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Abstract

In this work, we propose another parametrization of Quantum Decision
Theory (QDT), based on Rank Dependent Utility Theory (RDU). Using ex-
perimental data made of choices between pairs of lotteries, we then compare
QDT with "classical" decision theories, RDU and Cumulative Prospect The-
ory (CPT). At aggregate level, assuming homogeneous preferences across
subjects, we find that CPT-based QDT wins by far. At the individual level,
we classify decision makers as RDU, CPT or QDT. Our major findings are
the following: quantum factor plays a key-role in describing subjects’ behav-
ior; there is a considerable heterogeneity across subjects, so that the classic
representative agent approach would be completely wrong for this sample. In
light of such results, mixture models are then considered as a possible exten-
sion of the present work, in order to take into account potential heterogeneity
within a subject himself.
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Chapter 1

Introduction

Descriptive Decision theory is a branch of Decision Theory which aims to un-
derstand and predict the choices of (potentially irrational) decision makers.
The most famous theories are the expected utility theory (D. Bernoulli, 1738
[1]), the prospect theory (D. Kahneman and A. Tversky, 1979 [2]), the rank
dependent utility theory (RDU, John Quiggin, 1982 [3]) and the cumulative
prospect theory (CPT, D. Kahneman and A. Tversky, 1992 [4]). The main
drawback of these theories is their deterministic approach; indeed, experi-
mental results (F. Mosteller and P. Nogee, 1951 [5]) tend to identify decision
making as a stochastic process, in principle far from a deterministic system.

Probabilistic extensions of such theories have been proposed, under the name
of Random Utility Theories, firstly introduced in mathematical psychology
by Duncan Luce and Anthony Marley [6]. For example, CPT has been en-
hanced with the probit (J.D. Hey and C. Orme, 1994 [7]) or the logit functions
(E. Carbone and J.D. Hey, 1995 [8], M.H. Birnbaum and A. Chavez, 1997
[9]).
In essence, Random Utility Theory assumes that the utility of an option
perceived by the decision maker is not directly observable from outside, and
therefore it must be represented in general by a random variable. Neverthe-
less, it is conceptually very far from recognizing an intrinsic probabilistic
nature of choice, assessing instead that choice is non-deterministic because
of several sources of "measurement" errors (E. Cascetta, 2000 [10]).

On the other hand, Quantum Decision Theory (QDT, V.I. Yukalov and D.
Sornette, 2008 [11]), by relying on the mathematics of separable Hilbert
spaces, provides an intrinsic probabilistic theory able to describe entangled
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1 – Introduction

decision making and non-commutativity of decisions. In this way QDT avoids
all the paradoxes arising in classical decision theories such as violation of sure-
thing principle [12], conjunction fallacy [13] and Ellsberg Paradox [14].
In QDT, the probability of choosing a certain prospect is the sum of two
terms: the utility factor and the attraction factor. The rational compari-
son among the available alternatives is represented by the utility term; the
attraction factor, instead, quantifies the attractiveness of a prospect, depen-
dent on feelings, beliefs and subconscious biases. [15]. To put it differently,
the attraction factor is a measure of the deviation from rationality.

Based on the work of S. Vincent et al. [16], we extend it by investigating
another parametrization of QDT, based on the previously mentioned Rank-
Dependent Utility Theory. The motivation underlying this study is that
RDU, being a generalized expected utility theory, evaluates utilities with re-
spect to the final wealth. CPT, on the other hand, relies on a definition of
a reference point for discriminating between gains and losses. Such reference
point is often taken as 0 for laboratory tasks, but, in real-world applications,
its identification may be highly non-trivial, as highlighted by Nicholas C.
Barberis in [17].
In short, an RDU-based QDT has the advantage of not depending on the
(difficult) calibration of a reference point, since only changes in final wealth
matter.
At the aggregate level, where homogeneous preferences are assumed across
subjects, we found that QDTCP T best characterizes the average behavior.
On the other hand, at the individual level, our subject classification clearly
shows a relevant heterogeneity of preferences in the sample, (with the major-
ity of subjects better described by QDTRDU) implying the inconsistence of
assuming the existence of a universal theory valid for each subject, at least
in the standard macroeconomic way of pooling data.

The data set studied comes from an experiment conducted at the Max Planck
Institute for Human Development in Berlin [18]. In this experiment, decision
makers had to choose the preferred risky option for several gambles. The ex-
periment was iterated twice, so that we can fit the models to the first set
of data, and then we can use data from the second time for out-of-sample
prediction.
Such experiment has been already studied by R. O. Murphy and R. ten
Brincke [19], where they show the usefulness of hierarchical maximum likeli-
hood estimation for CPT. (subsection 3.2.2)

8



Chapter 2

State of the Art in
Decision Theory

A typical choice faced by the decision maker in the studied experiment is the
following:

A = (xA
1 , p

A
1 ;xA

2 , p
A
2 ) vs B = (xB

1 , p
B
1 ;xB

2 , p
B
2 ) (2.1)

where {xj
i } ∈ R are the outcomes of the gambles, and {pj

i } are the probabil-
ities with which they occur.
For istance, if the decision maker chooses lottery B, she will receive xB

1 with
probability pB

1 or xB
2 with probability pB

2 = 1 − pB
1 . Since the outcome of a

lottery is uncertain but the probabilities are known, decision of this kind are
generically called decisions under risk; situations where probabilities and/or
outcomes are unknown go under the name of decisions under ambiguity or
uncertainty (Even though there seem not to be a common accepted definition
of risk, ambiguity and uncertainty). We will focus only on the former type.

2.1 Expected Utility Theory(EUT)
Expected utility theory [1] is the first famous attempt to capture some
decision-making mechanisms violating the expected value criterion, where
an individual is supposed to choose the lottery with the highest expected
value. Psychological patterns such as risk-aversion highlight that individu-
als do not follow such approach. Therefore, instead of merely considering
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2 – State of the Art in Decision Theory

the actual outcomes of a lottery, EUT individuals associate a utility to each
outcome, which can be represented as a "new" choice:

Ã = (v(W+xA
1 ), pA

1 ; v(W+xA
2 ), pA

2 ) vs B̃ = (v(W+xB
1 ), pB

1 ; v(W+xB
2 ), pB

2 )
(2.2)

where v is the so called utility function and W is the initial wealth of the
decision maker.
The individual will then choose the "transformed" lottery with the highest
expected value, defined as:

E
è
Ã

é
= U(A) = pA

1 v(W + xA
1 ) + pA

2 v(W + xA
2 ) (2.3)

The fact that individuals make their choices according to changes in final
wealth, and not considering the gamble frame, is referred as asset integra-
tion: as we will see, it is the foundamental feature differentiating generalized
expected utility theories on one hand and prospect theory on the other.

When talking about monetary outcomes, it is assumed that more is better,
and so increasing utility functions are adopted. Moreover, the curvature of
the utility function plays an important role in determining decision maker’s
attitude toward risk, as we will discuss in section 2.2.

The striking simplicity of expected utility is a double-edged sword: on one
side, it has a wide range of applicability, being indeed the most used decision
theory in microeconomics; on the other side, EUT is not able to encompass
many situations such as the Allais [20] and Ellesberg [14] paradoxes. As a
result, alternative theories have been proposed.

However, before listing them, it is useful to recall the main risk-aversion
measures used in economics.

2.2 Risk Aversion (for EUT)
One of the most important psychological processes driving human decision-
making is risk-aversion, that can be informally defined as the general ten-
dence of preferring a situation with a more predictable payoff over a riskier,
but potentially better one.
Roughly speaking, the more the utility function is concave, the more the de-
cision maker is risk-averse (in Expected Utility, this can be easily verified by
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2.2 – Risk Aversion (for EUT)

applying Jensen’s inequality). More precisely, there are two measures of risk
aversion for a given utility function: Absolute risk aversion and Relative
risk aversion.

2.2.1 Absolute risk aversion

Absolute risk aversion (K. Arrow and J. W. Pratt, 1965 [21]) is a measure of
investors reaction to uncertainty relating to changes in their wealth, defined
as:

A(W ) = −vÍÍ(W )
vÍ(W ) (2.4)

where vÍ(W ) and vÍÍ(W ) are the first and second derivatives of the utility
function v(W ) respectively and W is the current wealth level.
Table 2.1 shows several behaviors according to this measure.

Condition Definition Property of A(W )
Increasing Absolute
Risk Aversion (IARA)

As wealth increases, hold fewer
dollars in risky assets AÍ(W ) > 0

Constant Absolute
Risk Aversion (CARA)

As wealth increases, hold same
dollar amount in risky assets AÍ(W ) = 0

Decreasing Absolute
Risk Aversion (DARA)

As wealth increases, hold more
dollars in risky assets AÍ(W ) < 0

Table 2.1: Several behaviors according to Absolute risk aversion measure.

2.2.2 Relative risk aversion

Relative risk aversion is a measure of investors reaction to uncertainty relating
to percentage changes in their wealth, defined as [22]:

R(W ) = −WvÍÍ(W )
vÍ(W ) = WA(W ) (2.5)

Table 2.2 shows several behaviors according to this measure. CRRA is usually
assumed for simplicity.
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2 – State of the Art in Decision Theory

Condition Definition Property of R(W )
Increasing Relative
Risk Aversion (IRRA)

Percentage invested in risky assets
declines as wealth increases RÍ(W ) > 0

Constant Relative
Risk Aversion (CRRA)

Percentage invested in risky assets
is unchanged as wealth increases RÍ(W ) = 0

Decreasing Relative
Risk Aversion (DRRA)

Percentage invested in risky assets
increases as wealth increases RÍ(W ) < 0

Table 2.2: Several behaviors according to Relative risk aversion measure. CRRA is
often used for simplicity.

2.3 Rank Dependent Utility Theory (RDUT)
In 1982, John Quiggin [3] suggested a generalization of the expected utility
model, relaxing the assumption that the Utility functional has to be linear
in the probabilities. One possible simple explanation is that individuals tend
to substitute ’decision weights’ for probabilities. [23]

Thanks to rank-dependence, there is the possibility of assigning two different
weights to outcomes with equal probabilities, because the weight of outcome
i will be not only function of the probability pi, but of the ranking position
of i.
Formally, given a prospect X with n outcomes, ordered from the worst to the
best i.e. x1 < x2 < .... < xn with probabilities p1, ...., pn, the rank-dependent
functional is:

U(X) = U({þx; þp}) =
nØ

i=1
v(xi +W )hi(þp) (2.6)

with hi(þp) being the decision weight relative to outcome xi, defined as:

hi(þp) = w(
nØ

j=i

pj) − w(
nØ

j=i+1
pj) = w(1 − F (xi)) − w(1 − F (xi−1)) (2.7)

where F (xi) = P (X <= xi) is the ranking position of outcome xi and w(p)
is called transformation or weighting function.
For two-valued lotteries, equation 2.6 reduces to:

U(X) = w(pX
1 )v(W + V X

1 ) + (1 − w(pX
1 ))v(W + V X

2 ) (2.8)

From equation 2.8, we can easily retrieve the EUT expression by letting
w(p) = p.
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2.3 – Rank Dependent Utility Theory (RDUT)

One of the key ideas of rank-dependence is to overweight only low proba-
bibility extreme outcomes and not low probability intermediate outcomes.
A simple example, taken from [23], may help:
suppose a pessimist decision maker faces the lottery (1

3 , 10; 1
3 , 20; 1

3 , 30); he
will pay more attention to the worst outcome, so h1 > 1

3 , say h1 = 1
2 .

Of the remaining attention (in rank dependent theory it is assumed thatqn
i=1 hi(þp) = 1 to avoid violations of 1st order stochastic dominance [3]), be-

ing a pessimist, he will pay more attention to the second worst outcome, so
h2 >

1
4 , say h2 = 1

3 . This implies h3 = 1
6 .

If the lottery presented is now (1
3 , 0; 1

3 , 10; 1
3 , 20), the outcome 10 will receive

less attention than before, being "just" an intermediate outcome, and not an
extreme one.

From this simple discussion we understand that the risk-aversion measures
mentioned in section 2.2 are not able to fully describe the characteristics of
generalized expected utility theories.
As Quiggin [3] stresses, even supposing a linear utility function, with a convex
w we can still have a risk-averse behaviour. Sticking to the linear utility func-
tion assumption for simplicity, a natural generalization of the risk aversion
concept for RDU is the following: pessimist people adopt a set of decision
weights that yield an expected value for a transformed risky prospect lower
than the mathematical expectation.
An individual is said to be pessimistic ⇐⇒ w(p) ≤ p∀p. Conversely, she is
optmistic ⇐⇒ w(p) ≥ p∀p.

In the general case of nonlinear utility and transformation functions, they
both contribute in a nontrivial way to determine subject’s behavior. Indeed,
an individual with a concave utility function can be globally risk-seeking if
the transformation function w is "sufficiently" optimistic.

The idea is that utility function v and transformation function w can be
seen as two "forces": they "point" in opposite directions if, for example, v
is concave and w optimistic. The first, having decreasing marginal utility,
discourages risk-taking, but the second encourages it. The "net" behavior
will be the resultant force.
One important thing to notice is that the effect of probability weighting is
independent of the scale of the bet. Therefore, in the above case optimism
will tend to predominate when bets are small (when all the outcomes are
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2 – State of the Art in Decision Theory

near the current wealth level).

In the present report, for the probability weighting a function known as
the Prelec II weighting function was chosen [24]. Having two parameters, it
is very flexible: δ controls the general elevation of the curve, and γ controls
its curvature.

w(p) = exp(−δ(−ln(p))γ) δ > 0 γ > 0 (2.9)

As for the utility functions, we chose the following:

v1(x) =


xα − 1
α

, α /= 0

ln(x), α = 0
(2.10)

v2(x) = 1
β

î
1 − exp

è
− β

1xα − 1
α

2éï
(2.11)

When 2.10 (2.11) is used we call such theory RDU1(RDU2).
The first one is CRRA (constant relative risk-aversion), while the second one
is very flexible: depending on the parameter values, it can represent CARA,
DARA, IRRA, CRRA and DRRA.[25]

2.4 Cumulative Prospect Theory(CPT)
Prospect theory was first introduced by D. Kahneman and A. Tversky in
1979 [2]. It presents a foundamental difference with respect to generalized
expected utility theories: separations of gains and losses with respect to a
reference point. The utility of a prospect does not depend anymore on the
initial wealth, i.e "the carriers of value are gains and losses, not final assets"
[2]. Thanks to this feature, other psychological mechanisms can be described,
the most famous being loss aversion. The idea behind loss aversion is that
the "pain" deriving from losing x€ is greater than the "joy" deriving from
receiving x€. In their words, "losses loom larger than gains"[2].

In 1992 [4], by incorporating the rank-dependent weighting of RDU, they
cured some theoretical issues, developing what is nowadays known as Cumu-
lative Prospect Theory.
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2.5 – Random Utility Theories

With this model, assuming the reference point to be zero, the utility of a
binary lottery A is given by:

U(A) =
w(pA

1 )v(xA
1 ) + (1 − w(pA

1 ))v(xA
2 ), for lotteries with only gains or only losses

w(pA
1 )v(xA

1 ) + w(pA
2 )v(xA

2 ), for mixed lotteries
(2.12)

where xA
1 and xA

2 have been ordered such that:

• xA
1 ≥ xA

2 if both are positive.

• xA
1 ≤ xA

2 if both are negative.

Within CPT, v : R → R+ is called value function, and it is usually convex in
the domain of losses (risk-seeking) and concave in the domain of gains (risk-
averse) so that it can accomodate common empirically observed behaviour
[4].

We adopt the same functional forms of S. Vincent et al. [16]: for the value
function we have

v(x) =
x

α, if x ≥ 0 α > 0
−λ(−x)α, x < 0 λ > 0

(2.13)

As for the weighting function, Prelec II is also used (equation 2.9).

2.5 Random Utility Theories
As already said in the Introduction, the previously presented theories have
no space for "deviation" from the best choice: the decision maker will al-
ways pick it, whatever the circumstances. However, this approach is too
simplicistic and does not take into account the large amount of endogenous
and exogenous factors affecting choice, deceiving the decision maker from the
optimal move.

Random Utility Theory, firstly introduce by Duncan Luce and Anthony
Marley [6], tries to deal with observed stochastic behaviour by separating
the utilities of a lottery X in two terms: a deterministic component and a
random component.

V (X) = U(X) + ÔX (2.14)
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2 – State of the Art in Decision Theory

U(X) is the already seen deterministic part and ÔX is the random part, called
also disturbance. By making different assumptions on the distribution of the
random component (precisely, on the distribution of the difference ÔA − ÔB =
Ô), different probabilistic models are obtained, such as the linear probability
model [26], the binary probit [27] and the binary logit [28]. Following the
work of S. Vincent et al. [16], we adopt and present the latter, enhancing CPT
and RDU with a choice function. Assuming that the disturbance difference
Ô is logistically distributed:

f(Ô) = 1
1 + e−φÔ

(2.15)

the probability pB of picking an option B over A is then:

pB = 1
1 + eφ(U(A)−U(B)) (2.16)

φ >= 0 is called sensitivity parameter, while U(A) and U(B) are the de-
terministic utilities, calculated according to one of the previously mentioned
theories.

To sum up, a logit-CPT decision maker is described by five parameters:
two for the value function (α, λ), two for the weighting function (γ, δ) and
one for the choice function (φ).
On the other hand, a logit-RDU decision maker is characterized by four pa-
rameters: one or two for the utility function (α and β), two for the weighting
function (γ, δ) and one for the choice function (φ).

2.6 Quantum Decision Theory (QDT)
Quantum Decision Theory (QDT) was introduced by V.I. Yukalov and D.
Sornette in 2008 [11], whose aim was to build a general framework able to
encompass all paradoxes in classical decision theory, without the need of an
"ad-hoc" set-up for each fallacy.
The mathematical theory of separable Hilbert spaces is the "backbone" of
QDT; we want to stress that the use of quantum theory is only a formal
analogy: there is no claim at all of any quantum effect taking place within
the brain.

The main idea driving QDT is indeed to exploit the most striking features of

16



2.6 – Quantum Decision Theory (QDT)

quantum mechanics with respect to classical physics: intrinsic probabilistic
nature and entanglement.
In decision-making context, the former means that a decision maker can
choose different options when faced with the same task multiple times (with-
out the intervention of memory effects). It is formally the same thing that
happens in quantum physics when a measurement, repeated many times on
a system in a well-known state, yiels different values. The only difference is
that in physical experiments the system is "passive", while in decision-making
the system, i.e the decision-maker, actively takes the decision.
The entanglement instead allows to model interdependence among the alter-
natives, in the sense that the decision maker does not evaluate each option
separately and then picks the best, but they are overall "entangled". In other
words, the appeal of an option will largely depend on the available alterna-
tives.

We now briefly recall the mathematical structure of QDT, that is extensively
presented in [29].

2.6.1 Mathematical structure of Quantum Decision The-
ory

The first object we need is the Action ring, i.e. a non-commutative ring
formed by a set of intended actions (simply called events in classic probability
theory)

A = {An : n = 1,2, ..., N} (2.17)
and two binary operations:

1. Addition (A or B or both occur): A+B = B + A ∈ A

2. Multiplication (A and B occur together): ∀A,B ∈ A AB ∈ A and
A · 0 = 0 ·A = 0 ∀A ∈ A. In general, AB /= BA, so the multiplication
is non-commutative. The 0 element, the empty action, symbolizes an
impossible action.

An action, or an event, can be realized in many different ways (e.g. becoming
rich can be realized by working hard or by becoming a thief). For this reason
we define the composite action An as:

An =
MnÛ
µ=1

Anµ Mn > 1 (2.18)
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where the {Anµ} are called action modes.

We define also the action prospect πn as:

πn =
Ü
j

Anj (2.19)

where this time the {Anj} can be composite or simple actions. If the product
is made of only simple action modes, each relative to a different action, the
action prospect is called elementary prospect:

eα =
Ü
n
Anjn (2.20)

Next, we put in relation each action mode Anj to a quantum state |Anjê,
defining their scalar product as:

éAnj|Ankê = δjk (2.21)

The intuition behind orthogonality among action modes is that they are
different ways of realizing the same intended action, therefore they are in-
compatible actions.
Thanks to definition 2.21, it is possible to define the Hilbert space, called
mode space, generated by action mode states as:

Mn = Span{|Anjê : j = 1,2, ....,Mn} (2.22)

We can do the same mapping for elementary prospects, i.e we define |eαê as:

|eαê = |A1j1...ANjN ê and éeα|eβê =
Ù
n
δjnin = δαβ (2.23)

In the same way we defined the mode space, we define the mind space as the
Hilbert space generated by elementary prospects:

M = Span{|eαê} (2.24)

The mind space defined in 2.24 is the central "field" of our discussion, over
which we can further define two types of quantum states: the strategic state
of mind and the prospect state.
The former is essentially the (normalized) state that contains all the infor-
mation about the mind of the decision maker:

|ψsê =
Ø
α
cα |eαê ∈ M (2.25)
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A prospect state is instead the correspondent quantum state of an action
prospect defined in 2.19:

|πnê =
Ø
α
aα |eαê ∈ M (2.26)

Once the prospect state is defined, the corresponding prospect operator P̂ (πn)
is given by:

P̂ (πn) = |πnê éπn| (2.27)
At this point, the decision maker, described by the state of mind |ψsê, will
choose the prospect πn with probability:

p(πn) = éψs|P̂ (πn)|ψsê = |éπn|ψsê|2 (2.28)

Clearly, since the decision maker must choose one option, the normalization
condition holds: Ø

n
p(πn) = 1 (2.29)

We stress that p(πn) crucially depends on the particular state of mind |ψsê
that contains all the characteristics of the decision maker.

An important feature arises when the decision maker has to choose among
at least one composite prospect: intuitively, the existence of several action
modes for one intended action may lead to uncertainty perception.
In such situation, the probability p(πn) can be split into two terms: a utility
factor f(πn) and an attraction factor q(πn).

p(πn) = f(πn) + q(πn) (2.30)

f(πn) =
Ø
α

|c∗
αaα|2 (2.31)

q(πn) =
Ø
α /=β

c∗
αaαcβa

∗
β (2.32)

The attraction factor defined 2.32 arises because of the interference among
action modes relative to the same intended action. This interference term is
responsible for non-additivity of probabilities in quantum theory.
The utility and attraction terms obey the following conditions:

• f(πn) ∈ [0,1] and q
f(πn) = 1 (normalization)

• q(πn) ∈ [−1,1] and q
q(πn) = 0 (alternation property)
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2.6.2 QDT for binary choices
In our study, the decision makers face a series of binary choices, namely
lottery A vs lottery B; as already reported in [16], the probabilities can be
simply written as: 

pA = fA + qA

pB = fB + qB

qA = −qB

fA = 1 − fB

(2.33)

To allow the possible emergence of quantum interference we assume that
lotteries A and B correspond to composite prospect states of the form:|Aê = a1 |A1ê + a2 |A2ê

|Bê = b1 |B1ê + b2 |B2ê
(2.34)

with |A1ê , |A2ê , |B1ê , |B2ê are ortoghonal action modes. As suggested in
[30], such decomposition reflects the uncertainty for the decision maker, aris-
ing for example from a misunderstanding of the experimental setup.
The mind space M in this case is given by:

M = Span{|A1ê , |A2ê , |B1ê , |B2ê} (2.35)

and the decision maker state of mind can be written as:

|ψsê = c11 |A1ê + c12 |A2ê + c21 |B1ê + c22 |B2ê (2.36)

In such binary context, as derived in [16], the attraction factor is further
constrained by the following condition:

|qA| = |qB| ≤ min(fA, fB) (2.37)

2.6.3 QDT parametrizations
The problem now is to find suitable parametrization of the utility and at-
traction factor so to reach satisfatory results.
In [16], a logit-CPT function was used for the utility factor:

fA = 1
1 + eφ(U(B)−U(A)) (2.38)
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where utilities U(A) and U(B) are calculated according to CPT criterion
2.12.
For the attraction factor they used:

qA = min(fA, fB)tanh(a(E(A) − E(B)) (2.39)

where expected utilities E(A) and E(B) are calculated utilizing a CARA
utility function:

E(A) = pA
1 u(W + xA

1 ) + pA
2 u(W + xA

2 ) (2.40)

u(x) = 1 − e−ηx η ≥ 0 (2.41)
In the present work, we propose to parametrize the utility factor as a logit-
RDU function:

fA = 1
1 + eφ(Ũ(B)−Ũ(A)) (2.42)

where utilities Ũ(A) and Ũ(B) are calculated according to RDU criterion
(2.8), adopting either 2.10 or 2.11. For the attraction factor, the above men-
tioned parametrization is used.

When the CPT framework is adopted to build fA we call this model CPT-
based QDT (QDTCP T ); if the RDU framework is used instead, we call such
model RDU-based QDT (QDTRDU). In particular, if utility function 2.10 is
used, it is referred as QDTRDU1, otherwise (using 2.11) QDTRDU2.

Before presenting the estimation procedure, we think it is useful to have
in one page all the decision making models analyzed in practice.

2.7 Summary of models investigated
Task: two lotteries A and B, each one made of 2 possible outcomes with
relative probability of occurrence.

2.7.1 logit-CPT
5 free parameters: α, λ, δ, γ, φ

p(B ² A) = 1
1 + eφ(U(A)−U(B))
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U(A) =
w(pA

1 )v(xA
1 ) + (1 − w(pA

1 ))v(xA
2 ), for lotteries with only gains or only losses

w(pA
1 )v(xA

1 ) + w(pA
2 )v(xA

2 ), for mixed lotteries

where xA
1 and xA

2 have been ordered such that:

• xA
1 ≥ xA

2 if both are positive.

• xA
1 ≤ xA

2 if both are negative.

v(x) =
x

α, if x ≥ 0 α > 0
−λ(−x)α, x < 0 λ > 0

w(p) = exp(−δ(−ln(p))γ) δ > 0 γ > 0

2.7.2 logit-RDU
4(5) free parameters for logit-RDU1(2).

p(B ² A) = 1
1 + eφ(U(A)−U(B))

U(A) = w(pA
1 )v(W + xA

1 ) + (1 − w(pA
1 ))v(W + xA

2 )

where V A
1 ≥ V A

2 and W is the initial wealth.

w(p) = exp(−δ(−ln(p))γ) δ > 0 γ > 0

RDU1

v1(x) =


xα − 1
α

, α /= 0

ln(x), α = 0

RDU2

v2(x) = 1
β

{1 − exp[−β(x
α − 1
α

)]}
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2.7.3 RDU1/2-based QDT and CPT-based QDT
It has 2 parameters more (η, a) than the classical theory adopted for the
utility factor.

p(B ² A) = fB + qB

fB = 1
1 + eφ(U(A)−U(B))

where U(A) and U(B) are calculated according to one of the "classical" the-
ories above. (Equation 2.12 or 2.8)

qB = min(fA, fB)tanh(a(E(B) − E(A))

E(A) = pA
1 u(W + xA

1 ) + pA
2 u(W + xA

2 )

where W is the initial wealth and the utility function used is:

u(x) = 1 − e−ηx η ≥ 0
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Chapter 3

Case study and Model
Calibration

3.1 Description of the studied experiment

142 subjects faced 91 binary decision tasks, where each option is a binary
lottery, as shown in figure 3.1. The range of the outcomes was -100€ to 100€;
at the end of each individual session one of the chosen lotteries was really
played and the participants earned 1

10 of the outcome. To avoid net losses,
the participants were endowed with an "initial wealth" of 10€, so that the
worst case would have been coming home with 0€.
Different types of lotteries have been used in order to isolate several psycho-
logical patterns (risk-aversion, loss-aversion etc.): only gains, only losses and
mixed games.
The same experiment was repeated after two weeks, but randomly changing
the order of questions. With "time 1" ("time 2") we will refer to the first
(second) session.
It is important to stress that the random ordering of questions avoids order
effect only at the aggregate level (i.e when we pool the data coming from all
the participants), but not at individual level, where memory effects may play
an important role in subsequent choices.

As already anticipated in the introduction, we will essentially fit the models
to the data relative to time 1, and then we will test their predicition power
with data at time 2.
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3 – Case study and Model Calibration

Figure 3.1: Typical decision-task of the experiment

3.2 Parameter estimation methods

3.2.1 Maximum Likelihood Estimation(MLE)

Since all the analyzed models are probabilistic, we can easily implement
maximum likelihood estimations.
Adopting the same formalism of [16] for simplicity, the answers of the subject
i ∈ {1...142} at lottery j ∈ {1...91} at time 1 are encoded in

1
φi

j

2
, being

defined as:

φi
j =

0, if subject i chooses A in the gamble j
1, if subject i chooses B in the gamble j

(3.1)

We can further define a rectangular 91x142 matrix Φ, with Φij = φi
j.

At the aggregate level, we gather the data coming from all the participants,
i.e we aim to estimate the so called representative agent. Roughly speak-
ing, it is more or less equal to assume that we have only one subject facing
91x142 decisions and we estimate the parameters such that the model best
explains/predicts the data.
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3.2 – Parameter estimation methods

This can be done by maximizing the following aggregate likelihood function:

Lagg(þm; Φ) =
142Ù
i=1

91Ù
j=1

p
1−φij
Aj

(þm)(1 − pAj(þm))φij

=
142Ù
i=1

91Ù
j=1

p
1−φij
Aj

(þm)pφij
Bj

(þm)

=
91Ù

j=1
p

142−Nj

Aj
(þm)pNj

Bj
(þm) (3.2)

where þm is the parameter vector relative to the model considered (e.g. þm =
(α, δ, γ, φ) for logit-RDU1) and Nj = q142

i=1 φ
i
j is the number of subjects that

chose "B" in the j-th gamble.
For more computational stability we take the logarithm of expression 3.2:

logLagg( þm; Φ) =
91Ø

j=1

è
(142−Nj)log(pAj

( þm)) + Njlog(pBj
( þm))

é
(3.3)

þmagg
∗ = argmax

þm
Lagg( þm; Φ) = argmax

þm
logLagg( þm; Φ) (3.4)

At the individual level, we can analogously maximize a likelihood function
for each subject:

Li( þm; Φ) =
91Ù

j=1
p

1−φi
j

Aj
( þm)p

φi
j

Bj
( þm) (3.5)

þmi
∗ = argmax

þm
Li( þm; Φ) (3.6)

Despite such approach is in principle correct, the problem of overfitting can
arise: informally speaking, by overfitting we mean a situation when, once
the model is fit to the data, it "perfectly" explains them, but it is unable to
provide reliable predictions, i.e it has a low degree of generalization.
As highlighted by K.P. Burnham and D.R. Anderson [31], the less data are
available, the more the possibility of overfitting is present. In other words,
the noise deriving from a small sample can be misleadingly interpreted as
"underlying structure".
In order to deal with this issue, several "regularization" procedures have been
proposed [32]. In simple terms, a regularization is a way to constrain the fit
by incorporating additional information (e.g. priors).
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In our case individuals face relatively few choices (91); therefore, at the in-
dividual level overfitting should be taken into account. For CPT, such issue
has already been investigated for example by J. Rieskamp et al. (2011) [33],
where they showed the power of a hierarchical bayesian parameter estimation
with respect to a standard MLE.

In the following subsection, we present the regularization adopted in the
present work.

3.2.2 Hierarchical Maximum Likelihood(HML)
The hierarchical maximum likelihood method can be seen as a "trade-off"
between two extrema: on one side the representative agent approach, which
describes each individual in the same way, and on the other the individual
level approach, which characterizes each decision maker separately. Infor-
mally speaking, the idea is that subjects are not too different from each
other, i.e their parameters come from a common density distribution.
Farrell and Ludwig (2008) [34] introduced this procedure because in psychol-
ogy it is common to have samples of small size. In this way, the individual
likelihood is regularized by this group level prior distribution.

R. ten Brincke and R.O. Murphy [19] applied this method to the presented
experiment for CPT; we present the same method for RDU1.

The procedure is made of two steps:
We assume that the distributions of α, γ and δ are lognormal. The distribu-
tion of the sensitivity φ is not evaluated, since it in principle depends on the
other parameters, and so φ is fixed with its aggregate level estimate. Each
distribution is defined by location (µ) and scale (σ) parameters:

α ∼ LogN(µα, σα) γ ∼ logN(µγ, σγ) δ ∼ logN(µδ, σδ) (3.7)

Pα = {µα, σα};Pδ = {µδ, σδ};Pγ = {µγ, σγ} (3.8)

We remind that a random variable is lognormally distributed if its logarithm
is normally distributed.
The first step consists in estimating the {µ} and {σ}, that amounts to com-
pute the prior distribution from the aggregate level point of view.
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This is done in the following way:

{P ∗
α, P

∗
δ , P

∗
γ

ï
= argmax

Pα,Pδ,Pγ

142Ù
i=1

ÚÚÚ 5 91Ù
j=1

p
1−φij
Aj,i

p
φij
Bj,i

6
ln(α|Pα)ln(γ|Pγ)ln(δ|Pδ)dαdγdδ

(3.9)
The idea behind expression 3.9 is to weight each individual likelihood func-
tion by the same global prior distribution, so that each parameter set þm =
(α, δ, γ, φ) contributes relevantly to the integral not only if it maximizes the
likelihood, but also if it is likely to be generated by the group level distribu-
tion.
In [19], they approximated the integral by a Monte Carlo method generating
2,500 uniform random values for each dimension. We decided to evaluate
the integral by importance sampling, i.e we generate values directly from the
lognormal distributions inside the integral. We preferred the latter because
the drawback of uniform sampling is that "if points are chosen evenly in vol-
ume, we rarely consider the points close to the peak which give the dominant
contribution" [35].
Being the computational process very intense we have implemented it only
for RDU1.

Once the prior distribution has been computed, the real optimization can
be carried out by maximing the regularized individual likelihood as follows:

Li
r( þm; Φ) = ln(α|P ∗α)ln(γ|P ∗γ )ln(δ|P ∗δ )

91Ù
j=1

p
1−φi

j

Aj
( þm)p

φi
j

Bj
( þm) (3.10)

þmi
∗ = argmax

þm
Li

r( þm; Φ) (3.11)

3.3 Model comparison Criteria
In this section, we present the statistical tests and criteria used to select and
compare the models fit to data.
Before doing that, it is important to recall the possible relations among dif-
ferent models because, depending on the situation, different tests have to be
adopted.
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3.3.1 Possible relations among models
As reported by C. Gourieroux and A. Monfort (1994) [36], we consider T
observations of pairs of variables (yt, zt), t = 1....T where in our case the {yt}
are the binary variables representing the choices of subjects, while the {zt}
are actually constants describing the lotteries.
We aim to discover the true (unknown) conditional distribution generating
the observations, which is denoted as h0(y|z).
Two rival conditional models Fθ = {f(y|z; þθ), þθ ∈ þΘ ⊂ Rp} and Gγ =
{g(y|z;þγ), þγ ∈ þΓ ⊂ Rq} can be nested, partially non-nested (overlapping) or
globally non-nested.

Gγ is nested in Fθ ⇐⇒ IG(þγ, z) = 0 for all possible values of þγ and z,
where IG(þγ, z) is defined as the minimal Kullback–Leibler divergence be-
tween g(y|z;þγ) and Fθ:

IG(þγ, z) = inf
þθ∈þΘ

IGF (þγ, þθ; z) (3.12)

IGF (þγ, þθ; z) = log
g(0|z;þγ)
f(0|z; þθ)

g(0|z;þγ) + log
g(1|z;þγ)
f(1|z; þθ)

g(1|z;þγ) (3.13)

In simpler terms, the nested condition means that any distribution g(y|z;þγ)
can be obtained with Fθ for some value of the parameter vector þθ (the same
definitions hold for Fθ nested in Gγ).

Fθ and Gγ are globally non-nested ⇐⇒ IG(þγ, z) /= 0 AND IF (þθ, z) /= 0
for all possible values of þγ, þθ and z. If this is not the case, they are said to
be partially non-nested.

3.3.2 Information Criteria
One first way to select the best model describing the data is by adopting the
so-called information criteria. Within decision theory, the most used are the
Akaike Information Criterion (AIC) [37] and Bayesian information criterion
(BIC), also called Schwarz information criterion [38].
For Akaike, the best model is the one with the smallest AIC:

AIC = −2logL+ 2p (3.14)

where L is the likelihood of the considered model and p is the number of
parameters to estimate.
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The Schwarz criterion proposes instead to select the best model according to
the smallest BIC:

BIC = −2logL+ plog(n) (3.15)

where n is the sample size.

In case the competing models have the same number of the parameters,
the one with the biggest likelihood is selected.
The main drawback of these methods is that they don’t admit non-discrimination
as a possible outcome of the comparison, forcing us somehow to choose a win-
ner. Therefore, an alternative way of selecting models is presented.

3.3.3 Nested Hypothesis Testing
The simplest situation is when the one of the competing models is nested in
the other. In such case, according to Wilks’ Theorem [39], we first define:

Λ = Lsmall

Lbig
(3.16)

where Lsmall is the likelihood of the nested model (null hypothesis) and Lbig

is the likelihood of the nesting model. If the null hypothesis is true, when
the sample size approaches ∞, we have:

D = −2log(Λ) ∼ χ2(k) (3.17)

where χ2 is a chi-squared distribution with k degrees of freedom, k being
the difference between the number of parameters of the "big" model and the
"small" one.

In order to quantify the idea of statistical significance of evidence, a p-value is
computed. The p-value is defined as the probability, under the null hypoth-
esis, of obtaining a result equal to or more extreme than what was actually
observed. Informally, the smaller the p-value, the stronger is the evidence
against the null hypothesis (nested model).

Recalling the form of the CDF of the χ2(k):

F (x; k) = P (χ2(k) ≤ x) = γ(k
2 ,

x
2 )

Γ(k
2)

(3.18)
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where γ(s, t) is the lower incomplete gamma function and Γ(k) the ordinary
gamma function, the p-value corresponds to:

p− value = P (χ2(k) ≥ D) = 1 − F (D; k) = 1 −
γ(k

2 ,
D
2 )

Γ(k
2)

(3.19)

3.3.4 Non-nested Hypothesis Testing

A more complicated and controversial case is with non-nested hypotheses.
The first attempts to deal with non-nested case were proposed by Cox (1961)
[40] and Atkinson (1969) [41].
As White (1982) points out [42], the classical properties of the maximum like-
lihood estimator relies on a fundamental assumption, often implicitly stated:
correct specification. In simple terms, a model is correctly specified if the
true distribution is known to be "contained" in it.
In many situation, ours included, this is not known a-priori. What happens
if we do not assume correct specification for any model?

Relaxing this assumption, White provided "simple conditions under which
the maximum likelihood estimator is a strongly consistent estimator for the
parameter vector which minimizes the Kullback-Leibler Information Crite-
rion (KLIC)" between the true distribution h0(y|z) and the conditional model
analyzed Fθ = {f(y|z; þθ), þθ ∈ þΘ ⊂ Rp}.

This being said, it is natural then to adopt statistical tests based on min-
imization of KLIC, where there are no assumption of correct specification.
One such test is the Vuong Test [43].

Another problem, often overlooked, is the possibility of overlapping between
models: for example, G. Harrison and J. Swarthout (2016) [44] state that
RDU and CPT are non-nested models, seeming to neglect such possibility.
Indeed, looking at the definitions in subsection 3.3.1, the global non-nested
condition is fairly restrictive. On the other hand, Fθ and Gγ can overlap
even if IG(þγ, z) = 0 OR IF (þθ, z) = 0 for only one combination of þγ, þθ and
z.
Therefore, we implement the most general procedure proposed by Vuong, in
which we neither assume correct specification nor global non-nesting.
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Despite the precedent remark, we decided to follow "in spirit" [44] adopt-
ing not only the Vuong Test, but also the Clarke Test [45]. It is a good
idea to use both because they compensate each other in a way: the Clarke
Test has a slightly higher probability of choosing the wrong model, while the
Vuong Test has a slightly higher probability of choosing neither model (See
[46] for a formal comparison of the trade-offs between these errors).

A detailed description of the tests used is provided in Appendix .1.
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Chapter 4

Results

The implementation of logit-RDU vs RDU-based QDT has been made using
the code for logit-CPT vs CPT-based QDT developed by S.Vincent et al
[16] with suitable modifications. In the following, we will refer to these
models as RDU, QDTRDU , CPT, QDTCP T , respectively. We will use the
shorthand RDUtype models when we generically refer to RDU and QDTRDU

and similarly CPTtype models for CPT and QDTCP T .
Regarding the proper parametrization of our models, see section 2.7. For the
RDUtype ones we recall again the adoption of two different utility functions:

• v(x) = xα−1
α → RDU1, QDTRDU1

• v(x) = 1
β {1 − exp[−β(xα−1

α )]} → RDU2, QDTRDU2

4.1 Aggregate level
At the aggregate level, we first look at the mean squared error (MSE) of the
estimated probability of choosing gambles B with the empirical probability
at time 1 (FIT MSE) and at time 2 (Predicted MSE). The results are in Table
4.1, where we report also the corresponding logLikelihood and the values of
the estimated parameters. If we refer only to these estimations, the main
conclusions are the following:

• no general improvement adopting RDUtype models instead of CPTtype

ones; QDTCP T performs significantly better than the others.

• QDTRDU estimation is better than RDU one, especially in RDU2 vs
QDTRDU2
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From the conceptual point of view, the following comments are important:
• QDTRDU1 has a = −0.0839, slightly <0. Descriptively speaking, it may

be a signal of irrational behavior.

• The major flexibility of RDU2 and QDTRDU2 results in the presence of
an inflection point in their utility function.

The second point deserves a deeper analysis. The presence of an inflection
point tells us that there is a domain region where the utility function is risk-
seeking (vÍÍ(x) > 0) and another region where it is risk-averse (vÍÍ(x) < 0).
It is interesting to see where this inflection point is, in order to compare it
with the reference point taken in CPTtype models to discriminate between
gains and losses. Figure 4.1 shows vÍÍ(x) of RDU2 (subplot 4.1a) and vÍÍ(x)
of QDTRDU2 (subplot 4.1b)

For RDU2, the inflection point is at x Ä 62; recalling that W = 100 is
the initial wealth provided to the participants, it would imply a risk-seeking
behavior only when losses are (in modulus) bigger than 62 − 100 = −38.

For QDTRDU2 instead, it is at x Ä 92, that would imply a risk-seeking
behavior only when losses are (in modulus) bigger than 92 − 100 = −8. This
is very close to 0, the "reference point" taken in CPTtype models. Such result
may be informally regarded as a confirmation that, at the aggregate level,
CPTtype models best characterize the average behavior.

In order to better understand our general results, we evaluated the same
quantities dividing the gambles by type: only gains, only losses and mixed.
(Table 4.2). Again, QDTCP T outperforms the others. Moreover we have
that:

• QDTRDU2 performs significantly better than RDU2 in each type of gam-
ble.

• QDTRDU1 performs slightly better than RDU1, except for only gain
region, where they are almost the same.

• RDU, in particular RDU1, performs better than CPT when gambles
with only losses are concerned.

The latter point may indicate that the asset integration (participants earn
less instead of perceiving losses) does play a role especially with this type of
gambles.
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Figure 4.1: Second derivatives of RDU2 and QDTRDU2 utility functions. Their
change of sign shows a change of behavior from risk-seeking to risk-averse.
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Figure 4.2: RDU1.(a) utility function with α = 0.9357; (b) weighting function with
δ = 1.0090, γ = 0.7233.
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Estimation RDU1 QDTRDU1 RDU2 QDTRDU2 CPT QDTCP T

Fit MSE 1.0920 1.0165 1.0025 0.7584 0.7294 0.5244
Predicted MSE 0.9978 0.9508 0.9430 0.7577 0.7594 0.5886
logLikelihood -7541.4 -7518.2 -7511.5 -7442.0 -7431.5 -7371.9

α 0.9357 0.7423 1.3049 1.8888 0.7309 0.6892
β - - 0.0014 1.7809e-04 - -
λ - - - - 1.1129 1.0156
δ 1.0090 0.9894 0.9524 0.9318 0.8771 0.8862
γ 0.7233 0.7572 0.7257 0.7138 0.6514 0.6280
φ 0.1066 0.2697 0.0339 0.0030 0.2954 0.3702
η - 0.0408 - 0.1014 - 0.0523
a - -0.0839 - 2.1271 - 1.4735

Table 4.1: Estimation Results. We report the Mean Square Error of the estimated
probability of choosing gamble B both with the empirical probability at time 1
(Fit MSE) and with the empirical probability at time 2 (Predicted MSE). α is the
exponent of the power function (utility/value function), β is the additional parameter
for the utility function of RDU2 and QDTRDU2, δ and γ are the parameters of the
Prelec transformation function, λ is the loss aversion parameter, φ is the sensitivity
of the choice function, η and a are the parameters for the attraction factor.

FIT/PRED MSE RDU1 QDTRDU1 RDU2 QDTRDU2 CPT QDTCP T

Fit MSE 1.0920 1.0165 1.0025 0.7584 0.7294 0.5244
Predicted MSE 0.9978 0.9508 0.9430 0.7577 0.7594 0.5886

ONLY GAINS Fit MSE 0.4403 0.4477 0.3878 0.3287 0.2418 0.2085
ONLY GAINS Predicted MSE 0.4676 0.4737 0.4241 0.3819 0.2947 0.2785

MIXED Fit MSE 0.4386 0.3803 0.3925 0.2735 0.2662 0.1707
MIXED Predicted MSE 0.3371 0.3014 0.2813 0.2262 0.2058 0.1840
ONLY LOSSES Fit MSE 0.2131 0.1885 0.2223 0.1561 0.2214 0.1452

ONLY LOSSES Predicted MSE 0.1931 0.1757 0.2374 0.1496 0.2589 0.1261

Table 4.2: Detailed MSE. QDTCP T outperform the others. QDTRDU models per-
form better than RDU ones. RDU1 performs significantly better than CPT when
gambles with only losses are concerned.
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Figure 4.3: RDU2.(a) Utility function with α = 0.9357, β = 0.0014; (b) weighting
function with δ = 0.9524, γ = 0.7257.
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Figure 4.4: CPT: (a) Value function with α = 0.9357, λ = 1.1129; (b) weighting
function with δ = 0.8771, γ = 0.6514.
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Figure 4.5: QDTRDU1. (a) Utility function with α = 0.7423; (b) weighting function
with δ = 0.9894, γ = 0.7572; (c) CARA utility function with η = 0.0408; (d)
attraction factor with a = −0.0839.
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Figure 4.6: QDTRDU2. (a) Utility function with α = 1.8888, β = 1.7809 · 10−4; (b)
weighting function with δ = 0.9318, γ = 0.7138; (c) CARA utility function with
η = 0.1014; (d) attraction factor with a = 2.1271.
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Figure 4.7: QDTCP T . (a) Value function with α = 1.8888, λ = 1.0156; (b) weighting
function with δ = 0.8862, γ = 0.6280; (c) CARA utility function with η = 0.0.0523;
(d) attraction factor with a = 1.4735.
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4.1.1 Hypothesis Testing at the aggregate level
Statistical tests give a more rigorous approach for the horse-race.
We first begin by comparing models within RDUtype models; let us recall the
nesting relations among them:

• RDU1 is nested in QDTRDU1 (sending η and a to 0)

• RDU2 is nested in QDTRDU2 (sending η and a to 0)

• RDU1 is nested in RDU2 (sending β to 0)

• QDTRDU1 is nested in QDTRDU2 (sending β to 0)

Regarding the first two relations, we can safely use the Wilks’ Theorem (sub-
section 3.3.3). We have to be more careful for the other two, as explained
below.
If we precisely sticked to the definition of the two-parameter utility function
(equation 2.11) provided by Danyang Xie in [25], we would have to impose
β >= 0. Therefore, RDU1 would be recovered from RDU2 by putting β on
the boundary of its domain. In such case, the test statistic does not follow
a chi-2 with 1 degree of freedom but a mixed law such that the statistic is 0
with probability 1

2 and follows a chi-2 with 1 degree of freedom with proba-
bility 1

2 (H. Chernoff, 1954 [47]).
However, the condition β >= 0 , together with α ≤ 1, was adopted in [25]
so that the utility function always represents risk-averse behavior.

In our case instead, we do not impose these contraints, letting the estimation
procedure decide if the utility function is risk-averse, risk-seeking, or both, as
shown in the precedent subsection. Therefore, we can safely use the Wilks’
theorem also for the last two comparisons.
For k=2, the cumulative distribution function of χ2 is:

F (x; 2) = P (χ2(2) ≤ x) = 1 − exp(−x

2) (4.1)

p− value = 1 − F (D; 2) = exp(−D

2 ) (4.2)

For k=1:
F (x; 1) = P (χ2(1) ≤ x) = γ(1

2 ,
x
2 )

Γ(1
2) (4.3)
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p− value = 1 − F (D; 1) = 1 −
γ(1

2 ,
D
2 )

Γ(1
2) (4.4)

where γ(s, t) is the lower incomplete gamma function and Γ(k) the ordinary
gamma function.

In table 4.3 the p-values for all the comparisons are reported; they clearly
show how QDTRDU wins over RDU, and also that adding a parameter to
the utility function (RDU2 and QDTRDU2) gives statistically significant im-
provement.

RDU1 ∈ QDTRDU1 RDU2 ∈ QDTRDU2 RDU1 ∈ RDU2 QDTRDU1 ∈ QDTRDU2

p-value 8.2830e-11 6.5085e-31 1.0325e-14 0

Table 4.3: p-values computed for all the comparisons among RDUtype models.

Next, we compareQDTRDU2, the winner amongRDUtype models, withQDTCP T

through Vuong Test and Clarke Test (table 4.4). Such results clearly show
that QDTCP T is selected (by far) at the aggregate level. This is not surpris-
ing, given the huge differences in MSE (table 4.2).

Vuong Test Clarke Test
p-value 5.6742e-6 6.1419e-6

Table 4.4: p-values for QDTRDU2 vs QDTCP T
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4.2 Individual level
In this section we are going to compare the results obtained at the individual
level. We will first focus on the mean explained fraction (choices at time
1) and mean predicted fraction (choices at time 2), i.e. for each subject we
calculate the fraction of gambles correctly explained/predicted, given the in-
dividual parameter estimation, and then take the average across the subjects.
The parameters η and a, relative to the attraction term of QDTRDU1 and
QDTCP T , will be fixed using the values obtained at the aggregate level. This
implies that RDU(CPT) is not nested in QDTRDU(QDTCP T ) at this level.

Looking at the results in table 4.5 we get the following conclusions:

• for the mean predicted fraction, we have essentially the same result, both
with RDUtype models and with CPTtype ones

• for the mean explained fraction, QDTRDU1 gives a slightly better result
than RDU1.

Mean Fraction RDU1 QDTRDU1 CPT QDTCP T

Explained 0.74 (0.09) 0.75 (0.08) 0.76 (0.08) 0.77 (0.08)
Predicted 0.73 (0.10) 0.73 (0.10) 0.73 (0.10) 0.74 (0.09)

Table 4.5: Mean Explained and Predicted Fraction (standard deviation is in
brackets). For each subject we calculate the fraction of gambles correctly ex-
plained/predicted, given the individual parameter estimation, and then take the
average across the subjects. Regarding the mean predicted fraction, we may say
that RDU1 performs quite well, considering it has one parameter less than CPT.
QDTRDU1 gives a slightly better mean explained fraction than RDU1.

The similar performances of the models may be regarded as a further confir-
mation of an intrinsic limit of predictability due to randomness of choice, as
suggested in [16].
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4.2.1 "Naive" Subject Classification

It is also interesting to compare performance of the models for specific sub-
jects, to account somehow for heterogeneity in the population. In a rough
way, we record for each subject which model better fits his choices (both
at time 1 and at time 2), having in this way a pseudo-classification of the
subjects. Figures 4.8 and 4.9 present such analysis, where we that:

• QDTCP T describes the majority of decision-makers; RDU1 and CPT
have the same subject percentage. (time 1)

• Majority (33 %) of subjects is better described by RDU1 (time2)

The main drawback of this analysis is that it does not give an exact measure
of how better one model is than another, but it is a good start.
However, we can try to understand how much these predictions actually
differ. We form a vector taking the difference between explained (predicted)
fraction of two models, then we sort it in descendant order and we plot it.
Figures from 4.10 to 4.15 show this analysis for six pairs of models.
Useful for this discussion is also the sum of the elements of the difference
vector, to see if the differences compensate each other.(Table 4.6) Here we
report the main conclusions at this level:

• if we had to classify the subjects into RDU1 and QDTRDU1 the order of
magnitude of the differences (time 1 and 2) is too small to think at an
heterogeneity of the sample.

• if we had to classify subjects into RDU1 and CPT, at time 1 the vast
majority would be CPT, while at time 2 the division would be more
symmetric.

• if we had to classify subjects into QDTRDU1 and QDTCP T , at time 1 the
vast majority would be QDTCP T , while at time 2 the division would be
more symmetric.
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Figure 4.8: Subject Classification according to to the model that best predicts their
individual choices at time 1. RDU1 and CPT have the same subject percentage.

Figure 4.9: Subject Classification according to the model that best predicts their
individual choices at time 2. 33 % of subject is better described by RDU1.
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RDU1-QDTRDU1
time 1/2

RDU1-CPT
time 1/2

QDTRDU1-QDTCP T

time 1/2
Sum of differences -0.90/0.20 -2.89/-0.05 -2.82/ -1.02

Table 4.6: Sum of the elements of the difference vector for several pairs of models
at time 1 and time 2.

Figure 4.10: RDU1 −QDTRDU1 (time 1)

Figure 4.11: RDU1 −QDTRDU1 (time 2)
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Figure 4.12: RDU1 − CPT (time 1)

Figure 4.13: RDU1 − CPT (time 2)
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Figure 4.14: QDTRDU1 −QDTCP T (time 1)

Figure 4.15: QDTRDU1 −QDTCP T (time 2)
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4.2.2 Subject classification with hypothesis testing

We now shift to a more rigorous classification of the subjects, using appropri-
ate statistical tests. As already said, the precedent model selection procedure
does not take into account how much the performance of the theories differ
from each other; therefore, for each subject we are "forced" to choose one
winner, without allowing for heterogeneity within the subject himself.
The main feature of the following analysis is to relax the assumption that
one of the competing models has to be chosen over the other, allowing non-
discrimination as a possible outcome.

To classify subjects as RDU1, QDTRDU1, CPT or QDTCP T , the procedure
is the following:

1. Likelihood based "quasi-nested" model selection (subsection 3.3.2) within
each "type" of model:

• Model selection(Likelihood based) between RDU1 and QDTRDU1
(let us call MR the selected model)

• Model selection(Likelihood based) between CPT and QDTCP T (let
us call MC the selected model)

2. Non-nested hypothesis testing for the selection between MR and MC

As for the first step, at the individual level, the two formulations include the
same number of parameters (parameters of the q-factor, a and η, are fixed).
Thus, the model selection can be done according to the log-likelihoods: the
preferred model is the one which has the biggest log-likelihood. Tables 4.7
and 4.8 show the results.

RDU1 QDTRDU1

Proportion of subjects for which the model is selected (time 1) 30% 70 %
Proportion of subjects for which the model is selected (time 2) 45% 55 %

Mean of the loglikelihood (time 1): -91.50 -90.74
Mean of the loglikelihood (time 2): -97.48 -97.22

Table 4.7: Model selection according to the likelihood. The likelihood is bigger with
QDTRDU1 for most subjects and average, so the QDTRDU1 model is the preferred
one.
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CPT QDTCP T

Proportion of subjects for which the model is selected (time 1) 34% 65 %
Proportion of subjects for which the model is selected (time 2) 36% 64 %

Mean of the loglikelihood (time 1): -86.53 -85.77
Mean of the loglikelihood (time 2): -99.18 -98.34

Table 4.8: Model selection according to the likelihood. The likelihood is bigger with
QDTCP T for most subjects and average, so the QDTCP T model is the preferred one.

As already explained in subsection 3.3.4, for non-nested hypothesis testing
we use two different tests: the Vuong Test and the Clarke Test. The results
of our analysis are shown in figures 4.16 and 4.17.
The main conclusions are the following:

1. For a big fraction of subjects (in Vuong test for 70-80% of subjects) we
can not clearly distinguish between CPTtype and RDUtype models (the
"draw" category)

2. Less conservative Clarke test allows to select a better suited decision
model for a majority of subjects (the "draw" category is reduced to 40-
45%); the tendency is in favor of RDUtype models (both RDU1 and
QDTRDU1)

3. Quantum factor plays an important role: models with quantum factor
are selected for the majority of subjects, as shown in figure 4.17.

Even if we wanted to look only at Clarke Test results, we would however note
that a relevant fraction of the population is equally described by RDUtype

and CPTtype models. This result may have several reasons:

• Small sample size (weak test).

• No model is correctly specified, the true model is a different one.

• Some choices are better "caught" by one decision making mechanism,
while others by another one, and so on.

The last point is the one we want to investigate further, i.e if a subsample
of the population can be significantly better described by a mixture of these
models (final chapter 5).

Another interesting aspect to analyze is the stability of subjects’ classifi-
cation over time. In other words, we investigate whether the selected choice
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model that is best suited for an individual remains unchanged between times
1 and 2. Referring to the Clarke results, we record the fraction of subjects
whose classification shifted from one class to another between time 1 and
time 2. To make things simple, we exclude the "DRAW" category, taking
into account only the "clear" shifts. The results are reported in the (symmet-
ric) table 4.9.

Our analysis of the experimental dataset shows that none of the decision
makers that are clearly classified as either RDUtype or CPTtype have switched
to the other "type" of decision making mechanism. In other words, for all
clearly classified subjects the best suited model remained within the same
type: CPT or RDU based.
Broadly speaking, it indicates that these subjects have a unique behavior
with respect to asset integration: either they asset integrate both at time 1
and at time 2 (RDUtype), or they don’t (CPTtype).

RDU1 QDTRDU1 CPT QDTCP T

RDU1 X 19% 0 0
QDTRDU1 19% X 0 0

CPT 0 0 X 4%
QDTCP T 0 0 4% X

Table 4.9: Subject classification switching. Each entry contains the percentage of
subjects who "clearly" shifted from one category to another. We do not take into
account the direction of the shift, so the matrix is symmetric. The main result is
that there is no clear switch at all between RDUtype and CPTtype, and vice-versa.
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(a) Vuong Test (Time 1) (b) Vuong Test (Time 2)

(c) Clarke Test (Time 1) (d) Clarke Test (Time 2)

Figure 4.16: Subject classification. The Draw bar indicates no discrimination between the "winner" of
RDUtype models and the "winner" of CP Ttype models. For example, CPT=RDU1 indicates no discrimi-
nation between CPT(which won against QDTCP T ) and RDU1(which won against QDTRDU1). QDT always
describes a significant fraction of subjects. However, a large fraction of subjects falls in the "Draw" bar.
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(a) Vuong Test (Time 1) (b) Vuong Test (Time 2)

(c) Clarke Test (Time 1) (d) Clarke Test (Time 2)

Figure 4.17: Subject classification: focus on the relevance of the quantum factor.
By looking from this point of view, we see that the quantum models describes the
majority of subjects for both tests and both times.
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Chapter 5

Conclusions and possible
extensions

In this paper, we have presented another parametrization of Quantum Deci-
sion Theory based on Rank-Dependent Utility Theory. We then compared
RDU, RDU-based QDT, CPT and CPT-based QDT. CPT had already been
studied on the same experiment by R.O Murphy and R. ten Brincke [19],
while CPT-based QDT was proposed by S.Vincent et al. in [16].
RDU and RDU-based QDT do not need to rely on a definition of reference
point, a very important feature in out-of-laboratory applications.

At the aggregate level, assuming homogeneous preferences across subjects
(representative agent approach), we found that QDTCP T outperformed the
others, according to MSE measure and hypothesis testing. Within RDUtype

models, quantum factor has been shown fundamental to improve perfor-
mances. It could be argued that adding two parameters obviously gives a
better model, but nested hypothesis testing confirmed the authentic signifi-
cance of such improvements.

At the individual level, following [19], we chose an estimation method "half-
way" between homogeneous preferences and treating each individual as unique,
resulting in a regularization of the likelihood function to avoid overfitting. In
terms of mean explained/predicted fraction of choices, similar results were
reached by the four theories analyzed (74-76%), confirming an intrinsic limit
of predictability due to randomness of choice, as suggested in [16].
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Next, we proceeded to a subject classification, identifying each decision-
maker as RDU, CPT, QDTRDU or QDTCP T . A first "naive" classification,
based on the percentage of gambles explained/predicted, was used; the results
clearly show the heterogeneity of behavior in the sample. Since this method
neglected how much better is a theory with respect to another, more sophis-
ticate criteria have been adopted, such as hypothesis testing. This analysis
confirmed the existence of substiantial heterogeneity across the sample, weak-
ening the consistence of the representative agent approach. The majority of
subjects was best described by quantum models, showing again the key-role
of QDT in characterizing decision-makers attitudes.
Moreover, this analysis showed that, both with Vuong Test and with Clarke
Test, a relevant fraction of subjects was equally described by RDUtype and
CPTtype models, resulting in an unclear classification. Such result may sug-
gest the possibility of heterogeneity of choices within the subject himself.
For istance, decision maker i can asset integrate for some choices (RDUtype)
while for other gambles she can evaluate utilities neglecting initial wealth
(CPTtype). Following this argument, a natural extension of the present work
would be to characterize each subject by mixture models, so as to capture
different psychological decision-making mechanism within the subject him-
self.
Finally, we analyzed the stability of the classification from time 1 to time
2. Our results show that none of the decision makers (clearly classified as
either RDUtype or CPTtype) have switched to the other "type" of decision
making mechanism, suggesting that the difference between decision makers
make difficult to have a "universal" theory.

58



Bibliography

[1] D. Bernoulli. Exposition of a new theory on the measurement of risk.
Econometrica, 1738.

[2] D. Kahneman and A. Tversky. Prospect theory: An analysis of decision
under risk. Econometrica, 1979.

[3] John Quiggin. A theory of anticipated utility. Journal of Economic
Behavior and Organization, 1982.

[4] D. Kahneman and A. Tversky. Advances in prospect theory: Cumulative
representation of uncertainty. Journal of Risk and Uncertainty, 1992.

[5] F. Mosteller and P. Nogee. An experimental measurement of utility.
Journal of Political Economy, 1951.

[6] Luce and R. Duncan. Conditional logit analysis of qualitative choice
behavior. New York: John Wiley and Sons., 1959.

[7] J.D. Hey and C.Orme. Investigating generelizations of the expected
utility theory using experimental data. Econometrica, 1994.

[8] E. Carbone and J.D. Hey. A comparison of the estimates of eu and non-
eu preferences functionals using data from pairwise choice and complete
ranking experiments. Geneva Papers on Risk Insurance Theory, 1995.

[9] M.H. Birnbaum and A.Chavez. Test of theories of decision making:
Violations of branch independence and distribution independence. Or-
ganizational Behavior of Human Decision Processes, 1997.

[10] Ennio Cascetta. Transportation systems analysis: Models and applica-
tions. Mathematics Subject Classification, 2000.

[11] V.I. Yukalov and D. Sornette. Quantum decision theory as quantum
theory of measurement. Physics Letters, 2008.

[12] L. J. Savage. The foundations of statistics. John Wiley and Sons Inc.,
New York., 1954.

[13] A. Tversky and D. Kahneman. Judgments of and by representativeness.
Cambridge, UK, 1982.

[14] Daniel Ellsberg. Risk, ambiguity, and the savage axioms. Quarterly

59



Bibliography

Journal of Economics, 75, 1961.
[15] V.I. Yukalov and D. Sornette. Preference reversal in quantum decision

theory. Frontiers in Psychology, 2015.
[16] V.I. Yukalov S. Vincent, T. Kovalenko and D. Sornette. Calibration of

quantum decision theory, aversion to large losses and predictability of
probabilistic choices. Swiss Finance Institute Research Paper, 2016.

[17] Nicholas C. Barberis. Thirty years of prospect theory in economics: A
review and assessment. JOURNAL OF ECONOMIC PERSPECTIVES,
27:173–196, 2013.

[18] R.O. Murphy M. Schulte-Mecklenbeck, T. Pachur and R. Hertwig. Does
prospect theory capture psychological processes. ETH Zurich, Chair
of Decision Theory and Behavioral Game Theory and the Max Planck
Institute for Human Development, 2013.

[19] R.O. Murphy and R.H.W. ten Brincke. Hierarchical maximum likelihood
parameter estimation for cumulative prospect theory: Improving the
reliability of individual risk parameter estimates. ETH Zurich working
paper, 2014.

[20] M. Allais. Le comportement de l’homme rationnel devant le risque:
critique des postulats et axiomes de l’école américaine. Econometrica,
21, 1953.

[21] K. J. Arrow. Aspects of the theory of risk bearing. The Theory of Risk
Aversion. Helsinki: Yrjo Jahnssonin Saatio., 1965.

[22] Carl Simon and Lawrence Blume. Mathematics for economists (student
ed.). Viva Norton. p. 363.

[23] ENRICO DIECIDUE and PETER P. WAKKER. On the intuition of
rank-dependent utility. The Journal of Risk and Uncertainty, 23, 2001.

[24] D. Prelec. The probability weighting function. Econometrica, 1998.
[25] Danyang Xie. Power risk aversion utility functions. Annals of Economics

and Finance, 1:265–282, 2000.
[26] D. R. Cox. Simple regression. Analysis of Binary Data, 1970.
[27] C. I. Bliss. The method of probits. Science, 79, 1934.
[28] DR Cox. The regression analysis of binary sequences (with discussion).

J Roy Stat Soc B, 20:215, 1958.
[29] V.I. Yukalov and D. Sornette. Mathematical structure of quantum de-

cision theory. Advances in Complex Systems, 2010.
[30] V.I. Yukalov and D. Sornette. Manipulating decision making of typical

agents. IEEE Transactions on Systems, Man and Cybernetics: Systems,
44:1155, 2014.

60



Bibliography

[31] D. R. Burnham, K. P.; Anderson. Model selection and multimodel in-
ference (2nd ed.). Springer-Verlag., 2002.

[32] Sara Bühlmann, Peter; Van De Geer. Statistics for high-dimensional
data. Springer Series in Statistics, 9, 2011.

[33] J. Rieskamp H. Nilsson and E. J. Wagenmakers. Hierarchical bayesian
parameter estimation for cumulative prospect theory. Journal of Math-
ematical Psychology, 2011.

[34] S. Farrell and C: J. H Ludwig. Bayesian and maximum likelihood es-
timation of hierarchical response time models. Psychonomic Bullettin
and Review, 2008.

[35] Sebastiano Pilati. Random numbers: Non-uniform distributions. Lec-
ture Notes, 2017.

[36] C. Gourieroux and A. Monfort. Testing non-nested hypotheses. Elseuier
Science B.V., 4, 1994.

[37] H. Akaike. A new look at the statistical model identification. IEEE
Transactions on Automatic Control, 19, 1974.

[38] G. SCHWARZ. Estimating the dimension of a model. Annals of Statis-
tics, 6:461, 1978.

[39] S. S. Wilks. The large-sample distribution of the likelihood ratio for
testing composite hypotheses. The Annals of Mathematical Statistics,
9:60, 1938.

[40] D.R. Cox. Test of separate families of hypotheses. Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability,
1:105, 1961.

[41] A.C. Atkinson. A test for discriminating between models. Biometrika,
56:337, 1969.

[42] Halbert White. Maximum likelihood estimation of misspecified models.
Econometrica, 1982.

[43] Quang H. Vuong. Likelihood ratio tests for model selection and non-
nested hypotheses. The Econometric Society, 1989.

[44] Glenn W. Harrison and J. Todd Swarthout. Cumulative prospect theory
in the laboratory: A reconsideration. 2016.

[45] Kevin A. Clarke. Nonparametric model discrimination in international
relations. The Journal of Conflict Resolution, 2003.

[46] Kevin A. Clarke. A simple distribution-free test for nonnested model
selection. Political Analysis, 2007.

[47] Chernoff H. On the distribution of the likelihood ratio. Ann. Math.
Statist., 25:573, 1954.

61



62



Appendices

63





.1 – Details of Statistical Tests used

.1 Details of Statistical Tests used

.1.1 Vuong Test
In his paper [43], Vuong developed a simple likelihood-ratio test using the
Kullback Leibler Information Criterion (KLIC). The null hypothesis is that
we cannot discriminate between the competing models, while the alternative
hypothesis is that one model is closer to the true data generating process.

If Fθ = {f(y|z; þθ), þθ ∈ þΘ ⊂ Rp} is a conditional model, its distance from
the true distribution h0(y|z), as measured by the minimum KLIC, is

E0[logh0(y|z)] − E0[logf(y|z; þθ∗)] (1)

where E0[] indicates the expectation value taken with respect to the true
joint distribution (y,z) (we recall that in our case the z are constant variables
representing the lotteries) and þθ∗ is the pseudo-true value of þθ (the estimate
of þθ when f(y|z) is not the true model).
The smaller the KLIC in equation 1, the closer is the model to the truth.
Therefore, since the first term of 1 is the same for each competing model,
we can choose the "best" model on the base of E0[logf(y|z; þθ∗)]; the model
with the largest one is the best one, because it minimizes the KLIC. Given
two conditional models Fθ and Gγ = {g(y|z;þγ), þγ ∈ þΓ ⊂ Rq}, which may be
nested, non-nested, or overlapping, consider the following hypotheses:

H0 : E0
logf(y|z; þθ∗)

g(y|z;þγ∗)

 = 0 Fθ ∼ Gγ (2)

Hf : E0
logf(y|z; þθ∗)

g(y|z;þγ∗)

 > 0 Fθ ² Gγ (3)

Hg : E0
logf(y|z; þθ∗)

g(y|z;þγ∗)

 < 0 Fθ ° Gγ (4)

H0 does not require that either of the competing models have to be correctly
specified(i.e neither has to "contain" the true density). It is important to note
it because we will not assume that any model is correctly specified, since our
goal will be to stress the need for a mixture model.
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The quantity of interest, E0[logf(y|z; þθ∗)] − E0[logg(y|z;þγ∗)], is unknown,
but, under weak general conditions, can be consistently estimated by

1
n

nØ
t=1

log

f(Yt|Zt; þ̂θn)
g(Yt|Zt; þ̂γn)

 = 1
n
LRn(þ̂θn, þ̂γn) (5)

where n is the number of observations while þ̂θn and þ̂γn are the ML estimators
of þθ∗ and þγ∗, respectively.
The LR statistic is asymptotically distributed as a normal or a weighted sum
of chi-squares, depending on whether f(−|−; þθ∗) = g(−|−;þγ∗) or not.
More formally, under general assumptions we have:

• if f(−|−; þθ∗) = g(−|−;þγ∗), then

2LRn(þ̂θn, þ̂γn) D−→ Mp+q(−;þλ∗) (6)

where Mm(−;þλ) is the cumulative distribution function (CDF) of
mØ

i=1
λiZ

2
i λi ∈ R Zi ∼ N(0,1) (7)

and þλ∗ is the vector of p+q (possibly negative) eigenvalues of

W =
 −Bf (þθ∗)A−1

f (þθ∗) −Bfg(þθ∗, þγ∗)A−1
g (þγ∗)

Bgf (þγ∗, þθ∗)A−1
f (þθ∗) Bg(þγ∗)A−1

g (þγ∗)



Af (þθ) = E0
∂2logf(Yt|Zt; þθ)

∂θi∂θj

, Bf (þθ) = E0
∂logf(Yt|Zt; þθ)

∂θi

∂logf(Yt|Zt; þθ)
∂θj

 i, j = 1...p

(8)
,

Bfg(þθ,þγ) = BÍ
gf (þγ, þθ) = E0

∂logf(Yt|Zt; þθ)
∂θl

∂logg(Yt|Zt;þγ)
∂γm

 l = 1..p,m = 1..q

(9)

• if f(−|−; þθ∗) /= g(−|−;þγ∗), then

LRn(þ̂θn, þ̂γn)√
n

−
E0

log f(Yt|Zt;þθ∗)
g(Yt|Zt;þγ∗)


√
n

D−→ N(0, w2
∗) (10)
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.1 – Details of Statistical Tests used

In the most general case of possibly overlapping models (our case) we cannot
tell it a-priori. Since these quantities are unknown we need another test for
this condition.
It can be proven that:

f(−|−; þθ∗) = g(−|−;þγ∗) ⇐⇒ w2
∗ = 0 (11)

w2
∗ = V ar0

log
f(y|z; þθ∗)
g(y|z;þγ∗)

 (12)

Thus, we can equivalently test that the variance w2
∗ is equal to 0.

Hw
0 : w2

∗ = 0 vs Hw
A : w2

∗ /= 0 (13)

A natural statistic is:

ŵ2
n = 1

n

nØ
t=1

logf(Yt|Zt; þ̂θn)
g(Yt|Zt; þ̂γn)

2

−
 1
n

nØ
t=1

log
f(Yt|Zt; þ̂θn)
g(Yt|Zt; þ̂γn)

2

(14)

Actually, if w2
∗ = 0 we can already conclude that Fθ ∼ Gγ, without carrying

out the LR test.
If w2

∗ /= 0 (and thus f(−|−; þθ∗) /= g(−|−;þγ∗)), we may still have E0[logf(y|z; þθ∗)] =
E0[logg(y|z;þγ∗)] so that a LR test of H0 against Hf or Hg must still be car-
ried out.

The variance test, under very general assumptions, is the following:

• under Hw
0 , ∀x ≥ 0, Pr(nŵ2

n ≤ x) −Mp+q(x; þ̂λ2
n) a.s.−−→ 0,with þ̂λ2

n being the
vector of the squares of þ̂λn (eigenvalues of Wn, sample analog of W)

• under Hw
A , nŵ

2
n

a.s.−−→ +∞

Essentially, the variance test consists in choosing a x so that Mp+q(x; þ̂λ2
n) =

1 − α for some significance level α, and in rejecting Hw
0 if nŵ2

n > x.

To sum up, our non-nested hypothesis test is a sequential procedure:

1. Test Hw
0 vs Hw

A using the variance test based on nŵ2
n

• if Hw
0 is not rejected, conclude that "Fθ = Gγ"
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• if Hw
0 is rejected, go to 2.

2. test H0 against Hf or Hg using the normal model selection test.

This sequential procedure has a significance level which is asymptotically
bounded above by the maximum between:

• α1: asymptotic significance level for the variance test

• α2: asymptotic significance level for the normal LR test

In order to correctly implement the test, we have to take into account that
competing models can have different number of parameters. Indeed, this
difference obviously affects the log-likelihoods. Vuong suggested, among oth-
ers, to use Schwarz’s (1978, [38]) information criteria, making the adjusted
statistic:

LR̃n(þ̂θn, þ̂γn) = LRn(þ̂θn, þ̂γn)−Kn(Fθ, Gγ) = LRn(þ̂θn, þ̂γn)−
p

2 log(n)−q

2 log(n)


(15)
Vuong justifies the correction by noting that as long as the correction factor
divided by the square root of n obeys:

Kn(Fθ, Gγ)√
n

= op(1) (16)

the adjusted statistic has the same asymptotic properties of the unadjusted
one.

.1.2 Clarke Test
The goal of the Vuong test is to assess if the average log-likelihood ratio is
significantly different from zero, favouring one of the competing models. On
the other hand, the Clarke test, first introduced by Clarke in [45], aims to
determine whether the median log-likelihood ratio is statistically different
from zero. Informally, this test counts the number of log-likelihood ratios
above and below 0; if half of them is greater than 0 and half less than 0, we
cannot discriminate between the models. If model f is "better" than model
g, the number of positive ratios should be significantly higher than half (and
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vice-versa).
The null hypothesis is therefore:

H0 : Pr
log

f(Yt|Zt; þθ∗)
g(Yt|Zt;þγ∗)

 > 0
 = Pr

log
f(Yt|Zt; þθ∗)
g(Yt|Zt;þγ∗)

 < 0
 = 1

2 ⇐⇒ M = 0

(17)
where M is the median log-likelihood ratio.

Letting Xt = log
5
f(Yt|Zt; þ̂θn)

6
− log

5
g(Yt|Zt; þ̂γn)

6
, and

Ψt =
1, if Xt > 0

0, ifXt < 0
(18)

The test statistic is
B =

nØ
t=1

Ψt (19)

B is the number of positive differences, and it is distributed Binomial with
parameters n and p = 1

2 .
If model Fθ is "better" than model Gγ, B will be significantly larger than its
expected value under the null hypothesis n

2 . We reject the null hypothesis if
B ≥ cα OR B ≤ dα, where cα and dα are the smallest integer such that:

nØ
c=cα

n
c

1
2

n

≤ α (20)

dαØ
c=0

n
c

1
2

n

≥ α (21)

This test, like the Vuong test, is sensitive to the difference in number of
parameters of the competing models. Unfortunately, we cannot follow the
Vuong’s suggestion, because here we are not dealing with the average log-
likelihood ratio. However, Clarke suggested to apply the average correction
to each Xt. Therefore, we shift the individual log-likelihoods for model Fθ

by a factor of p
2n log(n) and the individual log-likelihoods for model Gγ by a

factor of q
2n log(n).
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