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Summary

In recent years, there has been intense interest in collaborative robots, both for in-
dustry and household applications. While significant progress has been made, phys-
ical human-robot interaction is still presenting a challenging problem that has not
been satisfactorily solved. When a human is interacting with another human, the
forces they exchange represent a communication channel and a continuous stream
of information flows between them. When a human is interacting with a robot,
the forces applied by the robot are interpreted by the human that in turn reacts
to them; obviously, people are expecting the robot to also react to the forces they
are applying. In this research, we identify different types of collaboration during
collaborative manipulation and use this information to better control human-robot
interaction. We propose a new metric for the identification of the cooperation in-
tent and study how to best compute the interaction force, on which our metric is
based, in a real-time application. We also propose a control framework that uses
a set of robot controllers that are selected using the identified collaboration intent
to control the robot during collaborative tasks. Finally, we present our preliminary
experiments with the Baxter robot. The experiments have been performed in order
to understand the precision, repeatability and safety of the robot using different
control approaches. These experiments informed the proposed controllers and are
the key for their future implementation on the Baxter robot.
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Chapter 1

Introduction

Many applications require humans to physically interact with robots in order to
perform a variety of tasks. Examples are rehabilitation, robotic assistance for the
elderly or disabled, entertainment, education and assistance with manipulation in
warehouses or with assembly in factories. In all these applications, the quality
of the cooperation is what researchers are trying to maximize in order to make
the collaboration feel natural to humans. Clearly, different applications require
different cooperation strategies.

1.1 Motivation and Research Questions
The focus of this research is on robotic caregivers for the elderly. When an elderly
person needs help with activities of daily living (ADLs), the help needs to be
provided by a caregiver, either in the home or institutional setting. But there is
an acute lack of trained caregivers, and living at home has far better outcomes.
Elderly assistive robots are thus a promising alternative that could both reduce
cost, increase access, and provide better options for the elderly. However, in order
to prevent both physical and mental deterioration [8] [22], the elderly needs to be
actively engaged in everyday tasks. The robot thus needs to work with rather than
in place of, the human.

Understanding what constitutes successful collaboration in physical Human-
Human Interaction (pHHI) and in physical Human-Robot Interaction (pHRI) is
the key to making the interaction feel natural. In particular, it is necessary to
characterize what makes the collaboration cooperative. Once a measure of the co-
operation is available, it is possible to regulate the contribution of the robot to
the task in order to increase the quality of the collaboration. The cooperation
quality is related to the forces applied during the collaboration; in particular, the
interaction forces represent a communication channel during a collaboration. Dif-
ferent approaches have been proposed to compute the interaction forces [25] [7] [17].
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1 – Introduction

However, not all of them can be used to effectively identify different cooperation
scenarios.

Once a measure of the cooperation is available, it is possible to predict the
human’s intent and control the robot in order to match this intent. This leads to
the following list of questions that guided our research:

(i) How to define the cooperation in a collaborative task?

(ii) How to compute the interaction forces? Which model is meaningful, which is
not?

(iii) How to link the cooperation scenario to the human’s collaboration intent?

(iv) How to control a manipulator in order to make the collaboration natural and
adaptable to human intent?

1.2 Related Work
Human motion has been studied in detail by many researchers and different models
exist to describe the average trajectory followed by humans in single arm reaching
movements. A variety of models are based on optimal control, in which the key idea
is the minimization of a specific cost function while performing the task. The cost
functions adopted to study the average behavior involve energy, smoothness, accu-
racy and other multi-attribute costs [23]. Flash and Hogan studied a minimum-jerk
trajectory model to describe the average motion of the human arm [5]. In partic-
ular, this method generates a bell-shaped velocity profile and it is what we have
adopted in our research. Uno, Kawato and Suzuki developed a model that mini-
mizes the torque change during the motion in order to study the average trajectory
[24].

For what concerns bi-manual and dyadic motions, the minimum jerk model has
been adapted in order to also take into account the rotational jerk [6]. It has also
been shown that the trajectory of an object in bi-manual or dyadic motions is highly
correlated with the minimum-jerk trajectory [16].

Many researchers also studied the forces that are applied by humans during a
collaborative task. In particular, the interaction force, the portion of the force that
is not responsible for the motion of the object, represents a communication chan-
nel between humans during a collaboration. Different models have been proposed
to compute the interaction forces. One of them is based on the assumption that
the interaction forces follow the mechanical internal forces [25]: we call this the
virtual-linkage (VL) model. The minimum-energy (ME) model instead assumes
that the energy is minimized during the collaboration [7]. Noohi, Žefran and Pat-
ton proposed a polynomial model (PM) to compute the interaction force [17]. In
particular, this method computes the interaction force exploiting the trajectory of
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1 – Introduction

the force vectors. These three methods will be explained in details in chapter 2
since they have been used extensively for this research.

Human intent has been also studied in detail and its crucial role in HRI has
been analyzed in many researches. Nehaniv et al [15] proposed a classification of
human gestures into five main classes. They also showed the importance of taking
both the kinematics of the gesture and the interactional context into considera-
tion. Kulic and Croft [13] proposed a method for predicting human intent based on
physiological signals (blood volume pressure, skin conductance, chest cavity expan-
sion/contraction, corrugator muscle activity) and used this information to improve
the safety of HRI. Breazeal and Aryananda [2] studied how to recognize human
intent in robot-directed speech without knowing the linguistic content. They pre-
sented a method to identify four patterns that communicate praise, prohibition,
attention and comfort and how to use this information to instruct robots and facil-
itate the learning process in HRI. A different approach, based on stacked denoising
auto-encoders is presented in [11]. This research studied human intent with respect
to inanimate objects exploiting the environment information obtained by a Kinect
camera and using deep learning techniques. Kelley et al [12] proposed a similar
approach that models the robot’s acquired experience using Hidden Markov Models.

While recognizing human intent has been studied extensively and many different
approaches have been proposed, little work exists on pHRI. Erden and Tomiyama
[4] developed a physically interactive control scheme for a robotic manipulator. Hu-
man intent, the desired position, is estimated observing the human applied forces
at the end effector. A switching scheme is also proposed to alternate two differ-
ent controllers. Kazerooni [10] studied pHRI when the capability of the human
to perform the task is limited by the physical strength and then an extender (a
robot used to increase human mechanical strength) is used. He developed general
models for the human, the extender and the interaction, analyzing stability and
performances. Duchaine and Gosselin [3] proposed a control scheme to increase the
level of safety in pHRI guaranteeing that the robot will never be unstable. They
also proposed a new variable admittance control that provides an intuitively human
interaction. Mielke et al [14] studied the forces and torques data in leader-follower
human-human dyadic tasks. They showed how the interaction force is necessary for
a co-manipulation and how lateral movements follow a minimum-jerk trajectory.
They also proposed different metrics to identify good lateral movements but they
did not show how to use this information to control pHRI.

In this research, we propose a new metric to identify cooperation intent and
a model that exploits this information to improve pHRI. Some of the existing
models detect human intent using physical quantities that are not easily available
when performing ADLs. Other methods require information from the entire task
and can not be implemented in case of real-time applications. In contrast, our
approach detects human intent exploiting easily measurable physical quantities that
can be obtained in real-time. Our model is able to detect multiple collaboration
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1 – Introduction

scenarios and presents an intuitive description of the interaction. Moreover, it is
able to recognize sudden changes in the collaboration scenario. The metric we
propose requires the computation of the interaction force and the robot must have
complete knowledge of the task. The accuracy of the method is strictly related
to the accuracy of the computed interaction force and the approximation of the
motion trajectory.

1.3 Thesis Organization
This thesis is organized in five chapters.

Chapter 1: This chapter provides an introduction to the research and states
the research questions. It also presents results of other research related to the same
topic.

Chapter 2: This chapter provides the background on various topics used for
the research. In particular, it discusses human motion trajectory, forces during
human motion, interaction force models and clustering methods.

Chapter 3: This chapter presents the cooperation study. We identify differ-
ent cooperation scenarios using different clustering methods. Finally, we compare
different models for the computation of the interaction forces and investigate their
performance.

Chapter 4: In this chapter, the cooperation strategy is presented to control
the manipulator during the collaborative manipulation. The idea of the switching
controllers is explained. Details on the manipulator and the software are also
provided.

Chapter 5: This chapter discusses the results and provides the conclusions.
The chapter also presents possible extensions of the work.

13



Chapter 2

Background

This chapter provides the background material that will be used in the rest of the
thesis. In the first section (2.1) the minimum-jerk motion model is introduced and
the solution in case of zero boundary conditions is reported. The human forces in
reaching movements are analyzed in section 2.2. Section 2.3 introduces the concept
of interaction force and three different methods to compute it. Finally, in section
2.4, an overview of different clustering methods that will be used in the analysis of
data collected during human studies is provided.

2.1 HumanMotion Trajectory in Reaching Move-
ment

Human motion has been studied extensively. It has been observed that human
reaching motion between two points, A and B, follows a straight line with a dis-
tinct velocity profile. It has been shown that the motion follows a minimum-jerk
trajectory, generating the bell-shaped velocity profile [5]. In particular, the follow-
ing cost function is minimized:

L(ti, tf , x) = 1
2

∫ tf

ti

∣∣∣∣∣
∣∣∣∣∣d3x(t)
dt3

∣∣∣∣∣
∣∣∣∣∣ dt (2.1)

x∗(t) = arg min
x(t)

(L(ti, tf , x)) (2.2)

where x(t) ∈ R3 represents the motion trajectory, while ti and tf are the initial and
final time respectively. The cost function is the integral of the norm of the third
derivative of position, which is called jerk; this is why the optimal solution (2.2) is
called minimum-jerk trajectory. The optimization problem can be easily solved if
the zero boundary conditions are assumed (the initial and final velocity are equal

14



2 – Background

to zero). In this case, the trajectory can be rewritten as follows:

x∗(τ) = x(ti) +D(6τ 5 − 15τ 4 + 10τ 3) (2.3)

τ = t− ti
tf − ti

(2.4)

D = x(tf )− x(ti) (2.5)

Figure 2.1 shows the x-coordinate of position, velocity and acceleration of a
minimum-jerk trajectory with x(ti) and x(tf ) equal to (0,0,0) and (1,0,0), while ti
and tf equal to 0 and 5 respectively.

2.2 Forces during Human Reaching Movement
Much research has showed that when an external disturbance force is applied dur-
ing a human reaching movement, the human can adapt and compensate the distur-
bance. In other words, humans are able to compensate the external force applying
the same amount of force in the opposite direction, achieving again the optimal
trajectory x∗, after a sufficient number of learning trials. In particular, it has been
shown [17] that the applied forces follow a minimum-jerk trajectory and can be
written as

F ∗(t) = arg min
F

1
2

∫ tf

ti

∣∣∣∣∣
∣∣∣∣∣d3F (t)
dt3

∣∣∣∣∣
∣∣∣∣∣
2

dt

 (2.6)

Shadmehr and Wise showed [20] that using the calculus of variations, the force
can be rewritten as a fifth-order polynomial (2.7), since the sixth derivative of F ∗(t)
is equal to zero.

F ∗(t) =
5∑

k=0
ckt

k (2.7)

Finally, if the zero boundary conditions are respected, the initial and final forces
will be zero too. If instead other boundary conditions have to be satisfied, the
calculus of variations can be used to find the new solution (ck coefficients).

15



2 – Background

(a) position

(b) velocity

(c) acceleration

Figure 2.1. Minimum-jerk trajectory
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2 – Background

2.3 Interaction Force
The concept of interaction force is crucial for collaborative manipulation. In a
dyadic cooperation (Figure 2.2), the sum (Fsum) of the two applied forces (f1 and
f2) is responsible for the motion of the manipulated object. The applied forces
could be decomposed into the effective forces (f ∗1 and f ∗2 ) and the interaction force
(F i):

f1 = f ∗1 + F i (2.8)
f2 = f ∗2 − F i (2.9)

As discussed in Chapter 1, the interaction force represents a communication channel
between humans during a dyadic task. Since the interaction forces of the two hands
cancel each other, they do not contribute to the object’s motion:

Fsum = f1 + f2 = f ∗1 + f ∗2 (2.10)

It is possible to introduce a new parameter α standing for the contribution of each
person in performing the task. The effective forces and the interaction force could
be rewritten as function of α as follows:

f ∗1 = αFsum (2.11)
f ∗2 = (1− α)Fsum (2.12)
F i = f1 − f ∗1 = (1− α)f1 − αf2 (2.13)

These equations constitute an under-determined system and are satisfied for any
value of α. Only if Fsum is equal to zero a unique solution exists, with F i = f1 = −f2
and f ∗1 = f ∗2 = 0. Figure 2.2 shows two possible decompositions of the applied
forces, one where the interaction force is orthogonal to Fsum, and one where the
interaction force has both orthogonal and parallel components.

Researchers proposed models to uniquely determine the interaction force. In the
following sections, three of these methods are presented in more detail since they
will be used in this research.

2.3.1 Virtual Linkage Model
The virtual linkage (VL) model was proposed by Khatib and Williams [25]. They
proposed a model to compute the internal forces during a multi-grasp manipula-
tion. In particular, the concept of virtual linkage is introduced: “A virtual linkage
associated with an n-grasp manipulation task is a 6(n−1)-degree-of-freedom mech-
anism whose actuated joints characterize the object’s internal forces and moments”

17



2 – Background

(a) orthogonal components only (b) orthogonal and parallel components

Figure 2.2. Two possible decompositions of the applied forces into effective
forces and interaction force. Reprinted from “A Model for Human-Human Col-
laborative Object Manipulation and Its Application to Human-Robot Interac-
tion," by E. Noohi, M. Žefran and J. L. Patton, 2016, IEEE Transactions on
Robotics, 32, 4. Copyright 2016 by IEEE.

(Khatib & Williams, 1993, p. 1025). The forces and the moments, that are applied
to the virtual linkage at the grasp points, are transmitted to the virtual linkage’s
actuators. The virtual linkage system will be in equilibrium when the same amount
of forces and torques, but in opposite direction, will be applied. These forces and
torques correspond to the internal forces and torques [25]. Figure 2.3 shows an
application of the virtual linkage model to a three-arm manipulation task. The
grasp points are represented as spheres while the links connecting the grasp points
represent the actuators of the virtual linkage.

In case of a two-grasp manipulation, there is only one component of the internal
force and it lies on the line connecting the two grasp points [25]. The internal force
will be given by the difference of the applied forces at the grasp points. In case of
a dyadic cooperation, the effective forces and the interaction force become:

f ∗1 = f ∗2 = 1
2Fsum (2.14)

F i = 1
2(f1 − f2) (2.15)

which is equivalent to setting α equal to 0.5.

18



2 – Background

(a) (b)

Figure 2.3. Virtual linkage model: a) a three-arm manipulation task; b) a vir-
tual linkage model corresponding to three-arm manipulation task. Reprinted from
“The Virtual Linkage Model: A Model for Internal Forces in Multi-Grasp Manip-
ulation" by D. William and O. Khatib, 1993, IEEE International Conference on
Robotics and Automation, 1026. Copyright 1993 by IEEE.

2.3.2 Minimum-Energy Model

The minimum energy model is motivated by the study on dominance measures
and distribution in haptic interaction conducted by Groten et al [7].They investi-
gated the dominance distribution between partners and implicitly developed the
minimum-energy model to compute the interaction force. The key idea is that the
interaction force is present only if the two partners apply forces in opposite direc-
tions, both pulling or pushing the object. Again, the interaction forces are not
responsible for the motion of the object and can be determined as follows:

F i
1 =


0, if sgn(f1) = sgn(f2)
f1, if sgn(f1) /= sgn(f2) ∧ |f1| ≤ |f2|
−f2, if sgn(f1) /= sgn(f2) ∧ |f1| > |f2|

(2.16)

The interaction force for the second partner would be F i
2 = −F i

1. Using the relations
between the applied forces (f1 and f2) and the interaction forces (F i

1 and F i
2) it is

possible to compute the effective forces (f ∗1 and f ∗2 ).
Figure 2.4 shows the computation of interaction forces in a dyadic task applying

both VL model and ME model. Note that in the case of the VL model, the two
effective forces have always the same magnitude, independently on the number of
applied forces. In the case of the ME model instead, when only one force is applied,
the interaction force is zero and the applied force equals the effective force.
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2 – Background

(a) (b) (c)

Figure 2.4. Interaction force models comparison: a) applied forces; b) virtu-
al-linkage model; c) minimum-energy model. Reprinted from “A Model for
Human-Human Collaborative Object Manipulation and Its Application to Hu-
man-Robot Interaction," by E. Noohi, M. Žefran and J. L. Patton, 2016, IEEE
Transactions on Robotics, 32, 5. Copyright 2016 by IEEE.

2.3.3 Polynomial Model
Noohi and Žefran proposed a polynomial model for the computation of the interac-
tion force [17]. They first computed the interaction force in a mass-spring system
and then generalized the analysis to a rigid body. They showed how in a dyadic
task the interaction force follows a minimum-jerk trajectory and can be computed
as follows:

F i(t) = arg min
F

1
2

∫ tf

ti

∣∣∣∣∣
∣∣∣∣∣d3F (t)
dt3

∣∣∣∣∣
∣∣∣∣∣
2

dt

 (2.17)

or equivalently

F i(t) =
5∑

k=0
ckt

k (2.18)

The coefficients ck can be computed introducing the following five constraints [17]:

F i(ti) = f1(ti) (2.19)
F i(tm) = f1(tm) (2.20)
F i(tf ) = f1(tf ) (2.21)
Ḟ i(ti) = ḟ1(ti) (2.22)
Ḟ i(tf ) = ḟ1(tf ) (2.23)
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The five constraints introduce five coefficients, the last one is found solving the
optimization problem (2.17).

The polynomial model assumes that the task is well known and it is based on
the motion model: the precision of the polynomial model is strictly related to the
precision of the motion model [17]. One important advantage with respect to VL
and ME models is that PM can compute the interaction force based only on one of
the two applied forces (f1 or f2). Obviously, this will turn out to be important in
case of pHRI since only the human applied force is directly available. On the other
hand, in order to compute the interaction force at the current time, PM requires
the value of one of the two applied forces in the future: this model is not directly
applicable for the real-time control of the manipulator. For this reason we will refer
to this model as off-line polynomial model (PM-OFF).

An extension of the PM-OFF has been proposed [17] to compute the interaction
force in real-time. We will refer to this model as on-line polynomial model (PM-
ON). PM-OFF requires to know the value of the applied force at ti, tm and tf .
PM-ON needs to predict the value of the applied force in the future, in order to
compute the actual value of the interaction force. The suggested prediction for the
human applied force (F̃H) is:

F̃H(τ, t) =

FH(τ), if τ ≤ t

FH(t), if τ > t
(2.24)

where τ is the time variable and t is the current time. This prediction is simply
setting the human applied forces to remain constant in the future and equal to
last available force sample. Figure 2.5 shows the interaction force computed using
PM-OFF and PM-ON.

2.4 Overview of Used Clustering Methods
In this research, three clustering methods were primarily used to find clusters of
different kinds of data. The following paragraphs explain the differences between
these methods, presenting advantages and disadvantages of each.

K-means Algorithm
K-means is a clustering method that minimizes the total intra-cluster variance.
It is based on the distance (it is possible to define the distance in a variety
of different ways) between points and centroids (centers of the clusters) and
it is an iterative procedure, until convergence. One of the main advantages
of this method is the speed of convergence. On the other hand, the user
must specify the number of clusters and the initial centroids (otherwise taken
randomly or guessed). The algorithm works pretty well with spherical clusters,
but completely fails with dataset of random shapes.
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Figure 2.5. Interaction force computed using PM-OFF and PM-ON

DBSCAN Algorithm
The Density Based Spatial Clustering of Application with Noise (DBSCAN)
is an algorithm connecting points with a sufficiently high density. It does
not require to specify in advance the number of clusters, but requires two
other parameters: ε that stands for the point’s neighborhood and MinPts
that represents the minimum number of points to construct a cluster. The
DBSCAN method is able to recognize clusters of various shapes and it can
identify and distinguish noise from clusters. On the other hand, choosing
parameters (ε and MinPts) is not easy and the algorithm fails to classify
clusters with large density difference.

Agglomerative Clustering Algorithm
The agglomerative clustering method is a strategy belonging to the more gen-
eral hierarchical clustering. In this method, the initial number of clusters is
equal to the number of points; then pairs of clusters are grouped to construct
bigger clusters. The decision whether to group two clusters into a new one is
based on the distance between the two. The main advantage is that it is pos-
sible to use any measure of the distance. This method is always applicable, it
does not require specifying the number of clusters in advance and it is possible
to specify the maximum number of clusters (MaxCl).
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Chapter 3

Cooperation study

In this chapter we describe the human study used to collect the data on which
we base our research. The data collection experiment was designed and performed
by Dr. Ehsan Noohi at the Robotics Lab at the University of Illinois at Chicago
(UIC) [17]. The human study was conducted with 22 participants; they were asked
to move an aluminum pot (w < 22N) from a point A to a point B horizontally.
Two force sensors (SI-65-5 ATI Gamma) were placed in between the handles and
the pot to collect the applied forces. The pot’s orientation and acceleration were
measured using a 9DOF-Sensor-Stick SparkFun IMU. Based on the direction of
movement with respect to the line connecting the handles, two type of motions are
specified (Figure 3.1):

Type 1 : perpendicular movement

Type 2 : parallel movement

The task was performed in different cooperation situations. In single-person-
bimanual (SPB) mode, only one person performs the task holding the pot with
both hands. In dyadic mode instead, two people perform the motion, each holding
one handle of the pot. In particular in synchronized (SYNC) scenario, the two
participants are asked to perform the task at the same time without assigning a co-
operation role, while in a leader/follower (L/F) scenario, a role (leader or follower)
is assigned to each participant: the leader directs the motion of the object while
the follower simply follows the leader.

This chapter is organized as follow: in the first sections, it is shown how the
cooperation is analyzed in [17] and why this approach is difficult to implement
for real-time control. In the second part of the chapter, a new metric is proposed
that allows us to characterize the type of cooperation in real-time. A comparison
between virtual linkage (VL), minimum energy (ME), off-line polynomial model
(PM-OFF) and on-line polynomial model (PM-ON) is also reported.
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(a) (b)

Figure 3.1. Type 1 (a) and type 2 (b) motions. Reprinted from “A Model for
Human-Human Collaborative Object Manipulation and Its Application to Hu-
man-Robot Interaction," by E. Noohi, M. Žefran and J. L. Patton, 2016, IEEE
Transactions on Robotics, 32, 8. Copyright 2016 by IEEE.

3.1 Cooperation metrics
Noohi and Žefran [17] proposed five quantitative metrics to identify different fea-
tures of the cooperation. Each metric tries to characterize a different feature of
a force signal, such as the energy or the variation rate. The five metrics are as
follows:

Similarity index : this index measures how much the two effective forces differ
at every time instant. It is defined as

Is = 1
tf − ti

∫ tf

ti
Ms(t)dt (3.1)

where

Ms(t) = 1−
∣∣∣∣∣ ||f ∗1 (t)|| − ||f ∗2 (t)||

||Fsum(t)||

∣∣∣∣∣ (3.2)

Efficiency index : it measures the disagreement between the two effective forces
during the task. It is computed as

Ie = 1
tf − ti

∫ tf

ti
Me(t)dt (3.3)

24



3 – Cooperation study

where
Me(t) = ||Fsum(t)||

||f ∗1 (t)||+ ||f ∗2 (t)|| (3.4)

Fairness index : this index measures the difference in energy of the effective
forces. It is defined as follows:

If = 1−
∣∣∣∣N1 −N2

Nsum

∣∣∣∣ (3.5)

where 
N1 =

∫ tf
ti ||f ∗1 (t)||dt

N2 =
∫ tf
ti ||f ∗2 (t)||dt

Nsum =
∫ tf
ti ||Fsum(t)||dt

(3.6)

Cooperation index : it measures the average value of the cooperation during the
task. A new parameter δ = 1

2−α is introduced and the effective forces are expressed
as a function of δ:

f ∗1 (t) =
(1

2 − δ
)
Fsum (3.7)

f ∗2 (t) =
(1

2 + δ
)
Fsum (3.8)

Then, the cooperation index is defined as

Ic = 1− Iδ
max(Iδ)

(3.9)

where
Iδ = 1

tf − ti

∫ tf

ti
δ(t)dt (3.10)

Comfort index : this index measures the difficulty of the task taking into account
the average rate of change of the parameter δ. It is defined as

Io = 1− Ip
max(Ip)

(3.11)

where
Ip = 1

tf − ti

∫ tf

ti
||δ̇(t)||dt (3.12)

The five metrics presented above are all bounded between 0 and 1. A value
of 1 represents an ideal (perfect) cooperation, while 0 stands for the worst case.
These five indexes were computed plugging in the data from the human study and
applying PM-OFF [17]. We tried to find clusters from the obtained metrics and
understand if these indexes could be used to identify different cooperation situations
in real-time. The results of our analysis are reported in the next section.
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3.2 Clustering of Cooperation Metrics
Starting from the five metrics defined in [17], we tried to determine if the metrics
computed from the experimental data cluster into well-defined classes. We thus
performed clustering on the computed metrics. Different clustering methods were
applied (section 2.4). Our goal was to find a clustering method that would be able
to at least distinguish the three main cooperation situations investigated in the
study: SPB, SYNC and L/F.

3.2.1 K-means Clustering
We implemented a k-means algorithm in MATLAB to cluster the human study
data. Since the k-means algorithm requires the number of clusters as input, we ran
the code by specifying 3, 5 and 7 clusters. Furthermore, different ways to compute
the distance metric were implemented. In particular: Euclidean distance (3.13),
cosine distance (3.14), correlation distance (3.15) and cityblock distance (3.16).

d(x, c) =
√

(x− c)(x− c)′ (3.13)

d(x, c) = 1− xc′√
(xx′)(cc′)

(3.14)

d(x, c) = 1− (x− x̄)(c− c̄)′√
(x− x̄)(x− x̄)′

√
(c− c̄)(c− c̄)′

(3.15)

d(x, c) =
p∑
j=1
|xj − cj| (3.16)

where

x̄ = 1
p

 p∑
j=1

xj

 1̄p (3.17)

c̄ = 1
p

 p∑
j=1

cj

 1̄p (3.18)

and x, c and p are the observation, the centroid and the dimension of the observation
respectively. 1̄p is a raw vector of p ones.

Moreover, since the initial centroids are randomly chosen, the algorithm was
run many times in order to find the best result. The classification was always done
feeding the algorithm with all the five metrics.
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(a) (b)

(c) (d)

Figure 3.2. K-means algorithm results comparison: a) 3 centroids, euclidean dis-
tance metric, black crosses for centroids; b) dataset points: SPB in green, SYNC in
blue, L/F in red; c) 3 centroids, cosine distance metric, black crosses for centroids;
d) dataset points: SPB in green, SYNC in blue, L/F in red

In order to show the results of the clustering procedure, we decided to construct
a 3D plot of the points, choosing 3 indexes out of 5. Examples of these plots are
reported in Figures 3.2 and 3.3. In all the figures, the identified clusters are reported
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(a) (b)

(c) (d)

Figure 3.3. K-means algorithm results comparison: a) 5 centroids, correlation
distance metric, centroids not plotted for a better readability; b) dataset points:
SPB in green, SYNC in blue, L/F in red; c) 7 centroids, cityblock distance
metric, centroids not plotted for a better readability; d) dataset points: SPB in
green, SYNC in blue, L/F in red

on the left with different colors, while the original metrics are shown on the right.
Different colors were also used to separate different cooperation situations: green
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for SPB, blue for SYNC and red for L/F.
The 3D graphical results reported and the 5D (5 metrics) classification that we

observed as output of the k-means algorithm clearly showed that it is not possible
to meaningfully classify the computed metrics dataset using this method. In fact,
in all tests, k-means method always failed and found clusters that do not overlap
with the three investigated cooperation situations (SPB, SYNC, L/F). This was
in a certain sense predictable since the shape of the clusters was found not to be
spherical.

3.2.2 DBSCAN Clustering

We next implemented a DBSCAN algorithm. The software used was again MAT-
LAB. The input to the algorithm were the five computed metrics and the results
were analyzed both in the 5D space and in the 3D space, as was done for k-means
algorithm (sub-section 3.2.1). Since the DBSCAN algorithm requires as input the
parameters ε and MinPts, as explained in section 2.4, a loop was built inside the
code in order to test a large range of ε and MinPts. With an ε too small, the
algorithm is not able to identify any cluster, classifying all the points as noise. In-
creasing this parameter too much instead led to one cluster and some isolated noise
elements. The algorithm resulted to be less sensitive to the MinPts parameter,
but a very small value, 1 for instance, led to a situation in which lots of clusters
were identified. When this parameter is increased, between 5 and 50, the results
were quite independent from MinPts. For very large values, larger than 50, all
points were classified as noise in case of small ε.

Figure 3.4 shows the graphical representation of the results along with three
of the five metrics with MinPts equal to 5 and ε equal to 0.15 (a) and 0.30 (c).
Note how by increasing the ε parameter, the number of points classified as noise is
decreasing, but also the number of clusters is decreasing. It is apparent from these
plots that it is not possible to find clusters similar to the cooperation situations
SPB, SYNC and L/F using the DBSCAN algorithm. Moreover, it is apparent how
the distribution of the points in the dataset is not homogeneous: the density of
points is much higher for values of the metrics approaching 1 than for values of
the indexes lower than 0.9. The difference in density justifies the failure of the
DBSCAN method that, as a general rule, is not able to classify clusters with large
differences in density. Also the number of clusters identified by the algorithm is
not meaningful: we were expecting from 3 to 7 clusters, but this method was able
to identify, depending on the set parameters, only situations with 1-2 clusters or
8-10 clusters.
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(a) (b)

(c) (d)

Figure 3.4. DBSCAN algorithm results comparison: a) ε equal to 0,15, MinPts
equal to 5, noise in black b) dataset points: SPB in green, SYNC in blue, L/F in
red; c) ε equal to 0,30, MinPts equal to 5, noise in black; d) dataset points: SPB
in green, SYNC in blue, L/F in red
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(a) (b)

(c) (d)

Figure 3.5. Agglomerative clustering algorithm results comparison: a) MaxCl
equal to 7, cosine distance metric; b) dataset points: SPB in green, SYNC in blue,
L/F in red; c) MaxCl equal to 7, correlation distance metric; d) dataset points:
SPB in green, SYNC in blue, L/F in red

3.2.3 Agglomerative clustering
Once again, agglomerative clustering was implemented in MATLAB. Again, dif-
ferent definitions of the distance metric were implemented: Euclidean, cosine, cor-
relation and cityblock. The maximum number of clusters (MaxCl) was set equal31
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to 7 since we would like to find clusters similar to the three cooperation situations
(SPB, SYNC, L/F) but also possibly sub-clusters for intermediate scenarios.

Graphical 3D results are shown in Figure 3.5. Also in this case, the obtained
clusters are not similar to the expected ones and most of the time clusters with few
elements (sometimes even only one) are found. This result is not surprising; the
agglomerative clustering is a basic clustering method and most of the time it fails
to correctly classify clusters of complex shapes.

3.2.4 Discussion
Different algorithms were implemented to cluster the dataset obtained applying the
metrics to the human study results. All the algorithms failed to find meaningful
clusters, no correlation between the clusters and the cooperation scenarios (SPB,
SYNC, L/F) could be found. For these reasons, we concluded that no meaningful
results could be obtained, in term of clusters, using the existing five metrics.

To further understand why the clustering fails, it is worthwhile considering again
how the five metrics were defined. In fact, they were all computed [17] by integrating
a certain quantity (depending on the applied/effective forces) from the initial time
ti to the final time tf . It means that they can compute an average quality of the
cooperation, not the quality at every instant. These indexes are thus not applicable
if the quality of the cooperation during the task changes. In turn, the five metrics
are not appropriate to be used for real-time applications.

Analyzing the force data obtained during the human study, we understood that
the degree of cooperation changes during the task. In the case of SYNC scenario,
it is not true that the two effective forces are always similar. In the L/F scenario,
it is not true that a dominant force always exists, but in most of the tasks the ratio
between the forces changes during the motion. In conclusion, it was not possible
to identify which trial belongs to which specified cooperation scenario, SPB, SYNC
or L/F, analyzing the force data.

3.3 Quotient Index Definition
From the analysis of section 3.2, it is clear that a different approach has to be used
to study the cooperation. In particular, it is important to evaluate the cooperation
at every instant during the task and not by averaging the results. Based on this
conclusion, a new metric was defined. We decided to relate this new index, named
quotient index (Iq), directly to the force values, in particular the effective forces. Iq
is defined as follows:

Iq = f ∗1
f ∗2

(3.19)
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that is the quotient of the two effective forces. Note that Iq, as defined, is not
bounded and can be either positive or negative. In case it is positive, the coopera-
tion is said to be active; otherwise it is passive. What is important to note is that
this new metric can be computed in real time and there are no integrals that need
to be computed.

3.4 Quotient Index and Clustering
During the human study the force data were acquired at 1KHz. To investigate
clustering with the quotient index we down-sampled the data to 10Hz. This means
that we look at the information about the cooperation every 100ms. This was done
in order to reduce the amount of data and also because we assume that that the
nature of cooperation does not change faster than 10Hz. To perform the analysis,
we computed the effective forces with PM-OFF and then the quotient index Iq for
all the samples obtained from the human study. As explained in section 3.3, this
new metric is not bounded and can be either positive or negative. To bound the
value of the index, it has been redefined as follow:

Iq(t) =


f∗

1
f∗

2
, if f ∗1 ≤ f ∗2

f∗
2
f∗

1
, if f ∗1 > f ∗2

(3.20)

With this adjustment, Iq is always bounded between -1 and +1. To apply the
clustering methods to the new metric, we decided to analyze only scenarios cor-
responding to an active cooperation (the great majority of data), rejecting all the
negative values of the quotient index. As a result, the values of Iq in our analysis
were always bounded between 0 and 1.

3.4.1 K-means Clustering
Different clustering methods were applied to the set of quotient indexes computed
for each data point in the experimental dataset. The first algorithm that was used
is k-means. Multiple runs were attempted to find a reasonable number of clusters
and a good definition of the distance metric. Figure 3.6 shows the results of the
k-means algorithm when 5 clusters were specified and an Euclidean distance was
adopted. Note how the algorithm groups the points in the same cluster computing
the distance from the centroids. Similar results were observed specifying a differ-
ent number of clusters or a different distance metric; in this case, 5 clusters were
considered to be an appropriate number of cooperation situations to be identified.
However, other results, such as when 3 or 4 clusters were specified, were also mean-
ingful. A too small or too big number of cooperation situations could simplify or
complicate the analysis too much, respectively.
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Figure 3.6. Results of the k-means algorithm application to the computed quo-
tient indexes: 5 clusters specified

3.4.2 DBSCAN Clustering
The DBSCAN method was implemented as well. Again, many attempts were made,
changing the ε and theMinPts parameters. A satisfactory result was found setting
ε equal to 0.0175 and MinPts equal to 50 (Figure 3.7). With these parameters,
8 different clusters plus some noise elements were identified. In particular, three
main clusters (red, orange, light green) were recognized for values of Iq larger than
0.4, four clusters (dark green, blue, cyan and purple) for the index going from 0.17
to 0.4 and another cluster when Iq is lower than 0.17. From the plot, it is clear how
the density of the computed indexes increases when the values of Iq increases. On
the contrary, for small value of the quotient index, a low density is reported (lots
of noise elements for values of Iq close to zero).

The region of values included in the interval [0.17 , 0.4] could be grouped in one
cluster only. In fact, the presence of different clusters in this interval is a proof
of the low density level of the region; moreover, the entire interval is bounded by
some noise elements. Grouping dark green, blue, cyan and purple clusters into one
reduces the total number of clusters to 5 and allows a better identification of the
possible cooperation scenarios.

3.4.3 Agglomerative Clustering
The last clustering method implemented on the quotient indexes in this phase
of research is agglomerative clustering. In this clustering method it is possible
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Figure 3.7. Results of the DBSCAN algorithm application to the computed
quotient indexes: ε = 0.0175, MinPts = 50

to specify the maximum number of clusters to use (MaxCl parameter) and to
set different distance metrics. Good results were obtained using the Euclidean
or cityblock distances; the cosine and correlation distances did not perform well.
MaxCl was set to 7, since this is a reasonable maximum number of cooperation
scenarios that we wanted to identify.

Figure 3.8 shows the results obtained with the agglomerative clustering algo-
rithm, setting MaxCl equal to 7 and using the Euclidean distance. Five different
clusters were identified, with different densities and extensions.

3.4.4 Clustering Results Analysis
Three different clustering algorithms, k-means, DBSCAN and agglomerative clus-
tering, were implemented to identify possible cooperation scenarios based on the
quotient index Iq. These methods generated comparable results.
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Figure 3.8. Results of the agglomerative clustering algorithm application to the
computed quotient indexes: MaxCl = 5, Euclidean distance

Both k-means and agglomerative clustering identified 5 clusters (for k-means this
parameter was specified) of similar densities and extensions. Note how Figure 3.6
and Figure 3.8 are graphically similar in terms of found clusters. The boundaries
are obviously different and the k-means clusters seem to be a little bit shifted to
the right with respect to agglomerative ones. The majority of the points not close
to the boundaries are classified in the same way by both algorithms.

The DBSCAN method produced slightly different results, identifying 8 clusters.
Subsequently, 4 clusters were grouped into one (sub-section 3.4.2) because similar
properties were observed, reducing the total number of clusters to 5. These final
clusters resulted to be very similar to those identified by the agglomerative clus-
tering algorithm and similar to k-means clusters. However, the DBSCAN method
identified noise elements (for values of Iq close to zero), while the other methods
were not able to do the same since they do not have the notion of noise.

In general, the three clustering methods produced similar results in terms of the
identified cooperation scenarios, but at the same time it is necessary to analyze in
depth the results. First, the quotient index is a 1D metric while the quantitative
metrics presented in section 3.1 are 5D. The results of the clustering process in 1D
cannot be directly compared with the clustering results on the quantitative metrics.
The clustering process in 1D could simplify the analysis too much. Second, the
choice of bounding the quotient index between 0 and 1 was necessary in order to find
meaningful clustering results, but on the other hand does not allow to distinguish
two situations with the same index but different larger effective force (f ∗1 or f ∗2 ).
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For these reasons, the bounding constraint was removed for future analysis and the
number of cooperation scenarios was selected based on their physical meaning.

3.5 Quotient Index and Interaction Force Models
The quotient index metric was defined at every time instant as the ratio of the
two effective forces at that time instant. In order to compute the quotient index
it is thus necessary to calculate the interaction force, which in turn allows the
computation of the effective forces from the applied ones, at every time instant.
In Chapter 2, VL, ME, PM-OFF and PM-ON models were introduced and can
be used to compute the interaction force. In section 3.4, the effective forces were
computed using PM-OFF, but as discussed previously, this method cannot be used
for a real-time application. It is thus necessary to devise an on-line (real-time)
method to compute the interaction force that can provide meaningful results when
used with the quotient index.

Let’s analyze how VL, ME, PM-OFF and PM-ON methods are used to compute
the interaction force and the effective forces. Figure 3.9(a) shows the interaction
force computed by the four models for the same force data. Note how VL and ME
models compute similar values for the interaction force, but that are completely
different from those obtained with PM-OFF and PM-ON. There is a similarity,
sometimes stronger, sometimes less evident, between the results of PM-OFF and
PM-ON: in fact PM-ON is directly obtained from PM-OFF, adding a prediction
on the future values of the applied force.

Since the effective forces are directly computed from the applied forces (that
are measured by force sensors) by adding or subtracting the interaction force, we
expect that similar patterns will be observed in the effective forces. This is in
fact demonstrated in Figure 3.9(b) that shows the results of the computation of the
effective forces using the four different models. Note how the results for VL and ME
models are very similar, but substantially different from PM-OFF. As explained in
sub-section 2.3.1, VL model computes two equal effective forces in case of dyadic
manipulation task; that is why the two effective forces are the same in the plot.
The minimum energy model is able to differentiate two effective forces, visible on
the plot, but the difference between them is small. PM-OFF and PM-ON, instead,
both produce effective forces that are quite asymmetric.

After the computation of the effective forces, it was possible to extract the
quotient indexes. The data were again down-sampled to 10Hz. The quotient
indexes in the case of VL model resulted to be all equal to 1, since this model
assumes two equal effective forces in case of dyadic manipulation. Therefore, in
the case of VL model, the Iq index is meaningless. The ME model also produces
quotient indexes close to 1: more than 90% of the computed indexes are bounded
between 0.9 and 1. Also in this case, the quotient index thus fails to identify
possible cooperation scenarios.
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(a)

(b)

Figure 3.9. VL model, ME model, PM-OFF and PM-ON comparison: a) com-
putation of the interaction force; b) computation of the effective forces

Different outcome was generated by the PM-ON model (the results for the PM-
OFF model were already presented in section 3.4). To investigate the PM-ON
model we decided to use the original (unbounded) quotient index

Iq = f ∗1
f ∗2

(3.21)
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and to consider only active cooperation (positive values of Iq). Then, three different
cooperation scenarios were defined, based on the value of the index. Only three
intervals were chosen in order to simplify the eventual implementation on the robot
since each scenario needs to be mapped to a different robot controller. The scenarios
are described in Table 3.1. The parameter β is bounded between 0 and 1 and
identifies (with β−1) three different cooperation situations: L/F, COOP and F/L.
Even though the names resemble those used for the human study, there is no
direct mapping between them. As said in the previous sections, it was not possible
to recognize the specified cooperation scenarios during the human study, SPB,
SYNC and L/F, analyzing the force data. For this reason, we propose three new
cooperation scenarios, L/F, COOP and F/L, based on the physical meaning of the
ratio of the applied forces. We use the ground data, obtained during the human
study, in order to test our proposed labels (L/F, COOP, L/F) and neglecting the
specified cooperation scenarios (SPB, SYNC, L/F). The parameter β is setting the
boundaries of the three proposed labels. This parameter is very important and
must be selected taking into account the physical meaning of the quotient index,
that is the ratio of the two effective forces. L/F stands for leader/follower, F/L
for follower/leader. In these two situations, the quotient index is much larger or
smaller than 1 and one effective force is significantly larger than the other. The
leader is the partner that is applying the larger effective force; the other participant
is the follower. The work is entirely or mostly provided by the leader; the follower
just follows the motion. In the cooperation scenario (COOP) instead, the value
of Iq is bounded between β and β−1, that means that the magnitude of the two
effective forces is quite similar and the work is almost equally split between the two
partners.

Iq range Cooperation scenario
Iq ≤ β L/F
β < Iq < β−1 COOP
Iq ≥ β−1 F/L

Table 3.1. Proposed cooperation scenarios

Finally, the indexes for the PM-ON model were computed and the results were
compared with the PM-OFF model. In particular, we computed the agreement be-
tween the on-line model and the off-line model. For every time instant (remember
the data were down sampled at 10Hz), the quotient index was computed applying
PM-OFF and PM-ON; if the identified cooperation scenario was the same, a correct
classification was registered; if instead, the scenarios were different, a misclassifica-
tion occurred. The test was repeated varying the parameter β in order to see how
the accuracy of PM-ON with respect to PM-OFF changed. Table 3.2 shows the
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β β−1 PM-ON accuracy w.r.t PM-OFF
0.01 100 89.12%
0.1 10 65.71%
0.2 5 53.53%
0.4 2.5 47.87%
0.5 2 49.32%
0.6 1.67 50.28%
0.8 1.25 56.84%
0.9 1.11 61.35%

Table 3.2. PM-ON percentage accuracy of correct classified cooperation
scenarios with respect to PM-OFF

results of the comparison. Again, the table shows the percentage accuracy of the
on-line model with respect to the off-line model in recognizing the same cooperation
scenarios among the three proposed, L/F, COOP and F/L. There is no any kind
of relation with the specified cooperation scenarios during the human study, SPB,
SYNC and L/F.

A high percentage of correctly classified scenarios was obtained in case of very
small or very large (always lower than 1) value of β. However these results are
misleading. In fact, a low value of β corresponds to a situation in which the COOP
scenario covers a much wider range than the other two scenarios: in this case all
the situations would be interpreted as COOP so the results are meaningless. On
the other hand, in the case of very high values of β, close to 1, the range for the
COOP scenario is reduced and the only two scenarios that are effectively used are
L/F and F/L. This case is again meaningless. To clarify, an example is proposed.
If a low value of β is chosen, 0.1 for instance, trails where one effective force is
ten times larger than the other would be classified as good cooperation cases, but
obviously these results are wrong from a physical point of view. As said previously,
β sets the boundaries of the proposed labels and its value must be selected taking
into account the physical meaning of the quotient index.

The range of values for β that produce meaningful results from a physical point
of view seems to be somewhere between 0.4 and 0.7. With these values of β the
accuracy of PM-ON with respect to PM-OFF significantly decreases to approxi-
mately 50%. It means that one time out of two, PM-ON is able to recognize in
real-time the same cooperation scenario as PM-OFF (which cannot be computed
in real-time). This is an encouraging result that promises to provide a reasonable
pathway to subsequently implement a control methodology for pHRI on a robot.
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Chapter 4

Cooperation Scenarios and
Robot Control

This chapter describes how the information on the cooperation intent can be used
to control the robot as it physically interacts with a human. In the first two
sections, an overview of the Robot Operating System (ROS) and the Baxter Robot
is given. Then a set of robot controllers and a switching scheme that selects how
they should be activated is proposed that optimizes the interaction. Preliminary
results on the implementation of the individual robot controllers on the Baxter
Robot are presented next. Finally, we discuss some strategies that could improve
the accuracy of the PM-ON model and thus potentially improve the performance
of the human-robot physical interaction.

4.1 Robot Operating System (ROS)
ROS, Robot Operating System, is an open source flexible framework for writing
robot software. In particular, it enables developers to provide services such as
hardware abstraction, low-level device control, device communication, etc. ROS
uses a graph architecture in which processes are identified as nodes and can be
connected via topics. On node, called the Master, stands on top of the others and
is always directly connected to all the other nodes. Communication between nodes
is achieved using the publish/subscribe paradigm. A publisher that generates an
item publishes it as a message on the ROS network. The receiver nodes subscribe
to topics of interest and when a message on the topic of interest is published, they
receive the message. An example is a sensor which publishes on the ROS network
the measured quantities at a certain frequency. Processes that need the sensor
data subscribe to the appropriate topic and receive the sensor packets as they get
published. Figure 4.1 shows a situation in which a message is published by a node
and is forwarded to a group of subscriber nodes.
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Figure 4.1. Schematic representation of the publisher and subscriber communi-
cation method in ROS. Reprinted from Exchange Data with ROS Publishers and
Subscribers, by The MathWorks, Inc. Copyright 1994-2018 The MathWorks, Inc.

The main client libraries for ROS are written in C++, Python or LISP and are
used in various scenarios such as motion recognition, perception, gesture synthesis,
etc. The application programming interface (API) for a robot is typically provided
by the robot manufacturer, usually in C++ or Python. But the main attraction
of ROS is that due to hardware abstraction layer, the code written in ROS that
provides a certain high-level functionality for a particular robot can be easily used
on other robots. In case of the Baxter Robot, the robot maker, Rethink Robotics,
provides libraries written in C++ and Python for robot control. These libraries
have been used in our experiments.

4.2 Baxter Robot Description and Control Modes
Baxter is a robot built by Rethink Robotics. It is widely used for academic research
and in industrial applications (the industrial version). Baxter is made of a torso-like
movable pedestal, two arms that can be outfitted with grippers and a head-pan with
a screen that can be rotated horizontally. The arms are composed of seven revolute
joints connected by eight links; from the robot’s torso to the hand, in sequence, the
joints are s0, s1, e0, e1, w0, w1, w2, where s, e, w stand for shoulder, elbow and wrist.
The end-effector of the robot is located at the joint w2. Figure 4.2 shows the joint
positions for the left arm.

Four different control modes are available for the Baxter Robot: joint position
control, raw joint position control, joint velocity control and joint torque control.
We discuss each in turn.

4.2.1 Joint Position Control
The joint position control mode allows to command the angle, in radiants, of each
of the seven joints. The desired configuration of the robot for the controller is
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Figure 4.2. Names and positions of the seven joints in the Baxter left
arm. Reprinted from Arms, by Rethink Robotics, 2015. Copyright 2015
Rethink Robotics.

thus described by a vector of seven elements. With this method it is possible to
specify an initial and a final point for a point-to-point motion, or to specify an
entire trajectory, providing a stream of points. Figure 4.3(a) describes in detail
the sequence of steps involved in joint position control. Note how a series of safety
checks are added to avoid dangerous situations for humans, the environment or the
robot itself.

4.2.2 Raw Joint Position Control
The raw joint position control is an extension of the basic joint position control.
In this control mode lots of safety features are removed to guarantee a more direct
control. Obviously, this option must be used with caution, since it can lead to
dangerous situations. Figure 4.3(b) represents the schematic of this control mode.
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(a)

(b)

Figure 4.3. Schematic representation of the safety features in joint position con-
trol (a) and raw joint position control (b). Reprinted from Arm Control Modes,
by Rethink Robotics, 2015. Copyright 2015 Rethink Robotics.
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(a)

(b)

Figure 4.4. Schematic representation of the safety features in joint velocity con-
trol (a) and joint torque control (b). Reprinted from Arm Control Modes, by
Rethink Robotics, 2015. Copyright 2015 Rethink Robotics.

4.2.3 Joint Velocity Control

The joint velocity control is an advanced control mode in which a vector of seven
elements containing the desired velocities (in radiants per second) of all the joints
is forwarded to the joint control boards (JCBs) for execution. This control mode
includes some safety features but not as many as in the case of joint position control,

45



4 – Cooperation Scenarios and Robot Control

so it must be used with caution (Figure 4.4(a)).

4.2.4 Joint Torque Control
This control mode allows the most direct access to the JCBs, commanding directly
the torque values to be applied by the actuators. In this case, the safety checks
are few and dangerous situations may occur quite easily. Particular attention has
to be paid to the gravity/spring compensation torques block (Figure 4.4(b)). This
term adds to the torque we are commanding the torques necessary to compensate
the weight of the arm and the spring force exerted by the s1 joint.

4.2.5 Experimental Results
Among the four available control modes, since the aim of the research was to control
the interaction that is in turn described with forces, we tried to implement several
control algorithms using the joint torque control. In particular, in order to test
this control mode, a simple proportional-integral-derivative (PID) controller was
implemented. The goal of the test was to move the end effector from an initial pose
to a final one, directly commanding the torques of the actuators. The real aim was
to understand the precision and the safety of the joint torque control mode.

A first set of tests was performed maintaining the gravity compensation torques
active. That means the robot control software was adding the torques necessary to
compensate the weight of the arm to the commanded values. In this case, the arm
began to be unstable after few seconds and the emergency button had to be pressed.
We tried to adjust the controller parameters (the PID parameters were tested in a
simulation environment), but a successful result was never obtained. Subsequently,
the PID controller was tested by switching the gravity compensation torques off.
The weight of the arm was thus not compensated any more. In this case, the robot
did not go unstable, but the results were still not satisfactory. In most of the cases,
the commanded torques were not able the compensate the high friction inside the
joints. And when they were able to do so, oscillations were always present.

In conclusion, the tests performed using the joint torque control mode never
produced satisfactory results. We believe that the main reason for lackluster per-
formance of the joint torque control was an inadequate gravity compensation model
(Rethink Robotics stated that they are trying to improve this model) and the pres-
ence of high friction inside the joints that is very difficult to model. For these
reasons, we decided that the joint torque control mode is not suitable to control
the Baxter Robot for human-robot interaction.

We performed many other tests implementing different controllers and testing
all the control modes available. The aim of these tests was to understand the
precision, repeatability and safety level of the robot. It turned out that the robot
is absolutely safe when controlled in position control mode and not completely safe
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when other control modes are selected. The performances in terms of precision
and repeatability are quite poor with all control modes. We concluded that Baxter
is not a good robot for human-robot interaction and satisfactory results cannot
be achieved with this hardware. Baxter Robot can be used for the initial testing
phase, but a more precise robot has to be used in order to get meaningful results
in pHRI.

4.3 Control Framework
In section 3.5, three possible cooperation scenarios, L/F, COOP, and F/L, were
proposed based on the value of the quotient index Iq. Encouraging results were
obtained when the quotient index was computed on-line using the PM-ON model.
To improve the quality of human-robot interaction and adapt the robot behavior
to what is expected by the human, we propose to link each cooperation scenario
to a different robot controller. In the case of three scenarios, we thus propose the
theoretical behavior of three possible controllers.

In case of robot leader and human follower (L/F), the Baxter Robot has to pro-
vide the entire or the majority of the work for the task, while the human is just
following the motion. The robot should move trying to replicate the most natural
point-to-point trajectory used by humans which is the minimum-jerk motion. Fig-
ure 4.5 shows the results of a test where a minimum-jerk trajectory is commanded
to the Baxter using joint position control and raw joint position control. The initial
and final positions on the x-axis are 0.0 and 0.5 (meters, in the Baxter reference
frame), the duration of the task 3 seconds. The mean-square-errors resulted to be
equal to 0.279mm and 0.281mm for the joint position control and the raw joint
position control respectively.

In the case of cooperative motion scenario (COOP), the work has to be provided
by both the human and the robot. The robot cannot simply follow the human and,
at the same time, cannot just impose its motion on the human. Instead, it must
able to react in real-time to optimize the interaction. A good candidate controller
for this scenario is the impedance control, defined as

f ∗R = Mẍd + kd(ẋd − ẋ) + ks(xd − x)− 1
2Mḡ (4.1)

where M stands for the mass of the object to be moved, xd, ẋd, ẍd, x, ẋ, ẍ are the
desired and actual position, velocity and acceleration respectively, kd and ks are the
vectors of damping and spring constants, ḡ is the gravity, f ∗R the robot’s effective
force. The desired values (position, velocity, acceleration) are provided by the
minimum-jerk trajectory. The damping and the spring constants need to take
into account all the variations from the nominal minimum-jerk trajectory, reacting
appropriately to the human effective forces. The tuning of these parameters allows
to interact with a more stiff or more compliant robot; a good solution could be to
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Figure 4.5. Comparison between the desired minimum jerk trajectory (a) and
the actual ones using joint position control (b) and raw joint position control (c)

select these parameters so that the robot impedance matches the impedance of the
human arm [19] [1].

Based on the results of the tests with the joint torque control mode, a direct force
control (torque control) cannot be implemented on Baxter. Researchers obtained
satisfactory results implementing position-based or velocity-based impedance con-
trol in which an impedance control is simulated controlling the position or the
velocity and not directly the torque/force [18] [9].

The last cooperation scenario assumes the robot to be the follower and the
human the leader (F/L). In this case, the Baxter Robot must follow the motion
imposed by the human, that is providing the entire or the majority of the requested
work. One of the most used controllers for this kind of applications is the impedance
control, that allows the robot to follow the human motion. We propose a different
controller. Human effective force can be computed in real-time using PM-ON, then
applying Newton’s laws a relation between force and velocity is found:

f ∗H = M
dv

dt
(4.2)

where f ∗H is the human effective force, M the object’s mass and v the object’s
velocity. Integrating this relation in time, it is possible to find the velocity as
function of the human effective force:

v =
∫ τ

ti

f ∗H
M
dτ (4.3)
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where ti is the initial time and τ the current time. The robot could now be controlled
with the joint velocity control mode: the end effector velocity is known, the joints
velocities can be computed applying inverse kinematics (IK).

With respect to the impedance control that makes the robot reactive to the
human force tuning the damping and spring constants, the controller we propose
just follows the human motion. The key idea is that in this cooperation scenario,
the robot simply has to follow the motion; if the human force changes, then a
different quotient index is computed and a different cooperation label, and robot
controller, is probably selected.

4.4 Improving the Cooperation Strategy
In the previous chapter, we showed that the quotient index Iq can be used to recog-
nize the cooperation intent and to improve the quality of human-robot interaction.
However, when the effective forces are small, the ratio between them becomes very
sensitive to noise, possibly resulting in miss-classifying the cooperation intent. To
clarify the issue, imagine a particular instant in which f ∗1 and f ∗2 are equal to 0.1N
and 0.05N , respectively. Iq will be 2 (or 0.5) and the identified cooperation situa-
tion will be L/F (or F/L). From a physical point of view instead, no motion will
probably occur in this situation because the forces are so small.

Figure 4.6 shows another situation in which the computed Iq can lead to a ques-
tionable outcome. Figure 4.6(a) shows a clear L/F scenario: f ∗2 (in red) provides
the entire effort for the task and acts as a leader while f ∗1 (in blue) just follows.
Figure 4.6(b) reports the cooperation intent computed applying the quotient in-
dex, giving values of 1, 2 and 3 to indicate L/F, COOP and F/L, respectively. The
collaboration is classified as L/F for almost the entire duration of the task. Only
two instants are identified as COOP. In particular, note how at instant 0.4, there is
a jump in the graph. This jump is caused by small values of the effective forces at
instant 0.4 that are interpreted by Iq as COOP scenario, even if the entire motion
is a clear L/F situation.

In order to avoid this misleading intent identification, a little adjustment of the
control strategy is introduced: at every time instant, if the biggest effective force
is smaller than a set threshold force, the cooperation intent is not calculated and
the controller of the previous time instant is adopted. Figure 4.6(c) reports the
results of the application of this new strategy with a force threshold equal to 0.2N .
Note how at instant 0.4, the cooperation intent is still L/F (no more COOP) and
a satisfactory result is achieved. This adjustment introduces possible delays in the
robot’s reaction, but since the forces are sampled at very high frequency in case of
real-time applications (around 1KHz), these delays will likely not be noticeable by
humans.
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(a)

(b)

(c)

Figure 4.6. a) effective forces in a clear L/F scenario; b) quotient index calcu-
lated without considering the magnitude of the effective forces; c) quotient index
computed following the adjusted cooperation strategy
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Chapter 5

Conclusion and Future Work

This research investigated human-robot collaboration trying to recognize intents
and how to increase robot performances during the interaction. First, results
from other researches have been analyzed, in particular a study conducted at the
Robotics Lab at University of Illinois at Chicago (UIC). We showed how tradi-
tional approaches failed in computing the collaboration intent and cannot be used
in real-time applications.

Then we proposed a new metric for the recognition of different cooperation sce-
narios, named quotient index, Iq. The properties and the physical meaning of this
index have been presented too. Different models for the computation of the interac-
tion force have been implemented and tested with Iq. The on-line polynomial model
resulted to be a valid candidate to be used with the new metric during a real-time
human-robot interaction in order to identify the collaboration intent. The other
models, virtual linkage and minimum-energy were not able the recognize different
collaboration intents, while the off-line polynomial model cannot be implemented
in real-time applications.

The number of collaboration scenarios were then reduced to three, for simplicity,
and each scenario was associated to a particular robot controller able to improve
the quality of the interaction. An improvement of the collaboration strategy was
also proposed; it is able to take into account particular cases in which the computed
intent is misleading.

5.1 Future Work
This research contributed in studying human-robot interaction and presented use-
ful results for a future real-time application. Through this direction, it would be
interesting to implement the proposed controllers and study if the robot is able to
react in the desired way when commanded by them. Then a new human study
have to be set up and tests have to be performed; the humans have to be asked
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about their feeling when interacting with the robot.
The accuracy of the actual on-line polynomial model with respect to the off-line

version resulted to be around 50%. For future real-time applications, it would be
interesting to work on a better prediction of the future force values used in the
on-line model in order to increase its accuracy.
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