
Politecnico di Torino

Master of Science Degree in Mechatronic Engineering

Master Thesis

Multi-body code and software control co-simulation

for the dynamic behaviour analysis of rover

exploration vehicle

Supervisors

Prof. Marcello Chiaberge

Ing. Gerlando Augello

Ing. Andrea Merlo

Student

Alessandra Barbero

A.A. 2017/2018

To my mum.

Contents

Abstract . 1

1 INTRODUCTION 1

1.1 Motivation . 1

1.2 Objective of the Thesis . 2

1.3 Organisation of the Thesis . 3

2 THE EXPLORATION OF MARS 5

2.1 General Overview . 5

2.2 The ExoMars Mission . 6

2.2.1 The ExoMars Rover . 8

3 MOBILE ROBOTS 9

3.1 Introduction . 9

3.2 Locomotion . 10

3.2.1 Wheel types . 11

3.3 Mobile Robot Kinematics . 12

3.3.1 Unicycle . 14

3.3.2 Differential drive mobile robots 16

3.3.3 Car-like mobile robots . 18

3.3.4 Inverse Kinematic problem . 21

3.4 Navigation, Supervision and Control . 23

4 ACTIVATE MODEL OVERVIEW 25

4.1 Introduction . 25

4.2 Co-simulation with Multi-Body systems 26

4.3 The Plant . 28

4.4 The Controller . 29

4.5 The Locomotion Control . 30

4.6 Simulation Setting . 30

4.6.1 Numerical ODE solver classifications and characteristics 30

4.6.2 Maximum, minimum, and initial step size 32

ii

CONTENTS iii

5 MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 33

5.1 Introduction . 33

5.2 Multibody System Simulation . 33

5.3 MotionView - MotionSolve . 35

5.4 Rover vehicle system mechanical design 36

5.4.1 Deployed configuration . 37

5.5 Building Up the Model with MotionView 38

5.5.1 The Locomotion Subsystem . 39

5.5.2 Rover body subsystem . 53

5.6 Modifying the model for co-simulation 56

6 THE ACTUATOR CONTROL 59

6.1 Introduction . 59

6.2 ExoMars Rover Vehicle Mobility System Overview 59

6.3 The ExoMars Actuator Drive Electronics 62

6.3.1 ExoMars Actuator Control Algorithm Overview 63

6.4 The Controller . 66

6.4.1 PID Control Theory . 66

6.4.2 PID tuning operation . 72

6.5 Some clarifications . 72

6.5.1 Drive motors PID tuning . 73

6.5.2 Steering wheel motor PID tuning 75

6.6 The Path planner . 77

6.6.1 Trapezoidal Velocity Profile . 77

7 THE INVERSE KINEMATICS 88

7.1 Introduction . 88

7.2 Locomotion capability of ExoMars rover 89

7.3 Rover Inverse Kinematics . 90

7.3.1 Conventional Ackerman Kinematic Model 91

7.3.2 Conventional Point Turn Kinematic Model 93

7.3.3 Crab Kinematic Model . 95

7.4 Algorithm implementation in Activate 96

7.4.1 Ackerman manoeuvre . 97

7.4.2 Point Turn and Crab manoeuvre 98

8 MODEL VALIDATION 100

8.1 Real simulation of IVBB rover . 101

8.1.1 Locomotion Software GUI . 102

8.2 Model adaptation . 106

CONTENTS iv

8.2.1 Modified Ackerman Kinematic Model 107

8.3 IVBB simulation results . 108

8.3.1 Manoeuvre1 - Ackerman . 108

8.3.2 Manoeuvre2 - Point turn . 112

8.3.3 Manoeuvre3 - Crab . 116

8.3.4 Manoeuvre4 - Straight forward motion 120

9 CONCLUSIONS 124

Acknowledgements . 128

List of Figures

1.1 The ExoMars Rover designed by the European Space Agency belonging

to the ExoMars Mission 2020 . 2

3.1 Bipedal walking system . 10

3.2 Four basic wheel types . 11

3.3 Wheel configurations for rolling vehicles 12

3.4 Mobile robot reference frame representation 13

3.5 Differential drive robot model . 15

3.6 Differential drive robot model . 17

3.7 Bicycle model of a car . 18

3.8 General control scheme of a mobile robot 23

3.9 Low-level and high-level controls of a mobile robot 24

4.1 Co-simulation between Activate and MotionSolve 26

4.2 General scheme of the complete model built for co-simulation 27

4.3 Complete multi-body model built with MotionView 28

5.1 Interaction between MBS and other technologies. 35

5.2 Rover module coordinate system . 37

5.3 Deployed rover configuration . 38

5.4 Real locomotion system of ExoMars rover that has to be modelled in

MotionView Locomotion subsystem . 41

5.5 ExoMars Rover BEMA wheels . 42

5.6 MotionView Wheels subsystem . 43

5.7 MotionView Bogie subsystem . 44

5.8 MotionView panel of the joint between front left wheel and corresponding

leg . 45

5.9 MotionView Locomotion joints overview 45

5.10 IMPACT model . 47

5.11 Contact panel of the wheel-ground contact with impact model parameters 48

5.12 Contact panel of the wheel-ground contact with friction coefficients . . . 49

v

LIST OF FIGURES vi

5.13 Simulation result highliting the wrong tangential components Ft of con-

tact forces . 49

5.14 Comparison between different mesh refinement levels 50

5.15 Simulation results highlighting friction force and its components during

three different intervals . 51

5.16 ExoMars Rover BEMA actuator . 52

5.17 MotionView force/torque panel . 52

5.18 MotionView Locomotion force/torque entities overview 53

5.19 Complete simplified rover model build in MotionView 54

5.20 Differnt views of the complete rover model build in MotionView with

real body geometry . 55

5.21 Steps of the model construnction in MotionView 58

6.1 Overview of the mobility system functional architecture 60

6.2 Actuator’s algorithm overview . 63

6.3 Path planner behaviour . 64

6.4 ExoMars Controller block diagram . 64

6.5 General scheme of the complete model built for co-simulation 66

6.6 Block scheme of a control loop with proportional-integral-derivative ac-

tion . 67

6.7 Block scheme of a control loop with proportional action 68

6.8 Output DRV rotational speeds resulting from a P control 74

6.9 Output DRV rotational speeds resulting from a PI control 74

6.10 Output STR angular positions resulting from a P control 75

6.11 Output STR angular positions resulting from a PI control 76

6.12 Example of a continuous trajectory with velocity and acceleration con-

straints . 77

6.13 Example of a continuous linear trajectory 79

6.14 Example of a continuous parabolic trajectory 80

6.15 Example of a continuous trapezoidal velocity trajectory 82

6.16 Complete Activate model . 84

6.17 General Activate model of the Profile Generator 84

6.18 Activate implementation of the Profile Generator algorithm 86

6.19 Profile Generator output esample . 87

7.1 General cycle of the ExoMars mobility control 89

7.2 Kinematic model for Ackerman manoeuvre 91

7.3 Kinematic model for Point Turn manoeuvre 94

7.4 Kinematic model for Crab manoeuvre 95

7.5 Inverse Kinematics block overview . 96

LIST OF FIGURES vii

7.6 Ackerman inverse kinematic algorithm implementation in Activate. . . . 98

7.7 Description of how Ri and θi are computed 98

7.8 Point Turn inverse kinematic algorithm implementation in Activate. . . 99

7.9 Crab inverse kinematic algorithm implementation in Activate. 99

8.1 IVBB Locomotion Software GUI . 102

8.2 Overview of the control modes and their internal states 104

8.3 Modified kinematic model for Ackerman manoeuvre when using IVBB . 107

8.4 Activate block scheme of the modified Inverse Kinematics block 107

8.5 M1 Ackerman manoeuvre: wheel steering positions 109

8.6 M1 Ackerman manoeuvre: rover CM x, y position time evolution and

xy trajectory . 110

8.7 M1 Ackerman manoeuvre: wheel rotational velocities 111

8.8 M2 Point Turn: wheel steering positions 113

8.9 M2 Point Turn manoeuvre: rover CM x, y position time evolution and

xy trajectory . 114

8.10 M2 Point turn manoeuvre: wheel rotational velocities 115

8.11 M2 Point turn manoeuvre: rover heading 115

8.12 M3 Crab manoeuvre: wheel steering positions 117

8.13 M3 Crab manoeuvre: rover CM x, y position time evolution and xy

trajectory . 118

8.14 M3 Crab manoeuvre: wheel rotational velocities 119

8.15 M4 Straight Forward motion: wheel steering positions 121

8.16 M4 Straight Forward motion: rover CM x, y position time evolution and

xy trajectory . 122

8.17 M4 Straight Forward motion: wheel rotational velocities 123

Abstract

Since antiquity, humans have dreamed about spaceflight. When rockets became

powerful enough to overcome the force of gravity and reach orbital velocities, space

was opened to human exploration. Mars has always captured humankind imagination,

being a source of inspiration for explorers and scientists. A considerable number of

missions have attempted to reach the Red Planet, with varying degrees of success,

focused primarily on understanding the planet geology and habitability potential. In

the context of planetary surface exploration, mobile robots are the main characters,

due to their capability of moving in unstructured environments. ExoMars 2020 is the

mission managed by the European Space Agency (ESA) intended to deliver a rover on

Mars in search of a sign of life. The mission will send the European ExoMars rover and

a Russian surface platform to the surface of Mars with the aim of performing scientific

research looking for organic molecules and surface characterisation.

When dealing with mobile robot design, multi-body software are fundamental tools

supporting engineering activities. Multi-body System Simulation (MBS) is a numerical

simulation method for the study of mechanical systems motion caused by external forces

acting on it.

One challenging activity of the Mechanical CAE (Computer Aided Engineering)

group of Thales Alenia Space Italia S.p.A., where this thesis has been developed, ad-

dresses exactly at building a dynamic model of the six wheeled planetary rover belonging

to ExoMars Mission. Moreover, the CAE group requires to drive the MBS model in

order to study the rover when performing different manoeuvres. This can be achieved

by controlling torques applied to drive and steering wheel axes.

The model is built in MotionView environment, a general pre-processor for MBS

simulation, and simulated through MontionSolve solver. These tools guarantee optimal

performances when dealing with MBS simulation, but they are not enough to implement

complex controller. In order to incorporate functions of sensing, actuation and control

the Activate software tool is used. Thanks to its co-simulation interface it is possible

to simulate this complex system including both the rover MBS model, simulated with

MotionSolve, and the control systems, simulated with Activate.

The main objective of this thesis is to develop the Activate model for co-simulation,

implementing the low level control loop of the ExoMars rover wheel actuators (DC

motors) and the higher level locomotion function, which allow driving the rover given

the manoeuvre commands set by the user, rather than acting on the actuator speeds

and position.

Chapter 1

INTRODUCTION

1.1 Motivation

“Back in the days of Apollo, sending humans to the moon was the only viable way

to get the scientific data we wanted. But now, with our computer and robotics

technology, there’s very little an astronaut can do on Mars that a well-designed

rover can’t.”

Andy Weir

Over the course of centuries, human beings have constantly attempted to seek

substitutes that would be able to mimic their behaviour. The term robot appeared for

the first time in a novel written by Karel Capek in 1921. [13] The fantasy associated

with robotics offered by science, movies and printed and animated cartoons is so far

from reality. Actual industrial robots seem primitive compared with what many people

expect a robot to be. No actual robot could compete with C3P0, R2-D2 and BB8 (from

the movie Star Wars) or Sonny (from the movie I Robot). The only sure thing is that

robotics will be an important technology in this century.

One of the most amazing areas of robotics is the use of robots in space. These

machines give the possibility to explore space doing lots of things that astronauts can’t

or that are too risky for them; for instance, some can withstand harsh conditions, like

extreme temperatures or high levels of radiation. [22]

All the mind-boggling qualities of planetary rovers are achieved starting from a

design activity planned in the last details. Rover mobility is generally a primary ob-

jective during the design phase, since it could prevent the goal achievement; moreover,

operating on soft-soil and in unstructured environments like the planet surface makes

the rover goal extremely challenging.

From this perspective, software tools are used to support engineering activities. The

general approach to rover design and study involves the modelling of the multi-body

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: The ExoMars Rover designed by the European Space Agency belonging to

the ExoMars Mission 2020

model with dedicated software like MCS Adams, SIMPACK, Mathworks SimMechanics

and a probably lesser-known software, MotionView, being part of the Altair software-

house. This last is starting to be used in some among the major space project, like the

ExoMars mission managed by the European Space Agency. The possibility of perform-

ing co-simulation between multi-body software and software for the implementation of

control systems, get researcher interested in studying the rover stresses when perform-

ing different manoeuvres.

1.2 Objective of the Thesis

The main objective of this thesis is to develop and implement a model of the Exo-

Mars Rover control system. This will be done in Activate environment which provides

the capability of performing co-simulation with MotionView/MotionSolve multi-body

modelling software; both software tools are provided by Altair software-house. The

controller is responsible of drive and steer the rover wheels in a way that it follows

specific trajectory, achieved performing one of the following manoeuvres: Ackerman

steering, point turn and crab.

The model provides the possibility to the user to choose the desired manoeuvre and

set the corresponding rover level commands. Therefore, one has to take into account

the transformation of the manoeuvre commands from rover level to wheel level, which

CHAPTER 1. INTRODUCTION 3

are the reference signal for the controllers. This operation requires the solution of the

Inverse Kinematic problem.

In the final analysis, this work comprises the building of the multi-body model, the

implementation of the controller model, the joining of these two and the customization

of the model in a way that the user can easily set the input without knowing the model

characteristics, i.e. without considering the kinematic model of the rover.

1.3 Organisation of the Thesis

The thesis is composed of eight chapters, each of them dealing with different aspect of

ExoMars rover co-simulation process; it is organized as follows.

Chapter 1 is introductory and outlines the motivations that stimulate scientists and

get them interested in studying planetary rovers. Afterwards, the main objectives of

this work are illustrated, and finally a brief description of the thesis structure is given.

Chapter 2 provides an overview of the space exploration through the years, partic-

ularly focusing on the advantages of this activity. In the context of Mars exploration

the ExoMars mission managed by the European Space Agency is then presented, and

the planetary rover involved in it is described.

Chapter 3 offers an outline of Mobile Robotic Science. After a rough introduction,

particular emphasis is placed on the rover kinematics topic that will be applied later

to the ExoMars rover model.

Chapter 4 aims to introduce the main software employed during the thesis devel-

opment. Moreover, it introduces the model obtained through this work, describing in

broad outlines the constitutive blocks. These will be presented and described in details

in subsequent chapters.

The following three chapters have similar structure; each of them assesses one par-

ticular block constituting the complete model, firstly presenting the main characteristics

of the real system being part of the ExoMars rover, then moving to see how these were

modelled in the different software.

The Chapter 5 consists of three parts. The first part focuses on the software used to

build the multi-body model. The second part examines the real ExoMars rover, with

specific regard to its mechanical structure. Finally, the third part addresses the issue

of model realization, explaining the methodology used in this thesis.

The ExoMars rover actuator control is the subject of Chapter 6. Therefore, a brief

introduction about control theory opens the chapter, followed by the presentation of

the real system. The goal of this chapter is to propose a model for both low level

control loop and profile generator.

Chapter 7 deals with the remaining component, that is the inverse kinematics block.

This one is a major topic since makes the model easily handled, allowing the user

CHAPTER 1. INTRODUCTION 4

to drive the rover simulation in several ways ignoring the model characteristics, thus

without solving any equation.

In Chapter 8 a real system is analysed. Using IVBB rover as the case study, its

behaviour is compared with the one resulting from co-simulation. Firstly, a general

overview of the rover mechanical structure and mobility capability is provided; then the

procedure followed in performing the test on the real system is described and the results

coming from it are reported. The final part of the chapter is intended to highlight the

similarities between IVBB results and the one obtained through Activate-MotionSolve

co-simulation.

Conclusions are drawn in Chapter 9. The main purpose of the thesis has been

reached. The developed Activate model allows to simulate and analyse rover structures

when performing different manoeuvres. Moreover, this chapter outlines the major

advantages and possible application of the work. Finally, it proposes ideas for further

studies and future works.

Chapter 2

THE EXPLORATION OF

MARS

2.1 General Overview

“It’s human nature to stretch, to go, to see, to understand. Exploration is not a

choice, really; it’s an imperative.”

Michael Collins

Space exploration helps facing significant scientific and philosophic issue about our

place in the universe and the presence of life besides Earth. Moreover, facing to the

challenging questions encourages the development of new technologies and leads to

international collaboration.

For ages, humans have dreamed to leave Earth and travelling in search of new

worlds. The first step was accomplished by Soviet Union in 1957, when they launched

the first satellite: Sputnik. It was the first human-made object into space. The space

age began. Lots of plans were made to bring men in space, till Yuri Gagarin, in 1961

took the first orbital spaceflight around Earth. From this moment more than 500

cosmonauts had travelled the space. Later on July 20, 1969, American astronaut Neil

Armstrong took “a giant leap for mankind”

being the first man stepping onto the moon; until now twelve astronauts have walked

on the Moon surface. [6]

Even though Moon exploration stopped in 1972, human imaginary remained still

alive. A considerable number of spacecraft have been launched towards all planets

of the Solar System to gather useful informations for future missions realization. In

particular, a lot of plans have been made for launching astronauts to explore Mars.

The Red Planet has always captured the imagination of humankind, sparking interest

in scientists and inspiring artists.

5

CHAPTER 2. THE EXPLORATION OF MARS 6

In the 19th century the Italian astronomer Giovanni Schiaparelli observed the planet

surface and find out bright and dark straight-line features that he called canals. This

contributed to new thinking of associating Mars with life. For a long time, it was

popularly believed that these canals had been built by intelligent beings to form a huge

irrigation network on the Red Planet. However, the myth of the Martians vanished

during the early part of the 20th century, when better telescopes provided scientists a

clearer view of the planet surface.

Later that century, the start of the space age brought about a change in how the

search for extraterrestrial life was carried out. Scientists no longer look for intelligent

beings, but for evidence for the presence of water, an essential element for the formation

of life, either on the surface or hidden underground. [16]

In the mid 20th century, Joshua Lederberg, an American geneticist Nobel Prize

winner in Medicine coined a new term: exobiology, also referred to as bio-astronomy

or astrobiology. It describes the study of the existence of life outside the Earth and

outlines the risk of bio-contamination related to space flights that might, in the future,

contaminate and ruin bacterial ecosystems in outer space and on other planets.

The main purpose of Exobiology is to answer the questions regarding the origin,

evolution and distribution of life in the Universe [29]. In the second half of the 20th

century, when Space Agencies worked towards the development of new space technolo-

gies and encouraged the planning of new scientific programmes, exobiology officially

became a science.

In this scenario, Mars remained a target planet where exobiologists hope to find

signs of primitive life. This is due to the fact that, according to current scientific

knowledge, it is thought Mars to have (now or even in the past) environmental con-

ditions (moderate temperatures and liquid water) similar to those that probably have

lead to the development of life on Earth. Whit this goal several missions have been

organised, and in particular we will address to the ExoMars one.

2.2 The ExoMars Mission

With the purpose of exploring Mars and providing a continuous flow of scientific infor-

mation, the European Space Agency ESA intended to deliver a European rover and a

Russian surface platform to the surface of Mars. The missions, named ExoMars, will

search for traces of past and present life, characterize the Mars geochemistry and water

distribution as a function of subsurface depth, improve the knowledge of the Martian

atmospheric environment and geophysics, and identify possible surface hazards to fu-

ture human exploration missions. The ExoMars program includes two missions utilising

the 2016 and 2020 launch opportunities to Mars, both under ESA leadership [19].

The first mission of the ExoMars programme consisted of launching a Proton M

CHAPTER 2. THE EXPLORATION OF MARS 7

rocket 1 carrying the Trace Gas Orbiter (TGO) and an Entry, Descent and Landing

(EDL) demonstrator module, known as Schiaparelli. The main objectives of this mis-

sion were to search for evidence of some trace atmospheric gases (e.g. methane) that

could denote the presence of active biological or geological processes. Moreover, ESA

could test key technologies in preparation to subsequent missions to Mars.

The launch took place on 14 March 2016 and, thanks to the favourable positioning

of Earth and Mars, the journey lasted about 7 months, with the arriving at Mars in

October. Three days before reaching the atmosphere of Mars, Schiaparelli was ejected

from the Orbiter towards the Red Planet. It coasted towards its destination, entered

the Martian atmosphere and decelerated using aerobraking and a parachute. The

established plain had foreseen to brake with the aid of a thruster system before landing

on the Mars surface, but due to an anomaly in the measurement and navigation system

the module crashed, while landing on the surface of the planet.

By contrast, the TGO was inserted into an elliptical orbit around Mars and later

it performed a number of manoeuvres in order to shift its angle of travel. This action

provided optimum coverage of the surface for the science instruments, while still offering

good visibility for relaying data from current and future landers. Moreover, it will

allow communication from the Rover Operations Control Centre (ROCC) to the future

ExoMars rover.

Indeed, the second mission belonging to ExoMars program will take place in 2020.

It consists in the launch of a Proton rocket carrying a rover, a surface platform and an

Entry, Descend and Landing module. The system is expected to arrive to Mars after

a nine-month journey. The rover will carry a comprehensive suite of analytical instru-

ments dedicated to exobiology and geological research, the so-called Pasteur Payload.

It is planned to let the rover ’live’ and work on Mars for about 6 month, during which

it will ensure a regional mobility of several kilometres, searching for traces of past and

present life. It will do this by collecting samples with a drill from within surface rocks,

and from underground, to a depth of 2 meters, and analysing them in the analytical

laboratory [18].

The mission plain is the following: during launch and cruise phase, a single aeroshell

will transport the surface platform and the rover; the EDL module will separate from

the carrier shortly before reaching the Martian atmosphere. Finally, the landing on

the surface of Mars will be controlled by parachutes, thrusters, and damping systems

responsible of reducing the speed. Once the system has landed, the rover will egress

from the platform to start its science mission, travelling several kilometres.

A dedicated control centre, Rover Operation Control Center ROCC, located in

Turin, will monitor and control the ExoMars rover operations taking advantages of the

1The Proton-M is a heavy-lift launch vehicle provided by Roscosmos, the Russian State Space

Corporation

CHAPTER 2. THE EXPLORATION OF MARS 8

previously launched TGO (2016 mission).

The strong relevance of ExoMars mission consists in the fact that it will be the first

one combining the capability to move across the surface and to study Mars at depth,

accessing locations where organic molecules might be well preserved. [29]

2.2.1 The ExoMars Rover

As expressed before, the ExoMars mission will include an exploration rover providing

key mission capabilities: surface mobility, subsurface drilling and automatic sample

collection, processing, and distribution to instruments.

The Rover uses solar panels to generate the required electrical power, and is designed

to survive the cold Martian nights with the help of novel batteries and heater units.

The ExoMars rover is highly autonomous since the comunications opportunities are

very infrequent, only 1 or 2 short sessions per sol (Martian day).

Thus the cameras mounted on the rover mast will acquire stereo images on whose

basis scientists on Earth will designate target destinations. As a consequence, the Rover

mobility manager will calculate navigation solutions and safely travel (approximately

100 m per sol). To achieve this, it creates digital maps from navigation stereo cameras

and computes a suitable trajectory. Moreover, it takes care of ensuring safety using

close-up collision avoidance cameras.

“The locomotion is achieved through six wheels. Each wheel pair is suspended on an

independently pivoted bogie (the articulated assembly holding the wheel drives), and

each wheel can be independently steered and driven. All wheels can be individually

pivoted to adjust the Rover height and angle with respect to the local surface, and

to create a sort of walking ability, particularly useful in soft, non-cohesive soils like

dunes. In addition, inclinometers and gyroscopes are used to enhance the motion

control robustness. Finally, Sun sensors are utilised to determine the Rover’s absolute

attitude on the Martian surface and the direction to Earth.”[17]

The goal of finding traces of past biological activity requires to investigate specific

areas of Mrs surface, thus the suitable drilling location will be identified by scientists

on-ground taking advantages of the camera system images and the data coming from

the ground penetrating radar collected during the travel.

Then, the Rover subsurface sampling device will autonomously drill to the required

depth (maximum 2 m) and will collect a small sample. This last will be delivered

to the analytical laboratory in the heart of the vehicle where several analysis will be

performed.

Chapter 3

MOBILE ROBOTS

3.1 Introduction

This chapter presents an overview of the main characteristic of mobile robots and

provide a kinematic model of the most popular rover configurations. The main concept

have been taken from [24], [13] and [21].

Robotics has achieved its first greatest success in the industrial manufacturing

world. Starting from ’70s robot arms, or manipulators, started to appear with the

purpose of helping humans in simple and repetitive or dangerous tasks. They can

move with great speed and accuracy, but suffer from a fundamental disadvantage:

lack of mobility. Fixed manipulators have limited range of motion depending on their

configuration. By contrast, a mobile robot is a structure capable to move and act,

autonomously or remotely operated, in the surrounding environment, which could be

structured, partially structured or unstructured. An environment is called structured

when one knows its type and the geometric characteristics.

The fundamental problems in mobile robotics are:

Locomotion how the robot moves in the environment

Perception how the robot perceives the environment

Representation how the robot organize the knowledge about the environment

Mapping how the robot built the map of the environment

Localization where the robot is in the map

Path planning/action planning what the robot shall do to go from a point to an

other; what are the actions to be performed to complete a specific task

Supervision and control how the commands to actuators are generated to perform

simple or complex task

9

CHAPTER 3. MOBILE ROBOTS 10

These topics together constitute the mobility problem.

3.2 Locomotion

A mobile robot needs locomotion mechanisms that enable it to move throughout the

environment. Since there are a large variety of possible ways to move, the selection of

the locomotion mechanism is an important aspect when designing mobile robots. Most

of the these mechanisms have been inspired by the nature. For example, our bipedal

walking system can be approximated by a rolling polygon, with sides equal in length d

to the span. As the step size decreases, the polygon approaches a circle or wheel with

the radius l, as shown in Figure 3.1; Walking robots are capable to adapt to variable

environments, but they are low on flat terrain and extremely over-actuated.

(a) Bipedal walking system (b) Rolling polygon ap-

proximation of the bipedal

walking system

Figure 3.1: Bipedal walking system

The majority of mobile robots are wheeled robots, that exploits the fully rotating,

actively powered joint technology. The wheel has been by far the most popular locomo-

tion mechanism in mobile robotics since it allows achieves extremely high efficiency on

flat ground with a relatively simple mechanical implementation. Moreover, is not usu-

ally needed to take care of balance problem because wheeled robots are almost always

designed so that all wheels are in ground contact at all times. Thus, three wheels are

sufficient to guarantee stable balance, although, two-wheeled robots can also be stable.

When more than three wheels are used, a suspension system is required to allow all

wheels to maintain contact with ground when the robot encounters uneven terrain.

[24] Thus, traction and stability, manoeuvrability, and control are the main focus of

wheeled robot research. One should study the robot wheels in order to find out if it

provides sufficient traction and stability for the robot to cover all of the desired terrain,

CHAPTER 3. MOBILE ROBOTS 11

and if the configuration enable sufficient control over the velocity of the robot.

3.2.1 Wheel types

There are four major wheel classes which differ widely in their kinematics. Therefore

the overall kinematics of the mobile robot is highly affected by the choice of wheel type.

Figure 3.2: Four basic wheel types: (a) Standard wheel; (b) castor wheel; (c) Swedish

wheel; (d) Ball or spherical wheel.

The standard wheel and the castor wheel are highly directional since they are

characterised by a primary axis of rotation constraining the wheel to move in a well

defined direction. If the wheel have to be moved in a different direction, it must be

steered first along a vertical axis. These two wheels differ between each other in the way

of accomplishing this steering motion. When steering standard wheels no side effects

arise, because the center of rotation passes through the contact point with the ground;

whereas, the castor wheel rotates around an offset axis, causing a force to be imparted

to the robot chassis during steering.

The designs of the Swedish wheel and the spherical wheel make them less con-

strained by directionality than the conventional standard wheel. The Swedish wheel

functions as a normal wheel, but provides low resistance in another direction as well.

It has small rollers attached around its circumference which are passive; the only ac-

tively powered joint remains the wheel primary axis. The key advantage of this design

is that the wheel can kinematically move with very little friction along many possible

directions, not just forward and backward, even if the wheel rotation is powered only

along the one principal axis.

The spherical wheel is a truly omnidirectional wheel, often designed so that it may

be actively powered to spin along any direction. One mechanism for implementing this

spherical design imitates the computer mouse, providing actively powered rollers that

CHAPTER 3. MOBILE ROBOTS 12

rest against the top surface of the sphere and impart rotational force.

Regardless of the used wheel type, in robots designed for all-terrain environments

and in robots with more than three wheels, the contact with ground is normally main-

tained by a suspension system, that in the simplest approaches is designed as a flexibility

into the wheel itself [24].

3.3 Mobile Robot Kinematics

Kinematics is the most basic study of how mechanical systems behave, since it does not

consider the mass of the system or the forces that cause the motion. In mobile robotics,

we need to understand the mechanical behaviour of the robot in order to appropriate

design them for accomplish the desired tasks and to understand how to control their

operations.

The understanding of robot motions starts with the description of the contribution

of each wheel provided for it. Each wheel has a role in enabling the whole robot to

move, but it also imposes constraints. Therefore, robot kinematics depends on the

wheel types and on the adopted wheel arrangement, or wheel geometry; for each ar-

rangement a kinematic model exists. Some examples are reported in Figure 3.3

Figure 3.3: Wheel configurations for rolling vehicles

The assumption made in this thesis when modelling a robot is to consider it as a

rigid body on standard wheels, operating on the horizontal xy plane.

The time evolution of vector q, containing the generalized coordinates required to

univocally identify the robot configuration, defines the motion of the robot and could be

subject to holonomic and/or non-holonomic constraints. A holonomic constraint is an

equation that can be written in terms of the position variables q. Constraints in which

time explicitly enters into the equation are called rheonomic, while constraints in which

CHAPTER 3. MOBILE ROBOTS 13

time is not explicitly present are called scleronomic. A non-holonomic constraint can

only be written in terms of the derivatives of the configuration variables q̇ and cannot

be integrated to a constraint in terms of configuration variables. Mobile robots belong

to the so-called non-holonomic vehicles, i.e. systems that cannot move directly from

one configuration to another, but must perform a manoeuvre or sequence of motions.

The non-holonomic constraint characterising the kinematic model of a wheeled robot

is due to the rolling without slipping condition between the wheels and the terrain.

The robot pose in the xy plane is described through a relationship between the global

(fixed) reference frame R0 and the local (mobile) reference frame of the robot Rr, as

in Figure 3.4

O

R0

x0

y0

Rr

xr

yr

x

y

θ

Figure 3.4: Mobile robot reference frame representation

The robot pose in the global reference frame is defined by coordinates x and y,

and orientation angle θ, i.e. the rotation angle between the global and local reference

frames. Thus, the pose of the robot in R0 is given by:

q =


x

y

θ

 (3.1)

To describe the robot motion we need rotation matrices. A rotation matrix Rab

provides the description of the mobile reference frame Rb with respect to the fixed

reference frame Ra. A rotation matrix is also defined as the generic rotation of an

angle θ around an axis represented by a unit vector u.

Rab = Rot(u, θ)

In our case we need the rotation matrix R0
r that allows to map motion in the global

reference frame to motion in terms of the local reference frame. It is defined as:

CHAPTER 3. MOBILE ROBOTS 14

R0
r = Rot(z, θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (3.2)

Using rotation matrices it is possible to perform transformation of vectors from one

reference frame to another. For example, given the velocities q̇0 in the global RF it is

possible to compute the components of motion q̇r in the rover RF:

q̇r = Rot(z, θ)q̇0 (3.3)

In the simplest cases, the mapping described by this equation is sufficient to solve

the Forward Kinematics problem of the mobile robot, i.e. how does the robot move

given its geometry and the speeds of its wheels q̇0 = f(q̇r).

For example, consider the robot shown in Figure 3.4: due to the particular robot

configuration it is called differential drive robot. It has two wheels, each one with radius

rw, while the distance between the two wheel centers, called wheel track is d. Given

rw, d, θ and the rotational speed of the wheels ωL and ωR, a forward kinematic model

allows to compute the robot overall speed in the global RF:

q̇0 =


ẋ

ẏ

θ̇

 = f(rw, d, ωL, ωR) (3.4)

This means that we can compute the motion of the robot in the global reference

frame given the motion in its mobile RF. Firstly, we have to compute the contribution

of each wheel rotational speed ωi to the robot CM motion in the local reference. Then,

we apply the following relation:

q̇0 = Rot(z, θ)−1q̇r (3.5)

Thus, the Forward Kinematics can be considered a trivial problem, but this is not

true for the reverse problem: Inverse kinematics, which is intended to find the wheel

speeds that make the robot move as desired.

The following sections are devoted to introduce the kinematic model of the main

mobile robot configurations.

3.3.1 Unicycle

We start considering the simplest case of a unicycle represented in Figure ??. It consists

of a single wheel that rolls on a plane (xy plane) while keeping its body vertical.

As stated before the robot configuration is described by vector q of the generalized

coordinates, i.e. the position coordinates x and y of the point of contact with ground in

CHAPTER 3. MOBILE ROBOTS 15

O

R0

x0

y0

Rr

xr

v

yr

x

y

θ

ϕ̇

Figure 3.5: Differential drive robot model

the fixed reference frame, and the angle θ measuring the wheel orientation with respect

to the global x axis.

A relationship exists between the wheel velocity components ẋ and ẏ [23]:ẋ = vt cos θ + vn cos(π2 − θ)

ẏ = vt sin θ + vn sin(π2 − θ)
(3.6)

However, to avoid slippage the tangential velocity vt at the wheel contact point

must be equal to the advance velocity of the wheel, and thus the lateral velocity vn is

null. The (3.6) becomes simply ẋ = vt cos θ

ẏ = vt sin θ
(3.7)

Therefore, the non-holonomic constraint is

ẋ sin θ − ẏ cos θ = 0 (3.8)

that is a typical example of a Pfaffian constraint. A Pfaffian constraint is a con-

straint written in the form

A(q)q̇ = 0

. This type of constraint allows generating the allowed velocities from a matrix G(q)

defined as

Im(G(q)) = Ker(A(q))

. The general formulation is

q̇ = G(q)v (3.9)

CHAPTER 3. MOBILE ROBOTS 16

which establish a relationship between the velocities v in the operational space (lin-

ear velocity and angular velocity around the vertical axis of the wheels) and velocities

q̇ in the configuration space.

Therefore, (3.7) written in Pfaffian form is

[
sin θ − cos θ 0

]
ẋ

ẏ

θ̇

 = 0 (3.10)

and

Ker(A(q)) = span




cos θ

sin θ

0

 ,


0

0

1


 = Im(G(q)) (3.11)

Thus, all admissible generalized velocities can be define by a linear combination of

two vectors

q̇ =


cos θ

sin θ

0

 v1 +


0

0

1

 v2 (3.12)

where

• v1 = v is the linear velocity of the wheel, equal to the product between the wheel

rotational speed ω̇ around its horizontal axis y and its radius r

v = rω̇

• v2 = ϕ̇ is the angular velocity of the robot, i.e. the rotational velocity of the

wheel around its vertical axis z

Acting on v and ω it is possible to change the robot configuration. The (3.12) is

referred to as Kinematic model since it describes the velocities of the vehicle but not

the forces or torques that cause the velocity.

3.3.2 Differential drive mobile robots

Another typical example of wheeled robot is the so-called differential drive robot, de-

picted in Figure 3.6.

We define [12]:

CHAPTER 3. MOBILE ROBOTS 17

O

R0

x0

y0

Rr

xr

yr

vR

vL

r
w

d

x

y

θ

Figure 3.6: Differential drive robot model

ωR = right wheel rotational speed around the wheel axis y

ωL = left wheel rotational speed around the wheel axis y

d = distance between the wheels

rw = wheel radius

R = curvature radius considered in the middle of the wheel axis

Considering ωR and ωL as inputs

vL = ϕ̇

(
R− d

2

)
(3.13)

vR = ϕ̇

(
R+

d

2

)
(3.14)

vR − vL =
2ϕ̇d

2
−→ ϕ̇ =

vR − vL
d

=
rwωR + rwωL

d
(3.15)

vR + vL = 2ϕ̇R −→ R =
d(vR + vL)

2(vR − vL)
(3.16)

where ϕ̇ is the angular velocity of the wheels around the center of rotation.

Moreover the linear velocity of the robot v is expressed by

v =
vR + vL

2
=
rwωR + rwωL

2
(3.17)

The model in matrix form is thus

CHAPTER 3. MOBILE ROBOTS 18

[
v

ω

]
=

[
rw
2

rw
2

rw
d

rw
d

][
ωr

ωl

]
(3.18)

and rewritten in the state space

q̇ =


ẋ

ẏ

θ̇

 =


cos θ 0

sin θ 0

0 1


[
rw
2

rw
2

rw
d

rw
d

][
ωr

ωl

]
=

[
rw cos θ

2
rw cos θ

2
rw sin θ

d
rw sin θ

d

][
ωr

ωl

]
(3.19)

(3.19) represents the kinematic model of the differential drive robot.

3.3.3 Car-like mobile robots

We will consider now a robot having the same kinematics of an automobile. The

theoretical notations refer to [13] and [12]. A commonly used model for a four-wheeled

car-like vehicle is the bicycle model shown in Figure 3.7. The bicycle has a rear wheel

fixed to the body and the plane of the front wheel rotates about the vertical axis to

steer the vehicle.

O

R0

x0

y0

Istantaneous Center of Rotation (ICR)

xr

yr

Rr

RF

RR

v

γ γ

θ

x

y

Figure 3.7: Bicycle model of a car. The bicycle approximation is shown in grey. The

steering wheel angle is γ and the velocity of the back wheel, in the xr direction, is v.

The wheel axes are extended as dashed lines and intersect at the Instantaneous Centre

of Rotation (ICR) and the distance from the ICR to the back and front wheels is RR

and RF respectively

The pose of the vehicle is represented by the reference frame Rr with its x axis

in the vehicle forward direction and its origin at point C, i.e. in the middle between

CHAPTER 3. MOBILE ROBOTS 19

the rear wheels; the y axis is to the left side (lateral motion) which implies that the

z axis is upward, completing the right-handed reference frame. The configuration of

the vehicle is represented by the generalised coordinates q = [x y θ γ]T , where γ is the

steering angle. The vehicle velocity vRover is zero in the y direction, since the wheels

cannot slip sideways; thus in Rr RF

{ẋ}r = vRover; {ẏ}r = 0

The dashed lines show the wheel axes; if they meet in a common point, as in this

case, the wheel rotates without slippage; the intersection point is called Instantaneous

Curvature Center (ICC). The origin of Rr thus follows a circular path and its angular

velocity is

θ̇ =
vRover
R

(3.20)

R is the turning radius and it is defined as

R =
L

tan γ
(3.21)

where L is the distance between the wheel centres.

The velocity of the rover in the global reference frame R0 is

{ẋ}0 = vRover cos θ; {ẏ}0 = vRover sin θ

The bicycle is subject to two non-slipping constraints, one for each wheel (non-

holonomic constraints) ẏ cos θ − ẋ sin θ = 0

ẏf cos(θ + γ)− ẋf sin(θ + γ) = 0
(3.22)

As defined before, these equations cannot be integrated to form a relationship be-

tween position variables x, y and θ.

Moreover, considering the rigid body constraintsxf = x+ L cos θ → ẋf = ẋ− Lθ̇ sin θ

yf = y + L sin θ → ẏf = ẏ + Lθ̇ cos θ
(3.23)

we can rewrite (3.22) as function of the generalized coordinates.

CHAPTER 3. MOBILE ROBOTS 20

0 = ẏf cos(θ + γ)− ẋf sin(θ + γ)

= ẏf (cos θ cos γ − sin θ sin γ)− ẋf (sin θ cos γ + cos θ sin γ)

= (ẏ + Lθ̇ cos θ)(cos θ cos γ − sin θ sin γ)− (ẋ− Lθ̇ sin θ)(sin θ cos γ + cos θ sin γ)

= ẏ cos θ cos γ − ẏ sin θ sin γ + Lθ̇ cos2 θ cos γ − Lθ̇ cos θ sin θ sin γ+

− ẋ sin θ cos γ − ẋ cos θ sin γ + Lθ̇ sin2 θ cos γ + Lθ̇ sin θ cos θ sin γ

= ẏ cos(θ + γ)− ẋ sin(θ + γ) + Lθ̇ cos γ

(3.24)

Thus, the constraints areẋ sin θ − ẏ cos θ = 0

ẋ sin(θ + γ)− ẏ cos(θ + γ)− Lθ̇cosγ = 0
(3.25)

The non-holonomic constraint for the rear wheel is satisfied by

ẋ = vrover cos θ and ẏ = vrover sin θ

Applying this to the constraint on the front wheel, we can obtain a solution for θ

(to simplify vrover = v)

0 = ẋ sin(θ + γ)− ẏ cos(θ + γ)− Lθ̇cosγ

= (v cos θ) sin(θ + γ)− (v sin θ) cos(θ + γ)− Lθ̇cosγ

= (v cos θ)(sin θ cos γ + cos θ sin γ)− (v sin θ)(cos θ cos γ − sin θ sin γ)− Lθ̇ cos γ

= v cos θ sin θ cos γ + v cos2 θ sin γ − v sin θ cos θ cos γ + v sin2 θ sin γ − Lθ̇ cos γ

= v sin γ − Lθ̇ cos γ

θ̇ =
v sin γ

L cos γ
=
v tan γ

L
(3.26)

The overall equations governing the kinematic model of the bicycle robot are

ẋ = v cos θ

ẏ = v cos θ

θ̇ = v tan γ
L

γ̇ = ωSTR

(3.27)

And in matrix form 
ẋ

ẏ

θ̇

γ̇

 =


cos θ

sin θ
1
L tan γ

0

 v +


0

0

0

1

ωSTR (3.28)

CHAPTER 3. MOBILE ROBOTS 21

where v is the linear driving velocity of the rover and ωSTR is the input steering

velocity.

The rate of change of heading θ̇ is referred to as turn rate, heading rate or yaw

rate and can be measured by a gyroscope. It can also be deduced from the angular

velocity of the wheels on the left- and right-hand sides of the vehicle which follow arcs

of different radius and therefore rotate at different speeds.

The (3.28) is referred to as a forward kinematic model since it describes the veloc-

ities of the vehicle but not the forces or torques that cause the velocity. It captures

an important characteristic of a wheeled vehicle: when v = 0 then θ̇ = 0, that is, it

is not possible to change the vehicle orientation when it is not moving, non-holonomic

system. [21]

3.3.4 Inverse Kinematic problem

When controlling a mobile robot, one wants to known which are the reference speeds

of the wheels that make the rover follow a desired reference trajectory. This implies

solving the Inverse Kinematic problem:

configuration space velocities (ẋ, ẏ) −→ operational space velocities (v, ωSTR)

Here, we consider the problem of generating reference speeds for the car-like robot.

Assume that the model desired output trajectory is given in terms of cartesian compo-

nents xd(t), yd(t) of the car rear wheel. Thus

ẋd = vd cos θd (3.29)

ẏd = vd sin θd (3.30)

θ̇d =
vd
L

tan γd (3.31)

γ̇d = ωSTR (3.32)

From (3.29) (3.30)

1 = cos2 θd + sin2 θd =
ẋd

2

v2d
+
ẏd

2

v2d
−→ vd(t) = ±

√
ẋ2d(t) + ẏ2d(t) (3.33)

CHAPTER 3. MOBILE ROBOTS 22

where the sign refers to the desired vehicle motion , forward or backward respec-

tively.

Dividing (3.30) by (3.29), we can compute the robot orientation

ẏd
ẋd

=
vd sin θd
vd cos θd

= tan θd −→ θd = atan2(ẏd(t), ẋd(t)) (3.34)

Differentiating (3.30) and (3.29) we can compute the orientation of the vehicle as

ẍd = −vdθ̇d sin θ + v̇d cos θd −→ v̇d =
ẍd + vdθ̇d sin θd

cos θd
(3.35)

ÿd = vdθ̇d cos θd + v̇d sin θd −→ v̇d =
ÿd − vdθ̇d cos θd

sin θd
(3.36)

ẍd + vdθ̇d sin θd
cos θd

=
ÿd − vdθ̇d cos θd

sin θd

sin θ(ẍd + vdθ̇d sin θ)d = cos θd(ÿd − vdθ̇d cos θ)d

ẍd sin θd + vdθ̇d sin2 θd = ÿd cos θd − vdθ̇d cos2 θd

ẍd sin θd + vdθ̇d = ÿd cos θd

θ̇=
ÿd cos θd − ẍd sin θd

vd
=
ÿd(

ẋd
vd

)− ẍd(ẏdvd)

vd
=
ÿdẋd − ẍdẏd

v2d
(3.37)

Then, plugging this last relation into (3.31) we obtain the desired steering angle

θ̇=
vd
L

tan γd =
ÿdẋd − ẍdẏd

v2d

γd = arctan
L(ÿdẋd − ẍdẏd)

v3d
(3.38)

Finally, differentiating (3.38)

ωSTR = γ̇ = Lvd
(
...
y dẋd −

...
x dẏd)v

2
d − 3(ÿdẋd − ẍdẏd)(ẋdẍd + ẏdÿd)

v6d + L2(ÿdẋd − ẍdẏd)2
(3.39)

All these equations provide the input needed to reproduce the desired output trajec-

tory. They depend only on the values of the operational space coordinates (xd and yd)

and its derivatives up to the third order.

CHAPTER 3. MOBILE ROBOTS 23

3.4 Navigation, Supervision and Control

As stated before, a mobile robot is a structure capable to move autonomously in the

surrounding environment exploiting its perceptions and performing required actions.

A crucial prerequisite for a mobile robot to perform its tasks is the capability to

autonomously navigate. Navigation requires the following capabilities:

• Localization: to determine its pose with respect to a given reference frame

• Mapping: to build a consistent and meaningful representation of the environment

• Path planning: to plan the motion strategy to reach a given target position

Knowledge,

Data Base

Mission

Commands

Localization

Map Building

Information

Exstrac-

tion and

Interpolation

Sensing

Cognition

Path

Planning

Path

Execution

Acting

Real world environment

Environmental model Local Map

Raw data

Position Global Map

Path

Actuator Commands

P
e
r
c
e
p
t
io
n

M
o
t
io
n
C
o
n
t
r
o
l

Figure 3.8: General control scheme of a mobile robot

A general control scheme is reported in Figure 7.1. It comprises

High-level control : it is responsible of planning the robot motion. Given the data

provided by sensors, it elaborates the reference signal to be provided as input to

the low-level control.

Low-level control : PID controllers are in charge of drive the robot actuators (usually

DC motors) in a way that it moves according to the desired commands. The low

level control loop concerns only the actuator control, according to the instructions

CHAPTER 3. MOBILE ROBOTS 24

Task

Planning Controller Actuators

Sensors

Robot model
u τ

Low-Level Control

High-Level Control

Figure 3.9: Low-level and high-level controls of a mobile robot

coming from the high-level control. Usually the PIDs parameters are high enough

to make the robot a purely kinematic system.

Chapter 4

ACTIVATE MODEL

OVERVIEW

4.1 Introduction

The purpose of this thesis is to model the ExoMars actuator controller driving the

multi-body vehicle model, in order to analyse the mechanical structure of the rover

when performing specific manoeuvres. In this chapter the main characteristics of the

software used to build and simulate the model are presented. The technical description

of the software is get from [26].

The difficulty of modelling and simulating complex multi-disciplinary system (me-

chanics and control) in one simulation tool alone, led to the choice of couple different

simulation tools with each other. Co-simulation is a general approach for the joint

simulation of models developed with different tools where each tool treats one part of

a modular coupled problem. In this specific case, we can simulate a complex system

that includes a multi-body system and control subsystems. When co-simulating, the

data exchange (input and output variables, status information) between subsystems is

restricted to discrete communication points; in the time between two communication

points, the subsystems are solved independently from each other by their individual

solvers. Considering the master-slave approach, a common method in co-simulation,

the slave simulates the sub-model whereas the master is responsible for both coordi-

nating the overall simulation as well as transferring data. The slaves are the simulation

tools, which are prepared to simulate their subtask. They are able to communicate

data, execute control commands and return status information.

For this purpose solidThinking Activate was chosen. It is a software solution for

multi-disciplinary, dynamic system modelling and simulation, and it is especially useful

for signal-processing and controller design. One of the key functions of this tool is

precisely the possibility of performing co-simulation with multi-body dynamics.

25

CHAPTER 4. ACTIVATE MODEL OVERVIEW 26

4.2 Co-simulation with Multi-Body systems

Co-simulation enables multi-body dynamic models and Activate models to commu-

nicate with each other during simulation. The multi-body system (MBS) is simu-

lated with MotionSolve, a multi-body modelling, analysis, visualization and opti-

mization solution for performing multi-disciplinary simulations that include kinematics

and dynamics, statics and quasi-statics, linear and vibration studies, stress and dura-

bility, loads extraction, co-simulation, effort estimation and packaging synthesis. In the

Activate-MotionSolve interface, Activate is the master and MotionSolve is the slave.

In co-simulation, inputs to the MotionSolve model is provided and the output of

the MotionSolve block is requested. The way a co-simulation is performed is shown in

Figure 4.1. The Activate simulator performs the following steps for the co-simulation

and synchronisation between slaves:

1. The Activate simulator advances the time from tn to tn+1, and updates the output

of all blocks (except slaves)

2. Slaves are called one by one and asked to advance their time from tn to tn+1 and

their output is requested at tn+1

3. The Activate simulator takes a new step from tn+1 to tn+2 using the new output

value of slaves computed at tn+1

4. Go on

solidThinking

Activate

Co-simulation

interface
MotionSolve

MotionSolve

model

master

Process 1

slave

Process 2

Figure 4.1: Co-simulation between Activate and MotionSolve

The procedure required to perform co-simulation is here described:

1. Build the multi-body model of the system in MotionView, a general pre-processor

for multi-body dynamics.

2. Modify the multi-body model for co-simulation: the MotionView model that acts

as a plant, must be prepared by adding solver variables, such as control plant

CHAPTER 4. ACTIVATE MODEL OVERVIEW 27

input and control plant output. These variables are either used as inputs to the

multi-body model, such as forces or torques generated by the controller modelled

in Activate, or measured outputs, such as displacements or velocities.

3. Build the control system model with Activate.

4. Integrate the multi-body model in the Activate model.

An general scheme of the model that will be implemented in Activate is presented

in Figure 4.2.

Locomotion

Control

(Inverse

kinematics)

Path planner Controller
Rover model

(MontionSolve)

vrover

M

ϕ̇

θref

ωref

θref(t)

ωref(t)

eθ(t)

eω(t)

TSTR(t)

TDRV (t)
ω(t)

θ(t)

actuator drive electronics (ade)
activate motionview/motionsolve

Figure 4.2: General scheme of the complete model built for co-simulation

where

M = the manoeuvre type the rover is asked to perform

vrover = the rover velocity in [m/s]

ϕ = rover heading in [rad]

θref = the angle reference values of the six wheels in [rad]

ωref = the angular speed reference values of the six wheels in [rad/s]

θref (t) = the time laws of θref

ωref (t) = the time laws of ωref

eθ(t) = the differences between the six reference angles and the six current ones

eω(t) = the differences between the six reference angular speeds and the six current ones

TSTR(t) = the six command torques appplied to the steering axes

TDRV (t) = the six command torques appplied to the drive axes

θ(t) = the six current angles

ω(t) = the six current angular speeds

CHAPTER 4. ACTIVATE MODEL OVERVIEW 28

The constitutive blocks are:

1. The Trajectory Planner

2. The Controller

3. The multi-body model of the rover

They will be presented in general terms in the following section, while a more

detailed description will be the subject of the following chapters.

4.3 The Plant

As stated before, the multibody model of the ExoMars rover was built in Motion-

View environment on the basis of the actual rover mechanical design. The MotionView

graphical user interface allows to add entities and set their values directly from specific

panels. The final model is reported in Figure 4.3; it consists of points, bodies con-

nected through joints, which constraint them to move in specific direction, graphics

offering visualization for entities during pre and post processing and contacts be-

tween bodies. Contacts between wheels and terrain are the most tricky entities, since

their properties have to be as accurate and realistic as possible, in order to have reliable

results and reasonably short simulation time. A whole science, called Terramechanics

exists, addressing the study of soil properties and the interaction of wheeled or tracked

vehicles on various surfaces; this makes it evident how much intricate this topic is. The

procedure used to build this model is presented in details in Chapter 5.

Figure 4.3: Complete multi-body model built with MotionView

CHAPTER 4. ACTIVATE MODEL OVERVIEW 29

As shown in Figure 4.2 the MotionSolve Rover model block has inputs and outputs;

these have to be added to the model by creating solver variables and collecting

them into solver arrays. The solver variables contain the individual plant input and

output values, while the solver arrays define the plant input and output to communicate

with Activate. In particular, two input vectors have been defined, called TSTR(t) and

TDRV (t), containing respectively the six steering torques and the six drive torques,

which are computed by the Controller block. By contrast, the output vectors, called

θ(t) and ω(t), are the steering position and driving speed of the six wheels, computed

by MotionSolve.

4.4 The Controller

The Controller block is in charge of making the rover follow a specific path at a specific

speed. In order to do this, the wheels have to be properly driven and steered. The

control system implemented in this thesis is based on simple PID controllers that drive

the wheels, making them rotate at the required angular speed, and steering them as

needed to guarantee that the rover performs the requested manoeuvre. Thus two

controller categories have been implemented:

STR controllers receive as input the error

eθ(t) = θref (t)− θ(t)

where θref (t) are the reference steering angles coming from the Profile Genera-

tor block, which generates the reference values profiles on the basis of the target

values computed by the Locomotion Control ; and θ(t) are the current angles

computed by MotionSolve, which receives as input the control variables (control

torques), runs the multi-body model and computes the wheel instantaneous an-

gular positions. Based on its control law, each one of the six STR controllers

generates the required control torque TSTR(t).

DRV controllers receive as input the error

eω(t) = ωref (t)− ω(t)

where ωr(t) are the reference wheel velocities and ω(t) are the current ones,

exactly as in the case of STR controllers, but considering velocity variables. The

difference with respect the previously presented controllers lies in the controller

parameters which are tuned in order to obtain the desired behaviour.

The control law and the detailed design of these controllers are described in details

in Chapter 6.

CHAPTER 4. ACTIVATE MODEL OVERVIEW 30

4.5 The Locomotion Control

The Locomotion Control block interfaces between the user, which sets the input param-

eters (i.e. the manoeuvre type, vehicle speed and heading) and the low-level control

algorithm which drives the rover actuators. Since the actual mobility actuators are the

wheels with their driving and steering motors, it is necessary to convert the vehicle level

manoeuvre commands into wheel level commands, i.e. driving velocities and steering

positions of the wheels. This is the Locomotion Control task. Chapter 7 will describe

how this problem, the so-called Inverse Kinematics has been solved. It consists in the

definition of the rover wheel drive speeds and steering angles as functions of the rover

speed and heading.

4.6 Simulation Setting

Before running the complete model, some simulation parameter must be set. This

section is in charge of providing the basic concepts about these with reference to the

user manual [26]. The simulation parameters panel allows to customize the simulation

parameters and choosing a solver. In Activate several numerical ODE solvers are

available. Each one implements a specific numerical algorithm for solving the model.

They have many control parameters that should be set to optimize the simulation in

different situations. Thus, the choice of the solver to use and how to set its parameters

is an crucial operation.

4.6.1 Numerical ODE solver classifications and characteristics

Stiff vs non-stiff solvers

First of all it is important to know if a particular ODE solver is appropriate for solving

a stiff ODE 1. Based on this information the appropriate solver can be chosen for

a particular problem. In order to simulate an ODE, the numerical solver divides the

simulation time into small intervals of length size and finds the solution at each interval.

Smaller step size generally results in higher accuracy of the solution, but it also means

higher computation time. Even if the model to be simulated is stable, the stability of

the solution provided by the numerical method depends directly on the step size. In

many cases smaller step sizes should be used to ensure the stability of the numerical

method. Whatever the numerical method, for large step sizes the solution tends to be

unstable and stability may be achieved by using sufficiently small step sizes. [26]

1A stiff equation is a differential equation for which certain numerical methods for solving it are

numerically unstable, unless the step size is taken to be extremely small.

CHAPTER 4. ACTIVATE MODEL OVERVIEW 31

Explicit vs implicit solvers

Numerical solvers for differential equations are divided into two categories: explicit

and implicit methods. The former calculates the new state of a system as a function of

current state and current state derivatives. The latter computes the state by solving a

nonlinear equation involving both the new state and the new derivatives as a function

of the current state. [26]

Consider the time step size h, the current system state x(t) and the unknown new

state x(t+ h). Then, for an explicit method we have

x(t+ h) = F (x(t))

while for as implicit method we have a nonlinear equation like the following

G(x(t), x(t+ h)) = 0

Implicit solvers should solve a nonlinear equation at each time step which makes

these solvers slower compared to explicit solvers. However, they are used because many

problems in real life are stiff, and, in these cases, explicit methods need to take small

step sizes for a slowly varying solution. By contrast, implicit methods can integrate

much faster by taking much larger step sizes. For stiff problem an explicit method

requires very small time steps to keep the error small.

Fixed-step vs. variable-step solvers

Another aspect of numerical solvers is whether they are fixed-step or variable-step. The

former uses the same step size all over the simulation: it is defined once and kept fixed.

This type of solver solves the model at regular intervals of time that cannot be changed.

Decreasing the integration step increases the accuracy of the results, while increases

the time required to simulate.

The latter adjusts the step size during the simulation, as a function of the estimated

error in the solution. The advantage of this solution is that the integration step becomes

either smaller or larger depending on the dynamics of the system. This is an important

feature that increases the efficiency of the solvers. Variable step solvers are more reliable

to handle fast changes in the solution by reducing the time step, where constant time

step methods may give wrong results.

On the other hand, in some situations where the computational effort should be

limited in each step, such as realtime applications, fixed step-size solvers are privileged.

The user will often want the solution at specified points in time, for example at equally

spaced intervals, to produce tables or plots. For these cases, we do not need using

fixed-step solvers. [26]

CHAPTER 4. ACTIVATE MODEL OVERVIEW 32

4.6.2 Maximum, minimum, and initial step size

Variable step solvers adjust the step size during simulation, and the step size value can

be very small or very large, based on the dynamics of the system. Activate provides

the possibility of setting high and low limits on the step size chosen by the solver. The

maximum step size can be set to auto, and in this case it is computed by Activate

according to the following formula [26] :

hmax =
Tfinal − Tinitial

100

where Tinitial and Tfinal are the initial and finale simulation time.

However, setting manually a high limit on the step size may be very useful. For

example, consider a simple non-stiff model containing a zero-crossing. The solver tries

to advance the time by taking large step sizes. If it happens that the zero-crossing

function changes the sign several times during a large step, the solver will miss the sign

change in the zero-crossing function and it may introduce error in the result.

By contrast, the size of the very first step after a cold-restart in variable step solvers

does not usually have much importance, since the solver can adjust it and find an ap-

propriate value. In some situations, the solver is unable to find a good value for the

step-size and fails. In order to help the solver, the initial value of the step-size can be

set manually.

The simulation setting chosen in this thesis work are listed here:

• Solver: Lsoda. It is a variable step and variable order solver. This solver is the

best choice when the user does not know if the model is stiff or not. The solver

switches automatically between stiff and non-stiff methods during the integration.

• Absolute and relative tolerance: 0.000001. The absolute and relative error toler-

ances specified for the integration of an ODE affects the speed and accuracy of the

computation for variable step solvers. Small error tolerances may result in higher

accuracy, but the simulation time will become large. On the other hand looser

error tolerance values, speeds up the simulation but the error introduced in the

solution will be higher. As a consequence, it is important to find a compromise

between speed and accuracy.

• Maximum step size: 0.001, it is a good compromise between accuracy and time

required to simulate.

Chapter 5

MOTIONSOLVE: EXOMARS

ROVER MULTI-BODY MODEL

5.1 Introduction

This chapter focuses on the implementation of the ExoMars rover multi-body model.

Before describing the procedure followed in the model construction, a brief introduction

is given in order to clarify some key aspects about Multi-body System (MBS) Simulation

and to present the software used during the thesis development. The informations are

getting from to the user manual [28].

5.2 Multibody System Simulation

“There are multiple ways to look at a problem, formulate the underlying equations

and solve them. We have the freedom to pick the methods that seem most natural

for a specific problem. In addition to Newton’s Laws of Motion, Virtual Work based

methods like D’Alembert’s Principle, Energy based methods like Euler-Lagrange

Equations and Variational methods such as Hamilton’s Principle can be used to

formulate problems. These are only a few of the known methods! Similarly there

are multiple approaches to solve the equations of motion. Each method has its

advantages and disadvantages and there is no “one best method for all problems”.

The richness of the theory and breadth of available mathematics to solve multi-

body problems has always fascinated me.”

Rajiv Rampalli (*Vice President – MBS software development, Altair)

Multi-Body System Simulation is the study of motion of mechanical systems caused

by external forces and motion excitations acting on it. The term multi-body refers to

complex systems that can undergo large overall motion, i.e. the extent of the relative

33

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 34

motion between the components can be larger than or comparable to the overall di-

mensions of the system. The mechanical system may consist of rigid and flexible bodies

connected by various kinds of kinematic constraints and flexible connectors.

Software for MBS simulation is of growing fundamental importance to modern

Mechanical Computer Aided Engineering (MCAE), since physics based modelling tools

represent a very good trade-off between mathematical complexity and accuracy. These

tools allow engineers to build, test, evaluate, and improve product designs without

building any hardware prototypes. With MBS software, it is possible to reduce product

development costs, evaluate more design alternatives, and decrease the time it takes to

bring a new product to market.

A MBS simulator is a system level tool, which can effectively solve complex, multi-

physics problems that are characteristic of real-world situations. It achieves this pri-

marily by collaborating with other synergetic technologies, as shown in Figure 5.1:

1. Geometry information from Computer-Aided Design (CAD) software is used to

define the basic design of a mechanical model for MBS.

2. The stresses, strains, deformations, and material models in a Finite Element

Analysis (FEA) are used to build high fidelity component models for MBS.

3. Software that simulates multi-domain actuators is used to create complex MBS

subsystems that contain electrical, hydraulic, pneumatic, and mechanical subsys-

tems.

4. Control system design packages can apply the techniques of classical and modem

control theory to design controllers that manage overall system behaviour in MBS

models. Simplified MBS models are commonly used to design control systems.

5. Optimization and Design of Experiments (DOE) software are used to determine

design parameters that optimize system level behaviour and improve the perfor-

mance of a mechanical system.

A Multi-Body system study generally involves the following steps:

• Constructing Models

• Executing Solvers

• Post-Processing

Particularly, in this thesis work, MotionView (model building), MotionSolve (ana-

lysis), HyperGraph and HyperView (post-processing) will be employed.

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 35

MBS

Geometric

modelling

(CAD)

Optimization

&

DOE

Controls

simulation

&

design

Testing

Actuation

modelling

Structural

simulation

(FEA)

Figure 5.1: Interaction between MBS and other technologies.

5.3 MotionView - MotionSolve

MotionView is a general pre-processor for multi-body system simulation, while Motion-

Solve is its solver. The multi-body models shall be created through the user interface,

where entities can be added and deleted and their values set.

The model construction starts with the definition of points. These are the fun-

damental construction elements for MotionView models, since almost all the entities

that can be created in MotionView need to use points either for defining their location

or orientation. Points exist only in MotionView, not in MotionSolve files. They are

only used to specify locations for other entities that define MotionSolve models (e.g.

markers).

The following step consists in the body creation. A body is the same as a link

characterised by mass properties, that are essential for their definition. Nevertheless,

graphics can be associated with a body if desired, but it is not essential.

Then, the bodies are constrained through joints and motions. This means that there

are algebraic equations restricting the relative motion between them, since constraints

only allow the connected bodies to have relative motion in certain specific directions;

motions in all the other directions are forbidden. Finally, one can set the external forces

acting on the system.

Once the model is built up, the solver MotionSolve is invoked. It is a set of com-

putation algorithms that solve equations of motion of the system provided to it by

MotionView; it is the heart of the simulation software program. MotionSolve can

solve several different classes of problems; the most general one consists of problems

in dynamic analysis, where the system can have more than one uncontrolled degree of

freedom (dof). By contrast, static analysis is most often used to compute the equilib-

rium configuration of a mechanism. Moreover, kinematic analysis is also provided by

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 36

MotionSolve; it is used for systems that have no uncontrolled dofs, and it is typically

used early in the design cycle, at the concept stage. Finally, quasi-static analysis is ap-

plicable when the forces change with time, but do so slowly. This means inertial forces

can be ignored, and the static equilibrium equations can be solved at each instant of

time. Stability analysis is a good example of its usage.

Once the solution is completed by the solver, this generates different types of output

files among which there are animations of movement and plots of forces (.h3d), where

accelerations, velocities, displacements against time are the main data generated. [28]

In the following section the ExoMars rover vehicle design will be described, in order

to understand the main characteristics of its structure. Then, it will be outlined how

the system has been modelled in MotionView environment.

5.4 Rover vehicle system mechanical design

The ExoMars Rover, developed by the European Space Agency ESA, provides key mis-

sion capabilities: surface mobility, subsurface drilling and automatic sample collection,

processing, and distribution to instruments.

The locomotion is achieved through six wheels. Each wheel pair is suspended on

an independently pivoted bogie (the articulated assembly holding the wheel drives),

and each wheel can be independently steered and driven. In addition, all wheels can

be individually pivoted to adjust the rover height and angle with respect to the local

surface, and to create a sort of walking ability, particularly useful in soft, non-cohesive

soils like dunes.

The ExoMars rover module is comprised of the following subsystems [4]:

• Rover vehicle

– Structure and mechanical system

– Mobility system

– Thermal system

– Electrical system

– Communication system

– Rover software

• Sample acquisition system (SAS) “Drill”and Sample Preparation and Distribution

System (SPDS)

• Analytical laboratory

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 37

• Mission management software (MMS)

• Scientific payloads consisting of set of instruments

When describing the mechanical structure of a system, the first thing to do is to

define its reference frame; in particular, the ExoMars rover coordinate system is showed

in Figure 5.2: it is fixed with the rover, thus moves as the Rover moves, and it is defined

as follows:

• The x axis, XRB, lies towards the front of the rover in the nominal direction of

travel.

• The z axis, ZRB, lies vertically upwards, antiparallel to the gravity vector when

the rover is on flat, horizontal terrain.

• The y axis, YRB, completes the orthogonal right-handed reference frame, and

will lie to the left of the Rover.

Figure 5.2: Rover module coordinate system

5.4.1 Deployed configuration

The rover in its deployed on-surface configuration is depicted in Figure 5.3. The rover

body is supported by the 3-bogie locomotion suspension system, with side bogie pivots

at the lower front corners and the rear bogie pivot at the centre of the lower rear edge.

The upper part of the body incorporates overhanging balconies at the sides and rear

to support a fixed solar array panel. Primary and secondary deployable solar panels

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 38

are hinged from the side edges of the fixed panel and the rear edges of the primary

panels.

The Actuator Drive Electronics (ADE) are suspended below the left and right over-

hanging balconies on the rover body, and a navigation camera is mounted to the pan

and tilt mechanism at the top of the deployable mast assembly (DMA). The mast is

deployed by a single hinge mechanism attached at the centre of the front edge of the

solar array to permit the cameras to view the area immediately in front of the rover for

normal forwards locomotion and sample acquisition and transfer operations. However,

viewing of the ground immediately below the rover to the sides and rear, including the

middle and rear wheels, is restricted by the presence of the deployed solar array.

During mobility, the drill is stowed horizontally across the front of the rover body.

Its positioning mechanism is mounted to the rover body front face to permit the drill

to be deployed vertically for drilling and translated and swung upwards to deposit

samples into the analytical laboratory drawer inlet. A localisation camera is mounted

at the front edge of the fixed solar panel, ahead of the mast hinge, with a forwards and

downwards view over the top of the stowed drill [4].

(a) (b)

Figure 5.3: Deployed rover configuration

5.5 Building Up the Model with MotionView

Once the main characteristics and dimensions of the rover mechanical structure are

known, one shall start building up its MBS model. The multi-body model built in

MotionView was structured in subsystems, in order to differentiate the elements com-

posing the rover body and those ones related to the locomotion system.

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 39

The MotionView model structure is the following:

• Model

– Locomotion

∗ Lateral bogies

∗ Rear bogie

∗ Steering axes

∗ Wheels

– Rover body

The model construction followed the steps explained in Section 5.3. The creation

of each subsystem will be described in details in the following subsections.

5.5.1 The Locomotion Subsystem

The Bogie Electro-Mechanical Assembly BEMA is the actuation system the rover uses

to move across the Martian surface. It consists of the following key parts: wheels, ac-

tuators (drive, steering and deployment motor/gearboxes), bogies, angular speed and

position sensors, and Hold-Down and Release Mechanisms (HDRMs) 1. The BEMA

provides the mechanical means for the rover to achieve the mobility requirements.

The key mobility capabilities are:

Self-deployment including raising the rover body from the stowed to its nominal ope-

rating height above the lander platform. The locomotion subsystem is deployed

and the rover body raised from the Lander Platform by synchronised operation of

the BEMA 6 deployment and 6 wheel drive actuators. The baseline deployment

scenario is the following: the middle wheels remain locked to the Lander at the

wheel HDRMs and the front and rear wheel legs are pre-deployed before and af-

ter respectively to lengthen the overall front-rear distance. This confers stability

for deployment when the Lander Platform is at steep landing inclinations and

significantly reduces the torques required from the deployment actuators. Fol-

lowing pre-deployment, the front wheel legs and wheels are driven back towards

the middle of the Rover and the rear and middle wheel legs are driven forwards

simultaneously, causing the body to lift. The middle wheels remain fixed at the

1The set of three Body Hold Down and Release Mechanisms provides the primary mechanical

connection between the rover and lander during launch, cruise and Entry, Descend and Landing. They

are configured as an iso-static mounting system in order to minimise the effects of differential strain

between the two connected bodies. After landing, the Body HDRMs provide a release function to

permit the rover to deploy and egress from the Lander.

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 40

HDRMs to prevent any forwards or aft motion due to imperfect synchronisation

or slippage. Operation of the middle wheel drive actuators therefore contributes

to the deployment motorisation of the wheel leg.

Egress from the lander platform for a range of scenarios which include descents down

inclined ramps and steps down to the ground. Guide rails on the lander platform

ramps prevent the rover driving off the side of the ramp during egress. Once the

Rover is deployed and ready to egress, the middle wheel HDRMs are released one

at a time. The BEMA actuators are controlled by the two ADE units mounted

to the outside of the rover body. The drive and sensor circuits are allocated so

that the left ADE operates the left side bogie (front and middle wheels) and the

left rear wheel of the rear bogie and the right ADE operates the right side bogie

(front and middle wheels) and the right rear wheel of the rear bogie to minimise

harness lengths.

On surface mobility including:

• Point turning capability to drive across difficult terrain on the surface by

changing heading in a way decoupled from the Rover position.

• Double Ackerman steering for smooth turns during forward and backward

motion without having to stop to perform point turns.

• Crab manoeuvres for fine adjustment of the Rover position without head-

ing implications, and to enhance path following accuracy particularly by

allowing compensation of lateral slippage when traversing across slopes.

• Climb over rock obstacles and crevasses.

• Climb, cross-hill traverse and descend various loose soil slopes.

The nominal deployed configuration of the ExoMars locomotion subsystem is shown

in Figure 5.4. The design is symmetrical between the left and right side of the Rover.

As already stated, the Rover has a six wheel locomotion suspension in a 3-bogie

arrangement which comprises two longitudinal side bogies, and a transverse bogie

mounted across the rear. All the bogies are passively pivoted at central bearings and

there are no springs. The 3-bogie arrangement is kinematically similar to the rocker-

bogie system employed by all US Mars rovers in the fore-after longitudinal plane, but

no transverse differential linkage is necessary so no part of the locomotion subsystem

penetrates or crosses the rover body to link the left and right sides. The front of the

rover is kept clear for accommodation and operation of the drill. Dog legs are incor-

porated in the rear transverse bogie beam to permit the WISDOM GPR horn antenna

apertures to have a clear view of the ground, whilst ensuring the wheels are behind the

horns to give good ground clearance when driving off step obstacles.

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 41

Figure 5.4: Real locomotion system of ExoMars rover that has to be modelled in

MotionView Locomotion subsystem

The front to rear wheel separation is maximised within the constraints of the

stowage envelope to confer good uphill and downhill longitudinal static and dynamic

stability when descending obstacles forwards or in reverse. The longitudinal position

of the middle wheels is aligned slightly forward of the expected longitudinal position of

the rover centre of mass to equalise the wheel loading on level ground.

The pivots of the longitudinal side bogies are positioned centrally between the

wheels. These are forward the front of the rover body, so the pivot shafts are supported

by bogie attachment brackets cantilevered from the HDRM corner hard-points. The

transverse bogie pivot is mounted to the same hard-point fitting which houses the rear

body HDRM. All left-right wheel pairs have the same wheel track (distance between

left and right wheel centers). The wheel track dimension is selected to provide the

required lateral cross-hill stability. [4]

The wheels are flexible and their dimensions and radial stiffness are chosen to maxi-

mise traction and minimise energy consumption on soft soils, within the size constraints

dictated by the rover stowage envelope. Flexible wheels provide the equivalent traction

performance of a larger rigid wheel.

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 42

The MotionView Locomotion subsystem models the main elements involved in the

ExoMars locomotion system, i.e. the bogie electromechanical actuators (BEMA) shown

in Figure 5.4. It consists of wheels, lateral and rear bogie assemblies, drive and steer

actuators.

Wheels

According to [15], the BEMA wheel is a flexible two-stage design. The first stage

(operational springs) absorbs the operational loads to meet radial stiffness and contact

pressure requirements. The operational springs are attached to the outer hub that

has bump stop rings to limit the radial travel of the operational stage to loads of

approximately 360N . The rings also prevent the springs from deflecting out of plane.

The second stage (impact springs) provides higher energy absorption capabilities to

enable the system to limit loads during mobility impact events; thus, reducing impact

to the actuator bearings. The impact springs connect the outer hub to the inner hub,

which interfaces to the DRV actuator. Moreover, they allow the outer hub to move

with respect to the inner hub. Each wheel also includes grousers to provide traction

during operations.

Figure 5.5: ExoMars Rover BEMA wheels

The overall wheel components are outlined in the Figure 5.5. The design is common

to the left and right sides of the rover and the wheel assemblies are interchangeable

with any other location on the rover. The BEMA wheel, excluding grousers, is 285 mm

in diameter and 120 mm wide. There are a total of 9 operational springs per wheel; 6

outer springs and 3 inner springs. The outer springs are half the width of the inner ones

but they are all the same thickness. To reduce stiffness variation as much as possible,

the outer springs are mounted 60◦ out of phase to the inner springs.

The tire is made from a single sheet wrapped around the operational stage and at-

tached each contact point with the operational springs. Each wheel includes 12 grousers

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 43

spaced at 30◦ around the circumference of the tire. Moreover, each grouser also includes

a side grouser face to prevent lateral slip while the rover is cross hill driving.

The MotionView subsystem Wheels is composed of six point, six body and six

graphic entities (actually the number of point and body entities is three since they

were created as point and body pairs). Each body represents a wheel with center of

mass defined by the corresponding point. In this thesis, the wheels are considered as

rigid bodies, thus the graphic associated to each one of them is simply a cylinder of

radius r = 142, 5 mm and width l = 120 mm (these values are representative of the

real ExoMars rover dimensions previously defined). The overall MotionView model of

the wheels is reported in Figure 5.6.

Figure 5.6: MotionView Wheels subsystem

Bogie

The Bogie subsystem models all the elements comprising the bogie assemblies, i.e. the

two lateral beams and the rear beam, the wheel legs and the transition brackets. As

for the wheels modelling, each component requires a point to define the center of mass

of the body entity modelling it; then, graphics is added in order to visualize better the

structure. They consist of simple cylinders of variable length and radius. The overall

MotionView model of the Bogie subsystem is reported in Figure 5.7.

Joints

After having created and characterised all the bodies constituting the locomotion sys-

tem, these have been linked together through joints. As defined in [28] “joints are used

to specify an idealized connector between two bodies. Physically, the joint consists of

two mating surfaces that allow relative translational and/or rotational movement in

certain specific directions only. The surfaces are abstracted away, and the relationships

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 44

Figure 5.7: MotionView Bogie subsystem

are always expressed as a set of equations between points and directions on two bo-

dies.”Generally, constraints can involve displacements, velocities, and time; by contrast

constraint-joints in MotionSolve involve displacements, but velocities or time are not

explicitly involved. This means that they do not add or remove energy from the system.

A wide variety of joints with varying degrees of freedom is available to model system

behaviour in MotionView environment:

InLineJoint constrains a point to be on a line

InPlaneJoint constrains a point to be on a plane

OrientationJoint constrains all rotational degrees of freedom

Parallel Axis Joint constraints two axis to be parallel

Perpendicular Joint constraints two axis to be perpendicular

For the purpose of this thesis, the necessary joints are :

• 6 revolute joints between wheel and relative leg, located at the wheel center where

the DRIVE motors are. The rotational axis of these joints coincides with the

wheel axis in order to allow the rotation around the y axis of the wheel reference

frame.

In order to manage this situation, one has to explicitly define the wheel reference

frame in the Body CoordSys tab of the wheel body panel. Later, one has to

set the Alignment axis of joint coincident to y axis of the just defined wheel

RF.

It is essential to refer to the wheel reference frame instead of the global one, since

during motion the rover orientation could change, i.e. the rover longitudinal axis

does not remain in the same direction of the global x axis and of course the wheel

axis does no more coincide with the global y axis.

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 45

Note that also the cylinder graphics associated to wheel bodies must be defined

setting the alignment axis coincident with the y axis of the wheel RF, such that

when the rover move, or the wheels are steered, the graphics moves accordingly.

This is a fundamental points, since contact (defined later in this section) are

defined between graphics, thus they must be correctly set.

Figure 5.8: MotionView panel of the joint between front left wheel and corresponding

leg

• 6 revolute joints between the leg and the relative transition bracket located where

the STEER motors are. The joint axis have to be aligned to the z axis of the

wheel reference frame. The same procedure explained for DRV joints have to be

followed to force these two axes to be coincident.

• 6 fixed joints connecting the transition bracket to the beam

• 3 revolute joints, representing the pivots, connecting the lateral and rear beam

to the rover body. In this case, the joint alignment axes are defined as the rover

y axis and x axis for later joints and rear joint respectively.

The overview of the MotionView joints comprised in the Locomotion system is

reported in Figure 5.9.

Figure 5.9: MotionView Locomotion joints overview

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 46

Contacts

Contacts are the most critical entities in the multi-body modelling procedure. Mo-

tionSolve provides a very sophisticated contact modelling capability that can handle

complex scenarios between rigid bodies. [20]

In order to simulate rigid body contact, one needs firstly to identify the geometries of

the two bodies that can come into contact with each other. There are several options

for doing this. In the most simple way, we can use MotionSolve graphics entities.

Moreover, complex geometries may be defined using a CAD tool and imported into

MotionView. In the first case, graphics are tessellated automatically by MotionSolve,

using 2-D triangular shell elements with no thickness; by contrast, if one needs specific

geometry, it is necessary to mesh it before the import, taking care of create a close

surface mesh. The quality of the mesh for the graphics strongly affects the quality and

accuracy of the contact force calculated by MotionSolve.

Contacts are handled by MotionSolve as follows: when a collision event is detected,

the dedicated algorithm returns the set of interfering mesh elements, from which Mo-

tionSolve computes the point of contact and surface normal vector; after, given the

magnitude and direction of the normal and friction forces it computes the penetration

depth.

The choice of the solver step size becomes important while trying to accurately

capture the onset of first contact. If the step size is not small enough to detect the

contact event, large penetrations may occur that result in large contact forces. How-

ever, small step sizes lead to long simulation time and they may be not necessary for

the entire simulation. Thus, in order to have more realistic contact forces without

reducing the global integration time, MotionSolve monitors the occurrence of contact

and automatically changes the solver step size to accurately determine the first contact

event.

Finally, the normal and friction force magnitudes are computed using one of the

following models: [20]

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 47

Poisson model

Fn = kz
3
2 (1− ηs) (5.1)

where

Fn = normal force

k = penalty factor

z = penetration

η =
1− COR2

1 + COR2
with COR restitution coefficient

s = step(ż,−νt,−1.0, νt, 1.0) with ż penetration depth

Impact model The impact function models impact forces acting on bodies during

collision. The elastic properties of the boundary surface between the two bodies

can be tuned as desired. The function is

Impact(x, ẋ, x1, k, e, cmax, d) (5.2)

where

x = the independent variable

ẋ = the time derivative of the independent variable

x1 = the lower bound of the independent variable

k = the stifness of the boundary surface interaction

e = the exponent of the force-deformation characteristic

cmax = the maximum damping coefficient

d = he penetration at which the full damping coefficient is applied

body I

body J

body I

body J

x

x
1

x
1

x

Figure 5.10: IMPACT model

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 48

Volume model this model assumes that both colliding bodies are surrounded by a

layer of spring whose stiffness is determined by material elastic modulus properties

and the depth of this layer. the normal force is modelled as the sum of two

components: an elastic force (the same as in Impact model) and a damping force

Fspring = AconKz
exp (5.3)

Fdamping = −cdz
dt

(5.4)

where

K = contact stiffness

z = contact penetration depth

exp = the exponent for the force-deformation characteristic

c = the damping coefficient

Acon = the area of contact

In this thesis the contacts between the rover wheels and the terrain is first modelled

in the simplest way, using the Impact model without considering friction effects. The

parameters are set in the MotionView contact panel as shown in Figure 5.11.

Figure 5.11: Contact panel of the wheel-ground contact with impact model parameters

The model accuracy shall be improved adding friction properties; however, it is

a crucial parameter when modelling multi-body systems, since its wrong setting can

results in unrealistic scenarios.

In particular, when introducing friction on the wheel-ground contact, we are adding

a tangential component. When no friction is considered the contact force acts on the

wheel only along the normal direction; by contrast, friction introduces a tangential

component resulting in a deviation of the contact force. Problems come out when this

tangential component becomes high enough to make the wheel rotate. This means that

the rover moves without any force acting on it, that is completely unreasonable. In

order to choose accurately the friction coefficients, several simulations have to be done

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 49

aiming to verify the tangential components do not introduce any absurd effect.

What have been done was to start from default values, run the simulation and look

at the contact forces with post-processing software, HyperView and HyperGraph.

The first simulation was run adding friction to the previously described model whose

parameters are shown in Figure 5.12. The model does not have any input, i.e. no forces

act on the wheels or any other entity. The purpose of this test is to verify the correct

application of contact forces.

Figure 5.12: Contact panel of the wheel-ground contact with friction coefficients

Looking at the .h3d output file (animation) it was evident the results are completely

unacceptable, since wheels start rotating, having no forces acting on them. The reason

of this weird behaviour is explained in Figure 5.13.

Figure 5.13: Simulation result highliting the wrong tangential components Ft of contact

forces

During the fist time instant of the simulation the contact forces direction are com-

pletely wrong. It is reasonable to have tangential components, since we are in transient,

so the contact still has to stabilize, but the direction of these ones have to remain along

the longitudinal axis of the wheels.

The reason of this lack of correlation between simulation and reality is justified by

the wrong mesh definition for the two elements in contact. This is clearly visible in

Figure 5.14: the wheel elements have size of 2 mm while the elements of the ground

are of size 30 cm. This is due to the fact that the contact takes place between two

bodies whose graphics were defined in MotionView. Thus, as explained in before, the

mesh is applied automatically by MotionSolve. This causes problems because the two

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 50

components have completely different sizes.

This issue was solved by increasing the mesh refinement level of the ground graphic.

The same simulation is run and the new results are significantly improved: the contact

force of each wheel has a tangential component only during the first time instants; once

the contact is stabilized, the tangential component is null and the only acting forces

are in the normal direction.

(a) Wrong mesh with element size 30cm (b) Correct mesh with element size 2mm

Figure 5.14: Comparison between different mesh refinement levels

Once the mesh was corrected and the resulting contact forces were become realistic,

the following performed step was to make wheels rotate. In this new simulation condi-

tion one should verify if the tangential contact forces remain in the driving direction.

The test was performed making the rover move starting from t = 10 s; therefore, we

can dived the simulation in three periods:

1. Transient: the contact is detected and the forces stabilize. It is expected to have

both normal and tangential components of contact forces.

2. Rest period (t < 10 s): before the application of the forces that make the rover

move, it is expected to remain still. In this condition, contact forces acting on

the wheels should be only in normal direction.

3. Driving (t ≥ 10 s): starting from T = 10 s the rover starts moving, therefore

it is expected to have tangential components of contact forces, but only in the

direction of the longitudinal axis of the wheel, i.e. only in the direction of motion.

The results reported in Figures 5.15 show the expected behaviour.

One could now consider the contact model to be correct. However, it does not

represent any real and specific condition, since the contact parameters were set by

default. In order to correctly correlate the model to reality it would be necessary a

long study and characterization of the wheel-ground contact, but it is not the purpose

of this thesis. Further studies on this challenging topic are therefore suggested in order

to better correlate the model to real situations.

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 51

(a) Initial total contact force (b) Initial normal contact force

(c) Initial tangential contact force

(d) Rest period total contact force (e) Rest period normal contact force

(f) Rest period tangential contact force

(g) Driving total contact force (h) Driving normal contact force

(i) Driving tangential contact force

Figure 5.15: Simulation results highlighting friction force and its components during

three different intervals

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 52

Actuators

The rover requires actuators for locomotion and steering, and obviously for deploy-

ment from the stowed configuration. The specific set of constraints for each of those

operations necessitates three distinct actuator assemblies: dirve DRV, steer STR and

deploy DEP. However, the overall BEMA actuator architecture is based on a brushed

DC motor and planetary gearbox feeding into a Harmonic Drive (HD) at the low-

speed/high-torque output; all actuators have the same overall geometry [15].

Figure 5.16: ExoMars Rover BEMA actuator

The output torque required from the actuator is different depending on its opera-

tion. The deployment operation is a one-time event which requires higher output torque

than steering or driving. As a result the harmonic drive used in the DEP actuator has

implemented a higher gear ratio. Deployment and steering require a sensor capable of

indicating an absolute position, whilst drive operations only need a relative positioning

sensor. This means that the DEP and STR actuators must include a potentiometer

whilst the DRV actuator only includes an encoder (as part of the motor module).

In this thesis work, the deployment process was not of interest, therefore only drive

and steering actuators have been modelled. The effect of these actuators have been

considered adding MotionView forces entities acting on the wheels.

• DRIVE torques: 6 torques acting at each center of the wheels that make them

rotate around their axis (y axis of the wheel reference frame).

Figure 5.17: MotionView force/torque panel

As in the joint case, the usage of the wheel reference frame is a key aspect,

since when modelling the drive torques, their axes must remain aligned with the

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 53

wheel rotational one, as the real actuators do, even if the rover is turning and

its longitudinal axis is no more in the same direction of the global x axis; the

force/torque panel is shown in Figure 5.17.

• STEERING torques: 6 torques acting on the wheel legs that allows the rotation

of the wheels around their z axes in order to reach the required angular position

that allow the rover follow a specific trajectory. .

The overview of the MotionView joints comprised in the Locomotion system is

reported in Figure 5.18.

Figure 5.18: MotionView Locomotion force/torque entities overview

Sensors

In the development of this thesis, the sensor are not modelled. Actually, the variables

that have to be measured, i.e. the wheel velocities and position, are computed by

MotionSolve and sent to Activate adding solver variables entities. The discussion

about these variables will be presented in Section 5.6.

5.5.2 Rover body subsystem

The second subsystem constituting the ExoMars rover multi-body model is called Rover

Body. It was decided to create a separate subsystem in order to collect the elementary

entities composing the initial simplified model of the ExoMars body. Indeed, it was

first modelled using basic elements available in MotionView library, in order to simplify

the initial modelling and simulation. Thus, the first implementation is made up of six

bodies:

• rover

• head

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 54

• mast

• rear connection

• front-right connection

• front-left connection

Boxes and cylinders graphics were associated to all these bodies. The finale model

is reported in Figure 5.19.

Figure 5.19: Complete simplified rover model build in MotionView

The real ExoMars rover body configuration is a single-piece moulded “bathtub”

structure with Carbon Fiber Reinforced Polymer CFRP-faced honeycomb sandwich

walls 2. It provides the “warm” enclosure and structural support for several module,

e.g. the Analytical Laboratory Drawer. The body size and shape are dictated by

the accommodation of internal equipment and the constraints of the available stowage

volume within the Descent Module; the Descent Module is a blunt capsule capable of

landing on the Mars surface with a ballistic and controlled entry trajectory. The descent

module’s entry and deceleration through the Martian atmosphere will be assisted by

2Honeycomb structures are natural or man-made structures that have the geometry of a honeycomb

to allow the minimization of the amount of used material to reach minimal weight and minimal material

cost. The geometry of honeycomb structures can vary widely but the common feature of all such

structures is an array of hollow cells formed between thin vertical walls. The cells are often columnar

and hexagonal in shape. A honeycomb shaped structure provides a material with minimal density and

relative high out-of-plane compression properties and out-of-plane shear properties.

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 55

heat shields and parachutes prior to a fully controlled descent and touchdown. The

body height and width is driven by the accommodation of the ALD. The body length

is constrained by the allowable envelope and the accommodation of the drill box at the

front and WISDOM antennas at the rear.

At the rear of the body, a bracket provides the mounting for the WISDOM GPR

antenna horns which overhang the rear bogie of the locomotion subsystem. The bracket

is configured to provide sufficient space for rotational movement of the transverse rear

bogie [4].

Having available the CAD model of the body structure, one shall modify the multi-

body model and make it more accurate including those geometric informations. This

is allowed in MotionView by adding a CADgraphics entity, associated to the Rover

body entity. Some modifications have to be done in order to match the geometry

center (defined when modelling in CAD software) and the point defined in MotionView

as the Rover CM. This was made performing some rotation and translation operations.

The final results is shown in Figure 5.20

(a) Rover view in xy plane (b) Rover view in xz plane

(c) Rover view in yz plane

Figure 5.20: Differnt views of the complete rover model build in MotionView with real

body geometry

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 56

5.6 Modifying the model for co-simulation

The goal of this chapter is to describe the construction of a multi-body model of the

ExoMars rover, such that it can be combined with a controls system model implemented

in Activate. MotionSolve and Activate models can communicate with each other during

co-simulation, but some arrangements have to be done in order to let the two software

correctly communicate.

The basic MBS model described before has to be modified for co-simulation by

adding MotionView entities called solver arrays and solver variables. As defined

in [20], the solver variables contain the individual plant input and output values, while

the solver arrays define the plant input and output to communicate with Activate. In

our case, the control acts on the drive and steering motors so that the wheels reach the

desired rotational speed and they are steered as defined by the trajectory control.

Plant inputs Twelve solver variables have to be added to the model: six drive torques

and six steering torques. These are collected in two solver arrays defining the control

inputs, called DRV Torques and STR Torques. Then, we have to connect the solver

variable to the torques previously defined. This is done by setting the torque value

in the property panel to

V ARV AL(< solver.variable.id >)

This expression specifies the torque to be the solver variable specified in brackets <>.

This variable sets the control signal sent from Activate to be the control force acting

on the wheels.

Plant outputs Furthermore, other solver variables are required to specify model

output. They have to be defined using the following MotionSolve functions:

(a) Wheel rotational and steering velocity:

WY(I, J, K); WZ(I, J, K)

The WY (WZ) function computes the y (z) component of the relative rotational

velocity of marker I with respect to marker J, as resolved in the coordinate system

of marker K. The first argument, marker I, must be specified. The second and

third arguments, markers J and K, are optional. [20]

(b) Wheel steer angular position:

AZ(I, J)

The AZ function computes the relative rotational displacement of marker I with

respect to marker J about the z axis of marker J. The computed angle takes into

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 57

account the total number of revolutions between the two markers. While computing

this angle, it is assumed that rotations about the other two axes of marker J (X

and Z) are zero. Then, the AZ angle is the angle between the two X-axes measured

counter-clockwise from the x axis of the J marker. The first argument, marker I,

must be specified. The second argument, marker J, is optional. [20]

(c) Rover CM x and y coordinates and rover heading ϕ:

DX(I, J, K); DY(I, J, K); AZ(I, J)

The DX (DY) function computes the x (y) component of the relative translational

displacement of marker I with respect to marker J, as resolved in the coordinate

system of marker K. The first argument, marker I, must be specified. The second

and third arguments, markers J and K, are optional. [20]

CHAPTER 5. MOTIONSOLVE: EXOMARS ROVER MULTI-BODY MODEL 58

(a) Points creation (b) Bodies creation

(c) Wheel graphics addition (d) Leg graphics addition

(e) Transition bracket graphics addition (f) Lateral beam graphics addition

(g) Front beam graphics addition (h) Rover body graphics addition

(i) Joints creation (j) Forces/Torques addition

Figure 5.21: Steps of the model construnction in MotionView

Chapter 6

THE ACTUATOR CONTROL

6.1 Introduction

In this chapter we will focus on the Actuator Drive Electronics (ADE) being part of

the ExoMars rover Mobility System. Its main function consists in the actuator (motor)

control loop process.

The first part of the chapter aims at describing the low level control loop, firstly

presenting the general aspects of the PID control theory, and then illustrating how the

actuator controllers have been modelled in Activate. The theoretic part refers to [9]

and [10].

Usually, in control design courses, the reference signal generation is not considered,

since typical signals, as step functions or sinusoidal are assumed, but here this topic

has to be taken into account. Indeed, the actuator control system includes also a Path

Planner (or Profile Generator) responsible of generating a profile for the reference vari-

ables sent to the controller. This component has to takes into account the constraints

driven by the actuator limits. Therefore, the second part of the chapter concerns the

generation of the profile, starting from the definition of the basic ones, and ending

with a specific case, the trapezoidal velocity profile, which is the one used in this the-

sis. Finally a presentation of the Activate implementation is provided, with detailed

explanation of the methodology followed to build the relative block diagram. For the

theoretic concept one have made reference to [11].

6.2 ExoMars Rover Vehicle Mobility System Overview

The ExoMars mobility system is in charge of rover motion. It relies on a compre-

hensive and complex set of functions. The overview of the mobility system functional

architecture is presented in Figure 6.1. It relies on the following elements [5]:

• A Bogie Electro-Mechanical Assembly (BEMA) which comprises the bogie struc-

59

CHAPTER 6. THE ACTUATOR CONTROL 60

tures including the wheels, wheel axes position and speed sensors. Actuation of

the BEMA is necessary for the rover to move and follow the commanded path to

the target.

• A set of sensors, which supply information about the rover state vector: absolute

attitude, relative attitude, body angular velocity and angular acceleration, and

position.

• An Actuator Drive Electronics (ADE) unit which is in charge of controlling the

BEMA according to individual axis commands. It is the subject of this chapter.

• A data handling system (DHS) with its embedded Application Software which

performs the management of numerical data and all computations required from

the sensor processing to the elaboration and the transmission of the commands

to the ADE through a CAN bus.

• A communications system to allow a command and telemetry interface to the

Rover Operations Control Centre (ROCC).

Sensors

M

E

I

Absolute

Localisation

Relative

Localisation

Mobility

Manager

Command

Trajectory

Control

Locoomtion

Control

M

E

I

ADE

BEMA

Ground

path sequence

Vehicle level commands

Wheel level commands

Command current

Path sequence

Vehicle level commands

Figure 6.1: Overview of the mobility system functional architecture

Figure 6.1 comprises also the Ground block; indeed, Ground is allowed to send

rover body level manoeuvre commands (i.e. Generic Ackerman, Generic Point Turn,

Stop and respectively parameters) directly to the rover without the intervention of

the Trajectory control. Moreover, Ground shall load a predefined path to the rover

Trajectory Control function and request for its execution.

The red rectangle encloses the blocks modelled in this thesis. In particular, the red

block ADE is the subject of this chapter.

The key functions of ExoMars rover mobility system are summarised as follows:

CHAPTER 6. THE ACTUATOR CONTROL 61

• Mobility equipment

– Sensors

∗ IMU (Inertial Measurement Unit) containing

· Accelerometer: provides the linear acceleration vector

· Gyroscope: provides the angular rates vector

∗ Cameras (Navigation and Localisation): provide a stereo images of the

surrounding environment

∗ Pan and Tilt Mechanism sensors: provide the orientation of the mast

head through ADE

∗ Locomotion sensors: provide the locomotion axes angular position and/or

angular rates through ADE

– Actuators

∗ Bogie Electro-Mechanical Assembly: 3 bogies connected to the rover

body through a passive pivot each. Each bogie contains 2 legs with

a wheel, with 3 active axes: wheel driving, wheel steering and leg de-

ployment. The BEMAs are commanded by the ADE, performing the

actuator closed-loop control, which will be discussed in this chapter.

∗ Pan and Tilt Mechanism: though not part of the Mobility Subsystem

it is used to point the NavCam at an aimed direction. It is located on

top of the mast structure and the interfacing on the mast head.

• Mobility Equipment Interface (MEI): it interfaces between the Mobility equip-

ment and the higher level mobility software functions.

• Localisation

– Absolute localisation: uses accelerometer measurements to estimate the

rover body pitch and roll on the Mars Local Geodetic frame by compar-

ing the gravity measurement in this reference frame and the one in the rover

body frame. The rover heading is uploaded by Ground [7].

– Relative localisation: since absolute localisation does not provide rover posi-

tion and cannot be executed whilst the rover is moving, relative localization

is needed to propagate the attitude and the initial position (either zero or

set by ground). This function includes a visual and a non-visual part [1].

∗ Visual Localisation: is the most accurate estimate of the rover position

and attitude when the rover moves. It is based on a pair of stereo

images from the localisation cameras that are processed to find and track

corners and/or edges on the images. The evolution of these features is

CHAPTER 6. THE ACTUATOR CONTROL 62

then processed by an estimator that determines the rover position and

attitude. The processing is slower than the closed-loop trajectory control

and therefore another estimator is needed between VisLoc estimates.

∗ Non-Visual Localisation: is the fastest estimate of the rover position

and attitude but also the least accurate due to slippage. It uses the

measurements from the gyroscopes and the BEMA sensors to estimate

the relative motion. Though the attitude estimate remains accurate,

the position estimate may be very inaccurate when the rover slips since

the sensors used in this module cannot detect it.

• Mobility manager: the mobility functionality is based around a set of mobility

modes (Idle, Absolute Localisation, Direct Driving, Locomotion and Localisation

Only, Path Traverse). The Mobility Manager is in charge of deciding the way

modes are grouped, the sequence they are called with associated transitions, and

the checking of transition conditions.

• Trajectory Control: its objective is to drive the rover along a specific path se-

quence, consisting of a series of path and point turn segments. The trajectory

control execution calculates the vehicle level commands, i.e. rover velocity and

heading, required to follow a path sequence closely [3].

• Locomotion Manoeuvre Control: since commands issued by trajectory control

are vehicle level commands and the actual mobility actuators are the wheels with

their driving and steering actuators, they must be translated into wheel level

command. The locomotion manoeuvre is in charge of taking vehicle level com-

mands and adequately transforming them into driving and steering commands.

This transformation also aims at ensuring that at any point in time all actuators

are in a compatible configuration, i.e., not fighting each other [2].

• Locomotion Deployment Control: it is used for BEMA deployment operations.

BEMA deployment is a one-off activity performed to stand the rover up on the

lander platform. This control generates commands for the DEP and DRV actu-

ators in order to deploy all six legs simultaneously minimising rover body tilt in

the lander platform frame.

6.3 The ExoMars Actuator Drive Electronics

The Actuator Drive Electronics unit is in charge of controlling the BEMA according to

individual axis commands. The ExoMars rover is equipped with two identical actuator

drive electronics. One ADE is installed in the right side of the rover (ADE-R) and

the other in its left side (ADE-L). The ADEs perform the control of most of the rover

CHAPTER 6. THE ACTUATOR CONTROL 63

actuators , by implementing the control operations required to make the motors move

at the required velocity or toward the required position. To achieve this, the ADE will

receive commands issued by the on-board computer to move the actuators in response

to the higher level mobility algorithms [27].

6.3.1 ExoMars Actuator Control Algorithm Overview

The diagram shown in Figure 6.2 provides an overview of the algorithm involved in the

actuator control loop.

OBC

command
Path planner Controller M

Initialization

logic

Initialization

and start-up

kick logic
FPGA

position

measuerment

FPGA rate

estimate

γ

γ

γ̇

H-dridge sign

icmd

Reset

Figure 6.2: Actuator’s algorithm overview

The Initialization Logic block governs when the path planner and control law

are reset. [14] Essentially when a new command is received from the on-board com-

puter (OBC) and the system is not moving (or direction of motion is reversed) the

path planner and controller are reset to take advantage of the kick-start (Hard Reset).

Otherwise only the path planner is reset (Soft Reset). Thus, the initialization logic is

responsible for two things:

1. Handling incoming on-board computer commands and determining if the path

planner must be entirely reset (kick-start the MOT control law) or only partially

reset

2. What temperature dependent values should be

The Path Planner is in charge of generating a profile, according to the on-board

computer target, and respecting the acceleration/speed constraints. [14] Data in the

path planner flows as follows:

1. The parametrized allowed second rate of change ẍ is used to increase the magni-

tude of the live command first rate of change ẋ

2. Once the first rate of change has reached it’s maximum magnitude it is com-

manded to hold this value

CHAPTER 6. THE ACTUATOR CONTROL 64

3. When the value of the present state minus the state of interest x is less than the

value of the area of the triangle created by the slope of ẍ and ẋ, than the ẋ is

reduced by the ẍ to a 0 value.

This behaviour is better explained in Figure 6.3

t

ẋ

1

2

3

(1) accelerate to maximum ẋ

(2) maintain ẋ

(3) start reducing ẋ when the

area of the deceleration triangle

is within the stop distance

x = position or speed

depending on mode

Figure 6.3: Path planner behaviour

The Controller receives position/speed target demands generated by the path

planner, and according to a specific control law computes the command current sent

to the DC motors driving the rover wheels [14].

Figure 6.4: ExoMars Controller block diagram

The nominal operation is the following:

1. Matched position and rate commands arrive at the controller and are compared

against the signals measurements

2. The difference between the desired and measured signals is then taken and signals

are optionally low-pass

3. Both the rate and position errors are then multiplied by a weighting factor prior

to being added together.

4. The summed signal is then put through a standard PID.

CHAPTER 6. THE ACTUATOR CONTROL 65

5. In parallel to calculation of the PID a weighted rate is calculated based on the

sum of the desired rate and position error multiplied by weight terms. The sign of

this weighted rate is then multiplied by a constant to calculate the friction boost

and added to the output of the PID. This feed forward action is added in order

to compensate friction disturbance, according to the following control law:

icmd = sign(λweightd γ̇d + λweightp(γd − γ))ikeepgoing (6.1)

where ikeepgoing is a parametrised current value that approximately keeps the

motor moving in the presence of friction.

6. The combined output is then limited.

7. Final output either uses this value directly or overrides with the kick-start logic

8. As a final step the signal can be negated and h-bridge sign set by the H-bridge

logic.

The design of the controller block diagram includes several sources of feedback and

possibility to inject or not low-pass filters. They are all included in order to allow

flexibility of re-configuration in mission. Moreover, it has been included a weighted

error signal through a common controller, in order to allow weight sensors differently,

depending on their relative accuracy (e.g. on the STR axis the motor side rate sensor

is more accurate than the joint side position sensor).

Finally, the Initialization and start-up kick logic block is in charge of providing

a kick-start to the actuator, in order to cope with detent-brake characteristics of some

of the Actuators.

As already stated, this thesis aims at develop a model implementing the main

function of the ExoMars control, focusing on the ADE functionalities. Referring to

Figure 6.1 we want to construct the model corresponding to the systems comprised

in red window. The inputs are considered as vehicle level commands directly set by

ground, while the outputs are the torques applied to the wheels of the MotionSolve

rover model; therefore, the BEMA block corresponds to the MotionSolve one.

The ADE controller has been modelled in Activate as two separate blocks: a Pro-

file Generator and a Controller. The complete Activate model is reported in Figure

6.5, where the grey blocks will be subject of the following sections, while the Inverse

kinematics block will be described in detail in Chapter 7.

CHAPTER 6. THE ACTUATOR CONTROL 66

Locomotion

Control

(Inverse

kinematics)

Path planner Controller
Rover model

(MontionSolve)

vrover

M

ϕ̇

θref

ωref

θref (t)

ωref (t)

eθ(t)

eω(t)

TSTR(t)

TDRV (t) ω(t)

θ(t)

actuator drive electronics (ade)

activate motionview/motionsolve

Figure 6.5: General scheme of the complete model built for co-simulation

6.4 The Controller

Considering the overall Activate model presented in Figure 6.5, the Controller receives

the reference values for the steering angles and driving velocities from the Profile Gen-

erator, which generates a trapezoidal profile for these signals according to higher level

commands. Based on their control laws, the controllers generate the command torques

to be applied to the steering axes or drive axes of the wheels.

The first implementation of the control algorithm was based on the usage of PID

controllers associated to the steering motors, which takes as input the error

eθ(t) = θref (t)− θ(t)

where θref (t) are the reference steering angles computed by the Profile Generator and

θ(t) are the current ones computed by MotionSolve; and PID controllers associated to

the drive motors, which receive as input the error

eω(t) = ωref (t)− ω(t)

where ωr(t) are the reference wheel velocities and ω(t) are the current ones.

In the next section the PID control theory is presented with reference to [9].

6.4.1 PID Control Theory

Having argued in the previous chapter that the actuator controllers have been imple-

mented as PIDs, here a brief overview of the PID control theory is reported, making

reference to [9].

The PID controller is the most common control loop feedback mechanism and it is

widely used in industrial control systems. A PID controller continuously calculates an

error e(t) as the difference between a desired reference variable, often called setpoint

r(t) and a measured process variable y(t), and applies a control signal u(t), that is the

sum of three terms:

CHAPTER 6. THE ACTUATOR CONTROL 67

• P-term proportional to the error

• I-term proportional to the integral of the error

• D-term proportional to the derivative of the error

The PID algorithm is described by equation (6.2) and a block diagram of a PID

controller in a feedback loop is represented in Figure 6.6.

u(t) = Kpe(t)+Ki

∫ t

t0

e(τ) dτ+Kd
de(t)

dt
= Kp

(
e(t) +

1

Ti

∫ t

t0

e(τ) dτ + Td
de(t)

dt

)
(6.2)

I Ki

∫ t
t0
e(τ) dτ

D Kd
de(t)
dt

P Kpe(t)

G(s)

System

r(t) e(t) u(t) y(t)
+

+

++

-

Figure 6.6: Block scheme of a control loop with proportional-integral-derivative action

The parameters characterizing the control are the following: proportional gain Kp,

integral time Ti (or integral gain Ki), derivative time Td (or derivative gain Kd).

Applying the Laplace Transformation to the previous equation (6.2), we obtain the

following Transfer function:

U(s)

E(s)
= L(S) = Kp +

Ki

s
+Kds (6.3)

Effect of proportional action

u(t) = Kpe(t)

The proportional control is obtained when Ki = Kd = 0, i.e. Ti = ∞ and Td = 0.

The control output will be proportional to the error, the larger the error the larger the

control action, taking into account the gain factor Kp. Thus the P control leads always

to a steady-state error between the setpoint and the actual signal value, because the

controller requires an error to generate the proportional response. If there is no error,

there is no correction.

The characteristic parameter Kp has a theoretical meaning, but this control type

can be also defined from a practical point of view with a parameter called proportional

band Bp. It is defined as the minimum variation of the input e(t) in percentage, that

makes the output u(t) change from the minimum value to the full scale value.

CHAPTER 6. THE ACTUATOR CONTROL 68

When Kp is defined as the ratio between the signal normalized with respect to its

full scale value, as in (6.4), it is possible to use relation (6.5) between Bp and Kp, from

which it will be clear that increasing the proportional band will lead to an increase of

the precision, i.e. it will be sufficient a smaller variation in the error to have a significant

change in the output control signal.

Kp =
u(t)/u(t)fullscale
e(t)/e(t)fullscale

(6.4)

Kp =
100

Bp
(6.5)

Therefore, reducing the proportional band, the proportional gain will increase, im-

proving the precision of the controller (the control response will be faster); moreover,

the proportional gain increase corresponds to an increase of the output value reached

by the P block. This value will gradually distance less and less from the reference value,

but never reaching it due to the steady state error; it can be decreased increasing the

gain, but this could lead to instability, forcing the output to oscillate. P controllers are

acceptable only for those applications in which variances between the effective value of

the controlled variable and the desired one are allowed.

Kp

Controller

G(s)

System

u(t)r(t)

+

e(t) y(t)

−

Figure 6.7: Block scheme of a control loop with proportional action

What was described before is now demonstrated from a mathematical point of view.

Considering the general block scheme with a plant and a controller as in Figure 6.7.

For example, we can associate to it functions with the following expressions:

R(s) =
1

s
; G(s) =

A0

1 + sτ
; C(s) = Kp

The transfer function of the closed loop system is thus:

W (s) =
Y (s)

R(s)
=

C(s)G(s)

1 + C(s)G(s) ∗ 1
=

KpA0

1+sτ

1 +
KpA0

1+sτ

=
KpA0

τ

s+
1+KpA0

τ

(6.6)

Applying to (6.6) the unitary step we obtain the following output signal:

Y (s) = R(s)W (s) =
1

s

KpA0

τ

s+ 1+K−pA0

τ

(6.7)

CHAPTER 6. THE ACTUATOR CONTROL 69

The error function is:

E(s) = R(s)− Y (s) =
1

s

1 + sτ

1 + sτ +KpA0
(6.8)

Applying the residual theorem and the inverse Laplace Transform we obtain the

system time response:

y(t) =

(
KpA0

1 +KpA0

)[
1− e

1+KpA0
τ

t
]
δ−1(t) (6.9)

From (6.9) it is evident that the increase of the proportional gain Kp will result

in an increase of the gain
(

KpA0

1+KpA0

)
tending toward 1, and at the same time the time

constant of the exponential term will be reduced. In this way, the output value will

be more and more closed to the desired one and the time required to reached this

level will be smaller and smaller. This last is the Rise Time and it is the parameter

characterising the readiness of the controlled system. However, the only way to reach

the exact reference value is to have Kp →∞.

The steady state error characterises the system accuracy, i.e. the ability of following

the reference signal at steady state. In order to analyse the accuracy we have to take

into account some system characteristics:

• Steady state gain of the loop transfer function

• Error transfer function

• System type number : this parameter is essentially the number of poles at the

origin of the s plane, and it can indicate whether the steady state error of the

system will be zero, or a constant value, or infinity according to the input.

The system is of type h if the transfer function has a pole of multiplicity h at s = 0

It is possible to evaluate the steady state error with the following procedure:

e∞ = lim
t→∞

e(t) = lim
s→0

sE(s) (6.10)

with E(s) = We(s)R(s)

In the case of our example, W (s) has no poles in the origin, thus the system is of

type 0, and the steady state error is

e∞ = lim
s→0

sE(s) =
1

1 +KpA0
(6.11)

One more time, it is evident that it is required a infinitely large Kp to have e∞ = 0.

Usually, the control specifications about the steady state accuracy impose con-

straints on the type of the open loop system, i.e. on the number of poles the open loop

CHAPTER 6. THE ACTUATOR CONTROL 70

transfer function, and on the minimum steady state gain of the closed loop transfer

function.

Since the open loop transfer function is C(s)G(s), known the properties of G(s), the

specifications constrain the number of poles the controller must have and its minimum

steady state gain.

Let’s consider another example, in which the system to be controlled is characterised

by a second order transfer function:

R(s) =
1

s
; G(s) =

A0

1 + 2ζ
(
s
ωn

)
+
(
s
ωn

)2 ; C(s) = Kp

Analogously to the previous example, the closed loop transfer function is:

W (s) =
Y (s)

R(s)
=

C(s)G(s)

1 + C(s)G(s) ∗ 1
=

KpA0

1 +KpA0 + 2ζ
(
s
ωn

)
+
(
s
ωn

)2 (6.12)

And the error transfer function is:

E(s) =
1

s

1 + 2ζ
(
s
ωn

)
+
(
s
ωn

)2
1 +KpA0 + 2ζ

(
s
ωn

)
+
(
s
ωn

)2 (6.13)

From (6.13) we obtain the steady state error:

e∞ = lim
s→0

sE(s) =
1

1 +KpA0
(6.14)

Also in this case, there is a steady state error that decreases when Kp increases.

Effect of integral action

u(t) = Ki

∫ t

t0

e(τ) dτ

The integral control is obtained when Kp = Kd = 0. The integral action accounts for

past values of the error and integrates them over time to produce the integral term.

Usually, the integral action is associated to the proportional one in order to obtain the

so called PI controller.

u(t) = Kpe(t)+Ki

∫ t

t0

e(τ) dτ = Kp

(
e(t) +

1

Ti

∫ t

t0

e(τ) dτ

)
; U(s) = Kp

(
1 +

1

Tis

)
E(s)

The main function of the integral action is to make sure that the process output

agrees with the setpoint in steady state. If there is a residual error after the application

of proportional control, the integral term starts growing, adding a control effect that

CHAPTER 6. THE ACTUATOR CONTROL 71

tries to eliminate it. Since the error decreases, the proportional effect decreases too,

but this effect is compensated by the growing of the integral action. So, the steady-

state error disappears when using PI control, but increasing the integral action could

lead to instability. Indeed, the proportional term introduces a pole and this leads to a

worsening in terms of stability.

When using this type of controller, we need to tune the Ti variable, i.e. the integral

time constant also called reset time. It is responsible of the integral action: the response

grows faster towards the setpoint for small values of Ti.

Consider for example a system made up of a plant to be controlled and a PI con-

troller, that receives as input a step signal r(t):

R(s) =
1

s
; G(s) =

A0

1 + sτ
; C(s) = Kp

(
1 +

1

Tis

)
The closed loop transfer function is therefore:

W (s) =
Y (s)

R(s)
=

C(s)G(s)

1 + C(s)G(s) ∗ 1
=

1

1 + sTi(1+sτ)
A0Kp(1+sTi)

(6.15)

And the error is:

E(s) =
1

s

sTi(1 + sτ)

sTi(1 + sτ +A0Kp) +A0Kp
(6.16)

As before we can compute the steady state error:

e∞ = lim
s→0

sE(s) = 0 (6.17)

Effect of derivative action

u(t) = Kd
de(t)

dt

The integral control is obtained when Kp = Ki = 0. The derivative action is a best

estimate of the future trend of the error, based on its current rate of change. The

purpose of the derivative action is to improve the closed loop stability.

The PI parameters are chosen in such a way that the output of the system oscil-

lates; successively, in order to damp the oscillations, the derivative term is introduced.

Increasing the derivative time Td will increase the damping, but if Td becomes too large

the derivative action ceases to be effective.

The derivative action introduces a zero in the origin of the s plane; this means a

phase lead.

CHAPTER 6. THE ACTUATOR CONTROL 72

6.4.2 PID tuning operation

An important advantage of PID controllers is the possibility of use them without know-

ing in details the model of the system to be controlled. Users of control systems are

frequently faced with the task of adjusting the controller parameters to obtain a desired

behaviour. There are many different ways to do this. Since the PID controller has so

few parameters, a number of special empirical methods have also been developed for

direct adjustment of the controller parameters.

One among the developed techniques is the rule developed by Ziegler and Nichols.

Their idea was to perform a simple experiment, extract some features of process dynam-

ics from the experiment and determine the controller parameters from these features.

Anyway, the simplest way to perform PID tuning is to manually change the param-

eters. Manual control is the method used in the development of this thesis to set the

parameters of the PID controllers responsible of the ExoMars rover actuator control.

Manual loop tuning

This is a simple method of tuning a PID controller. First of all, the system is configured

in closed loop, the PID sends the control output u(t) to the system, but the integral

and derivative gain are set to zero. The proportional gain Kp is increased until the

response oscillates and is fast enough.

After that, the integral term is set, so that the oscillation are gradually reduced.

The I-parameter is also chosen in such a way that the steady state error is eliminated.

This step will probably increase the overshoot, that usually is undesired, or limited.

Overall, the readiness and the overshoot of the system response are regulated in-

creasing the derivative term.

6.5 Some clarifications

In the following sections it will be presented the tuning operation of the STR and DRV

PID controllers and relative results. Some clarification should be given. As highlighted

in Chapter 5, contact entities play an important role in the multi-body modelling. In

order to build a first general model, the contacts have been modelled without consid-

ering specific real cases, keeping the default parameter values and verifying that the

contact force are reasonable; thus, the PIDs are tuned accordingly.

Obviously, this does not properly represent real situations; however, it allows to

construct a simple overall model that can be eventually improved and customized to

more detailed scenarios. This is the great advantage of the developed model: it is simple

to adapt it to specific analysis. For instance, if one desires to simulate the movement

of the ExoMars rover on the Martian soft-soil terrain, it is sufficient to take the correct

CHAPTER 6. THE ACTUATOR CONTROL 73

MotionSolve model, with the accurate contact modelling, load it into the developed

model and consequently tuning the PID controllers, without any other modification.

Certainly, the great challenge remains the development of the correct wheel-ground

contact model.

6.5.1 Drive motors PID tuning

The PID controllers associated to the drive motor of the ExoMars rover have been

tuned manually. In the Activate model they receive as input the error between the ref-

erence wheel velocity, computed by the prifile generator, and the current wheel velocity

computed by MotionSolve. The PID gains have been tuned trying different solutions,

and the several simulations results are reported in the following sections.

All tests were taken considering a straight line as trajectory, therefore the reference

speed is the same for all the wheels and they behave in similar way. In particular, the

input to the Inverse Kinematic block is the desired rover velocity

vrover = 0.03 m/s

By consequence, the reference wheel angular velocities computed by the Inverse

Kinematics block are

ωi = 0.25 rad/s

.

This is the value of the reference signal for all the drive PID controllers. Only

the results relative to the front right wheel are reported, but all other wheels behave

in the same way. The simulation parameters are set as illustrated in Chapter 4. As

already stated, the tuning procedure is not exactly the standard one because of the

simplification made as regard as contact model.

P term tuning

First of all the PID gains have been chosen to obtain a simple proportional action.

The simulation results reported below have been obtained setting different values of

Kp: 100, 500, 1000, 5000, 10000. The effect of the proportional gain Kp increase, is

highly evident in Figure 6.8, where only the front right wheel velocity is plotted. The

gain increase results in a increase of the readiness of the response, but a steady state

error is always present. For this reason, an integrative term is inserted. Its tuning is

described in the following paragraph.

CHAPTER 6. THE ACTUATOR CONTROL 74

Figure 6.8: Output DRV rotational speeds resulting from a P control

I term tuning

For the I-term tuning, the simulations were done setting the proportional gain Kp =

2000, which value gives a reasonably acceptable result, as described in the previous

section; whereas, the integral gain Ki is increased starting from 0 till 100. The output

velocity of the front right wheel is plotted in Figure 6.9 which compares the results

between simple proportional action and proportional-integrative action. Obviously,

the steady state error can be eliminated by introducing the integral term.

Figure 6.9: Output DRV rotational speeds resulting from a PI control

D term tuning

In this particular case the addition of derivative action is not needed, therefore the Kd

term is null.

CHAPTER 6. THE ACTUATOR CONTROL 75

6.5.2 Steering wheel motor PID tuning

As already stated, the tuning procedure is not exactly the theoretical one, since the

low accuracy of the contact model leads to strange behaviours. As regards the steering

controllers, the PIDs are tuned being already connected to the profile generators; thus,

the references signals for the PIDs are not step functions, but trapezoidal ones.

All tests were taken keeping still the rover and setting the input reference angular

position to π
6 . This signal is taken by the Profile Generator which gives as output a

trapezoidal reference signal.

Therefore, the reference is the same for all the wheel axes and they behave in similar

way. Only the results relative to the front right wheel are reported, but same applies to

all the other ones. As already stated, the tuning procedure is not exactly the standard

one because of the simplification made as regard as contact model.

P term tuning

First of all, the P term has been tuned. Starting from Kp = 1000, the values is increased

till Kp = 50000. The resulting output angular positions are reported in Figure 6.10.

Figure 6.10: Output STR angular positions resulting from a P control

I tern tuning

Considering the results obtained in the previous section with only proportional term, it

is evident that if one wants to reach the reference value it is needed to add an integral

term. Figure 6.11 shows the resulting outputs with

Kp = 50000 and Ki = 1000; 5000; 10000

.

CHAPTER 6. THE ACTUATOR CONTROL 76

Figure 6.11: Output STR angular positions resulting from a PI control

D term tuning

Also in this case the derivative action is not needed, thus Kd = 0.

CHAPTER 6. THE ACTUATOR CONTROL 77

6.6 The Path planner

This section is dedicated to the the Path Planner, the second constitutive block of the

actuator control. The Path Planner is a software node that, given the target values

of the control variables, the kinematic constraints (maximum speed) and the dynamic

constraints (maximum accelerations, maximum torques), designs the time law of the

input variables. In the developed software, the Path Planner is a block located between

the Inverse Kinematics block, from which receives the target values, and the Controller

block, to which sends at any given time the current value.

The time law chosen for the ExoMars control was the so called Trapezoidal velocity ;

an example of continuous profile of a generic variables s(t) is illustrated in Figure 6.12.

t

s(t)

t0 t1 t2 tf

s1

s2

sref

t

ṡ(t)

t0 t1 t2 tf

ṡmax

t

s̈(t)

t0 t1 t2 tf

s̈max

Figure 6.12: Example of a continuous trajectory with velocity and acceleration con-

straints

With reference to [11], we start defining how the trapezoidal velocity profile shall

be defined and generated. This specific case can be consider as the combination of two

more simple profiles, the so called Linear Profile and Parabolic Profile; therefore, one

should start analysing them, and later applying the same concepts to the trapezoidal

profile.

6.6.1 Trapezoidal Velocity Profile

A general motion can defined by assigning the initial and final time instant t0 and

tf , and conditions on position, velocity and acceleration at those instants. From a

mathematical point of view, the problem is then to find a function

s = s(t), t ∈ [t0, tf]

CHAPTER 6. THE ACTUATOR CONTROL 78

such that the given constraints are satisfied. This problem can be solved by con-

sidering a polynomial function

s(t) = a0 + a1(t) + a2(t)
2 + ...an(t)n

where the degree n of the polynomial, and thus the n+ 1 coefficients ai, is depend-

ing on the number of constraints to be satisfied and the desired “smoothness” of the

resulting motion.

Linear trajectory - Constant velocity

The most simple profile is the linear trajectory (constant velocity), defined as

s(t) = a0 + a1(t− t0)

where t0, tf , s(t0) and sref = s(tf) are known. Thus the parameters a0 and a1 are

computed by solving the following equations:s(t0) = s0 = a0

s(tf) = sf = a0 + a1(tf − t0) = a0 + a1T

where T = tf − t0 is the time duration.

therefore a0 = s0

a1 =
sf−s0
tf−t0 = h

T

where h = sf − s0 is the displacement.

An example of linear continuous trajectory is presented in Figure 6.13.

Parabolic Trajectory - Constant acceleration

Another usual profile is the parabolic trajectory, characterized by an acceleration with a

constant absolute value and opposite sign during the acceleration/deceleration periods.

Mathematically, it is defined by two second degree polynomials, one from t0 to t1

(acceleration phase) and the second from t1 to tf (deceleration phase), where t1 is the

flex point.

Considering the case of a symmetric trajectory with respect to the middle point,

we have:

t1 =
t0 + tf

2
, s(t1) =

s0 + sf
2

CHAPTER 6. THE ACTUATOR CONTROL 79

t

s(t)

t0 t1 t2 tf

s1

s2

sref

t

ṡ(t)

t0 t1 t2 tf

ṡmax

t
s̈(t)

t0 t1 t2 tf
s̈ = 0

Figure 6.13: Example of a continuous linear trajectory

1. The first phase is described by

s(t) = a0 + a1(t− t0) + a2(t− t0)2, t ∈ [t0, t1]

The parameters a0, a1 and a2 are computed by imposing the constraints of the

trajectory, i.e. the points s0 and s1, and the condition on the initial velocity

v(t0) = v0


s(t0) = s0 = a0

s(t1) = s1 = a0 + a1(t1 − t0) + a2(t−t0)
2

ṡ(t0) = v0 = a1

obtaining

a0 = s0, a1 = v0, a2 =
2

T 2
(h− v0T)

with

T = 2T1 = 2(t1 − t0), h = 2h1 = 2(s1 − s0)

Therefore the trajectory in phase1 is defined as


s(t) = s0 + v0(t− t0) + 2

T 2 (h− v0T)(t− t0)2

ṡ(t) = v0 + 4
T 2 (h− v0T)(t− t0)

s̈(t) = 4
T 2 (h− v0T)

CHAPTER 6. THE ACTUATOR CONTROL 80

2. The second phase is described by

s(t) = a3 + a4(t− t0) + a5(t− t0)2, t ∈ [t1, tf]

The parameters a3, a4 and a5 are computer by assigning the final velocity vf at

t = tf and solving the following system


s(t1) = s1 = a3

s(tf) = sf = a3 + a4(tf − t1) + a5(tf − t1)2

ṡ(tf) = vf = a4 + 2a5(tf − t1)

obtaining

a3 = s1 =
s0 + sf

2
, a4 = 2

h

T
− vf , a5 =

2

T 2
(vfT − h)

Therefore the trajectory in phase2 is defined as


s(t) = s1 + (2 hT − vf)(t− t1) + 2

T 2 (vfT − h)(t− t1)2

ṡ(t) = 2 hT − vf + 4
T 2 (vfT − h)(t− t1)

s̈(t) = 4
T 2 (vfT − h)

An example of parabolic continuous trajectory is presented in Figure 6.14.

t

s(t)

t0 t1 tf

s1

sref

t

ṡ(t)

t0 t1 tf

ṡmax

t

s̈(t)

t0
t1 tf

s̈max

−s̈max

Figure 6.14: Example of a continuous parabolic trajectory

CHAPTER 6. THE ACTUATOR CONTROL 81

Once the characteristics of these basic profiles are understood, it is easy to note that

the trapezoidal velocity trajectory mentioned before, is nothing but the combination of

three polynomial profiles, of second order, first order and second order again (2-1-2):

Phase 1 Constant acceleration in the interval [t0, t1]

Phase 2 Constant velocity in the interval [t1, t2]

Phase 3 Constant deceleration in the interval [t2, tf]

We divide the trajectory in three time intervals defined as:

I1 := t : t0 ≤ t < t1 = [t0, t1)

I2 := t : t1 ≤ t < t2 = [t1, t2)

I3 := t : t2 ≤ t ≤ tf = [t2, tf]

Thus the time laws defining s(t) in the corresponding intervals are:

• Acceleration equation:


s̈max t ∈ I1

0 t ∈ I2

−s̈max t ∈ I3

• Velocity equation:


s̈max(t− t0) + ṡ0 t ∈ I1

ṡmax t ∈ I2

ṡmax − s̈max(t− t2) t ∈ I3

• Position equation:


1
2 s̈max(t− t0)2 + ṡ0(t− t0) + s0 t ∈ I1

ṡmax(t− t1) + s1 t ∈ I2

−1
2 s̈max(t− t2)2 + ṡmax(t− t2) + s2 t ∈ I3

In the case of our problem, we desire to make the rover start a certain manoeuvre

at a certain time t0. We considered the case of STR control, therefore we have to

define the time law of the steering angles q(t). The target final value q(tf) is generated

by the inverse kinematics block, and it is the reference value is qref , i.e. the angular

position with respect to the z axis the steering axes must assume in order to perform

CHAPTER 6. THE ACTUATOR CONTROL 82

the desired manoeuvre. Then, considering that each manoeuvre starts end finishes with

zero velocity, we have the following boundary conditions:

q(t0) = q0, q̇0 = 0, qf = qref , q̇f = 0

t

q(t)

t0 t1 t2 tf

q1

q2

qref

t

q̇(t)

t0 t1 t2 tf

q̇max

t

q̈(t)

t0 t1 t2 tf

q̈max

Figure 6.15: Example of a continuous trapezoidal velocity trajectory

Considering the continuity constraints at instants t0,t1,t2,tf , we can compute the

following quantities:

q1 = q0 +
1

2
q̈max(t1 − t0)2

q2 = q̇max(t2 − t1) + q1

qf = q0 +
1

2
q̈max(t− t0)2 + q̇max(t2 − t1)−

1

2
q̈max(tf − t2)2 = qref

q̇1 = q̇2 = q̇max = q̈max(t1 − t0)

q̇f = q̇max − q̈max(tf − t2) = 0

We can define a variable λ as a fraction of the total period T in which the acceler-

ation and deceleration phases happen.

λ =
T1 − T3
T

(6.18)

CHAPTER 6. THE ACTUATOR CONTROL 83

where T1 and T3 are the durations of the acceleration and deceleration phases re-

spectively.

Then we define the acceleration and velocity coefficients Ca and Cv respectively,

that allows to compute the time intervals the trajectory is composed of.

Cv =
1

1− λ
, Ca =

1

λ(1− λ)
(6.19)

The parameter λ is defined at the beginning according to the desired trajectory;

therefore Ca and Cv are known.

Then, the total trajectory duration T can be computed as:

T =

√
q0 − qref
q̈max

Ca, or T =
q0 − qref
q̇max

Cv (6.20)

When implementing a profile generator for industrial manipulator, the time T in

which the robot performs its task, is computed choosing the formula of (6.20) that gives

the greater result in order to consider the more limiting constraint between velocity

and acceleration ones.

Since, in our case we have only velocity constraints for STR control, we choose

the second definition of T reported in (6.20). Once parameter T is known, one shall

compute the maximum acceleration as

q̈max =
q0 − qref

T 2
Ca (6.21)

Moreover, we introduce the normalized time variable

r =
t− t0
T

(6.22)

where t0 is the starting time of the profile.

The pseudo-code of the algorithm for the computation of q̇(t) is here reported:

if (r<0) % phase_0

q_d=0

elseif (r>1) % phase_4

q_d=0

elseif (r<=lambda) % phase_1

q_d=q_dd_max(t-t0)

elseif (r>=1-lambda) % phase_2

q_d=q_d_max

else % phase_3

q_d=q_d_max-q_dd_max((t-t0)-(T-lambda*T))

CHAPTER 6. THE ACTUATOR CONTROL 84

The algorithm was converted in the Activate model reported in Figure 6.16, 6.17,

6.18.

Figure 6.16: Complete Activate model. The Profile Generator (Path Planner) is high-

lithed in red

Figure 6.17: General Activate model of the Profile Generator

Figure 6.16 illustrates the general Activate model, where the Profile Generator is

highlighted; looking inside that component one will find the block scheme reported in

Figure 6.17.

It comprises six equal blocks each one corresponding to a rover wheel. The reason

why it was implemented in this way is that when certain manoeuvre are commanded,

e.g. Ackerman steering and Point Turn, the two blocks corresponding to the two middle

wheels can be bypassed, since they must not be steered, and as consequence the value

of the reference steering angle is null. Null values of reference will lead the solver to

CHAPTER 6. THE ACTUATOR CONTROL 85

not converge, indeed

Reference angle = 0 =⇒ T = 0 =⇒ s =∞

However, by bypassing the two blocks when needed this unwanted situation will be

avoided. Anyway, the two blocks are necessary when Crab manoeuvre is commanded.

Moreover, other conditions could lead to have null reference values also for front

and rear wheels. In particular, when the user commands a straight motion, all wheels

have to remain aligned with the longitudinal axis of the rover, i.e. their steering angles

must remains at zero. In order to manage this error, an if expression block is inserted

in the model.

According to he user manual [25], this block implements the conditional construct

if-then-elseif-...-else-end; one and only one of the output activation ports is fired

synchronously when the block is activated. In our case, block A is activated if and only

if Reference angle = 0.

Block A is called SetActivationSignal; it sends output activations to a corre-

sponding GetActivationSignal block by connecting the event ports of the blocks

without using a link. The activation signals A and B are used to control the so called

SelectInput, which selects one of its inputs and copies it into its output, when acti-

vated. The block determines the selected port depending on the way by which it has

been activated. If the activation is received on its i-th input activation port (the top

left port being numbered one), the i-th regular input is copied to the output (top most

port being numbered one). In case the block is activated synchronously through more

than one input activation ports, the lowest numbered port is taken into account, others

are ignored.

In our case, Reference angle signal is sent to the Profile generator block if and only

if it is non null. By contrast, when the reference is zero, an auxiliary non-null value

is sent to the Profile Generator. This one always works producing an output profile,

based on either the real reference value or the auxiliary variable. For this reason, a se-

lector is required before the output port. It is controlled by the same activation signals

A and B of the input selector; when B is active the output is connected to the profile

computed by the profile generator; by contrast, when A is active, the profile generators

are disconnected and the selector set the output to zero.

Once the general scheme is understood, let us enter inside the Profile Generator

block implementing the algorithm previously described. It is shown in Figure 6.18.

The inputs of this block are:

• Starting time t0

CHAPTER 6. THE ACTUATOR CONTROL 86

• Reference steering angle qref

• Maximum velocity q̇max = 0.4 [rad/s]

• Variable λ

Figure 6.18: Activate implementation of the Profile Generator algorithm

Also in this case a selector block is needed. It is controlled by five control signals:

A, B, C, D, E, each one corresponding to one phase of the profile.

A = phase0

B = phase4

C = phase1

D = phase2

E = phase3

Note that even if the name of the set signal variables are the same as before, they

do not cause any problem since these are local variables and the tow block schemes are

created at two different levels.

Anyway, the variables A,B,C,D and E are activated by three if expression blocks

implementing the algorithm previously described. The first if expression (on the

top) receives as input the normalised time variable r =
t− t0
T

and according to its

value sends a proper output signal through one and only one among its output ports.

In particular, if r < 0 we are in phase0, thus it activates the first output signal A; as

a consequence, the selector connects the output port q to its first input, i.e. 0. In

similar way, when r > 1 (phase4) the selector is activated by signal B, thus it copies

the value of its second input (0) into its output, which is connected to q.

CHAPTER 6. THE ACTUATOR CONTROL 87

Else, in all other cases, more operations are required. The third output signal of the

top if expression block activates a further if expression block, whose input is r−λ.

When r − λ < 0 (phase1) it activates the signal connected to its first output port, i.e.

signal C. As a consequence, the selector connects q to its third input. This last is

represented by a GetSignal, which is defined in the user manual [25] as a block which

connects bus ports from one block to another without connecting them physically. It

is used in combination with a SetSignal block, which transports its input data to its

corresponding GetSignal block. In particular, the ph1 SetSignal is connected to a

block named Phase1 which implements the expression

q̈max(t− t0)

which is the value output q must assume in phase1, i.e. when C is active.

By contrast, the second output of the second if expression block activates a

further block with r + λ as input; when r + λ == 1 (phase2) signal D is activated and

sent to the selector, and thus the output q is connected to its fourth input; all other

cases (phase3) are handled by signal E and the selector connects its last input to the

output port.

An example of the Profile generator outputs is depicted in Figure 6.19. This

profile is obtained setting:

qref =
π

3
t0 = 0; q̇max = 0.4 [rad/s] λ =

1

3

thus the computed variables are:

Cv = 1.5; Ca = 4.5; T = 3.927; q̈max = 0.3056

Figure 6.19: Profile Generator output esample

Chapter 7

THE INVERSE KINEMATICS

7.1 Introduction

Control will make the Rover follow the desired path that has been determined by the

path planner. As for any real system, when the rover drives over the Mars surface,

which consists of loose soil (a combinations of rocks and sand) it is subject to differ-

ent disturbances. These cause deviations from the commanded path; when they are

sufficiently large, the Rover curvature and/or heading have to be changed in a way

that corrects the deviation. This task is accomplished by the Trajectory Control, which

makes use of two types of manoeuvres: Generic Ackermann where the rover keeps

driving along the path and Generic Point Turn where the rover stops driving along the

path to perform a heading change.

As already mentioned the commands issued by Trajectory Control are vehicle level

commands, since they deal with vehicle speed and heading, but the actual mobility

actuators are the wheels with their driving and steering motors; thus, it is necessary

to adequately transforming them into wheel level commands, i.e. drive velocity and

steering angle. The Locomotion Manoeuvre Control, subject of this chapter, is in charge

of acting this conversion. The transformation should also aim at ensuring that at any

point in time all actuators are in a compatible configuration, i.e. not fighting each other,

which would induce slippage, higher energy consumption, and decreased drivability.

In Figure 7.1 the control cycle is reported. The Locomotion Manoeuvre Control

block inputs are the Rover Manoeuvre Command consisting in command type (type of

manoeuvre) and command parameters (e.g. rover speed command, point turn centre

of rotation position), while the module outputs are the Wheels Commands, i.e. the

locomotion true steering and driving axes demands including, for example, the axes

control target angle and the associated speed limit (for position control).

In this chapter, it will be explained how Locomotion Manoeuvre Control has been

implemented in Activate. This required the kinematic modelling of the rover and

the solution of the so called Inverse Kinematics problem. Firstly an overview of the

88

CHAPTER 7. THE INVERSE KINEMATICS 89

Locomotion

Manoeuvre

Control

Relative

Localisation

Trajectory

Control
Locomotion

Wheels commands

Rover slippage
Rover Position and

Attitude Estimate

Rover Manoeuvre Command

Figure 7.1: General cycle of the ExoMars mobility control

ExoMars rover locomotion capability is presented and a kinematic model is created

starting from these informations; later, the Activate block scheme implementing that

model is analysed describing in details the blocks required for the construction. The

block definitions are taken from the Altair help guide [25]

7.2 Locomotion capability of ExoMars rover

The design of the ExoMars rover features six independent drive axes that can be driven

simultaneously and six independent steering axes that can be driven simultaneously.

This provides the capability of performing the following manoeuvres [2]

Conventional Ackerman manoeuvres : this type of manoeuvre allows to place the

centre of rotation anywhere on the line binding the two middle wheels, outside

of the wheel base. In order to achieve such a manoeuvre the corner wheels are

steered such that the line binding the wheel centre to the rover centre of rotation

is perpendicular to the wheel driving direction. The drive rate of each wheel is

set proportionally to the distance between the wheel centre and the rover centre

of rotation such that all wheels will describe a circular trajectory consistent with

each other. Note that to achieve a conventional Ackerman manoeuvre the middle

wheels do not need to steer. To drive in a straight line, the centre of rotation

is placed infinitely far away from the rover on the line binding the two middle

wheels.

Crab manoeuvres : this type of manoeuvre allows the rover to drive in a straight

line with an angle with respect to the rover xRB direction. The centre of rotation

is placed infinitely far away from the rover centre. In order to achieve such a

manoeuver all wheels have the same steering angle amplitude, equal to the crab

CHAPTER 7. THE INVERSE KINEMATICS 90

angle, and all drive rates are equal.

Conventional point turn manoeuvres : this type of manoeuvre allows rotation

around the rover centre. The centre of rotation cannot be moved.

Generic Ackerman manoeuvres which combine both Ackerman turn and crabbing

capability: this type of manoeuvre allows placement of the centre of rotation

anywhere on the plane to the left of the left wheels or to the right of the right

wheels. In order to achieve such a manoeuvre the wheels are steered such that

the line binding the wheel centre to the rover centre of rotation is perpendicular

to the wheel driving direction. The drive rate is set proportionally to the distance

between the wheel centre and the rover centre of rotation such that all wheels will

describe a circular trajectory consistent with each other (i.e. each wheel travels

around the same fraction of its circular trajectory in the same time).

Generic point turn manoeuvres which allow to move the point turn centre away

from the traction geometric centre: this type of manoeuvre allows placement of

the centre of rotation anywhere between the wheels. In order to achieve such

a manoeuvre the wheels are steered and drive rates are set in a similar manner

as for a Generic Ackerman manoeuvre, however in order to achieve a rotational

motion, the left wheels and right wheels have opposite drive rate direction.

7.3 Rover Inverse Kinematics

The Locomotion Manoeuvre Control has to solve the kinematic problem of the wheeled

mobile robot. It must translate the desired velocity of the vehicle into the velocities

and steer angles of the wheels which allow to move it as desired. This problem is called

Inverse Kinematics. The goal of this section is to establish the wheel speeds, steering

angles and speeds as a function of the rover speed and heading, given the geometric

parameters of the rover.

The first thing to do in order to define such function is to create a simple model

of the rover. It has been made on the base of the ExoMars mechanical design. It

comprises six wheels drivable and steerable independently. The distance between the

center of the left and right wheels is

w = 1.44 m

while the distance front-middle wheel and middle-rear wheels are respectively

a = 0.65 m and b = 0.805 m

CHAPTER 7. THE INVERSE KINEMATICS 91

The center of mass of the rover body is considered located at the center of the middle

axis

RoverCM =


−650

0

800


the values are in millimiters as in MotionView environment. Note that the Global

Reference frame is located in the center of the two front wheels.

In this thesis three manoeuvres are considered: Ackerman steering (straight forward

motion obtained in the particular case of heading ϕ = 0), Point Turn and Crab. All

these manoeuvres are implemented in the Activate Inverse Kinematic block. It must

recognize the manoeuvre type set by the user, choose the corresponding parameters and

compute the correct reference variables. In the following sections the rover kinematic

models developed for each manoeuvre are presented.

7.3.1 Conventional Ackerman Kinematic Model

CM

O

Center of rotation xrover

yrover

Rrover

w

a
b

R

ϕ

θ1θ2

θ5θ6

ϕ

Figure 7.2: Kinematic model for Ackerman manoeuvre

The Conventional Ackerman manoeuvre commands are:

• vrover: the rover CM velocity

• ϕ: the heading angle

The heading angle is considered referring to a virtual wheel set in the middle of

the front axis computed between the x axis of the global reference frame and the

CHAPTER 7. THE INVERSE KINEMATICS 92

mobile x axis of the rover reference frame. As shown in Figure 7.2, the rover reference

frame is attached to the rover CM; the x axis is aligned with the driving direction, the

z axis points upwards and the y axis completes the right-handed coordinate system.

The parameters have some limitation due to the actuator limits, but can assume both

positive and negative values. According to the rover reference frame, negative values

of speed cause the rover to reverse; positive angles correspond to left (anticlockwise)

turns and negative angles correspond to right (clockwise) turns, as viewed by the rover,

when travelling in the forward direction, while the opposite is true when travelling in

the reverse direction. All angles are measured relative to the x axis of the rover RF,

so 0◦ corresponds to straight motion.

Moreover, one have to take into account that the centre of rotation can be place

anywhere on the line binding the two middle wheels. As described in Chapter 3 the non

slippage condition is verified if the wheel longitudinal axis is perpendicular to the line

joining the wheel center and the center of rotation; thus, each wheel must be steered

in order to make it perpendicular to the radius of its trajectory Ri.

Starting from these informations, given the kinematic model presented in Figure

7.2 the vehicle turning radius R and the rover turn velocity are easily computed:

R = a cot(ϕ) (7.1)

ϕ̇ =
vrover
R

(7.2)

Then, in order to compute the wheel drive velocities, it is needed to compute the

turning radius Ri of each wheel. This is done by:

R1 =

√(
R± w

2

)2
+ a2 (7.3)

R2 =

√(
R∓ w

2

)2
+ a2 (7.4)

R3 = R± w

2
(7.5)

R4 = R∓ w

2
(7.6)

R5 =

√(
R± w

2

)2
+ b2 (7.7)

R6 =

√(
R∓ w

2

)2
+ b2 (7.8)

CHAPTER 7. THE INVERSE KINEMATICS 93

The addition or subtraction of the w/2 term is depending on the sign of the com-

mand heading: upper sign for positive heading, lower sign for negative heading. This is

due to the fact that positive heading places the center of rotation on the left side while

negative heading places it on the right, always remaining on the line passing through

the middle wheel centres. Then, the wheel rotational speeds ωi are obtained computing

the wheel center velocities vi = ϕ̇Ri and dividing them by the wheel radius rw:

ωi = ± ϕ̇Ri
rw

(7.9)

where the direction is depending on the sign of the commanded rover speed, being

concordant to it.

Finally, the steering angles θi are:

θ1 = ±atan a

R+ w
2

(7.10)

θ2 = ±atan a

R+ w
2

(7.11)

θ3 = θ4 = 0 (7.12)

θ5 = ∓atan b

R+ w
2

(7.13)

θ6 = ∓atan b

R+ w
2

(7.14)

Also in this case, the sign of θi is depending on the the sign of heading angle: upper

sign for positive heading, lower sign for negative heading.

7.3.2 Conventional Point Turn Kinematic Model

This manoeuvre allows rotation around the RoverCM .

The Point Turn manoeuvre commands are:

• ϕ̇: rover turn speed [◦/s]

• direction of rotation around the z axis of the rover reference frame

In this case, the center of rotation in placed in the rover center of mass, thus the

wheels must be steered accordingly. From these data, considering the kinematic model

presented in Figure 7.3 the wheel rotational speeds ωi are obtained computing the wheel

center velocities vi = ϕ̇Ri, where Ri is the distance between the wheel center and the

center of rotation, i.e. the rover CM, and dividing them by the wheel radius rw:

CHAPTER 7. THE INVERSE KINEMATICS 94

CM ≡ O

ϕ̇

xrover

yrover

Rrover

w

a
b

θ1θ2

θ5θ6

Figure 7.3: Kinematic model for Point Turn manoeuvre

R1 = R2 =

√
a2 +

(w
2

)2
(7.15)

R3 = R4 =
w

2
(7.16)

R5 = R6 =

√
b2 +

(w
2

)2
(7.17)

ωi = ± ϕ̇Ri
rw

(7.18)

where the sign of ωi is depending on the wheel: it is concordant with the sign of

rotation for right wheels, and opposite to the sign of rotation for left wheels.

Finally, the steering angles θi shall be calculated as follows:

θ1 = ±atan aw
2

(7.19)

θ2 = ±atan aw
2

(7.20)

θ3 = θ4 = 0 (7.21)

θ5 = ∓atan bw
2

(7.22)

θ6 = ∓atan bw
2

(7.23)

CHAPTER 7. THE INVERSE KINEMATICS 95

where the upper sign holds for positive rotations, while the lower sign stands for

negative ones.

7.3.3 Crab Kinematic Model

This manoeuvre allows to drive the rover along a straight line with an angle ϕ with

respect to the rover x axis. Therefore, the Crab manoeuvre commands are:

• vrover: rover velocity [m/s]

• ϕ: rover angle [rad]

CM

xrover

yrover

Rrover

w

a
b

θ1θ2

θ3θ4

θ5θ6

ϕ

Figure 7.4: Kinematic model for Crab manoeuvre

The computation of the wheel rotational speeds and steering angles are trivial, since

all wheels must be steered of the same angle ϕ commanded for the rover and the wheel

speed are computed dividing the rover speed vrover by the wheel radius rw:

θi = ϕ ∀i = 1, ..., 6 (7.24)

ωi = vrover ∀i = 1, ..., 6 (7.25)

CHAPTER 7. THE INVERSE KINEMATICS 96

7.4 Algorithm implementation in Activate

The previously defined formulas have been translated in a block diagram implemented

in Activate, constituting the Locomotion Control block. The overall block scheme is

reported in Figure 7.5a, while Figure 7.5b shows what is inside the Inverse Kinematics

block

(a) Complete Activate model; the Inverse Kinematic block is highlighted in red

(b) Inverse Kinematic block scheme. The Ackerman, Point Turn and Crab inverse kinematic algorithms

are implemented in the blue, green and orange blocks respectively

Figure 7.5: Inverse Kinematics block overview

As already stated, the model has been implemented in a way that it is possible to

choose among 3 manoeuvre (actually 4 considering the particular case of Ackerman

steering with ϕ = 0, i.e. straight forward motion) setting only the manoeuvre com-

mands without caring of wheel rotational velocities and steering angles. Indeed this is

exactly the purpose of Inverse Kinematics block.

The inputs are:

0. Manoeuvre type

CHAPTER 7. THE INVERSE KINEMATICS 97

(1) Ackerman steering

(2) Point Turn

(3) Crab

1. Ackerman commands:

• Rover heading ϕ

• Rover CM velocity vrover

2. Point Turn command

• Direction of rotation: (+1) counter clock wise, (-1) clock wise

• Rover turn speed ϕ̇

3. Crab commands

• Rover crab angle ϕ

• Rover CM speed vrover

As illustrated in Figure 7.5b, three blocks were created, each one implementing the

kinematic models defined in the previous sections, corresponding to the three available

manoeuvres. Each block receives the associated input commands and computes the

reference values for wheel rotational speeds and steering angles, required to perform

the desired manoeuvre. These outputs are sent to a ConditionalNSelect block. As

defined in the user manual [25] this block copies one of its inputs to its output. The

first (top) input is the control input, in our case the manoeuvre type; the remaining

inputs are data inputs: they’re labelled as case 1, case 2, case 3. The value of the

control input determines which data input is copied. For example if the control signal

is 2, the ”case 2” input is copied to the output. In our particular case, for each output

(wheel rotational speeds, front wheels steering angles, middle wheels steering angles

and rear wheels steering angles) there are three data inputs, each one corresponding to

a manoeuvre type.

In the following section each one of the three block is described.

7.4.1 Ackerman manoeuvre

The Ackerman manoeuvre block should compute the reference rotational speeds and

steering angles of the wheel according to the input rover heading and linear velocity.

The inverse kinematic algorithm is illustrated in Figure 7.6. Three selector blocks are

needed in order to handle the particular case of straight trajectory which corresponds

to have ϕ = 0. This conditions leads the solve to not converge, because of the trajectory

radius is computed as a cotϕ, therefore ϕ = 0 =⇒ R =∞.

CHAPTER 7. THE INVERSE KINEMATICS 98

Figure 7.6: Ackerman Inverse Kinematics algorithm implementation in Activate. The

yellow block is in charge of computing the distance Ri of each wheel from the center of

rotation; whereas, the purple block is in charge of computing the wheel steering angles

θi

The selectors are activated by two signals A and B, which are set by the if ex-

pression block, being A the signal corresponding to the particular case ϕ = 0.

The computation of the radius Ri of each wheel is implemented as shown in Figure

7.7a, while Figure 7.7b illustrate how the wheel steering angles are computed.

(a) Computation of the distance Ri of each

wheel from the center of rotation

(b) Computation of the wheel steering angles θi

Figure 7.7: Description of how Ri and θi are computed

7.4.2 Point Turn and Crab manoeuvre

The implementation of the kinematic model for Point Turn and Crab manoeuvres are

much more trivial with respect to Ackerman one, since it is just a matter of algebraic

equations, without any particular case to take care of.

The block schemes are reported in te following figures.

CHAPTER 7. THE INVERSE KINEMATICS 99

Figure 7.8: Point Turn inverse kinematic algorithm implementation in Activate.

Figure 7.9: Crab inverse kinematic algorithm implementation in Activate.

Chapter 8

MODEL VALIDATION

In this chapter the validation of the Activate-MotionSolve model is described. The out-

puts obtained from the model during co-simulation is compared with the behaviour of

a real rover. Since the ExoMars rover was not available for the test, the system used for

the real simulation was the Integrated Vehicle Breadboard (IVBB). It is representative

of ExoMars Rover and consists in the fusion of the following breadboards: the Chassis

and Locomotion BB; the Navigation BB and the Avionics BB. Useful informations are

drawn from [8].

The systems composing the IVBB rover are here described:

Chassis and Locomotion Breadboard As for the ExoMars rover, it provides the

mobility by means of a chassis with 6 flexible wheels that can be driven and

steered independently. These are designed as three pairs, each one connected to a

single bogie: two lateral bogies attached to the chassis aligned with the x axis of

the rover reference frame, and one bogie perpendicular to this axis, attached to

the rear. All bogies are connected to the chassis through passive joints, so they

are free to rotate about them. The locomotion system is operated by six electric

drives located in the hubs of the wheels (DRV motors), whereas similar drives are

located at the joint between the bogie and leg to which the wheel is connected .

These lasts make the rover performs a variety of steering movements. All motors

are locally controlled.

In order make the rover being in the same load condition it will see on Mars

(motor torque, wheel/soil interaction), the system is designed to have a mass

about 38% of the flight model. The subsystem is controlled by the locomotion

SW, which allows the following modes: path following, straight line locomotion,

Ackerman steering, rotation (point turn), and lateral motion (crab).

Navigation Software Breadboard It provides the capability of generating autonomously

a navigable, safe and optimal path from the Rover current location to a predefined

100

CHAPTER 8. MODEL VALIDATION 101

target. It is based on stereo images processing for Digital Elevation Map (DEM)

creation, Navigation Map computation and obstacle detection and avoidance.

The two cameras are mounted on a Pan-Tilt unit at about 2m height

Integrated Breadboard Equipment Procurement Tt is based on a LEON2 /

RTEMS platform for performance evaluation of the developed flight SW. COTS

control and power systems are integrated to support testing. It also includes a

development environment and an EGSE for testing support and remote control

8.1 Real simulation of IVBB rover

During the test, the IVBB Rover is asked to perform certain manoeuvres, each one exe-

cuted singularly. The manoeuvre commands are set through a Graphical User Interface.

The procedure required to operate the locomotion system is the following:

1. Launch the Locomotion sub-GUI from the IVBB GUI

2. Connect to the rover

3. Wait for the rover to complete its initialisation sequence.

4. Enter manoeuvre command values, e.g. rover speed [cm/s] and heading [◦] for

Ackerman steering, in the appropriate text input fields. These parameters have

some limitations: the rover speed cannot exceed ±10 [cm/s] and heading cannot

exceed ± 35◦. If these conditions are violated, a warning will be displayed on the

window status bar and the text field defaulted to the maximum value.

5. Pass the values to the rover. This makes the rover steer its wheels to the appro-

priate orientations to achieve the submitted heading.

6. Upon completion of the steer operation, the rover starts moving at the requested

speed

7. The rover will continue to move until the Stop signal is sent to it, or the requested

heading has been reached (in point turn mode), or the requested distance has been

travelled (in crab mode)

8. If the stop button is pressed, the wheels will realign back to the initial position

9. Disconnect the Rover

CHAPTER 8. MODEL VALIDATION 102

8.1.1 Locomotion Software GUI

The exact appearance of the GUI is presented in Figure 8.1.

Figure 8.1: IVBB Locomotion Software GUI

It is composed of the following areas:

1. Rover Control Window: it allows selection of the different control modes of the

rover (Section 8.1.1); each control mode changes the input fields that have to set

to drive the rover. When switching between the different modes, the text field

and description for entering the control values will change as well.

2. Rover Status Window: it displays the status, and control state of the connected

rover. The field Rover State shows the state of the robot, e.g. init, stop, steer or

move. Control State indicates the control mode which can be either automatic,

normal, on spot or lateral mode. The field Logger indicates if the data logger is

running and collecting data to write to the hard drive, or disabled. The Rover

Status Window also displays the pose and a schematic of the rover to visualise the

wheel angles, both current and intended. The wheels drawn in dark green show

the theoretical wheel steering angle, the wheels in pink/purple show the steering

angle measured on the rover.

CHAPTER 8. MODEL VALIDATION 103

3. Visualisation Window: it shows the position and orientation of the robot within

a global coordinate frame. The robot is represented by a bright green circle, with

its orientation shown by the red line that emanates from the centre of the green

circle. The window also shows the trajectory of the robot

4. Waypoint Editor/Data Viewer: it is only enabled for use in Automatic control

mode, and allows the user to define a path of way-points for the rover to follow.

5. Information fields: there are three information fields across the bottom of the

GUI: the Communication Logger, which shows information about the connection

and the telecommands sent to the rover, the User Input Logger, which displays

information about the user actions, and the Error Logger.

6. Quick Control Buttons: they are the Connect Robot button, which connects the

GUI to the rover, and the Emergency Stop.

7. Menu bar

Control modes

Four different control modes are available, which can be grouped in three Manual modes

and one Automatic mode. The default mode the rover enters on start up is Manual

Normal. The two other Manual modes are special motion modes: Manual TurnOnSpot

(point turn), and Manual Lateral (crab). Automatic mode aims at following a given

set of waypoints.

All control modes allow to set individual manoeuvre commands with the exception

of Automatic mode, which depends on coordinate inputs in the form of waypoints.

These are then converted to manoeuvre commands automatically.

Each of the four modes has the following internal states:

init This refers to the rover initialisation process for each control mode, which mainly

consists of steering

Stop The rover is stopped

Turn it The rover orientates its wheels for interim turn on the spot (Automatic mode

only)

Turn move The rover performs the interim turn on the spot (Automatic mode only)

Turn reset The rover straightens the wheels (Automatic mode only)

Steer The rover performs a steer motion to reach the desired steer wheels angle

CHAPTER 8. MODEL VALIDATION 104

Figure 8.2: Overview of the control modes and their internal states

Move The rover performs a driving motion

An overview of the control modes and their internal states is given in Figure 8.2.

The change between the different control modes is controlled by the user, while the

change between the different internal states is controlled automatically by the software

(e.g. when the wheels have been steering and have finished orientating themselves

correctly, the state changes from Steer to Move). The conditions to change between

the different internals states depend on the control mode.

Manual - Normal mode This mode allows to perform Conventional Ackerman ma-

noeuvre. The parameters characterising it are the speed and heading angle of a

virtual wheel set in the middle of the front axis. The manoeuvre parameters are

subject to the following limitations:

ϕmax = ±35◦

ϕ̇ = ±0.1◦

vmax = ±10[cm/s]

v̇max = ±0.2[cm/s]

Manual – TurnOnSpot Mode When this mode is entered, the wheels are turned

automatically towards the centre of the rover for circular motion. The parameter

that can be set are the rotational speed of the rover and its rotational displace-

ment, i.e. the variation in the orientation of the robot computed as the difference

between the x axis of the rover RF and the global one. As soon as the values are

submitted, the rover begins to rotate about its centre until the specified rotational

displacement has been reached.

CHAPTER 8. MODEL VALIDATION 105

With regard to this manoeuvre, the commands are partially different with respect

to the Activate model ones. When performing software simulation, the rover does

not stop when a target position is reached, but it continues its motion till the

end of the simulation time. This is because the input parameters is only the

rotational speed of the rover, and an additional input defining the direction of

rotation ((+) counterclock wise or (-) clock wise), but no target angular posi-

tion is defined. Moreover, in IVBB locomotion SW clockwise rotation can be

only achieved by entering a negative rotational speed since no negative values of

rotational displacement can be entered.

Manual – Lateral Mode In this mode, the rover will turn all six wheels to the input

steering angle and, upon reaching the correct position, the rover will move the

distance specified. In this control mode the rover can only move in the forward

direction, up to a heading of 60◦. Positive angles correspond to motion with a

component in the positive y direction, negative angles in the negative y direction.

The speed cannot be manually controlled and is hard-coded as 3 cm/s.

Automatic mode This control mode takes a list of waypoints as the input for the

rover; a waypoint represents a point on the xy plane, the origin and axes of which

corresponds to the initial position and pointing of rover as displayed in the GUI.

The movement of the robot will be along the path defined by the waypoints list.

Anyway, the autonomous navigation is not argument of this thesis.

The test was performed asking the rover to perform the following individual ma-

noeuvres:

1. Manoeuvre1 - Normal mode (Ackerman): vrover = 3 cm/s; ϕ = −35◦

2. Manoeuvre2 - Normal TurnOnSpot mode (Point turn): vrover = 3 ◦/s performed

for t = 200 s

3. Manoeuvre3 - Normal Lateral mode (crab): v : rover = 3 cm/s performed for

t = 200 s

4. Manoeuvre4 - Normal mode (Straight forward): vrover = 3 cm/s performed for

t = 100 s

CHAPTER 8. MODEL VALIDATION 106

8.2 Model adaptation

In this chapter we want to compare the results coming from simulation with those

given by real system movement. In order to have correspondence between input/output

signals of the two systems we have to modify a little the Activate model.

First of all the geometric dimensions of the mechanical structure have to be change,

since the two rovers are of different dimensions. In particular, the distance between the

center of the left and right wheels (track) is

w = 1.2 m

while the distance front-middle wheel and middle-rear wheels are equal

a = b = 0.7 m

The center of mass of the rover body is considered located at the center of the

middle axis, therefore MotionSolve will consider the rover CM position at (−700, 0).

This is due to the fact that in MotionView the Global origin with respect to which the

CM position is defined, is located at the center point between the front wheels.

Finally the wheel radius value must be change to

rw = 0.125m

Moreover, in Chapter 7 we said that the inverse kinematic block computes the ref-

erence values for steering angles and rotational velocities of the wheels, on the basis

of manoeuvre commands. These inputs were considered as the rover CM velocity and

heading (defined as the angles between the x axis of the rover reference frame and the

global one). These hypothesis have been done in order to be consistent with the actual

behaviour of ExoMars rover.

By contrast, IVBB manoeuvre commands are not exactly the same; in particular,

Ackerman manoeuvre commands are the velocity and heading relative to a virtual wheel

centred in the middle of the front axis. This means that the Inverse Kinematics block

must be modified as explained in the following section.

CHAPTER 8. MODEL VALIDATION 107

8.2.1 Modified Ackerman Kinematic Model

Considering the Ackerman manoeuvre the computation of the turn rate ϕ̇ made in

Chapter 7 is no more valid. Looking at Figure 8.3 the new turn rate can be computed

as

ϕ̇ =
vvirtual
Rvirtual

(8.1)

CM

O

Center of rotation

vvirtual

yrover

xrover

Rrover

w

a
b

R

ϕ

θ1θ2

θ5θ6

ϕ

ϕ̇

Rvirtua
l

Figure 8.3: Modified kinematic model for Ackerman manoeuvre when using IVBB

Thus the block scheme is modified as illustrated in Figure 8.4

Figure 8.4: Activate block scheme of the modified Inverse Kinematics block

CHAPTER 8. MODEL VALIDATION 108

8.3 IVBB simulation results

8.3.1 Manoeuvre1 - Ackerman

The first manoeuvre performed was a Conventional Ackerman with

vrover = 3 cm/s; ϕ = −35◦

The results are reported in figures 8.5, 8.6 and 8.7.

As can be seen, the first action performed by IVBB rover was to steer the wheels of

angles computed accordingly to the input rover heading. Only when all steering axes

have reached the reference angular position, the drive actuators start their actions.

Indeed, the rover position starts increasing at t = 158 s, exactly when the FR and RR

wheels reach their references.

The same manoeuvre, with the same parameters, was commanded to the Activate

model. As can be seen, the steering angles and rotational velocities of the wheels are

equal to those resulting from real system. It must only specified that the trajectory

seems different, but the relevant parameter is the trajectory diameter, that is equal in

both simulations. The trajectory computed by co-simulation is simply shifted along

the x axis; the reason why this happens is that the multi-body model was created in a

way that leads to have the center of the rover shifted backward along the global x axis.

Since the solver variable identifying the trajectory defines it with respect the global

origin, the trajectory plotted in Activate starts at (−700, 0). By contrast, the global

reference frame considered by IVBB software is created as soon as the rover is powered

on, making it coincident with the rover center. Thus, the real trajectory starts at (0, 0).

CHAPTER 8. MODEL VALIDATION 109

(a) IVBB aangles

(b) Activate angles

Figure 8.5: M1 Ackerman manoeuvre: wheel steering positions

CHAPTER 8. MODEL VALIDATION 110

(a) IVBB Rover CM trajectory (b) Activate Rover CM trajectory

(c) IVBB Rover CM x position (d) Activate Rover CM x position

(e) IVBB Rover CM y position (f) Activate Rover CM y position

Figure 8.6: M1 Ackerman manoeuvre: rover CM x, y position time evolution and xy

trajectory

CHAPTER 8. MODEL VALIDATION 111

(a) IVBB velocities

(b) Activate velocities

Figure 8.7: M1 Ackerman manoeuvre: wheel rotational velocities

CHAPTER 8. MODEL VALIDATION 112

8.3.2 Manoeuvre2 - Point turn

The second manoeuvre performed was a point turn with the following input command:

vrover = 3◦/s t = 100s

The results can be compared looking at figures 8.8, 8.9 and 8.10. It is evident

that the wheel rotational velocities resulting from Activate model do not correspond to

those reported in the IVBB .log files. Analysing the situation in more details, it came

out that the IVBB software does not correctly computes the reference values of the

rotational velocities when in Point Turn mode. This is demonstrated by examine the

rover heading time evolution, i.e. the rotation of the rover around the vertical z axis,

computed as the difference between the rover x axis and the global one. Figure 8.11a

reports the rover heading change during the manoeuvre. In order to check easily if the

IVBB velocities are correct, one shall consider a time interval of T = t2 − t1 = 100 s;

since the commanded turn speed was ϕ̇ = 3◦/s it is expected the rover heading change

to be ∆ = ϕ(t2)− ϕ(t1) = 300 ◦.

Contrary to what was expected, the change of the heading according to the IVBB

data is ∆ = 246◦. Therefore, the velocities of the wheel are not the correct ones

required to perform the manoeuvre as desired by the user. They are smaller than what

is necessary.

Overall, it is reasonable to consider the Activate model correct, even if its outputs

do not corresponds to the one resulting from real system, since it was demonstrated to

be incorrect.

A further analysis aims verifying the correct heading change according to the Ac-

tivate model. The performed test validates it, indeed, Figure 8.11b shows the heading

computed by MotionSolve when the wheel rotational speeds are:

ωFR = −0.3891; ωFL = 0.3891;

ωMR = −0.2412; ωML = 0.2412;

ωRR = −0.3891; ωRL = 0.3891

Considering two time instants t1 and t2 such that t2− t1 = 100 s the corresponding

change of the rover heading during that period is:

∆ = ‖ − 5.4329 + 0.2461 = 5.1865‖ rad = 297.18◦

that is exactly the expected one.

CHAPTER 8. MODEL VALIDATION 113

(a) IVBB aangles

(b) Activate angles

Figure 8.8: M2 Point Turn: wheel steering positions

CHAPTER 8. MODEL VALIDATION 114

(a) IVBB Rover CM trajectory (b) Activate Rover CM trajectory

(c) IVBB Rover CM x position (d) Activate Rover CM x position

(e) IVBB Rover CM y position (f) Activate Rover CM y position

Figure 8.9: M2 Point Turn manoeuvre: rover CM x, y position time evolution and xy

trajectory

CHAPTER 8. MODEL VALIDATION 115

(a) IVBB velocities

(b) Activate velocities

Figure 8.10: M2 Point turn manoeuvre: wheel rotational velocities

(a) IVBB heading

(b) Activate heading

Figure 8.11: M2 Point turn manoeuvre: rover heading

CHAPTER 8. MODEL VALIDATION 116

8.3.3 Manoeuvre3 - Crab

The third trajectory commanded to the IVBB rover consisted in a Crab manoeuvre

with the following input commands:

ϕ = −45◦; vrover = 3 cm/s

The simulations in real time and in Activate environment were run for 150s. The

results so obtained are reported in the following figures. With these inputs the roves

travelled a distance d = 4.169 m keeping all steering axes to −45◦. From Figure ?? it

is noticeable that the rotational velocities are the same for all wheels, ωw = 0.25 rad/s,

both in real system and in Activate.

The trajectory followed by the rover in the xy plane is reported in Figure 8.13 and

also in this case the results are similar.

CHAPTER 8. MODEL VALIDATION 117

(a) IVBB aangles

(b) Activate angles

Figure 8.12: M3 Crab manoeuvre: wheel steering positions

CHAPTER 8. MODEL VALIDATION 118

(a) IVBB Rover CM trajectory (b) Activate Rover CM trajectory

(c) IVBB Rover CM x position (d) Activate Rover CM x position

(e) IVBB Rover CM y position (f) Activate Rover CM y position

Figure 8.13: M3 Crab manoeuvre: rover CM x, y position time evolution and xy

trajectory

CHAPTER 8. MODEL VALIDATION 119

(a) IVBB velocities

(b) Activate velocities

Figure 8.14: M3 Crab manoeuvre: wheel rotational velocities

CHAPTER 8. MODEL VALIDATION 120

8.3.4 Manoeuvre4 - Straight forward motion

The fourth manoeuvre consists in driving the rover straight forward at vrover = 3 cm/s

for about T = 100s. The results obtained from IVBB real simulation are reported

in the following figures. With these inputs the roves travelled a distance d = 2.44 m

keeping the steering axes to 0◦.

The same manoeuvre was tested in Activate environment and the results are shown

in the figures. The rotational velocity is the same for all wheels as shown in Figure

8.17 and it is ωw = 0.25 rad/s while the steering angle are all null, see Figure 8.15.

The trajectory followed by the rover in the xy plane, obtained through co-simulation,

is reported in Figure 8.16b; it is noticeable that it is practically a straight line, starting

from p1 = (−700; 0) mm and ending at p2 = (2210; 0.00027) mm. Point P1 is not

centred in the xy plane origin since it represents the rover center of mass as modelled

in MotionView, i.e. shifted with respect the (0, 0) point. From these data the travelled

distance can be computed, resulting in d = 2.91 m.

CHAPTER 8. MODEL VALIDATION 121

(a) IVBB aangles

(b) Activate angles

Figure 8.15: M4 Straight Forward motion: wheel steering positions

CHAPTER 8. MODEL VALIDATION 122

(a) IVBB Rover CM trajectory (b) Activate Rover CM trajectory

(c) IVBB Rover CM x position (d) Activate Rover CM x position

(e) IVBB Rover CM y position (f) Activate Rover CM y position

Figure 8.16: M4 Straight Forward motion: rover CM x, y position time evolution and

xy trajectory

CHAPTER 8. MODEL VALIDATION 123

(a) IVBB velocities

(b) Activate velocities

Figure 8.17: M4 Straight Forward motion: wheel rotational velocities

Chapter 9

CONCLUSIONS

The work presented in this paper has the objective of develop a control system re-

sponsible of driving the Multi-Body System model of the ExoMars rover developed by

the Mechanical Computer Aided Engineering group of Thales Alenia Space Italia. The

main idea was to employ several software being part of Altair software house taking

advantage of the co-simulation capabilities. Thanks to this it was possible to create

a MotionSolve model as a Functional Mock-Up unit representing the ExoMars rover

multi-body model, and couple this with the controller implemented in a dedicated

environment (SolidThinking/Activate) in order to perform co-simulation. This will en-

able engineers to simulate and analyse the rover mechanical structure when performing

manoeuvres according to user commands.

The first part of the work, concerning the modelling of the MBS ExoMars rover

model was among the most challenging activities. The search for the right setting of

model entity parameters has made it necessary to perform a long and accurate valida-

tion work, requiring lots of simulations and analysis aiming to verify the consistency of

the model with the real system behaviour. In particular, a major effort was required to

properly adapt the MotionSolve model in such a way that it can be correctly interfaced

with Activate controller model.

Once the accuracy of the MBS model was verified, it was converted in a stand-

alone modelling unit and imported in the 1-D block environment simulator solidThink-

ing/Activate.

At this point, the focus shifted in the implementation of a proper control system able

to drive the MotionSolve rover model, starting from the simple PIDs of the low-level

control loop. These lasts are responsible of the the wheel drive and steering actuators

control.

Once, the PIDs parameters has been correctly tuned, it was required to improve

the usability of the overall model. This goal was achieved by adding a high-level

locomotion control, in charge of interfacing with the user and performing necessary

transformations on the commands. The great advantage of this function is that users

124

CHAPTER 9. CONCLUSIONS 125

can easily manage the model by setting directly rover level manoeuvre commands, i.e.

the desired manoeuvre type and rover velocity. In this way they do not act on the

PID inputs, which are wheel level commands, thus they do not have to solve equations

for determining wheel steering angles and velocities that will make the rover move as

desired.

The most satisfying activity of this work was the model validation process. Thales

Alenia Space Italia and Altec companies gave the opportunity to perform several test

on a real rover. However, the ExoMars rover, whose design was considered in the thesis

development was not available. Thus the test was performed on the first prototype

of ExoMars rover, whose locomotion system is representative of the final one, thus it

provides the same mobility functionalities, but the geometric dimensions of the chassis,

the wheel radius and the overall mass are not the equal those used in the modelling

phase of this thesis. Despite this situation was firstly regarded as an inconvenience, it

gave the opportunity of demonstrate the great advantage of the produced work. Indeed,

thanks to the model versatility it was easily to adapt it to work in those new conditions.

Once the MBS model was modified and the PIDs controlling it were re-tuned to

the new working condition, the Activate model simulation was run in parallel with the

real motion of IVBB. This made it possible to verify if the developed control system

correctly drives the MBS rover model. By running the two systems, Activate model

and real IVBB, with the same manoeuvre commands, it came out that the overall

developed model has the same characteristics of the software controlling the real rover

mobility function.

Nonetheless, this work have some limitation. Even if the MBS model was verified

to have realistic behaviours, it does not represent real specific situations, since when

modelling contacts between wheels and ground the parameter were only set in order

to have forces respecting the physics of the problem. Therefore the magnitude of the

forces acting on the wheels could not be assumed to be realistic and it would not

make sense to study the stresses the wheels are subject to. Indeed, real wheel-ground

contacts modelling require challenging characterisation activities that are not subject

of this thesis.

Future studies could be focused exactly on this topic. Several research activities

into solving this problem are already in progress; in particular a big effort is being done

in modelling the non-linear contact of wheel on the soft-soil terrain characterising the

Mars surface.

Overall, once the desired contact accuracy will be reached, the developed control

system model can be used to drive the rover as required, so that it is possible to study

real stesses acting on the wheels when the rover is performing specific manoeuvres.

Bibliography

[1] AIRBUS. ExoMars Rover Vehicle, Absolute Localisation Description. 2016.

[2] AIRBUS. ExoMars Rover Vehicle Locomotion Control System Design Description.

2016.

[3] AIRBUS. ExoMars Rover Vehicle Trajectory Control System Design Description.

2016.

[4] AIRBUS. ExoMars Rover Vehicle Design Description. 2017.

[5] AIRBUS. ExoMars Rover Vehicle Mobility Design, Development and Verification

Plan. 2017.

[6] ASI. L’Esplorazione Umana dello Spazio. from course material.

[7] ASTRIUM. ExoMars Rover Vehicle, Absolute Localisation Description. 2018.

[8] EADS Astrium. EExoMars Rover Vehicle. Integrated (Rover) Vehicle Breadboard

User Manual and Commissioning Report. 2009.

[9] K. Astrom and T. Hagglund. PID Controllers:Theory, Design, and Tuning. 1995.

[10] K. Astrom and R. M. Murray. Feedback Systems, An Introduction for Scientists

and Engineers. 2016.

[11] L. Biagiotti and C. Melchiorri. Trajectory Planning for Automatic Machines and

Robots. 2008.

[12] B. Bona. Robotics course material available at

http://www.ladispe.polito.it/corsi/meccatronica/01PEEQW/2016-17/exams.html.

2016.

[13] P. Corke. Robotics, Vision and Control. Fundamental algorithms in Matlab. 2013.

[14] MacDonald Dettwiler and Associates Inc. (MDA). ADE Control Design Cumula-

tive Summary Report. 2017.

126

BIBLIOGRAPHY 127

[15] MacDonald Dettwiler and Associates Inc. (MDA). MDA BEMA Detailed Design

Document. 2017.

[16] ESA. The Red Planet. 2014, http://exploration.esa.int/mars/44997-the-red-

planet/.

[17] ESA. EXOMARS ROVER. 2015, http://exploration.esa.int/mars/45084-exomars-

rover/.

[18] ESA. EXOMARS MISSION (2020). 2016, http://exploration.esa.int/mars/48088-

mission-overview/.

[19] ESA. EXOMARS TRACE GAS ORBITER AND SCHIAPARELLI MISSION

(2016). 2017, http://exploration.esa.int/mars/46124-mission-overview/.

[20] Altair HyperWorks. MotionSolve User’s Guide. 2017.

[21] J. P. Laumond. Robot Motion Planning and Control. 1997.

[22] NASA. Why do we send robots to space? 2017, https://spaceplace.nasa.gov/space-

robots/en/.

[23] C. Secchi. Robotica Mobile course material available at

http://www.automazione.ingre.unimore.it/. 2010.

[24] R. Siegwart and I. R Nourbakhsh. Introduction to Autonomous Mobile Robot.

2004.

[25] solidThinking. Activate Reference Guide. 2017.

[26] solidThinking. Extended Definitions for solidThinking Activate 2017.3. 2017.

[27] Thales Alenia Space. EXOMARS ADE, System Technical Description. 2018.

[28] Altair University. Practical Aspects of Multi-Body Simulation with HyperWork.

2015.

[29] J. Vago, O. Witasse, P. Baglioni, A. Haldemann, G. Gianfiglio, T. Blancquaert,

Don McCoy, Rolf de Groot, and the ExoMars team. ESA’s next step in Mars

exploration. 2013.

Acknowledgements

Here I am, writing the last lines of this thesis that enshrine the end of a major

chapter in my life. So many people contributed in one way or another in the achievement

of this milestone, and even if it is not easy to resume all my grateful in few words, I

want to thank them all, trying not to forget anyone who took part in this journey.

I would first like to thank the Company Thales Alenia Space Italia for giving me the

opportunity of internship during which I had a great chance for learning and experien-

cing professional work. My gratitude goes to the Mechanical CAE group, in particular

to my thesis advisor Dott. Gerlando Augello for allowing me to live this growth experi-

ence, for the support, advices and guidance he gave me throughout both the internship

and thesis development periods.

I am also deeply grateful to Prof. Marcello Chiaberge, the door to its office was

always open whenever I ran into a trouble or had a question about my research or

writing.

Special thanks are due to Andrea Merlo e Ciro Napolitano for coming to my aid;

their support was essential not only for the thesis goal achievement, but also for bet-

tering the working atmosphere: with their constant good mood they have contributed

to tone down my ever-present despair. Thanks to “boss” Andrea for being the teacher

everyone would like to have and thanks to “slave” Ciro for making himself always

available. Thanks for all the little fingers raised up.

Thanks to all my temporary fellows: to Antonio for the precious support, to Mauro

for keeping me company during several hard-working evening, to Marco and Gianluca

for their funny jokes, and obviously to Rocco for entertaining us with his endless tales

and for reading my dissertation with surprising interest.

I also thank a special friend, Dario, without whom all this wouldn’t be possible.

Who knew we could become colleagues?

Then, I must express all my gratitude to my family, for being always present but

never pressing, for bearing my huge irritability during exam periods and for joying

with me of my goal achievements. Thanks to my dad for passing down to me his

“engineering mind ” but especially his stubbornness. Thanks to my little but special

sister, because above all I know she loves me and I love her; by hoping to be always

the right example to follow, I wish her to make all her dreams come true. Thanks to

the strongest woman I know, my Mami. The achievement of this final goal is in great

part due to her, because she is my point of reference, because she never gave up on

me, because she always understood when something was wrong and always tried to

help me, because she knew when not to talk to me and leave lose myself in my studies

and at the same time, she knew when I needed to rest, go out and eat some uramaki

together.

BIBLIOGRAPHY 129

Thanks to Alberto for being always by my side. Thanks for being everything I need,

because spending time together meant forgetting about all problems that swirl through

my head. Thanks for giving me all your love never asking for anything in exchange.

Thanks for being always there, with open arms, ready to hug me whenever I need.

Thanks for teaching me how to dream . . . and I won’t stop.

Thanks to the BigBamboo Family, to Andrea Chiara Davide Federico Giulia Ilaria

Marco Mario and Roberta, rigorously with full names, for being the best fellowship.

Thanks for being the perfect distraction to escape from hard moments.

Thanks to my mechatronic fellow travellers, to Alessio Angelo Aurora Daniele Eva

Federico Giulia Luca Massimo Ondina and Simone, for sharing with me all feelings

university life implies. And thanks to my old fellows Danilo Federica and Nicola for

keeping company during K classes.

Thanks to Edoardo for being the best friend ever, because even though we are not

physically close I know I can always count on him.

Thanks to Giulia, for being my partner in misadventure; thanks because I know

that if I say “see you later, alligator” she will reply “in a while, crocodile”.

Thanks to my thesis fellows, to Carmine Francesco Gabriele Miriana Rocco and

Stefano, for withstanding my long faces and for lightening the mood.

Thanks to the NothingWorks Team, to Bianca Demetrio Elisa Francesco Riccardo

Stefano, for remembering me that if nothing works everything is ok.

And now, may the force be with me.

		Politecnico di Torino
	2018-07-13T13:04:26+0000
	Politecnico di Torino
	Marcello Chiaberge
	S

