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1 INTRODUCTION 

The damage localisation has always been a topic of interest in the area of research, especially 

in recent decades, as well as the use of innovative materials in the world of civil construction. 

In this thesis, the two topics are covered together using different methodologies.  

The object of the work is a simply supported beam made of pultruded material, i.e. resin and 

fibre of glass, on which dynamic tests are carried out by exciting the structure with a hammer 

and recording the displacements by means of sensors. After the distances between the 

accelerometers and the impact positions of the hammer have been determined, the test is 

carried out. Once all the information has been acquired, data processing is performed, 

obtaining frequencies and modal shapes for the first four modes of vibrating. Modal shapes 

are in turn analysed using the Treed Gaussian Process (TGP) to identify and locate the crack. 

The TGP is a statistical method based on the regression of Gaussian processes. Gaussian 

Processes (GP) are the extension from the distribution of scalar values to functions; in other 

words, through Gaussian Processes a function is obtained in which every point represents a 

probability function. The TGPs use Gaussian Processes, but interpolation is not done on the 

whole domain; the latter is divided into two parts, obtaining two interpolating functions. At 

the next step each individual part of the domain could be divided into two other parts and so 

on. The points that divide the domain are points in which there is a local variation of the 

function. In this case, will be due to the presence of a crack. 

Parallel to the experimental data, four models of cracked beams are created by means of 

FEM on which dynamic parameters and modal shapes are determined. This is done as a 

support, to compare the results with the experimental ones. The FEM models differ 

according to the size of the crack: 1, 10, 25 and 50 millimetres. The position of the crack is 

inserted at the position of 3.65 m from the origin of the beam; this choice is completely 

arbitrary. Once the modal analysis is performed, the first four modal shapes are analyzed 

through Treed Gaussian Process. To locate the crack, on FEM models, the "curvature 

method" is also applied: it identifies the position of the crack making a difference between 

the curvatures of the cracked and intact model. 

The objective of the work is to understand whether a TGP analysis can detect a possible 

crack position on the real beam.  
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2 LITERATURE REVIEW 

2.1 Structural pultred materials 

Pultred materials consist of the combination of two different materials: glass fibers and 

polymer resin (GFRP Glass Fiber Reinforced Polymers). To create this kind of composite 

material, the glass fibers are impregnated with polymer resin and they are pulled through a 

heated die where polymerization takes place. Then the reinforcement is pulled through a 

bath.  When the material comes out of the oven, it is transported up to a cutting area where 

it is appropriately cut by blades that size it [1]. Pultrusion process can be simplified in the 

following diagram: 

 

Fig. 1 Pultrusion process [Wikipedia]. 

The first who used the pultrusion process was B. Goldsworthy in 1951. The use of fiber-

reinforced composites is rapidly spreading because of their advantages in strength and 

lightness. In particular, the strength and stiffness is given by the fibers while the resin 

protects the fibers and distributes the stresses [2].  

Currently, the structural elements of GFRP are finding application in civil engineering works 

to strengthen the existing constructions but also for build new all GFRP structures. In the 

second case a very light structures can be obtained, for instance pedestrian bridge.  Usually 

pultred Glass Fiber Reinforced Polymer are used alongside conventional material such as 

concrete, aluminium and steel [3].  

Pultred material has a low density of 1734 kg/m³ that is under ¼ of steel one. Although the 

shapes of these GFRP materials are similar to steel sections, as shown in figure: 
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Fig. 2 Pultred material profiles. 

Longitudinal tensile strength, in the direction of fibers, is 350 MPa that is comparable with 

structural steel. The longitudinal tensile modulus of elasticity, in the direction of fibers, is 

28.5 GPa while in perpendicular direction of fibers is 8.5 GPa. All other parameters are listed 

in the following table: 

 

Table 1  Mechanical and physical properties of pultred GFRP material. 

The isotropy is defined by the relationships EX=EY, νXY=νYX and GZX=GZY. 
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2.2 Experimental modal analysis 

Modal analysis is a method that allows to determinate the dynamic characteristics of a 

system through the analysis of experimental data. Data can be displacements, velocities, 

accelerations measured on the structure. This approach is colled ‘modal analysis’ and it 

revolves around two basic concept: linearity and time invariance of the structure [4]. The 

modal parameters to solve the problem are frequency, damping and mode shape. Naturally, 

the mechanical behaviour of a structure depends on its inertial and stiffness characteristics 

that govern the response of the system, caused by an external force. Through some 

transformations, we pass from the spatial model to the "phase-space". This is done because 

the representation in the phase-space is convenient to use the modal identification 

techniques. It is important to emphasise that the measure are not carried out with continuity 

over time but they are carried out at intervals of time. Therefore, during the test a sampling 

time must be defined.  

2.3 Modal Identification  

There are different types of modal identification methods; they can be classified according 

to different criteria: 

 DOMAIN 

This classification may be subdivided into three types: time domain, frequency 

domain and time-frequency domain. The time domain method works well when the 

structure has a high number of modes or the frequency range of interest is limited. 

The frequency domain method, instead, works well when the structure has a limited 

number of modes or the frequency range of interest is wide. The third type is a 

combination of the two previous ones and it is used to analyse non-stationary signals. 

 ANALYTICAL PROCESS 

In this classification we can distinguish: direct and indirect methods. In the first one, 

the identification is based on matrices determination that define the spatial model. 

Therefore, mass matrix, stiffness matrix and damping matrix are considered. It is a 

classical eigenvalue problem. In the second one, the identification of frequency 

response functions (FRF) is based on a modal model. That is on the evaluation of 

modal parameters: natural frequencies, damping and mode shape. 

 NUMBER OF MODE-SHAPES 
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This criterion consist of the number of modal-shapes the have been analysed. It can 

be “SDOF” single degree of freedom or “MDOF” multi degree of freedom. 

 INPUT AND OUTPUT 

This criterion is linked to the operations of the experimental phase. It depends on the 

number of frequency response functions (FRF) available. Usually you have data for 

each sensor placed on the structure and therefore you have a function for each point 

monitored. In the light of this, four methods can be distinguished: 

- SISO, single input – single output; 

- SIMO, single input – multi output; 

- MIMO, multi input – multi output; 

- MISO, multi input – single output. 

 TYPE OF EXCITATION  

The excitation can be of two types: known (artificial excitation) or unknown. 

Artificial excitations can be: free oscillations and those induced by the use of a 

shaker; while the unknown ones can be: environmental noise, wind actions and 

mechanical vibrations due to vehicles. 

2.3.1 General analytical formulation of identification methods 

In order to illustrate the general approach of identification of the systems, a SISO system 

(single input – multiple output) is considered. Considering an input signal u(t) and an output 

signal y(t) where t = (0, 1, …, N – 1), the discrete time system can be represented as follows: 

 𝑦(𝑡) = 𝐺(𝑧)𝑢(𝑡) + 𝑣(𝑡) (1) 

The 𝐺(𝑧)𝑢(𝑡) represent the convolution between two response functions  𝑔(𝑡) due to input 

signal 𝑢(𝑡), namely:  

 
𝐺(𝑧)𝑢(𝑡) =  ∑ 𝑔(𝑘)𝑢(𝑡 − 𝑘)

∞

𝑘=0

 (2) 

The function 𝑣(𝑡) represents the error due to the instrument and noise.  

 

𝐺(𝑧) represent the transfer function of the system and it is defined as follows: 

 
𝐺(𝑧) = ∑ 𝑔(𝑡)

∞

𝑘=0

𝑧−𝑡 (3) 
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Where z is the displacement 

 𝑧−𝑡𝑦(𝑡) = 𝑦(𝑡 − 1) (4) 

 

This is a parametric approach linked to the determination of a set of parameters that describe 

𝐺(𝑧) function. 

It is possible to generalise the formula (1) to create a parametric model:  

 
𝐴(𝑧)𝑦(𝑡) =

𝐵(𝑧)

𝐹(𝑧)
𝑢(𝑡) +

𝐶(𝑧)

𝐷(𝑧)
𝑒(𝑡) (5) 

Where the terms 𝐴(𝑧), 𝐵(𝑧), 𝐶(𝑧), 𝐷(𝑧) and 𝐹(𝑧) are polynomials. They are depend on 

displacement: 

 𝐴(𝑧) = 1 + 𝑎1𝑧−1+ . . . +𝛼𝑛𝑎
𝑧−𝑛𝑎 (6) 

𝑛𝑎is the polynomial order of 𝐴(𝑧). 

Other similar equations can be written for the other polynomials using respectively 𝑛𝑏, 𝑛𝑐, 

𝑛𝑑, 𝑛𝑒 and 𝑛𝑓. 𝑒(𝑡) can be assumed as white noise and equal to 𝑣(𝑡). Based on the value of 

the coefficients it is possible to obtain different models: 

- ARX, 𝑛𝑐 = 𝑛𝑑 = 0; 

- ARMAX, 𝑛𝑑 = 𝑛𝑓 = 0; 

- OE (output error), 𝑛𝑎 = 𝑛𝑐 = 𝑛𝑑 = 0; 

- BOX-JENKINS, 𝑛𝑎 = 0. 

Until now, the analytical formulation was based on a transfer function. It is possible to 

perform another formulation in the phase space by modifying the relation (5): 

 𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (7) 

 𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝑣(𝑡) (8) 

Where 𝐴, 𝐵, 𝐶, and 𝐷 are matrices containing constants. The equation (7) can be rewritten 

as follows: 

 𝑧𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (9) 

by resolving you get: 

 𝑥(𝑡) = (𝑧𝐼 − 𝐴)−1𝐵𝑢(𝑡) (10) 
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By replacing in the (8), the following is obtained: 

 𝑦(𝑡) =  [𝐶(𝑧𝐼 − 𝐴)−1𝐷]𝑢(𝑡) + 𝑣(𝑡) (11) 

In this case the transfer function is linked A, B, C, and D matrices through the following 

expression: 

 𝑆(𝑧) = 𝐶[𝑧𝐼 − 𝐴]−1𝐵 + 𝐷 (12) 

In conclusion, the identification of systems corresponds to determining the matrices of 

constants. 

2.3.2 Identification methods with unknown input  

Most of the techniques with unknown input operate in the time domain and provide the 

modal parameters of the system starting from the structural response. Two methods must be 

distinguished: not-parametric identification and parametric identification. The first, 

estimate an impulse response function (for instance, ERA method), the second estimate the 

best parameters that are close to the experimental ones. 

2.3.2.1 Eigensystem Realization Algorithm (ERA) 

Eigensystem Realization Algorithm is a method designed by Juang and Pappa and it solves 

Multi Input Multi Output (MIMO) systems [5].  

The first step of the method is to pass from the time domain to the phase domain; the dynamic 

equilibrium equations for a viscous damping MDOF system are: 

 [𝑀]{�̈�(𝑡)} + [𝐶]{�̇�(𝑡)} + [𝐾]{𝑥(𝑡)} = {𝑓(𝑥(𝑡), 𝑡)} (13) 

Defining 𝑢(𝑡) the vector: 

 
{𝑢(𝑡) = {

{𝑥(𝑡)}

{�̇�(𝑡)}
} (14) 

 

the problem can be brought to the linear case: 

 
[𝐴′] = [

[0] [𝐼]

−[𝑀]−1[𝐾] −[𝑀]−1[𝐶]
] (15) 

 

   

 {𝑓(𝑥, 𝑡)} = [𝐹]{𝛿(𝑡)} (16) 
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[𝐵′] = [

[0]

−[𝑀]−1[𝐹]
] (17) 

Where {𝛿(𝑡)} is an input vector relates to 𝑞 points of stress; [𝐹] is the coefficients matrix of 

input signals. The system can be represented by writing equation (la prima) in the phase 

space: 

 {�̇�(𝑡)} = [𝐴′]{𝑢(𝑡)} + [𝐵′]{𝛿(𝑡)} (18) 

It is possible to establish a relationship between {𝑢(𝑡)} and {𝑥(𝑡)} (responses measured in 𝑝 

points) through the transform matrix [𝑅]: 

 
{𝑥(𝑡)} = [𝑅]{𝑢(𝑡)} (19) 

The solution (18) is expressed by: 

 
{𝑢(𝑡)} = 𝑒[𝐴′](𝑡−𝑡0){𝑢(𝑡0)} + ∫ 𝑒[𝐴′]𝜏′[𝐵′]{𝛿(𝑘∆𝑡)}𝑑𝑡

∆𝑡

0

 (20) 

For each instant of time t; where 𝑡0 is the starting time. To provide a discreet representation 

of formulation (20) the following intervals must be considered: 0, ∆𝑡, … , 𝑘∆𝑡. Assuming that 

the input remains constant in the range (𝑘∆𝑡, (𝑘 + 1)∆𝑡) and 𝜏 = (𝑘 + 1)∆𝑡 − 𝜏, is 

obtained:  

 
{𝑢((𝑘 + 1)∆𝑡)} = 𝑒[𝐴′]∆𝑡{𝑢(𝑘∆𝑡)} − ∫ 𝑒[𝐴′]𝜏′[𝐵′]{𝛿(𝑘∆𝑡)}𝑑𝑡

∆𝑡

0

 (21) 

For simplicity, it is possible to introduce the following notations: 

 [𝐴] = 𝑒[𝐴′]∆𝑡 (22) 

   

 
[𝐵] = − ∫ 𝑒[𝐴′]𝜏′[𝐵′]

∆𝑡

0

 (23) 

   

 {𝑢(𝑘 + 1)} = {𝑢((𝑘 + 1)∆𝑡)} (24) 

   

 {𝛿(𝑘)} = {𝛿(𝑘∆𝑡)} (25) 

The equation (21), for a discreet system, becomes: 

 {𝑢(𝑘 + 1)} = [𝑎]{𝑢(𝑘)} + [𝐵]{𝛿(𝑘)}       𝑘 = 0, 1,2, … (26) 

So, formula (19) becomes: 
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 {𝑥(𝑘)} = [𝑅]{𝑢(𝑘)} (27) 

If all points (q) of stress are taken into account: 

 [𝑋(𝑘)] =  [𝑅]          [𝐴]𝑘+1     [𝐵] 
(28) 

 (𝑝 × 𝑞)        (𝑝 × 2𝑁)       (2𝑁 × 2𝑁)      (2𝑁 × 𝑞) 

Where: 

𝑝 is the number of measured responses ({𝑥(𝑡)}) and 𝑞 is the numbers of stress point. 

All the matrices [𝑋(𝑘)] are called “parameters of Markov” and are used to compose the 

Hankel matrix: 

 

[𝐻(𝑘 − 1)] = [

[𝑋(𝑘)] [𝑋(𝑘 + 1)] ⋯ [𝑋(𝑘 + 𝑗)]

[𝑋(𝑘 + 1)] [𝑋(𝑘 + 2)] … [𝑋(𝑘 + 𝑗 + 1)]
⋯ ⋯ ⋯ ⋯

[𝑋(𝑘 + 𝑖)] [𝑋(𝑘 + 𝑖 + 1)] ⋯ [𝑋(𝑘 + 𝑗 + 𝑖)]

] (29) 

With 𝑖 = 1, … , 𝑟 − 1 and 𝑗 = 1, … , 𝑠 − 1. Where 𝑟 and 𝑠 are numbers that satisfy the 

conditions 𝑝𝑟 > 𝑁 and 𝑞𝑠 > 𝑁. These conditions are necessary to have a sufficient amount 

of data to carry out the Singular Value Decomposition (SVD). 

One of the advantages of ERA is that only the significant responses can be placed within the 

Hankel matrix. So you can use only those with low noise. This process involves the 

determination of matrices: [𝑅], [𝐴], and [𝐵]. 

There is an infinite number of combinations to satisfy the formula (28). The objective is to 

obtain a formulation with the minimum degree in order to represent adequately the dynamic 

behaviour of the structure.  This is possible by using the SVD. 

First, you have to find the [H]’ matrix so that the following report is respected: 

 [𝑊][𝐻]′[𝑄] = [𝐼] (30) 

It is possible rewrite the relation (28) for values of 𝑘 ≥ 0; 

 [𝑋(𝑘 + 1)] = [𝑅][𝐴]𝑘[𝐵] (31) 

If you use the identity: 

 [𝑋(𝑘 + 1)] = [𝐸𝑝]𝑇[𝐻(𝑘)][𝐸𝑞] (32) 

and 

 [𝐸𝑝]𝑇 = [[𝐼]  [0] … [0]] (33) 
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[𝐸𝑞] = [

[𝐼]
[0]

⋮
[0]

] (34) 

it can be demonstrated that: 

 
[𝑋(𝑘 + 1)] = [[𝐸𝑝]

𝑇
[𝑈2𝑁][𝜀2𝑁]

1
2]] ∙ [𝜀2𝑁]−

1
2[𝑈2𝑁]𝑇[[𝑄][𝐴]𝑘[𝑊] ∙

∙ [[𝑉2𝑁][𝜀2𝑁]
1
2] ∙ [[𝜀2𝑁]

1
2[𝑉2𝑁]𝑇[𝐸𝑞]] 

(35) 

It is possible obtain the modal parameters once the transformation from discrete to 

continuous system has been carried out. The eigenvalues and eigenvalues are taken from 

matrix [𝐴]:  

 [𝐴]{𝛹𝑢} = 𝜆{𝛹𝑢} (36) 

The mode shapes can be obtained by multiplying the eigenvalue matrix by the transformation 

matrix [𝑅]: 

 {𝛹𝑢} = [𝑅]{𝛹𝑢} (37) 

Frequencies and damping are evaluated by eigenvalues of the matrix [𝐴]. 

It is important to note that this method needs to be checked because the noise contained in 

the signal generates computational modes alongside the real ones. 
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3 METHODS 

3.1 Curvature method 

This method allows us to detect a crack using the change of modal shapes.  Other methods 

based on frequency change can easily detect the presence of damage but not the position. 

This is because two cracks in two different positions can generate the same frequency 

variation. So it is not possible to know where the crack is. The curvature method instead 

detects the position of the damage through the changes of the curvature mode shapes because 

these changes take place in the region of the damage. 

Modal Assurance Criterion (MAC) [7] and Co-ordinate Modal Assurance Criterion 

(COMAC) [8] are used to compare the mode shapes. MAC indicates the overall difference 

between two set of mode shapes. COMAC indicates the correlation between two mode 

shapes at a selected measurement point of a structure. 

Curvature at a section is equal to: 

 𝑣′′ = 𝑀/(𝐸𝐼) (38) 

Where 𝑀 is the bending moment at a section, 𝐸 is the modulus of elasticity and 𝐼 is the 

moment of inertia.  

If the structure is damaged or cracked the value of 𝐸𝐼 will be reduced at the cracked section 

while the magnitude of curvature at that section will increase. 

If the value of 𝐸𝐼 decreases, the change in curvature increases so the greater the damage, the 

more noticeable the change of curvature will be. 

3.1.1 Analytical Model 

Cantilever beam and supported beam models with uniform square cross-section were used 

to show this method. The geometric parameters are shown in the figures 3 and 4. 
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Fig. 3 Cantilever bam model. (a) Finite element model; (b) cross- section of the cantilever [6]. 

 

Fig. 4 Simply supported beam model. (a) Finite element model; (b) cross-section of the simply supported beam [6]. 

The cantilever beam model was chosen because the curvature and the displacements have 

different forms. Instead, the simply supported beam model was chosen because the curvature 

and displacements are the same. Two other cases can be distinguished: 

- Intact: all elements have the same properties. 
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- Cracked: element 13 is damaged, has a reduced value (by 50%) of the modulus 

of elasticity 𝐸. 

In both cases, 20 two-dimensional beam elements of the same length were used. Adams and 

Cawley assumed that damage in a structure effects only the stiffness matrix and not the 

inertia matrix in the eigenvalue problem formulation [9]. The eigenvalue problem for the 

intact case can be written as follows: 

 (𝐾 − 𝜆𝑗𝑀)𝑥𝑗 = 0 (39) 

and for the cracked case as: 

 (𝐾′ − 𝜆′𝑗𝑀)𝑥′𝑗 = 0 (40) 

where:  

- 𝐾 is the stiffness matrix of the intact case; 

- 𝐾′ is the stiffness matrix of the cracked case; 

- 𝜆𝑗 is the j-th eigenvalue of the intact case; 

- 𝜆′𝑗 is the j-th eigenvalue of the cracked case; 

- 𝑥𝑗 is the j-th displacement eigenvector of the intact case; 

- 𝑥′𝑗 is the j-th displacement eigenvector of the cracked case; 

 

3.1.2 Analysys of results 

The only degree of freedom that has been considered in the analysis is the translation degree 

of freedom along the Y axis because in the experimental work the rotations measurement 

are difficult. The mode shapes were orthonormalized against the inertia matrix: 

 𝑥𝑗
𝑇𝑀𝑥𝑗 = 1 (41) 

 The curvatures were determined from the displacements 𝑣 through the following 

relationship: 

 𝑣𝑖
′′ = (𝑣𝑖+1 − 2𝑣𝑖 + 𝑣𝑖−1)/ℎ2 (42) 

where ℎ is the length of each element. 

Once the curvatures were calculated MAC and COMAC were applied for the intact and 

damaged curvature mode shapes.  
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3.1.3 Numerical result 

 CANTILEVER BEAM MODEL 

In the following table is possible to see the first five natural frequencies of the two cases: 

intact and damaged (element 13) cantilever. 

 

Table 2 Natural frequencies for the intact cantilever and the cantilever damaged [6]. 

From the results it can be concluded that the natural frequencies decrease if the structure is 

damaged. From the percentage change in frequency it is noted that there is a damage in the 

structure but to know the position it is necessary to make further analysis.  

The following graph shows the first five displacement mode shapes for the intact cantilever. 

 

Fig. 5 Displacement mode shapes for intact cantilever [6]. 

The tables below show the Modal Assurance Criterion (MAC) and Co-ordinate Modale 

Assurance Criterion (COMAC) values for the intact and damaged displacement mode 

shapes. 
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Table 3 MAC values for the intact and damaged displacement mode shapes for the cantilever [6]. 

 

Table 4 COMAC values for the intact and the damaged displacement mode shape for the cantilever [6]. 

All numbers 1 on the diagonal (Table 3) indicate that the modal shapes of the intact case and 

the damaged case are almost identical. The following figure shows the curvatures: 

 

Fig. 6 Curvature mode shapes for the intact cantilever [6]. 
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Once the curvature mode shapes and displacement mode shapes were known, the absolute 

differences, between intact and damaged cantilever, were calculated: 

 

Fig. 7 Absolute difference between the curvature mode shapes for the intact and the damaged cantilever [6]. 

For each curvature mode, the maximum difference occurs in the damage zone. 

 

 

Fig. 8 Absolute difference between displacement mode shapes for the intact and the damaged cantilever [6]. 
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The changes in the displacement mode shapes are not localized to the damage region, so this 

information is not useful to localise the damage area. 

 SIMPLY SUPPORTED BEAM MODEL 

In the following table is possible to see the first five natural frequencies of the two cases: 

intact and damaged (element 13) simply supported beam. 

 

Table 5 Natural frequencies for the intact and damaged simply supported beam [6]. 

From the results it can be concluded that the natural frequencies decrease if the structure is 

damaged.  

The following graph shows the first five curvature mode shapes for the simply supported 

beam, which are in the same form as displacements. 

 

Table 6 Curvature (or displacement) mode shapes for the simply supported beam [6]. 

Once the curvature mode shapes and displacement mode shapes were known, the absolute 

differences, between intact and damaged cantilever, were calculated: 
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Table 7 Absolute difference between the curvature mode shapes for the intact and the damaged simply supported beam 
[6]. 

For each curvature mode, the maximum difference again occurs in the damage zone. 

 

Table 8 Absolute difference between the displacement mode shapes for the intact and the damaged simply supported 
beam [6]. 

Also in this case, the changes in the displacement mode shapes are not localized to the 

damage region.  
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In conclusion, seeing the numerical results for the cantilever beam model and the simply 

supported beam model, the curvature mode shapes is a useful method to identify the damage 

area. 
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3.2 Treed Gaussian Process (TGP) 

This is a specific method in detecting cracks in a structure through mode shapes and the 

approach is based on Gaussian process (GP) regression. For the use of GP it is required that 

the beam is uniformly smooth and this assumption is valid only for the undamaged section 

of the beam. If, on the other hand, a crack is present, it induces a discontinuity. The idea was 

to allow a spatial switch point in the GP covariance, which allowed different characteristics 

near a point and on either side of the point [10]. After creating this function, it is possible to 

determine the position of the crack by maximizing the probability of the data (of the mode 

shape) by varying the position of the switching point. In the Gaussian process regression it 

is used a covariance Kernel which characterises the smoothness of the structure being 

modelled.  

 

3.2.1 Gaussian Process (GP) 

The Gaussian processes are a Gaussian distribution of functions that return a Gaussian 

probability distribution. Gaussian processes are statistically based (Bayesian) and are able 

to automatically return the time interval for predictions. In practice, a series of preliminary 

assumptions are made about the function to be modelled, and then the data is processed to 

update and evaluate a posterior distribution over functions. 

The GP algorithm implementation is shown as follows. 

Let us consider 𝑛 input points {𝑥1, … , 𝑥𝑛}, the prior beliefs about the corresponding outputs 

can be represented by a multivariate normal distribution, the mean of which is least squares 

regression fit through the training data: 

 𝐸[𝑓(𝑥)|𝛽] = 𝑚(𝑥) = ℎ(𝑥)𝑇𝛽 (43) 

Where: 

- ℎ(𝑥)𝑇 is a regression function of x; 

- 𝛽 is a vector of coefficients. 

The covariance between output points is given as: 

 𝑐𝑜𝑣[𝑓(𝑥), 𝑓(𝑥′)|𝜎𝑓
2, 𝜎𝑛

2, 𝐿] = 𝑘(𝑥, 𝑥′) (44) 

Where: 
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- 𝜎𝑓
2 is a scaling factor; 

- 𝜎𝑛
2 is a noise variance; 

- 𝐿 is a diagonal matrix of inverse length-scales; 

L matrix represent the roughness of the output with respect to the individual input 

parameters. The costant are the hyperparameter of the problem. The covariance function 

usually used is as follows: 

 𝑘(𝑥, 𝑥′) = 𝜎𝑓
2exp [−(𝑥 − 𝑥′)𝑇𝐿(𝑥 − 𝑥′)] + 𝜎𝑛

2𝛿 (45) 

Where 𝛿 = 1 if 𝑥 = 𝑥′. 

If the matrix L is restricted to the form 𝛿𝑖𝑗/𝑙² the convariance is isotropic: 

 
𝑘(𝑥, 𝑥′) = 𝜎𝑓

2 exp (−
1

2𝑙2
||𝑥 − 𝑥′||²) + 𝜎𝑛

2𝛿 (46) 

 These equations complete the prior specification of the problem; the posterior distribution 

is then found by conditioning the prior distribution on the training data y. One of the 

properties of GP is that the density of a number of outputs from the process is multivariate 

normal. It is possible to evaluate this function only in some sampled points: training points 

and forecasts. f indicates the function values at the X training points and f* indicates the 

function value at a new x* training point. It is therefore obtained: 

 
(

𝑓

𝑓∗
) ~𝑁 (0, [

𝐾(𝑋, 𝑋) 𝐾(𝑋, 𝑥∗)
𝐾(𝑥∗, 𝑋) 𝐾(𝑥∗, 𝑥∗)

]) 

 
(47) 

Where a zero-mean prior has been for simplicity; 𝐾(𝑋, 𝑋)𝑖s a matrix where 𝑖, 𝑗𝑡ℎ element 

corresponds to 𝑘(𝑥𝑖, 𝑥𝑗). In the same way, 𝐾(𝑋, 𝑥∗) is a vector where 𝑖𝑡ℎelement corresponds 

to 𝑘(𝑥𝑖, 𝑥∗) and 𝐾(𝑥∗, 𝑋) is the transpose of the same. 

To compare the observed target data 𝑦 with the 𝑓 function, a Gaussian noise model can be 

assumed: 

 𝑦~𝑁(𝑓, 𝜎𝑛
2𝐼) (48) 

Where 𝐼 is the identity matrix. 

Since is not interested in the variable 𝑓, it can be integrated out from equation (47): 

 
𝑝(𝑦) = ∫ 𝑝(𝑦|𝑓)𝑝(𝑓)𝑑𝑓 (49) 
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The equation (47) can be rewritten: 

 
(

𝑦

𝑦∗
) ~𝑁 (0, [

𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼 𝐾(𝑋, 𝑥∗)

𝐾(𝑥∗, 𝑋) 𝐾(𝑥∗, 𝑥∗) + 𝜎𝑛
2]) (50) 

To use this expression, it is necessary to move from a joint distribution 𝑝(𝑦, 𝑦∗)  to a 

conditional distribution 𝑝(𝑦∗|𝑦). Using standard results for conditional proprieties of a 

Gaussian, it is possible to write: 

 𝑦∗~𝑁(𝑚∗(𝑥∗), 𝑘∗(𝑥∗, 𝑥∗) (51) 

 

Where 

 (𝑚∗(𝑥∗) = 𝑘(𝑥∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1𝑦 (52) 

 

is the posterior mean of the GP, and 

 𝑘∗(𝑥∗, 𝑥′) = 𝑘(𝑥∗, 𝑥′) − [𝐾(𝑥∗, 𝑋) + 𝜎𝑛
2𝐼]−1𝐾(𝑋, 𝑥′) (53) 

Is the posterior variance. 

Thus GP model provides a posterior distribution for the unknown quantity 𝑦∗. The mean 

from equation (51) can be used for a regression problem as a “best estimate”, and the 

variance can be used to define confidence intervals. 

The last factor to calculate and optimize is the hyperparameter; this can be done by using an 

evidence framework [11]. These parameters can be found by maximizing the following 

function: 

 
𝑓(𝜗

1

2
𝑦𝑇[𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼]𝑦 −
1

2
log |𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼| (54) 

Which is the log marginal likelihood and is equal to the log of the evidance, up to some 

costant. 

 

3.2.2 Crack Detection 

One approach to adapting the GP model is to specify a covariance function that can change 

its behavior in different regions of the beam. It is possible to perform a covariance function, 

assuming the beam is fissured at position 𝑥 = 𝑎. 
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𝑘(𝑥𝑖, 𝑥𝑘) = 𝑓(𝑥) = {

𝑘1(𝑥𝑖𝑥𝑗) + 𝑘2(𝑥𝑖𝑥𝑗), 𝑥𝑖 < 𝑎, 𝑥𝑗 < 𝑎

𝑘1(𝑥𝑖𝑥𝑗) + 𝑘2(𝑥𝑖𝑥𝑗),         𝑥𝑖 > 𝑎, 𝑥𝑗 > 𝑎

𝑘1(𝑥𝑖𝑥𝑗)                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 (55) 

This approach was used in [12] where 𝑘1 was taken as a polynomial kernel, 

 𝑘1(𝑥𝑖𝑥𝑗) = 𝜎𝑓
2(1 + 𝑥𝑖𝑥𝑗)𝑁 + 𝜎𝑛

2𝛿1𝑗 (56) 

 and 𝑘2 was an SE kernel as defined in equation (46). 𝜎𝑓
2 and 𝜎𝑛

2 are hyperparameter 

associated with the signal and noise variances, and N is a hyperparameter controlling the 

polynomial order. 

Now all the elements are available to detect cracks using GP regression. The only unknown 

factor is the parameter of the position of the cracks, which is changed in order to maximize 

the probability of the data. 

 

3.2.3 Algorithm TGP 

In this algorithm it is important to divide the space of the independent variables into fields 

where there is a smooth response behaviour, then create low order regression models for 

each region. The problem will be solved with linear least-squares model if partitioning is 

carried out manually. In Treed Gaussian Process method, the partitions are determined by 

the data as part of the modelling problem, so the problem becomes highly non-linear and the 

least-squares model is no longer usable. The algorithm is therefore based on rigorous 

concepts of probability theory; In Bayesian Classificatio and Regression Trees (CART) a 

probability distribution on all tree structures and all coefficients is proposed [13]. In the 

original formulation made by Chipman, all regression models were linear; later Gramcy 

proposed the use of GP models, thus creating the TGP [14]. 

As the Gramcy algorithm is very complex, it is possible to illustrate a variant developed by 

O'Hagan based on Baysian probability that integrates the hyper-paramentres 𝜎𝑓
2 and 𝛽 by 

eliminating them from the problem of optimization. The result is a Student t-process, 

conditional on 𝐿 and the training data: 

 [𝑓(𝑥)|𝑦, 𝐿]~𝑡𝑛 − (𝑚∗(𝑥), �̂�𝑓
2𝑘∗(𝑥, 𝑥)) (57) 

In which, 

 (𝑚∗(𝑥) = ℎ(𝑥)𝑇�̂� + 𝑘(𝑥)𝑇𝐾−1(𝑦 − 𝐻�̂�) (58) 
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𝑘∗(𝑥, 𝑥′) = 𝑘(𝑥, 𝑥′) − 𝑘(𝑥)𝑇𝐾−1𝑘(𝑥′) + (ℎ(𝑥) −

𝑘(𝑥)𝐾−1𝐻)(𝐻𝑇𝐾−1𝐻)(ℎ(𝑥′) − 𝑘(𝑥′)𝐾−1𝐻)𝑇  
(59) 

 𝑘(𝑥)𝑇 = 𝑘(𝑥, 𝑥1), … , 𝑘(𝑥, 𝑥𝑛) (60) 

 

 𝐻𝑇 = (ℎ(𝑥1), … , ℎ(𝑥𝑛)) (61) 

 

 

𝐾 = (

1 𝑘(𝑥1, 𝑥2) ⋯ 𝑘(𝑥1, 𝑥𝑛)
𝑘(𝑥2, 𝑥1) 1 ⋯ ⋮

⋮ ⋮ ⋱ ⋮
𝑘(𝑥𝑛, 𝑥1) ⋯ ⋯ 1

) (62) 

 

 �̂� = (𝐻𝑇𝐾−1𝐻)𝑇𝐻𝑇𝐾−1𝑦 (63) 

 
�̂�𝑓

2 =
𝑦𝑇(𝐾−1 − 𝐾−1𝐻(𝐻𝑇𝐾−1𝐻)𝐻𝑇𝐾−1)𝑦

𝑛 − 𝑑 − 3
 (64) 

 

 𝑦 = (𝑓(𝑥1), … , 𝑓(𝑥𝑛))𝑇 (65) 

The quality of the model is highly dependent on the number and distribution of training data 

points in the input space and on the values of the hyper-parameters.  

It can be demonstrated that the �̂� and �̂�𝑓
2 values (mentioned above) coincide with the values 

derived from the least-squares model. The diagonal matrix of the L roughness parameters is 

evaluated by estimating the maximum probability or by means of the Markov Chain Monte 

Carlo (MCMC); this estimate is the longest and most complex part from a computational 

point of view. 

The calculations for the TGP were performed on the R software using the TGP package 

written by Gramcy. 
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3.3 Piecewise Cubic Hermite Interpolating Polynimial (pchip) 

PCHIP is a function implemented in the MatLab toolbox that performs a cubic interpolation 

of data through a third-order polynomial P(x).   

The polynomial P(x) is characterized by four local coefficients [𝑎, 𝑏, 𝑐, 𝑑] that are chosen at 

each interval [𝑥1, 𝑥2]; it has the following form: 

 

 𝑃(𝑥) = 𝑎(𝑥 − 𝑥1)3 + 𝑏(𝑥 − 𝑥1)2 + 𝑐(𝑥 − 𝑥1) + 𝑑 (66) 

 

Below there are a graphic examples of interpolation using the pchip and spline functions. 

EXAMPLE1 

 

Fig. 9 Example of pchip and spline interpolation on sample points [MatLab manual]. 
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EXAMPLE 2 

 

Fig. 10 Example of pchip and spline interpolation on oscillatory sample points [MatLab manual]. 

 

In the first example, pchip is a better interpolation of data because it does not oscillate freely 

between sampling points. In the second case, the sampled points refer to an oscillatory 

function, and the pchip interpolation loses information where the curvature is high.  

‘pchip’ properties [MatLab manual] 

 The Hermite cubic polynomial is used on specified derivative points (slope) for each 

interval 𝑥𝑘 ≤ 𝑥 ≤ 𝑥𝑘+1. 

 𝑃(𝑥𝑗) = 𝑦𝑗 and the first derivate of 𝑃 is continuous. The second derivate is probably 

not continuous so  jumps at the 𝑥𝑗 are possible. 

 The slopes at the xj are chosen in such a way that 𝑃(𝑥) preserves the shape of the 

data and respects monotonicity. 

 

For this study, it was therefore decided to use the pchip function because there were few 

sampling points and very slight oscillations. 
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4 FINITE ELEMENT MODEL  

The finite element method (FEM) is a numerical process that solves problems of differential 

equations at partial derivatives.  

Geometric modelling has been defined in order to physically and mathematically represent 

the reality of the structure under examination. The finite element method is used to derive 

approximate solutions of problems defined by differential equations through a system of 

algebraic equations. This method subdivides the components into one-dimensional, two-

dimensional and solid elements capable of representing the structural behaviour. The main 

function is to discretize the structure by creating a mesh made from elements of coded form. 

The finite element software described in this chapter is ANSYS®, which includes the 

following steps: 

 Geometry Construction; 

With regard to the geometry construction, there are three ways to operate: 

1. Exporting the geometry from another software; 

2. Creating geometry through the ANSYS interface; 

3. Creating the geometry through command codes (modality used). 

 Defining the Element Type; 

ANSYS has many types of elements to represent and discretize reality; the element 

that was used in the thesis work is called: SHELL281.  

 

Fig. 11 Shell281 [ANSYS manual]. 
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This type of element is usually used to analyse thin or not very thick shells and is 

characterized by 8 nodes; each node has 6 degrees of freedom: three translational and 

three rotational.  These degrees of freedom are valid in the hypothetical case in which 

the element in question performs the function of "shell"; if on the other hand it 

performs a membrane behaviour, the rotational components are neglected. It is 

usually used for linear applications, large rotation and/or large deformation. 

 Attributes material properties; 

For the materials to be assigned, ANSYS has a large library with standard values for 

different types. In the present case, an elastic model was used; for this model ANSYS 

offers three alternatives: 

 Isotropic 

where the parameters to be written as input are: elastic modulus (EX) and 

major Poisson’s ratio (PRXY). 

 Orthotropic (modality used) 

where the parameters to be written as input are: elastic modules (EX,EY,EZ), 

Poisson’s ratios (PRXY, PRYZ, PRXZ) and shear modules (GXY, GYX, 

GXZ). 

 Anisotropic 

where the parameters to be written as input are the elements of Anisotropic 

Elastic Matrix. 

 Define mesh; 

The definition of the mesh is a very important phase because in function of its 

dimension, different solutions can be achieved. Of course, the smaller the mesh, the 

more accurate the results will be , but the computational time will increase.  

 Boundary conditions; 

In this section are inserted and conditions of constraint: fixed points, free or yielding. 

 Analysis; 

The types of analysis that are implemented in Ansys are: 

 Static; 

 Modal (modality used); 

 Harmonic; 

 Transient; 
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 Spectrum; 

 Eigen Buckling 

 Substructuring 

 Post Processing; 

Here is possible to view the results after the resolution. 
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5 RESULTS 

This chapter shows graphs whose results are generated by the hammer in position B7 and 

with accelerometers in the Y direction; in the appendix, it is possible to find all the other 

graphs regarding the accelerometers in the X direction and all other impact-hammer 

positions. 

5.1 Dynamic tests 

The dynamic tests on the beam of “H” profile were carried out in the laboratory using 

accelerometers and an opposed hammer. First, the positions of the accelerometers to be 

placed along the beam were defined. The following image shows the beam geometries, the 

accelerometer positioning (A1, A2, ..., A8) and the impact-hammer positioning (B0, B1, ..., 

B7) in both the x and y directions. 

 

Fig. 12 Accelerometer and impact hammer positioning in y direction. 

 

Fig. 13 Accelerometer and impact hammer positioning in x direction. 

The beam was studied using the static scheme of the simply supported beam and was made 

by placing the beam on two cylindrical section supports. The excitation pulse to the beam 

was generated using a Dytran5850 hammer; the structural responses due to the excitation of 

the hammer were captured by the BBN, model 507Lf, accelerometers (15 total), which have 

a mass of 10g and record data in the frequency range of 0.10 to 12 kHz.  

Both hammer and sensor are piezoelectric sensing elements with a cylindrical shear stress 

configuration with an integrated charge pre-amplifier and are connected to a data acquisition 

system via high stability coaxial cables that minimize the environmental influence on the 

test result. 
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Fifteen hammers were made at different positions, from B0 to B15, both in the X and Y 

directions, resulting in a total of 16 data for the accelerometers in the X direction and 16 data 

for the accelerometers in the Y direction. In X direction 62500 samples were recorded with 

a sampling frequency of 38147 while in Y direction 16,384 samples with a sampling 

frequency of 10,000.  

All information was then processed on the MatLab® software. 

5.1.1 Data processing 

The first operation was to correct the data matrix because the first part of the signals had cut-

offs due to the high frequencies generated by the hammer. This happened because the 

frequency generated by the hammer at that time exceeded the permissible frequency range 

of the accelerometers. Thus, the information prior to the cut-off has been deleted. This is 

shown in the image below with all 15 accelerometer responses. 

Fig. 14 Photos 1 of the experiment in the laboratory 

Fig. 15 Photos 2 of the experiment in the 
laboratory 
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Fig. 16 Original signals, before the cut-off. 

 

 

Fig. 17 Signals after the cut-off. 

Once the data had been corrected, a filter was applied to eliminate the very low frequencies, 

below 1Hz, and the very high frequencies, above 150 Hz. Subsequently, the time domain 

was moved to the frequency domain by applying the Fourier transform to the different 

signals. 

 

Fig. 18 Fourier transform of signals. 

From the graph there are clearly peaks where the frequencies of the modal shapes 

correspond. 
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Mode shapes have been obtained using the ERA method described in Chapter 2.3.2.1. 

5.1.2 Identification: ERA method. 

This algorithm has been implemented on Matlab and allows executing experimental modal 

analysis.  

The input parameters that have been inserted inside the algorithm are: 

 Signal; 

 Signal sampling frequency 

 Minimum and maximum order of the algorithm, in this case 10 and 100; 

 The output are: 

 Stabilization diagram showing the model order of the algorithm as a function of the 

natural frequencies of the structure; 

 Stabilization graph showing the damping of the structure as a function of natural 

frequencies of the structure; 

 Identification matrix in which frequencies, damping and eigvalue are present. 

The first output from the algorithm is the following:  

 

Fig. 19 Stabilisation diagram: Frequency – Model order. 

The above image is the stabilization diagram for the frequencies and order of the model; on 

the axis of the abscissaes there is the frequency scale in Hz while on the ordinates there is 



34 | P a g .  
 

the order of the system that has been made to vary from 10 to 100 with a step of 2. The larger 

the order, the greater the refinement of the calculation, but with orders too high 

computational frequencies are generated that do not represent a real behavior of the structure. 

The red circles and black dots indicate the results of the calculation and the difference in 

representation is in the stability of the solution.  

The input parameters used to evaluate the stability are: 

 Maximum frequency variation: 1%; 

 Maximum damping variation: 10%; 

 Minimum MAC: 0.98. 

If, as the order increases, a coherence with the results is maintained, the identified frequency 

is defined as stable and it is represented with a red circle, vice versa with a black dot. An 

important point to underline is that the obtained frequencies must be verified in order to not 

confuse the real frequencies with the computational ones. 

The second output from the algorithm is the following:  

 

Fig. 20 Stabilisation diagram: Frequency – Damping. 

In this case we have the frequencies on the abscissae and the damping on the ordinates. In 

addition, in this case, the same applies as before with regard to the symbolism (circles and 

points); the solution is represented in the form of a cluster. If there is a higher concentration 

of red circles, it means that the frequency value belongs to the structure.  
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The third and last output concerns the identification matrix: a vector containing matrices; 

these matrices differ from each other according to the model order with which they have 

been calculated. Having chosen a minimum order of 10 and a maximum order of 100, with 

a step of 2, we will have a total of 45 matrixes. 

The matrix shall be presented in the following manner: 

 

Table 9 Identification matrix form. 

The first line is related to the frequencies, the second to the damping, from the third to the 

end there are the modal displacement values. 

5.1.3 Mode Shapes 

In order to have control over the results and to try to understand what kind of modes 

correspond to the frequencies found, we passed to the representation of eigvalues.  

If the order of the most appropriate system (the most stable) has been carefully chosen, the 

eigvalues present in the identification matrix will be the correct ones to be displayed. The 

first four mode shapes are as follows: 

 

Fig. 21 First mode shape of experimental data. 

Frequency F1 F2 … Fi

Damping D1 D2 … Di

Sensor 1

Sensor 2

…

Sensor 15

Eigvalue 1 Eigvalue 2 … Eigvalue i
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Fig. 22 Second mode shape of experimental data. 
 

 

Fig. 23 Third mode shape of experimental data. 
 

 

Fig. 24 Fourth mode shape of experimental data. 
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5.1.4 Curvature mode shapes 

The calculation of the curvatures has been carried out starting from the mode shapes obtained 

in 5.1.3. The analytical formulation (number 42) has been expressed in the paragraph (3.2.2) 

on the method of curvatures.  

The curvatures corresponding to the experimental modal shapes are shown below. 

 

Fig. 25 Experimental curvature mode shape. 
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5.2 FEM 

The structure that was modelled using the finite element software is a simply supported beam 

with double-T section which present a longitudinal length of 5m. It is characterized by a 

different thickness of the elements: 1 mm for the flanges and 1.5 mm for the web; the 

structure has small cantilevers at the extremities of 50mm.  

5.2.1 Pre-processor 

The geometry of the structure under examination has been realized through command codes 

written on a text file reported in the appendix. First, points were created by means of 

coordinates using parameters that allow to easily and automatically move from one model 

to another. The parameters used are shown in the following table: 

 

Table 10 Information on parameters. 

After making the points, according to the above parameters, the lines and then the areas were 

created. 

The different models tested are: 

 Intact beam, without crack; 

 Damaged beam with crack of 1 mm; 

 Damaged beam with crack of 10 mm; 

 Damaged beam with crack of 25 mm; 

 Damaged beam with crack of 50 mm; 

The damaged beams were modelled through a triangular opening in the web at the point of 

connection with the lower flange. with the same base and height (f=c); the position of the 

crack was inserted at a distance of 3.65 m from the left end of the beam and . This structural 

detail is shown in the image below: 

Parameters Values [m] Description

L 5 Beam lenght

H 0,19 Beam height

B 0,2 Beam width

A 0,005 Length of the cantilever at the extremitie

d 3,65 Crack position

f depends on model Crack height

c depends on model Crack width
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Table 11 Structural detail: example of triangular crack. 

The material properties that have been inserted in the input data are shown in the following 

table: 

 

Table 12 Material properties input data. 

The only element that has been used is the "shell281" element. Since the beam is 

characterized by different thicknesses between web and flanges, two sections have been 

created: 

 Section 1: 10 mm for the flanges; 

 Section 2: 15 mm for the web. 

 

 

 

 

Parameters Values Description

EX 8,50E+09 Elastic modulus in X direction

EY 2,85E+10 Elastic modulus in Y direction

EZ 8,50E+09 Elastic modulus in Z direction

PRXY 0,25 Poisson's ratio in XY plane

PRYZ 0,25 Poisson's ratio in YZ plane

PRXZ 0,12 Poisson's ratio in XZ plane

GXY 2,50E+09 Shear modulus in XY plane

GYX 2,50E+09 Shear modulus in YZ plane

GXZ 3,50E+09 Shear modulus in XZ plane

DENS 1734 Density
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A quadrangular mesh (mapped) with a size of 0.025 m was used for all models, as follows: 

 

Fig. 26 Model of intact beam from Ansys. 
 

 

 

Fig. 27 Damaged beam from Ansys. 
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5.2.2 Post-Processor 

Once the pre-processing operations have been completed, the finite element modal analysis 

is resolved. The graphs obtained from the modal analysis are shown as follows. 

 The data relative to the mode shapes has been obtained through the writing of a code that 

allows to generate a text file containing the displacements of modal shapes.  

 Intact beam 

 

Fig. 28 Intact beam: mode shape 1 from Ansys. 
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Fig. 29 Intact beam: mode shape 2 from Ansy. 

 

 

Fig. 30 Intact beam: mode shape 3 from Ansys. 
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Fig. 31 Intact beam: mode shape 4 from Ansys. 

 

 Damaged beam with crack of 1 mm 

 

Fig. 32 Damaged beam with crack of 1 mm: mode shape 1 from Ansys. 
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Fig. 33 Damaged beam with crack of 1 mm: mode shape 2 from Ansys. 

 

 

Fig. 34 Damaged beam with crack of 1 mm: mode shape 3 from Ansys. 
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Fig. 35 Damaged beam with crack of 1 mm: mode shape 4 from Ansys. 

 

 Damaged beam with crack of 10 mm 

 

Fig. 36 Damaged beam with crack of 10 mm: mode shape 1 from Ansys. 
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Fig. 37 Damaged beam with crack of 10 mm: mode shape 2 from Ansys. 

 

Fig. 38 Damaged beam with crack of 10 mm: mode shape 3 from Ansys. 
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Fig. 39 Damaged beam with crack of 10 mm: mode shape 4 from Ansys. 

 Damaged beam with crack of 25 mm 

 

Fig. 40 Damaged beam with crack of 25 mm: mode shape 1 from Ansys. 
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Fig. 41 Damaged beam with crack of 25 mm: mode shape 2 from Ansys. 

 

Fig. 42 Damaged beam with crack of 25 mm: mode shape 3 from Ansys. 
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Fig. 43 Damaged beam with crack of 25 mm: mode shape 4 from Ansys. 

 Damaged beam with crack of 50 mm 

 

Fig. 44 Damaged beam with crack of 50 mm: mode shape 1 from Ansys. 
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Fig. 45 Damaged beam with crack of 50 mm: mode shape 2 from Ansys. 

 

Fig. 46 Damaged beam with crack of 50 mm: mode shape 3 from Ansys. 
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Fig. 47 Damaged beam with crack of 50 mm: mode shape 4 from Ansys. 

 

All the mode shapes mentioned above have been processed, in the following paragraphs, 

using Treed Gaussian Process algorithm and Curvature method.  
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5.3 Curvature method on analytic models  

The calculation of the curvatures has been carried out starting from the mode shapes obtained 

by Ansys software. The analytical formulation (number 42) has been expressed in the 

paragraph (3.2.2) on the method of curvatures.  

To obtain the data of the mode shapes, from Ansys, data has been recorded from all the 

nodes present on the top flange with coordinates X=0 and Y=0.19; for a total of 401 nodes, 

therefore as if 401 accelerometers were available. 

 

 Intact beam curvatures 

 

Fig. 48 Curvature Mode Shapes: intact beam. 

 

These curves have been defined on 401 points. 
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 Damaged beam curvatures with crack of 1 mm 

 

Fig. 49 Curvature Mode Shapes: damaged beam with crack of 1 mm. 

 

 Damaged beam curvatures with crack of 10 mm 

 

Fig. 50 Curvature Mode Shapes: damaged beam with crack of 10 mm. 
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 Damaged beam curvatures with crack of 25 mm 

 

Fig. 51 Curvature Mode Shapes: damaged beam with crack of 25 mm. 

 

 Damaged beam curvatures with crack of 50 mm 

 

Fig. 52 Curvature Mode Shapes: damaged beam with crack of 50 mm. 

Once the curvatures for all mode shapes were calculated, the differences between the cracked 

beam models and the intact beam model were calculated. 
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 Differences in curvatures between the intact beam model and cracked beam model with 

crack of 1 mm. 

 

Fig. 53 Plot 3D: differences in curvatures for cracked beam model with crack of 1 mm. 

  

 

Fig. 54 Differences in curvatures for cracked beam model with crack of 1 mm. 
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 Differences in curvatures between the intact beam model and cracked beam model with 

crack of 10 mm. 

 

 

Fig. 55 Plot 3D: differences in curvatures for cracked beam model with crack of 10 mm. 

  

 

Fig. 56 Differences in curvatures for cracked beam model with crack of 10 mm. 

 



57 | P a g .  
 

 Differences in curvatures between the intact beam model and cracked beam model with 

crack of 25 mm. 

 

Fig. 57 Plot 3D: differences in curvatures for cracked beam model with crack of 25 mm. 

 

 

Fig. 58 Differences in curvatures for cracked beam model with crack of 25 mm. 
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 Differences in curvatures between the intact beam model and cracked beam model with 

crack of 50 mm. 

 

Fig. 59 Plot 3D: differences in curvatures for cracked beam model with crack of 50 mm. 

 

 

Fig. 60 Differences in curvatures for cracked beam model with crack of 1 mm. 
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The results obtained for the different crack sizes show that the curvature method is able to 

identify a precise area where a crack is present. The changes in the curvature mode shapes 

are localized in the area of damage. The previously reported results serve as support for 

subsequent tests. 

In the next paragraph, the Treed Gaussian Process method will be used to localize the crack 

for both analytical and experimental data. 

 

5.4 Treed Gaussian Process 

The theoretical basis of the Treed Gaussian Process have been implemented in the R® 

software; analyses were carried out for both analytical and experimental data. 

5.4.1 Analytical data 

Before the analyses were carried out, all the data obtained in section 5.2.2 were dirtied with 

four type of noise of different intensities. This was done to make the simulation more real. 

Each eigenvector {𝜙}𝑖 of the modal matrix has been normalised {𝜙}𝑛,𝑖 to its maximum value; 

instead the noise vector {𝑅} has been created on MatLab with the command 'randn' and then 

multiplied by 3 types of 'standard variation' std. The formulation is shown below: 

 {𝜙}𝑅𝑖,𝑘
= {𝜙}𝑛,𝑖 ∙ {𝑅} ∙ 𝑠𝑡𝑑𝑘 (67) 

Where: 

{𝜙}𝑛,𝑖 is the normalised vector of the mode shape; 

Index 𝑖 = 1,2,3,4  refers to the mode shape; 

Index 𝑘 = 1,2,3 refers to the type of std. 

The values associated with the stdk are represented in the table: 

 

Table 13 Standard deviation values. 

std1 0,01

std2 0,02

std3 0,05
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In conclusion, 48 mode shapes {𝜙}𝑅𝑖,𝑘
 have been calculated and then, the corresponding 

curvatures were used.in the TGP analysis. The following table summarises all 48 cases 

analysed. 

 

Table 14 Summary table of modal analyses. 

Once the modal forms were obtained with noise, the data was fed to the TGP method. To 

simplify the number of graphs, only the 1 mm and 50 mm crack results will be shown. 

 CRACK 1 mm 

 1st Curvature 

 

Fig. 61 Cycle – Crack detection, Crack 1 mm, mode-shape1-std1. 

Crack 1 Crack 10 Crack 25 Crack 50

1
st

 Curvature 1
st

 Curvature 1
st

 Curvature 1
st

 Curvature

std 1 std 1 std 1 std 1

std 2 std 2 std 2 std 2

std 3 std 3 std 3 std 3

2nd Curvature 2nd Curvature 2nd Curvature 2nd Curvature

std 1 std 1 std 1 std 1

std 2 std 2 std 2 std 2

std 3 std 3 std 3 std 3

3
th

 Curvature 3
th

 Curvature 3
th

 Curvature 3
th

 Curvature

std 1 std 1 std 1 std 1

std 2 std 2 std 2 std 2

std 3 std 3 std 3 std 3

4th Curvature 4th Curvature 4th Curvature 4th Curvature

std 1 std 1 std 1 std 1

std 2 std 2 std 2 std 2

std 3 std 3 std 3 std 3
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Fig. 62 Cycle – Crack detection, Crack 1 mm, mode-shape1-std3. 

These two graphs show the position of the crack (in meters) on the y-axis and the number of 

cycles performed on the x-axis. It can be seen that there is a concentration of circles just near 

the crack (3.65 m). Two results obtained by the TGP are shown below: 

 

 

 

 

Fig. 64 First result of 50 cycles; Crack 1 mm;  

mode-shape1-std1. 

Fig. 63 First result of 50 cycles; Crack 1 mm;  

mode-shape1-std3. 
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 2nd Curvature 

 

 

 

 

 

  

 

Fig. 66 Cycle – Crack detection, Crack 1 mm,  

mode-shape2-std1. 

Fig. 65 Cycle – Crack detection, Crack 1 mm,  

mode-shape2-std3. 

Fig. 68 First result of 50 cycles; Crack 1 mm;  

mode-shape-2-std1 

Fig. 67 First result of 50 cycles; Crack 1 mm;  

mode-shape2-std3. 
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 3th Curvature 

 

 

 

 

 

 

 

Fig. 70 Cycle – Crack detection, Crack 1 mm, 

 mode-shape3-std1 

Fig. 69 Cycle – Crack detection, Crack 1 mm, 

 mode-shape3-std3. 

Fig. 72 First result of 50 cycles; Crack 1 mm;  

mode-shape3-std1. 

Fig. 71 First result of 50 cycles; Crack 1 mm;  

mode-shape3-std3. 
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 4th Curvature 

 

 

 

 

 

 

 

Fig. 74 Cycle – Crack detection, Crack 1 mm,  

mode-shape4-std1. 

Fig. 73 Cycle – Crack detection, Crack 1 mm,  

mode-shape4-std3. 

Fig. 75 First result of 50 cycles; Crack 1 mm;  

mode-shape4-std1. 

Fig. 76 First result of 50 cycles; Crack 1 mm;  

mode-shape4-std3. 
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 CRACK 50 mm 

  1st Curvature 

 

 

 

 

 

 

 

 

Fig. 78 Cycle – Crack detection, Crack 50 mm,  

mode-shape1-std1. 

Fig. 77 Cycle – Crack detection, Crack 50 mm,  

mode-shape1-std3. 

Fig. 79 First result of 50 cycles; Crack 50 mm;  

mode-shape1-std1. 

Fig. 80 First result of 50 cycles; Crack 50 mm; mode-shape1-
std3. 
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 2nd Curvature 

 

 

 

 

 

 

 

Fig. 81 Cycle – Crack detection, Crack 50 mm,  

mode-shape2-std1. 

Fig. 82 Cycle – Crack detection, Crack 50 mm,  

mode-shape2-std3. 

Fig. 84 First result of 50 cycles; Crack 50 mm;  

mode-shape2-std1. 

Fig. 83 First result of 50 cycles; Crack 50 mm;  

mode-shape2-std3. 
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 3th Curvature 

 

 

 

 

 

 

 

 

 

Fig. 86 Cycle – Crack detection, Crack 50 mm,  

mode-shape3-std1. 

Fig. 85 Cycle – Crack detection, Crack 50 mm, 

 mode-shape3-std3 

Fig. 88 First result of 50 cycles; Crack 50 mm;  

mode-shape3-std1. 

Fig. 87 First result of 50 cycles; Crack 50 mm;  

mode-shape3-std3. 
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 4th Curvature 

 

 

 

 

 

 

Fig. 90 Cycle – Crack detection, Crack 50 mm,  

mose-shape4-std1. 

Fig. 89 Cycle – Crack detection, Crack 50 mm,  

mode-shape4-std3. 

Fig. 92 First result of 50 cycles; Crack 50 mm;  

mode-shape4-std1. 

Fig. 91 First result of 50 cycles; Crack 50 mm;  

mode-shape4-std3. 
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5.4.2 Experimental data 

In the experimental case, it was decided to interpolate the data with a cubic function:  pchip 

(Piecewise Cubic Hermite Interpolating Polynomial). This was done to create a continuous 

function with the aim of extracting more useful points for computational calculation on TGP 

algorithm. The number of points has therefore been increased from 15 (number of 

accelerometer present on the beam) to 401. Below, it can be seen that the function 'pchip' 

interpolates very well the 15 experimental points. 

 

Fig. 93 Experimental mode shapes using pchip interpolation. 

 

Once the continuous function is obtained, the modal displacements on 401 points are 

memorized at a constant step of 0.0125 m starting from the supports. Then on these data 

have been calculated the curvatures mode shape that are shown below. 
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Fig. 94 Experimental curvature mode shapes using pchip interpolation. 

The above curvatures were analysed using the TGP algorithm in R; the results obtained are 

reported as follows. 

 1st Curvature 

 

 

Fig. 96 Cycle – Crack detection, experimental data:  

curvature mode shape 1. 

Fig. 95 First result of 50 cycles; Experimental data: 

 curvature mode shape 1.  
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 2nd Curvature 

 

 

 

 3th Curvature 

 

 

Fig. 97 Cycle – Crack detection, experimental data:  

curvature mode shape 2. 

Fig. 98 First result of 50 cycles; Experimental data: 

 curvature mode shape 2. 

Fig. 100 Cycle – Crack detection, experimental data: 

curvature mode shape 3. 

Fig. 99 First result of 50 cycles; Experimental data: 

 curvature mode shape 3. 
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 4th Curvature 

 

 

Fig. 101 Cycle – Crack detection, experimental data: 

curvature mode shape 4. 

Fig. 102 First result of 50 cycles; Experimental data: 

 curvature mode shape 4. 
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6 CONCLUSION 

Going back over the work done, it has been possible to derive the modal shapes through an 

experimental analysis. The work on experimental data was accompanied by work on 

analytical data.   

Before using the Treed Gaussian Process method, the curvature method was applied to the 

FEM models to ensure that the models were created correctly. 

From the results obtained on the analytical data it is clear that the "Treed Gaussian Process" 

method is able to identify and localize very well the crack on the structure when a large 

number of data is available (401). In the case of 401 data it is like having 401 fictitious 

accelerometers on the beam, therefore, a great deal of information can be obtained; the 

functions of modal forms and curvatures are more detailed and able to detect any structural 

imperfection. 

From the results obtained on the analytical data using only 15 accelerometers, the TGP 

method provides results that are not reliable. This case was analyzed in order to compare the 

experimental results, which present only 15 accelerometers. The non-operation of the 

method is due to the lack of data, i.e. accelerometers. 

With regard to the results obtained from the experimental data, the TGP method provides 

unreliable results. This is in line with the results obtained on FEM models using 15 

accelerometers. 

In conclusion, this work shows that the TGP method works well when you have a large 

amount of data available in order to derive very detailed modal forms; otherwise the method 

returns crack positions that are not traceable to reality. To learn more about a possible crack 

in the pultruded beam, it is therefore necessary to have several accelerometers. 

 



74 | P a g .  
 

BIBLIOGRAFIA 

 

[1]  B. Goldsworthy, “Composites Visionary,” CompositesWorld, 2003. [Online]. 

Available: https://www.compositesworld.com/articles/brandt-goldsworthy-

composites-visionary. 

[2]  G. B. a. S. Russo, “Free Vibrations of Pultred FRP Elements: Mechanical 

Characterization, Analysis and Applications,” JOURNAL OF COMPOSITES FOR 

CONSTRUCTION, pp. 565-574, 2009.  

[3]  T. a. J. T.T.Nguyen, “Influence of Boundary Conditions and geometric imperfections 

on Lateral-Torsional Resistance of a Pultred FRP I-beam by FEA,” Composite 

Structures , 2013.  

[4]  D. Ewins, “Modal Testing: Theory, Practice and Application,” vol. 2, 2000.  

[5]  J. J. a. S.Pappa, “An Eigensystem Realization Algorithm for Modal Parameter 

Identification and Model Reduction,” Giudance, vol. 8, no. 5, pp. 620 - 627, 1985.  

[6]  M. B. a. M. M. S. A. K. Pandey, “Damage detection from changes in curvature mode 

shapes,” Journal of Sound and Vibration, pp. 321 - 332, 1991.  

[7]  T. a. M.RICHARDSON, “Fault detection in structures from changes in their modal 

parameters,” Proceedings of the 7th International Modal Analysis Conference, vol. 1, 

pp. 87-94, 1989.  

[8]  N. a. D.J.EWINS, “Spatial correlation of mode shape, the Co-ordinate Modal 

Assurance Criterion (COMAC),” Proceedings of the 6th International Modal Analysis 

Conference, vol. 1, pp. 690-695, 1988.  

[9]  P. a. R.D.ADAMS, “The location of defects in structures from measurements of 

natural frequncies,” Journal of Strain Analysis, vol. 14, no. 2, pp. 49-57, 1979.  

[10]  C. a. K. M.Civera, “Detenction of Cracks in Beams using Treed Gaussian Processes,” 

Structural Health Monitoring & Damage Detection, vol. 7, pp. 85-97, 2017.  



75 | P a g .  
 

[11]  C. a. C.Williams, “Gaussian Process for Machine Learning,” The MIT Press, 2006.  

[12]  C. a. M. J.J.Hensman, “Detecting mode-shape discontinuities without differentiating 

examining a Gaussian process approach,” Proceedings of 9th International Conference 

in Damage Assessment (DAMAS 2011), 2011.  

[13]  E. G. a. R. M. H.A. Chipman, “Bayesian treed models.,” Journal of the American 

Statical Association, pp. 935-948, 1998.  

[14]  R.B.Gramacy, “Bayesian Treed Gaussian Process Models,” PhD thesis, University of 

California, 2005.  

 

 



76 | P a g .  
 

ANSYS CODE 

 Intact Beam 

FINISH 

/CLEAR 

/FILNAME,TraveH 

/PREP7 

/VIEW,1,1,1,1 

 

!Definire la proprietà geometriche 

L=5     !lunghezza della trave 

H=0.19    !altezza delal trave (linea media) 

B=0.2     !larghezza della trave 

A=0.05    !distanza tra l'estremità e l'appoggio 

 

!Definire i punti della struttura. 

K,1,0,0,0 

K,2,B/2,0,0 

K,3,B/2,0,L 

K,4,0,0,L 

K,5,-B/2,0,5 

K,6,-B/2,0,0 

K,7,0,H,0 

K,8,B/2,H,0 

K,9,B/2,H,L 

K,10,0,H,L 

K,11,-B/2,H,L 

K,12,-B/2,H,0 

K,13,B/2,0,A 

K,14,0,0,A 

K,15,-B/2,0,A 

K,16,B/2,0,L-A 

K,17,0,0,L-A 
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K,18,-B/2,0,L-A 

K,19,B/2,H,A 

K,20,0,H,A 

K,21,-B/2,H,A 

K,22,B/2,H,L-A 

K,23,0,H,L-A 

K,24,-B/2,H,L-A 

 

!Definire le linee tra i punti  

LSTR,1,2      

LSTR,1,6      

LSTR,14,13      

LSTR,14,15      

LSTR,17,16 

LSTR,17,18 

LSTR,4,3 

LSTR,4,5 

LSTR,2,13 

LSTR,1,14 

LSTR,6,15 

LSTR,13,16 

LSTR,14,17 

LSTR,15,18 

LSTR,16,3 

LSTR,17,4 

LSTR,18,5 

LSTR,1,7 

LSTR,14,20 

LSTR,17,23 

LSTR,4,10 

LSTR,7,8 

LSTR,7,12 

LSTR,20,19 

LSTR,20,21 
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LSTR,23,22 

LSTR,23,24 

LSTR,10,9 

LSTR,10,11 

LSTR,8,19 

LSTR,7,20 

LSTR,12,21 

LSTR,19,22 

LSTR,20,23 

LSTR,21,24 

LSTR,22,9 

LSTR,23,10 

LSTR,24,11 

 

!Definire le aree (flangia e anima). 

AL,1,9,3,10       

AL,2,10,4,11      

AL,3,12,5,13      

AL,4,13,6,14 

AL,5,15,7,16 

AL,6,16,8,17 

AL,22,30,24,31 

AL,23,31,25,32 

AL,24,33,26,34 

AL,25,34,27,35 

AL,26,36,28,37 

AL,27,37,29,38 

AL,18,10,19,31 

AL,19,13,20,34 

AL,20,16,21,37 

 

!Definire le proprietà meccaniche del materiale. 

MP,EZ,1,8.5e9   !moduli elastici. 

MP,EX,1,8.5e9 



79 | P a g .  
 

MP,EY,1,28.5e9 

MP,GXY,1,2.5e9   !moduli di elasticità a taglio. 

MP,GXZ,1,3.5e9  

MP,GYZ,1,2.5e9 

MP,PRXZ,1,0.12   !coefficienti di Poisson. 

MP,PRYZ,1,0.25 

MP,PRXY,1,0.25 

MP,DENS,1,1734   !Densità. 

 

MP,EZ,2,8.5e9   !moduli elastici. 

MP,EX,2,8.5e9 

MP,EY,2,28.5e9 

MP,GXY,2,2.5e9   !moduli di elasticità a taglio. 

MP,GXZ,2,3.5e9  

MP,GYZ,2,2.5e9 

MP,PRXZ,2,0.12   !coefficienti di Poisson. 

MP,PRYZ,2,0.25 

MP,PRXY,2,0.25 

MP,DENS,2,1734   !Densità. 

 

!definire il tipo di elemento. 

ET,1,SHELL281 

 

!sezione della flangia 10mm. 

SECTYPE,1,SHELL281   

SECDATA,0.010,1 

!sezione dell'anima 15mm. 

SECTYPE,2,SHELL281   

SECDATA,0.015,2 

 

!Creare la mesh nelle flange. 

ASEL,S,AREA,,1 

ASEL,A,AREA,,2 

ASEL,A,AREA,,3 
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ASEL,A,AREA,,4 

ASEL,A,AREA,,5 

ASEL,A,AREA,,6 

ASEL,A,AREA,,7 

ASEL,A,AREA,,8 

ASEL,A,AREA,,9 

ASEL,A,AREA,,10 

ASEL,A,AREA,,11 

ASEL,A,AREA,,12 

AATT,1,,1,,1 

ESIZE,0.025 

AMESH,1,12       

!Creare la mesh nell'anima. 

ASEL,S,AREA,,13 

ASEL,a,AREA,,14 

ASEL,a,AREA,,15 

AATT,2,,1,,2 

ESIZE,0.025 

AMESH,13,15 

 

!Vincoli. 

LSEL,S,LINE,,3,4 

LSEL,A,LINE,,5,6 

!Definire DOF alle linee. 

DL,ALL,,UY,0 

DL,ALL,,UZ,0 

DL,ALL,,UX,0 

DL,ALL,,ROTZ,0 

 

/ESHAPE,1   

EPLOT 

 

!Soluzione 

/SOLU 
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!Analisi modale 

ANTYPE,MODAL 

MODOPT,LANB,20 

SOLVE    

 

 Damaged beam with crack of 1 mm 

FINISH 

/CLEAR 

/FILNAME,TraveH 

/PREP7 

/VIEW,1,1,1,1 

 

!Definire la Proprietà Geometriche. 

L=5      !lunghezza della trave 

H=0.19     !altezza delal trave (linea media) 

B=0.2      !larghezza della trave 

A=0.05     !distanza tra l'estremità e l'appoggio 

d=3.65      !distanza dall'origine al crack 

f=0.001     !altezza crack 

C=0.001     !larghezza crack 

 

 

!Definire i punti della struttura. 

K,1,0,0,0  

K,2,B/2,0,0 

K,3,B/2,0,L 

K,4,0,0,L 

K,5,-B/2,0,5 

K,6,-B/2,0,0 

K,7,0,H,0 

K,8,B/2,H,0 

K,9,B/2,H,L 

K,10,0,H,L 

K,11,-B/2,H,L 
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K,12,-B/2,H,0 

K,13,B/2,0,A 

K,14,0,0,A 

K,15,-B/2,0,A 

K,16,B/2,0,L-A 

K,17,0,0,L-A 

K,18,-B/2,0,L-A 

K,19,B/2,H,A 

K,20,0,H,A 

K,21,-B/2,H,A 

K,22,B/2,H,L-A 

K,23,0,H,L-A 

K,24,-B/2,H,L-A 

!Damage points 

K,25,B/2,0,d-c/2 

K,26,0,0,d-c/2 

K,27,-B/2,0,d-c/2 

K,28,B/2,0,d+c/2 

K,29,0,0,d+c/2 

K,30,-B/2,0,d+c/2 

K,31,0,H,d 

K,32,0,f,d 

K,33,B/2,H,d 

K,34,-B/2,H,d 

 

!Definire le linee tra i punti  

LSTR,1,2     

LSTR,1,6      

LSTR,14,13      

LSTR,14,15 

LSTR,26,25 

LSTR,26,27 

LSTR,29,28 

LSTR,29,30 
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LSTR,17,16 

LSTR,17,18  

LSTR,4,3 

LSTR,4,5  

LSTR,2,13 

LSTR,1,14 

LSTR,6,15 

LSTR,13,25 

LSTR,14,26 

LSTR,15,27 

LSTR,25,28 

LSTR,26,29 

LSTR,27,30 

LSTR,28,16 

LSTR,29,17 

LSTR,30,18  

LSTR,16,3 

LSTR,17,4 

LSTR,18,5 

LSTR,1,7 

LSTR,14,20 

LSTR,32,31 

LSTR,26,32 

LSTR,29,32  

LSTR,17,23 

LSTR,4,10 

LSTR,7,8 

LSTR,7,12 

LSTR,20,19 

LSTR,20,21  

LSTR,31,33 

LSTR,31,34 

LSTR,23,22 

LSTR,23,24 
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LSTR,10,9 

LSTR,10,11 

LSTR,8,19 

LSTR,7,20 

LSTR,12,21  

LSTR,19,33 

LSTR,20,31 

LSTR,21,34 

LSTR,33,22 

LSTR,31,23 

LSTR,34,24 

LSTR,22,9 

LSTR,23,10 

LSTR,24,11 

 

!Definire le aree (flangia e anima). 

AL,1,13,3,14 

AL,2,14,4,15 

AL,3,16,5,17 

AL,4,17,6,18 

AL,5,19,7,20 

AL,6,20,8,21 

AL,7,22,9,23 

AL,8,23,10,24 

AL,9,25,11,26 

AL,10,26,12,27  

AL,35,45,37,46 

AL,36,46,38,47 

AL,37,48,39,49 

AL,38,49,40,50 

AL,39,51,41,52 

AL,40,52,42,53 

AL,41,54,43,55 

AL,42,55,44,56 
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AL,28,46,29,14 

AL,29,49,30,31,17 

AL,30,52,33,23,32 

AL,33,55,34,26 

 

!Definire le proprietà meccaniche del materiale. 

MP,EZ,1,8.5e9   !moduli elastici. 

MP,EX,1,8.5e9 

MP,EY,1,28.5e9 

MP,GXY,1,2.5e9   !moduli di elasticità a taglio. 

MP,GXZ,1,3.5e9  

MP,GYZ,1,2.5e9 

MP,PRXZ,1,0.12   !coefficienti di Poisson. 

MP,PRYZ,1,0.25 

MP,PRXY,1,0.25 

MP,DENS,1,1734   !Densità. 

 

MP,EZ,2,8.5e9   !moduli elastici. 

MP,EX,2,8.5e9 

MP,EY,2,28.5e9 

MP,GXY,2,2.5e9   !moduli di elasticità a taglio. 

MP,GXZ,2,3.5e9  

MP,GYZ,2,2.5e9 

MP,PRXZ,2,0.12   !coefficienti di Poisson. 

MP,PRYZ,2,0.25 

MP,PRXY,2,0.25 

MP,DENS,2,1734   !Densità. 

 

!definire il tipo di elemento. 

ET,1,SHELL281 

 

!sezione della flangia 10mm. 

SECTYPE,1,SHELL281   

SECDATA,0.010,1 
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!sezione dell'anima 15mm. 

SECTYPE,2,SHELL281   

SECDATA,0.015,2 

 

!Creare la mesh nelle flange. 

ASEL,S,AREA,,1 

ASEL,A,AREA,,2 

ASEL,A,AREA,,3 

ASEL,A,AREA,,4 

ASEL,A,AREA,,5 

ASEL,A,AREA,,6 

ASEL,A,AREA,,7 

ASEL,A,AREA,,8 

ASEL,A,AREA,,9 

ASEL,A,AREA,,10 

ASEL,A,AREA,,11 

ASEL,A,AREA,,12 

ASEL,A,AREA,,13 

ASEL,A,AREA,,14 

ASEL,A,AREA,,15 

ASEL,A,AREA,,16 

ASEL,A,AREA,,17 

ASEL,A,AREA,,18 

AATT,1,,1,,1 

ESIZE,0.025 

AMESH,1,18     

!Creare la mesh nell'anima. 

ASEL,S,AREA,,19 

ASEL,A,AREA,,20 

ASEL,A,AREA,,21 

ASEL,A,AREA,,22 

AATT,2,,1,,2 

ESIZE,0.025 

AMESH,19,22 
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!Vincoli. 

LSEL,S,LINE,,3,4 

LSEL,A,LINE,,9,10 

!Definire DOF alle linee. 

DL,ALL,,UY,0 

DL,ALL,,UZ,0 

DL,ALL,,UX,0 

DL,ALL,,ROTZ,0 

 

/ESHAPE,1   

EPLOT 

 

!Soluzione 

/SOLU 

!Analisi modale 

ANTYPE,MODAL 

MODOPT,LANB,20 

SOLVE    
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