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1 INTRODUCTION

The damage localisation has always been a topic of interest in the area of research, especially
in recent decades, as well as the use of innovative materials in the world of civil construction.

In this thesis, the two topics are covered together using different methodologies.

The object of the work is a simply supported beam made of pultruded material, i.e. resin and
fibre of glass, on which dynamic tests are carried out by exciting the structure with a hammer
and recording the displacements by means of sensors. After the distances between the
accelerometers and the impact positions of the hammer have been determined, the test is
carried out. Once all the information has been acquired, data processing is performed,
obtaining frequencies and modal shapes for the first four modes of vibrating. Modal shapes

are in turn analysed using the Treed Gaussian Process (TGP) to identify and locate the crack.

The TGP is a statistical method based on the regression of Gaussian processes. Gaussian
Processes (GP) are the extension from the distribution of scalar values to functions; in other
words, through Gaussian Processes a function is obtained in which every point represents a
probability function. The TGPs use Gaussian Processes, but interpolation is not done on the
whole domain; the latter is divided into two parts, obtaining two interpolating functions. At
the next step each individual part of the domain could be divided into two other parts and so
on. The points that divide the domain are points in which there is a local variation of the

function. In this case, will be due to the presence of a crack.

Parallel to the experimental data, four models of cracked beams are created by means of
FEM on which dynamic parameters and modal shapes are determined. This is done as a
support, to compare the results with the experimental ones. The FEM models differ
according to the size of the crack: 1, 10, 25 and 50 millimetres. The position of the crack is
inserted at the position of 3.65 m from the origin of the beam; this choice is completely
arbitrary. Once the modal analysis is performed, the first four modal shapes are analyzed
through Treed Gaussian Process. To locate the crack, on FEM models, the "curvature
method" is also applied: it identifies the position of the crack making a difference between

the curvatures of the cracked and intact model.

The objective of the work is to understand whether a TGP analysis can detect a possible

crack position on the real beam.
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2 LITERATURE REVIEW

2.1 Structural pultred materials

Pultred materials consist of the combination of two different materials: glass fibers and
polymer resin (GFRP Glass Fiber Reinforced Polymers). To create this kind of composite
material, the glass fibers are impregnated with polymer resin and they are pulled through a
heated die where polymerization takes place. Then the reinforcement is pulled through a
bath. When the material comes out of the oven, it is transported up to a cutting area where
it is appropriately cut by blades that size it [1]. Pultrusion process can be simplified in the

following diagram:

1 2 3 4

e

Fig. 1 Pultrusion process [Wikipedia].

7

5 6
The first who used the pultrusion process was B. Goldsworthy in 1951. The use of fiber-
reinforced composites is rapidly spreading because of their advantages in strength and

lightness. In particular, the strength and stiffness is given by the fibers while the resin

protects the fibers and distributes the stresses [2].

Currently, the structural elements of GFRP are finding application in civil engineering works
to strengthen the existing constructions but also for build new all GFRP structures. In the
second case a very light structures can be obtained, for instance pedestrian bridge. Usually
pultred Glass Fiber Reinforced Polymer are used alongside conventional material such as

concrete, aluminium and steel [3].

Pultred material has a low density of 1734 kg/m? that is under "4 of steel one. Although the

shapes of these GFRP materials are similar to steel sections, as shown in figure:
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Fig. 2 Pultred material profiles.
Longitudinal tensile strength, in the direction of fibers, is 350 MPa that is comparable with
structural steel. The longitudinal tensile modulus of elasticity, in the direction of fibers, is
28.5 GPa while in perpendicular direction of fibers is 8.5 GPa. All other parameters are listed
in the following table:

Properties Test method Notation Mean value
Longitudinal tensile modulus of ASTM D638 E:=Er 28.5 (GPa)
elasticity

Transverse tensile modulus of elasticity ASTM D638 Ey=Ex=Er 8.5 (Gpa)
Transverse shear modulus of elasticity EN 13706-2 (full scale) Gn=Gi 3.5 (Gpa)
In-plane shear modulus of elasticity Gx: =Gyz=Gr 2.5 (Gpa)
Longitudinal Poisson’s ratio ASTM D3039 V= V= VL 025
Transversal Poisson’s ratio ASTM D3039 Viy= V= VT 0.12
Longitudinal tensile strength ASTM D638 Ozt = Ot 350 (Mpa)
Transverse tensile strength ASTM D638 Oxt = Oyt = OTt 70 (Mpa)
Longitudinal compressive strength ASTM D695 Oz = OLc 413 (Mpa)
Transverse compressive strength ASTM D695 Oxc = Oye= Ot 80 (Mpa)
Shear strength ASTM D2344 Ty= Tz = Tz 40 (Mpa)
Density ASTM D792 y 1734 kg/m3
Fibers percentage ASTM D2584 Ve 45%

Table 1 Mechanical and physical properties of pultred GFRP material.

The isotropy is defined by the relationships Ex=Ey, vxy=vyx and Gzx=Gzy.
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2.2 Experimental modal analysis

Modal analysis is a method that allows to determinate the dynamic characteristics of a
system through the analysis of experimental data. Data can be displacements, velocities,
accelerations measured on the structure. This approach is colled ‘modal analysis’ and it
revolves around two basic concept: linearity and time invariance of the structure [4]. The
modal parameters to solve the problem are frequency, damping and mode shape. Naturally,
the mechanical behaviour of a structure depends on its inertial and stiffness characteristics
that govern the response of the system, caused by an external force. Through some
transformations, we pass from the spatial model to the "phase-space". This is done because
the representation in the phase-space is convenient to use the modal identification
techniques. It is important to emphasise that the measure are not carried out with continuity
over time but they are carried out at intervals of time. Therefore, during the test a sampling

time must be defined.

2.3 Modal Identification

There are different types of modal identification methods; they can be classified according

to different criteria:

e DOMAIN
This classification may be subdivided into three types: time domain, frequency
domain and time-frequency domain. The time domain method works well when the
structure has a high number of modes or the frequency range of interest is limited.
The frequency domain method, instead, works well when the structure has a limited
number of modes or the frequency range of interest is wide. The third type is a
combination of the two previous ones and it is used to analyse non-stationary signals.

e ANALYTICAL PROCESS
In this classification we can distinguish: direct and indirect methods. In the first one,
the identification is based on matrices determination that define the spatial model.
Therefore, mass matrix, stiffness matrix and damping matrix are considered. It is a
classical eigenvalue problem. In the second one, the identification of frequency
response functions (FRF) is based on a modal model. That is on the evaluation of
modal parameters: natural frequencies, damping and mode shape.

e NUMBER OF MODE-SHAPES
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This criterion consist of the number of modal-shapes the have been analysed. It can
be “SDOF” single degree of freedom or “MDOF” multi degree of freedom.

e INPUT AND OUTPUT
This criterion is linked to the operations of the experimental phase. It depends on the
number of frequency response functions (FRF) available. Usually you have data for
each sensor placed on the structure and therefore you have a function for each point
monitored. In the light of this, four methods can be distinguished:
- SISO, single input — single output;
- SIMO, single input — multi output;
- MIMO, multi input — multi output;
- MISO, multi input — single output.

e TYPE OF EXCITATION
The excitation can be of two types: known (artificial excitation) or unknown.
Artificial excitations can be: free oscillations and those induced by the use of a
shaker; while the unknown ones can be: environmental noise, wind actions and

mechanical vibrations due to vehicles.

2.3.1 General analytical formulation of identification methods
In order to illustrate the general approach of identification of the systems, a SISO system
(single input — multiple output) is considered. Considering an input signal u(t) and an output

signal y(t) where t= (0, 1, ..., N - 1), the discrete time system can be represented as follows:

y(t) = G(2)u(t) + v(t) (1)
The G (z)u(t) represent the convolution between two response functions g(t) due to input

signal u(t), namely:

Gu® = ) glout - k) @
k=0

The function v(t) represents the error due to the instrument and noise.

G (2) represent the transfer function of the system and it is defined as follows:

6@ =) gz G)
k=0
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Where z is the displacement

zly®) =y(t—-1) (4)

This is a parametric approach linked to the determination of a set of parameters that describe

G (z) function.

It is possible to generalise the formula (1) to create a parametric model:

B(z) C(2)

A(2)y(t) = mu(t) + me(t) ()

Where the terms A(z), B(z), C(z), D(z) and F(z) are polynomials. They are depend on

displacement:

A2) =1+a;z7 '+ .. +a,, z" (6)

n,is the polynomial order of A(z).

Other similar equations can be written for the other polynomials using respectively n,, n.,
ng, ne and ns. e(t) can be assumed as white noise and equal to v(t). Based on the value of

the coefficients it is possible to obtain different models:
- ARX,n,=ny4 =0;
- ARMAX, Ng = nf = 0,
- OE (output error), n, =n, =nyz = 0;

- BOX-JENKINS, n, = 0.

Until now, the analytical formulation was based on a transfer function. It is possible to

perform another formulation in the phase space by modifying the relation (5):

x(t+ 1) = Ax(t) + Bu(t) (7)
y(t) = Cx(t) + Du(t) + v(t) (8)
Where A, B, C, and D are matrices containing constants. The equation (7) can be rewritten
as follows:
zx(t) = Ax(t) + Bu(t) 9)
by resolving you get:
x(t) = (zI — A)"1Bu(t) (10)
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By replacing in the (8), the following is obtained:

y(t) = [C(zl — A)™'DJu(t) +v(t) (11)
In this case the transfer function is linked A, B, C, and D matrices through the following

expression:

S(z)=Clz —A]"*B+D (12)
In conclusion, the identification of systems corresponds to determining the matrices of

constants.

2.3.2 Identification methods with unknown input

Most of the techniques with unknown input operate in the time domain and provide the
modal parameters of the system starting from the structural response. Two methods must be
distinguished: not-parametric identification and parametric identification. The first,
estimate an impulse response function (for instance, ERA method), the second estimate the

best parameters that are close to the experimental ones.

2.3.2.1 Eigensystem Realization Algorithm (ERA)

Eigensystem Realization Algorithm is a method designed by Juang and Pappa and it solves

Multi Input Multi Output (MIMO) systems [5].

The first step of the method is to pass from the time domain to the phase domain; the dynamic

equilibrium equations for a viscous damping MDOF system are:

(M1} + [CHEO) + [KIE(®) = (£ (0, 0 (13)
Defining u(t) the vector:
wo-{22)
the problem can be brought to the linear case:
9=y -l "
(0,00} = [FI8@) (16)
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B'] = [—[1\4[]0-]1[1[«*]]

Where {5(t)} is an input vector relates to g points of stress; [F] is the coefficients matrix of

(17)

input signals. The system can be represented by writing equation (la prima) in the phase

space:

{u(@®} =[AH{u@®} + [B'I{6(0)} (18)
It is possible to establish a relationship between {u(t)} and {x(t)} (responses measured in p

points) through the transform matrix [R]:

{x(©} = [RI{u(®)} (19)
The solution (18) is expressed by:
At
w®} = eI u(ty)} + j el 17 [B']{8 (kAD)}dt (20)
0

For each instant of time t; where ¢t is the starting time. To provide a discreet representation
of formulation (20) the following intervals must be considered: 0, At, ..., kAt. Assuming that
the input remains constant in the range (kAt,(k + 1)At) and 7 = (k+ 1)At — 1, is

obtained:

At
fu((k + 1)At)} = el {ukAr)} — f elA1[B"1{5 (kAt)}dt 21)
0

For simplicity, it is possible to introduce the following notations:

[A] = elA'1At (22)
At
[B] = — f eld17'[B'] (23)
0
{utk + D} = {u((k + DAL)} (24)
{6(l)} = {6(kAD)} (25)

The equation (21), for a discreet system, becomes:

fu(k + D} = [a]{u(k)} + [BI{6(K)} k=012, .. (26)

So, formula (19) becomes:
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{x(k)} = [RI{u(k)} (27)

If all points (q) of stress are taken into account:

(XUl = [R]  [A]*" [B]

(pxq) (px2N) (2N x2N) (2N xq)

(28)
Where:
p is the number of measured responses ({x(t)}) and q is the numbers of stress point.

All the matrices [X (k)] are called “parameters of Markov” and are used to compose the

Hankel matrix:

XE]  XGK+D] o XG+))]
e - 1) = (PEFDE - GEEDT - I DI )
[X(k+i)] [Xk+i+1)] - [XKk+j+1)]

With i=1,..,r—1 and j=1,..,5s — 1. Where r and s are numbers that satisfy the
conditions pr > N and gs > N. These conditions are necessary to have a sufficient amount

of data to carry out the Singular Value Decomposition (SVD).

One of the advantages of ERA is that only the significant responses can be placed within the
Hankel matrix. So you can use only those with low noise. This process involves the

determination of matrices: [R], [A4], and [B].

There is an infinite number of combinations to satisfy the formula (28). The objective is to
obtain a formulation with the minimum degree in order to represent adequately the dynamic

behaviour of the structure. This is possible by using the SVD.

First, you have to find the [H]” matrix so that the following report is respected:

[WIH]'[Q] = [I] (30)
It is possible rewrite the relation (28) for values of k > 0;
[X(k + 1] = [R][A]*[B] (1)
If you use the identity:
[X(k+ 1] = [Ep]T[H(k)] [Eq] (32)
and
[Ep]" = [[1] [0]...[0]] (33)
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[E,] = [(.)] (34)

it can be demonstrated that:

Xk + D] = [E,] s leanT2]] - [ean] 2 U [[QIATF W] -

[ Wanllean 2] - [[eaw 2Van]T [Eg]]

It is possible obtain the modal parameters once the transformation from discrete to

(335)

N[

continuous system has been carried out. The eigenvalues and eigenvalues are taken from

matrix [A]:

[Al{#} = H{Pu} (36)
The mode shapes can be obtained by multiplying the eigenvalue matrix by the transformation

matrix [R]:

{Yu} = [RI{%u} (37)

Frequencies and damping are evaluated by eigenvalues of the matrix [A].

It 1s important to note that this method needs to be checked because the noise contained in

the signal generates computational modes alongside the real ones.
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3 METHODS

3.1 Curvature method

This method allows us to detect a crack using the change of modal shapes. Other methods
based on frequency change can easily detect the presence of damage but not the position.
This is because two cracks in two different positions can generate the same frequency
variation. So it is not possible to know where the crack is. The curvature method instead
detects the position of the damage through the changes of the curvature mode shapes because

these changes take place in the region of the damage.

Modal Assurance Criterion (MAC) [7] and Co-ordinate Modal Assurance Criterion
(COMAC) [8] are used to compare the mode shapes. MAC indicates the overall difference
between two set of mode shapes. COMAC indicates the correlation between two mode

shapes at a selected measurement point of a structure.
Curvature at a section is equal to:

v'" = M/(EI) (38)
Where M is the bending moment at a section, E is the modulus of elasticity and I is the

moment of inertia.

If the structure is damaged or cracked the value of EI will be reduced at the cracked section

while the magnitude of curvature at that section will increase.

If the value of EI decreases, the change in curvature increases so the greater the damage, the

more noticeable the change of curvature will be.

3.1.1 Analytical Model
Cantilever beam and supported beam models with uniform square cross-section were used

to show this method. The geometric parameters are shown in the figures 3 and 4.
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Fig. 3 Cantilever bam model. (a) Finite element model; (b) cross- section of the cantilever [6].
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Fig. 4 Simply supported beam model. (a) Finite element model; (b) cross-section of the simply supported beam [6].

The cantilever beam model was chosen because the curvature and the displacements have
different forms. Instead, the simply supported beam model was chosen because the curvature

and displacements are the same. Two other cases can be distinguished:

- Intact: all elements have the same properties.
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- Cracked: element 13 is damaged, has a reduced value (by 50%) of the modulus
of elasticity E.

In both cases, 20 two-dimensional beam elements of the same length were used. Adams and
Cawley assumed that damage in a structure effects only the stiffness matrix and not the
inertia matrix in the eigenvalue problem formulation [9]. The eigenvalue problem for the

intact case can be written as follows:

(K—2A4M)x; =0 (39)

and for the cracked case as:

where:

- K is the stiffness matrix of the intact case;

- K'is the stiffness matrix of the cracked case;

- A is the j-th eigenvalue of the intact case;

- A'j is the j-th eigenvalue of the cracked case;

- x; is the j-th displacement eigenvector of the intact case;

- x'j is the j-th displacement eigenvector of the cracked case;

3.1.2 Analysys of results
The only degree of freedom that has been considered in the analysis is the translation degree
of freedom along the Y axis because in the experimental work the rotations measurement

are difficult. The mode shapes were orthonormalized against the inertia matrix:

x/Mx; =1 (41)
The curvatures were determined from the displacements v through the following

relationship:

v;' = (Vg1 — 2v; + v_1) /® (42)

where h is the length of each element.

Once the curvatures were calculated MAC and COMAC were applied for the intact and

damaged curvature mode shapes.
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3.1.3 Numerical result

e CANTILEVER BEAM MODEL

In the following table is possible to see the first five natural frequencies of the two cases:

intact and damaged (element 13) cantilever.

Natural frequency (Hz) Percentage
. - ) change in
Mode no. [ntact Damaged frequency
1 39-631 39-463 ()-42
2 247-110 237-181 4-02
i HRT-663 Gib5-4T2 3-23
4 1336-898 1331-641 -39
5 2188-828 2108587 367

Table 2 Natural frequencies for the intact cantilever and the cantilever damaged [6].

From the results it can be concluded that the natural frequencies decrease if the structure is
damaged. From the percentage change in frequency it is noted that there is a damage in the

structure but to know the position it is necessary to make further analysis.
The following graph shows the first five displacement mode shapes for the intact cantilever.

J2-et

24-49

16-36

Displacement
.l

-16-14
-24-26
-32.349 1 1 1 i '
1 3 5 T 9 1 13 15 17 12 2
Point no,

Fig. 5 Displacement mode shapes for intact cantilever [6].

The tables below show the Modal Assurance Criterion (MAC) and Co-ordinate Modale
Assurance Criterion (COMAC) values for the intact and damaged displacement mode

shapes.
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Intact cantilever

Damaged

cantilever 1 2 3 4 5
1 1-00 001 0-01 0-01 0-01
2 0-01 1-00 0-00 0-01 0-01
3 0-01 0-01 1-00 0:01 0-01
4 0-01 0-01 0-01 1-00 0-00
5 0-01 0-01 0-00 0-01 1-00

Table 3 MAC values for the intact and damaged displacement mode shapes for the cantilever [6].

Point COMAC Point COMAC
no. values no. values
1 1-:00 12 1-00
2 1-:00 13 1-00
3 1:00 14 1-00
4 1-:00 15 1-00
5 1-00 16 1-00
6 1:00 17 1:00
7 1-00 18 1-00
8 1:00 19 100
9 1-00 20 1-:00
10 1-00 21 1:00
11 1:00

Table 4 COMAC values for the intact and the damaged displacement mode shape for the cantilever [6].

All numbers 1 on the diagonal (Table 3) indicate that the modal shapes of the intact case and

the damaged case are almost identical. The following figure shows the curvatures:
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g2 007F
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-0-39 ’
-0621 “
=086 1 1 1 | L | I | L 1 1 1 L I | .
1 3 5 7 9 1t 13 15 17 19 21
Paint no.

Fig. 6 Curvature mode shapes for the intact cantilever [6].
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Once the curvature mode shapes and displacement mode shapes were known, the absolute

differences, between intact and damaged cantilever, were calculated:

2.5

Difference
T G L

05

0-0

Fig. 7 Absolute difference between the curvature mode shapes for the intact and the damaged cantilever [6].

For each curvature mode, the maximum difference occurs in the damage zone.
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Fig. 8 Absolute difference between displacement mode shapes for the intact and the damaged cantilever [6].
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The changes in the displacement mode shapes are not localized to the damage region, so this

information is not useful to localise the damage area.
e SIMPLY SUPPORTED BEAM MODEL

In the following table is possible to see the first five natural frequencies of the two cases:

intact and damaged (element 13) simply supported beam.

Natural frequency (Hz) Percentage
’ . \ change in
Mode no. Intact Damaged frequency
1 111-327 106-857 4-02
2 444.228 434-274 2-24
3 995-420 987-643 0-78
4 1759:279 1690-227 3-93
5 2727609 2702741 0-91

Table 5 Natural frequencies for the intact and damaged simply supported beam [6].

From the results it can be concluded that the natural frequencies decrease if the structure is

damaged.

The following graph shows the first five curvature mode shapes for the simply supported

beam, which are in the same form as displacements.

102

o077
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0-00
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Table 6 Curvature (or displacement) mode shapes for the simply supported beam [6].

Once the curvature mode shapes and displacement mode shapes were known, the absolute

differences, between intact and damaged cantilever, were calculated:
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Table 7 Absolute difference between the curvature mode shapes for the intact and the damaged simply supported beam

[6].

For each curvature mode, the maximum difference again occurs in the damage zone.

2:5

20

Difference

Mode &

LA LA AL A A B R R A B B B

Mode 4
Mode 3
10 Mode 2
MWmbe, s 20 * Mode 1

Poiny

Table 8 Absolute difference between the displacement mode shapes for the intact and the damaged simply supported
beam [6].

Also in this case, the changes in the displacement mode shapes are not localized to the

damage region.
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In conclusion, seeing the numerical results for the cantilever beam model and the simply
supported beam model, the curvature mode shapes is a useful method to identify the damage

area.
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3.2 Treed Gaussian Process (TGP)

This is a specific method in detecting cracks in a structure through mode shapes and the
approach is based on Gaussian process (GP) regression. For the use of GP it is required that
the beam is uniformly smooth and this assumption is valid only for the undamaged section
of the beam. If, on the other hand, a crack is present, it induces a discontinuity. The idea was
to allow a spatial switch point in the GP covariance, which allowed different characteristics
near a point and on either side of the point [ 10]. After creating this function, it is possible to
determine the position of the crack by maximizing the probability of the data (of the mode
shape) by varying the position of the switching point. In the Gaussian process regression it
is used a covariance Kernel which characterises the smoothness of the structure being

modelled.

3.2.1 Gaussian Process (GP)

The Gaussian processes are a Gaussian distribution of functions that return a Gaussian
probability distribution. Gaussian processes are statistically based (Bayesian) and are able
to automatically return the time interval for predictions. In practice, a series of preliminary
assumptions are made about the function to be modelled, and then the data is processed to

update and evaluate a posterior distribution over functions.
The GP algorithm implementation is shown as follows.

Let us consider n input points {xy, ..., X, }, the prior beliefs about the corresponding outputs
can be represented by a multivariate normal distribution, the mean of which is least squares

regression fit through the training data:

E[f®)IB] = m(x) = h(x)"B (43)
Where:

- h(x)T is a regression function of x;

- B is a vector of coefficients.

The covariance between output points is given as:

cov[f(x),f(x’)|af2, 02,L] = k(x,x") (44)
Where:
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- of is a scaling factor;
02 is a noise variance;

- L is a diagonal matrix of inverse length-scales;

L matrix represent the roughness of the output with respect to the individual input
parameters. The costant are the hyperparameter of the problem. The covariance function

usually used is as follows:

k(x,x") = ofexp[—(x — x ) L(x — x")] + 658 (45)
Where 6 = 1ifx = x'.

If the matrix L is restricted to the form §;;/ [? the convariance is isotropic:

1
il = x'II2) + 628 (46)

These equations complete the prior specification of the problem; the posterior distribution

k(x,x') = of exp (—

is then found by conditioning the prior distribution on the training data y. One of the
properties of GP is that the density of a number of outputs from the process is multivariate
normal. It is possible to evaluate this function only in some sampled points: training points
and forecasts. f indicates the function values at the X training points and f* indicates the

function value at a new x* training point. It is therefore obtained:

(fL> ~N (0’ [115 ((f))(()) II<< ((ffc)) ) (47)

Where a zero-mean prior has been for simplicity; K (X, X)is a matrix where i, j®* element
corresponds to k(x;, x;). In the same way, K (X, x*) is a vector where it"element corresponds

to k(x;,x*) and K (x*, X) is the transpose of the same.

To compare the observed target data y with the f function, a Gaussian noise model can be

assumed:

y~N(f, o3 (48)
Where I is the identity matrix.

Since is not interested in the variable f, it can be integrated out from equation (47):

p(y) = f PN dS (49)
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The equation (47) can be rewritten:

KX, X) + 021 KX, x*
(Z)-~n (o [ T ol KEXD ) (50)
y* K(x*, X) K(x*,x*) + of

To use this expression, it is necessary to move from a joint distribution p(y,y*) to a

conditional distribution p(y*|y). Using standard results for conditional proprieties of a

Gaussian, it is possible to write:

Yy ~Nm*(x*), k*(x*, x*) (51)

Where

(m" (") = k(" KX, X) + ozl "y (52)

is the posterior mean of the GP, and

k*(x*,x") = k(x*,x") — [K(x*, X) + 62I]71K (X, x") (53)

Is the posterior variance.

Thus GP model provides a posterior distribution for the unknown quantity y*. The mean
from equation (51) can be used for a regression problem as a “best estimate”, and the

variance can be used to define confidence intervals.

The last factor to calculate and optimize is the hyperparameter; this can be done by using an
evidence framework [11]. These parameters can be found by maximizing the following

function:

1 1
f@ 5y KX, X) + oq1]y —=log|K(X, X) + oyl (54)

Which is the log marginal likelihood and is equal to the log of the evidance, up to some

costant.

3.2.2 Crack Detection
One approach to adapting the GP model is to specify a covariance function that can change
its behavior in different regions of the beam. It is possible to perform a covariance function,

assuming the beam is fissured at position x = a.
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kl(xixj) + k, (xl-xj), x<ax<a
k(xp ) = f(x) =< ki (xix)) + ko (xi%), x> a,x>a (55)

kq (xl-xj) otherwise

This approach was used in [12] where k; was taken as a polynomial kernel,

ky(xix;) = 0 (1 + %) + 07264 (56)
and k, was an SE kernel as defined in equation (46). crf2 and o2 are hyperparameter

associated with the signal and noise variances, and N is a hyperparameter controlling the

polynomial order.

Now all the elements are available to detect cracks using GP regression. The only unknown
factor is the parameter of the position of the cracks, which is changed in order to maximize

the probability of the data.

3.2.3 Algorithm TGP

In this algorithm it is important to divide the space of the independent variables into fields
where there is a smooth response behaviour, then create low order regression models for
each region. The problem will be solved with linear least-squares model if partitioning is
carried out manually. In Treed Gaussian Process method, the partitions are determined by
the data as part of the modelling problem, so the problem becomes highly non-linear and the
least-squares model is no longer usable. The algorithm is therefore based on rigorous
concepts of probability theory; In Bayesian Classificatio and Regression Trees (CART) a
probability distribution on all tree structures and all coefficients is proposed [13]. In the
original formulation made by Chipman, all regression models were linear; later Gramcy

proposed the use of GP models, thus creating the TGP [14].

As the Gramcy algorithm is very complex, it is possible to illustrate a variant developed by
O'Hagan based on Baysian probability that integrates the hyper-paramentres afz and f by

eliminating them from the problem of optimization. The result is a Student t-process,

conditional on L and the training data:

[f GOy, Ll~t, = (m* (x), 67k (x, %)) (57)

In which,

(m*(x) = h(xX)TB + k()K" Y(y — HB) (58)
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k*(x,x") = k(x,x") — k(x)TK Yk(x") + (h(x) —

(59)
k(K TH)Y(HTK*H)(h(x") — k(x")K~*H)T
k()T = k(x,x1), ..., k(x,xp,) (60)
H" = (h(xy), ..., h(x)) (61)
1 k(xy,x7) o+ k(x1,%p)
k=|fbzx) b (©2)
k(x,, %) 1
p=(HTK*H)THTK 1y (63)
Trw-1_ -1 Tr-1 Tr-1
67 _Yy (K K nH_(Z _Kg H)H'K™")y (64)
y =), e, fO))T (65)

The quality of the model is highly dependent on the number and distribution of training data

points in the input space and on the values of the hyper-parameters.

It can be demonstrated that the £ and 6f2 values (mentioned above) coincide with the values
derived from the least-squares model. The diagonal matrix of the L roughness parameters is
evaluated by estimating the maximum probability or by means of the Markov Chain Monte
Carlo (MCMCO); this estimate is the longest and most complex part from a computational

point of view.

The calculations for the TGP were performed on the R software using the TGP package

written by Gramcy.
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3.3 Piecewise Cubic Hermite Interpolating Polynimial (pchip)

PCHIP is a function implemented in the MatLab toolbox that performs a cubic interpolation

of data through a third-order polynomial P(x).

The polynomial P(x) is characterized by four local coefficients [a, b, ¢, d] that are chosen at

each interval [x4, x,]; it has the following form:

P(x)=a(x—x)3+b(x—x)*+c(x—x)+d (66)

Below there are a graphic examples of interpolation using the pchip and spline functions.

EXAMPLEI1
1.5
1 /z"'c?' ':?' 4
05
ot 4
-0.5
o . '.-/."
AP & o 2 Sample Points | ]
pchip
spline
15 ' ' '
3 -2 -1 0 1 2 3

Fig. 9 Example of pchip and spline interpolation on sample points [MatLab manual].
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EXAMPLE 2

0.6 = T T T ;
/A & Sample Points
0.5 ;_. 1 pchip ]
@ spline
0471 | \ T
| o)
03] | -
.' . &9
0.2 F=) _
I | .'I I'. I fhl .
[ { f W
0.1 . @ - = 7
D/:. '::. 1 { .II )
iy
@ @ a
0 | f | d @D [
=%
&y .
n2F | ‘-\K‘:. &) 4
I'.I (
0.3r PJ‘ A i
-0.4 ' ' ' '
0 5 10 15 20 25

Fig. 10 Example of pchip and spline interpolation on oscillatory sample points [MatLab manual].

In the first example, pchip is a better interpolation of data because it does not oscillate freely
between sampling points. In the second case, the sampled points refer to an oscillatory

function, and the pchip interpolation loses information where the curvature is high.
‘pchip’ properties [MatLab manual]

e The Hermite cubic polynomial is used on specified derivative points (slope) for each
interval x, < x < Xp4q-

. P(xj) = y; and the first derivate of P is continuous. The second derivate is probably
not continuous so jumps at the x; are possible.

e The slopes at the xj are chosen in such a way that P(x) preserves the shape of the

data and respects monotonicity.

For this study, it was therefore decided to use the pchip function because there were few

sampling points and very slight oscillations.
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4 FINITE ELEMENT MODEL

The finite element method (FEM) is a numerical process that solves problems of differential

equations at partial derivatives.

Geometric modelling has been defined in order to physically and mathematically represent
the reality of the structure under examination. The finite element method is used to derive
approximate solutions of problems defined by differential equations through a system of
algebraic equations. This method subdivides the components into one-dimensional, two-
dimensional and solid elements capable of representing the structural behaviour. The main

function is to discretize the structure by creating a mesh made from elements of coded form.

The finite element software described in this chapter is ANSYS®, which includes the

following steps:
e Geometry Construction;
With regard to the geometry construction, there are three ways to operate:

1. Exporting the geometry from another software;
2. Creating geometry through the ANSYS interface;
3. Creating the geometry through command codes (modality used).

e Defining the Element Type;

ANSYS has many types of elements to represent and discretize reality; the element

that was used in the thesis work is called: SHELL281.

Fig. 11 Shell281 [ANSYS manual].
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This type of element is usually used to analyse thin or not very thick shells and is
characterized by 8 nodes; each node has 6 degrees of freedom: three translational and
three rotational. These degrees of freedom are valid in the hypothetical case in which
the element in question performs the function of "shell"; if on the other hand it
performs a membrane behaviour, the rotational components are neglected. It is

usually used for linear applications, large rotation and/or large deformation.
Attributes material properties;

For the materials to be assigned, ANSYS has a large library with standard values for
different types. In the present case, an elastic model was used; for this model ANSYS

offers three alternatives:

» Isotropic
where the parameters to be written as input are: elastic modulus (EX) and
major Poisson’s ratio (PRXY).
» Orthotropic (modality used)
where the parameters to be written as input are: elastic modules (EX,EY,EZ),
Poisson’s ratios (PRXY, PRYZ, PRXZ) and shear modules (GXY, GYX,
GX2Z).
» Anisotropic
where the parameters to be written as input are the elements of Anisotropic
Elastic Matrix.
Define mesh;
The definition of the mesh is a very important phase because in function of its
dimension, different solutions can be achieved. Of course, the smaller the mesh, the
more accurate the results will be , but the computational time will increase.
Boundary conditions;
In this section are inserted and conditions of constraint: fixed points, free or yielding.
Analysis;
The types of analysis that are implemented in Ansys are:
» Static;
» Modal (modality used);
» Harmonic;

» Transient;
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» Spectrum,;

» Eigen Buckling

» Substructuring
e Post Processing;

Here is possible to view the results after the resolution.
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5 RESULTS

This chapter shows graphs whose results are generated by the hammer in position B7 and
with accelerometers in the Y direction; in the appendix, it is possible to find all the other
graphs regarding the accelerometers in the X direction and all other impact-hammer

positions.

5.1 Dynamic tests

The dynamic tests on the beam of “H” profile were carried out in the laboratory using
accelerometers and an opposed hammer. First, the positions of the accelerometers to be
placed along the beam were defined. The following image shows the beam geometries, the
accelerometer positioning (A1, A2, ..., A8) and the impact-hammer positioning (B0, B1, ...,

B7) in both the x and y directions.

15 BO A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B A7 B7 A8
Y 0 2 n i I % 0 L] ul i Ial % n L] ul J In]
s ——306— —306— —306—|
S & 0 5:@
| L .
! L4 |
200 | 2500 mm .
Fig. 12 Accelerometer and impact hammer positioning in y direction.

‘—ZUH 0 D){\Q
I x | ko- BO A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 BB A7 B7 A8
=4 | y L] ul kd O % o L ul $ O k4 ul L4 ul s ]
g h I Hie —s06—|

5 % & i
f 2500 mm {

Fig. 13 Accelerometer and impact hammer positioning in x direction.

The beam was studied using the static scheme of the simply supported beam and was made
by placing the beam on two cylindrical section supports. The excitation pulse to the beam
was generated using a Dytran5850 hammer; the structural responses due to the excitation of
the hammer were captured by the BBN, model 507Lf, accelerometers (15 total), which have
a mass of 10g and record data in the frequency range of 0.10 to 12 kHz.

Both hammer and sensor are piezoelectric sensing elements with a cylindrical shear stress
configuration with an integrated charge pre-amplifier and are connected to a data acquisition
system via high stability coaxial cables that minimize the environmental influence on the

test result.
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Fig. 14 Photos 1 of the experiment in the laboratory

Fig. 15 Photos 2 of the experiment in the
laboratory

Fifteen hammers were made at different positions, from B0 to B15, both in the X and Y
directions, resulting in a total of 16 data for the accelerometers in the X direction and 16 data
for the accelerometers in the Y direction. In X direction 62500 samples were recorded with
a sampling frequency of 38147 while in Y direction 16,384 samples with a sampling
frequency of 10,000.

All information was then processed on the MatLab® software.

5.1.1 Data processing

The first operation was to correct the data matrix because the first part of the signals had cut-
offs due to the high frequencies generated by the hammer. This happened because the
frequency generated by the hammer at that time exceeded the permissible frequency range
of the accelerometers. Thus, the information prior to the cut-off has been deleted. This is

shown in the image below with all 15 accelerometer responses.
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ORIGINAL SIGNALS
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Fig. 16 Original signals, before the cut-off.
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Fig. 17 Signals after the cut-off.

Once the data had been corrected, a filter was applied to eliminate the very low frequencies,
below 1Hz, and the very high frequencies, above 150 Hz. Subsequently, the time domain

was moved to the frequency domain by applying the Fourier transform to the different

signals.

300

200

I#t] in y

= = . == | | | | \
0 20 40 60 80 100 120 140 160 180 200
Frequency[Hz]

Fig. 18 Fourier transform of signals.

From the graph there are clearly peaks where the frequencies of the modal shapes

correspond.
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Mode shapes have been obtained using the ERA method described in Chapter 2.3.2.1.

5.1.2 Identification: ERA method.
This algorithm has been implemented on Matlab and allows executing experimental modal

analysis.
The input parameters that have been inserted inside the algorithm are:

e Signal;
e Signal sampling frequency

¢ Minimum and maximum order of the algorithm, in this case 10 and 100;
The output are:

e Stabilization diagram showing the model order of the algorithm as a function of the
natural frequencies of the structure;

e Stabilization graph showing the damping of the structure as a function of natural
frequencies of the structure;

e Identification matrix in which frequencies, damping and eigvalue are present.

The first output from the algorithm is the following:

Stabilisation diagram

Model Order
o

Magnitude [dB]

Stable

*  Unstable
01Y
02y

)D 10 20 30 40 50 60 70 80 90 ?OOl
Frequency [Hz]

Fig. 19 Stabilisation diagram: Frequency — Model order.

The above image is the stabilization diagram for the frequencies and order of the model; on

the axis of the abscissaes there is the frequency scale in Hz while on the ordinates there is
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the order of the system that has been made to vary from 10 to 100 with a step of 2. The larger
the order, the greater the refinement of the calculation, but with orders too high
computational frequencies are generated that do not represent a real behavior of the structure.
The red circles and black dots indicate the results of the calculation and the difference in

representation is in the stability of the solution.
The input parameters used to evaluate the stability are:

e Maximum frequency variation: 1%;
e Maximum damping variation: 10%;

e Minimum MAC: 0.98.

If, as the order increases, a coherence with the results is maintained, the identified frequency
is defined as stable and it is represented with a red circle, vice versa with a black dot. An
important point to underline is that the obtained frequencies must be verified in order to not

confuse the real frequencies with the computational ones.

The second output from the algorithm is the following:
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Fig. 20 Stabilisation diagram: Frequency — Damping.

In this case we have the frequencies on the abscissae and the damping on the ordinates. In
addition, in this case, the same applies as before with regard to the symbolism (circles and
points); the solution is represented in the form of a cluster. If there is a higher concentration

of red circles, it means that the frequency value belongs to the structure.
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The third and last output concerns the identification matrix: a vector containing matrices;
these matrices differ from each other according to the model order with which they have
been calculated. Having chosen a minimum order of 10 and a maximum order of 100, with

a step of 2, we will have a total of 45 matrixes.

The matrix shall be presented in the following manner:

Fi F, Fi

D, D, D,
Sensor 1
Sensor 2 Eigvalue 1| Eigvalue 2 Eigvalue i
Sensor 15

Table 9 Identification matrix form.

The first line is related to the frequencies, the second to the damping, from the third to the

end there are the modal displacement values.

5.1.3 Mode Shapes
In order to have control over the results and to try to understand what kind of modes

correspond to the frequencies found, we passed to the representation of eigvalues.

If the order of the most appropriate system (the most stable) has been carefully chosen, the
eigvalues present in the identification matrix will be the correct ones to be displayed. The

first four mode shapes are as follows:

MODE SHAPE 1, in y direction
frequency =5.1338

1 - ———0——p5 o

—— e

AD1 AD2 AD3 AD4 A0S ADB AOT A0B A0S A10 A1 A12 A13 A14 Al5

Modal shape
o

-05

Beam axis [m]

Fig. 21 First mode shape of experimental data.
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MODE SHAPE 2, in y direction
frequency =11.2943
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Fig. 22 Second mode shape of experimental data.
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Fig. 23 Third mode shape of experimental data.
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Fig. 24 Fourth mode shape of experimental data.
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5.1.4 Curvature mode shapes
The calculation of the curvatures has been carried out starting from the mode shapes obtained

in 5.1.3. The analytical formulation (number 42) has been expressed in the paragraph (3.2.2)

on the method of curvatures.

The curvatures corresponding to the experimental modal shapes are shown below.

Curvature Mode Shape

Hammer BT Mode 1
Moda 2
Mode 3
Mode 4

Curvature - Y direcion

1 45
/2
e o
35 o 3
35
Point number 157 < mode shape

Fig. 25 Experimental curvature mode shape.
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5.2 FEM

The structure that was modelled using the finite element software is a simply supported beam
with double-T section which present a longitudinal length of Sm. It is characterized by a
different thickness of the elements: 1 mm for the flanges and 1.5 mm for the web; the

structure has small cantilevers at the extremities of 50mm.

5.2.1 Pre-processor

The geometry of the structure under examination has been realized through command codes
written on a text file reported in the appendix. First, points were created by means of
coordinates using parameters that allow to easily and automatically move from one model

to another. The parameters used are shown in the following table:

Parameters Values [m] Description
L 5 Beam lenght
H 0,19 Beam height
B 0,2 Beam width
A 0,005 Length of the cantilever at the extremitie
d 3,65 Crack position
f depends on model Crack height
C depends on model Crack width

Table 10 Information on parameters.

After making the points, according to the above parameters, the lines and then the areas were

created.
The different models tested are:

Intact beam, without crack;

Damaged beam with crack of 1 mm;

>
>
» Damaged beam with crack of 10 mm;
» Damaged beam with crack of 25 mm;
>

Damaged beam with crack of 50 mm;

The damaged beams were modelled through a triangular opening in the web at the point of
connection with the lower flange. with the same base and height (f=c); the position of the
crack was inserted at a distance of 3.65 m from the left end of the beam and . This structural

detail is shown in the image below:
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ELEMENTS AN SYS

R19.0|
Academic

Table 11 Structural detail: example of triangular crack.

The material properties that have been inserted in the input data are shown in the following

table:
Parameters Values Description
EX 8,50E+09 Elastic modulus in X direction
EY 2,85E+10 Elastic modulus in Y direction
EZ 8,50E+09 Elastic modulus in Z direction
PRXY 0,25 Poisson's ratio in XY plane
PRYZ 0,25 Poisson's ratio in YZ plane
PRXZ 0,12 Poisson's ratio in XZ plane
GXY 2,50E+09 Shear modulus in XY plane
GYX 2,50E+09 Shear modulus in YZ plane
GXZ 3,50E+09 Shear modulus in XZ plane
DENS 1734 Density

Table 12 Material properties input data.

The only element that has been used is the "shell281" element. Since the beam is
characterized by different thicknesses between web and flanges, two sections have been

created:

» Section 1: 10 mm for the flanges;
» Section 2: 15 mm for the web.
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A quadrangular mesh (mapped) with a size of 0.025 m was used for all models, as follows:

ELEMENTS AN SYS

R19.0
Academic

Fig. 26 Model of intact beam from Ansys.

ELEMENTS AN SYS

R19.0
Academic

Fig. 27 Damaged beam from Ansys.
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5.2.2 Post-Processor

Once the pre-processing operations have been completed, the finite element modal analysis

is resolved. The graphs obtained from the modal analysis are shown as follows.

The data relative to the mode shapes has been obtained through the writing of a code that

allows to generate a text file containing the displacements of modal shapes.

e Intact beam

HODAL SOLUTION ANSYS
R19.0

STEP=1

SUB =4 Academic

FREQ=27.0102

usuM (AVG)

RSYS=0

DMX =.190711

SMN =.113E-07

SMX =.180711

I
.113E-07 .04238 .08476 .12714 169521
.02119 .06357 .10595 .148331 .190711

Fig. 28 Intact beam: mode shape 1 from Ansys.
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HODAL SOLUTICH

STEP=1

SUB =7

FREQ=72.1764

USTM (BRVE)

RSY5=0

DMX =.181406

SMN =.210E-06

SMX =.191406

J10E-06 .042535 .0B50&9 .127604 .17013
021268 .063802 106337 .148871

ANSYS

R19.0

Academic

g
.191406

Fig. 29 Intact beam: mode shape 2 from Ansy.

HCODAL SCLUTICN ANSYS
R19.0
S5TEFP=1
SUB =11 Academic
FREQ=142.313
uUsuM (BVG)
R5¥5=0
DM =.218585
SMH =.771E-0&
SMX =.218585
TT1E-0& . 048577 .097154 .14573 .194307
0242289 .072865 121442 170018 .218585

Fig. 30 Intact beam: mode shape 3 from Ansys.
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HCDAL SCOLUTICH

STEP=1

SUB =14
FREQ=203.208
usuM [BVE)
B5Y5=0

DMX =.251501
SMN =.101E-05
SMX =.251501

L101E-05
027945

ANSYS

R19.0
Academic

.05589

L111779

18766

.195612 .251501

Damaged beam with crack of 1 mm

Fig. 31 Intact beam: mode shape 4 from Ansys.

NODAL SOLUTICON

STEP=1
SUB =3
FREQ=26.8684
USUM (BVG)
R5YS=0

DMX =.12066
SMN =.196E-07
SMX =.12066

-196E-07

ANSYS

R19.0
Academic

.042369

.021184 .063553

.127107
.105822

.169476
.148291 .19068

Fig. 32 Damaged beam with crack of 1 mm: mode shape 1 from Ansys.
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HODAL SOLUTICH

STEP=1

SUB =7
FREQ=72.0561
UsSUM (BVE)
RSY5=0

DMK =.192295
SMN =.188E-06

ANSYS

SM¥ =.1922%55

.188E-06

.085465
064099

.1281597
106831

170929
.143563

R19.0
Academic

.1582285

Fig. 33 Damaged beam with crack of 1 mm: mode shape 2 from Ansys.

NODAL SOLUIICH

STEF=1

SUE =11
FREQ=143.208
USUM (AVE)
R5Y5=0

DMX =.2155%02
SMN =.439%E-0&
SMX =.219%02

ANSYS

.435E-06

.024434

146602 .155469

171035

R19.0
Academic

Fig. 34 Damaged beam with crack of 1 mm: mode shape 3 from Ansys.
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NODAL SOLUTION AN SYS
R19.0
STEP=1 !
SUB =14 Academic
FREQ=205.18
UsuM (BVG)
RSY¥S=0
I
.620E-06 .056239 .112478 L168717 .224955
.02812 .084353 .140537 .196836 .253075

Fig. 35 Damaged beam with crack of 1 mm: mode shape 4 from Ansys.

Damaged beam with crack of 10 mm

NCDAL SOLUTICN AN SYS
R19.0
STEP=1 -
SUB =2 Academic
FREQ=26.6856
UsmM (BVGE)
=.190406
.185E-07 .042312 .0B4625 .126937 .16925
.021156 .063463 .10578 .148094 .190406

Fig. 36 Damaged beam with crack of 10 mm: mode shape I from Ansys.
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NODAL SCLUTICH

STEP=1

SUB =7
FREG=T72.0875
UsUM (BVE)
RSY5=0

DMX =.132373
SMN =.135E-06

SMX =.192373

-195E-06

.042751

.064127

.143628

ANSYS

Academic

171004

R19.0

182379

Fig. 37 Damaged beam with crack of 10 mm: mode shape 2 from Ansys.

HODAL S0LUTICH

STEP=1

SUB =11
FREQ=142.584
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Fig. 38 Damaged beam with crack of 10 mm: mode shape 3 from Ansys.
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NCODAL SOLUTICH ANSYS

R19.0
STEP=1
SUB =14 Academic
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Fig. 39 Damaged beam with crack of 10 mm: mode shape 4 from Ansys.

e Damaged beam with crack of 25 mm

NODAL SOLUTICN AN SYS
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SUB =3 Academic
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0z2l11is .06835389 .105888 -148258 -180617

I =
.184E-07 .042352 084712 .127078

Fig. 40 Damaged beam with crack of 25 mm: mode shape 1 from Ansys.
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NODAL SOLUTICH
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Fig. 41 Damaged beam with crack of 25 mm: mode shape 2 from Ansys.
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Fig. 42 Damaged beam with crack of 25 mm: mode shape 3 from Ansys.
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NCDAL SCLUTICH ANSYS
R19.0
5TEF=1
SUBR =14 Academic
FREQ=205.101
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SMN =.610E-0&
SMX =.253874
610E-0& .056417 112833 .169249 .225665
028208 54625 .141041 .197457 253874

Fig. 43 Damaged beam with crack of 25 mm: mode shape 4 from Ansys.

Damaged beam with crack of 50 mm

HODAL SOLUTION

STEP=1
SUB =2
FREQ=26.5718
USM (AVE)
RSYS=0

DMK =.190319
SMN =.207E-07
SME =.190319

105733 .148026

ANSYS

R19.0
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.1659172

.19031%

Fig. 44 Damaged beam with crack of 50 mm: mode shape 1 from Ansys.
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NODAL SO0LUTION
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Fig. 45 Damaged beam with crack of 50 mm: mode shape 2 from Ansys.
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Fig. 46 Damaged beam with crack of 50 mm: mode shape 3 from Ansys.
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WODAL SOLUTICH A N SYS
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Fig. 47 Damaged beam with crack of 50 mm: mode shape 4 from Ansys.

All the mode shapes mentioned above have been processed, in the following paragraphs,

using Treed Gaussian Process algorithm and Curvature method.
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5.3 Curvature method on analytic models

The calculation of the curvatures has been carried out starting from the mode shapes obtained
by Ansys software. The analytical formulation (number 42) has been expressed in the

paragraph (3.2.2) on the method of curvatures.

To obtain the data of the mode shapes, from Ansys, data has been recorded from all the
nodes present on the top flange with coordinates X=0 and Y=0.19; for a total of 401 nodes,

therefore as if 401 accelerometers were available.

e Intact beam curvatures

Curvature Mode Shapes
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Fig. 48 Curvature Mode Shapes: intact beam.

These curves have been defined on 401 points.
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Damaged beam curvatures with crack of 1 mm

Curvature Mode shape

— Mode 1
— Mode 2
L A ——tl
Y
\ \ \ \ \ \ \ \
0 0.5 ] 1.5 2 25 3 3.5 45 5
Beam axis [m]
Fig. 49 Curvature Mode Shapes: damaged beam with crack of 1 mm.
Damaged beam curvatures with crack of 10 mm
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o

Curvature Mode Shapes - Crack1

S
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Fig. 50 Curvature Mode Shapes: damaged beam with crack of 10 mm.
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e Damaged beam curvatures with crack of 25 mm

Curvature Mode Shapes - Crack25

10 T T T I

Mode 1
Mode 2
Mode 3
Mode 4

L 2N
¢ \

Curvature Mode shape

0 0.5 1 1.6 2 25 3 35 4 45
Beam axis [m]

Fig. 51 Curvature Mode Shapes: damaged beam with crack of 25 mm.

e Damaged beam curvatures with crack of 50 mm

Curvature Mode Shapes - Crack50

Mode 1

Mode 3

Curvature Mode shape
\ =]
[

Mode 4| |

0 05 1 15 2 25 3 25 4 45
Beam axis [m]

Fig. 52 Curvature Mode Shapes: damaged beam with crack of 50 mm.

Once the curvatures for all mode shapes were calculated, the differences between the cracked

beam models and the intact beam model were calculated.
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Differences in curvatures between the intact beam model and cracked beam model with

crack of 1 mm.

Differences of curvature mode shapes
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; h

/ f \MNNW-NV\N\N\A WV‘M s /\ ‘ \
) L TEe———me

T e
it
|
7NN WA - “,‘\"‘
S i Y1
\nyf ‘y"‘v‘“’\/l\/‘_””— .
S 0
N
= O |
Bt A
A

3
35 4 3

Beam axis [m] 45

Fig. 53 Plot 3D: differences in curvatures for cracked beam model with crack of 1 mm.
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Fig. 54 Differences in curvatures for cracked beam model with crack of 1 mm.
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e Differences in curvatures between the intact beam model and cracked beam model with

crack of 10 mm.

Curvature Mode Shapes Method
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Fig. 55 Plot 3D: differences in curvatures for cracked beam model with crack of 10 mm.
Curvature Mode Shapes Method - Sovrapposition
Crack 10 mm
10 T T T
— Mode 1
—— Mode 2
Mode 3
8 —— Mode 4 [
ol |
8
gr b
S
@
b=}
£
] 2= ]
!
g n
E s !
5 0 )vA'V* Vmﬁ%f" = —
:
8
2
o
£ -2 N
o
4l |
6 —
i ! ! ! ! ! ! ! ! !
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Beam axis [m]

Fig. 56 Differences in curvatures for cracked beam model with crack of 10 mm.

56|Pag.



Difference

Differences of curvature mode shapes

Differences in curvatures between the intact beam model and cracked beam model with

crack of 25 mm.

Curvature Mode Shapes Method

Beam axis [m]

Fig. 58 Differences in curvatures for cracked beam model with crack of 25 mm.
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Fig. 57 Plot 3D: differences in curvatures for cracked beam model with crack of 25 mm.
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Differences in curvatures between the intact beam model and cracked beam model with

crack of 50 mm.

Curvature Mode Shapes Method
Crack 50 mm

Differences of curvature mode shapes

—Made 1
—— Mode 2
Mode 3
—Mode 4
.
g
e
£
a
3 35
Beam axis [m] 45 5
Fig. 59 Plot 3D: differences in curvatures for cracked beam model with crack of 50 mm.
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Beam axis [m]

Fig. 60 Differences in curvatures for cracked beam model with crack of 1 mm.
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The results obtained for the different crack sizes show that the curvature method is able to
identify a precise area where a crack is present. The changes in the curvature mode shapes
are localized in the area of damage. The previously reported results serve as support for

subsequent tests.

In the next paragraph, the Treed Gaussian Process method will be used to localize the crack

for both analytical and experimental data.

5.4 Treed Gaussian Process

The theoretical basis of the Treed Gaussian Process have been implemented in the R®

software; analyses were carried out for both analytical and experimental data.

5.4.1 Analytical data

Before the analyses were carried out, all the data obtained in section 5.2.2 were dirtied with
four type of noise of different intensities. This was done to make the simulation more real.
Each eigenvector {¢}; of the modal matrix has been normalised {¢},, ; to its maximum value;
instead the noise vector {R} has been created on MatLab with the command '7andn' and then

multiplied by 3 types of 'standard variation' std. The formulation is shown below:

{P3r,) = {P}ni - {R} - stdy (67)
Where:

{¢},,i is the normalised vector of the mode shape;
Index i = 1,2,3,4 refers to the mode shape;
Index k = 1,2,3 refers to the type of std.

The values associated with the stdy are represented in the table:

0,01
0,02
0,05

Table 13 Standard deviation values.
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In conclusion, 48 mode shapes {(p}Ri’k have been calculated and then, the corresponding

curvatures were used.in the TGP analysis. The following table summarises all 48 cases

analysed.

Crack 1 Crack 10 Crack 25 Crack 50
1°' Curvature | 1°'Curvature | 1°‘Curvature | 1°'Curvature
std 1 std 1 std 1 std 1
std 2 std 2 std 2 std 2
std 3 std 3 std 3 std 3
2" Curvature | 2" Curvature | 2" Curvature | 2" Curvature
std1 std1 std 1 std1
std 2 std 2 std 2 std 2
std 3 std 3 std 3 std 3
3™ Curvature 3™ curvature 3™ Curvature 3™ Curvature
std 1 std 1 std 1 std 1
std 2 std 2 std 2 std 2
std 3 std 3 std 3 std 3
4™ curvature 4™ Curvature 4™ Curvature 4™ curvature
std 1 std 1 std 1 std 1
std 2 std 2 std 2 std 2
std 3 std 3 std 3 std 3

Table 14 Summary table of modal analyses.

Once the modal forms were obtained with noise, the data was fed to the TGP method. To

simplify the number of graphs, only the 1 mm and 50 mm crack results will be shown.
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Fig. 61 Cycle — Crack detection, Crack 1 mm, mode-shapel-stdl.
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Fig. 62 Cycle — Crack detection, Crack 1 mm, mode-shapel-std3.

These two graphs show the position of the crack (in meters) on the y-axis and the number of
cycles performed on the x-axis. It can be seen that there is a concentration of circles just near

the crack (3.65 m). Two results obtained by the TGP are shown below:
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Fig. 64 First result of 50 cycles; Crack 1 mm; Fig. 63 First result of 50 cycles; Crack 1 mm;
mode-shapel-std]. mode-shapel-std3.
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» 2™ Curvature
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» 3% Curvature
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Fig. 69 Cycle — Crack detection, Crack 1 mm,

mode-shape3-std3.
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Fig. 71 First result of 50 cycles; Crack 1 mm;

mode-shape3-std3.
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» 4™ Curvature
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Fig. 74 Cycle — Crack detection, Crack 1 mm,

mode-shape4-std].
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Fig. 75 First result of 50 cycles; Crack 1 mm;

mode-shape4-std].
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Fig. 73 Cycle — Crack detection, Crack 1 mm,

mode-shape4-std3.
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Fig. 76 First result of 50 cycles; Crack 1 mm;

mode-shape4-std3.
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Fig. 78 Cycle — Crack detection, Crack 50 mm, Fig. 77 Cycle — Crack detection, Crack 50 mm,
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Fig. 86 Cycle — Crack detection, Crack 50 mm,

mode-shape3-std].
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Fig. 88 First result of 50 cycles; Crack 50 mm;

mode-shape3-std].

FORKS], 1]

o o
a o = 2
o020 oo og°o a%oa” 30 oga0 08°DO°°8° % 5 °°°g ooo
oo 0000907 000 oo 99%g afy o @0 0000 = &
oo a o oo
L 0000000090900009993 80%5%8.%08 o oa °°83°9880°
B?0mpfopo 002 egooe 880 s%0%00goe ao, gooo
ssggsgsessegggsss 3 BoliBootaBis g Sgsos 3 essg
g% 2o00p0® 0 0 o Good, ODO
- a
° o o o o
P | =) o e o a o 0 ao

o
o a o
P aa 0 a0 02 | 0o%00005 %000 00 o 20%0g 0% o
o%o00g%0 pooo oo ooooooooooog ] 90520 9005000000
o

[-1-1.1
a 0.2

o o oo o Gof
o o 9o o0 a o
o

9 a
oo oo
[=1=) 2 ooo %0 o
° o 4 % o oog o “g
o o o o ° o
o o 00005 g Og
G ° o o o 0 o _oo

o o
o o e o oa

oo @ o og? %9 © 9o o%a al
o o o aa o
o o 00O 95 o Tome, a0 o0 @ .0 0 o
24 e o o o

o o o o %, %% o %%
coog®o

= ° 0 L, o O
o
0q0 o
o @0%al g oo 0%,

o o

o o0g” o o o “oo oo oo o

oo o o
o0 @ an 0. 2 o

T T T 0I T T
0 10 20 30 40 50

cycle

Fig. 85 Cycle — Crack detection, Crack 50 mm,

mode-shape3-std3
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Fig. 90 Cycle — Crack detection, Crack 50 mm,

mose-shape4-std].
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Fig. 92 First result of 50 cycles; Crack 50 mm;

mode-shape4-std].
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Fig. 89 Cycle — Crack detection, Crack 50 mm,

mode-shape4-std3.
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Fig. 91 First result of 50 cycles; Crack 50 mm;

mode-shape4-std3.
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5.4.2 Experimental data

In the experimental case, it was decided to interpolate the data with a cubic function: pchip
(Piecewise Cubic Hermite Interpolating Polynomial). This was done to create a continuous
function with the aim of extracting more useful points for computational calculation on TGP
algorithm. The number of points has therefore been increased from 15 (number of
accelerometer present on the beam) to 401. Below, it can be seen that the function "pchip’

interpolates very well the 15 experimental points.

Experimental Curvature Mode Shapes

) PCHIP Interpolation
I I I
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Fig. 93 Experimental mode shapes using pchip interpolation.

Once the continuous function is obtained, the modal displacements on 401 points are
memorized at a constant step of 0.0125 m starting from the supports. Then on these data

have been calculated the curvatures mode shape that are shown below.
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Curvature Mode Shapes Method
PCHIP Interpolation

Curvature mode shape 1
Il Curvature mode shape 2
/ ‘ Curvature mode shape 3

Curvature mode shape 4

Curvature
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Fig. 94 Experimental curvature mode shapes using pchip interpolation.

The above curvatures were analysed using the TGP algorithm in R; the results obtained are

reported as follows.
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Fig. 96 Cycle — Crack detection, experimental data: Fig. 95 First result of 50 cycles; Experimental data:

curvature mode shape 1 curvature mode shape 1.
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Fig. 97 Cycle — Crack detection, experimental data:

curvature mode shape 2
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Fig. 100 Cycle — Crack detection, experimental data:

curvature mode shape 3.
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Fig. 98 First result of 50 cycles; Experimental data:
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Fig. 99 First result of 50 cycles; Experimental data:

curvature mode shape 3.
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Fig. 101 Cycle — Crack detection, experimental data:

curvature mode shape 4.
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Fig. 102 First result of 50 cycles; Experimental data:

curvature mode shape 4.
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6 CONCLUSION

Going back over the work done, it has been possible to derive the modal shapes through an
experimental analysis. The work on experimental data was accompanied by work on

analytical data.

Before using the Treed Gaussian Process method, the curvature method was applied to the

FEM models to ensure that the models were created correctly.

From the results obtained on the analytical data it is clear that the "Treed Gaussian Process"
method is able to identify and localize very well the crack on the structure when a large
number of data is available (401). In the case of 401 data it is like having 401 fictitious
accelerometers on the beam, therefore, a great deal of information can be obtained; the
functions of modal forms and curvatures are more detailed and able to detect any structural

imperfection.

From the results obtained on the analytical data using only 15 accelerometers, the TGP
method provides results that are not reliable. This case was analyzed in order to compare the
experimental results, which present only 15 accelerometers. The non-operation of the

method is due to the lack of data, 1.e. accelerometers.

With regard to the results obtained from the experimental data, the TGP method provides
unreliable results. This is in line with the results obtained on FEM models using 15

accelerometers.

In conclusion, this work shows that the TGP method works well when you have a large
amount of data available in order to derive very detailed modal forms; otherwise the method
returns crack positions that are not traceable to reality. To learn more about a possible crack

in the pultruded beam, it is therefore necessary to have several accelerometers.
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ANSYS CODE

+ Intact Beam

FINISH

/CLEAR
/FILNAME,TraveH
/PREP7
/VIEW,1,1,1,1

!Definire la proprieta geometriche
L=5

H=0.19

B=0.2

A=0.05

!Definire i punti della struttura.
K,1,0,0,0
K,2,B/2,0,0
K,3,B/2,0,L
K,4,0,0,L
K,5,-B/2,0,5
K,6,-B/2,0,0
K,7,0,H,0
K.,8,B/2,H,0
K,9,B/2,H,L
K,10,0,H,L
K,11,-B/2,H,L
K,12,-B/2,H,0
K,13,B/2,0,A
K,14,0,0,A
K,15,-B/2,0,A
K,16,B/2,0,L-A
K,17,0,0,L-A

'lunghezza della trave
laltezza delal trave (linea media)
llarghezza della trave

!distanza tra 'estremita e 1'appoggio
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K,18,-B/2,0,L-A

K,19,B/2,H,A
K,20,0,H,A

K,21,-B/2,H,A
K,22,B/2,H,L-A

K,23,0,H,L-A

K,24,-B/2,H,L-A

!Definire le linee tra i punti

LSTR,1,2
LSTR,1,6
LSTR, 14,13
LSTR,14,15
LSTR,17,16
LSTR,17,18
LSTR,4,3
LSTR.4,5
LSTR,2,13
LSTR,1,14
LSTR,6,15
LSTR,13,16
LSTR, 14,17
LSTR, 15,18
LSTR,16,3
LSTR,17,4
LSTR,18,5
LSTR,1,7
LSTR, 14,20
LSTR,17,23
LSTR.4,10
LSTR,7.8
LSTR,7,12
LSTR,20,19
LSTR,20,21
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LSTR,23,22
LSTR,23,24
LSTR,10,9
LSTR,10,11
LSTR,8,19
LSTR,7,20
LSTR,12,21
LSTR,19,22
LSTR,20,23
LSTR,21,24
LSTR,22,9
LSTR,23,10
LSTR,24,11

!Definire le aree (flangia e anima).
AL,1,9,3,10
AL2,104,11
AL,3,12,5,13
AL4,13,6,14
AL,5,15,7,16
AL,6,16,8,17
AL,22,30,24,31
AL,23,31,25,32
AL,24,33,26,34
AL,25,34,27,35
AL,26,36,28,37
AL,27,37,29,38
AL,18,10,19,31
AL,19,13,20,34
AL,20,16,21,37

!Definire le proprieta meccaniche del materiale.
MP,EZ,1,8.5¢9 'moduli elastici.
MP,EX,1,8.5¢9
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MP,EY,1,28.5¢9

MP,GXY,1,2.5¢9 !moduli di elasticita a taglio.

MP,GXZ,1,3.5¢9
MP,GYZ,1,2.5¢9
MP,PRXZ,1,0.12 Icoefficienti di Poisson.
MP,PRYZ,1,0.25
MP,PRXY,1,0.25

MP,DENS,1,1734 'Densita.
MP,EZ,2,8.5¢9 'moduli elastici.
MP,EX,2,8.5¢9

MP,EY,2,28.5¢9

MP,GXY,2,2.5¢9 !moduli di elasticita a taglio.

MP,GXZ,2,3.5¢9

MP,GYZ,2,2.5¢9

MP,PRXZ,2,0.12 Icoefficienti di Poisson.
MP,PRYZ,2,0.25

MP,PRXY,2,0.25

MP,DENS,2,1734 !Densita.

!definire 1l tipo di elemento.

ET,1,SHELL281

Isezione della flangia 10mm.
SECTYPE,1,SHELL281
SECDATA,0.010,1

Isezione dell'anima 15mm.
SECTYPE,2,SHELL281
SECDATA,0.015,2

!Creare la mesh nelle flange.
ASEL,S,AREA,,1
ASEL,A,AREA,,2
ASEL,A,AREA,,3

79 |Pag.



ASEL,A,AREA, 4
ASEL,A,AREA,,5
ASEL,A,AREA,,6
ASEL,A,AREA,,7
ASEL,A,AREA,,8
ASEL,A,AREA,,9
ASEL,A,AREA,,10
ASEL,A,AREA,,11
ASEL,A,AREA,,12
AATT,1,,1,,1
ESIZE,0.025
AMESH, 1,12

ICreare la mesh nell'anima.

ASEL,S,AREA,,13
ASEL,a,AREA,, 14
ASEL,a,AREA,,15
AATT2,,1,2
ESIZE,0.025
AMESH, 13,15

'Vincoli.
LSEL,S,LINE,,3,4
LSEL,A,LINE,,5,6
!Definire DOF alle linee.
DL,ALL,,UY,0
DL,ALL,,UZ,0
DL,ALL,,UX,0
DL,ALL,,ROTZ,0

JESHAPE, 1
EPLOT

1Soluzione

/SOLU

80|Pag.



! Analisi modale
ANTYPE,MODAL
MODOPT,LANB,20
SOLVE

Damaged beam with crack of 1 mm
FINISH

/CLEAR

/FILNAME,TraveH

/PREP7

/VIEW,1,1,1,1

!Definire la Proprieta Geometriche.
L=5

H=0.19

B=0.2

A=0.05

d=3.65

=0.001

C=0.001

!Definire i punti della struttura.
K,1,0,0,0
K,2,B/2,0,0
K,3,B/2,0,L
K,4,0,0,L
K,5.,-B/2,0,5
K,6,-B/2,0,0
K,7,0,H,0
K,8,B/2,H,0
K,9,B/2,H,L
K,10,0,H,L
K,11,-B/2,H,L

'lunghezza della trave

laltezza delal trave (linea media)
llarghezza della trave

!distanza tra l'estremita e l'appoggio
!distanza dall'origine al crack
laltezza crack

llarghezza crack
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K,12,-B/2,H,0
K,13,B/2,0,A
K,14,0,0,A
K,15,-B/2,0,A
K,16,B/2,0,L-A
K,17,0,0,L-A
K,18,-B/2,0,L-A
K,19,B/2,H,A
K,20,0,H,A
K.21,-B/2,H,A
K,22,B/2,H,L-A
K,23,0,H,L-A
K,24,-B/2,H,L-A
!Damage points
K,25,B/2,0,d-c/2
K,26,0,0,d-c/2
K,27,-B/2,0,d-c/2
K,28,B/2,0,d+c/2
K,29,0,0,d+c/2
K,30,-B/2,0,d+c/2
K,31,0,H,d
K,32,0,f.d
K,33,B/2,H,d
K,34,-B/2,H,d

!Definire le linee tra i punti

LSTR,1,2

LSTR,1,6

LSTR, 14,13
LSTR,14,15
LSTR,26,25
LSTR,26,27
LSTR,29,28
LSTR,29,30
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LSTR,17,16
LSTR,17,18
LSTR,4,3
LSTR,4,5
LSTR,2,13
LSTR,1,14
LSTR,6,15
LSTR,13,25
LSTR, 14,26
LSTR,15,27
LSTR,25,28
LSTR,26,29
LSTR,27,30
LSTR,28,16
LSTR,29,17
LSTR,30,18
LSTR,16,3
LSTR,17,4
LSTR,18,5
LSTR,1,7
LSTR, 14,20
LSTR,32,31
LSTR,26,32
LSTR,29,32
LSTR,17,23
LSTR.4,10
LSTR,7.8
LSTR,7,12
LSTR,20,19
LSTR,20,21
LSTR,31,33
LSTR,31,34
LSTR,23,22
LSTR,23,24
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LSTR,10,9

LSTR,10,11
LSTR,8,19

LSTR,7,20

LSTR,12,21
LSTR,19,33
LSTR,20,31
LSTR,21,34
LSTR,33,22
LSTR,31,23
LSTR,34,24
LSTR,22,9

LSTR,23,10
LSTR,24,11

!Definire le aree (flangia e anima).
AL,1,13,3,14
AL,2,14,4,15
AL,3,16,5,17
ALA4,17,6,18
AL,5,19,7,20
AL,6,20,8,21
AL,7,22,9,23
AL,8,23,10,24
AL,9,25,11,26
AL,10,26,12,27
AL,35,45,37,46
AL,36,46,38,47
AL,37,48,39,49
AL,38,49,40,50
AL,39,51,41,52
AL,40,52,42,53
AL,41,54,43,55
AL,42,55,44,56
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AL,28,46,29,14
AL,29,49,30,31,17
AL,30,52,33,23,32
AL,33,55,34,26

!Definire le proprieta meccaniche del materiale.

MP,EZ,1,8.5¢9
MP,EX, 1,8.5¢9
MP,EY,1,28.5¢9
MP,GXY,1,2.5¢9
MP,GXZ,1,3.5¢9
MP,GYZ,1,2.5¢9
MP,PRXZ,1,0.12
MP,PRYZ,1,0.25
MP,PRXY,1,0.25
MP,DENS, 1,1734

MP,EZ.2,8.5€9
MP,EX,2,8.5¢9
MP,EY,2,28.5¢9
MP,GXY,2,2.5¢9
MP,GXZ,2,3.5¢9
MP,GYZ,2,2.5¢9
MP,PRXZ,2.0.12
MP,PRYZ,2,0.25
MP,PRXY,2,0.25
MP,DENS,2,1734

!definire il tipo di elemento.

ET,1,SHELL281

Isezione della flangia 10mm.

SECTYPE,1,SHELL281
SECDATA,0.010,1

Imoduli elastici.

!moduli di elasticita a taglio.

Icoefficienti di Poisson.

Densita.

Imoduli elastici.

'moduli di elasticita a taglio.

Icoefficienti di Poisson.

Densita.
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Isezione dell'anima 15mm.
SECTYPE,2,SHELL281
SECDATA,0.015,2

!Creare la mesh nelle flange.
ASEL,S,AREA,,1
ASEL,A,AREA,,2
ASEL,A,AREA,,3
ASEL,A,AREA 4
ASEL,A,AREA.,5
ASEL,A,AREA,,6
ASEL,A,AREA,,7
ASEL,A,AREA,8
ASEL,A,AREA.,9
ASEL,A,AREA,,10
ASEL,A,AREA,,11
ASEL,A,AREA,,12
ASEL,A,AREA,,13
ASEL,A,AREA,,14
ASEL,A,AREA,,15
ASEL,A,AREA.,16
ASEL,A,AREA,,17
ASEL,A,AREA,,18
AATT,1,,1,,1
ESIZE,0.025
AMESH,1,18
!Creare la mesh nell'anima.
ASEL,S,AREA,,19
ASEL,A,AREA,,20
ASEL,A,AREA,,21
ASEL,A,AREA,,22
AATT,2,,1,,2
ESIZE,0.025
AMESH, 19,22

86|Pag.



'Vincoli.
LSEL,S,LINE,,3.,4
LSEL,A,LINE,.9,10

|Definire DOF alle linee.

DL,ALL,,UY,0
DL,ALL,,UZ.0
DL,ALL,,UX,0
DL,ALL,,ROTZ,0

JESHAPE, 1
EPLOT

!Soluzione

/SOLU

! Analisi modale
ANTYPE,MODAL
MODOPT,LANB,20
SOLVE
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