS packages. In order to avoid losing any of CMake’s large array
of functionality, Catkin makes no attempt at hiding the underlying CMake
machinery, and regularly reports CMake’s output as part of its own. However,
this makes it complex to interpret and troubleshoot error conditions. As a
consequence, the developer will need to have a good understanding of CMake,
Catkin, and the general way they interact, no matter how far removed this
may seem from their scientific or business endeavor.

• Dependency management at the OS level. Even when limiting oneself
to binary distributions of ROS packages, there is still a significant chance

95

6 – Deployment and Continuous Integration

that the installed packages will have conflicting dependencies. This mainly
derives from dynamic linking, an inherently complex mechanism that is highly
dependent on the system’s configuration. We have observed this first-hand
when trying to install different programs that depend on different versions of
the OpenCV library, or keeping compatibility with CUDA drivers for use by
deep learning programs.

• Process management and task definition. All non-trivial ROS systems
are composed of a number of separate, communicating process. In the typical
case, a single task (e.g. localization, or object recognition) is performed by a
small number of mutually communicating processes, forming a sort of “node
cluster” that is always started, stopped, and monitored as a group. The stan-
dard roslaunch utility is very useful to describe these node groups in a standard
format based on ROS concepts, but it does not offer any support for isolat-
ing the group and turning it into a self-contained unit with a well-specified
interface.

• Run-time platform idiosyncrasies. Typically, ROS nodes are in equal
numbers written in C++ and Python. These two programming languages
have radically different requirements and provisions for building, packaging,
and distributing software. The situation with C++ has been described above;
Python also has its own set of problems, such as dealing with the version 2 vs.
version 3 schism, OS packages vs. PyPI packages, native libraries installation,
and more. The situation can get even more complicated when the number
of platforms increases. For example, the Common Lisp, Julia and JavaScript
programming languages can all be considered viable and valuable platforms
for writing ROS nodes, and they were all wildly different from each other.

1 Similarities with the microservices paradigm
After an even cursory analysis of these issues it appears evident that these same pain
points are shared with virtually any distributed system implemented with native
programming languages and/or different language runtime platforms.

This is exactly the case for a large number of web- and cloud-based services. In
particular, the popular microservices paradigm 1 appears particularly relevant.

It has no formal definition, but for our purposes a generic introduction is suffi-
cient, and it can be considered a variant of the earlier, standardized Service-Oriented
Architecture (SOA; see [17]). Its most basic tenet consists in always factoring the

1Throughout this text, the term microservices can also include the earlier Service-Oriented
Architectures (SOA), as the differences between the two are irrelevant to our purposes here.

96

1 – Similarities with the microservices paradigm

application in a number of small, self-contained services, communicating with each
other through light-weight protocols. This is the same essential design decision that
ROS is based on.

This, in turn, generates a number of similarities. To name a few, they both:
advocate for building systems out of processes and inter-process communication
primitives; employ external tools for system management, monitoring, reporting,
and introspection; rely on protocols to allow (and encourage) the use of multiple
programming languages in order to exploit the strengths of each; implement decou-
pling mechanism in order to be agnostic to the physical location of each process,
and therefore achieve the maximum flexibility and horizontal scalability.

Implementers of the microservices pattern generally have to solve the same issues
we have listed for ROS (although their motive mainly revolves around difficulties
with deployment). In this project, we have exploited the similarity of the problems
faced by the two communities, and then borrowed and adapted some of the tools
and practices that have become popular for microservice architectures.

To provide an overview of the solutions we became interested in, this is a generic
list of technologies and strategies that are typically adopted in a microservices ar-
chitecture:

• Isolating dependencies by containerization. In order for the architecture to
be effective, services necessarily have to be independent from the configuration
of their run-time environment. This is generally achieved through containers,
a technology offered by several OSs (most notoriously Linux, but also most
BSDs, under the term jails) where a single process (or process group) is isolated
to a subset of the system’s CPU, storage, and network resources, and bundled
with a complete operating system installation in the form of a file system
image. The contained program runs isolated in an instance of the image, which
contains all of its dependencies. Since an image usually supports just one or
very few programs, it is relatively easy to avoid conflict and maintain internal
consistency. A process (or process tree) running with configured resource
limitations and with an image as its isolated file system is named container,
and is usually managed by a dedicated tool such as Docker [12] or rkt [44].

• Service discovery. Much of the flexibility gained with a microservice archi-
tecture would be lost if the location of each microservice had to be manually
and explicitly configured in each of its clients. Instead, the system’s compo-
nents are entirely decoupled by offering a way for each service to locate the
servers it requires, and checking for their availability. A single server, whose
location is explicitly configured once for the whole system, generally stores
and distributes the service’s availability and location data. Popular examples
of such solutions are ZooKeeper [1], Consul [10], and etcd [58].

97

6 – Deployment and Continuous Integration

• Standardized service behavior. Each service should be designed to seek
its necessary servers as soon as possible, and degrade gracefully when optional
runtime dependencies are not met. Every service should use the same standard
logging and monitoring interfaces. This way, the whole system can be man-
aged, monitored and diagnosed effectively with a small set of standard tools.
This also reduces the effort necessary to add new services to the system.

• Automated deployment. Deployment, meaning the operation of setting
up a service on production machines and keeping it running, should be stan-
dardized and automated to the highest degree possible. This in turn allows
for Continuous Delivery, where a releasable artifact is built at each ver-
sion control commit, with all unit tests automatically re-run and reported,
reducing the number of regression that risk emerging in production, and min-
imizing the difference between the condition of the system in production and
in development.

In order to enjoy the same benefits with our robotics platform, we analyzed each
of the listed strategies, and attempted to translate them to a ROS-based distributed
system. The following subsections offer a recap of our analyses.

2 Containerization solution
We factored our system in a number of containers, each assigned to a single “macro-
task” (also named service; e.g. localization, object recognition, motion planning,
etc.).

We evaluated both rkt and Docker as the container management engine. The
differences that we deemed relevant to our use case are the following:

• Docker is designed as a client/server architecture, with a system daemon doing
the heavy lifting, while rkt is a standalone program managing the container
as single child process. In this regard, rkt behaves very similarly to the UNIX
shell and init systems, and as a consequence can be composed effectively with
existing management tools and policies.

• Docker offers process management out of the box. It allows to easily start,
stop and monitor containers and collect their logs without requiring any extra
set up. rkt instead allows for a more decoupled architecture, by allowing an
external process manager to manage the rkt process and therefore, indirectly,
the container.

• While both Docker and rkt offer virtual private inter-container networking,
Docker also comes with the popular Docker Compose tool, which allows a

98

2 – Containerization solution

collection of containers to be specified, configured and monitored as a group
with a simple and effective command-line interface. rkt again follows the prin-
ciple of decoupling, and delegates these functions to already existing service
discovery and process monitoring systems.

• rkt supports Docker images, but not the other way around. Moreover, rkt al-
lows much greater flexibility in building images, while Docker imposes general
principles by offering a purposely limited docker build command.

• rkt implements much better security defaults than Docker, for example requir-
ing each image to be digitally signed.

To recap, the advantage of rkt is the greater flexibility afforded by its design
choice of exposing a whole container as a single UNIX process to the rest of the OS.
This allows to compose a variety of simple tools and strategies to build the desired
behavior, but also leads to a slightly steeper learning curve, and makes the work for
deployment more complicated (albeit not more complex).

Since Docker already provides all of the functionality we required, and consider-
ing how important a smooth user experience is for our goals, we opted for Docker.

By simply running the ROS master into its own container, we immediately ticked
several of the other checkboxes in our wish list:

• Thanks to the Docker’s inter-container networks, each container has a host
name that can be used from within all other containers. By also using Docker’s
support for environment variables, containerized ROS nodes can connect to
the ROS master by following the the URI we supply to their ROS_MASTER_URI
environment variable. Docker’s internal DNS server will route the connection
to the correct container, and the ROS master will then direct service discovery,
revealing the current location of each node. Under this aspect, Adding new
containers does not require any additional configuration effort.

• Standardized service behavior is mostly already provided by ROS. Each ser-
vice is designed so that it will perform whatever fraction of its functionality
is feasible with the current state of the system, and adapt to the availability
of dependencies. For example, a localization service will always start up, re-
gardless of the availability of sensor data streams; when those data streams
become available (for example, after starting up a sensor-specific “driver” ser-
vice), the localization service is supposed to pick up the change and start
using the available data. This is relatively easy to achieve thanks to the way
ROS topics work: as explained in section 1.1, ROS nodes bind their publishers
and subscribers to the topic’s name, while the ROS master protocol tracks
connections and their endpoints. The underlying ROS protocols will cause

99

6 – Deployment and Continuous Integration

connections to be opened and closed automatically, as necessary. Message for-
mat compatibility is also automatically ensured by the ROS protocol. Note
that ROS maintains this property at the node level, but we make an effort to
keep the same property at the service level.

• Deployment is naturally facilitated, as it is Docker’s first and foremost use. We
created one source code repository for each task, each dedicated to creating
one image based on a specific Dockerfile. We then distribute images from an
image registry we set up on a private server.

Docker Compose provides one more useful piece of functionality: it allows to
script the configuration of a group of inter-connected containers, and then allows
to start, stop, monitor, and manage the group of containers. Docker Compose
also supports adapting the running system to a changed configuration, reusing the
containers whose configuration that hasn’t changed, and rebuilds containers only as
needed.

It is important to notice that this creates a new level of modularization. The
container is the basic unit of software distribution, deployment and run-time com-
position, while the ROS package is the basic unit of source code distribution, build,
and assembly.

Development is also relatively unhindered by the use of Docker, as it is entirely
possible to install ROS directly on the development machine (outside of Docker’s
jurisdiction), and use the containerized ROS master. By doing so, every ROS node
started on the development machine (i.e. not running in a container) will partic-
ipate in the same ROS network as the containers, in a fully transparent way and
no additional configuration (other than allowing the host to enter the containers’
network).

One disadvantage of containerization, especially in relatively constrained envi-
ronments, is waste of disk space. In order to ensure proper isolation and the self-
sufficient nature of containers, many images will contain copies of the same software.
Every one of our images, for example, contains a copy of the basic ROS distribu-
tion, while many of them include copies of important libraries such as OpenCV and
PCL. Our set up featured large amounts of storage, so we never reached a critical
shortage. Fortunately, such a shortage can be mitigated by leveraging the fact that
Docker images are layered, meaning that they are a union mount of many read-only
file systems, each being called a layer. Layers are produced as part of the image
building process; each layer extends another layer (or a bare file system) with the
files produced by a single shell command from the Dockerfile, and is labeled with
a cryptographic digest. If two Dockerfiles have the same basic image and share a
sequence of commands at their beginning, they will usually produce identical lay-
ers. Docker can use the cryptographic digest to detect this condition, and avoid
duplicates by sharing layers between images.

100

3 – Continuous Integration

3 Continuous Integration
In keeping with our idea of borrowing successful practices from mature software
development communities, we also adopted a form of Continuous Integration. This
consists in repeating the build process so that a releasable software artifact with the
latest changes in the code base is always available and subjected to testing [8].

In our project, the artifact is the container image. As such, the build process is
defined by the corresponding Dockerfile, which in turn runs a complete installation
and/or build of all dependencies. The testing happens on different levels:

• Unit tests, where single programming language units, such as classes or func-
tions, are tested in isolation with fake (“mock”) objects covering the role of
dependencies. This is based on programming language-specific tools such as
Google Test (for C++) and py.test (for Python).

• Node tests, where a small group of ROS nodes are started, and the resulting
network gets tested as a group. In this form, what is tested is the interac-
tion between nodes and their individual behavior under certain environmental
conditions signaled by ROS messages. The ROS-standard tool rostest offers
support for node-level tests.

• System tests which is similar to node-level tests, with whole containers as
test subjects. At this level, it is made sure that the container under test
behaves compatibly with the container management system: the service must
detect its dependencies at run-time and scale gracefully when some or all of
them aren’t available.

The process is automatized by using the drone.io [13] platform. This is a program
that can be installed on-premises and can run Docker-based scripts describing the
build and test process, and run it for each commit pushed on a Git repo. It has a web-
based interface, which makes it easy to access it remotely from any kind of device.
The flexibility and simplicity of its architecture was the main reason for choosing it.
Other evaluated options were Phabricator’s built-in application (“Harbormaster”),
CircleCI, TravisCI, Jenkins; the impossibility of installing the program on-premises,
complex usage, or relative inflexibility with regard to the organization of source code
have driven us away from them.

3.1 User experience
Thanks to the properties of our solution, both newcomers and experienced re-
searchers and engineers can get up and running in short time, enduring an amount
of effort that is independent from the complexity of the system at the time.

101

6 – Deployment and Continuous Integration

A hypothetical engineer seeking to add a new capability to the system will first
decide on how many new services to create as part of their solution. Typically, a
single research topic will result in the implementation of a single service. Then,
having installed ROS and Docker on their development machine, and after adding
our image registry to their configuration, they will:

• Download or update the images of the services they need, by simply using the
command docker pull image-name .

• Create a new service-specific repo, by cloning the dedicated template reposi-
tory.

• Set the ROS_MASTER_URI environment variable so that it points to the con-
tainerized ROS master.

• Carry out the development on their machine, without caring much (if at all)
for Docker or the containerized parts of the system.

It’s highly recommended to use the Continuous Integration infrastructure and
practice system-level testing as often as is practical, in order to make sure that a
valid, working, and compatible service container can be built and run at all times.
For this reason, it is important to keep build times to a minimum. To this end,
the Dockerfile has to be kept up to date and it should install the fewest possible
dependencies.

Deployment on the vehicle computer is identical. Some services, which can be
considered “driver services”, are dedicated to translating the interfaces of the car’s
control hardware to ROS interfaces, and viceversa. This allows to use the full
flexibility afforded by ROS to control the car. Refer to section 2 for a detailed
explanation of the system’s interface with the vehicle.

As a side note, one may notice that each release of ROS is only supported on a
handful of Linux distributions, and of each, only a handful of versions (typically just
one). For example, the version of ROS that we were using (the latest Long Term
Support at the time the project began) is “Kinetic Kame”, and it is only supported
on Ubuntu 15.10 and 16.04 [26]. Although other ports exist (for macOS, Gentoo,
and the OpenEmbedded/Yocto platform), they are experimental, and therefore do
not enjoy the same level of support. This strongly limits the compatible OS types
and versions that a developer may run. We ran into this problem practically, and
we managed to solve it following two types of strategies: the first is using hardware-
level virtualization (“full VMs”) to create a VM with the exact version of the OS
that ROS supports installed; the second was to create a Linux container that acts
as a “sandbox” with a supported GNU/Linux distribution installed. The full VM
strategy is the only option if the developer wants to use a non-Linux OS (Windows,
typically). The container strategy works on any OS based on a relatively recent

102

3 – Continuous Integration

Linux kernel, and is more flexible, albeit potentially less secure. Note that the
containers used for this purpose are not managed by Docker, but by a different tool
such as LXC or systemd-nspawn; here, the goal is to isolate an instance of a full OS
as if it was running in a virtual machine, but avoiding the virtualization overhead by
sharing the running Linux kernel. Docker’s goal, instead, is to create single-process,
ephemeral containers, eliminate the concern of the process’ run-time dependencies,
and give it a uniform and accessible management interface.

103

104

Chapter 7

Infrastructure

In order to pursue the project’s goals, we have set up a number of pieces of infras-
tructure that have proved to be very useful, to the point of being necessary for our
activities, and even more so for future developments. By infrastructure, we mean
here any set of shared resources and services that any (current or future) developer
can benefit from to aid with their activities.

These resources and services have been located on a dedicated physical server,
owned and generously offered by one of the developers (Vincenzo Comito), providing
plenty of computing power and storage.

The following sections detail two sets of benefits that we gathered from the
use of this infrastructure: the first is project management, which allowed us to
collaborate effectively; the other is data collection, which allows any developer to
repeat our experiments, augment them, or try out new approaches without the
physical availability of our test vehicle.

1 Project Management
Right after the initial investigation of the literature, the need for instating some
project management policies and tools immediately became evident. The project
was concurrently developed by the two authors of this thesis, and it presents a
significant degree of architectural complexity, in the sense that it is composed by
many modules, each with a number of interfaces with different scopes. We could
not have collaborated without effective processes and tools.

In order to implement the architectural design detailed in chapter 6, we made
extensive use of Phabricator, an open-source web-based platform for software de-
velopment and collaboration. Its main feature is the tight integration of its many
constituent applications, each dedicated to a particular facet of the software devel-
opment activity, and the possibility of installing the software on-premises.

We used Phabricator to implement a methodology loosely inspired by Scrum [50].

105

7 – Infrastructure

We did not use any commercial cloud services, preferring instead to host everything
on a private physical server, exposed to the Internet, and assigned to a global host
name through a DDNS service. This was facilitated by Phabricator’s “monolith-
like” behavior with regards to installation and configuration, and the relative lack
of required maintenance.

Then:

• We created many source code repositories, all managed by Git and Phabrica-
tor’s Diffusion application. Generally speaking, one repository corresponds to
a single ROS source package, while service-specific repositories builds a whole
service together with its dependencies, by the definition given in chapter 6.

• We split the entire work into self-contained tasks with a well-defined require-
ment set and “Definition-of-Done” (completion requirements). A few “top-
level”, principal tasks were recursively split into its constituting sub-tasks,
down to the level where the concrete work required was clear enough to be
carried out independently by a single person. Tasks are therefore placed in a
dependency tree, and only its leaves are assigned to a single developer. We
used Phabricator’s (Maniphest fig. 7.1) application to keep a shared view of
the planning.

• We proceeded in sprints, which are time intervals of about two weeks, at the
beginning of which we met to plan the activity to be carried out during that
time period. During those meetings we often estimated the time necessary
to complete a given task, prioritized the pending work, and made sure to
plan in advance to meet any extra requirement (such as a trip to the office in
Munich, the availability of a certain piece of hardware, etc.). Maniphest also
supports this methodology alongside many others, by offering the possibility to
arbitrarily define milestones, and assign tasks, deadlines, and other attributes
to them.

• Whenever we had to create some new code from scratch, we followed the best
practices for the platform and programming language. We made sure to give
each package a uniform structure, we used code formatting, and enforced a
naming convention extensively in order to improve readability. Importantly,
we tried to perform code review whenever the size of the change would
warrant it. This allowed us both to always be aware of the state of the mod-
ule, reduce the chance for accidental mistakes, and agree on the effect of the
change on the module’s design. Code review were supported by Phabricator’s
Differential application and the client-side command-line client arc.

• During our activities, including development, field testing, literature review,
and market research (for, e.g. sensors and software), we produced an extensive
set of notes, organized in the form of a Wiki, by using Phabricator’s Phriction.

106

2 – Data collection

It’s worth noting that undertaking, in parallel, the effort of implementing the
basic perception and localization tasks allowed us to constantly exercise, verify, and
improve our decisions regarding the system’s structure and our project management
policy. The process presented here is only the result of this progressive improvement,
which we tweaked and tuned during the entire duration of the project.

An interesting consequence of using a globally reachable server is that it is po-
tentially possible to participate to development and organizational activities from
any location. Adding to this our usage of containers, we have reason to believe
that it is possible to quickly bring an entire, functional development environment
on any computer that is connected on the Internet and runs a relatively modern
GNU/Linux OS, although we did not test this solution extensively first-hand.

In conclusion, following this methodology allowed us to implement the system
with the structure we initially envisioned (detailed in chapter 6), and to ultimately
reap its benefits. Moreover, all other members of the company (in particular other
students) that plan to contribute to this project will find a wealth of (loosely) or-
ganized information, code, and data, which will hopefully facilitate their activities,
including new developments or troubleshooting of the existing work.

2 Data collection
As stated numerous times, one of the most important objectives for this project
is allowing many developers to more easily experiment in the field of autonomous
driving and ADAS applications more broadly.

One of the most effective resources that facilitates these activities is a rich collec-
tion of data, recorded live from a vehicle, such that new experiments (or replication
of old ones) can be performed as though they were available at the time of the
recording.

The datasets include all sensors, and the outputs of all of the main nodes. Cam-
eras, LIDAR scanners, localization inputs and estimates (both raw and filtered),
object recognition the vehicle’s dynamics, and more.

The data collection mechanisms directly descend from the decoupling afforded
by the design choice (discussed in section 1.1) of adopting message passing as the
principal, most pervasive way of composing the system. Once all inter-process com-
munication is reified into concrete, simple messages, those can be trivially labeled,
stored and recovered.

The practical side of the collection process is fairly simple, and amounts to not
much more than using the standard rosbag record tool to record most of the mes-
sages flowing through the ROS network while the system is running. The tool will
collect the messages by subscribing to any set of topics, much like any other nodes,
and store them into a bag file in a time-stamped and serialized form, alongside with
all connection headers. Connection headers are simple data structures describing

107

7 – Infrastructure

Figure 7.1: An example of a Task within Phabricator’s Maniphest. The related
git commits are automatically linked, along with tracking of the review process

the topic to the degree necessary to subscribe to it and decode its messages. rosbag
play is the tool that performs the inverse function: it reads the bag file, extracts in-
dices and connection headers, and publishes the stored messages on the same topics
as it subscribed during the record phase, and at the same relative times.

Interestingly, rosbag play is an important part of simulated time. In the gen-
eral case, ROS nodes are supposed to get the current time from a dedicated topic
(/clock), rather than the OS. This way, the current time can not only be directly
translated from the OS, but also provided by another external program. This allows
the user to replay a bag file slower or faster than its natural speed, or skipping
forward or backwards along the time line. This mode has to be explicitly enabled
by setting the parameter use_sim_time to true, which is honored by all ROS client
libraries. rosbag play can then publish /clock and direct the passage of time on
the system.

Several ROS bags have been recorded and stored on the server, with a standard-
ized file name based on the date and time of recording. We did not limit ourselves
to simply producing the records. An additional web-based service was implemented

108

2 – Data collection

where any authorized user can connect and view an interactive web page associated
to each recorded bag, summarizing the bag’s contents. This includes a few useful
features: other than the date and time of recording, the page includes: a table listing
the topics with their message types (linked to the corresponding on-line documenta-
tion), number of message and average frequency; the recorded videos, streamed and
directly viewable from the web browser; plots of the localization estimate, overlaid
on a geographical map (the map is fetched from OpenStreetMap). This is just one
more way to facilitate the browsing of these relatively big datasets.

One important property of ROS’ implementation of message passing is that, from
the point of view of any ROS node, messages representing “fresh” computation re-
sults coming from another running node are entirely indistinguishable from messages
recovered from a bag file from rosbag play. This creates a lot of opportunities for
reusing our datasets for a very large range of experiments and set ups.

To make a few examples, the following are all possibilities opened by the collected
data sets. A student looking to investigate a new implementation for object recog-
nition that combines images from the camera and point clouds from laser scanners
can replay those inputs from a ROS bag from the server, and compare their results
with the current implementation of object recognition. A researcher investigating
innovative applications of machine learning can use the data from any ROS bag to
extract labeled datasets to be used as the training set of a supervised learning appli-
cation (such as those in the category of deep learning), replacing solutions of other
kinds (for example, traditional computer vision) that are more difficult to develop.

109

110

Chapter 8

Conclusions

Though the main aim of the work was fulfilled, having reached the core target that
we proposed at the beginning of the thesis, we regard these conclusions as a milestone
step instead of a closure of the project, which we hope to continue along with new
students.

The proposed distributed architecture, based on ROS and similar to the popular
microservice pattern, has been proved to be versatile and well suited for research
and prototyping, and, component after component, evolved in a full sensorial sys-
tems similar to the one found in many self-driving car platforms, albeit very far
from them with regards to performance and accuracy.

The features of the developed system are:

• Support for accessing main vehicle data (section 2)

• Customizable, portable sensorial system that can work with a variety of sensors
and allow to add new ones (section 3)

• Fusion system for localization (chapter 3)

• Object detection through camera (section 1) and lidar (section 2)

• Mapping capabilites (section 4 and section 5)

• Basic support for navigation (chapter 5)

• Fast system development and deploy, by simplifing access to resource and
libraries (chapter 6)

We have to keep in mind that it was possible to integrate all these functions in
a comparatively short time thanks to the availability of many, high quality open

111

8 – Conclusions

source packages, respectively cited throughout the previous sections. In this sense,
this thesis can also be regarded as a survey of the capabilities and limits offered by
open software at this date.

Due to the many aspects and components involved, we have to draw different
conclusions for the specific results of every subcomponent in the dedicated section.
Some of these fully met our expectations: we observed it was possible to accurately
generate small but composable maps of urban scenarios based on lidar, that are also
able to detect objects close to the vehicle, providing useful spatial data that can be
used for avoiding them.

The camera detection system based on neural networks seems promising, capable
of quickly processing images on medium-end hardware in real-time and low frame
rate, but not enough reliable on a per-frame basis.

Other components such as the localization system suggest that sensor fusion
works well only on small scales, where variations of the position of the car are
correctly estimated with accuracy greater than GPS, for instance when changing
lane or during short accelerations.

Beyond specific improvements that regard the limitations throughout described,
wesuggest some specific future work in the next section.

112

Chapter 9

Next steps, future work

One of the aim of this thesis was to develop a basic perception system for an au-
tonomous vehicle that can be easily extended by updating or adding new compo-
nents, thanks to the availability of both raw and already processed high level data.
Even if the system requires many improvements, we think the system meets the
proposed requirements.

As a result of using ROS as framework and of the orthogonal, loosely coupled
design of the system’s components, it is possible to change a fully functionality or
just a piece in the pipeline, making it feasible to try new algorithms and quickly
prototype new methods. It is both company and our aim to exploit these capa-
bilities in the future within novel projects or thesis research of new students. For
instance, the obstacle avoidance is being already reviewed by two master students
for their thesis. They will replace the existing component with a new one that pre-
dict future poses of road agents, extrapolating them from their situational behaviour.

The field of research is so broad that many improvements come in mind. However
we report here the ones that we believe are the most interesting and that should be
prioritized over others.

1 Real-Time applications and ROS2
The versatility of the system comes with a tradeoff: it runs on a linux computer with
variable performances, practically with no memory limits and timing requirements.
There is no need to say that such a system is not good for basic vehicle control,
let alone for a refinished product for a normal user. The automotive industry must
comply to high safety requirements and currently system meets none of them. For
our scope, this is not a problem since we are more interested in research than in de-
veloping a product, nonetheless real-time capabilities will be required for controlling

113

9 – Next steps, future work

the vehicle and implementing autonomous driving. While moving the whole system
to real-time computers or microcontroller and maintaining the same versatility at
the same time seems impossible, the use of the future ROS2 framework looks like a
promising compromise.

ROS2 [45] is a full redesign of the current ROS system, focused on solving some
problems and review part of the system architecture, that currently limit the use of
ROS in industry and in multi-robot system. The main characteristics of ROS2 will
be:

• Distributed communication system (there is no central master)

• Direct communication with microcontrollers

• Quality-of-service support

• Real-time support

Before describing what ROS2 will offer in term of RT support, we have to remem-
ber the limitations that a modern computer imposes versus a simple microcontroller.
One limitations is related to hardware: A computer CPU is way more complicated
and cores fight among them and other units for accessing some resources, for instance
the PCI bus, memories. Non-modificable firmware are not managed by the operating
system and they can introduce random delays 1. By default, common user operat-
ing system (ROS works only on linux and partially on windows), are not realtime:
The kernel has always top priority and cannot be preempted, memory allocations
are hidden, timer are accurate up to a point. For linux, it is possible to configure
the kernel in real-time mode thanks to the CONFIG_PREEMPT_RT2 patch,
which solves the above problems. Still, it is never possible to know latencies in
advance and the RT system designer can only assume worse-case limits, usually
measured statistically.

ROS2 exploits the CONFIG_PREEMPT_RT patch, allowing to use RT-threads
and configure the system in order to use prefixed, static structures and memories.
This would allow a developer to design, for instance, a control system with some
guarantees in term of deadlines and performance. However, due to the overall inde-
terminism that would still affect the system, ROS2 should be regarded as a soft-RT
more than a proper hard-RT system.

1https://rt.wiki.kernel.org/index.php/Frequently_Asked_Questions
2https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/

114

https://rt.wiki.kernel.org/index.php/Frequently_Asked_Questions
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/

2 – Visual odometry and image segmentation

In future we would like to move the current system to ROS2 for implementing
actual controls on the vehicle, such as cruise control or lane keeping. As of today, the
first version of ROS2 was already released but the most interesting functionalities
are still work in progress.

2 Visual odometry and image segmentation
Image segmentation consists in labeling each pixel of an image indicating it belongs
to a certain class of object, like the road surface or a vehicle. The technique is rela-
tively new and using deep learning it is possible to apply it on high resolution image.

Figure 9.1: Example of image segmentation applied to our images. Road surfaces,
vehicles, trees or grass, and other elements have a different color indicating they
belong to different classes

As we suggested in section 4.3 an error source in visual slam system is to include
in calculations of the camera movement some features belonging to moving object
such as the other vehicle on the road. Using image segmentation, it would actually
be possible to exclude such points, creating a non uniform region of interests (ROI).

Figure 9.2: Mock-up of the image segmentation ROI: cars are excluded. This remove
’noise’ in the map

115

9 – Next steps, future work

3 Correlative scan matching for lidar SLAM
The NDT technique presented in section 5.2 has been surpassed by new algorithm
such as the one described in [37]. The Real-Time correlative scan matching of Olson
when applied on GPU has better performance and lower execution times. The idea
behind consists in searching in a multi-resolution, discretized (x, y, θ) space for the
maximum likelihood pose that can explain the current lidar observation against the
map known so far (pre-generated accumulating points).

The map is not made by a point cloud, but it is a rasterization of the log prob-
abilities of lidar observation. The rasterization of course, has higher value close to
the scanned points. The map can be displayed as a 2D grayscale image. The search
in every discretized point of the space is handed to the GPU, capable of computing
in parallel the correlation for each possible pose. The search is repeat at multiple
resolution, where low-probable solution at lower resolution are discarded in order
to save time. This trick and the use of GPU allow the matcher to execute in short
time on modern hardware, thus the ’Real-Time’ of the name.

116

Appendix A

Common Mathematical Methods

1 Newton’s algorithm
Also known as Netwon-Raphson method, this algorithm can be applied to dif-
ferentiable functions for obtaining approximations of the roots. For a real-valued
one parameter function f(x), the algorithm consists in iteratively evaluating:

xn+1 = xn − f(xn)
f ′(xn)

Until f(xn) reaches a value sufficiently close to 0. In the first iteration, Xn = X0
where X0 is a sufficiently close approximation of one root.

More importantly for today research, the same algorithm can be applied to the
first derivative of the function f ′, thus allowing to evaluate local minima (or max-
ima). So the algorithm is used as one of the most common and simple optimization
techniques:

xn+1 = xn − f ′(xn)
f ′′(xn)

Of course, it is up to the user to make sure the first approximation x0 is close
enough to a global minimum via other methods. See [5] for further details

For higher dimensions, the algorithm can be extended by using the gradient
∇f(x) and the hessian matrix Hf(x):

xn+1 = xn − [Hf(xn)]−1∇(xn)

2 Gradient Descent
As the name may suggest, gradient descent methods consists in following the
direction of the function gradient in order to iteratively descending to a local mini-
mum. If the starting point is enough close to a global minimum, then the algorithm

117

A – Common Mathematical Methods

is a good (but not fast in comparision to many other algorithms) method for finding
the minimum of a function.

The method uses only the gradient, that is, the first derivative of the function,
thus it is often easy to apply to all functions, also high dimensional ones. Especially
for the machine learning and deep learning scope, many improvements to the origi-
nal gradient descent were proposed, for instance AdaGrad, Adam, RMSProp.

Figure A.1: Gradient descent iteratively follows the gradient in the direction to a
local minimum - [Wikipedia]

Given a multidimensional function f(x) and its gradient∇f(x), at every iteration
the gradient is subtracted to the current xn:

xn+1 = xn − γ∇f(x)

where γ is a parameter that can be varied at every iteration. For higher γ in
principle the algorithm should approach faster to the minimum, however it may also
induce the algorithm to go back and forward around the minimum, where smaller
step would be needed instead. There are various technique for choosing γ at every
iteration.

3 Levenberg–Marquardt
Levenberg–Marquardt is a method for non-linear least squares, that is, a method
for function fitting with the exception that the proposed approximating function is
non-linear.

118

3 – Levenberg–Marquardt

Like in nonlinear least squares, given a set of N samples (yk, xk) and our ap-
proximating function f(x, β), dependent on parameters β, we want to optimize the
parameters of f(x, β) so that the sum of squared error C is minimum:

C = ∑N
k=1 yk − f(xk, β)

The Levenberg-Marquardt search for a minimum by both using the second and
first derivative of the objective function, where the latter is weighted by λ :[

JT J + λdiag(JT J)
]

δβ = JT [y − f(β)]

Note that:

• We are not optimizing over x, but over β

• δβ = βn+1 − β

• We are not optimizing f(x), but C

• (yk, xk) are given

It is interesting to acknowledge that the method is actually an interpolation
between the Newton (due to the second derivative) and the gradient descent (first
derivative) method. The interpolation is regulated by λ. Indeed by setting λ = 0
we have:

JT Jδβ = JT [y − f(β)]
JT J [βn+1 − βn] = JT [y − f(β)]

βn+1 = βn − JT JJT [y − f(β)]

JT J is the Hessian of first order linearization of the objective function. Thus the
similarity to the Newton algorithm.

See http://people.duke.edu/~hpgavin/ce281/lm.pdf for more details about
the method.

119

http://people.duke.edu/~hpgavin/ce281/lm.pdf

120

Appendix B

Deep Learning

Due to the intensive use of deep learning in detection and recognition system of today
self-driving vehicle, we add here the details that can be used as a short reference.
For a more in-deep explanation of the topic the reader can refer to [16]

1 Neural Networks

Neural networks are machine learnings methods, usually represented by a graph of
node of various, layered shape. Node in the network (neurons) represents functions,
called activations, that usually are single-value non-linear functions. Edges in the
network instead represents the input-output connections between these node: the
output of a node is used as input of a node in the next layer. All the inputs are
weighted by a value that is associated to the edge. The full set of these values is
called weights of the network. These are the values that are optimized during the
training phase of the network. The structure of the network is purposely designed
for a defined problem domain and in the latest years it is possible to see more and
more complex structures, with more layers and memory elements (See RNN).

121

B – Deep Learning

Figure B.1: Structure of a simple neural network. Hidden layers in today networks
are much more complex.

As any machine learning methods, input data is an array of values. The input
layer is the first layer of the network and represents this array. The output layers
generate the output values of the network. In some cases these are the final results of
the machine learning algorithm, in other there is a further function such as softmax,
that normalize the output or transform it a probability value.

The earliest forms of neural networks were fully connected, that is, every neu-
ron was connected to all the neurons of the previous and next layer. This seems
natural, since eventually some connections will be ignored after the training phase
when the weight assigned to the edge is close to 0. However, it was later demon-
strated the advantage of define a pattern of connections between the layers in order
to exploit the locality of some informations. This is very important for visual ap-
plications where it is important to recognize lines, patterns, then shapes and higher
and higher level features in increasing layers of the network. This will be detailed
in appendix 2

Common activation functions are the sigmoid, the hyperbolic tangent (tanh) and
the rectified linear unit (ReLU), which is the most preferred nowadays since it is
the most simple to compute and also it cause the tendency to make models simpler.

The operation that starts from input neurons to the final output is called feed-
forward.

At each neuron, the following operations are carried out:

oj (t) = fnl

(∑
i

oi · wik

)

122

2 – Deep Neural Network

Figure B.2: Three common activation functions

That is, we multiply the output of each neuron oi of the previous layer by the
weight of the corresponding edge wik. The weighted average is then passed to the
non linear function fnl. Weighting averages between each layer are carried out in
form of matrix multiplications. Activation function calculations are quite simple and
independent among neurons. Thus all the operations can be performed in parallel at
each stage. This is why GPUs and the ad-hoc designed TPUs (Tensorial Processing
Unit) performance in the field are times higher than CPUs. These processors are
also much faster in the training phase. During this phase, which can take days
even on high-spec hardware, the weights are optimized in order to obtain predictions
that match values or categories of a training phase (in the supervised learning case).
One major topics in academic research is finding the various method for making
optimization faster and robust to overspecialization.

Fortunately the calculations for the feedforward step can be often easily per-
formed by standard hardware in milliseconds. Thus the cost of neural network is
only related to the design and training phases.

Standard fully connected neural networks were applied, in the early years of their
use, for control systems involving non-linear functions. Recognition capabilities
were proven with deep neural network, and convolutional neural network
specifically[28], some years after and then rediscovered lately thanks to the new
availability of massive parallel processors.

2 Deep Neural Network
The number of layer in a network is called depth. When multiple hidden layers
are used we usually call the network deep. The operations performed in the hidden
layers of a deep neural network are more complex of usual: Not only locality of data
is exploited using convolutional layers, usually also these operations are performed:

• pooling consists in replacing a set of nearby outputs with a unique value.
In max pooling the maximum output of a neighbourhood is used. Weighted
averages are also possible but less common.

123

B – Deep Learning

• dropout of outputs, forcing them to zero. This is a simple regularization
techniques.

• concatenation of multiple outputs from different layers into a single input
set.

For image applications, it is useful to represents neural network layer as three
dimensional boxes. For instance, the input layer of a neural network that works on
a 2D image is usually a Width ·Height · 3 box, where each value is the value of a
Red, Green or Blue pixel. A neuron in the first convolutional layer, for instance,
would be connected to a patch of 3x3 pixel in the image (fig. B.3)

Figure B.3: Example of convolutional layer. Each neuron of the blue layer has as
input the output of a path of the previous layer. Note that also the blue layer has
three dimension. Along the width and height dimension, all the neurons have the
same patch but different weights. [Wikipedia]

The operations above are mixed together by the designer of the networks, with
experience and guidance of trial-and-error approaches. The sequence of these op-
erations, along with the size of each layer, is called architecture of the network.
One of the earliest architecture [28] is composed by convolutional, subsampling and
fully-connected layers fig. B.4. It obtained a fairly good result in recognizing hand-
written digits. More recent architectures may be more complex fig. B.5, such as
Google’s inception [53], proposed for image recognition task.

124

2 – Deep Neural Network

Figure B.4: (a)

Figure B.5: (b)

Figure B.6: Example of two deep convolutional neural network. LeNet (a) appears
really simple today. Some architectures as inception (b) can be far more complex.

125

126

Appendix C

Geodetics and projections

We report here a few notions about geodetics due to the use of GPS and interests in
localizing the vehicle in Earth global coordinates. There are many ways to describe
the earth shape, position around the surface, distances and other measures. Each of
them has better properties for a certain scope. For coordinates in automotive local-
ization it is often common to switch between Latitude/Longitude representation
and the UTM coordinate system.

1 Latitude/Longitude

The classical spherical geometry representation is a direct method for describing
points on earth, usually approximated by an ellipsoid. Any position is given by the
tuple (lat, lon, height). However, these values are actually meaningful only when
associated to a geodetic datum, that is a given ellipsoid defined by the length
of the semi major axis a, the flattening f and the origin. As of today, especially
for any consumer, the datum is never specified since it is implicitly WGS84. This
datum has origin in the Earth’s center of mass, and axis, flattening parameters given
by approximated measures of Earth performed through various techniques around
1980. Being it used in GPS, it became the de-facto international standard.

Other datum exists, albeit less used. The same location on earth may differ a
lot depending on the datum. For instance in Spain some positions differs up to 100
meters in the WGS84 and the older ED50 system.

The use of a spherical system is not always well versed for vehicle localization,
since it is much more convenient to use a Cartesian system that makes possible to
evaluate distances, angles and the conversion with local sensor frame of references.
It is thus necessary to also use a projection.

127

C – Geodetics and projections

2 UTM

The Universal Transverse Mercator is quite similar to the better known Mercator
projection, which has the good property of conserving angles. The original projec-
tion distorts size however (for instance, the size of lands around the poles). UTM
instead has less distortions by splitting the whole Earth’s surface in sixty zones along
longitude and 20 bands along latitude (with some exception, it is not a proper grid,
see fig. C.1)

Figure C.1: Full grid of UTM - [Wikipedia]

Locally, each cell of the grid maps a corresponding region of varying area (big-
ger close to the equator). In every cell, coordinates are defined in easting and
northing, measured in meters. The easting start at 500 000 meters at the center
meridian of the UTM zone, northing starts at 0 at the equator for norther bands
and at 10 000 000 meters south of the equator for souther bands. Coordinates are
always positive and are expressed by including the number of the zone, the letter
of the band. For instance, Munich is at 32U 691 650E 5 334 754N.

Withing a UTM cell, distortion (when ignoring the height change) are low enough
to easily measure distances with normal euclidean metrics. Still, one should pose
particular attention at the grid convergence problem (also known as meridian
convergence): The north direction in a point over the UTM zone surface does not
always point to the true north direction. Indeed, the vertical line at the meridian
of the zone correctly matches it, but on the east or west the angle between the true
north and the vertical line progressively change. Given the latitude ϕ and longitude
λ of a point, the longitude λ0 of the UTM zone meridian, the angle difference is
γ = arctan (tan (λ− λ0) · sin(ϕ))

128

Acknowledgements

We thank Objective Software for its support, provided both in form of resources
and guidance, giving us the chance to test all of our ideas. The company also sup-
ported and helped us with technical and managerial advices since the proposal till
the review of documents and presentation material, sharing the enthusiasm for the
little advances obtained now and then.

Sebastiano Barrera, Vincenzo Giovanni Comito

Writing this note gives closure to the long, intense experience that this thesis
proved to be. It’s been an invaluable source of experience, learning, and growth.
For this, many people deserve my gratitude.

I would like to thank Team DIANA, the robotics team I used to proudly be
a part of, for the great learning opportunities, the hard work, the trips, and the
friendships.

Finally, I thank my father, my grandmother, my entire family, past and present,
and of course my friends, for helping me along the road and for bearing with me
during the many times when I thought this work would never end.

Sebastiano Barrera

I would like to thank prof. Giancarlo Genta for his Team DIANA and all
its past, present and future students. Being part of the team was an invaluable
experience, it shaped me personally and professionally, allowing me to work with
extraordinary colleagues and friends. I hope the Polytechnic will continue its long
tradition off supporting these initiatives.

I thank my family for the continuous support and encouragement, and especially
my mother for the patience and her ability to understand me and accept all my
decisions.

Vincenzo Giovanni Comito

129

130

Bibliography

[1] Apache ZooKeeper. url: https://zookeeper.apache.org/.
[2] J. Beltran et al. «BirdNet: a 3D Object Detection Framework from LiDAR

information». In: ArXiv e-prints (May 2018). arXiv: 1805.01195 [cs.CV].
[3] P. J. Besl and N. D. McKay. «A method for registration of 3-D shapes». In:

IEEE Transactions on Pattern Analysis and Machine Intelligence 14.2 (Feb.
1992), pp. 239–256. issn: 0162-8828. doi: 10.1109/34.121791.

[4] P. Biber and W. Strasser. «The normal distributions transform: a new ap-
proach to laser scan matching». In: Proceedings 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).
Vol. 3. Oct. 2003, 2743–2748 vol.3. doi: 10.1109/IROS.2003.1249285.

[5] J.F. Bonnans et al. Numerical Optimization: Theoretical and Practical As-
pects. Universitext. Springer Berlin Heidelberg, 2013. isbn: 9783662050781.
url: https://books.google.it/books?id=1ffvCAAAQBAJ.

[6] P. Bonnifait et al. «Data fusion of four ABS sensors and GPS for an enhanced
localization of car-like vehicles». In: Proceedings 2001 ICRA. IEEE Interna-
tional Conference on Robotics and Automation (Cat. No.01CH37164). Vol. 2.
2001, 1597–1602 vol.2. doi: 10.1109/ROBOT.2001.932839.

[7] Cesar Cadena et al. «Simultaneous Localization And Mapping: Present, Fu-
ture, and the Robust-Perception Age». In: CoRR abs/1606.05830 (2016). arXiv:
1606.05830. url: http://arxiv.org/abs/1606.05830.

[8] L. Chen. «Continuous Delivery: Huge Benefits, but Challenges Too». In: IEEE
Software 32.2 (Mar. 2015), pp. 50–54. issn: 0740-7459. doi: 10.1109/MS.
2015.27.

[9] X. Chen et al. «Multi-View 3D Object Detection Network for Autonomous
Driving». In: ArXiv e-prints (Nov. 2016). arXiv: 1611.07759 [cs.CV].

[10] Consul by HashiCorp. url: https://www.consul.io/.
[11] Texas Instruments - Steve Corrigan. Introduction to the Controller Area Net-

work (CAN). url: http://www.ti.com/lit/an/sloa101b/sloa101b.pdf.

131

https://zookeeper.apache.org/
http://arxiv.org/abs/1805.01195
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1109/IROS.2003.1249285
https://books.google.it/books?id=1ffvCAAAQBAJ
http://dx.doi.org/10.1109/ROBOT.2001.932839
http://arxiv.org/abs/1606.05830
http://arxiv.org/abs/1606.05830
http://dx.doi.org/10.1109/MS.2015.27
http://dx.doi.org/10.1109/MS.2015.27
http://arxiv.org/abs/1611.07759
https://www.consul.io/
http://www.ti.com/lit/an/sloa101b/sloa101b.pdf

BIBLIOGRAPHY

[12] Docker - Build, Ship, and Run Any App, Anywhere. url: https : / / www .
docker.com/.

[13] Drone · Continuous Deliver. url: https://drone.io/.
[14] J. Engel, T. Schöps, and D. Cremers. «LSD-SLAM: Large-Scale Direct Monoc-

ular SLAM». In: European Conference on Computer Vision (ECCV). Sept.
2014.

[15] Dieter Fox. «KLD-sampling: Adaptive particle filters». In: Advances in neural
information processing systems. 2002, pp. 713–720.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[17] The Open Group. Open Group SOA Source Book. http://www.opengroup.
org/soa/source-book/intro/. Van Haren, 2009.

[18] Oguzhan Guclu and Ahmet Burak Can. «A Comparison of Feature Detectors
and Descriptors in RGB-D SLAM Methods». In: ICIAR. 2015.

[19] Wolfgang Hess et al. «Real-time loop closure in 2D LIDAR SLAM». In:
Robotics and Automation (ICRA), 2016 IEEE International Conference on.
IEEE. 2016, pp. 1271–1278.

[20] Armin Hornung et al. «OctoMap: An Efficient Probabilistic 3D Mapping
Framework Based on Octrees». In: Autonomous Robots (2013). Software avail-
able at http://octomap.github.com. doi: 10.1007/s10514-012-9321-0.
url: http://octomap.github.com.

[21] Jared Hulme et al. «Fully integrated hybrid silicon two dimensional beam
scanner». In: 23 (Mar. 2015).

[22] Prof. Dr. Daniel Cremers Jakob Engel. LSD-SLAM: Large-Scale Direct Monoc-
ular SLAM. Computer Vision Group, Technische Universität München. url:
https://vision.in.tum.de/research/vslam/lsdslam.

[23] J. Kannala and S. S. Brandt. «A generic camera model and calibration method
for conventional, wide-angle, and fish-eye lenses». In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 28.8 (Aug. 2006), pp. 1335–1340.
issn: 0162-8828. doi: 10.1109/TPAMI.2006.153.

[24] S. Kato et al. «An Open Approach to Autonomous Vehicles». In: IEEE Micro
35.6 (Nov. 2015), pp. 60–68. issn: 0272-1732. doi: 10.1109/MM.2015.133.

[25] Chang Sup Kim et al. «Improving odometry accuracy for car-like vehicles by
using tire radii measurements». In: 30th Annual Conference of IEEE Industrial
Electronics Society, 2004. IECON 2004. Vol. 3. Nov. 2004, 2546–2551 Vol. 3.
doi: 10.1109/IECON.2004.1432203.

132

https://www.docker.com/
https://www.docker.com/
https://drone.io/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.opengroup.org/soa/source-book/intro/
http://www.opengroup.org/soa/source-book/intro/
http://octomap.github.com
http://dx.doi.org/10.1007/s10514-012-9321-0
http://octomap.github.com
https://vision.in.tum.de/research/vslam/lsdslam
http://dx.doi.org/10.1109/TPAMI.2006.153
http://dx.doi.org/10.1109/MM.2015.133
http://dx.doi.org/10.1109/IECON.2004.1432203

BIBLIOGRAPHY

[26] kinetic/Installation - ROS Wiki. url: http://wiki.ros.org/kinetic/
Installation.

[27] Georg Klein and David Murray. «Parallel Tracking and Mapping for Small
AR Workspaces». In: Proc. Sixth IEEE and ACM International Symposium
on Mixed and Augmented Reality (ISMAR’07). Nara, Japan, Nov. 2007.

[28] Y. LeCun et al. «Gradient-Based Learning Applied to Document Recogni-
tion». In: Intelligent Signal Processing. IEEE Press, 2001, pp. 306–351.

[29] Honglak Lee et al. «Unsupervised Learning of Hierarchical Representations
with Convolutional Deep Belief Networks». In: Commun. ACM 54.10 (Oct.
2011), pp. 95–103. issn: 0001-0782. doi: 10.1145/2001269.2001295. url:
http://doi.acm.org/10.1145/2001269.2001295.

[30] Steven M. Lavalle. «Rapidly-Exploring Random Trees: A New Tool for Path
Planning». In: (May 1999).

[31] mapviz - ROS wiki. url: http://wiki.ros.org/mapviz.
[32] J. Matas, C. Galambos, and J. Kittler. «Robust Detection of Lines Using

the Progressive Probabilistic Hough Transform». In: Computer Vision and
Image Understanding 78.1 (2000), pp. 119–137. issn: 1077-3142. doi: https:
//doi.org/10.1006/cviu.1999.0831. url: http://www.sciencedirect.
com/science/article/pii/S1077314299908317.

[33] T. Moore and D. Stouch. «A Generalized Extended Kalman Filter Implemen-
tation for the Robot Operating System». In: Proceedings of the 13th Inter-
national Conference on Intelligent Autonomous Systems (IAS-13). Springer,
July 2014.

[34] Marius Muja and David G Lowe. «Fast approximate nearest neighbors with
automatic algorithm configuration.» In: ().

[35] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. «ORB-SLAM: A Versatile
and Accurate Monocular SLAM System». In: IEEE Transactions on Robotics
31.5 (Oct. 2015), pp. 1147–1163. issn: 1552-3098. doi: 10.1109/TRO.2015.
2463671.

[36] R. Mur-Artal and J. D. Tardós. «ORB-SLAM2: An Open-Source SLAM Sys-
tem for Monocular, Stereo, and RGB-D Cameras». In: IEEE Transactions on
Robotics 33.5 (Oct. 2017), pp. 1255–1262. issn: 1552-3098. doi: 10.1109/
TRO.2017.2705103.

[37] E. B. Olson. «Real-time correlative scan matching». In: 2009 IEEE Interna-
tional Conference on Robotics and Automation. May 2009, pp. 4387–4393. doi:
10.1109/ROBOT.2009.5152375.

133

http://wiki.ros.org/kinetic/Installation
http://wiki.ros.org/kinetic/Installation
http://dx.doi.org/10.1145/2001269.2001295
http://doi.acm.org/10.1145/2001269.2001295
http://wiki.ros.org/mapviz
http://dx.doi.org/https://doi.org/10.1006/cviu.1999.0831
http://dx.doi.org/https://doi.org/10.1006/cviu.1999.0831
http://www.sciencedirect.com/science/article/pii/S1077314299908317
http://www.sciencedirect.com/science/article/pii/S1077314299908317
http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.1109/ROBOT.2009.5152375

BIBLIOGRAPHY

[38] Preparing Your Data for Use with robot_localization — robot_localization
2.5.2 documentation. url: http://docs.ros.org/melodic/api/robot_
localization/html/preparing_sensor_data.html.

[39] Morgan Quigley et al. «ROS: an open-source Robot Operating System». In:
Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop
on Open Source Robotics. Kobe, Japan, May 2009.

[40] Joseph Redmon and Ali Farhadi. «YOLO9000: Better, Faster, Stronger». In:
CoRR abs/1612.08242 (2016). arXiv: 1612.08242. url: http://arxiv.org/
abs/1612.08242.

[41] Joseph Redmon et al. «You Only Look Once: Unified, Real-Time Object De-
tection». In: CoRR abs/1506.02640 (2015). arXiv: 1506.02640. url: http:
//arxiv.org/abs/1506.02640.

[42] REP 103 – Standard Units of Measure and Coordinate Conventions (ROS.org).
url: http://www.ros.org/reps/rep-0103.html.

[43] REP 105 – Coordinate Frames for Mobile Platforms (ROS.org). url: http:
//www.ros.org/reps/rep-0105.html.

[44] rkt, a security-minded, standards-based container engine - CoreOS. url: https:
//www.docker.com/.

[45] ROS 2.0 Design. url: http://design.ros2.org/.
[46] ROS navigation stack. url: http://wiki.ros.org/navigation.
[47] ROS navigation stack: AMCL. url: http://wiki.ros.org/amcl.
[48] E. Rublee et al. «ORB: An efficient alternative to SIFT or SURF». In: 2011

International Conference on Computer Vision. Nov. 2011, pp. 2564–2571. doi:
10.1109/ICCV.2011.6126544.

[49] Radu Bogdan Rusu and Steve Cousins. «3D is here: Point Cloud Library
(PCL)». In: IEEE International Conference on Robotics and Automation (ICRA).
Shanghai, China, May 2011.

[50] Ken Schwaber. Agile Project Management with Scrum. Microsoft Press, 2004.
isbn: 978-0-7356-1993-7.

[51] Shuran Song and Jianxiong Xiao. «Sliding Shapes for 3D Object Detection in
Depth Images». In: Computer Vision – ECCV 2014. Ed. by David Fleet et al.
Cham: Springer International Publishing, 2014, pp. 634–651. isbn: 978-3-319-
10599-4.

134

http://docs.ros.org/melodic/api/robot_localization/html/preparing_sensor_data.html
http://docs.ros.org/melodic/api/robot_localization/html/preparing_sensor_data.html
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://www.ros.org/reps/rep-0103.html
http://www.ros.org/reps/rep-0105.html
http://www.ros.org/reps/rep-0105.html
https://www.docker.com/
https://www.docker.com/
http://design.ros2.org/
http://wiki.ros.org/navigation
http://wiki.ros.org/amcl
http://dx.doi.org/10.1109/ICCV.2011.6126544

BIBLIOGRAPHY

[52] Anthony Stentz. «Optimal and Efficient Path Planning for Partially Known
Environments». In: Intelligent Unmanned Ground Vehicles: Autonomous Nav-
igation Research at Carnegie Mellon. Ed. by Martial H. Hebert, Charles Thorpe,
and Anthony Stentz. Boston, MA: Springer US, 1997, pp. 203–220. isbn:
978-1-4615-6325-9. doi: 10.1007/978- 1- 4615- 6325- 9_11. url: https:
//doi.org/10.1007/978-1-4615-6325-9_11.

[53] Christian Szegedy et al. «Going Deeper with Convolutions». In: CoRR abs/1409.4842
(2014). arXiv: 1409.4842. url: http://arxiv.org/abs/1409.4842.

[54] Taxonomy and Definitions for Terms Related to Driving Automation Systems
for On-Road Motor Vehicles. doi: 10.4271/j3016_201609. url: https:
//doi.org/10.4271/j3016_201609.

[55] Marvin Teichmann et al. «MultiNet: Real-time Joint Semantic Reasoning for
Autonomous Driving». In: CoRR abs/1612.07695 (2016). arXiv: 1612.07695.
url: http://arxiv.org/abs/1612.07695.

[56] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, 2005. isbn:
0262201623.

[57] H.M. Traquair. An Introduction to Clinical Perimetry. Mosby, 1946. url:
https://books.google.it/books?id=9ECsAAAAIAAJ.

[58] Using etcd. url: https://coreos.com/etcd/.

135

http://dx.doi.org/10.1007/978-1-4615-6325-9_11
https://doi.org/10.1007/978-1-4615-6325-9_11
https://doi.org/10.1007/978-1-4615-6325-9_11
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://dx.doi.org/10.4271/j3016_201609
https://doi.org/10.4271/j3016_201609
https://doi.org/10.4271/j3016_201609
http://arxiv.org/abs/1612.07695
http://arxiv.org/abs/1612.07695
https://books.google.it/books?id=9ECsAAAAIAAJ
https://coreos.com/etcd/

	Introduction
	Abstract
	Overview
	Objective Software
	State of the Art
	Tesla
	Waymo
	NVIDIA

	Platform Description
	ROS
	Introduction to ROS
	Open Source Software
	Limitations

	Vehicle
	CAN Protocol
	CAN Protocol overview

	fa_can_ros

	Sensors
	Cameras
	Camera models and basic processing
	Camera Calibration

	Lidar
	Future trends
	MEMS lidars
	Optical Phased Array
	Hybrid approaches

	Point Clouds
	Velodyne VLP-16
	Automotive Lidar
	Lidar error sources and problems

	GPS
	GNSS Technologies, performances and source of errors
	Differential GPS
	Real Time Kinematics

	GNSS in automotive
	GPS sensors on the platform

	Wheel Odometry
	Summary of the platform

	Localization
	Problem and approach
	Theory notes: Bayesian algorithms and Kalman filtering
	Theory notes: Simultaneous Localization and Mapping
	Visual SLAM
	Cameras for visual SLAM
	Basics of monocular SLAM
	Feature detection/recognition

	ORB_SLAM2

	Lidar SLAM and localization
	Iterative Closest Point
	Normal Distribution Transform

	ROS implementation: robot_localization
	Configuration

	Results
	Localization performance
	Around Ostbahnhof N.2
	Bridge N.1

	Generation of the Neue Balan map
	Generation of Urban Scenarios map

	Detection
	Camera Detection
	Objects
	Deep neural networks for object recognition and detection

	YOLO

	Lidar Detection and Recognition
	Processing point clouds with PCL
	Clustering
	A few notes on data structures and search algorithms
	KdTrees
	Octree
	Filtering

	Euclidean Clustering
	Euclidean Clustering ROS node

	Tracking with Kalman filtering

	Recognition
	Projection methods
	Automotive Lidar recognition capabilities
	Lane recognition

	Navigation
	Cost and Occupancy maps
	A*

	Deployment and Continuous Integration
	Similarities with the microservices paradigm
	Containerization solution
	Continuous Integration
	User experience

	Infrastructure
	Project Management
	Data collection

	Conclusions
	Next steps, future work
	Real-Time applications and ROS2
	Visual odometry and image segmentation
	Correlative scan matching for lidar SLAM

	Common Mathematical Methods
	Newton's algorithm
	Gradient Descent
	Levenberg–Marquardt

	Deep Learning
	Neural Networks
	Deep Neural Network

	Geodetics and projections
	Latitude/Longitude
	UTM

		Politecnico di Torino
	2018-07-16T11:49:00+0000
	Politecnico di Torino
	Massimo Violante
	S

