POLITECNICO DI TORINO

Master degree course in Mechatronic Engineering

Final project work

Performance analysis of an embedded system

Supervisor:
Prof. Massimo Violante
Candidate:

Luigi Vicari

July 2018

To my family,
without them none of this
would have been possible

Abstract

The main purpose of this thesis is to perform the analysis of the perfor-
mance of an embedded system. In the first part are discussed some general
concepts regarding the debugging and tracing operations and why these are
fundamental in real-time applications, followed by a brief overview of the
hardware software tools that have been used for this thesis. In the second
part will be presented how it is possible to perform basic debugging and
tracing with the Lauterbach pyTrace in Trace32 environment.

The major purpose of this thesis will be discussed on the third part, where
have been developed two services that are able to set-up a complete debug-
ging and tracing environment for a bare metal application and a yClinux
application running on the TWR-K70F120M development board. Further-
more, in the last part of this thesis will be presented how these services works
on a signal processing application, where different analysis will be performed.

Contents

Nomenclature

1 General concepts

1.1
1.2
1.3

Debugging and tracing L.
Real time applications
ISO 26262
1.3.1 ASIL determination
1.3.2 TItem development

2 Hardware and software tools

2.1

2.2

2.3

2.4
2.5

Lauterbach pTrace
2.1.1 pTrace features and characteristics
2.1.2 Cortex-M CoreSight components
TWR-K70F120M development board
Kinetis Design Studio.
2.3.1 Create and deploy bare metal project to target.
Traced2
uClinux oo
2.5.1 uClinux application

3 Trace32 debug and trace

3.1
3.2
3.3

3.4

Trace32 commands
Source code
Application debug
3.3.1 Display sourcecode L.
3.3.2 Data, registers and peripherals.
3.3.3 Breakpoints oo
Application traceo

11

iv

CONTENTS

3.4.1 Manage CoreSight components
3.4.2 Statistics on tracedata
3.4.3 Operating system aware tracing

4 Trace32 set-up script for bare metal application
4.1 Script requirements and parameters
4.2 Script . ..o

5 Trace32 set-up script for wClinux applications
5.1 Script requirements and parameters
5.2 Script

6 Performance analysis of FIR and FFT
6.1 Application description
6.1.1 Inputsignal
6.1.2 FIR filter and Matlab filter designer
6.1.3 Fast Fourier Transform
6.2 Code generationo
6.2.1 FIRfiltercode
6.2.2 FFT code and Matlab coder
6.2.3 Application code
6.3 Validation
6.3.1 FIRand FFT results
6.4 Performance analysis L.
6.4.1 FIR filter analysis
6.4.2 FFT analysis

7 Conclusions

References

11

38
41
47

49
49
90

55
95
56

62
62
62
63
67
67
67
70
76
79
79
84
84
39

93

94

Nomenclature

AHB
CPU
DDR
DWT
ECU
ETB
ETM
FFT
FIR
GCC
GDB
GUI
IEEE
ISR
ITM

Advanced High-performance Bus
Central Processing Unit

Double Data Rate

Data Watchpoint and Trace
Electronic Control Unit
Embedded Trace Buffer
Embedded Trace Macrocell

Fast Fourier Transform

Finite Impulse Response

GNU Compiler Collection

GNU Debugger

Graphical Unit Interface
Institute of Electrical and Electronics Engineers
Interrupt Service Routine

Instrumentation Trace Macrocell

JTAG Joint Test Action Group

KDS

Kinetis Design Studio

v

CONTENTS

MAPBGA Molded Array Process Ball Grid Array
MCU MicroController Unit

MMU Memory Management Unit

MTB Micro Trace Buffer

OS Operating System

PC Program Counter

PC Program Counter

R/W Read/Write

RTT Real-Time Trace

SDRAM Synchronous Dynamic Random Access Memory
SLC Single Level Cell

SWD Serial Wire Debug

SWO Serial Wire Output

SWYV Serial Wire Viewer

TPIU Trace Port Interface Unit

1

General concepts

In this chapter are presented basic concepts of software debugging and trac-
ing, and a general overview of real-time applications. After standard ISO
26262 will be introduced. This standard is the main motivation for the de-
velopment of this thesis because, since this standard prescribes to perform
different tests while facing with the design of an automotive electronic com-
ponent that as an impact for the safety of the driver an people around the
driver, e.g., an automatic breaking system. In particular, ISO 26262 pre-
scribes the usage of Resource usage test when talking about software unit
testing. From this kind of requirements it is needed to make use of the
technology that will be described in the following chapters.

1.1 Debugging and tracing

Debugging and tracing software applications is one of the final steps in a
development project, and if the code reaches an high level of complexity,
debugging can have an huge impact on the time to market.

There are two main categories of tools that allow to debug the application

e Hardware based debuggers

e Software based debuggers

Hardware based debuggers: makes use of dedicated hardware to access
the target memory and processor. Since the debugging operation is not han-
dled by software, it is possible to debug the application even at the bootstrap

1. GENERAL CONCEPTS 2

or when the system crashes (post-mortem debugging). Breakpoints are han-
dled by hardware, i.e., when a breakpoint is reached the whole system stops
the execution and neither the kernel, neither other applications runs on the
target. The debugger is able to access physically the memory over the com-
plete address range.

This presents some disadvantages like the lose of synchronization and com-
munication with the peripherals.

Software based debuggers: makes use of a standard interface to the
target such as Ethernet or a serial line. In this case there is not the possibility
to perform bootstrap debugging, neither post-mortem debugging.

1.2 Real time applications

A large number of applications, from biomedical to automotive, have real-
time constraints.

Let’s take as example the ECU (Electronic Control Unit) responsible for the
engine management of a vehicle. Based on information acquired through
sensors such as airflow meter, throttle sensor and so on, it is responsible
to calculate different engine parameters (e.g., mass of fuel to be injected,
injection time) at each engine cycle. Such a process is classified as hard real-
time, since it requires that data must be computed before a precise deadline.
As it is possible to deduce from this example, real-time systems must satisfy
the following requirement: respond exactly to external events within a finite
time, called deadline.

Real-time applications are classified in:

e Hard real time: missing a deadline of such applications can have
catastrophic effects on the controlled environment.

e Firm real time: missing a deadline makes the result useless, but it
does not cause serious damages to the controlled environment.

e Soft real time: missing a deadline deteriorates the performance of
the system, but does not cause problems to it.

Real-times systems can be in some cases classified as safety critical, if
they are involved in safety relevant applications, e.g. autonomous driving

1. GENERAL CONCEPTS 3

applications, or mission critical, if the fault of the system does not lead to
loss of human lives, but a huge waste of money, e.g. systems controlling the
engine of a satellite.

1.3 ISO 26262

ISO 26262 is an international standard that addresses specifically the auto-
motive industry. It must be strictly respected when addressing the design
of electrical and electronic components that are safety-critical. In particu-
lar, ISO 26262 provides requirements that must be respected both for the
hardware and software design in the whole development process. ISO 26262
focuses on the functional safety concept, i.e., assure the correct functional-
ity of the item not only when systems operates correctly, but even managing
situation where hardware failures or operator errors occurs. When addressing
hazard analysis and risk assessment of electronic items, the standard cares
only to physical injuries of people, i.e., driver and passenger of the car, and
people that surrounds the vehicle, e.g., pedestrian, cyclists, and so on. The
development process of the item can be seen as a V-shaped model, starting
from the top level (system design), going down to the software implementa-
tion, and coming back to the top, through a chain of testing operations.

\ Item testing / 7 z : f
(% 4-7 System design [« 4-8 ltem integration and w
) Test phase testing Qg
% 1Y verification
2 \
%‘P Desiyn phase

verification

\ \\ __________________________

\
Desiyn phase
verl n\:allon
\

\

R ———,

\ \

6-6 ipeuﬁcat{ion of Software testing / 6-1 1ﬂVer|ﬁca(}on of

software safety software safety

5 requirements Q I:ﬁ%g:&s: requirements
£
@ w.
£ \ @ &
3 Desiyn phase %c ('?
T3 verification % 5
3 ; % 5
= 2 K3 B ©
T 2
22 %g, 67 Software Software testing 6-10 Software £
E— 3 ’% architectural design [Test phase integration and testing §
= 2 > > verification &
L \
5 °
g
w
©

/

6-9 Software unit
testing

\
6-8 Software unit t
design and

implementation __Tjest phage
rificaNolt

Figure 1.1: V-shaped model

1. GENERAL CONCEPTS 4

1.3.1 ASIL determination

One of the first concept of ISO 26262 is to have different parameters for the
hardware and software design of the item depending on the safety level that
it is assigned. For such a reason, ISO 26262 establishes four different safety
critical ASIL (Automotive Safety Integrity Level), from ASIL D (the most
severe) to ASIL A (the less severe). To these is added the QM for which the
item is classified as non safety-relevant.

To assign the ASIL to an item it is performed the Hazard analysis and risk
assessment. This consist on the identification of the all possible relevant
operational situation in which the vehicle can be involved, and evaluating
in these situation the impact of possible hazards. For each combination of
operational situation and hazard, the following characteristic are evaluated,
based on the possible injury of people (harm):

e Controllability: possibility to avoid the harm by timely reaction of the
user

e Exposure: probability to be in a certain operational situation
e Severity: measure of the harm that can be caused to people

By the combination of this elements, it is possible to assign the ASIL to the
item.

C1 Cc2 C3
E1 QM oM oM
S1 E2 oM aMm oM
E3 QM aM A
E4 (o1%) A B
E1 aMm aMm aM
E2 QM oM A
S2
E3 oM B
E4 A B C
E1 oM (o1] A
E2 QoM B
S3
E3 C
E4 B D

Figure 1.2: ASIL determination

GENERAL CONCEPTS

1.3.2 Item development

Table 4 — Mechanisms for error detection at the software architectural level

During the item development, the standard prescribes which kind of test
must be performed for each ASIL level.
Against hardware faults the following software checks are prescribed from
the standard.

Methods ASIL

A B [D
1a |Range checks of input and output data ++ | o+ | o+ | o+
1b [Plausibility check? + + + ++
1c | Detection of data errors® + + + +
1d |External monitoring facility® 0 + + | 4+
1e |Control flow monitoring 0 + | 4+ | ++
1f | Diverse software design o 0 + ++

signals from different sources.

b Types of methods that may be used to detect data errors include error detecting codes and multiple data storage

2 Plausibility checks can include using a reference model of the desired behaviour, assertion checks, or comparing

€ An extemnal monitoring facility can be for example an ASIC or another software element performing a watchdog function.

Figure 1.3: Hardware fault tests

Table 10 — Methods for software unit testing

For unit testing the following tests are imposed by the standard.

ASIL
Methods

A B c D
1a |Requirements-based test? ++ ++ ++ ++
1b | Interface test ++ ++ ++ ++
1c | Fault injection test? + + + +
1d | Resource usage test® + + + ++
1e |Back-to-back comparison test between model and code, if applicabled + + ++ ++

2 The software requirements at the unit level are the basis for this requirements-based test.

b This includes injection of arbitrary faults (e.g. by corrupting values of variables, by introducing code mutations, or by corrupting

values of CPU registers).

€ Some aspects of the resource usage test can only be evaluated properly when the software unit tests are executed on the target

hardware or if the emulator for the target processor supports resource usage tests.

4 This method requires a model that can simulate the functionality of the software units. Here, the model and code are stimulated in

the same way and results compared with each other.

Figure 1.4: Unit tests

1. GENERAL CONCEPTS 6

It is possible to notice that for the unit testing it is recommended to perform
the resource usage test for ASILs A, B and C, while it is mandatory for ASIL
D applications. Resource usage test must be performed to check if the unit
has requirements, in terms of computing capability, that is compatible with
the hardware platform used. With this test must be checked as the usage
of the memory and the execution time of the software. This type of test
must be performed with powerful tools that are able to accurate measure
execution times, and track the evolution of the software in time. This kind
of operation is exactly what it is possible to do with the technology that
is used for this thesis, and practical examples of measurement of execution
times of functions will be discussed in the following chapters.

2

Hardware and software tools

This section presents an overview of the different technologies used to de-
velop this thesis.

Hardware devices are the Lauterbach piTrace, a powerful device used for trac-
ing the application, and the TWR K70F120M development board equipping
a Cortex M4 uC.

The main software devices are: Trace32, as debug and tracing environment,
and Kinetis Design Studio to develop bare metal applications.

2.1 Lauterbach uTrace

This device is a lower cost solution developed by Lauterbach that specifically
targets the Corter-M family.

Figure 2.1: Lauterbach yTrace

2. HARDWARE AND SOFTWARE TOOLS 8

2.1.1 pTrace features and characteristics

Lauterbach pTrace is equipped with:
e USB 3.0 interface to the host computer

e 256MB trace memory

e 10, 20 or 34 pin half-size connector for target hardware

Furthermore, this device supports standard JTAG, SWD (Serial Wire De-
bug) and ¢JTAG (IEEE 1149.7 [1]), and it works in the voltage range 0.3V
to 3.3V, but it is also tolerant to 5V inputs.

It provides different features for debugging and tracing the software running
on the target hardware. It can be employed for C/C++ debugging, supports
simple and complex breakpoints and memory read/write operations during
the program execution. For trace operations, the device interacts with Core-
Sight components:

e ETM and ITM data over 4-bit TPIU in Continuous mode

e ITM over SWO (Serial Wire Output)

Lauterbach pTrace supports ETB (Embedded Trace Buffer) and MTB (Mi-
cro Trace Buffer). Combining ITM and ETM data allows the integration
between R/W accesses and instruction flow informations.

It is possible to perform OS-aware tracing, code coverage analysis and energy
measurements (using Trace32 Analog Probe).

2.1.2 Cortex-M CoreSight components

Here is presented an overview of the CoreSight components that implements
trace support for Cortex-M chips. The architecture and the interaction with
the Lauterbach yTrace device is reported in the figure below.

It is possible to notice from the figure that I'TM is a regular memory-mapped
peripheral for the CPU that is accessible through the AHB (Advanced High-
performance Bus).

DWT (Data Watchpoint and Trace) unit and SWV are features that are
implemented in Cortex-M3, Cortex-M4 and Cortex-M?7.

For in depth informations about CoreSight components it is possible to con-
sult the CoreSight reference manual [2].

2. HARDWARE AND SOFTWARE TOOLS 9

CPU AHB

ETM DWT

\

IT™
Vo \
TPIU SWV
4 bit SWO
TPIU Port

Figure 2.2: CoreSight Components

Embedded Trace Macrocell: ETM is an optional, simple component
that can be connected to Cortex-M3, Cortex-M4 and Cortex-M7. It can
only generate basic informations about the execution flow. In particular,
Cortex-M ETM does not provide any support for data tracing and does not
contain comparators to filter informations. Furthermore, it does not support
cycle accurate tracing or ContextID tracing.

Data Watchpoint and Trace: DWT is an optional, more complex com-
ponent that can be connected to Cortex-M3, Cortex-M4 and Cortex-M?7.
This component is able to monitor data accesses and the PC (Progam Counter)
of the CPU. It contains a certain amount of comparators, that can be used
to trigger different actions when a match occurs, it can send periodic infor-
mations about the PC, the ISR (Interrupt Service Routine) and data access.
Furthermore, it is able to halt the CPU, trigger the ETM and count specific
types of CPU cycles.

Instrumentation Trace Macrocell ITM is a component used by the
DWT to send data to an external debug or trace tool. The I'TM is seen by
the CPU as a memory-mapped peripheral that contains a certain amount of

2. HARDWARE AND SOFTWARE TOOLS 10

addresses. Through write operations in these addresses, the software is able
to send data to the external debug and trace tool. To use ITM it is needed
to modify the source code of the application.

ITM has 32 channels organized as shown in the following figure.

IT™
writes | ,x£0000000 Channel 0
| 0xE0000004 Channel 1
CPU [[I'0xE0000008 Channel 2 TPIU
7
Memory
Address

Figure 2.3: I'TM Channels

Trace Port Interface Unit: TPIU is the item responsible to emit data
collected from both ITM and ETM through pins of the chip. It is needed to
select in which mode the TPIU must work between:

e Trace Port mode: TPIU uses up to 4 data pins and a clock to send
synchronously data. ETM and ITM data are merged by means of the
Formatter protocol and exported as a single stream of bytes.

¢ SWYV mode: TPIU uses only one pin to export data through a single
serial signal. The transmission is asynchronous. In this operational
mode, only I'TM data can be sent.

For this thesis, in order to have a more performing tracing, the first option
for the TPIU has been used.

Embedded Trace Buffer: ETB is used to route exported data coming
from I'TM and ETM directly to the ETB instead of pins off chip. By means
of debug connection, Trace32 is able to read ETB content.

2. HARDWARE AND SOFTWARE TOOLS 11

Signal
VREF-DEBUG
GND

GND

GND (KEY)
GND

GND

GND

GND

GND

GND

Pin Pin
1 2
3 4
5 6
- 8
9 10
11 12
13 14
15 16
17 18
19 20

Signal
TMSITMSCISWDIO
TCKITCKCISWCLK
TDOI-ISWO

TDI

RESET-

TRC CLK

TRC DATA[0]

TRC DATA[1]

TRC DATA[2]

TRC DATA[3]

Figure 2.4: 20 pin connector

Signal
VREF-DEBUG
GND

GND

GND (KEY)
GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

Pin Pin
1 2
3 4
5 6
- 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34

Signal
TMSITMSCISWDIO
TCKITCKCISWCLK
TDOI-ISWO

TDI

RESET-

RTCK

TRST- PULLDOWN
TRST-

DBGRQ (EMUO)
DBGACK (EMU1)
TRC CLK

TRC DATA[0]

TRC DATA[1]

TRC DATA[2]

TRC DATA[3]

TRC EXT
VREF-TRACE

Figure 2.5: 34 pin connector

Signal
VREF-DEBUG
GND

GND

GND (KEY)
GND

Pin Pin
1 2
3 4
5 6
- 8
9 10

Signal
TMSITMSCISWDIO
TCKITCKCISWCLK
TDOI- ISWO

TDI

RESET-

Figure 2.6: 10 pin connector

2. HARDWARE AND SOFTWARE TOOLS 12

Signal
VREF-DEBUG
GND

GND

GND (KEY)
GND

GND

GND

GND

GND

GND

Signal
TMSITMSCISWDIO
TCKITCKCISWCLK
TDOI-ISWO

TDI

RESET-

RTCK

TRST- PULLDOWN
TRST-

DBGRQ (EMUO)
DBGACK (EMU1)

Figure 2.7: 20 pin connector (SWO configuration)

Connectors: In the previous figures are reported connector types and
configurations that are supported by Lauterbach uTrace.

2.2 TWR-K70F120M development board

TWR-K70F120M is a development board of NXP equipping a 32 bit ARM

Cortex-M4 MCU.

Figure 2.8: TWR-K70F120M

2. HARDWARE AND SOFTWARE TOOLS 13

The board presents the following features:

e MK70FNIMOVMJ12 core: 256 MAPBGA (Molded Array Process Ball
Grid Array) at 120MHz

e On-board JTAG debug circuit (OSJTAG) with virtual serial port
e 1GB DDR2 SDRAM

e 2GB SLC NAND flash memory

o MMARS8451Q 3-axis accelerometer

e 4 LEDs

e 4 Capacitive toch pads

e 2 Push button switches

e Potentiometer

e Battery holder for 20mm lithium battery

e Micro-SD card slot

The board is able to support uClinux kernel to build a Linux-based applica-
tion and is equipped with a 20 pin JTAG interface that is used to connect
the target hardware to the Lauterbach uTrace.

This is the main feature that led to the decision of using this development
board.

Important note: By default, TWR-K70F120M is set to use the JTAG
in SWV mode, but for this thesis the Trace Port mode is used. Therefore
the following hardware modifications has to be done to the board:

e Remove R138
¢ Remove R11

e Populate R137 (092)

If this hardware modifications are not performed, the scripts developed in
this thesis will not work, because by default TRACE_.CLKOUT signal is
not connected to the debug connector (as it is reported in TWR-K70F120M
User’s manual [3]).

2. HARDWARE AND SOFTWARE TOOLS 14

2.3 Kinetis Design Studio

KDS is an integrated development environment for Kinetis MCUs. It is based
on open-source software: Eclipse, GCC (GNU Compiler Collection), GDB
(GNU Debugger) and others.

2.3.1 Create and deploy bare metal project to target

A bare metal project is an application that runs on the target without the
support of an OS. This kind of projects allows to not go through different
layers of software.

Requirements: To be able to successfully deploy the application to TWR-
K70F120M hardware, the latest version of PEMicro driver must be installed
into the host.

Create the project: To create the project browse the File menu, and
from New, select Processor Ezxpert Project. New Kinetis Project window will
appear. Choose a project name and select Next. Now from Processor select
Kinetis K, MK70, MK70F (120MHz,150MHz), and finally MK70FN1M0Ozzx12.
Select Finish, and KDS will initialize the project.

In the Sources folder it is possible to find main.c where it is possible to write
the user application.

Deploy the application: To deploy the application to TWR-K70F120M,
it is possible to right-click the name of the project, and select Debug As and
Debug Configurations...

The Debug Configuration window will appear. Expand GDB PEMicro In-
terface Debugging and select <project_-name>_Debug PNE.

By selecting Debug, KDS will deploy the application to the hardware, and
at the end of the process it will open the new perspective from which it is
possible to perform a software debugging of the application.

Micrium uC/0OS: Micrium pC/OS-III operating system for TWR-K70F120M
available in Micrium website [4] does not support KDS environment.

2. HARDWARE AND SOFTWARE TOOLS 15

2.4 Trace32

Trace32 is the debugging environment developed by Lauterbach used for the
development of this thesis. It provides all the standard debug features and
gives access to advanced on-chip debug features. [5]

Debug features:
JTAG, ¢JTAG, SWD debug interfaces

Run control

Flash programming

Multi-core debugging
e OS support with task analysis
e HLL debugging

Trace features:
e Serial and parallel off-chip trace
e Non-intrusive flow trace
e Time-correlated multi-core trace
e Run-time analysis and statistics
e Long-time trace

e Code coverage

The system includes a logic analyser module that provides additional fea-
tures as the protocol analyzer (CAN, 12C, etc..) or the energy profiling.

Important note: Lauterbach yTrace must be connected to the host before
launching the application software. Alternatively it is possible to run the
application in simulation mode. To do this, it is necessary to modify the
content of config.t32 in T32 folder as follows:

PBI=SIM

2. HARDWARE AND SOFTWARE TOOLS 16

2.5 pClinux

uClinux is an OS that includes 2.0, 2.4 and 2.6 Linux kernel releases. This re-
lease is intended for micro-controllers without MMUs (Memory Management

Unit) [6].

2.5.1 pClinux application

From emcraft website [7] it is possible to download all the material required
to build a yClinux application for the TWR-K70F120M development board.
Here it is presented how to create and deploy a custom uClinux application

8].

GNU cross-build tools: After having unpacked the archive containing
the software distribution, it is needed to install the GNU cross-build-tools.
It is recommended to install these development tools into the tools/ folder
to avoid manual configuration of the PATH.

Build the application: To build a custom application it is possible to
modify the existing developer project.

Firstable it is needed to perform the activation by going to the top of the
Linux Cortex-M folder and running the following command

. ACTIVATE. sh

It is recommended to work on a copy of the developer project. To do this,
move to the projects/developer/ folder and then clone the project

make clone new=my _developer

Now in the projects/ folder it is possible to find the project my_developer,
where it is possible to write the custom application.

To perform the complete trace of the application, it is needed to build both
the kernel and the application with debug symbols. It is possible to kernel
symbols through the configuration menu of the kernel

make kmenuconfig

From Kernel Hacking it is possible to enable the setting Compile the kernel
with debug info.
To compile the application with debug symbols, it is needed to add the -g flag

2. HARDWARE AND SOFTWARE TOOLS 17

both to CFLAGS and LDFLAGS in the makefile located in my_developer/app/
folder. Now it is possible to compile the whole project

make

Deploy the application: It is now possible to deploy the application to
the board through the available virtual serial port by means of the kermit pro-
tocol. With the following script it is possible to load the my_developer.ulmage
into the target RAM.

#!/usr/local /bin/kermit

set port /dev/ttyACMO
set speed 115200
set carrier —watch off
set flow—control none
set prefixing all

echo {loading ulmage}
PAUSE 1

OUTPUT loadb ${loadaddr} 115200\{13}
send my_developr.ulmage
INPUT 180 {\{13}\{10}STM32F429-DISCO> }

IF FAIL STOP 1 INPUT timeout

echo {running kernel}
PAUSE 1
OUTPUT run addip; bootm\{13}

This script writes to the loadaddr of the device ttyACMO the my_developer.u
Image binary file. After the file transfer, the script sends the uboot command
bootm to start the kernel.

3

Trace32 debug and trace

In this chapter is presented how it is possible to debug an application with
Trace32, without taking care of how to set-up the debug environment. [9]
Trace32 is a powerful environment that gives the possibility to debug the
application running on a target by means of specific commands and/or by
means of a GUI (Graphical User Interface). Furthermore, it is possible to
completely automate the procedure, by creating a script containing multiple
Trace32 commands.

Trace32 is equipped with a wide and detailed documentation that is possible
to browse every time just by pressing F'1 in Trace32 environment.

3.1 Trace32 commands

As shown in the figure, Trace32 environment is equipped with a command
line where it is possible to insert commands to debug on-the-fly the user ap-
plication. Below the command line it is possible to find the so called soft-keys
that helps to enter a specific command step by step. Further informations,
i.e. the target status and the debugging mode, are shown in the right part.

’B::I

components frace Data Var List PERF | SYStem | Step Go Breask | sYmbol = Frame | Register | TRANSIation other | previous
MX

Figure 3.1: Trace32 Command Line

18

3. TRACE32 DEBUG AND TRACE 19

Data.dump 0x1000--0x1fff /Byte

t L Option(s)
Parameter(s)

Subcommand
Command group

Figure 3.2: Trace32 command structure
A Trace3d2 command has a quite complex structure, in particular it is com-
posed by the following elements:
e Command group
e Subcommand
e Parameter(s)
e Option(s)

The structure of a generic Trace32 command is shown in the picture.

Trace32 is not case-sensitive, but capital letters that are displayed in the soft-
keys are meaningful because in Trace32 there is the possibility to abbreviate
the commands by means of the relevant letters, that are always written in
upper case. For example, the following commands are equivalent

Data. List d.l
Register . view T
SYStem . Up Sys

By writing the command adding a blank and pressing F'1, the documentation
of the command will open.

Scripts: It is possible to assembly multiple Trace32 commands into a single
.cmm file, executing the whole set of instructions by means of the command

DO <script-name> [parameter_list]

3. TRACE32 DEBUG AND TRACE 20

“EF Buplist [f=
M Step W Over & up ; » Continue ‘IF Stop = Enddo g Skip C§ Macros [eait <4 Breakpoints

FL INCLEAR

28 [RESet
29 |SyStem. RESet
SYStem,CPU MK7OFNIMOWVMIL2

w
HL=1"]

Figure 3.3: Single step script

If the script is not on the working directory, the path to the script (absolute
or relative) must be inserted instead od the script name. To check the current
working directory it is possible to run the command

pwd
It is possible to execute the script step by step by means of the commands
pstep ; Enable the script single
;step execution mode
DO <script_name> ;Load the script that has
;to be executed
plist ;Show the script window

3.2 Source code

For the development of this section, three different applications have been
used. The first one is a simple application that performs an infinite loop.
Each step of the loop, the application waits for a certain amount of time,
and immediately after waits for the double of the same time. After this, if a
char variable named debug_char is stored the value z, the content is set to a,
otherwise, the ASCII value is incremented. After, the variable runtime_start
is set to 1, and an array of size ARRAY_SIZFE is created. Later this array is
duplicated, and two different sorting algorithms are performed (selection sort
algorithm, with complexity O(n?), and the quick sort algorithm, with worst
case complexity O(n?), but average complexity O(nlogyn)). Here follows
the application code.

*

¥ K K X X X X K K K KK XXX X K K K KKK XXX K K K KKK XX X K KK

TRACE32 DEBUG AND TRACE 21

Copyright (c¢) 2015, Freescale Semiconductor, Inc.
All rights reserved.

Redistribution and use in source and binary forms,
with or without modification , are permitted provided
that the following conditions are met:

o Redistributions of source code must retain the
above copyright notice, this list of conditions
and the following disclaimer.

o Redistributions in binary form must reproduce
the above copyright notice, this list of conditions
and the following disclaimer in the documentation
and/or other materials provided with the
distribution .

o Neither the name of Freescale Semiconductor, Inc.
nor the names of its contributors may be used to
endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

3. TRACE32 DEBUG AND TRACE

+ DAMACE.
*/

#include "MK70F12.h”
#include <math.h>

#define WAIT . CONSTANT 10000
#define ARRAY.SIZE 2000
#define MAXNUMBER 10000

#define PI 3.141592653589793

void create_array (int array|[], int dim, int num);
void selection_sort (int array[], int dim);

void quickSort (int array[], int begin, int end);
void plots (float* sine, intx square);

int main(void)

{

int debug_int = 10;

float debug_float = 1.0;

char debug_char = ’a’;

int i;

int array [ARRAY SIZE | ;

int array_copy [ARRAY SIZE | ;

float sine_wave;

int square_wave ;
int runtime_start ;
int runtime_stop ;

//INFINITE LOOP
for (;;) {

// Wait

for (i = 0; i < WAIT.CONSTANT; i++){

; //NOP
}

22

3. TRACE32 DEBUG AND TRACE

//Wait the double of time
for(i = 0; i < 2xWAIT_.CONSTANT; i++){

; //NOP
}
if (debug_char = ’z"){
debug_char = ’a’;
}
else{
debug_char++;
}
runtime_start = 1;

create_array (array , ARRAYSIZE,
(int)debug_char);

for(i = 0; i < ARRAYSIZE; i++){
array_copy [i] = array|[i];
}

selection_sort (array , ARRAY SIZE);
quickSort (array_copy, 0, ARRAYSIZE-1);
runtime_stop = 1;

plots(&sine_wave , &square_wave);

}
return 0;
}
void create_array (int array|[], int dim, int num){
int i;
int tmp;

for(i = 0; i < ARRAYSSIZE; i++){
array [i] = (isnum) % MAXNUMBER;
}

3. TRACE32 DEBUG AND TRACE 24

num = num+1;

while (num < ARRAY_SIZE){

tmp = array [num];
array [num| = array [num—1];
array [num—1] = tmp;
num += 10;
}
return ;
}
void selection_sort (int array[], int dim){
int tmp;
int 1;
int j;
int ind_min;
int min;

for(i = 0; i < dim; i++){
min = array[i];
ind_min = i;

for(j = i1; j < ARRAYSIZE; j++){
if (array[j] < min){

min = array [j|;
ind_min = j;
}
}
tmp = array [1i];
array [1] = array[ind_min |;
array [ind_min] = tmp;

return ;

3. TRACE32 DEBUG AND TRACE

void quickSort (int array [],
int pivot, 1, r;
int tmp;

if (end > begin) {
b

pivot = array[begin
l = begin + 1;
r = end+1;

while (1 < r)

int begin, int end){

E

if (array[l] < pivot)
L
else {
=
tmp = array[l];
array [1] = array|[r];
array [r] = tmp;
}
1——;
tmp = array [begin |;
array [begin] = array[l];

array [1] = tmp;

quickSort (array , begin, 1);

quickSort (array, r,

}

return ;
}
void plots (float* sine, intx
float t;
xsquare = 0;
for(t = 0; t < 10%PI; ¢
xsine = sin(t);
if (xsine >= 0){
xsquare

}
else{

end);

square){

4= 0.001){

25

3. TRACE32 DEBUG AND TRACE 26
xsquare = 0;

}

xsquare = 0;

return ;
¥

The second application has been developed to give a quick example on the
usage of ITM as debugging technique, and here follows the application source
code. Even in this case an infinite loop is performed, where in each step, the
value of three different counters i, j and k is incremented. At each step
the code is instrumented to send in the channels 0, 1 and 2 the values of
the counters, furthermore in channel 3 value 1 is set when the ¢ counter is
re-setted, while, the value 2 is set when the ¢ counter reaches the value 10001.

~
*

Copyright (c¢) 2015, Freescale Semiconductor, Inc.
All rights reserved.

Redistribution and use in source and binary forms,
with or without modification , are permitted provided
that the following conditions are met:

o Redistributions of source code must retain the
above copyright notice, this list of conditions
and the following disclaimer.

o Redistributions in binary form must reproduce
the above copyright notice, this list of conditions
and the following disclaimer in the documentation
and/or other materials provided with the
distribution .

o Neither the name of Freescale Semiconductor, Inc.
nor the names of its contributors may be used to
endorse or promote products derived from this
software without specific prior written permission.

K OX X X X K K K K K XK X X X K K K K K K X X

* X X X K K K K K K X X X X K X

TRACE32 DEBUG AND TRACE 27

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS "AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

*/

#include "MK70F12.h”

static volatile unsigned int xITM BASECH = (volatile

unsigned int*) 0xE0000000;

#define ITM. TRACEDS(_channel_, _data_) {\

volatile unsigned int x_ch_=ITM BASE CH+
(_channel_); \

while (x _.ch_. = 0); \
(x((volatile unsigned char *)(_ch_))) =
(-data_); \
#define ITM_.TRACE.D16(_channel_, _data_) {\

volatile unsigned int % _ch_=ITM BASE CH+
(_channel_); \
while (x .ch. = 0); \
(x((volatile unsigned short *)(_ch_))) =
(-data_); \

3. TRACE32 DEBUG AND TRACE

#define ITM_TRACE.D32(_channel_, _data_) {\
volatile unsigned int *_ch_=ITM_BASE CH+
(_channel_); \

}

while (x _.ch_. = 0); \

28

(x((volatile unsigned int *)(_ch_)))=
(-data_); \

int main(void)

{

short i = 0;
int j = 0;
char k = 0;

/* Write your code here x/

/* This for loop should be replaced.
By default this loop allows a single
for (;5) {
ITM. TRACED16(0,i);
ITM. TRACED32(1,j);
ITM_ TRACEDS8(2,k);

9

Y

if (i==0){
ITM.TRACEDS8(3,1);

}
JH+
R
k++;
if (i>10000){
i=0;
ITM.TRACEDS (3 ,2);
}
if (j>500000){

] =0;

stepping.x/

3. TRACE32 DEBUG AND TRACE
if (k>=255){
k=0;
}
}
/* Never leave main */

return 0;

}

29

The third application is built upon a pClinux OS. It is just a modification
of the original developer project provided as example. An infinite loop is
performed, where at each step a sample device is read, echoing the content.

/*

x This is a user—space application that reads

*

/dev/sample

x and prints the read characters to stdout

*/

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int main(int argc, char xxargv)

{

char % app_name = argv [0];

char % dev_name = ”/dev/sample”;
int ret = —1;

int fd = —1;

int ¢, x;

while (1){

/*

x Open the sample device RD | WR

*/

3. TRACE32 DEBUG AND TRACE

if ((fd = open(dev_.name, ORDWR)) < 0) {
fprintf(stderr , "%s: unable to open %s:
%s\n” , app-name, dev_name, strerror (errno));
goto Done;

}
/*

* Read the sample device byte—by—byte
*/
while (1) {
if ((x = read(fd, &c, 1)) < 0) {
fprintf (stderr , "%s: unable to read %s:
%s\n”, app_name, dev_name,
strerror (errno));
goto Done;

if (! x) break;

/*

* Print the read character to stdout

*/

fprintf (stdout, "%c”, c¢);

}
/*

x If we are here, we have been successful

*/

ret = 0;

Done:

if (fd >= 0) {
close (fd);

}
}

return ret;

30

3. TRACE32 DEBUG AND TRACE 31

3.3 Application debug

Here are presented some basic instructions needed to perform a simple debug
of the application software, from displaying the source code, to the handling
of breakpoints, and so on. For detailed information about commands it is
possible to refer to the different general references reported in the References
section.

3.3.1 Display source code

To display the source code of the application it is possible to use the Data. List
command

Data. List <function_name> [parameters|

By using this command, a new window displaying the source code starting
from the first line of the function will appear. The row is highlighted in grey
if it is the current value of the PC. There are two different possibilities to
display the source code in Trace32, i.e., displaying the high level language,
or the corresponding Asm instructions. In Trace32, it is the possibility to
choose between these modes by using the Mode command

Mode. <option>

It is possible to choose between the following options
e HIl: Displays only high level language instructions
e Asm: Displays only the Asm instructions

e Mix: Displays both high level language and corresponding Asm in-
structions

Furthermore, there is the possibility, to display the source code from the
current instruction of the PC, by using the following command

Data. list

In the window are present buttons to perform the basic operations such as
Step, OQver, Diverge, Return, Up, Go, and Break. In the following page is re-
ported a picture of how this window looks like.

3. TRACE32 DEBUG AND TRACE 32

| Mstep || W oOver | ADiverge | ¢/Retun| @Up | PGo | M Break | 'Mode &/t %
addr/1ine code label mnemonic |comment =
e ~
#define PI 3.141592653589793
void create_array(int array[], int dim, int num);
void selection_sort(int array[], int dim);
void quickSort(int array[], int begin, int end);
void plots(float* sine, int* square);
int main(void)
45 |{)
ST:00000EC6 [F5ADSD7A SuB r13,r13,#0x3E80
ST:00000ECA (8088 sub sp,sp,#0x20
ST:00000ECC |AFO0 add r7,sp,#0x0
47 int debug_int = 10;
ST:00000ECE |230A movs r3,#0x0A
ST:00000EDO [F507507A add r0,r7,#0x3E80
ST:00000ED4 (F1000014 add r0,r0,#0x14
ST:00000ED8 |6003 str r3,[r0]
48 float debug_float = 1.0;
ST:00000EDA [FO4F537E mov r3,#0x3F800000
ST:00000EDE [F507517A add rl,r7,#0x3E80
ST:00000EE2 [F1010110 add rl,rl,#0x10
ST:00000EE6 |6008 str r3,[r1]
49 char debug_char = 'a’;
ST:00000EE8 |2361 movs r3,#0x61
ST:00000EEA [F507527A add r2,r7,#0x3E80
ST:00000EEE [F102021F add r2,r2,#0x1F
ST:00000EF2 |7013 strb r3,[r2]
int square_wave;
int runtime_start;
int runtime_stop; v
= > 4

Figure 3.4: Source code in Trace32 (Mix mode)

. (o][O nSw

| Mstep | W over | Aiverge| ¢/Return| @uUp | PGo | INBreak | [%Mode 6z .| %
addr/1ine |source | | | =

[void selection_sort(int array[], int dim); ~

void quickSort(int array[], int begin, int end);

void plots(float* sine, int* square);

int main(void)

Y

47 int debug_int = 10;
48 float debug_float = 1
49 char debug_char = 'a
int -

int array[ARRAY_SIZE];

int array_copy[ARRAY_SIZE];
float sine_wave;

int square_wave;

int runtime_start;

int runtime_stop;

0;

//INFINITE LOOP
for GG3) {

//wait
62 for(i = 0; i 7WAIT_CONSTANT; i++){

) H
//Wait the double of time

67 for(i = 0; 1 < 2*WAIT_CONSTANT; i++){
) s //NoP

7l if (debug_char == 'z'
72 . debug_char = "a';
v

Figure 3.5: Source code in Trace32 (HIl mode)

3. TRACE32 DEBUG AND TRACE 33

3.3.2 Data, registers and peripherals

In Trace32 is possible to monitor and set at any time of data, CPU registers
and peripherals. In particular it is possible to set data at run-time without
generating extra load for the CPU if one of the following option is enabled
in the system menu:

e CPU
e Nexus
e DAP

To access the system menu it is possible to run the command
SYStem

If more than one window is trying to access the memory, it is possible to
enable the run-time memory access for all of them by enabling from the
system menu the DUALPORT option, or running the following command

SYStem . Option DUALPORT ON

In Trace32 there is also the possibility to perform an intrusive access memory
by selecting CpuAccess Enable mode from the system menu, or running the
following command

SYStem . CpuAccess Enable

In this case, the real-time behaviour of the target is compromised because
the debugger has access to the CPU resources.
To display the contents of the CPU registers it is possible to use the Register
command, in particular the view subcommand

Register.view [/<options >]

Among all the possible options, the /SpotLight options gives the capability
of highlight the registers, which values have been modified during the last
operations of the CPU, in particular, darker is the color, later in time hap-
pened the modification.

It is possible to modify the value of a register, by using the Set subcommand

Register.Set <register> <value>

Peripherals are really similar to registers, and in the same way it is possible
to display and set the content of the registers by means of the PER command

3. TRACE32 DEBUG AND TRACE 34

{5} B:Register.view /Spotlight o] &)
N _ RO LGEEES20 RS3 0 _S| _Stack "
7 & Rl LEEEES2Q RO 0
C & R? w2692 R10 1FFF0880
V _ R3 pesslded R11 0
Q _ R4 0 R12 0
R5 0 R13 LEEECOBO
0 _ R6 0 R4 uund029
1 Z R/ MGEEG9BO PC jdddE
2 XPSR 01000000 ¥
Figure 3.6: Register.view
{5} B:Register.view /SpotLight [E=R[E=R "<
N _ RO sl R8 0 _S]| _stack ~
7 @ RL LEEEES20 RO 0
C B R? w2692 R10 1FFF0880
V _ R3 pessded R11 0
Q _ R4 0 R12 0
RS 0 R13 LEEEG9RO
0 _ R6 0 R4 jpund029
L _ R7 GEEGARA PC msslidE
2 _ XPSR 01000000 v

Figure 3.7: Register.Set RO OxFF

PER. view [options |
PER. Set.simple <address>|<range> [%<format>| <value>

Similarly, it is possible to display and modify memory data by means of the
Data command

Data.dump <address>|<range> [/<option >|
Var.watch [%<format >|[<variable >] ;alternative
Data.Set <address>|<range> [%format] <value>

[/<option >]

In Trace32 there are three different ways to identify address ranges
o <start_address> —— <end_address>
o <start_address> .. <end_address>
o <start_address> ++ <offset_in_byte>

In the images it is shown how these commands looks like in Trace32 envi-
ronment, applied for the application shown in the previous paragraph.

3. TRACE32 DEBUG AND TRACE

(o] O |ns)

v (2]] [Srwetch] [egview | | [%]

- debug_int = 10219

48] B:data.dump debug_int /SpotLight

address
SD:

sD:
:20000880

SD

SD:
SD:
SD:
SD:
SD:
SD:
SD:

20000870
20000890

0 4
00000000 00002A18

00000000 00000000
471853CE CFDES5552
9A7037D0 FFBIB1B6
1E183ECC EASE96F8
DA014940 9D92241E
660A2423 7B24D76E
FE9545F9 3C72B747
D81ADIBE FEOA3BFF
18208A46 19B65BF9

<

8 (€

00002A18%000027EB
00000000 000004AB
592B470E 7AFAB73D
D1E13847 DEE9476D
CA66D7B4 8F6DOEDS
26804CB4 A1B1A413
3E70A3EC 858D3D07
412C07A8 54F09539
DF18A2C6 CF227067
E8580DAC AA4EAC6A

<

Figure 3.8: Var.Watch debug_int / Data.Dump debug_int /SpotLight

T [wve |)

- debug_int =5

144§ B:data.dump debug_int /SpotLight

address
SD:

SD:
SD:
SD:
SD:
SD:
SD:
SD:
SD:

SD:200008F0

20000870
20000880
20000890
200008A0
20000880
200008c0
20000800
200008E0

Il

ALS8

00000000
471853CE
9A7037D0
1E183ECC
DA014940
660A2423
FE9545F9
D81ADIBE
18208A46
<

CFDE5552
FFBIB1B6
EASE96F8
9D92241E
7B24D76E
3C72B747
FEOA3BFF
19B65BF9

00000000 00000000

000004A8
7AFAB73D
DEE9476D
8F6DOEDS
AlB1A413
858D3D07
54F09539
CF227067
AA4EAC6A

592B470E
D1E13847
CA66D7B4
26804CB4
3E70A3EC
412C07A8
DF18A2C6
E8580DAC

<

Figure 3.9: Data.Set debug_int %Long 0x05

~
© Core Registers (Cortex-M4F)
© System Control
ACTLR DISFPCA No DISOOFP No DISFOL
DISDEFWBUF No DISMCYCINT o
SYST_CSR 00000000 COUNTFLAG Not counted CLKSOURCE External TICKIN
ENABLE Disabled
SYST_RVR 00000000 RELOAD 000000
SYST_CVR 00000000
SYST_CALIB 00000000 NOREF Implemented SKEW Exact TENMS
CPUID 410FC241 IMPLEMENTER 41 VARIANT Revision 0 ARCHIT
PARTNO 0c24 REVISION Al
ICSR 00400000 NMIPENDSET Inactive PENDSVSET Not pending PENDSV
PENDSTSET Not pending PENDSTCLR No effect ISRPRE
ISRPENDING Pending VECTPENDING 0000 RETTOB
VECTACTIVE 0000
VTOR 00000000 TBLOFF
AIRCR FA050000 VECTKEY FAOS ENDIANESS Little PRIGRO
SYSRESETREQ Not requested VECTCLRACTIVE No effect VECTRE
SCR 00000000 SEVONPEND Not wakeup SLEEPDEEP Not deep sleep SLEEPO
CCR 00000200 Disabled Disabled DC
STKALIGN 8-byte/adjustment BFHFNMIGN Disabled DIV_0_
UNALIGN_TRP Disabled USERSETMPEND Denied NONEBA
SHPRL 00000000 PRI_7 00 PRI_5 v
< >

Figure 3.10: PER.view

3. TRACE32 DEBUG AND TRACE 36

3.3.3 Breakpoints
In Trace32 there is the possibility to handle two different types of breakpoints:

e Software breakpoints
e Onchip breakpoints

The number of software breakpoints that can be used while debugging the
application is unlimited. The main problem of this kind of breakpoints is that
they are implemented as intrusive breakpoints, altering real-time behaviour
of the system when used. The architecture of the system could support
the use of onchip breakpoints (TWR-K70F120M is compatible with onchip
breakpoints). These breakpoints are limited in number, but they have the
property to be non-intrusive, thus they do not affect the real-time behaviour
of the system.

In Trace32 there is the possibility to set breakpoints to:

e Program: the breakpoint is set to a code address. In this case the
breakpoint is triggered when the PC reaches the value of the address
code where the breakpoint has been set.

e Read / Write / ReadWrite: the breakpoint is set to a data address. In
this case the breakpoint is triggered when the specified operation (read,
write or both of them) has been executed on the desired variable.

It is possible to set breakpoints in Trace32 via GUI, by double click on the
line of code where the program breakpoints wants to be set, or selecting the
variable name, and from the right-click menu, selecting Breakpoint. Further-
more, it is possible to set and list breakpoints by using the Break Trace32
command

Break. List
Break.Set [<address>|<range>] [/<breaktype >...]]
[/ <impl >]

When a certain breakpoint cause the system to stop its execution, it is high-
lighted in the list window. From the same window it is possible to delete the
desired breakpoint by right-click on it and selecting Delete.

In Trace32 there is the possibility to perform different actions when a break-
point is triggered:

3. TRACE32 DEBUG AND TRACE 37

eB::Break.List = ‘ EL@
KDelete All ODisable All @ Enable Al @Init | &Impl... | E2Store... Sload.. Eiset...
address types impl '
T:0000057E g ONCHIP | __adddf3+0x42

C:20000877 ||Rea ONCHIP __HeapLimit+0x3F7

Figure 3.11: System halted at debug_char Read/Write breakpoint

e Stop: the entire system is halted when this breakpoint is triggered
e Spot: the system is halted just for the time needed to update the screen

e TraceEnable: this breakpoint will not halt the system, but will generate
useful information used for trace analysis.

There are different options that can be used for breakpoints:
e Temporary OFF': the breakpoint is permanent

e Temporary ON: breakpoint is deleted next time the core stops the
program execution

DISable ON: breakpoint is disabled

DISable OFF: breakpoint is enabled

DISableHIT ON: breakpoint is disabled after this has been hit.

In Trace32 it is possible to set conditions on data breakpoints, e.g., the
breakpoint can be triggered when a data reaches a certain value, or is greater
than a certain value, and so on. Furthermore, there is the possibility to use
advanced features for the breakpoint by setting different fields:

e COUNT: triggers the action of the breakpoint at the n-th hit of the
breakpoint

e CONdition: triggers the action of the breakpoint only when the speci-
fied condition is true

e CMD: used to specify an action, or a set of actions, to be performed
when the breakpoint has been triggered

3. TRACE32 DEBUG AND TRACE 38

3.4 Application trace

Here it is presented how to manage the CoreSight components, discussed in
the previous chapter, and how to perform simple real-time analysis of the
user application.

3.4.1 Manage CoreSight components

It is possible to manage all the parameters of the CoreSight components by
accessing the different system menus, through the commands

EIM ;opens the EIM configuration menu
TPIU ;opens the TPIU configuration menu
IT™ ;opens the ITM configuration menu

To output PC data at regular intervals, the field PCSampler must be set.
This interval is expressed in number of clock cycles, and this field must be
set to a value, if it is required to perform an analysis on data. It is possible
to set this parameter from the I'TM menu, or using the command

ITM. PCSampler <value>

The value is expressed as a fraction of a power of two number, starting from
1/64 to 1/32768.

&2 B:ETM =REcR~==
etm control trace TImeMode resources
O oFF Trace [eec External v~ AComp: 0.+4.
@on [JpBGRQ CLOCK DComp: 0.
CISTALL [|| ccomp: 0.
commands trigger Counter: (R)
RESet [PseudoDataTrace JTimeStamps | | Seg: No
@ CLEAR on/off TimeStamp@.OK ExtIn: -
™ Register ExtInBus: 0/0.
& Trace level ExtOut: 0.
ﬂ’) TPIU Version: 3.5
£ List counter
¥ advanced

Figure 3.12: ETM menu

3. TRACE32 DEBUG AND TRACE

Figure 3.13: TPIU menu
— itm — trace — TImeMode ——
O oFF OinteruptTrace | | |External |
®@on OprofilingTrace | - CydePrescaler —
- DataTrace —— | |1/1 v
— commands —— |0l||!l|!llln v | | [JcydeAcourate
~ PCSampler —— |- CLOCK
. @CEAR || | OFF | |
| o Register | -~ TimeStampMode —
& MiTrace
Tmestams
L -~ TimeSanpQ0X —

Figure 3.14: ITM menu

39

3. TRACE32 DEBUG AND TRACE 40

To list all the collected ITM and ETM trace data, it is possible to use the
List subcommand

ITMTrace. List
ETMTrace. List

The result will be an huge set of data, as shown in figures, from which is
possible to get useful results barely. For this, Trace32 gives the possibility to
perform automatic analysis on the data.

| &setup...| N Goto... | #iFind... | reiChart | EProfile | EMPS | $More | Xless |
record rqu%ydress lcycle |data |symbol [ti.back =
r r3,[r7,#0x18] A
1s1s r3,r3,#0x2
1dr r2,[r7,#0x4]
add r3,r3,r2 b
1dr r2,[r3] A
1dr r3,[r7,#0x10]
cmp r2,r3
-0000000049 T:0000113A ptrace ..orial\main\selection_sort+0x36 0.000us
132 min = array[j];
1dr r3,[r7,#0x18]
1s1s r3,r3,#0x2
1dr r2,[r7,#0x4]
add r3,r3,r2
1dr r3,[r3]
str r3,[r7,#0x10]
133 ind_min = j;
1dr r3,[r7,#0x18]
str r3,[r7,#0x14]
130 for(j = 1; j < ARRAY_SIZE; j++){
1dr r3,[r7,#0x18}
adds r3,#0x1
str r3,[r7,#0x18]
-0000000048JBRK 0.200us v

Figure 3.15: ETM data

Bsetup... | A Goto... | #iFind... | AChart | EProfile | EIMIPS | % More | Xless |

\
record run |address cycle |data symbol [ti.back '
-0000000179 T:00001138 fetc .orial\main\selection_sort+0x34 3.040u A
-0000000170 T:00001130 fetch ..orial\main\selection_sort+0x2C 3.040u
-0000000159 T:0000112A fetch .orial\main\selection_sort+0x26 3.020u
-0000000149 T:00001150 fetch ..orial\main\selection_sort+0x4C 3.040u
-0000000139 T:0000114A fetch ..orial\main\selection_sort+0x46 3.040u ~
-0000000128 T:00001134 fetch ..orial\main\selection_sort+0x30 3.040u
-0000000118 T:0000112€ fetch ..orial\main\selection_sort+0x2A 3.020u
-0000000108 T:00001156 fetch .orial\main\selection_sort+0x52 3.040u
-0000000097 T:00001150 fetch .orial\main\selection_sort+0x4C 3.220u
-0000000087 T:00001138 fetch ..orial\main\selection_sort+0x34 2.840u
-0000000077 T:00001132 fetch .orial\main\selection_sort+0x2E 3.040u
-0000000067 T:0000112C fetch ..orial\main\selection_sort+0x28 3.040u
-0000000056 T:00001152 fetch ..orial\main\selection_sort+0x4E 3.040u v
< >

Figure 3.16: ITM data

3. TRACE32 DEBUG AND TRACE 41

3.4.2 Statistics on trace data

It is possible to list all the monolithic functions percentage of time spent
running on the CPU, the worst case execution time and the average execu-
tion time, with a bar chart ordered by non increasing of ratio, by using the
command

Trace.STATistic MAX AVeRage Ratio BAR /Sort Ratio

As it is possible to see from the figure, in the results are reported not only the
functions of the main application such as selection_sort or quickSort, but are
reported all the internal function called by the systems, e.g. all the routines
for operations with double numbers and so on.

£ B::Trace STATistic MAX AVeRage Ratio BAR /Sort Ratio =N R <=
P setup... || iiiGroups... | 33 Config... | R Goto... | =|Detailed| =|Tree | MdChart | HProfile
items: 21. total: 13.882s samples: 189437564.
address |max avr ratio¥% (1% 2% 5% 10% 20% 50% 100 |
selection_sort 240s 2.359s | 33.990%
__adddf3 055us 4.477us | 29.895%
__aeabi_dmul 581us 3.083us | 18.167%

539us 6.985us
431us 9.967us
215us 8.970us

__ieee754_rem_pio2
__kernel_cos
__kernel_sin

quickSort | 117.996ms | 93.207ms 014%
plots 859us | 91.417ms
sin 364us 3.143us 468%
__aeabi_d2f 116us 0.849us 793%
__cmpdf2 814us 1.680us 784%
__aeabi_f2d 305us 0.557us 780%
__aeabi_d2iz 326us 1.162us 9
__aeabi_i2d 904us 1.083us 453%
main| 27.488ms - 447%
__aeabi_dsub 191us 0.085us 373%

__aeabi_cdcmpeq 168us 0.671us

__aeabi_dcmplt 093us 0.567us

OWO RO~ NN RN~ NN N & o N
CO00000OOOOOFKFNNNW

-~

©

@

*

(%]

~N

@
RRR
++++++++++++|||||

fabs 878us 0.410us 171%
create_arra 385ms 3.385ms 048%
(otherg 139us - <0.001%

Figure 3.17: Ratio and execution times analysis

In Trace32 there is the possibility to show the time behaviour of the system,
with informations on which function is running on the CPU for each instant
of time. To display this kind of result, the command must be used

Trace.Chart.sYmbol

From these kind of information it is possible to investigate on which function
is the bottleneck of the application, to give an idea on which segment of code
should be optimized to get the greatest advantages for the overall system.

It is interesting to notice that the application used as reference for this chap-
ter performs the sorting of the same vector of two thousand elements with
two different algorithms: a selection sort and a quick sort. It is noticeable

3. TRACE32 DEBUG AND TRACE 42

X

! B::Trace.Chart.sYmbol o] -E| S

JoSetup... | jiiGroups.. &8 Config... (3 Goto... (3 Goto... F3Find... «In »0¢Out EIFul
-9.000s -8.000s -7.000s

address 4| | | ! =
(other) W
selection_sort
main i
quickSort iy
plots <
__aeabi_f2d |
<1 __aeabi_dcmpt </
__aeabi_cdcmpeq </
—_cmpdf 2 < m
: 2 10S TN <O .
__kernel_sin| W
1 __aeabi_d21z4|mem
1 __aeabi_d2f |
__adddf 3 |
__aeabi_dmuT <|mes
__aeabi_dsub /|
__ieee754_rem_pio2 |

__kernel_cos |

Figure 3.18: Time analysis

the huge difference in execution time between the two algorithms, with the
selection sort algorithm that has an average execution time of 2.359s and a
worst case execution time of 2.240s, while the quick sort average execution
time is 93.207ms and worst case execution time 117.996ms (more than one
order of magnitude).

Furthermore, Trace32 gives the possibility to draw the evolution in time of
a variable by means of a 2D plot. To achieve such a result it is needed to
have a breakpoint set to the desired variable that triggers the data trace for
such variable, and after it is possible to run the trace statistics. Using the
following commands

Break.Set square_wave /Onchip /Write /TraceData
Break.Set sine_wave /Onchip /Write /TraceData
Trace .DRAW. Var %DEFault square_wave

Trace .DRAW. Var %DEFault sine_wave

It is possible to obtain the results shown in the following figures. It is neces-
sary to notice, that the breakpoint is mandatory. If it is not set, the result
will not be shown.

3. TRACE32 DEBUG AND TRACE

[Bsetw..]| R coto. | Fibwde. | iciart || O [0coul[ral]| Om | Sou] Bral]

OOS -7.500s

=5

000s -6.500s
1 |

Figure 3.19: sine_wave time evolution

I_I;HT!FM | AdChart | OIn | 0¢

out EBFul | &I -I-oml-

-6.000s

ERRORS/FIFOFUL.. -7.000s
1
1in
J<m> <« ———

Figure 3.20: square_wave time evolution

43

3. TRACE32 DEBUG AND TRACE 44

To measure execution time between a starting and a final point, in Trace32
it is possible to make use of the Runtime feature. This feature is affected by
some inaccuracy due to the JTAG communication time. To successfully use
this feature it is needed to:

e Setting breakpoints for the starting point and the end point of mea-
surement

e Initialize the runtime, and the area in which the results will be displayed

e Execute several times the code, printing the execution time at each
step

e Display the results
e Remove the used breakpoints

For the example application, e.g., it is possible to set-up the following script
that performs all the described steps to measure the time elapsed from the
creation of the two arrays to the end of the sorting operation

;Set the breakpoints
Break.Set runtime_start /Write
Break.Set runtime_stop /Write

GO
WAIT ISTATE.RUN()

;Initialize runtime and area
RunTime. Init

ARFA. Create OUT
AREA. Select OUT
ARFA .CLEAR OUT

;Perform 6 measurements of the execution time
RePeat 6.
(

GO

WAIT !STATE.RUN()

3. TRACE32 DEBUG AND TRACE 45

&time=RunTime . LASTRUN()
PRINT ” Execution time: &time”

GO
WAIT |STATE.RUN()

)

; Display the final results
ARFA. view OUT

;Remove breakpoints
Break.Delete runtime_start /Write
Break.Delete runtime_stop /Write

By running this script once the debug and trace session has been established,
the obtained result is reported in the following figure. It is interesting from
the figure the inaccuracy of 584.260us. This means that this procedure can
be used only for long time measurements, otherwise, the inaccuracy would
be too high with respect to the measurement. Then, to perform smaller time
segments measurements, other techniques must be exploited. One of this is to
use the Instrumentation Trace Macrocell to perform the measurement. This
technique gives more accurate results, but an instrumentation of the code
is requested, for which several iteration of instrumentation of the code and
building the application may be requested (that can be high time consuming
operations depending on the size of the project).

{7 Buruntime S| (=) 1dr

ref A ref B laststart actual }‘HL’

zero 0. 000us 0.000us 35.637s 39.965s —

ref A 0.000us 35.637s 39.965s

ref B 35.637s 39.965s :
laststart ' on_so:ﬁgar
subs

f; - ‘ = ‘ 3] mov
i-1.33_93—1351"<\+3 -584.260us)

Execution time: 2.3298372000s P
Execution time: 2.3259526000s SOPCEr o=
Execution time: 2.3596512600s =z l:,
Execution time: 2.3293957800s gt

Execution time: 2.3258913600s 1::

Execution time: 2.3225283200s v il

< > b:‘-
o mdm- — 1

Figure 3.21: runtime statistics

3. TRACE32 DEBUG AND TRACE 46

ITM is used to instrument the software to send debug informations. It has
been already discussed how ITM works in the previous chapter. Basing on
how ITM is structured, it is possible to conclude that it is needed a set of
software instructions to be able to write and read data from I'TM channels.
For this purpose, it is possible to add these following set of defines that
provides an API to write 8, 16 or 32 bit data in a specified ITM channel.

static volatile unsigned int *ITM BASECH = (volatile
unsigned intx*) 0xE0000000;

#define ITM. TRACEDS8(_channel_, _data_) {\
volatile unsigned int *_ch_=I[TM _BASE CH+
(_channel_); \
while (¥ _.ch_. = 0); \
(x((volatile unsigned char *)(_ch_))) =
(-data_); \

}

#define ITM_TRACE.D16(_channel_, _data_) {\
volatile unsigned int *_ch_=ITM_BASE CH+
(_channel_); \
while (x _.ch_. = 0); \
(x((volatile unsigned short *)(_ch_))) =
(_data_); \

}

#define ITM.TRACED32(_channel_, _data_) {\
volatile unsigned int *_ch_=ITM_BASE_CH+
(_channel_); \
while (¥ _.ch_. = 0); \
(x((volatile unsigned int *)(_-ch_)))=
(-data_); \

}

Once these macros have been defined it is possible to use simple functions to
write data to the different channels, such as

ITM. TRACEDS (3 ,1);
ITM_TRACEDS (3 ,2);

3. TRACE32 DEBUG AND TRACE 47

3.4.3 Operating system aware tracing

Trace32 gives the possibility to set-up an environment that is able to be
aware of operating system operations. The most important feature is that
Trace32 is able to track task switches, giving the possibility to perform dif-
ferent statistic on task execution that are fundamental for safety-critical ap-
plications. For example, it is possible to find the worst case execution time
of a task running on the target, and evaluate if the considered task, with
the current scheduling algorithm, and the current load, is able to meet the
deadline for data delivery.

To track context switches between the different tasks, it is possible to use
the command

TASK.CONFIG(magic)

That returns as content the address of the variable that owns the information
of witch task is currently running in the target. Than, it is possible to
notice, that it is possible to use the return value of this function to set up a
breakpoint, in order to be able to track each context switch that happens in
the target. Than, to perform some analysis based on tasks, it is required to
set the breakpoint with the following command

Break.Set TASK.CONFIG(magic) /Write /TraceData

Once the breakpoint has set, it is possible to perform similar analysis that
have been discussed for functions. In particular, it is possible to analyse
the execution time of each task running on the target, such as the worst case
execution time and the average execution time, with the total amount of time
spent executing in the CPU (percentage value) shown as a bar diagram, with
the following command

ITMCanalyzer. STATistic . TASK

Similarly, it is possible to have a chart showing in each instant of time which
was the task currently running on the target with the following command

ITMCanalyzer . Chart . TASK

The results that are obtained from the uClinux application shown in the
previous sections are shown in the following figures. It is interesting to notice,
since this application continuously read data from a device, the swapper
process, i.e. the process that takes care for I/O operations, is the process
that keep the CPU busy for the greatest amount of time.

3. TRACE32 DEBUG AND TRACE 48

£ BuITMCAnalyzer.STATistic. TASK

Psetup... jiiGroups.. ik Config... E|Detailed fiNesting rw/Chart = EProfile
tasks: 6. total: 18.945s
range [total min max avr count ratio¥ 1% 2% 5% 10% 20% 50% 100 |
(unknown) | 139.059ms | 139.059ms | 139.059ms - 0. 0.734% [¢
app 2.548s 22.006ms | 52.866ms | 50.962ms 50. 13.449%
swapper 16.255s | 685.200us | 333.936ms | 253.984ms 64. 85.799%
events/0 2.839ms | 74.400us | 268.460us | 218.392us 13. 0.014% |«
sync_supers | 110.780us | 36.220us | 37.760us | 36.927us 3. <0.001% ¢
bdi-default | 126.920us | 41.880us | 42.560us | 42.307us 3: <0.001% |«

Figure 3.22: Task execution time statistics

B:ITMCAnalyzer.Chart. TASK =R=R <"
P setup... | jiiGroups... | 52 Config... M Goto... | f3 Goto... | #)Find... | In | »I«Out | @ Ful
s -10.200s -10.000s -9.800s -9.600s -9.400s -9.200s -9.000s -8.800s
range «»| 1 1 1 1 1 1 1 1 |
Cunknown) 4

app | . | | - -
swapper /il NN zIEEEEEEEEEE S
events/0
sync_supers «y

bdi-default W)

Figure 3.23: Task time evolution statistics

4

Trace32 set-up script for bare
metal application

In this chapter it is shown how, starting, from an example script provided
by Lauterbach, a service that is able to provide a working debugging and
tracing environment for a bare metal application has been set-up.

4.1 Script requirements and parameters

To be able to successfully run the script the following requirement is needed:
e Place the script in the same folder of the .elf file

e The executable .elf file must be built with debugging informations (oth-
erwise will not be possible to make use of symbols, i.e., the source code
will not be visible in HIl mode, and so on)

This script has in input one parameter:
e Name of the .elf file to debug

To run the script is then possible to use the following command
DO <path>/twr—k70f120 _configuration .cmm <name>.elf

Once the script has been processed from Trace32, the debugging and tracing
environment will be ready for the use.

49

4. TRACE32 SET-UP SCRIPT FOR BARE METAL APPLICATION 50

4.2 Script

Here follows the twr-k70f120_configuration.cmm code

I

@Title: Demo script for MK70FNIMOVMJ12 on TWR-K70F120
with Offchip—Trace (RAM)
@Description :
Loads the sieve demo application into RAM and sets
up a demo debug
scenario .
The Offchip Trace using a Combiprobe/uTrace or
PowerTrace is set up.
Use this script for testing the Offchip—Trace.
Prerequisites:
* Connect Combiprobe/uTrace to J11
or
Connect AutoFocus Preprocessor to J11
and connect DebugCable to Preprocessor
% remove R138 & RI11
x populate R137
@QKeywords: ARM, Cortex—M4, EIM, ITM
@Author: AME
@Board: TWR-K70F120
@Chip: MK70FNIMOVMJ12
@QCopyright: (C) 1989—-2016 Lauterbach GmbH, licensed
for use with TRACE32(R) only

$Id: twr—k70f120_sieve_offchip_trace_sram .cnm 10461
2017—02—16 14:36:147Z mplichta $

ENTRY &elfname

WinCLEAR

I

I

initialize and start the debugger

RESet

4. TRACE32 SET-UP SCRIPT FOR BARE METAL APPLICATION 51

SYStem . RESet

SYStem .CPU MK70FN1IMOVMJ12

SYStem . CONFIG . DEBUGPORTTYPE SWD

IF hardware .COMBIPROBE() | | hardware .UTRACE()

(
SYStem . CONFIG .CONNECTOR MIPI20T

)

SYStem . Option DUALPORT ON
SYStem . MemAccess DAP
SYStem . JtagClock CICK 10MHz
SYStem . Up

GOSUB DisableWatchdog

; initialize offchip—trace (EIM ON, ITM ON)
IF hardware .COMBIPROBE() | | hardware .UTRACE() | | Analyzer ()

(

; set PinMux and enable Clocks
Data.Set SD:0x40048038 %Long 0x0000FFFF // PORTA_CLK
Data.Set SD:0x40048004 %Long 0x00001000 // TRACE.CLK
Data.Set SD:0x40049018 %Long 0x00000740 // TRACECLK
Data.Set SD:0x4004901C %Long 0x00000740 // TRACED3
Data.Set SD:0x40049020 %Long 0x00000740 // TRACED2
Data.Set SD:0x40049024 %Long 0x00000740 // TRACEDI
Data.Set SD:0x40049028 %Long 0x00000740 // TRACEDO
Data.Set SD:0x40048068 %Long 0x00000000

// Trace Clkdiv 0

; optional: setup the DCO here
IF FALSE()
(
; let the DCO run ~80—90MHz
Data.Set SD:0x40064003 0x75
; NFC/32 + Trace/1
Data.Set SD:0x40048068 %Long 0xF8000000

)

4. TRACE32 SET-UP SCRIPT FOR BARE METAL APPLICATION 52

)

TPIU. PortSize 4
TPIU . PortMode Continuous
ITM. DataTrace CorrelatedData
ITM.ON

EIM. Trace ON

ETM.ON

IF hardware .COMBIPROBE() | | hardware .UTRACE()

(

)

Trace .METHOD CAnalyzer

Trace. Autolnit ON

IF VERSION.BUILD .BASE() >=74752.
(

CAnalyzer . AutoFocus

)
ELSE

(

; for uTrace & Combiprobe use manual calibration
; CAnalyzer.ClockDELAY Large

)

IF Analyzer ()

(

I

I

9

Trace METHOD Analyzer
Trace. Autolnit ON
Trace. AutoFocus

Flash programming

prepare flash programming (declarations)

DO "7 /demo/arm/flash /mk70.cmmm PREPAREONLY

I

ReProgram Flash

FLASH. ReProgram ALL
Data .LOAD. E1f 77777 /&elfname”
FLASH. ReProgram OFF

4. TRACE32 SET-UP SCRIPT FOR BARE METAL APPLICATION 53

; start program execution
Go.direct main
WAIT !STATE.RUN()

Data. List main
ITM. PCSampler 1/64
ENDDO

DisableWatchdog:

(
; disable the Watchdog
LOCAL &tmpl &tmp2
&tmpl=Data . Long (ST:0x20000000)
&tmp2=Data . Long (ST:0x20000004)
Register .SWAP

; The watchdog has a restrictive timing. It has to be
; configured and unlocked within a peripod

; of 204256 cycles. Therefor the unlock sequence need
; to be done by a small target program.

Data. Assemble ST:0x20000000 strh rl,[r0]
;SD:0x4005200E = 0xC520 (Key 1)

Data. Assemble |, strh r2 ,[r0]
;SD:0x4005200E = 0xD928 (Key 2)
Data. Assemble |, strh r4 ,[r3]
;SD:0x40052000 = 0x0000 (Config register)
Data. Assemble bkpt #0

Register.Set PC 0x20000000
Register.Set RO 0x4005200E
Register.Set R1 0xC520
Register.Set R2 0xD928
Register.Set R3 0x40052000
Register.Set R4 0x0

4. TRACE32 SET-UP SCRIPT FOR BARE METAL APPLICATION 54

Go. direct
WAIT !'RUN()

Register .SWAP
Data.Set ST:0x20000000 %Long &tmpl
Data.Set ST:0x20000004 %Long &tmp2

RETURN
)

This script is responsible for resetting the target as first operation. After, it
sets all the required system configurations such as:

e CPU model

e Debug port type

Dualport option
e Memory access
e JTAG clock

Furthermore, if it is being using the compiprobe cable or the uTrace the config
connector is set to MIPI20T. Once these basic options have been set, JTAG
pins are configured in order to use the 20-pin with 4 bit TPIU configuration.
Immediately after, the CoreSight components are configured, in particular
the TPIU port size is set to 4 in continuous mode, and ITM is instructed
to send correlated data (i.e., merging ETM and ITM data togheter). Once
these instructions have been executed, the canalyzer auto focus procedure
will start, finding the best frequency at which operate. At the end of all
these preliminary steps and configurations, the flash memory of the target is
programmed by loading the user application, which name has been specified
as parameter for the script. When the executable file has been loaded in
flash memory, the execution is started, bypassing all bootstrap operations
until the target reaches the main function where the system is halted. The
script ends, setting a value of the PCSampler, in order to be able to perform
data tracing, and displaying the source code of the main function.

5)

Trace32 set-up script for
wClinux applications

Starting from the script described in the previous chapter, has been realized a
script able to set-up a debugging and tracing environment for an application
running on a YClinux operating system. This environment is provided with
uClinux awareness.

5.1 Script requirements and parameters

To be able to successfully run the script the following requirement is needed:
e Have u-boot already installed in the flash memory of the target

e The script must be placed in a folder that contains the vmlinux and
ulmage files and a single folder named ”linux_ker” containing the file
system of the linux application containing all the source files.

Have vmlinux compiled with debugging informations

Have the uClinux application compiled with debugging informations
The script takes as input the following parameters:
e The name of the uClinux application

e The name of the ulmage that has to be loaded

95

5. TRACE32 SET-UP SCRIPT FOR uCLINUX APPLICATIONS 26

e The com port through with the target is connected to the host

To run the script is then possible to use the following command

DO <path>/Linux_configuration .cmm <app_name>
<image\ _name>.ulmage com<number>

Once the script has been processed from Trace32, the debugging and tracing
environment will be ready for the use when the application will start on the
target.

5.2 Script

Here follows the Linux_configuration.cmm code

; @QTitle: Demo script for MK70FNIMOVMJ12 on TWR-K70F120
; with Offchip—Trace (RAM)
@Description:
Loads the sieve demo application into RAM and sets
; up a demo debug
scenario .
; The Offchip Trace using a Combiprobe/uTrace or
PowerTrace is set up.
Use this script for testing the Offchip—Trace.
; Prerequisites:
: * Connect Combiprobe/uTrace to J11
or
Connect AutoFocus Preprocessor to J11
and connect DebugCable to Preprocessor
% remove R138 & RI11
: x populate R137
; @Keywords: ARM, Cortex—M4, EIM, ITM
@Author: AME
@Board: TWR-K70F120
@Chip: MK70FNIMOVMJ12
; @QCopyright: (C) 1989—2016 Lauterbach GmbH, licensed
; for use with TRACE32(R) only

5. TRACE32 SET-UP SCRIPT FOR uCLINUX APPLICATIONS o7

$Id: twr—k70f120_sieve_offchip_trace_sram .cmm 10461
2017—02—16 14:36:147Z mplichta $

?

ENTRY &app_name &uimage &com

WinCLEAR

; initialize and start the debugger

RESet

SYStem . RESet

SYStem .CPU MK70FN1IMOVMJ12

SYStem . CONFIG . DEBUGPORTTYPE SWD

IF hardware .COMBIPROBE() | | hardware .UTRACE()

(

)
SYStem . Option DUALPORT ON

SYStem . MemAccess DAP
SYStem . JtagClock CICK 10MHz
SYStem . Up

SYStem . CONFIG . CONNECTOR MIPI20T

GOSUB DisableWatchdog

; initialize offchip—trace (EIM ON, ITM ON)

IF hardware .COMBIPROBE() | | hardware .UTRACE () | | Analyzer ()

(
; set PinMux and enable Clocks
Data.Set SD:0x40048038 %Long 0x0000FFFF // PORTA_CLK
Data.Set SD:0x40048004 %Long 0x00001000 // TRACE.CLK
Data.Set SD:0x40049018 %Long 0x00000740 // TRACECLK
Data.Set SD:0x4004901C %Long 0x00000740 // TRACED3
Data.Set SD:0x40049020 %Long 0x00000740 // TRACED2
Data.Set SD:0x40049024 %Long 0x00000740 // TRACEDI
Data.Set SD:0x40049028 %Long 0x00000740 // TRACEDO
Data. Set SD:0x40048068 %Long 0x00000000

// Trace Clkdiv 0

5. TRACE32 SET-UP SCRIPT FOR uCLINUX APPLICATIONS

; optional: setup the DCO here
IF FALSE()
(
; let the DCO run ~80—90MHz
Data.Set SD:0x40064003 0x75
; NFC/32 + Trace/1
Data.Set SD:0x40048068 %Long 0xF8000000

)

TPIU. PortSize 4
TPIU . PortMode Continuous
:ITM. DataTrace CorrelatedData

)
IF hardware .COMBIPROBE () | | hardware .UTRACE()

(
Trace .METHOD CAnalyzer
Trace.Autolnit ON
IF VERSION.BUILD .BASE() >=74752.
(

CAnalyzer . AutoFocus

)
ELSE

(

; for uTrace & Combiprobe use manual calibration

; CAnalyzer .ClockDELAY Large
)

)

IF Analyzer ()

(
Trace .METHOD Analyzer

Trace. Autolnit ON
Trace. AutoFocus

)

do ""\demo\etc\terminal\serial\term.cnm &com

o8

5. TRACE32 SET-UP SCRIPT FOR uCLINUX APPLICATIONS 29

GO
Wait 5.s
Break

:Load the kernel

Data .LOAD. Binary &uimage A:0x08007FCO0
Data.LOAD. EIf vmlinux /GNU /NoCODE /STRIPPART 4.
sYmbol.SourcePATH ./linux_ker)\

GO

ITM.ON

EIM. Trace ON
ETM.ON

Trace.Arm

ITM. PCSampler 1/256

; Booting
TERM. Out ”bootm” 0xA

; Loading uClinux awareness
Wait 1.s
TASK . CONFIG
/T32\demo\arm\ kernel\uclinux\linux —3.x\ uclinux3 . t32
MENU. ReProgram
/T32/demo\arm\ kernel\uclinux\linux —3.x\ uclinux . men

;Setting up the autoloader
TASK.sYmbol. Option AutoLoad Process

Wait 50.ms
do /T32\demo\arm\kernel\uclinux\linux —3.x\app_debug.cmm
&app_name

ENDDO
DisableWatchdog:

(
; disable the Watchdog

5. TRACE32 SET-UP SCRIPT FOR uCLINUX APPLICATIONS 60

LOCAL &tmpl &tmp2
&tmpl=Data . Long (ST:0x20000000)
&tmp2=Data . Long (ST:0x20000004)
Register .SWAP

; The watchdog has a restrictive timing.
: It has to be configured and unlocked within a period

; of 204256 cycles.

Therefor the unlock sequence need

;: to be done by a small target program.

Data. Assemble ST:0x20000000
:SD:0x4005200E = 0xC520
Data. Assemble
:SD:0x4005200E
Data. Assemble
:SD:0x40052000
Data . Assemble

Register.
Register .
Register.
Register.
Register.
Register.
Go. direct

Set
Set
Set
Set
Set
Set

WAIT 'RUN()

’

I

9

PC
RO
R1
R2
R3
R4

Register .SWAP
Data.Set ST:0x20000000 %Long &tmpl
Data.Set ST:0x20000004 %Long &tmp2

RETURN
)

0x20000000
0x4005200E
0xC520
0xD928
0x40052000
0x0

= 0xD928

= 0x0000

strh rl,[r0]
(Key 1)
strh r2 ,[r0]
(Key 2)
strh r4 ,[r3]
(Config register)
bkpt #0

This script performs the same configuration of CoreSight components that
has been used for the bare metal application. In addition, this script, pro-
vides a full working environment for the yClinux application. In particular,
a terminal window to interact with the target hardware is displayed (serial
communication between the host and the virtual serial port of the target).
This terminal window will use the COM port specified as script parameter,

5. TRACE32 SET-UP SCRIPT FOR uCLINUX APPLICATIONS 61

with a baud rate of 115200. It is possible to interact with the target through
the terminal only when the target is running. The script performs an auto-
matic procedure to load in the target RAM memory the kernel image and
perform the boot operation with the following steps:

e Loads the .ulmage file to the target RAM, which name has been spec-
ified as script parameter. For TWRK70F120M address is 0x08007FC0

chosen

e Through the terminal is sent the bootm command to the target (run-
ning u-boot), this command will start the boot sequence starting from

the load address defined as an environment variable (this address is
0x08007FCO0 by default for TWRK70F120M development board)

e File vmlinuz, compiled with debug symbol informations, is used to
load kernel symbols, through which will be possible to debug and trace
kernel operations

e Path of symbols is set, in order to instruct Trace32, that all the source
files can be found starting from the linuz_ker folder

After the target completed the boot operations, the uClinux awareness is
set-up through the following steps:

e Configuration of the uClinux 3.0 awareness through the uclinuz3.t52
file, provided by Lauterbach

e Set-up a menu for Trace32 environment from which it is able to manage
uClinux debugging and tracing, through the uclinuz.men file provided
by Lauterbach

After these steps, it is set-up the symbol autoloader for uClinux applications,
to automatically detect application symbols, through the command

TASK.sYmbol. Option AutoLoad Process

At this point all the requirements needed to run the script provided by
Lauterbach app_debug.cmm are satisfied. Thus, this script starts the ex-
ecution, and will wait until the desired application (which name is set as
parameter) to debug starts its execution.

6

Performance analysis of FIR
and FFT

In this chapter is shown how it is possible to use this technology to perform
analysis on a signal processing application. In particular the performance of
two different FIR filter implementations (with different complexities), and
an FFT algorithm (with different number of points for which is computed
the transform) will be analysed.

6.1 Application description

This application is responsible to filter a signal input, and perform the FF'T
after that a certain amount of samples have been obtained.

6.1.1 Input signal

The used input signal is a sum of sinusoidal functions at different frequencies,
one at low frequency, the other two at high frequency (that are the compo-
nents that it is needed to filter out by means of the low pass FIR filter). The
input signal can be expressed by means of the following equation

u(t) = Aysin(2m fit) + Agsin(27 fot) + Assin(2w fst) (6.1)
Where the following parameters have been chosen:

.Alzl

62

6. PERFORMANCE ANALYSIS OF FIR AND FFT 63

Input signal
| I
| i \ il w I
M I i
fin Il af {in | i I
M| A Hl il I | |
\ | I | \
A I | | I l ||
| b ol ‘\ L [
oo I I | | i I
‘x . .] | b
\ [| \ [
U L I A Y A I
/ \ n | | I
o | ‘/ I \‘ ‘\ I | \ j/ \,“\
| | | \ | ‘ [‘ 1 ‘ |
I | | ‘ ‘n\\ ‘ \“‘w‘ | f““ |
Il W . I ‘ Wl
05 u” | i i [Il [|
- ‘ i | | | \‘
I \ 0 . \ . |l \
il | ‘\"‘M‘ H\‘ | ‘/\ i (‘ \“\‘ \1-‘ “[‘
1 I\ i I/ Wl | il U
Vi I | i1 L] W I
i | V I |
‘ ;
0 0.2 0.4 0.6 0.8 1 12
Figure 6.1: Input signal
® fl =5Hz
L] A2 =0.1
o fob=060Hz
® Ag =0.1
o f3=TTHz

The time behaviour of the input signal is reported in the figure.

6.1.2 FIR filter and Matlab filter designer

For this application has been used a low pass FIR digital filter. The design
objective of this filter is to cut off the two high frequency components of the
input signal. A FIR filter is characterized by the following discrete transfer

function
N

H(z) =Y blk]z"* (6.2)

Where N is the order of the filter.
For this application four different filters have been designed, all of them

6. PERFORMANCE ANALYSIS OF FIR AND FFT 64

using the same technique, i.e. FIR low pass filter with Hamming window.
The only design parameter that varies is the filter order. In particular have
been designed filters with order:

e N =38
e N =16
o N =32
e N =064

To design the filter, Matlab Filter Designer tool has been employed. This
tool provides the capability to choose the design parameters of the filter, and
starting from these, it computes the b coefficients for the filter. The following
design parameters have been used for the design:

e Response type: lowpass
e FIR: window

e Window: Hamming

Sampling frequency F's: 1000H z

Cut frequency Fe: 20H z

The following values of the b polynomial have been obtained, listed from by
to bN

N=28

0.017556 0.048011 0.12235 0.1976 0.22897
0.1976 0.12235 0.048011 0.017556

N = 16

0.0079256 0.011884 0.022997 0.040163 0.061049
0.082476 0.101 0.11353 0.11796 0.11353
0.101 0.082476 0.061049 0.040163 0.022997
0.011884 0.0079256

N = 32

0.0023095 0.0028755 0.0041196 0.0061736 0.0091169

6. PERFORMANCE ANALYSIS OF FIR AND FFT 65
0.012967 0.017671 0.023109 0.029094 0.035386
0.041704 0.047743 0.053199 0.057786 0.061255
0.063416 0.064151 0.063416 0.061255 0.057786
0.053199 0.047743 0.041704 0.035386 0.029094
0.023109 0.017671 0.012967 0.0091169 0.0061736
0.0041196 0.0028755 0.0023095

N = 64

—0.00065146 —0.00061399 —0.00058867 —0.00056074
—0.0005114 —0.0004184 —0.00025681 3.0552e—-19
0.00037924 0.00090754 0.0016096 0.0025072
0.0036176 0.0049527 0.0065184 0.008313
0.010328 0.012546 0.014943 0.017487
0.02014 0.022857 0.025589 0.028283
0.030885 0.033339 0.035594 0.037598
0.039306 0.040677 0.041681 0.042293
0.042499 0.042293 0.041681 0.040677
0.039306 0.037598 0.035594 0.033339
0.030885 0.028283 0.025589 0.022857
0.02014 0.017487 0.014943 0.012546
0.010328 0.008313 0.0065184 0.0049527
0.0036176 0.0025072 0.0016096 0.00090754
0.00037924 3.0552e—-19 —0.00025681 —0.0004184
—0.0005114 —0.00056074 —0.00058867 —0.00061399
—0.00065146

In figure are reported the bode diagram of the different FIR filters, while in
the table are reported the values of attenuation at the frequency of interest for
the application (60H z and 77Hz). It is interesting to notice how the simplest
filter is not able to cut the high frequency components of the original signal.

| Filter order Att.Q60H=(dB) Att.Q77Hz(dB) |

8
16
32
64

-1.746
-6.735
-26.078
-76.285

-2.902
-11.445
-70.479
-70.140

6. PERFORMANCE ANALYSIS OF FIR AND FFT

___Magnitude Response (dB)

66

Magnitude (dB)

hoh b N A
o o o o (=
T T T T }

o
&
T

~

1 1 1 r 1 1

&
S
T

4
o
T

A\\/ ~

0 50 100 150 200 250 300 350
Frequency (Hz)

Figure 6.2: Bode diagram: N =8

__Magnitude Response (dB)

400 450

Magnitude (dB)

L

70 I I \ I
0 50 100 150 200 250
Frequency (Hz)
Figure 6.3: Bode diagram: N = 16
_Magnitude Response (dB),
o= T T n
10 - -
o 20 - .
&
0 30 —
=
'g -40 - -
s
50 - S
ol /\//\ /\ ﬂ/\ /\/\ /\/\ /\/\
-70 & 1
0 50 100 200 250 300 350 400 450

Frequency (Hz)

Figure 6.4: Bode diagram: N = 32

6. PERFORMANCE ANALYSIS OF FIR AND FFT

__Magnitude Response (dB),

67

o
]

\\\

\

Magnitude (dB)
- NS I U RN
o=y o (=] o =
T T T T T

(2]
S
T

I

\ 1

&
o
T

JAVAVAVAWA

\r»\\r\‘,

L
AR

r/\ r

| W v

N /\A/\Aﬂ
[\[\f YAVAVAVAVAYAYAVAYAYAYAYAYAYA @
LU m LY \\' TATATATATATATAY

[\ /
| AT A \f ”\ ” ”
200 250

I

|\

0 50

100

150 300 350 400 450
Frequency (Hz)

Figure 6.5: Bode diagram: N = 64

6.1.3 Fast Fourier Transform

To use faster algorithms, the FFT is computer over a number M of point,
where M is a power of two number. By doing this, it is possible to exploit

faster decimation in time or decimation in frequency algorithms.

application different values of M are used, in particular:

o M =256
o M =512
o M =1024

6.2 Code generation

For this

Here it is presented how the source code has been obtained both for the FIR
filters, and the FFT. In particular two different implementations for the FIR

filter have been

6.2.1

exploited.

FIR filter code

To produce a function that given a sample of the input signal is able to filter
it and return the filtered signal as result, the following theoretical result has
been exploited: write the transfer function H(z) in the time domain, by using

6. PERFORMANCE ANALYSIS OF FIR AND FFT 68

the inverse Z-transform, obtaining the following difference equation

oln) = 3 bkluln — K (6.3)

Than it is simple to notice that the filtered value is a linear combination of
the current and past values of the input signal. Then, a buffer storing N 41
values is needed. To build this buffer the structure shown in figure has been
used. At each step, before the sampling, the current value of the input signal
is inserted in the first position of the array and, after that the sample has
been filtered, the buffer is updated, by shifting all the elements of the buffer
to the right of one position, discarding the last one.

u k] | ulk-1] | u [k-2] u [k-N]

Figure 6.6: Buffer contents

With these consideration, the following implementation of the FIR filter has
been obtained

float slow_filter (float sample, floatx filt_b ,
float* buffer){
float filtered = 0.0;
int i;

buffer [0] = sample;

for (i=0; i<FILT.ORDER+1; i++){
filtered += filt_b [i]xbuffer[i];

}

for (i=FILT.ORDER; i>0; i——){
buffer [i] = buffer[i—1];
}

return filtered;
}

By looking at this code, it is easy to see that there is a time consuming
over-head in this code due to the update of the buffer, i.e., bigger is the
filter order, bigger is the number of memory read/write operations that have

6. PERFORMANCE ANALYSIS OF FIR AND FFT 69

to be performed at each step to shift the buffer. To improve the computing
performance of the filter, the following consideration has been done to achieve
code optimization: do not shift at each step the overall content of the buffer,
but place the value of the signal to be filtered in the position of the input
signal to be discarded. For such an implementation, it is needed a comparison
and an additional counter. The idea of such a buffer is represented in figure.

cont =0;
u[k] | u[k-N] u[k-2] | u[k-1]

cont=1;
ulk-11 1 ulk] | ul[k-N] u [k-2]

cont = 2;

ulk-2] ulk-1] | u[k] | u[k-N]

Figure 6.7: Buffer contents

This results into the following implementation of the FIR filter

float fast_filter (float sample, floatx filt_b ,
float xbuffer, int xcont){
float filtered = 0.0;
int i, j;

buffer [*cont] = sample;
j = *cont;
for (i=0; i<FILT.ORDER+1; i++){
if (j>FILT_-ORDER){
j=0;
}

filtered 4= filt_b [i]*buffer[j];
J++

6. PERFORMANCE ANALYSIS OF FIR AND FFT 70

}

xcont = xcont — 1;
if (xcont <0){

xcont = FILT_ORDER;
}

return filtered;

6.2.2 FFT code and Matlab coder

To obtain FF'T code a fast-prototyping approach has been used. In particular
has been used the automatic code-generation process feature of Matlab. This
feature is implemented into one Matlab app called Matlab coder, that gives
the possibility to generate the code of a matlab function. To generate a code
that is compatible with the target hardware (TWRK70F120M development
board), it is needed to install an additional support package for ARM code
generation, and selecting this tool chain during the code generation process.
The result of such operation is the following set of source files:

MW _target_hardware_resources.h
my _fft.c

my _fft.h

my_fft_initialize.c
my_fft_initialize.h
my_fft_terminate.c

my _fft_terminate.h

my _fft_types.h

rt_noninfinite.c

rt_noninfinite.h

6. PERFORMANCE ANALYSIS OF FIR AND FFT 71

o rtGetlnf.c
o rtGetlnf.h
e rtGetNan.c
e rtGetNan.h
e rtwtypes.h

The API that provides the capability to perform the FFT of a generic signal
can be found in the file my_fft.h that has the following content

/*

* Academic License — for use in teaching,

* academic research , and meeting

x course requirements at degree granting

x institutions only.

x Not for

x government, commercial, or other organizational use.
x File: my _fft.h

*

x MATLAB Coder version : 3.2

* C/C++ source code generated on : 05—Jul —2018
* 22:54:44

*
~

#ifndef MY FFTH
#define MY FFT H

/* Include Files x/
#include <stddef.h>
#include <stdlib .h>
#include <string.h>
#include "rtwtypes.h”
#include "my _fft_types.h”

/+* Function Declarations x/
extern void my_fft (const double u[256],
creal T y[256]);

6. PERFORMANCE ANALYSIS OF FIR AND FFT 72

#endif

/ *

x File trailer for my_fft.h

*/

As it is possible to notice from the API, the listed code is able to perform a
256 point FFT. The API is similar for 512 point FFT and 1024 point FFT.
As it is possible to notice it gets as inputs an array of points (the filtered
signal to which the FFT is computed) and the array of the results that are
complex numbers (creal_T'). The definition of this type and other types can
be found in rtwtypes.h file that contains the following definitions

/ *

x Academic License — for use in teaching, academic

x research , and meeting

x course requirements at degree granting institutions
x only. Not for

x government, commercial, or other organizational use.
x File: rtwtypes.h

*

x MATLAB Coder version : 3.2

x C/C++ source code generated on : 01—Jul —2018

* 17:28:28

*
~

#ifndef RTWTYPESH
#define RTWTYPESH
#ifndef _TMWTYPES__
#define _TMWTYPES__

/%
x Target hardware information

* Device type: ARM Compatible—ARM Cortex

* Number of bits: char: 8 short : 16
* int: 32

6. PERFORMANCE ANALYSIS OF FIR AND FFT 73

long: 32

native word size: 32
Byte ordering: LittleEndian
Signed integer division rounds to: Zero
Shift right on a signed integer as

arithmetic shift: on

¥ K% X X X X X

/%

* Fixed width word size data types:
* int8_T, intl6_. T, int32_T
* — signed 8, 16, or 32 bit integers *
* uint8_T , uintl6_.T , uint32_T
* — unsigned 8, 16, or 32 bit integers *
* real32_T , real64_T
— 32 and 64 bit floating point numbers x
* * /
typedef signed char int8_T;
typedef unsigned char uint8_T;
typedef short intl6_T;
typedef unsigned short uintl6_T;
typedef int int32_T;
typedef unsigned int uint32_T;
typedef float real32_T;
typedef double real64_T;

/*

x Generic type definitions: real T , time_T,

* boolean_ T , int T, uint_ T,
* ulong T, char . T and byte_.T.
x

typedef double real_ T ;

typedef double time_T;

typedef unsigned char boolean_T;
typedef int int_T;

typedef unsigned int uint_T;
typedef unsigned long ulong_T;
typedef char char_T;

6. PERFORMANCE ANALYSIS OF FIR AND FFT

typedef char T byte T;

/ *

x Complex number type definitions

X

#define CREAL.T

typedef struct {
real32_T re;
real32_T im;

} creal32_T;

typedef struct {
real64_T re;
real64_T im;

} creal64_T;

typedef struct {
real T re;
real T im;

} creal T;

typedef struct {
int8_T re;
int8_T im;

} cint8_T;

typedef struct {
uint8_T re;
uint8_T im;

} cuint8_T;

typedef struct {
intl6_.T re;
intl6_T im;

} ¢cintl6_T;

typedef struct {

6. PERFORMANCE ANALYSIS OF FIR AND FFT 75

uint1l6_T re;

uintl6_T im;
} cuintl16_T ;
typedef struct {

int32_T re;

int32_T im;
} ¢cint32_T;
typedef struct {

uint32_T re;

uint32_T im;
} cuint32_T;
/*

* Min and Max: *
* int8_T, intl6_. T, int32_T

— signed 8, 16, or 32 bit integers *
* uint8_T , uintl6_.T , uint32_T
— unsigned 8, 16, or 32 bit integers *

* * /
#define MAX_int8_T ((int8_T)(127))
#define MIN_int8_T ((int8_T)(—128))
#define MAX_uint8.T ((uint8-T)(255))
#define MIN_uint8_T ((uint8-T)(0))
#define MAX_int16_T ((int16_T)(32767))
#define MIN_intl6_T ((intl6- T)(32768))
#define MAX_ uintl16_T ((uintl16_-T)(65535))
#define MIN_uintl6_T ((uint16_-T)(0))
#define MAX_int32.T ((int32_T)(2147483647))
#define MIN_int32_T ((int32_ T)(—2147483647 1))
#define MAX_ uint32_T ((uint32_T) (0OxFFFFFFFFU))
#define MIN_uint32_T ((uint32_T)(0))

/* Logical type definitions x/
#if l!defined (_-_cplusplus) &&

ldefined (__true_false_are_keywords)
ifndef false

6. PERFORMANCE ANALYSIS OF FIR AND FFT 76

define false (0U)
endif

ifndef true

define true (1U)
endif

#endif

* Maximum length of a MATLAB identifier

* (function/variable)

* including the null-termination character.
x Referenced by

x rt_logging.c and rt_matrx.c.

#define TMWNAMELENGTHMAX 64
#endif
#endif

/ *

x File trailer for rtwtypes.h

x [EOF]
*/

6.2.3 Application code

The application is intended to simulate an acquisition system, periodically,
the CPU reads a value, performs the filtering action, and when accumulates
M value, begins the FFT of the signal. The code for the main application is
the following

/*
Copyright (c¢) 2015, Freescale Semiconductor, Inc.
All rights reserved.

Redistribution and use in source and binary forms,
with or without modification ,

* X X X X

¥ K K X X X X K K K K KX XX K K K KKK XXX K K K KKK XXX K K K KK

PERFORMANCE ANALYSIS OF FIR AND FFT 77

are permitted provided that the following
conditions are met:

o Redistributions of source code must retain
the above copyright notice, this list
of conditions and the following disclaimer.

o Redistributions in binary form must reproduce
the above copyright notice, this

list of conditions and the following disclaimer
in the documentation and/or

other materials provided with the distribution.

o Neither the name of Freescale Semiconductor ,

Inc. nor the names of its

contributors may be used to endorse or promote
products derived from this

software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS ”AS IS” AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER
OR CONTRIBUTORS BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES:;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY

6. PERFORMANCE ANALYSIS OF FIR AND FFT

+ OF SUCH DAMACE.
*/

#include "MK70F12.h”
#include <stdio.h>

#include <stdlib .h>
#include "my _fft.h”

#define FILT_ORDER 64
#define N.SAMPLES 5001
#define POINTS_FFT 256

float fast_filter (float , floatx, floatx, intx);
float slow_filter (float , floatx, float x);

int main(void)
{
int k, cont_ FFT = 0, i;
float b[FILT-ORDER+1] = {’values ’};
float sig [NSAMPLES] = {’values’};
float out;
float buffer FFT [1024];
creal T y[1024];
float buffer [FILT.ORDER+1] = {0};

int cont = 0;

for (5;) {
cont = FILT_ ORDER;
for (k=0; k<N.SAMPLES; k++){
//Filter the signal

78

out = fast _filter (sig[k], b, buffer, &cont);

//Preparing the buffer for FFT
buffer FFT [cont_ FFT] = (double)out;
cont_FFT++;

//When buffer gets full points, FFT starts

if (cont_FFT = POINTS_FFT){

6. PERFORMANCE ANALYSIS OF FIR AND FFT 79

my _fft (buffer FFT , y);
cont_FFT=0;

return O;

6.3 Validation

Results have been validated through Matlab. In particular, output results of
the CPU have been stored as output and plotted with Matlab.

6.3.1 FIR and FFT results

The obtained filtered signal has been compared with the input signal, the
result are shown in the following figures. It is trivial to observe that, increas-
ing the order of the filter, a better filtered signal is obtained in output. Of
course, there is no difference in the output results between the two different
implementations of the filter. In the figure, the blue signal is the input signal,
while the magenta is the filtered signal.

The same approach has been exploited to validate FFT results. To check
FFT results the order of the filter has been kept constant to N = 64, that
is the best filter (in terms of filtered signal). Even in this case is trivial to
notice that the quality of the FFT improves increasing the number of point
for which the FFT is evaluated. In the picture it is shown the behaviour of
the different FFTs.

It must be kept in mind that increase the order of the filter or the number of
points of the FF'T, means increase considerably the number of operations that
the CPU must perform, thus increasing the execution time of the functions
and the workload of the CPU, and this can be critical for real-time applica-
tions, since increasing the execution time of functions could lead to deadline
miss. The performance of these algorithm will be discussed in details in the
following section.

6. PERFORMANCE ANALYSIS OF FIR AND FFT 80

Figure 6.8: Filtered output (N = 8)

Figure 6.9: Filtered output (N = 16)

6. PERFORMANCE ANALYSIS OF FIR AND FFT 81

hi b4 |

0.6 -
0.2

-0.2 -
-0.4

l
-0.6 [~

-0.8 -

Figure 6.10: Filtered output (N = 32)

Filter order 64

Figure 6.11: Filtered output (N = 64)

6. PERFORMANCE ANALYSIS OF FIR AND FFT

[P

FFT 256 points

0 20 40 60 80 100 120 140 160
f (Hz)
Figure 6.12: Filtered output (M = 256)
07 FFT 512 points
&
100 120 140 160

0 20 40 60 80
f(Hz)

Figure 6.13: Filtered output (M = 512)

82

6. PERFORMANCE ANALYSIS OF FIR AND FFT 83

FFT 1024 points
ST \ \ \ | \
20 40 60 80 100 120 140 160
f(Hz)
Figure 6.14: Filtered output (M = 1024)

6. PERFORMANCE ANALYSIS OF FIR AND FFT 84

6.4 Performance analysis

Now it is performed the analysis of the performances of FIR filter and FFT,
that is the part of most interest for this thesis. Numerical results will be
given for the single execution times, and it will be proven that the fast im-
plementation of the filter is effectively faster than the slow implementation.

6.4.1 FIR filter analysis

By using the technology discussed in the previous chapters it is possible to
perform the analysis of the different implementations and orders of the FIR
filter. Results are shown in figure. To make a comparison between them,
the average execution times have been measured. The measurement has
been done over an execution time of 10s, thus means over an huge number
of filter functions execution. Numerical results are reported in the table.
From this result it is possible to notice that the amount of time saved is not
negligible, and there are not drawbacks in terms of used memory, since for
the fast implementation of the filter, only an extra integer variable is needed.
Then, from this analysis it is possible to conclude that there is no reason to
chose the slow implementation of the filter. Instead it is not possible to
say a priori which is the best order for the filter, since no requirements on
execution timing are given. If is consider a sampling period of 1ms, it is
possible to conclude that even the most complex designed filter is feasible,
because the sampled data can be processed before another data is incoming
to the system. This consideration can be done under the assumption that the
CPU has only the filtering operation to do, but, if the CPU has to perform
other operations, maybe 143.156us of execution could be not feasible. It is
possible to notice that doubling the order of the filter, cause a doubling in
the execution time for the filter. Then, a trade-off between filtering accuracy
and execution time must be done.

H Filter order Fast avg time(us) Slow avg time(us) saved time(%) H

8 19.063 27.084 29.6
16 40.740 51.281 20.6
32 75.390 106.953 29.5

64 143.156 210.401 31.9

6. PERFORMANCE ANALYSIS OF FIR AND FFT

= & =]
=|Tree ylChart B Profile
total: 10.002s samples: 128428355.
address |ratio% |avr 1% 2% 5% 10% 20% 50% 10
.64 27.084us
- “
< >
oo B:iTrace.Draw.Var %DEFault out [E=R[EcE =
Psetup...| A Goto... FiFind... Mdchart | «»In Oout EFul SIn Dout EFul
ERRORS/FIFOFUL.. -6.110s -6.100s -6.090s -6.080s
1 1 1 1 =
~
1.0
v
~
0.5
0.0
-0.5
-1.0
v
I > < >
Figure 6.15: Slow filter analysis (N = 8)
£ | B:Trace.STATistic Ratio AVeRage BAR /Sort ratio o @] =]
Dsetup... | iiiGroups... | 32 Config... | A Goto... | E|Detailed| =|Tree | Adchart | EProfile
/ items: 5. total: 10.001s samples: 125828850. O(J
ratio% avr 1% 2% 5% 10% 20% 50% 100
72.121% | 19.063us
24.534% -
3.342% -
»lication\Glot memcp! 0.001% - +
(other§ <0.001% - “
< >
o B:Trace.Draw.Var %DEFault out
Goto... #¥Find... Chart | O In »0Out| EFull | SIn | Sout [Full
(055 -3.600s -3.595s -3.590s -3.585s -3.580s -3.575s ‘
1 1 1 1 1 1 Ll
~
1.0
v
~
0.5
0.0
-0.5
-1.0
v
1< > < >

Figure 6.16: Fast filter analysis (N = 8)

6. PERFORMANCE ANALYSIS OF FIR AND FFT

£ B::Trace.STATistic Ratio AVeRage BAR /Sort ratio [][®@][=]
setup... || jiiGroups... | 22 Config... | M Goto... | E|Detailed| =/Tree | AyChart | HEProfile |
ERRORS/FIFOFULLS items: 4. total: 10.002s samples: 128241591. O(J
address ratio% _avr 1% 2% 5% 10% 20% 50% 100
Tcationmain . sTow_filTter | 92.438% | 51.281us
application\main\main| 7.035% -
(ERROR) | 0.526% - +
(other) | 0.000% -
< >
| &setup... A Goto... | #iFind... | Adchart | @In Ocout| @Ful| SIn | Sout| EFul
ERRORS,/FIFOFUL.. -6.070s -6.060s -6.050s -6.040s -6.030s -6.020s ‘
1 1 1 1 1 1 = |
~
v
1.0 A
0.5
0.0
-0.5
-1.0 v
1< > < >
Figure 6.17: Slow filter analysis (N = 16)
N s
| B:Trace. STATistic Ratio AVeRage BAR /Sort ratio [EE=]
Hsetup... | iiiGroups... | 3 Config...| (A Goto... | E|Detailed | =|Tree | rviChart | ElProfile |
i total: 10.002s samples: 121953671. ‘
1% 2% 5% 10% 20% 50% 100 4

ication main fast_filter | 93.121%| 40.750us
application\main\main| 5.845% =

(ERROR) 1.032% = "

(other) | <0.001% - +

4 B c Var %DEFault o1
Psetup...| M Goto... | FiFind.. | fechart | «pIn lout| E@Ful| S1n | Sout| ElFul
ERRORS/FIFOFUL.. -1.940s -1.930s -1.920s -1.910s ‘
1 1 1 1]
~
1.0
v
o
0.5
0.0
-0.5
-1.0 f \ v
1< > < >

Figure 6.18: Fast filter analysis (N = 16)

6. PERFORMANCE ANALYSIS OF FIR AND FFT

] B:iTrace STATistic Ratio AVeRage BAR /Sort ratio (e E]=]
Psetup... | jiiGroups... | 38 Config...| R Goto... | E|Detailed | =|Tree | AyiChart | HProfile
items: 4. total: 10.002s samples: 125447488. ‘
address [ratio% |avr 1% 2% 5% 10% 20% 50% 100 '
ication\main.slow_filter | 98.446% | 106.953us
application\main\main| 1.497% - —
(ERROR) | 0.056% - «
(other) | 0.000% -
4 B ce.Draw.) ¢:DEFault o
Psetup... | (L Goto... | #iFind... | fChart | In |peout EIFull] SIn | Sout [Full
ETUET/FTEIETM |540.000ms -820.000ms -800.000ms -780.000ms -760.000ms -740.000ms -720.000ms|
1 1 1 1 1 1 1 |
1.0 A
v
~
0.5
0.0
-0.5
v
J1<H> < >
Figure 6.19: Slow filter analysis (N = 32)
E| B:Trace STATistic Ratio AVeRage BAR /Sort ratio [e&E][=]
| Psetup... | jiiGroups... | I Config... R Goto... | E|Detailed | =|Tree | rAdChart | EProfile |
ERRORS/FIFOFULLS items: 4. total: 10.002s samples: 121885443. OJ
address lratio% |avr 1% 2% 5% 10% 20% 50% 1
ication\main fast_filter [96.620% | 75.390us
application\main\main| 3.052% =
(ERROR) [0.326% = <+
(other) | 0.000% -
< >
do B:Trace.Draw. ouf 3|
| Psetup...| M Goto... | FiFind.. | AdChart | @ In | Oout @Ful| SIn | Sout| ElFull
ERRORS/FIFOFUL.. -3.960s -3.940s -3.920s -3.900s -3.880
1 1 1 1 1 = |
1.0 ~
v
A
0.5
0.0
-0.5
v
J<l> < >

Figure 6.20: Fast filter analysis (IV = 32)

6. PERFORMANCE ANALYSIS OF FIR AND FFT

£ Bx:Trace.STATistic Ratio AVeRage BAR /Sort ratio

[==]=]

Hsetup... | jiiGroups... | 2 Config...| A Goto... | EDetailed| =|Tree || viChart | HProfile |
R!

FIFOFULLS

items: 4.

total: 10.002s samples: 126326551.
1% 2% 5% 10% 20%

50% IO(JJ

EFault ou

address ratio% |avr
ication\main'slow_filter [99.262% | 210.401lus
application\main\main| 0.723% =
(ERROR) | 0.013% .
(other) | 0.000% -
<

Hsety

| A Goto... | irmd... | Adchart | @1 ocout| @Fdl| S | Sout| EFull

ERRORS/FIFOFUL.. -4.900s

-4.850s -4.800s -4.750s ‘

w

T

>

Figure 6.21: Slow filter analysis (N = 64)

£ B:Trace.STATistic Ratio AVeRage BAR /Sort ratio E@
Psetup... | iiiGroups.. | 2 Config...| R Goto... | =|Detailed| =|Tree | rviChart | EProfile |
items: 6. total: 10.00ls samples: 121932036.
address [ratio% |avi 2% 5% 10% 20% 50% 100 |

application\main\main| 1.930% -

(other) | 0.000%

r 1
ication\main\fast_filter | 97.802% | 143.156us

(ERROR) 0.265% - +
pplication\Global\memcpy | 0.001% - +
pplication\Global \memset | <0.001% | 10.875us ¢

Bsetup...| M Goto.. | FIFind.. AChart | @In | »Iout EXFull| SIn | Sout| ElFull

-5.100s -5.050s -5.000s -4.950s ‘
1 1 1 1 d
1.0 ~
v
0.5 =
0.0
-0.5
v
1< > < >

Figure 6.22: Fast filter analysis (N = 64)

38

6. PERFORMANCE ANALYSIS OF FIR AND FFT 89

6.4.2 FFT analysis

While the test of the filter has been done having only the filter operation
running on the target hardware, FFT analysis has been performed having
the full chain of FIR filter and FF'T running on the target. Running only the
FIR filter on the target for the previous analysis, do not affect the reliability
of the measurement, since only the execution time of the function was the
objective of the analysis. In figure is shown that the target runs the filter
operation until the number M of samples needed for FFT computation is
reached. At this point the execution of the FFT algorithm starts. It is
possible to notice that, until this computation ends, the filtering operations
on the signal are not executed. This happens because in the bare metal
application there is not concept of tasks to execute concurrently the filter
and FFT operation. To achieve this result, an operating system should be
running on the development board. By the way, this is not affecting the
obtained result, since, even this time, the measurement of interest is not the
real-time behaviour of the system running both filtering and FFT algorithms
concurrently, but only the execution time of the FFT algorithms.

For the measurement of FFT average execution time, it is not possible to
trust to the same results used for FIR filter analysis, since FIR algorithm
was implemented as a monolithic function, thus the average execution time
computed automatically by Trace32 corresponds to the exact value, instead,
FFT algorithm is not implemented as a monolithic function due to a great
number of calls to different routines because double precision is used. Thus,
the average time automatically computed by Trace32 would not take into
account these calls to functions. For such a reason, to compute the average
execution time of FFT algorithm, since it is a time consuming operation, the
runtime method discussed in previous chapter has been adopted. Obtained
single execution times have been averaged, and results are reported in the
table (precision of millisecond used due to the inaccuracy of runtime method).
It is trivial to see that doubling the FFT points, the average execution time
is more than doubled.

H FFT points Avg time(ms) H

256 45
512 104
1024 272

6. PERFORMANCE ANALYSIS OF FIR AND FFT

ref B Taststart t" £l
0.000us 8.247s » fle
0.000us 8.247s
8.247s
. r7,rl4]
. — o
S —
Execution time: 0.0452572400
Execution time: 0.0450241800s
Execution time: 0.0451764800s
Execution time: 0.0452285200s
Execution time: 0.0451794800s
Execution time: 0.0452717000s
Execution time: 0.0453143000s
Execution time: 0.0452995800s
Execution time: 0.0451480400s
Execution time: 0.0453207400s
Execution time: 0.0451443400s
~| [Execution time: 0.0450948600s
Execution time: 0.0452618800s
Execution time: 0.0451303000s
Execution time: 0.0452435200s
Execution time: 0.0452606200s
Execution time: 0.0451474200s
Execution time: 0.0449947000s
Execution time: 0.0450371600s
Execution time: 0.0452203200s
Execution time: 0.0452969200s
Execution time: 0.0451178800s
Execution time: 0.0451986000s
Execution time: 0.0452132800s v
< >

Figure 6.23: FFT runtime analysis (M = 256)

Setup... | iifGroups. nﬁg | R Goto... | =|Detailed | =|Tree | fiChart | HEiProfile

ERRORS/ FIFOFULLS items: 10. total: 10.001s samples: 132256899.

address ratio% |avr 1% 2% 5% 10% 20% 50% IJJ
Tcation main fast_filter | 44.844% | 143.943us
lication u]obJ __adddf3 | 23.430% 3.444us
pplication\my_fft\my_fft| 15.989% | 13.552ms
tion\Global aeab'l _dmul | 12.914% 3.473us
(ERROR) | 1.416% =
pplication\Global \memcpy [0.605% | 504.476us
application\main\main | 0.557% =
tion Global_aeabi_dsub| 0.241% 0.071us
pplication\Global\memset | <0.001% 8.925us
(other) | <0.001% -

Pyl B::Trace.Chart.sYmbol E@
Q\Lﬂn—ﬂ R Goto... | A Goto... | FiFind... | @In | »Ieout | EIFull|

ERRORS/FIFOFULLS -5.100s -5.050s -5.000s -4.950s ‘
addressi| 1 1 I 1 = |
other EE

plication\Global memcp A 1

(ERROR! EBI___—_—_—I

application\main\maingy| M | B

plication Global memset &

+++++I

cation\main\fast_filter | HE—— j j ﬁ j I j : ﬁ I
plication\my_fft\my_fftasl — I— ——
Jon'Global'__aeabi_dsubll] I I
ication\Global__adddf3 sl I I —
ion\Global__aeabi_dmul |l | — I — [—

J-‘?Setup | A Goto... | F)Find... AdChart | «In | »I«Out EBFul| SIn | Sout| [Ful
ERRORS/ FIFOFUL ‘OSOS -6.000s -5.950s -5.900s -5.850s -5.800s -5.7505‘
1 1 /| 1 1 1 = |
~
v
~
il

Figure 6.24: FFT analysis (M = 256)

90

6. PERFORMANCE ANALYSIS OF FIR AND FFT

—— |

3 Taststart actual
.000us 17.844s 17.919s
.000us 17.844s 17.919s
17.844s 17.919s [er | AdDiverge

code la
= o
AREA view OUT] 0.074924300s (+0/-571.280us)

Execution time: 0.1042850000s ~
Execution time: 0.1041206400s

Execution time: 0.1042050000s

Execution time: 0.1041726000s

Execution time: 0.1041085000s

Execution time: 0.1042839800s

Execution time: 0.1040743000s

Execution time: 0.1042304200s

Execution time: 0.1041493600s

Execution time: 0.1042361000s

Execution time: 0.1041362600s

Execution time: 0.1042430600s

Execution time: 0.1042110600s

Execution time:
Execution time:
Execution time:
Execution time:
Execution time:
Execution time:
Execution time: 0.1043271000s

Execution time: 0.1040778400s v
< >

1040991600s
1040925200s
1040498400s
1042377400s

[=l=Y=l=l-Yol-loJotot-toYot =Yooy =Y =YY=y =)

Figure 6.25: FFT runtime analysis (M = 512)

£ B:Trace.STATistic Ratio AVeRage BAR /Sort ratio o ||®]=
i2 Config...| A Goto... | =|Detailed | =|Tree | AviChart | HEProfile |
items: 10. total: 10.00ls samples: 133606377. OJ
address [ratio% |avr 1% 2% 5% 10% 20% 50% 100

Tcation\main fast_filter | 40.938% | 143.096us

lication\Global_adddf3 | 27.467% 3.855us
pplication\my_fft\my_fft | 15.503%| 27.689ms
tion\Global_aeabi_dmul | 13.266% 3.319us

(ERROR)
application\main\main
pplication\Global\memcp
tion\Global __aeabi_dsuz
pplication\Global\memset | <

(other)

1.198% . —
0.804% 2 +
0.648% 1.201ms |¢
0.172% 0.048us |¢
0.001% 8.486us (¢
0. 000% =

Myl B::Trace.Chart.sYmbol

J

f Goto... | F)Find... | In | »I«Out EXFull|
-5.200s -5.100s -5.000s -4.900s |

a
(other) ¥
plication\Global \memcpy
(ERROR¥EE

application\main\maing}
plication\Global \memset 45|
cation\main\fast_filter g}
p1ication\my_fft\my_fftQp
TonGlobal __aeabi_dsub)
ication\Global__.

Psetup... | M Goto... | FiFind.. | AdChart | «In »I«Out EBFul| ©In | Sout| [Ful
-6.200s -6.100s -6.000s

ERRORS/FIFOFUL..JRELLH -5.900s -5.800
1 1 1 1] 1 Ll
~
2.0
N0 v
~
0.0
v
oA > < »

Figure 6.26: FFT analysis (M = 512)

91

6. PERFORMANCE ANALYSIS OF FIR AND FFT

|
(===
FB __— Taststart actyal _ [Defelmen
0.000us _ 42.043s 42.1935 e T wou
0.000us 42,0435 42,1935 [IStep | Mow
42.043s 42.193s ddr /1

Execution time: 0.272]0.149650200s (+0/-586.040us)
Execution time: 0.2 5

Execution time: 0.2723577200s

xecution time: 0.2721558800s

Execution time: 0.2725910600s

Execution time: 0.2724577800s

Execution time: 0.2722441200s

Execution time: 0.2722854600s

Execution time: 0.2722488000s

Execution time: 0.2723925000s

Execution time: 0.2722101000s

Execution time: 0.2720061600s

Execution time: 0.2723776000s

Execution time: 0.2724468200s

Execution time: 0.2725448000s

Execution time: 0.2722325600s

Execution time: 0.2724656400s

Execution time: 0.2726701400s

Execution time: 0.2727184800s v
< >

Figure 6.27: FFT runtime analysis (M = 1024)

E B lraced> 1ATIStC Katio AVENEQE BAK />0rt ratio (=] = Y
setup... | jifGroups... | 3% Config...| R Goto... | E|Detailed| =|Tree | rdChart | HEIProfile |

ERRORS/FIFOFULLS items: 10. total: 10.001s samples: 136561495.

address ratio% |avr 1% 2% 5% 10% 20% 5‘4
Gication\main fast_filter | 35.313% | 144.171us
lication\Global_adddf3 | 34.390% 5.097us
pplication\my_fft\my_fft| 14.551% | 60.638ms
tion\Global_aeabi_dmul | 13.711% 3.567us
(ERROR) 1 N
apphcdtmn main'main| 0. =
pplication\Global memcp{ 0.373% 1.623ms
ul 0
0
0

tion Global __aeabi_ds . 086% 0.026us
pplication'\Global memset [<0.001% | 17.911lus
(other) 000% -

24424

ﬂ B::Trace.Chart.sYmbol E@
|L]|ﬂ]\ R Goto... | M Goto... | FiFind... | «»In | »Iout EAFull

-5.600s -5.400s -5.200s -5.000s -4.‘
1 I | 1 =y
plication\Global memcpy 1 I
CERROR) 4] 000000000)
application\main'mainQ|n—— I I
plication\Global\memset [:
cation\main fast _fiTter o | mu— I

plication\my_fft\my_fftgy
ion (Jobf\ i

ou @ra| S| Sou| Bra
ERRORS/FIFOFUL.. |7.0005 -6.800s -6.600 -6.400s -6.200s -6.000s ‘
1 I . 1 1 I 1 L
~

Setup... 1 Goto... | ']Flnd. | MdChart | @I

Figure 6.28: FFT analysis (M = 1024)

92

7

Conclusions

The methodology to perform the debugging and tracing operations with this
kind of technology it is something that cannot be avoided, because, facing
with a safety-critical application, ISO 26262 prescribes that these analysis
techniques are mandatory for the development of the application. Using this
kind of technology, by the way, still presents some critical points:

e A training period of time is needed to be able to master Trace32 envi-
ronment

e Set-up script to have a working debug environment is strongly hardware
dependant, then changing hardware platform could be time consuming

On the other hand it is possible to conclude that, once the training period
has ended, this kind of technology turns out to be useful not only to perform
the mandatory tests prescribed by ISO 26262, but it can be useful to save
an huge amount of time while debugging the application and performing au-
tomatic analysis, due to the possibility to set-up a script that is able to run
automatically the desired operations. Of course this turns out to be a great
advantage because, thinking that about half of the time for software devel-
opment is spent in debugging operations, this results into a big economical
advantage, with a resulting possibility to reduce the time-to-market.

93

References

IEEE 1149.7
https://ieeexplore.ieee.org/document/5412866/

CoreSight components reference manual
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0314h/DDI0314H
_coresight_components_trm.pdf

TWR-K70F120M User’s manual
https://www.nxp.com/docs/en/user-guide/TWRK70F120MUM. pdf

Micrium puC/OS download
https://www.micrium.com/downloadcenter/download-results/?searchterm
=pa-arm-cortex-mé4&supported=true

Lauterbach Trace32 flyer
https://www.lauterbach.com/product-overview_flyer_web.pdf

uClinux
http://www.uclinux.org/description/

uLinux BSP for TWR-K70F120M
https://www.emcraft.com/products/95

Linux Cortex-M User’s Manual
https://www.emcraft.com/docs/linux-cortexm-um-1.12.0.pdf

Lauterbach Debugger Training
http://www2.lauterbach.com/pdf/training debugger.pdf

Kinetis Design Studio User’s guide
https://www.nxp.com/docs/en/user-guide/KDSUG. pdf

94

REFERENCES 95

[11] Lauterbach pTrace for Cortex-M User’s Guide
http://www2.lauterbach.com/pdf/microtrace cortexm.pdf

[12] Lauterbach pTrace flyer
https://www.lauterbach.com/flyer microtrace web.pdf

[13] Kinetis Design Studio Overview
https://www.nxp.com/support/developer-resources/software-development
-tools/kinetis-design-studio-integrated-development-environment-ide:
KDS_IDE

[14] RTOS Linux Debugging
http://www2.lauterbach.com/pdf/training rtos_linux.pdf

[15] Lauterbach General Reference - A
http://www2.lauterbach.com/pdf/general ref a.pdf

[16] Lauterbach General Reference - B
http://www2.lauterbach.com/pdf/general ref b.pdf

[17] Lauterbach General Reference - C
http://www2.lauterbach.com/pdf/general ref c.pdf

[18] Lauterbach General Reference - D
http://www2.lauterbach.com/pdf/general ref d.pdf

[19] Lauterbach General Reference - E
http://www2.lauterbach.com/pdf/general ref e.pdf

[20] Lauterbach General Reference - F
http://www2.lauterbach.com/pdf/general ref f.pdf

21] Lauterbach General Reference - G
http://www2.lauterbach.com/pdf/general ref g.pdf

[22] Lauterbach General Reference - H
http://www2.lauterbach.com/pdf/general ref h.pdf

(23] Lauterbach General Reference - I
http://www2.lauterbach.com/pdf/general _ref_i.pdf

REFERENCES

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Lauterbach General Reference - J
http://www2.lauterbach.com/pdf/general _ref_j

Lauterbach General Reference - K

http://www2.lauterbach.com/pdf/general ref k.

Lauterbach General Reference - L

http://www2.lauterbach.com/pdf/general ref 1.

Lauterbach General Reference - M

http://www2.lauterbach.com/pdf/general ref m.

Lauterbach General Reference - N

http://www2.lauterbach.com/pdf/general ref n.

Lauterbach General Reference - O

http://www2.lauterbach.com/pdf/general ref o.

Lauterbach General Reference - P

http://www2.lauterbach.com/pdf/general ref p.

Lauterbach General Reference - Q

http://www2.lauterbach.com/pdf/general ref q.

Lauterbach General Reference - R

http://www2.lauterbach.com/pdf/general ref r.

Lauterbach General Reference - S

http://www2.lauterbach.com/pdf/general ref s.

Lauterbach General Reference - T

http://www2.lauterbach.com/pdf/general ref t.

Lauterbach General Reference - U

http://www2.lauterbach.com/pdf/general ref u.

Lauterbach General Reference - V

http://www2.lauterbach.com/pdf/general ref v.

Lauterbach General Reference - W

http://www2.lauterbach.com/pdf/general ref w.

.pdf

pdf

pdf

pdf

pdf

pdf

pdf

pdf

pdf

pdf

pdf

pdf

pdf

96

REFERENCES 97
[38] Lauterbach General Reference - X
http://www2.lauterbach.com/pdf/general ref x.pdf

[39] James Campbell, Valeriy Kazantsev, Hugh OKeeffe Real-time Trace: A
Better Way to Debug Embedded Applications

[40] International Organization for Standardization ISO 26262 Road vehicles
— Punctional safety

Acknowledgements

I would firstly like to thank my thesis supervisor prof. Massimo Violante,
to gave me the opportunity to accomplish this work, under his supervision,
and the time spent to give me indications to successfully obtain expected
results. I would really like to thank him for introducing myself in the world
of embedded systems, that will part of my first professional experience in the
following months.

I would like to thank my family, that gave me the precious opportunity to
study in this university, involving a huge investment in terms of money, pa-
tience and trust.

Thanks to Mario Lauritano to be an exceptional room mate during my first
year in Turin, an exceptional reference guide for my studies and an excep-
tional reference for my life.

Thanks to all my friends that supported my during all these years.

98

		Politecnico di Torino
	2018-07-13T11:59:53+0000
	Politecnico di Torino
	Massimo Violante
	S

