
POLITECNICO DI TORINO

Master degree course in Mechatronic Engineering

Final project work

Performance analysis of an embedded system

Supervisor:
Prof. Massimo Violante

Candidate:
Luigi Vicari

July 2018

To my family,
without them none of this
would have been possible

Abstract

The main purpose of this thesis is to perform the analysis of the perfor-
mance of an embedded system. In the first part are discussed some general
concepts regarding the debugging and tracing operations and why these are
fundamental in real-time applications, followed by a brief overview of the
hardware software tools that have been used for this thesis. In the second
part will be presented how it is possible to perform basic debugging and
tracing with the Lauterbach mTrace in Trace32 environment.
The major purpose of this thesis will be discussed on the third part, where
have been developed two services that are able to set-up a complete debug-
ging and tracing environment for a bare metal application and a mClinux
application running on the TWR-K70F120M development board. Further-
more, in the last part of this thesis will be presented how these services works
on a signal processing application, where different analysis will be performed.

i

Contents

Nomenclature iv

1 General concepts 1
1.1 Debugging and tracing . 1
1.2 Real time applications . 2
1.3 ISO 26262 . 3

1.3.1 ASIL determination . 4
1.3.2 Item development . 5

2 Hardware and software tools 7
2.1 Lauterbach mTrace . 7

2.1.1 mTrace features and characteristics 8
2.1.2 Cortex-M CoreSight components 8

2.2 TWR-K70F120M development board 12
2.3 Kinetis Design Studio . 14

2.3.1 Create and deploy bare metal project to target 14
2.4 Trace32 . 15
2.5 mClinux . 16

2.5.1 mClinux application . 16

3 Trace32 debug and trace 18
3.1 Trace32 commands . 18
3.2 Source code . 20
3.3 Application debug . 31

3.3.1 Display source code . 31
3.3.2 Data, registers and peripherals 33
3.3.3 Breakpoints . 36

3.4 Application trace . 38

ii

CONTENTS iii

3.4.1 Manage CoreSight components 38
3.4.2 Statistics on trace data 41
3.4.3 Operating system aware tracing 47

4 Trace32 set-up script for bare metal application 49
4.1 Script requirements and parameters 49
4.2 Script . 50

5 Trace32 set-up script for mClinux applications 55
5.1 Script requirements and parameters 55
5.2 Script . 56

6 Performance analysis of FIR and FFT 62
6.1 Application description . 62

6.1.1 Input signal . 62
6.1.2 FIR filter and Matlab filter designer 63
6.1.3 Fast Fourier Transform 67

6.2 Code generation . 67
6.2.1 FIR filter code . 67
6.2.2 FFT code and Matlab coder 70
6.2.3 Application code . 76

6.3 Validation . 79
6.3.1 FIR and FFT results 79

6.4 Performance analysis . 84
6.4.1 FIR filter analysis . 84
6.4.2 FFT analysis . 89

7 Conclusions 93

References 94

Nomenclature

AHB Advanced High-performance Bus

CPU Central Processing Unit

DDR Double Data Rate

DWT Data Watchpoint and Trace

ECU Electronic Control Unit

ETB Embedded Trace Buffer

ETM Embedded Trace Macrocell

FFT Fast Fourier Transform

FIR Finite Impulse Response

GCC GNU Compiler Collection

GDB GNU Debugger

GUI Graphical Unit Interface

IEEE Institute of Electrical and Electronics Engineers

ISR Interrupt Service Routine

ITM Instrumentation Trace Macrocell

JTAG Joint Test Action Group

KDS Kinetis Design Studio

iv

CONTENTS v

MAPBGA Molded Array Process Ball Grid Array

MCU MicroController Unit

MMU Memory Management Unit

MTB Micro Trace Buffer

OS Operating System

PC Program Counter

PC Program Counter

R/W Read/Write

RTT Real-Time Trace

SDRAM Synchronous Dynamic Random Access Memory

SLC Single Level Cell

SWD Serial Wire Debug

SWO Serial Wire Output

SWV Serial Wire Viewer

TPIU Trace Port Interface Unit

1

General concepts

In this chapter are presented basic concepts of software debugging and trac-
ing, and a general overview of real-time applications. After standard ISO
26262 will be introduced. This standard is the main motivation for the de-
velopment of this thesis because, since this standard prescribes to perform
different tests while facing with the design of an automotive electronic com-
ponent that as an impact for the safety of the driver an people around the
driver, e.g., an automatic breaking system. In particular, ISO 26262 pre-
scribes the usage of Resource usage test when talking about software unit
testing. From this kind of requirements it is needed to make use of the
technology that will be described in the following chapters.

1.1 Debugging and tracing

Debugging and tracing software applications is one of the final steps in a
development project, and if the code reaches an high level of complexity,
debugging can have an huge impact on the time to market.
There are two main categories of tools that allow to debug the application

• Hardware based debuggers

• Software based debuggers

Hardware based debuggers: makes use of dedicated hardware to access
the target memory and processor. Since the debugging operation is not han-
dled by software, it is possible to debug the application even at the bootstrap

1

1. GENERAL CONCEPTS 2

or when the system crashes (post-mortem debugging). Breakpoints are han-
dled by hardware, i.e., when a breakpoint is reached the whole system stops
the execution and neither the kernel, neither other applications runs on the
target. The debugger is able to access physically the memory over the com-
plete address range.
This presents some disadvantages like the lose of synchronization and com-
munication with the peripherals.

Software based debuggers: makes use of a standard interface to the
target such as Ethernet or a serial line. In this case there is not the possibility
to perform bootstrap debugging, neither post-mortem debugging.

1.2 Real time applications

A large number of applications, from biomedical to automotive, have real-
time constraints.
Let’s take as example the ECU (Electronic Control Unit) responsible for the
engine management of a vehicle. Based on information acquired through
sensors such as airflow meter, throttle sensor and so on, it is responsible
to calculate different engine parameters (e.g., mass of fuel to be injected,
injection time) at each engine cycle. Such a process is classified as hard real-
time, since it requires that data must be computed before a precise deadline.
As it is possible to deduce from this example, real-time systems must satisfy
the following requirement: respond exactly to external events within a finite
time, called deadline.
Real-time applications are classified in:

• Hard real time: missing a deadline of such applications can have
catastrophic effects on the controlled environment.

• Firm real time: missing a deadline makes the result useless, but it
does not cause serious damages to the controlled environment.

• Soft real time: missing a deadline deteriorates the performance of
the system, but does not cause problems to it.

Real-times systems can be in some cases classified as safety critical, if
they are involved in safety relevant applications, e.g. autonomous driving

1. GENERAL CONCEPTS 3

applications, or mission critical, if the fault of the system does not lead to
loss of human lives, but a huge waste of money, e.g. systems controlling the
engine of a satellite.

1.3 ISO 26262

ISO 26262 is an international standard that addresses specifically the auto-
motive industry. It must be strictly respected when addressing the design
of electrical and electronic components that are safety-critical. In particu-
lar, ISO 26262 provides requirements that must be respected both for the
hardware and software design in the whole development process. ISO 26262
focuses on the functional safety concept, i.e., assure the correct functional-
ity of the item not only when systems operates correctly, but even managing
situation where hardware failures or operator errors occurs. When addressing
hazard analysis and risk assessment of electronic items, the standard cares
only to physical injuries of people, i.e., driver and passenger of the car, and
people that surrounds the vehicle, e.g., pedestrian, cyclists, and so on. The
development process of the item can be seen as a V-shaped model, starting
from the top level (system design), going down to the software implementa-
tion, and coming back to the top, through a chain of testing operations.

Figure 1.1: V-shaped model

1. GENERAL CONCEPTS 4

1.3.1 ASIL determination

One of the first concept of ISO 26262 is to have different parameters for the
hardware and software design of the item depending on the safety level that
it is assigned. For such a reason, ISO 26262 establishes four different safety
critical ASIL (Automotive Safety Integrity Level), from ASIL D (the most
severe) to ASIL A (the less severe). To these is added the QM for which the
item is classified as non safety-relevant.
To assign the ASIL to an item it is performed the Hazard analysis and risk
assessment. This consist on the identification of the all possible relevant
operational situation in which the vehicle can be involved, and evaluating
in these situation the impact of possible hazards. For each combination of
operational situation and hazard, the following characteristic are evaluated,
based on the possible injury of people (harm):

• Controllability: possibility to avoid the harm by timely reaction of the
user

• Exposure: probability to be in a certain operational situation

• Severity: measure of the harm that can be caused to people

By the combination of this elements, it is possible to assign the ASIL to the
item.

Figure 1.2: ASIL determination

1. GENERAL CONCEPTS 5

1.3.2 Item development

During the item development, the standard prescribes which kind of test
must be performed for each ASIL level.
Against hardware faults the following software checks are prescribed from
the standard.

Figure 1.3: Hardware fault tests

For unit testing the following tests are imposed by the standard.

Figure 1.4: Unit tests

1. GENERAL CONCEPTS 6

It is possible to notice that for the unit testing it is recommended to perform
the resource usage test for ASILs A, B and C, while it is mandatory for ASIL
D applications. Resource usage test must be performed to check if the unit
has requirements, in terms of computing capability, that is compatible with
the hardware platform used. With this test must be checked as the usage
of the memory and the execution time of the software. This type of test
must be performed with powerful tools that are able to accurate measure
execution times, and track the evolution of the software in time. This kind
of operation is exactly what it is possible to do with the technology that
is used for this thesis, and practical examples of measurement of execution
times of functions will be discussed in the following chapters.

2

Hardware and software tools

This section presents an overview of the different technologies used to de-
velop this thesis.
Hardware devices are the Lauterbach mTrace, a powerful device used for trac-
ing the application, and the TWR K70F120M development board equipping
a Cortex M4 mC.
The main software devices are: Trace32, as debug and tracing environment,
and Kinetis Design Studio to develop bare metal applications.

2.1 Lauterbach mTrace

This device is a lower cost solution developed by Lauterbach that specifically
targets the Cortex-M family.

Figure 2.1: Lauterbach mTrace

7

2. HARDWARE AND SOFTWARE TOOLS 8

2.1.1 mTrace features and characteristics

Lauterbach mTrace is equipped with:

• USB 3.0 interface to the host computer

• 256MB trace memory

• 10, 20 or 34 pin half-size connector for target hardware

Furthermore, this device supports standard JTAG, SWD (Serial Wire De-
bug) and cJTAG (IEEE 1149.7 [1]), and it works in the voltage range 0.3V
to 3.3V, but it is also tolerant to 5V inputs.
It provides different features for debugging and tracing the software running
on the target hardware. It can be employed for C/C++ debugging, supports
simple and complex breakpoints and memory read/write operations during
the program execution. For trace operations, the device interacts with Core-
Sight components:

• ETM and ITM data over 4-bit TPIU in Continuous mode

• ITM over SWO (Serial Wire Output)

Lauterbach mTrace supports ETB (Embedded Trace Buffer) and MTB (Mi-
cro Trace Buffer). Combining ITM and ETM data allows the integration
between R/W accesses and instruction flow informations.
It is possible to perform OS-aware tracing, code coverage analysis and energy
measurements (using Trace32 Analog Probe).

2.1.2 Cortex-M CoreSight components

Here is presented an overview of the CoreSight components that implements
trace support for Cortex-M chips. The architecture and the interaction with
the Lauterbach mTrace device is reported in the figure below.
It is possible to notice from the figure that ITM is a regular memory-mapped
peripheral for the CPU that is accessible through the AHB (Advanced High-
performance Bus).
DWT (Data Watchpoint and Trace) unit and SWV are features that are
implemented in Cortex-M3, Cortex-M4 and Cortex-M7.
For in depth informations about CoreSight components it is possible to con-
sult the CoreSight reference manual [2].

2. HARDWARE AND SOFTWARE TOOLS 9

Figure 2.2: CoreSight Components

Embedded Trace Macrocell: ETM is an optional, simple component
that can be connected to Cortex-M3, Cortex-M4 and Cortex-M7. It can
only generate basic informations about the execution flow. In particular,
Cortex-M ETM does not provide any support for data tracing and does not
contain comparators to filter informations. Furthermore, it does not support
cycle accurate tracing or ContextID tracing.

Data Watchpoint and Trace: DWT is an optional, more complex com-
ponent that can be connected to Cortex-M3, Cortex-M4 and Cortex-M7.
This component is able to monitor data accesses and the PC (Progam Counter)
of the CPU. It contains a certain amount of comparators, that can be used
to trigger different actions when a match occurs, it can send periodic infor-
mations about the PC, the ISR (Interrupt Service Routine) and data access.
Furthermore, it is able to halt the CPU, trigger the ETM and count specific
types of CPU cycles.

Instrumentation Trace Macrocell ITM is a component used by the
DWT to send data to an external debug or trace tool. The ITM is seen by
the CPU as a memory-mapped peripheral that contains a certain amount of

2. HARDWARE AND SOFTWARE TOOLS 10

addresses. Through write operations in these addresses, the software is able
to send data to the external debug and trace tool. To use ITM it is needed
to modify the source code of the application.
ITM has 32 channels organized as shown in the following figure.

Figure 2.3: ITM Channels

Trace Port Interface Unit: TPIU is the item responsible to emit data
collected from both ITM and ETM through pins of the chip. It is needed to
select in which mode the TPIU must work between:

• Trace Port mode: TPIU uses up to 4 data pins and a clock to send
synchronously data. ETM and ITM data are merged by means of the
Formatter protocol and exported as a single stream of bytes.

• SWV mode: TPIU uses only one pin to export data through a single
serial signal. The transmission is asynchronous. In this operational
mode, only ITM data can be sent.

For this thesis, in order to have a more performing tracing, the first option
for the TPIU has been used.

Embedded Trace Buffer: ETB is used to route exported data coming
from ITM and ETM directly to the ETB instead of pins off chip. By means
of debug connection, Trace32 is able to read ETB content.

2. HARDWARE AND SOFTWARE TOOLS 11

Figure 2.4: 20 pin connector

Figure 2.5: 34 pin connector

Figure 2.6: 10 pin connector

2. HARDWARE AND SOFTWARE TOOLS 12

Figure 2.7: 20 pin connector (SWO configuration)

Connectors: In the previous figures are reported connector types and
configurations that are supported by Lauterbach mTrace.

2.2 TWR-K70F120M development board

TWR-K70F120M is a development board of NXP equipping a 32 bit ARM
Cortex-M4 MCU.

Figure 2.8: TWR-K70F120M

2. HARDWARE AND SOFTWARE TOOLS 13

The board presents the following features:

• MK70FN1M0VMJ12 core: 256 MAPBGA (Molded Array Process Ball
Grid Array) at 120MHz

• On-board JTAG debug circuit (OSJTAG) with virtual serial port

• 1GB DDR2 SDRAM

• 2GB SLC NAND flash memory

• MMA8451Q 3-axis accelerometer

• 4 LEDs

• 4 Capacitive toch pads

• 2 Push button switches

• Potentiometer

• Battery holder for 20mm lithium battery

• Micro-SD card slot

The board is able to support mClinux kernel to build a Linux-based applica-
tion and is equipped with a 20 pin JTAG interface that is used to connect
the target hardware to the Lauterbach mTrace.
This is the main feature that led to the decision of using this development
board.

Important note: By default, TWR-K70F120M is set to use the JTAG
in SWV mode, but for this thesis the Trace Port mode is used. Therefore
the following hardware modifications has to be done to the board:

• Remove R138

• Remove R11

• Populate R137 (0Ω)

If this hardware modifications are not performed, the scripts developed in
this thesis will not work, because by default TRACE CLKOUT signal is
not connected to the debug connector (as it is reported in TWR-K70F120M
User’s manual [3]).

2. HARDWARE AND SOFTWARE TOOLS 14

2.3 Kinetis Design Studio

KDS is an integrated development environment for Kinetis MCUs. It is based
on open-source software: Eclipse, GCC (GNU Compiler Collection), GDB
(GNU Debugger) and others.

2.3.1 Create and deploy bare metal project to target

A bare metal project is an application that runs on the target without the
support of an OS. This kind of projects allows to not go through different
layers of software.

Requirements: To be able to successfully deploy the application to TWR-
K70F120M hardware, the latest version of PEMicro driver must be installed
into the host.

Create the project: To create the project browse the File menu, and
from New, select Processor Expert Project. New Kinetis Project window will
appear. Choose a project name and select Next. Now from Processor select
Kinetis K, MK70, MK70F(120MHz,150MHz), and finally MK70FN1M0xxx12.
Select Finish, and KDS will initialize the project.
In the Sources folder it is possible to find main.c where it is possible to write
the user application.

Deploy the application: To deploy the application to TWR-K70F120M,
it is possible to right-click the name of the project, and select Debug As and
Debug Configurations...
The Debug Configuration window will appear. Expand GDB PEMicro In-
terface Debugging and select <project name> Debug PNE.
By selecting Debug, KDS will deploy the application to the hardware, and
at the end of the process it will open the new perspective from which it is
possible to perform a software debugging of the application.

Micrium mC/OS: Micrium mC/OS-III operating system for TWR-K70F120M
available in Micrium website [4] does not support KDS environment.

2. HARDWARE AND SOFTWARE TOOLS 15

2.4 Trace32

Trace32 is the debugging environment developed by Lauterbach used for the
development of this thesis. It provides all the standard debug features and
gives access to advanced on-chip debug features. [5]

Debug features:

• JTAG, cJTAG, SWD debug interfaces

• Run control

• Flash programming

• Multi-core debugging

• OS support with task analysis

• HLL debugging

Trace features:

• Serial and parallel off-chip trace

• Non-intrusive flow trace

• Time-correlated multi-core trace

• Run-time analysis and statistics

• Long-time trace

• Code coverage

The system includes a logic analyser module that provides additional fea-
tures as the protocol analyzer (CAN, I2C, etc..) or the energy profiling.

Important note: Lauterbach mTrace must be connected to the host before
launching the application software. Alternatively it is possible to run the
application in simulation mode. To do this, it is necessary to modify the
content of config.t32 in T32 folder as follows:

PBI=SIM

2. HARDWARE AND SOFTWARE TOOLS 16

2.5 mClinux

mClinux is an OS that includes 2.0, 2.4 and 2.6 Linux kernel releases. This re-
lease is intended for micro-controllers without MMUs (Memory Management
Unit) [6].

2.5.1 mClinux application

From emcraft website [7] it is possible to download all the material required
to build a mClinux application for the TWR-K70F120M development board.
Here it is presented how to create and deploy a custom mClinux application
[8].

GNU cross-build tools: After having unpacked the archive containing
the software distribution, it is needed to install the GNU cross-build-tools.
It is recommended to install these development tools into the tools/ folder
to avoid manual configuration of the PATH.

Build the application: To build a custom application it is possible to
modify the existing developer project.
Firstable it is needed to perform the activation by going to the top of the
Linux Cortex-M folder and running the following command

. ACTIVATE. sh

It is recommended to work on a copy of the developer project. To do this,
move to the projects/developer/ folder and then clone the project

make c lone new=my developer

Now in the projects/ folder it is possible to find the project my developer,
where it is possible to write the custom application.
To perform the complete trace of the application, it is needed to build both
the kernel and the application with debug symbols. It is possible to kernel
symbols through the configuration menu of the kernel

make kmenuconfig

From Kernel Hacking it is possible to enable the setting Compile the kernel
with debug info.
To compile the application with debug symbols, it is needed to add the -g flag

2. HARDWARE AND SOFTWARE TOOLS 17

both to CFLAGS and LDFLAGS in the makefile located in my developer/app/

folder. Now it is possible to compile the whole project

make

Deploy the application: It is now possible to deploy the application to
the board through the available virtual serial port by means of the kermit pro-
tocol. With the following script it is possible to load the my developer.uImage
into the target RAM.

#!/ usr / l o c a l / bin / kermit

s e t port /dev/ttyACM0
s e t speed 115200
s e t c a r r i e r−watch o f f
s e t f low−c o n t r o l none
s e t p r e f i x i n g a l l

echo { l oad ing uImage}
PAUSE 1

OUTPUT loadb ${ loadaddr} 115200\{13}
send my developr . uImage
INPUT 180 {\{13}\{10}STM32F429−DISCO> }

IF FAIL STOP 1 INPUT timeout

echo { running ke rne l }
PAUSE 1
OUTPUT run addip ; bootm\{13}

This script writes to the loadaddr of the device ttyACM0 the my developer.u

Image binary file. After the file transfer, the script sends the uboot command
bootm to start the kernel.

3

Trace32 debug and trace

In this chapter is presented how it is possible to debug an application with
Trace32, without taking care of how to set-up the debug environment. [9]
Trace32 is a powerful environment that gives the possibility to debug the
application running on a target by means of specific commands and/or by
means of a GUI (Graphical User Interface). Furthermore, it is possible to
completely automate the procedure, by creating a script containing multiple
Trace32 commands.
Trace32 is equipped with a wide and detailed documentation that is possible
to browse every time just by pressing F1 in Trace32 environment.

3.1 Trace32 commands

As shown in the figure, Trace32 environment is equipped with a command
line where it is possible to insert commands to debug on-the-fly the user ap-
plication. Below the command line it is possible to find the so called soft-keys
that helps to enter a specific command step by step. Further informations,
i.e. the target status and the debugging mode, are shown in the right part.

Figure 3.1: Trace32 Command Line

18

3. TRACE32 DEBUG AND TRACE 19

Figure 3.2: Trace32 command structure

A Trace32 command has a quite complex structure, in particular it is com-
posed by the following elements:

• Command group

• Subcommand

• Parameter(s)

• Option(s)

The structure of a generic Trace32 command is shown in the picture.

Trace32 is not case-sensitive, but capital letters that are displayed in the soft-
keys are meaningful because in Trace32 there is the possibility to abbreviate
the commands by means of the relevant letters, that are always written in
upper case. For example, the following commands are equivalent

Data . L i s t d . l
Reg i s t e r . view r
SYStem .Up sys

By writing the command adding a blank and pressing F1, the documentation
of the command will open.

Scripts: It is possible to assembly multiple Trace32 commands into a single
.cmm file, executing the whole set of instructions by means of the command

DO <scr ipt name> [p a r a m e t e r l i s t]

3. TRACE32 DEBUG AND TRACE 20

Figure 3.3: Single step script

If the script is not on the working directory, the path to the script (absolute
or relative) must be inserted instead od the script name. To check the current
working directory it is possible to run the command

pwd

It is possible to execute the script step by step by means of the commands

pstep ; Enable the s c r i p t s i n g l e
; s t ep execut ion mode

DO <scr ipt name> ; Load the s c r i p t that has
; to be executed

p l i s t ; Show the s c r i p t window

3.2 Source code

For the development of this section, three different applications have been
used. The first one is a simple application that performs an infinite loop.
Each step of the loop, the application waits for a certain amount of time,
and immediately after waits for the double of the same time. After this, if a
char variable named debug char is stored the value z, the content is set to a,
otherwise, the ASCII value is incremented. After, the variable runtime start
is set to 1, and an array of size ARRAY SIZE is created. Later this array is
duplicated, and two different sorting algorithms are performed (selection sort
algorithm, with complexity O(n2), and the quick sort algorithm, with worst
case complexity O(n2), but average complexity O(n log2 n)). Here follows
the application code.

3. TRACE32 DEBUG AND TRACE 21

/∗
∗ Copyright (c) 2015 , F r e e s c a l e Semiconductor , Inc .
∗ Al l r i g h t s r e s e rved .
∗
∗ R e d i s t r i b u t i o n and use in source and binary forms ,
∗ with or without mod i f i ca t i on , are permitted provided
∗ that the f o l l o w i n g c o n d i t i o n s are met :
∗
∗ o R e d i s t r i b u t i o n s o f source code must r e t a i n the
∗ above copyr ight not i ce , t h i s l i s t o f c o n d i t i o n s
∗ and the f o l l o w i n g d i s c l a i m e r .
∗
∗ o R e d i s t r i b u t i o n s in binary form must reproduce
∗ the above copyr ight not i ce , t h i s l i s t o f c o n d i t i o n s
∗ and the f o l l o w i n g d i s c l a i m e r in the documentation
∗ and/ or other ma t e r i a l s provided with the
∗ d i s t r i b u t i o n .
∗
∗ o Nei ther the name o f F r e e s c a l e Semiconductor , Inc .
∗ nor the names o f i t s c o n t r i b u t o r s may be used to
∗ endorse or promote products der ived from t h i s
∗ so f tware without s p e c i f i c p r i o r wr i t t en permis s ion .
∗
∗ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
∗ AND CONTRIBUTORS ”AS IS ” AND ANY EXPRESS OR IMPLIED
∗ WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
∗ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
∗ FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
∗ SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
∗ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
∗ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
∗ BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
∗ OR SERVICES ; LOSS OF USE, DATA, OR PROFITS; OR
∗ BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
∗ ANY THEORY OF LIABILITY , WHETHER IN CONTRACT,
∗ STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR
∗ OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
∗ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

3. TRACE32 DEBUG AND TRACE 22

∗ DAMAGE.
∗/

#inc lude ”MK70F12 . h”
#inc lude <math . h>

#d e f i n e WAIT CONSTANT 10000
#d e f i n e ARRAY SIZE 2000
#d e f i n e MAXNUMBER 10000
#d e f i n e PI 3.141592653589793

void c r e a t e a r r a y (i n t array [] , i n t dim , i n t num) ;
void s e l e c t i o n s o r t (i n t array [] , i n t dim) ;
void qu ickSort (i n t array [] , i n t begin , i n t end) ;
void p l o t s (f l o a t ∗ s ine , i n t ∗ square) ;

i n t main (void)
{

i n t debug int = 10 ;
f l o a t debug f l oa t = 1 . 0 ;
char debug char = ’ a ’ ;
i n t i ;
i n t array [ARRAY SIZE] ;
i n t array copy [ARRAY SIZE] ;
f l o a t s ine wave ;
i n t square wave ;
i n t run t ime s t a r t ;
i n t runt ime stop ;

//INFINITE LOOP
f o r (; ;) {

//Wait
f o r (i = 0 ; i < WAIT CONSTANT; i ++){

; //NOP
}

3. TRACE32 DEBUG AND TRACE 23

//Wait the double o f time
f o r (i = 0 ; i < 2∗WAIT CONSTANT; i ++){

; //NOP
}

i f (debug char == ’ z ’) {
debug char = ’ a ’ ;

}
e l s e {

debug char++;
}

run t ime s t a r t = 1 ;
c r e a t e a r r a y (array , ARRAY SIZE,

(i n t) debug char) ;

f o r (i = 0 ; i < ARRAY SIZE ; i ++){
array copy [i] = array [i] ;

}

s e l e c t i o n s o r t (array , ARRAY SIZE) ;
qu ickSort (array copy , 0 , ARRAY SIZE−1);
runt ime stop = 1 ;

p l o t s (&sine wave , &square wave) ;

}

r e turn 0 ;
}

void c r e a t e a r r a y (i n t array [] , i n t dim , i n t num){
i n t i ;
i n t tmp ;

f o r (i = 0 ; i < ARRAY SIZE ; i ++){
array [i] = (i ∗num) % MAXNUMBER;

}

3. TRACE32 DEBUG AND TRACE 24

num = num+1;
whi l e (num < ARRAY SIZE){

tmp = array [num] ;
array [num] = array [num−1] ;
array [num−1] = tmp ;
num += 10 ;

}

r e turn ;
}

void s e l e c t i o n s o r t (i n t array [] , i n t dim){
i n t tmp ;
i n t i ;
i n t j ;
i n t ind min ;
i n t min ;

f o r (i = 0 ; i < dim ; i ++){
min = array [i] ;
ind min = i ;

f o r (j = i ; j < ARRAY SIZE ; j++){
i f (array [j] < min){

min = array [j] ;
ind min = j ;

}
}

tmp = array [i] ;
array [i] = array [ind min] ;
array [ind min] = tmp ;

}

r e turn ;
}

3. TRACE32 DEBUG AND TRACE 25

void qu ickSort (i n t array [] , i n t begin , i n t end){
i n t pivot , l , r ;
i n t tmp ;

i f (end > begin) {
pivot = array [begin] ;
l = begin + 1 ;
r = end+1;
whi l e (l < r)

i f (array [l] < pivot)
l ++;

e l s e {
r−−;
tmp = array [l] ;
array [l] = array [r] ;
array [r] = tmp ;

}
l−−;
tmp = array [begin] ;
array [begin] = array [l] ;
array [l] = tmp ;
qu ickSort (array , begin , l) ;
qu ickSort (array , r , end) ;

}

r e turn ;
}

void p l o t s (f l o a t ∗ s ine , i n t ∗ square){
f l o a t t ;

∗ square = 0 ;
f o r (t = 0 ; t < 10∗PI ; t += 0.001){

∗ s i n e = s i n (t) ;
i f (∗ s i n e >= 0){

∗ square = 1 ;
}
e l s e {

3. TRACE32 DEBUG AND TRACE 26

∗ square = 0 ;
}

}
∗ square = 0 ;

re turn ;
}

The second application has been developed to give a quick example on the
usage of ITM as debugging technique, and here follows the application source
code. Even in this case an infinite loop is performed, where in each step, the
value of three different counters i, j and k is incremented. At each step
the code is instrumented to send in the channels 0, 1 and 2 the values of
the counters, furthermore in channel 3 value 1 is set when the i counter is
re-setted, while, the value 2 is set when the i counter reaches the value 10001.

/∗
∗ Copyright (c) 2015 , F r e e s c a l e Semiconductor , Inc .
∗ Al l r i g h t s r e s e rved .
∗
∗ R e d i s t r i b u t i o n and use in source and binary forms ,
∗ with or without mod i f i ca t i on , are permitted provided
∗ that the f o l l o w i n g c o n d i t i o n s are met :
∗
∗ o R e d i s t r i b u t i o n s o f source code must r e t a i n the
∗ above copyr ight not i ce , t h i s l i s t o f c o n d i t i o n s
∗ and the f o l l o w i n g d i s c l a i m e r .
∗
∗ o R e d i s t r i b u t i o n s in binary form must reproduce
∗ the above copyr ight not i ce , t h i s l i s t o f c o n d i t i o n s
∗ and the f o l l o w i n g d i s c l a i m e r in the documentation
∗ and/ or other ma t e r i a l s provided with the
∗ d i s t r i b u t i o n .
∗
∗ o Nei ther the name o f F r e e s c a l e Semiconductor , Inc .
∗ nor the names o f i t s c o n t r i b u t o r s may be used to
∗ endorse or promote products der ived from t h i s
∗ so f tware without s p e c i f i c p r i o r wr i t t en permis s ion .
∗

3. TRACE32 DEBUG AND TRACE 27

∗ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
∗ AND CONTRIBUTORS ”AS IS ” AND ANY EXPRESS OR IMPLIED
∗ WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
∗ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
∗ FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
∗ SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
∗ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
∗ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
∗ BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
∗ OR SERVICES ; LOSS OF USE, DATA, OR PROFITS; OR
∗ BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
∗ ANY THEORY OF LIABILITY , WHETHER IN CONTRACT,
∗ STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR
∗ OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
∗ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
∗ DAMAGE.
∗/

#inc lude ”MK70F12 . h”

s t a t i c v o l a t i l e unsigned i n t ∗ITM BASE CH = (v o l a t i l e
unsigned i n t ∗) 0xE0000000 ;

#d e f i n e ITM TRACE D8(channe l , da ta) {\
v o l a t i l e unsigned i n t ∗ ch =ITM BASE CH+

(channe l) ; \
whi le (∗ ch == 0) ; \
(∗ ((v o l a t i l e unsigned char ∗) (ch))) =

(data) ; \
}

#d e f i n e ITM TRACE D16(channe l , da ta) {\
v o l a t i l e unsigned i n t ∗ ch =ITM BASE CH+

(channe l) ; \
whi le (∗ ch == 0) ; \
(∗ ((v o l a t i l e unsigned shor t ∗) (ch))) =

(data) ; \
}

3. TRACE32 DEBUG AND TRACE 28

#d e f i n e ITM TRACE D32(channe l , da ta) {\
v o l a t i l e unsigned i n t ∗ ch =ITM BASE CH+

(channe l) ; \
whi le (∗ ch == 0) ; \
(∗ ((v o l a t i l e unsigned i n t ∗) (ch)))=

(data) ; \
}

i n t main (void)
{

shor t i = 0 ;
i n t j = 0 ;
char k = 0 ;

/∗ Write your code here ∗/

/∗ This f o r loop should be rep laced .
By d e f a u l t t h i s loop a l l ows a s i n g l e s tepp ing .∗/

f o r (; ;) {
ITM TRACE D16(0 , i) ;
ITM TRACE D32(1 , j) ;
ITM TRACE D8(2 , k) ;

i f (i ==0){
ITM TRACE D8(3 , 1) ;

}

j++;
i ++;
k++;
i f (i >10000){

i =0;
ITM TRACE D8(3 , 2) ;

}
i f (j >500000){

j =0;
}

3. TRACE32 DEBUG AND TRACE 29

i f (k>=255){
k=0;

}
}
/∗ Never l eave main ∗/

re turn 0 ;
}

The third application is built upon a mClinux OS. It is just a modification
of the original developer project provided as example. An infinite loop is
performed, where at each step a sample device is read, echoing the content.

/∗
∗ This i s a user−space a p p l i c a t i o n that reads
∗ /dev/ sample
∗ and p r i n t s the read c h a r a c t e r s to stdout
∗/

#inc lude <s t d i o . h>
#inc lude <s t r i n g . h>
#inc lude <errno . h>
#inc lude <uni s td . h>
#inc lude <sys / types . h>
#inc lude <sys / s t a t . h>
#inc lude < f c n t l . h>

i n t main (i n t argc , char ∗∗ argv)
{

char ∗ app name = argv [0] ;
char ∗ dev name = ”/dev/sample ” ;
i n t r e t = −1;
i n t fd = −1;
i n t c , x ;
whi l e (1){

/∗
∗ Open the sample dev i c e RD | WR
∗/

3. TRACE32 DEBUG AND TRACE 30

i f ((fd = open (dev name , ORDWR)) < 0) {
f p r i n t f (s tde r r , ”%s : unable to open %s :
%s\n” , app name , dev name , s t r e r r o r (er rno)) ;

goto Done ;
}

/∗
∗ Read the sample dev i ce byte−by−byte
∗/
whi le (1) {

i f ((x = read (fd , &c , 1)) < 0) {
f p r i n t f (s tde r r , ”%s : unable to read %s :

%s\n” , app name , dev name ,
s t r e r r o r (er rno)) ;

goto Done ;
}
i f (! x) break ;

/∗
∗ Print the read cha rac t e r to stdout
∗/
f p r i n t f (stdout , ”%c ” , c) ;

}

/∗
∗ I f we are here , we have been s u c c e s s f u l
∗/
r e t = 0 ;

Done :
i f (fd >= 0) {

c l o s e (fd) ;
}

}

r e turn r e t ;
}

3. TRACE32 DEBUG AND TRACE 31

3.3 Application debug

Here are presented some basic instructions needed to perform a simple debug
of the application software, from displaying the source code, to the handling
of breakpoints, and so on. For detailed information about commands it is
possible to refer to the different general references reported in the References
section.

3.3.1 Display source code

To display the source code of the application it is possible to use the Data.List
command

Data . L i s t <function name> [parameters]

By using this command, a new window displaying the source code starting
from the first line of the function will appear. The row is highlighted in grey
if it is the current value of the PC. There are two different possibilities to
display the source code in Trace32, i.e., displaying the high level language,
or the corresponding Asm instructions. In Trace32, it is the possibility to
choose between these modes by using the Mode command

Mode . <option>

It is possible to choose between the following options

• Hll: Displays only high level language instructions

• Asm: Displays only the Asm instructions

• Mix: Displays both high level language and corresponding Asm in-
structions

Furthermore, there is the possibility, to display the source code from the
current instruction of the PC, by using the following command

Data . l i s t

In the window are present buttons to perform the basic operations such as
Step,Over,Diverge,Return,Up,Go, and Break. In the following page is re-
ported a picture of how this window looks like.

3. TRACE32 DEBUG AND TRACE 32

Figure 3.4: Source code in Trace32 (Mix mode)

Figure 3.5: Source code in Trace32 (Hll mode)

3. TRACE32 DEBUG AND TRACE 33

3.3.2 Data, registers and peripherals

In Trace32 is possible to monitor and set at any time of data, CPU registers
and peripherals. In particular it is possible to set data at run-time without
generating extra load for the CPU if one of the following option is enabled
in the system menu:

• CPU

• Nexus

• DAP

To access the system menu it is possible to run the command

SYStem

If more than one window is trying to access the memory, it is possible to
enable the run-time memory access for all of them by enabling from the
system menu the DUALPORT option, or running the following command

SYStem . Option DUALPORT ON

In Trace32 there is also the possibility to perform an intrusive access memory
by selecting CpuAccess Enable mode from the system menu, or running the
following command

SYStem . CpuAccess Enable

In this case, the real-time behaviour of the target is compromised because
the debugger has access to the CPU resources.
To display the contents of the CPU registers it is possible to use the Register
command, in particular the view subcommand

Reg i s t e r . view [/< opt ions >]

Among all the possible options, the /SpotLight options gives the capability
of highlight the registers, which values have been modified during the last
operations of the CPU, in particular, darker is the color, later in time hap-
pened the modification.
It is possible to modify the value of a register, by using the Set subcommand

Reg i s t e r . Set <r e g i s t e r> <value>

Peripherals are really similar to registers, and in the same way it is possible
to display and set the content of the registers by means of the PER command

3. TRACE32 DEBUG AND TRACE 34

Figure 3.6: Register.view

Figure 3.7: Register.Set R0 0xFF

PER. view [opt ions]
PER. Set . s imple <address>|<range> [%<format>] <value>

Similarly, it is possible to display and modify memory data by means of the
Data command

Data . dump <address>|<range> [/< option >]
Var . watch [%<format>][< var i ab l e >] ; a l t e r n a t i v e
Data . Set <address>|<range> [%format] <value>

[/< option >]

In Trace32 there are three different ways to identify address ranges

• <start address> −− <end address>

• <start address> .. <end address>

• <start address> ++ <offset in byte>

In the images it is shown how these commands looks like in Trace32 envi-
ronment, applied for the application shown in the previous paragraph.

3. TRACE32 DEBUG AND TRACE 35

Figure 3.8: Var.Watch debug int / Data.Dump debug int /SpotLight

Figure 3.9: Data.Set debug int %Long 0x05

Figure 3.10: PER.view

3. TRACE32 DEBUG AND TRACE 36

3.3.3 Breakpoints

In Trace32 there is the possibility to handle two different types of breakpoints:

• Software breakpoints

• Onchip breakpoints

The number of software breakpoints that can be used while debugging the
application is unlimited. The main problem of this kind of breakpoints is that
they are implemented as intrusive breakpoints, altering real-time behaviour
of the system when used. The architecture of the system could support
the use of onchip breakpoints (TWR-K70F120M is compatible with onchip
breakpoints). These breakpoints are limited in number, but they have the
property to be non-intrusive, thus they do not affect the real-time behaviour
of the system.
In Trace32 there is the possibility to set breakpoints to:

• Program: the breakpoint is set to a code address. In this case the
breakpoint is triggered when the PC reaches the value of the address
code where the breakpoint has been set.

• Read / Write / ReadWrite: the breakpoint is set to a data address. In
this case the breakpoint is triggered when the specified operation (read,
write or both of them) has been executed on the desired variable.

It is possible to set breakpoints in Trace32 via GUI, by double click on the
line of code where the program breakpoints wants to be set, or selecting the
variable name, and from the right-click menu, selecting Breakpoint. Further-
more, it is possible to set and list breakpoints by using the Break Trace32
command

Break . L i s t
Break . Set [<address>|<range>] [/<breaktype > . . .]]

[/< impl>]

When a certain breakpoint cause the system to stop its execution, it is high-
lighted in the list window. From the same window it is possible to delete the
desired breakpoint by right-click on it and selecting Delete.
In Trace32 there is the possibility to perform different actions when a break-
point is triggered:

3. TRACE32 DEBUG AND TRACE 37

Figure 3.11: System halted at debug char Read/Write breakpoint

• Stop: the entire system is halted when this breakpoint is triggered

• Spot: the system is halted just for the time needed to update the screen

• TraceEnable: this breakpoint will not halt the system, but will generate
useful information used for trace analysis.

There are different options that can be used for breakpoints:

• Temporary OFF: the breakpoint is permanent

• Temporary ON: breakpoint is deleted next time the core stops the
program execution

• DISable ON: breakpoint is disabled

• DISable OFF: breakpoint is enabled

• DISableHIT ON: breakpoint is disabled after this has been hit.

In Trace32 it is possible to set conditions on data breakpoints, e.g., the
breakpoint can be triggered when a data reaches a certain value, or is greater
than a certain value, and so on. Furthermore, there is the possibility to use
advanced features for the breakpoint by setting different fields:

• COUNT: triggers the action of the breakpoint at the n-th hit of the
breakpoint

• CONdition: triggers the action of the breakpoint only when the speci-
fied condition is true

• CMD: used to specify an action, or a set of actions, to be performed
when the breakpoint has been triggered

3. TRACE32 DEBUG AND TRACE 38

3.4 Application trace

Here it is presented how to manage the CoreSight components, discussed in
the previous chapter, and how to perform simple real-time analysis of the
user application.

3.4.1 Manage CoreSight components

It is possible to manage all the parameters of the CoreSight components by
accessing the different system menus, through the commands

ETM ; opens the ETM c o n f i g u r a t i o n menu
TPIU ; opens the TPIU c o n f i g u r a t i o n menu
ITM ; opens the ITM c o n f i g u r a t i o n menu

To output PC data at regular intervals, the field PCSampler must be set.
This interval is expressed in number of clock cycles, and this field must be
set to a value, if it is required to perform an analysis on data. It is possible
to set this parameter from the ITM menu, or using the command

ITM. PCSampler <value>

The value is expressed as a fraction of a power of two number, starting from
1/64 to 1/32768.

Figure 3.12: ETM menu

3. TRACE32 DEBUG AND TRACE 39

Figure 3.13: TPIU menu

Figure 3.14: ITM menu

3. TRACE32 DEBUG AND TRACE 40

To list all the collected ITM and ETM trace data, it is possible to use the
List subcommand

ITMTrace . L i s t
ETMTrace . L i s t

The result will be an huge set of data, as shown in figures, from which is
possible to get useful results barely. For this, Trace32 gives the possibility to
perform automatic analysis on the data.

Figure 3.15: ETM data

Figure 3.16: ITM data

3. TRACE32 DEBUG AND TRACE 41

3.4.2 Statistics on trace data

It is possible to list all the monolithic functions percentage of time spent
running on the CPU, the worst case execution time and the average execu-
tion time, with a bar chart ordered by non increasing of ratio, by using the
command

Trace . STATistic MAX AVeRage Ratio BAR / Sort Ratio

As it is possible to see from the figure, in the results are reported not only the
functions of the main application such as selection sort or quickSort, but are
reported all the internal function called by the systems, e.g. all the routines
for operations with double numbers and so on.

Figure 3.17: Ratio and execution times analysis

In Trace32 there is the possibility to show the time behaviour of the system,
with informations on which function is running on the CPU for each instant
of time. To display this kind of result, the command must be used

Trace . Chart . sYmbol

From these kind of information it is possible to investigate on which function
is the bottleneck of the application, to give an idea on which segment of code
should be optimized to get the greatest advantages for the overall system.
It is interesting to notice that the application used as reference for this chap-
ter performs the sorting of the same vector of two thousand elements with
two different algorithms: a selection sort and a quick sort. It is noticeable

3. TRACE32 DEBUG AND TRACE 42

Figure 3.18: Time analysis

the huge difference in execution time between the two algorithms, with the
selection sort algorithm that has an average execution time of 2.359s and a
worst case execution time of 2.240s, while the quick sort average execution
time is 93.207ms and worst case execution time 117.996ms (more than one
order of magnitude).
Furthermore, Trace32 gives the possibility to draw the evolution in time of
a variable by means of a 2D plot. To achieve such a result it is needed to
have a breakpoint set to the desired variable that triggers the data trace for
such variable, and after it is possible to run the trace statistics. Using the
following commands

Break . Set square wave /Onchip /Write /TraceData
Break . Set s ine wave /Onchip /Write /TraceData
Trace .DRAW. Var %DEFault square wave
Trace .DRAW. Var %DEFault s ine wave

It is possible to obtain the results shown in the following figures. It is neces-
sary to notice, that the breakpoint is mandatory. If it is not set, the result
will not be shown.

3. TRACE32 DEBUG AND TRACE 43

Figure 3.19: sine wave time evolution

Figure 3.20: square wave time evolution

3. TRACE32 DEBUG AND TRACE 44

To measure execution time between a starting and a final point, in Trace32
it is possible to make use of the Runtime feature. This feature is affected by
some inaccuracy due to the JTAG communication time. To successfully use
this feature it is needed to:

• Setting breakpoints for the starting point and the end point of mea-
surement

• Initialize the runtime, and the area in which the results will be displayed

• Execute several times the code, printing the execution time at each
step

• Display the results

• Remove the used breakpoints

For the example application, e.g., it is possible to set-up the following script
that performs all the described steps to measure the time elapsed from the
creation of the two arrays to the end of the sorting operation

; Set the breakpo int s
Break . Set run t ime s t a r t /Write
Break . Set runt ime stop /Write

GO
WAIT !STATE.RUN()

; I n i t i a l i z e runtime and area
RunTime . I n i t

AREA. Create OUT
AREA. S e l e c t OUT
AREA.CLEAR OUT

; Perform 6 measurements o f the execut ion time
RePeat 6 .
(

GO
WAIT !STATE.RUN()

3. TRACE32 DEBUG AND TRACE 45

&time=RunTime .LASTRUN()
PRINT ” Execution time : &time ”

GO
WAIT !STATE.RUN()

)

; Display the f i n a l r e s u l t s
AREA. view OUT

; Remove breakpo int s
Break . De lete run t ime s t a r t /Write
Break . De lete runt ime stop /Write

By running this script once the debug and trace session has been established,
the obtained result is reported in the following figure. It is interesting from
the figure the inaccuracy of 584.260µs. This means that this procedure can
be used only for long time measurements, otherwise, the inaccuracy would
be too high with respect to the measurement. Then, to perform smaller time
segments measurements, other techniques must be exploited. One of this is to
use the Instrumentation Trace Macrocell to perform the measurement. This
technique gives more accurate results, but an instrumentation of the code
is requested, for which several iteration of instrumentation of the code and
building the application may be requested (that can be high time consuming
operations depending on the size of the project).

Figure 3.21: runtime statistics

3. TRACE32 DEBUG AND TRACE 46

ITM is used to instrument the software to send debug informations. It has
been already discussed how ITM works in the previous chapter. Basing on
how ITM is structured, it is possible to conclude that it is needed a set of
software instructions to be able to write and read data from ITM channels.
For this purpose, it is possible to add these following set of defines that
provides an API to write 8, 16 or 32 bit data in a specified ITM channel.

s t a t i c v o l a t i l e unsigned i n t ∗ITM BASE CH = (v o l a t i l e
unsigned i n t ∗) 0xE0000000 ;

#d e f i n e ITM TRACE D8(channe l , da ta) {\
v o l a t i l e unsigned i n t ∗ ch =ITM BASE CH+

(channe l) ; \
whi le (∗ ch == 0) ; \
(∗ ((v o l a t i l e unsigned char ∗) (ch))) =

(data) ; \
}

#d e f i n e ITM TRACE D16(channe l , da ta) {\
v o l a t i l e unsigned i n t ∗ ch =ITM BASE CH+

(channe l) ; \
whi le (∗ ch == 0) ; \
(∗ ((v o l a t i l e unsigned shor t ∗) (ch))) =

(data) ; \
}

#d e f i n e ITM TRACE D32(channe l , da ta) {\
v o l a t i l e unsigned i n t ∗ ch =ITM BASE CH+

(channe l) ; \
whi le (∗ ch == 0) ; \
(∗ ((v o l a t i l e unsigned i n t ∗) (ch)))=

(data) ; \
}

Once these macros have been defined it is possible to use simple functions to
write data to the different channels, such as

ITM TRACE D8(3 , 1) ;
ITM TRACE D8(3 , 2) ;

3. TRACE32 DEBUG AND TRACE 47

3.4.3 Operating system aware tracing

Trace32 gives the possibility to set-up an environment that is able to be
aware of operating system operations. The most important feature is that
Trace32 is able to track task switches, giving the possibility to perform dif-
ferent statistic on task execution that are fundamental for safety-critical ap-
plications. For example, it is possible to find the worst case execution time
of a task running on the target, and evaluate if the considered task, with
the current scheduling algorithm, and the current load, is able to meet the
deadline for data delivery.
To track context switches between the different tasks, it is possible to use
the command

TASK.CONFIG(magic)

That returns as content the address of the variable that owns the information
of witch task is currently running in the target. Than, it is possible to
notice, that it is possible to use the return value of this function to set up a
breakpoint, in order to be able to track each context switch that happens in
the target. Than, to perform some analysis based on tasks, it is required to
set the breakpoint with the following command

Break . Set TASK.CONFIG(magic) /Write /TraceData

Once the breakpoint has set, it is possible to perform similar analysis that
have been discussed for functions. In particular, it is possible to analyse
the execution time of each task running on the target, such as the worst case
execution time and the average execution time, with the total amount of time
spent executing in the CPU (percentage value) shown as a bar diagram, with
the following command

ITMCanalyzer . STATistic .TASK

Similarly, it is possible to have a chart showing in each instant of time which
was the task currently running on the target with the following command

ITMCanalyzer . Chart .TASK

The results that are obtained from the mClinux application shown in the
previous sections are shown in the following figures. It is interesting to notice,
since this application continuously read data from a device, the swapper
process, i.e. the process that takes care for I/O operations, is the process
that keep the CPU busy for the greatest amount of time.

3. TRACE32 DEBUG AND TRACE 48

Figure 3.22: Task execution time statistics

Figure 3.23: Task time evolution statistics

4

Trace32 set-up script for bare
metal application

In this chapter it is shown how, starting, from an example script provided
by Lauterbach, a service that is able to provide a working debugging and
tracing environment for a bare metal application has been set-up.

4.1 Script requirements and parameters

To be able to successfully run the script the following requirement is needed:

• Place the script in the same folder of the .elf file

• The executable .elf file must be built with debugging informations (oth-
erwise will not be possible to make use of symbols, i.e., the source code
will not be visible in Hll mode, and so on)

This script has in input one parameter:

• Name of the .elf file to debug

To run the script is then possible to use the following command

DO <path>/twr−k 7 0 f 1 2 0 c o n f i g u r a t i o n .cmm <name>. e l f

Once the script has been processed from Trace32, the debugging and tracing
environment will be ready for the use.

49

4. TRACE32 SET-UP SCRIPT FOR BARE METAL APPLICATION 50

4.2 Script

Here follows the twr-k70f120 configuration.cmm code

; −−−
; @Title : Demo s c r i p t f o r MK70FN1M0VMJ12 on TWR−K70F120
; with Offchip−Trace (RAM)
; @Descr ipt ion :
; Loads the s i e v e demo a p p l i c a t i o n in to RAM and s e t s
; up a demo debug
; s c e n a r i o .
; The Of fch ip Trace us ing a Combiprobe/uTrace or
; PowerTrace i s s e t up .
; Use t h i s s c r i p t f o r t e s t i n g the Offchip−Trace .
; P r e r e q u i s i t e s :
; ∗ Connect Combiprobe/uTrace to J11
; or
; Connect AutoFocus Preproce s so r to J11
; and connect DebugCable to Preproce s so r
; ∗ remove R138 & R11
; ∗ populate R137
; @Keywords : ARM, Cortex−M4, ETM, ITM
; @Author : AME
; @Board : TWR−K70F120
; @Chip : MK70FN1M0VMJ12
; @Copyright : (C) 1989−2016 Lauterbach GmbH, l i c e n s e d
; f o r use with TRACE32(R) only
; −−−
; $Id : twr−k 7 0 f 1 2 0 s i e v e o f f c h i p t r a c e s r a m .cmm 10461
; 2017−02−16 14 : 36 : 14Z mplichta $

ENTRY &elfname

WinCLEAR

; −−−
; i n i t i a l i z e and s t a r t the debugger
RESet

4. TRACE32 SET-UP SCRIPT FOR BARE METAL APPLICATION 51

SYStem . RESet
SYStem .CPU MK70FN1M0VMJ12
SYStem .CONFIG.DEBUGPORTTYPE SWD
IF hardware .COMBIPROBE() | | hardware .UTRACE()
(

SYStem .CONFIG.CONNECTOR MIPI20T
)
SYStem . Option DUALPORT ON
SYStem . MemAccess DAP
SYStem . JtagClock CTCK 10MHz
SYStem .Up

GOSUB DisableWatchdog

; −−
; i n i t i a l i z e o f f c h i p−t r a c e (ETM ON, ITM ON)
IF hardware .COMBIPROBE() | | hardware .UTRACE() | | Analyzer ()
(

; s e t PinMux and enable Clocks
Data . Set SD: 0 x40048038 %Long 0x0000FFFF // PORTA CLK
Data . Set SD: 0 x40048004 %Long 0x00001000 // TRACE CLK
Data . Set SD: 0 x40049018 %Long 0x00000740 // TRACECLK
Data . Set SD: 0 x4004901C %Long 0x00000740 // TRACED3
Data . Set SD: 0 x40049020 %Long 0x00000740 // TRACED2
Data . Set SD: 0 x40049024 %Long 0x00000740 // TRACED1
Data . Set SD: 0 x40049028 %Long 0x00000740 // TRACED0
Data . Set SD: 0 x40048068 %Long 0x00000000

// Trace Clkdiv 0

; op t i ona l : setup the DCO here
IF FALSE()
(

; l e t the DCO run ˜80−90MHz
Data . Set SD: 0 x40064003 0x75
; NFC/32 + Trace /1
Data . Set SD: 0 x40048068 %Long 0xF8000000

)

4. TRACE32 SET-UP SCRIPT FOR BARE METAL APPLICATION 52

TPIU . PortS i ze 4
TPIU . PortMode Continuous
ITM. DataTrace Corre latedData
ITM.ON
ETM. Trace ON
ETM.ON

)
IF hardware .COMBIPROBE() | | hardware .UTRACE()
(

Trace .METHOD CAnalyzer
Trace . AutoInit ON
IF VERSION.BUILD.BASE()>=74752.
(

CAnalyzer . AutoFocus
)
ELSE
(

; f o r uTrace & Combiprobe use manual c a l i b r a t i o n
; CAnalyzer . ClockDELAY Large

)
)
IF Analyzer ()
(

Trace .METHOD Analyzer
Trace . AutoInit ON
Trace . AutoFocus

)

; −−
; Flash programming

; prepare f l a s h programming (d e c l a r a t i o n s)
DO ˜˜/demo/arm/ f l a s h /mk70 .cmm PREPAREONLY

; ReProgram Flash
FLASH. ReProgram ALL
Data .LOAD. E l f ”˜˜˜˜/& elfname ”
FLASH. ReProgram OFF

4. TRACE32 SET-UP SCRIPT FOR BARE METAL APPLICATION 53

; −−−
; s t a r t program execut ion
Go . d i r e c t main
WAIT !STATE.RUN()

Data . L i s t main

ITM. PCSampler 1/64

ENDDO

DisableWatchdog :
(

; d i s a b l e the Watchdog
LOCAL &tmp1 &tmp2
&tmp1=Data . Long (ST: 0 x20000000)
&tmp2=Data . Long (ST: 0 x20000004)
Reg i s t e r .SWAP

; The watchdog has a r e s t r i c t i v e t iming . I t has to be
; con f i gu r ed and unlocked with in a per ipod
; o f 20+256 c y c l e s . There for the unlock sequence need
; to be done by a smal l t a r g e t program .

Data . Assemble ST: 0 x20000000 s t rh r1 , [r0]
;SD: 0 x4005200E = 0xC520 (Key 1)

Data . Assemble , s t rh r2 , [r0]
;SD: 0 x4005200E = 0xD928 (Key 2)

Data . Assemble , s t rh r4 , [r3]
;SD: 0 x40052000 = 0x0000 (Config r e g i s t e r)

Data . Assemble , bkpt #0
Reg i s t e r . Set PC 0x20000000
Reg i s t e r . Set R0 0x4005200E
Reg i s t e r . Set R1 0xC520
Reg i s t e r . Set R2 0xD928
Reg i s t e r . Set R3 0x40052000
Reg i s t e r . Set R4 0x0

4. TRACE32 SET-UP SCRIPT FOR BARE METAL APPLICATION 54

Go . d i r e c t
WAIT !RUN()

Reg i s t e r .SWAP
Data . Set ST: 0 x20000000 %Long &tmp1
Data . Set ST: 0 x20000004 %Long &tmp2

RETURN
)

This script is responsible for resetting the target as first operation. After, it
sets all the required system configurations such as:

• CPU model

• Debug port type

• Dualport option

• Memory access

• JTAG clock

Furthermore, if it is being using the compiprobe cable or the mTrace the config
connector is set to MIPI20T. Once these basic options have been set, JTAG
pins are configured in order to use the 20-pin with 4 bit TPIU configuration.
Immediately after, the CoreSight components are configured, in particular
the TPIU port size is set to 4 in continuous mode, and ITM is instructed
to send correlated data (i.e., merging ETM and ITM data togheter). Once
these instructions have been executed, the canalyzer auto focus procedure
will start, finding the best frequency at which operate. At the end of all
these preliminary steps and configurations, the flash memory of the target is
programmed by loading the user application, which name has been specified
as parameter for the script. When the executable file has been loaded in
flash memory, the execution is started, bypassing all bootstrap operations
until the target reaches the main function where the system is halted. The
script ends, setting a value of the PCSampler, in order to be able to perform
data tracing, and displaying the source code of the main function.

5

Trace32 set-up script for
mClinux applications

Starting from the script described in the previous chapter, has been realized a
script able to set-up a debugging and tracing environment for an application
running on a mClinux operating system. This environment is provided with
mClinux awareness.

5.1 Script requirements and parameters

To be able to successfully run the script the following requirement is needed:

• Have u-boot already installed in the flash memory of the target

• The script must be placed in a folder that contains the vmlinux and
uImage files and a single folder named ”linux ker” containing the file
system of the linux application containing all the source files.

• Have vmlinux compiled with debugging informations

• Have the mClinux application compiled with debugging informations

The script takes as input the following parameters:

• The name of the mClinux application

• The name of the uImage that has to be loaded

55

5. TRACE32 SET-UP SCRIPT FOR mCLINUX APPLICATIONS 56

• The com port through with the target is connected to the host

To run the script is then possible to use the following command

DO <path>/L inux con f i gu ra t i on .cmm <app\ name>
<image\ name>.uImage com<number>

Once the script has been processed from Trace32, the debugging and tracing
environment will be ready for the use when the application will start on the
target.

5.2 Script

Here follows the Linux configuration.cmm code

; −−−
; @Title : Demo s c r i p t f o r MK70FN1M0VMJ12 on TWR−K70F120
; with Offchip−Trace (RAM)
; @Descr ipt ion :
; Loads the s i e v e demo a p p l i c a t i o n in to RAM and s e t s
; up a demo debug
; s c e n a r i o .
; The Of fch ip Trace us ing a Combiprobe/uTrace or
; PowerTrace i s s e t up .
; Use t h i s s c r i p t f o r t e s t i n g the Offchip−Trace .
; P r e r e q u i s i t e s :
; ∗ Connect Combiprobe/uTrace to J11
; or
; Connect AutoFocus Preproce s so r to J11
; and connect DebugCable to Preproce s so r
; ∗ remove R138 & R11
; ∗ populate R137
; @Keywords : ARM, Cortex−M4, ETM, ITM
; @Author : AME
; @Board : TWR−K70F120
; @Chip : MK70FN1M0VMJ12
; @Copyright : (C) 1989−2016 Lauterbach GmbH, l i c e n s e d
; f o r use with TRACE32(R) only
; −−−

5. TRACE32 SET-UP SCRIPT FOR mCLINUX APPLICATIONS 57

; $Id : twr−k 7 0 f 1 2 0 s i e v e o f f c h i p t r a c e s r a m .cmm 10461
; 2017−02−16 14 : 36 : 14Z mplichta $

ENTRY &app name &uimage &com

WinCLEAR

; −−−
; i n i t i a l i z e and s t a r t the debugger
RESet
SYStem . RESet
SYStem .CPU MK70FN1M0VMJ12
SYStem .CONFIG.DEBUGPORTTYPE SWD
IF hardware .COMBIPROBE() | | hardware .UTRACE()
(

SYStem .CONFIG.CONNECTOR MIPI20T
)
SYStem . Option DUALPORT ON
SYStem . MemAccess DAP
SYStem . JtagClock CTCK 10MHz
SYStem .Up

GOSUB DisableWatchdog

; −−−
; i n i t i a l i z e o f f c h i p−t r a c e (ETM ON, ITM ON)
IF hardware .COMBIPROBE() | | hardware .UTRACE() | | Analyzer ()
(

; s e t PinMux and enable Clocks
Data . Set SD: 0 x40048038 %Long 0x0000FFFF // PORTA CLK
Data . Set SD: 0 x40048004 %Long 0x00001000 // TRACE CLK
Data . Set SD: 0 x40049018 %Long 0x00000740 // TRACECLK
Data . Set SD: 0 x4004901C %Long 0x00000740 // TRACED3
Data . Set SD: 0 x40049020 %Long 0x00000740 // TRACED2
Data . Set SD: 0 x40049024 %Long 0x00000740 // TRACED1
Data . Set SD: 0 x40049028 %Long 0x00000740 // TRACED0
Data . Set SD: 0 x40048068 %Long 0x00000000

// Trace Clkdiv 0

5. TRACE32 SET-UP SCRIPT FOR mCLINUX APPLICATIONS 58

; op t i ona l : setup the DCO here
IF FALSE()
(

; l e t the DCO run ˜80−90MHz
Data . Set SD: 0 x40064003 0x75
; NFC/32 + Trace /1
Data . Set SD: 0 x40048068 %Long 0xF8000000

)

TPIU . PortS i ze 4
TPIU . PortMode Continuous
; ITM. DataTrace Corre latedData

)
IF hardware .COMBIPROBE() | | hardware .UTRACE()
(

Trace .METHOD CAnalyzer
Trace . AutoInit ON
IF VERSION.BUILD.BASE()>=74752.
(

CAnalyzer . AutoFocus
)
ELSE
(

; f o r uTrace & Combiprobe use manual c a l i b r a t i o n
; CAnalyzer . ClockDELAY Large

)
)
IF Analyzer ()
(

Trace .METHOD Analyzer
Trace . AutoInit ON
Trace . AutoFocus

)

do ˜˜\demo\ e t c \ t e rmina l \ s e r i a l \term .cmm &com

5. TRACE32 SET-UP SCRIPT FOR mCLINUX APPLICATIONS 59

GO
Wait 5 . s
Break

; Load the ke rne l
Data .LOAD. Binary &uimage A: 0 x08007FC0
Data .LOAD. E l f vmlinux /GNU /NoCODE /STRIPPART 4 .
sYmbol . SourcePATH . / l i n u x k e r \

GO
ITM.ON
ETM. Trace ON
ETM.ON
Trace .Arm
ITM. PCSampler 1/256

; Booting
TERM. Out ”bootm” 0xA

; Loading uClinux awareness
Wait 1 . s
TASK.CONFIG

/T32\demo\arm\ ke rne l \ uc l inux \ l inux −3.x\ uc l inux3 . t32
MENU. ReProgram

/T32/demo\arm\ ke rne l \ uc l inux \ l inux −3.x\ uc l inux . men

; Se t t i ng up the auto loader
TASK. sYmbol . Option AutoLoad Process

Wait 50 .ms
do /T32\demo\arm\ ke rne l \ uc l inux \ l inux −3.x\app debug .cmm

&app name

ENDDO

DisableWatchdog :
(

; d i s a b l e the Watchdog

5. TRACE32 SET-UP SCRIPT FOR mCLINUX APPLICATIONS 60

LOCAL &tmp1 &tmp2
&tmp1=Data . Long (ST: 0 x20000000)
&tmp2=Data . Long (ST: 0 x20000004)
Reg i s t e r .SWAP

; The watchdog has a r e s t r i c t i v e t iming .
; I t has to be con f i gu r ed and unlocked with in a per iod
; o f 20+256 c y c l e s . There for the unlock sequence need
; to be done by a smal l t a r g e t program .
Data . Assemble ST: 0 x20000000 s t rh r1 , [r0]

;SD: 0 x4005200E = 0xC520 (Key 1)
Data . Assemble , s t rh r2 , [r0]

;SD: 0 x4005200E = 0xD928 (Key 2)
Data . Assemble , s t rh r4 , [r3]

;SD: 0 x40052000 = 0x0000 (Config r e g i s t e r)
Data . Assemble , bkpt #0
Reg i s t e r . Set PC 0x20000000
Reg i s t e r . Set R0 0x4005200E
Reg i s t e r . Set R1 0xC520
Reg i s t e r . Set R2 0xD928
Reg i s t e r . Set R3 0x40052000
Reg i s t e r . Set R4 0x0
Go . d i r e c t
WAIT !RUN()

Reg i s t e r .SWAP
Data . Set ST: 0 x20000000 %Long &tmp1
Data . Set ST: 0 x20000004 %Long &tmp2

RETURN
)

This script performs the same configuration of CoreSight components that
has been used for the bare metal application. In addition, this script, pro-
vides a full working environment for the mClinux application. In particular,
a terminal window to interact with the target hardware is displayed (serial
communication between the host and the virtual serial port of the target).
This terminal window will use the COM port specified as script parameter,

5. TRACE32 SET-UP SCRIPT FOR mCLINUX APPLICATIONS 61

with a baud rate of 115200. It is possible to interact with the target through
the terminal only when the target is running. The script performs an auto-
matic procedure to load in the target RAM memory the kernel image and
perform the boot operation with the following steps:

• Loads the .uImage file to the target RAM, which name has been spec-
ified as script parameter. For TWRK70F120M address is 0x08007FC0
chosen

• Through the terminal is sent the bootm command to the target (run-
ning u-boot), this command will start the boot sequence starting from
the load address defined as an environment variable (this address is
0x08007FC0 by default for TWRK70F120M development board)

• File vmlinux, compiled with debug symbol informations, is used to
load kernel symbols, through which will be possible to debug and trace
kernel operations

• Path of symbols is set, in order to instruct Trace32, that all the source
files can be found starting from the linux ker folder

After the target completed the boot operations, the mClinux awareness is
set-up through the following steps:

• Configuration of the mClinux 3.0 awareness through the uclinux3.t32
file, provided by Lauterbach

• Set-up a menu for Trace32 environment from which it is able to manage
mClinux debugging and tracing, through the uclinux.men file provided
by Lauterbach

After these steps, it is set-up the symbol autoloader for mClinux applications,
to automatically detect application symbols, through the command

TASK. sYmbol . Option AutoLoad Process

At this point all the requirements needed to run the script provided by
Lauterbach app debug.cmm are satisfied. Thus, this script starts the ex-
ecution, and will wait until the desired application (which name is set as
parameter) to debug starts its execution.

6

Performance analysis of FIR
and FFT

In this chapter is shown how it is possible to use this technology to perform
analysis on a signal processing application. In particular the performance of
two different FIR filter implementations (with different complexities), and
an FFT algorithm (with different number of points for which is computed
the transform) will be analysed.

6.1 Application description

This application is responsible to filter a signal input, and perform the FFT
after that a certain amount of samples have been obtained.

6.1.1 Input signal

The used input signal is a sum of sinusoidal functions at different frequencies,
one at low frequency, the other two at high frequency (that are the compo-
nents that it is needed to filter out by means of the low pass FIR filter). The
input signal can be expressed by means of the following equation

u(t) = A1sin(2πf1t) + A2sin(2πf2t) + A3sin(2πf3t) (6.1)

Where the following parameters have been chosen:

• A1 = 1

62

6. PERFORMANCE ANALYSIS OF FIR AND FFT 63

Figure 6.1: Input signal

• f1 = 5Hz

• A2 = 0.1

• f2 = 60Hz

• A3 = 0.1

• f3 = 77Hz

The time behaviour of the input signal is reported in the figure.

6.1.2 FIR filter and Matlab filter designer

For this application has been used a low pass FIR digital filter. The design
objective of this filter is to cut off the two high frequency components of the
input signal. A FIR filter is characterized by the following discrete transfer
function

H(z) =
NX
k=0

b[k]z−k (6.2)

Where N is the order of the filter.
For this application four different filters have been designed, all of them

6. PERFORMANCE ANALYSIS OF FIR AND FFT 64

using the same technique, i.e. FIR low pass filter with Hamming window.
The only design parameter that varies is the filter order. In particular have
been designed filters with order:

• N = 8

• N = 16

• N = 32

• N = 64

To design the filter, Matlab Filter Designer tool has been employed. This
tool provides the capability to choose the design parameters of the filter, and
starting from these, it computes the b coefficients for the filter. The following
design parameters have been used for the design:

• Response type: lowpass

• FIR: window

• Window: Hamming

• Sampling frequency Fs: 1000Hz

• Cut frequency Fc: 20Hz

The following values of the b polynomial have been obtained, listed from b0
to bN

N = 8
0.017556 0.048011 0.12235 0 .1976 0.22897
0 .1976 0.12235 0.048011 0.017556

N = 16
0.0079256 0.011884 0.022997 0.040163 0.061049
0.082476 0 .101 0.11353 0.11796 0.11353
0 .101 0.082476 0.061049 0.040163 0.022997
0.011884 0.0079256

N = 32
0.0023095 0.0028755 0.0041196 0.0061736 0.0091169

6. PERFORMANCE ANALYSIS OF FIR AND FFT 65

0.012967 0.017671 0.023109 0.029094 0.035386
0.041704 0.047743 0.053199 0.057786 0.061255
0.063416 0.064151 0.063416 0.061255 0.057786
0.053199 0.047743 0.041704 0.035386 0.029094
0.023109 0.017671 0.012967 0.0091169 0.0061736
0.0041196 0.0028755 0.0023095

N = 64
−0.00065146 −0.00061399 −0.00058867 −0.00056074
−0.0005114 −0.0004184 −0.00025681 3 .0552 e−19
0.00037924 0.00090754 0.0016096 0.0025072
0.0036176 0.0049527 0.0065184 0.008313
0.010328 0.012546 0.014943 0.017487
0.02014 0.022857 0.025589 0.028283
0.030885 0.033339 0.035594 0.037598
0.039306 0.040677 0.041681 0.042293
0.042499 0.042293 0.041681 0.040677
0.039306 0.037598 0.035594 0.033339
0.030885 0.028283 0.025589 0.022857
0.02014 0.017487 0.014943 0.012546
0.010328 0.008313 0.0065184 0.0049527
0.0036176 0.0025072 0.0016096 0.00090754
0.00037924 3 .0552 e−19 −0.00025681 −0.0004184
−0.0005114 −0.00056074 −0.00058867 −0.00061399
−0.00065146

In figure are reported the bode diagram of the different FIR filters, while in
the table are reported the values of attenuation at the frequency of interest for
the application (60Hz and 77Hz). It is interesting to notice how the simplest
filter is not able to cut the high frequency components of the original signal.

Filter order Att.@60Hz(dB) Att.@77Hz(dB)

8 -1.746 -2.902
16 -6.735 -11.445
32 -26.078 -70.479
64 -76.285 -70.140

6. PERFORMANCE ANALYSIS OF FIR AND FFT 66

Figure 6.2: Bode diagram: N = 8

Figure 6.3: Bode diagram: N = 16

Figure 6.4: Bode diagram: N = 32

6. PERFORMANCE ANALYSIS OF FIR AND FFT 67

Figure 6.5: Bode diagram: N = 64

6.1.3 Fast Fourier Transform

To use faster algorithms, the FFT is computer over a number M of point,
where M is a power of two number. By doing this, it is possible to exploit
faster decimation in time or decimation in frequency algorithms. For this
application different values of M are used, in particular:

• M = 256

• M = 512

• M = 1024

6.2 Code generation

Here it is presented how the source code has been obtained both for the FIR
filters, and the FFT. In particular two different implementations for the FIR
filter have been exploited.

6.2.1 FIR filter code

To produce a function that given a sample of the input signal is able to filter
it and return the filtered signal as result, the following theoretical result has
been exploited: write the transfer function H(z) in the time domain, by using

6. PERFORMANCE ANALYSIS OF FIR AND FFT 68

the inverse Z-transform, obtaining the following difference equation

y[n] =
N−1X
k=0

b[k]u[n− k] (6.3)

Than it is simple to notice that the filtered value is a linear combination of
the current and past values of the input signal. Then, a buffer storing N + 1
values is needed. To build this buffer the structure shown in figure has been
used. At each step, before the sampling, the current value of the input signal
is inserted in the first position of the array and, after that the sample has
been filtered, the buffer is updated, by shifting all the elements of the buffer
to the right of one position, discarding the last one.

Figure 6.6: Buffer contents

With these consideration, the following implementation of the FIR filter has
been obtained

f l o a t s l o w f i l t e r (f l o a t sample , f l o a t ∗ f i l t b ,
f l o a t ∗ b u f f e r){

f l o a t f i l t e r e d = 0 . 0 ;
i n t i ;

b u f f e r [0] = sample ;
f o r (i =0; i<FILT ORDER+1; i ++){

f i l t e r e d += f i l t b [i]∗ b u f f e r [i] ;
}
f o r (i=FILT ORDER; i >0; i−−){

b u f f e r [i] = b u f f e r [i −1] ;
}

r e turn f i l t e r e d ;
}

By looking at this code, it is easy to see that there is a time consuming
over-head in this code due to the update of the buffer, i.e., bigger is the
filter order, bigger is the number of memory read/write operations that have

6. PERFORMANCE ANALYSIS OF FIR AND FFT 69

to be performed at each step to shift the buffer. To improve the computing
performance of the filter, the following consideration has been done to achieve
code optimization: do not shift at each step the overall content of the buffer,
but place the value of the signal to be filtered in the position of the input
signal to be discarded. For such an implementation, it is needed a comparison
and an additional counter. The idea of such a buffer is represented in figure.

Figure 6.7: Buffer contents

This results into the following implementation of the FIR filter

f l o a t f a s t f i l t e r (f l o a t sample , f l o a t ∗ f i l t b ,
f l o a t ∗ bu f f e r , i n t ∗ cont){

f l o a t f i l t e r e d = 0 . 0 ;
i n t i , j ;

b u f f e r [∗ cont] = sample ;
j = ∗ cont ;
f o r (i =0; i<FILT ORDER+1; i ++){

i f (j>FILT ORDER){
j =0;

}
f i l t e r e d += f i l t b [i]∗ b u f f e r [j] ;
j++;

6. PERFORMANCE ANALYSIS OF FIR AND FFT 70

}

∗ cont = ∗ cont − 1 ;
i f (∗ cont<0){

∗ cont = FILT ORDER;
}

r e turn f i l t e r e d ;
}

6.2.2 FFT code and Matlab coder

To obtain FFT code a fast-prototyping approach has been used. In particular
has been used the automatic code-generation process feature of Matlab. This
feature is implemented into one Matlab app called Matlab coder, that gives
the possibility to generate the code of a matlab function. To generate a code
that is compatible with the target hardware (TWRK70F120M development
board), it is needed to install an additional support package for ARM code
generation, and selecting this tool chain during the code generation process.
The result of such operation is the following set of source files:

• MW target hardware resources.h

• my fft.c

• my fft.h

• my fft initialize.c

• my fft initialize.h

• my fft terminate.c

• my fft terminate.h

• my fft types.h

• rt noninfinite.c

• rt noninfinite.h

6. PERFORMANCE ANALYSIS OF FIR AND FFT 71

• rtGetInf.c

• rtGetInf.h

• rtGetNan.c

• rtGetNan.h

• rtwtypes.h

The API that provides the capability to perform the FFT of a generic signal
can be found in the file my fft.h that has the following content

/∗
∗ Academic L icense − f o r use in teaching ,
∗ academic re search , and meeting
∗ course requ i rements at degree grant ing
∗ i n s t i t u t i o n s only .
∗ Not f o r
∗ government , commercial , or other o r g a n i z a t i o n a l use .
∗ F i l e : my f f t . h
∗
∗ MATLAB Coder ve r s i on : 3 . 2
∗ C/C++ source code generated on : 05−Jul−2018
∗ 22 : 54 : 44
∗/

#i f n d e f MY FFT H
#d e f i n e MY FFT H

/∗ Inc lude F i l e s ∗/
#inc lude <s tdde f . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude ” rtwtypes . h”
#inc lude ” my f f t t ype s . h”

/∗ Function Dec l a ra t i on s ∗/
extern void my f f t (const double u [2 5 6] ,

c r ea l T y [2 5 6]) ;

6. PERFORMANCE ANALYSIS OF FIR AND FFT 72

#e n d i f

/∗
∗ F i l e t r a i l e r f o r my f f t . h
∗
∗ [EOF]
∗/

As it is possible to notice from the API, the listed code is able to perform a
256 point FFT. The API is similar for 512 point FFT and 1024 point FFT.
As it is possible to notice it gets as inputs an array of points (the filtered
signal to which the FFT is computed) and the array of the results that are
complex numbers (creal T). The definition of this type and other types can
be found in rtwtypes.h file that contains the following definitions

/∗
∗ Academic L icense − f o r use in teaching , academic
∗ re search , and meeting
∗ course requ i rements at degree grant ing i n s t i t u t i o n s
∗ only . Not f o r
∗ government , commercial , or other o r g a n i z a t i o n a l use .
∗ F i l e : rtwtypes . h
∗
∗ MATLAB Coder ve r s i on : 3 . 2
∗ C/C++ source code generated on : 01−Jul−2018
∗ 17 : 28 : 28
∗/

#i f n d e f RTWTYPES H
#d e f i n e RTWTYPES H
#i f n d e f TMWTYPES
#d e f i n e TMWTYPES

/∗ ===
∗ Target hardware in fo rmat ion
∗ Device type : ARM Compatible−>ARM Cortex
∗ Number o f b i t s : char : 8 shor t : 16
∗ i n t : 32

6. PERFORMANCE ANALYSIS OF FIR AND FFT 73

∗ long : 32
∗ nat ive word s i z e : 32
∗ Byte o rde r ing : L i t t l eEnd ian
∗ Signed i n t e g e r d i v i s i o n rounds to : Zero
∗ S h i f t r i g h t on a s igned i n t e g e r as
∗ a r i thmet i c s h i f t : on
∗ === ∗/

/∗ == ∗
∗ Fixed width word s i z e data types : ∗
∗ int8 T , int16 T , int32 T
∗ − s igned 8 , 16 , or 32 b i t i n t e g e r s ∗
∗ uint8 T , uint16 T , uint32 T
∗ − unsigned 8 , 16 , or 32 b i t i n t e g e r s ∗
∗ real32 T , rea l64 T

− 32 and 64 b i t f l o a t i n g po int numbers ∗
∗ === ∗/

typede f s igned char int8 T ;
typede f unsigned char uint8 T ;
typede f shor t int16 T ;
typede f unsigned shor t uint16 T ;
typede f i n t int32 T ;
typede f unsigned i n t uint32 T ;
typede f f l o a t rea l32 T ;
typede f double rea l64 T ;

/∗ ===
∗ Generic type d e f i n i t i o n s : rea l T , time T ,
∗ boolean T , int T , uint T ,
∗ ulong T , char T and byte T .
∗ ===

typede f double r ea l T ;
typede f double time T ;
typede f unsigned char boolean T ;
typede f i n t int T ;
typede f unsigned i n t uint T ;
typede f unsigned long ulong T ;
typede f char char T ;

6. PERFORMANCE ANALYSIS OF FIR AND FFT 74

typede f char T byte T ;

/∗ ===
∗ Complex number type d e f i n i t i o n s ∗
∗ === ∗/

#d e f i n e CREAL T

typede f s t r u c t {
rea l32 T re ;
rea l32 T im ;

} c rea l32 T ;

typede f s t r u c t {
rea l64 T re ;
rea l64 T im ;

} c rea l64 T ;

typede f s t r u c t {
r ea l T re ;
r ea l T im ;

} c r ea l T ;

typede f s t r u c t {
int8 T re ;
int8 T im ;

} c int8 T ;

typede f s t r u c t {
uint8 T re ;
uint8 T im ;

} cuint8 T ;

typede f s t r u c t {
int16 T re ;
int16 T im ;

} c int16 T ;

typede f s t r u c t {

6. PERFORMANCE ANALYSIS OF FIR AND FFT 75

uint16 T re ;
uint16 T im ;

} cuint16 T ;

typede f s t r u c t {
int32 T re ;
int32 T im ;

} c int32 T ;

typede f s t r u c t {
uint32 T re ;
uint32 T im ;

} cuint32 T ;

/∗ ===
∗ Min and Max: ∗
∗ int8 T , int16 T , int32 T

− s igned 8 , 16 , or 32 b i t i n t e g e r s ∗
∗ uint8 T , uint16 T , uint32 T

− unsigned 8 , 16 , or 32 b i t i n t e g e r s ∗
∗ === ∗/

#d e f i n e MAX int8 T ((int8 T) (1 2 7))
#d e f i n e MIN int8 T ((int8 T)(−128))
#d e f i n e MAX uint8 T ((uint8 T) (2 5 5))
#d e f i n e MIN uint8 T ((uint8 T) (0))
#d e f i n e MAX int16 T ((int16 T) (32767))
#d e f i n e MIN int16 T ((int16 T)(−32768))
#d e f i n e MAX uint16 T ((uint16 T) (65535))
#d e f i n e MIN uint16 T ((uint16 T) (0))
#d e f i n e MAX int32 T ((int32 T)(2147483647))
#d e f i n e MIN int32 T ((int32 T)(−2147483647−1))
#d e f i n e MAX uint32 T ((uint32 T)(0xFFFFFFFFU))
#d e f i n e MIN uint32 T ((uint32 T) (0))

/∗ Log i ca l type d e f i n i t i o n s ∗/
#i f ! de f i ned (c p l u s p l u s) &&

! de f ined (t r u e f a l s e a r e k e y w o r d s)
i f n d e f f a l s e

6. PERFORMANCE ANALYSIS OF FIR AND FFT 76

d e f i n e f a l s e (0U)
e n d i f

i f n d e f t rue
d e f i n e t rue (1U)
e n d i f
#e n d i f

/∗
∗ Maximum length o f a MATLAB i d e n t i f i e r
∗ (func t i on / v a r i a b l e)
∗ i n c l u d i n g the nu l l−te rminat ion charac t e r .
∗ Referenced by
∗ r t l o g g i n g . c and rt matrx . c .
∗/

#d e f i n e TMW NAME LENGTH MAX 64
#e n d i f
#e n d i f

/∗
∗ F i l e t r a i l e r f o r rtwtypes . h
∗
∗ [EOF]
∗/

6.2.3 Application code

The application is intended to simulate an acquisition system, periodically,
the CPU reads a value, performs the filtering action, and when accumulates
M value, begins the FFT of the signal. The code for the main application is
the following

/∗
∗ Copyright (c) 2015 , F r e e s c a l e Semiconductor , Inc .
∗ Al l r i g h t s r e s e rved .
∗
∗ R e d i s t r i b u t i o n and use in source and binary forms ,
∗ with or without mod i f i ca t i on ,

6. PERFORMANCE ANALYSIS OF FIR AND FFT 77

∗ are permitted provided that the f o l l o w i n g
∗ c o n d i t i o n s are met :
∗
∗ o R e d i s t r i b u t i o n s o f source code must r e t a i n
∗ the above copyr ight not i ce , t h i s l i s t
∗ o f c o n d i t i o n s and the f o l l o w i n g d i s c l a i m e r .
∗
∗ o R e d i s t r i b u t i o n s in binary form must reproduce
∗ the above copyr ight not i ce , t h i s
∗ l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a i m e r
∗ in the documentation and/ or
∗ other m at e r i a l s provided with the d i s t r i b u t i o n .
∗
∗ o Nei ther the name o f F r e e s c a l e Semiconductor ,
∗ Inc . nor the names o f i t s
∗ c o n t r i b u t o r s may be used to endorse or promote
∗ products der ived from t h i s
∗ so f tware without s p e c i f i c p r i o r wr i t t en permis s ion .
∗
∗ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
∗ AND CONTRIBUTORS ”AS IS ” AND
∗ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
∗ NOT LIMITED TO, THE IMPLIED
∗ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
∗ PARTICULAR PURPOSE ARE
∗ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER
∗ OR CONTRIBUTORS BE LIABLE FOR
∗ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
∗ EXEMPLARY, OR CONSEQUENTIAL DAMAGES
∗ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
∗ SUBSTITUTE GOODS OR SERVICES ;
∗ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
∗ INTERRUPTION) HOWEVER CAUSED AND ON
∗ ANY THEORY OF LIABILITY , WHETHER IN CONTRACT,
∗ STRICT LIABILITY , OR TORT
∗ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
∗ ANY WAY OUT OF THE USE OF THIS
∗ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY

6. PERFORMANCE ANALYSIS OF FIR AND FFT 78

∗ OF SUCH DAMAGE.
∗/

#inc lude ”MK70F12 . h”
#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude ” my f f t . h”

#d e f i n e FILT ORDER 64
#d e f i n e N SAMPLES 5001
#d e f i n e POINTS FFT 256

f l o a t f a s t f i l t e r (f l o a t , f l o a t ∗ , f l o a t ∗ , i n t ∗) ;
f l o a t s l o w f i l t e r (f l o a t , f l o a t ∗ , f l o a t ∗) ;

i n t main (void)
{

i n t k , cont FFT = 0 , i ;
f l o a t b [FILT ORDER+1] = { ’ va lues ’ } ;
f l o a t s i g [N SAMPLES] = { ’ va lues ’ } ;
f l o a t out ;
f l o a t buffer FFT [1 0 2 4] ;
c r ea l T y [1 0 2 4] ;
f l o a t b u f f e r [FILT ORDER+1] = {0} ;
i n t cont = 0 ;

f o r (; ;) {
cont = FILT ORDER;
f o r (k=0; k<N SAMPLES; k++){

// F i l t e r the s i g n a l
out = f a s t f i l t e r (s i g [k] , b , bu f f e r , &cont) ;

// Prepar ing the b u f f e r f o r FFT
buffer FFT [cont FFT] = (double) out ;

cont FFT++;

//When b u f f e r ge t s f u l l po ints , FFT s t a r t s
i f (cont FFT == POINTS FFT){

6. PERFORMANCE ANALYSIS OF FIR AND FFT 79

my f f t (buffer FFT , y) ;
cont FFT=0;

}
}

}

r e turn 0 ;
}

6.3 Validation

Results have been validated through Matlab. In particular, output results of
the CPU have been stored as output and plotted with Matlab.

6.3.1 FIR and FFT results

The obtained filtered signal has been compared with the input signal, the
result are shown in the following figures. It is trivial to observe that, increas-
ing the order of the filter, a better filtered signal is obtained in output. Of
course, there is no difference in the output results between the two different
implementations of the filter. In the figure, the blue signal is the input signal,
while the magenta is the filtered signal.
The same approach has been exploited to validate FFT results. To check
FFT results the order of the filter has been kept constant to N = 64, that
is the best filter (in terms of filtered signal). Even in this case is trivial to
notice that the quality of the FFT improves increasing the number of point
for which the FFT is evaluated. In the picture it is shown the behaviour of
the different FFTs.
It must be kept in mind that increase the order of the filter or the number of
points of the FFT, means increase considerably the number of operations that
the CPU must perform, thus increasing the execution time of the functions
and the workload of the CPU, and this can be critical for real-time applica-
tions, since increasing the execution time of functions could lead to deadline
miss. The performance of these algorithm will be discussed in details in the
following section.

6. PERFORMANCE ANALYSIS OF FIR AND FFT 80

Figure 6.8: Filtered output (N = 8)

Figure 6.9: Filtered output (N = 16)

6. PERFORMANCE ANALYSIS OF FIR AND FFT 81

Figure 6.10: Filtered output (N = 32)

Figure 6.11: Filtered output (N = 64)

6. PERFORMANCE ANALYSIS OF FIR AND FFT 82

Figure 6.12: Filtered output (M = 256)

Figure 6.13: Filtered output (M = 512)

6. PERFORMANCE ANALYSIS OF FIR AND FFT 83

Figure 6.14: Filtered output (M = 1024)

6. PERFORMANCE ANALYSIS OF FIR AND FFT 84

6.4 Performance analysis

Now it is performed the analysis of the performances of FIR filter and FFT,
that is the part of most interest for this thesis. Numerical results will be
given for the single execution times, and it will be proven that the fast im-
plementation of the filter is effectively faster than the slow implementation.

6.4.1 FIR filter analysis

By using the technology discussed in the previous chapters it is possible to
perform the analysis of the different implementations and orders of the FIR
filter. Results are shown in figure. To make a comparison between them,
the average execution times have been measured. The measurement has
been done over an execution time of 10s, thus means over an huge number
of filter functions execution. Numerical results are reported in the table.
From this result it is possible to notice that the amount of time saved is not
negligible, and there are not drawbacks in terms of used memory, since for
the fast implementation of the filter, only an extra integer variable is needed.
Then, from this analysis it is possible to conclude that there is no reason to
chose the slow implementation of the filter. Instead it is not possible to
say a priori which is the best order for the filter, since no requirements on
execution timing are given. If is consider a sampling period of 1ms, it is
possible to conclude that even the most complex designed filter is feasible,
because the sampled data can be processed before another data is incoming
to the system. This consideration can be done under the assumption that the
CPU has only the filtering operation to do, but, if the CPU has to perform
other operations, maybe 143.156µs of execution could be not feasible. It is
possible to notice that doubling the order of the filter, cause a doubling in
the execution time for the filter. Then, a trade-off between filtering accuracy
and execution time must be done.

Filter order Fast avg time(ms) Slow avg time(ms) saved time(%)

8 19.063 27.084 29.6
16 40.740 51.281 20.6
32 75.390 106.953 29.5
64 143.156 210.401 31.9

6. PERFORMANCE ANALYSIS OF FIR AND FFT 85

Figure 6.15: Slow filter analysis (N = 8)

Figure 6.16: Fast filter analysis (N = 8)

6. PERFORMANCE ANALYSIS OF FIR AND FFT 86

Figure 6.17: Slow filter analysis (N = 16)

Figure 6.18: Fast filter analysis (N = 16)

6. PERFORMANCE ANALYSIS OF FIR AND FFT 87

Figure 6.19: Slow filter analysis (N = 32)

Figure 6.20: Fast filter analysis (N = 32)

6. PERFORMANCE ANALYSIS OF FIR AND FFT 88

Figure 6.21: Slow filter analysis (N = 64)

Figure 6.22: Fast filter analysis (N = 64)

6. PERFORMANCE ANALYSIS OF FIR AND FFT 89

6.4.2 FFT analysis

While the test of the filter has been done having only the filter operation
running on the target hardware, FFT analysis has been performed having
the full chain of FIR filter and FFT running on the target. Running only the
FIR filter on the target for the previous analysis, do not affect the reliability
of the measurement, since only the execution time of the function was the
objective of the analysis. In figure is shown that the target runs the filter
operation until the number M of samples needed for FFT computation is
reached. At this point the execution of the FFT algorithm starts. It is
possible to notice that, until this computation ends, the filtering operations
on the signal are not executed. This happens because in the bare metal
application there is not concept of tasks to execute concurrently the filter
and FFT operation. To achieve this result, an operating system should be
running on the development board. By the way, this is not affecting the
obtained result, since, even this time, the measurement of interest is not the
real-time behaviour of the system running both filtering and FFT algorithms
concurrently, but only the execution time of the FFT algorithms.
For the measurement of FFT average execution time, it is not possible to
trust to the same results used for FIR filter analysis, since FIR algorithm
was implemented as a monolithic function, thus the average execution time
computed automatically by Trace32 corresponds to the exact value, instead,
FFT algorithm is not implemented as a monolithic function due to a great
number of calls to different routines because double precision is used. Thus,
the average time automatically computed by Trace32 would not take into
account these calls to functions. For such a reason, to compute the average
execution time of FFT algorithm, since it is a time consuming operation, the
runtime method discussed in previous chapter has been adopted. Obtained
single execution times have been averaged, and results are reported in the
table (precision of millisecond used due to the inaccuracy of runtime method).
It is trivial to see that doubling the FFT points, the average execution time
is more than doubled.

FFT points Avg time(ms)

256 45
512 104
1024 272

6. PERFORMANCE ANALYSIS OF FIR AND FFT 90

Figure 6.23: FFT runtime analysis (M = 256)

Figure 6.24: FFT analysis (M = 256)

6. PERFORMANCE ANALYSIS OF FIR AND FFT 91

Figure 6.25: FFT runtime analysis (M = 512)

Figure 6.26: FFT analysis (M = 512)

6. PERFORMANCE ANALYSIS OF FIR AND FFT 92

Figure 6.27: FFT runtime analysis (M = 1024)

Figure 6.28: FFT analysis (M = 1024)

7

Conclusions

The methodology to perform the debugging and tracing operations with this
kind of technology it is something that cannot be avoided, because, facing
with a safety-critical application, ISO 26262 prescribes that these analysis
techniques are mandatory for the development of the application. Using this
kind of technology, by the way, still presents some critical points:

• A training period of time is needed to be able to master Trace32 envi-
ronment

• Set-up script to have a working debug environment is strongly hardware
dependant, then changing hardware platform could be time consuming

On the other hand it is possible to conclude that, once the training period
has ended, this kind of technology turns out to be useful not only to perform
the mandatory tests prescribed by ISO 26262, but it can be useful to save
an huge amount of time while debugging the application and performing au-
tomatic analysis, due to the possibility to set-up a script that is able to run
automatically the desired operations. Of course this turns out to be a great
advantage because, thinking that about half of the time for software devel-
opment is spent in debugging operations, this results into a big economical
advantage, with a resulting possibility to reduce the time-to-market.

93

References

[1] IEEE 1149.7
https://ieeexplore.ieee.org/document/5412866/

[2] CoreSight components reference manual
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0314h/DDI0314H

coresight components trm.pdf

[3] TWR-K70F120M User’s manual
https://www.nxp.com/docs/en/user-guide/TWRK70F120MUM.pdf

[4] Micrium mC/OS download
https://www.micrium.com/downloadcenter/download-results/?searchterm

=pa-arm-cortex-m4&supported=true

[5] Lauterbach Trace32 flyer
https://www.lauterbach.com/product-overview flyer web.pdf

[6] mClinux
http://www.uclinux.org/description/

[7] mLinux BSP for TWR-K70F120M
https://www.emcraft.com/products/95

[8] Linux Cortex-M User’s Manual
https://www.emcraft.com/docs/linux-cortexm-um-1.12.0.pdf

[9] Lauterbach Debugger Training
http://www2.lauterbach.com/pdf/training debugger.pdf

[10] Kinetis Design Studio User’s guide
https://www.nxp.com/docs/en/user-guide/KDSUG.pdf

94

REFERENCES 95

[11] Lauterbach mTrace for Cortex-M User’s Guide
http://www2.lauterbach.com/pdf/microtrace cortexm.pdf

[12] Lauterbach mTrace flyer
https://www.lauterbach.com/flyer microtrace web.pdf

[13] Kinetis Design Studio Overview
https://www.nxp.com/support/developer-resources/software-development

-tools/kinetis-design-studio-integrated-development-environment-ide:

KDS IDE

[14] RTOS Linux Debugging
http://www2.lauterbach.com/pdf/training rtos linux.pdf

[15] Lauterbach General Reference - A
http://www2.lauterbach.com/pdf/general ref a.pdf

[16] Lauterbach General Reference - B
http://www2.lauterbach.com/pdf/general ref b.pdf

[17] Lauterbach General Reference - C
http://www2.lauterbach.com/pdf/general ref c.pdf

[18] Lauterbach General Reference - D
http://www2.lauterbach.com/pdf/general ref d.pdf

[19] Lauterbach General Reference - E
http://www2.lauterbach.com/pdf/general ref e.pdf

[20] Lauterbach General Reference - F
http://www2.lauterbach.com/pdf/general ref f.pdf

[21] Lauterbach General Reference - G
http://www2.lauterbach.com/pdf/general ref g.pdf

[22] Lauterbach General Reference - H
http://www2.lauterbach.com/pdf/general ref h.pdf

[23] Lauterbach General Reference - I
http://www2.lauterbach.com/pdf/general ref i.pdf

REFERENCES 96

[24] Lauterbach General Reference - J
http://www2.lauterbach.com/pdf/general ref j.pdf

[25] Lauterbach General Reference - K
http://www2.lauterbach.com/pdf/general ref k.pdf

[26] Lauterbach General Reference - L
http://www2.lauterbach.com/pdf/general ref l.pdf

[27] Lauterbach General Reference - M
http://www2.lauterbach.com/pdf/general ref m.pdf

[28] Lauterbach General Reference - N
http://www2.lauterbach.com/pdf/general ref n.pdf

[29] Lauterbach General Reference - O
http://www2.lauterbach.com/pdf/general ref o.pdf

[30] Lauterbach General Reference - P
http://www2.lauterbach.com/pdf/general ref p.pdf

[31] Lauterbach General Reference - Q
http://www2.lauterbach.com/pdf/general ref q.pdf

[32] Lauterbach General Reference - R
http://www2.lauterbach.com/pdf/general ref r.pdf

[33] Lauterbach General Reference - S
http://www2.lauterbach.com/pdf/general ref s.pdf

[34] Lauterbach General Reference - T
http://www2.lauterbach.com/pdf/general ref t.pdf

[35] Lauterbach General Reference - U
http://www2.lauterbach.com/pdf/general ref u.pdf

[36] Lauterbach General Reference - V
http://www2.lauterbach.com/pdf/general ref v.pdf

[37] Lauterbach General Reference - W
http://www2.lauterbach.com/pdf/general ref w.pdf

REFERENCES 97

[38] Lauterbach General Reference - X
http://www2.lauterbach.com/pdf/general ref x.pdf

[39] James Campbell, Valeriy Kazantsev, Hugh OKeeffe Real-time Trace: A
Better Way to Debug Embedded Applications

[40] International Organization for Standardization ISO 26262 Road vehicles
– Functional safety

Acknowledgements

I would firstly like to thank my thesis supervisor prof. Massimo Violante,
to gave me the opportunity to accomplish this work, under his supervision,
and the time spent to give me indications to successfully obtain expected
results. I would really like to thank him for introducing myself in the world
of embedded systems, that will part of my first professional experience in the
following months.
I would like to thank my family, that gave me the precious opportunity to
study in this university, involving a huge investment in terms of money, pa-
tience and trust.
Thanks to Mario Lauritano to be an exceptional room mate during my first
year in Turin, an exceptional reference guide for my studies and an excep-
tional reference for my life.
Thanks to all my friends that supported my during all these years.

98

		Politecnico di Torino
	2018-07-13T11:59:53+0000
	Politecnico di Torino
	Massimo Violante
	S

