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Summary

Global Navigation Satellite Systems (e.g. GPS, GALILEO, GLONASS, BeiDou) provide
effective location information to terrestrial users equipped by a receiver. Global Navigation
Satellite Systems (GNSS) can support unlimited users since the receivers operates passively,
exploiting radionavigation principles. In such a context the position and velocity of a user
are determined from the estimation of parameters of a radiofrequency (RF) signal trans-
mitted by a satellite. If Line-of-Sight (LOS) propagation is verified, these are effectively
converted to estimated distances from the transmitters (namely pseudorange measure-
ments), to estimate the user position. In order to improve the positioning performance,
GNSS measurements are, nowadays, integrated with a variety of additional non-GNSS
sensors. Inertial Navigation Systems, Passive Ranging Sensors, and camera-based visual
systems are going to characterize the market of high-end vehicles and portable devices to
provide high-performance positioning and navigation capabilities.

This thesis investigated an alternative approach based on a cooperative paradigm ac-
cording to which users share navigation data and cognitive sensing of the surrounding envi-
ronment. According to this paradigm as a cost-effective alternative to the aforementioned
sensors, auxiliary navigation information can be exchanged as external aids to support
individual localization.

In this work, GNSS-users that experience reduced sky visibility conditions are supported
by members of a swarm of collaborating agents to improve their location and navigation
capabilities. The proposed solution guarantees an improved continuity of localization in
condition of poor sky visibility or bad satellites geometry.

These GNSS positioning units exploit an auxiliary, cooperative, range, namely the Inter-
Agent Range (IAR) that is retrieved from a geometrical calculation once a proper amount
of collaborative information is exchanged among networked agents. The quantity provided
by the IAR method is an estimation of the baseline ÎsAB between two collaborating agents
(contextually an aided and an aiding agent), as illustrated in Figure 1a. The estimation
of the IAR and the successive integration in the positioning algorithm have been the main
targets of this analysis, carried out either focusing on a pair of collaborating agents or by
a network perspective.

The IAR estimation procedure has been deeply discussed, inspecting impact factors and
estimation issues in a dynamic context, with particular attention to communication delays.
The adaptation of the IAR paradigm to a dynamic and network constrained context, heav-
ily affects the basic geometry of the IAR retrieval process, resulting in a time-dependent
configuration, summarized in Figure 1b.

It has been shown that a critical point is related to the variables associated to the
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(a) Static scenario (b) Dynamic scenario

Figure 1: IAR computation in static and dynamic frameworks. A is the aided agent, B is
the aiding agent and s is a shared satellite.

aided agent, which need to be estimated in a condition of lack of sufficient data. To this
purpose two predictive stages has been developed along with correspondent estimation
algorithms. After the definition of suitable algorithms, the IAR estimation process has
been taken apart in an extensive analysis, where all the impact factors have been isolated
and investigated. From the analysis it has been verified that the sole injection of noise
in the system is not responsible for instability in the cooperative positioning algorithm.
Divergence arises instead with the concurrent presence of feedback between position output
and IAR estimation, which is unavoidable in the IAR extrapolation scheme and becomes
particularly relevant after long time-span of poor GNSS visibility. However, it has been
shown that, even during severe reduction of the GNSS visibility, IAR measurements keep
a Gaussian-like distribution, justifying the implementation in an Extended Kalman Filter
(EKF) for positioning.

A measurement model for a GNSS/IAR tightly-coupled integration in the EKF has been
designed in order to preserve the optimality of the EKF-based positioning algorithm when
cooperative data are involved in the solution. The stability issues relative to the choice of
the linearization point has been presented as well as the possibility of a Least-Mean Square
re-initialization of the EKF, possible thanks to the IAR integration, and useful to mitigate
divergent phenomena.

The effectiveness of the solution adopted for the IAR/GNSS tight integration in the
positioning algorithm has been investigated by means of a Monte Carlo simulation. The
key aspects of this IAR implementation in a multi-agent environment have been discussed
and simulation results have been reported. The simulation environment has been exploited
to test the limits and performance of the IAR integration model and to retrieve a statistical
characterization of positioning outcomes and IAR estimates thanks to the high number of
realizations of the experiments.
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In this context several scenarios have been analyzed, investigating different motion dy-
namics of the receivers, either constrained (urban environment) or random, and different
environmental conditions (such as sky visibility and measurement noise) and network con-
straints (i.e. communication delays). A technique to preserve confidentiality in the network
has also been tested and consistent improvements have been observed thanks to numerical
errors reduction.

Through experimental results, it has been shown that the proper modeling of system
dynamics and measurements integration in the EKF is of primary importance in the con-
text of the IAR paradigm, due to the widespread effects that non-modeled effects have in
the hybrid positioning routine. In particular a specific measurement model is fundamental
to accomplish an efficient integration of the additional cooperative measurements. To this
purpose, some parameters of this model have been configured after an empirical optimiza-
tion procedure. It has to be remarked that the optimization criteria have been based on
aggregated network metrics, hence optimized parameters have general validity and can be
adopted in the IAR algorithm.

The importance of a fine IAR measurement model is proportional to the number of
additional ranges integrated. Therefore, contextually to a model refinement, a wise se-
lection policy has been imposed on the collaborative range contributions retrieved from
the swarm of cooperating agents. Selective strategies and aggregation policies have been
therefore widely tested. From these results it has been confirmed that the reduction of
IAR contributions mitigates the effects of model sub-optimality, but a valuable selective
criterion is necessary to target a significant improvement of the positioning performance.

Despite of the challenging tuning of the proposed navigation algorithm, good benefits
have been obtained from this collaborative positioning solution that led to an improved
GNSS/IAR tight integration in the positioning algorithm. The enhanced algorithm has
been eventually tested and compared to an EKF-based non-cooperative PVT solution: the
robustness of the IAR method to GNSS visibility limitations has been verified. Despite
the limited sky visibility, the IAR method is able to limit the performance deterioration
caused by the lack of positioning data (measurements), proving the effectiveness of the
information enhancement carried by the inter-agent range.

A valuable measurement model of the inter-agent range has been proved as an essential
feature for the IAR integration algorithm to ultimately obtain a reliable position estima-
tion. With this in mind, a further research could be oriented to a finer definition of the
GNSS/IAR observation matrix and the measurement covariance matrix. In particular, an
adaptive real-time optimization on the measurement covariance matrix or the derivation of
closed form equations for IAR covariances that overcome the use of upper bounds, would
lead to a measurement covariance matrix that will better describe the IAR measurement
from a statistical point of view, significantly reducing the EKF sub-optimality.

The interest in extending this cooperation paradigm to groups of commercial, low-grade
GNSS receivers, is nowadays promising especially for urban environment where GNSS
satellites visibility is limited, as well as the possibility of having users in LOS. In terms of
applications this solution would be of particular interest in the field of Intelligent Transport
Systems (ITS), considering the presence of GNSS receivers in any GNSS-Based Position-
ing Terminals (GBPT). Indeed, the density of GNSS-enabled mobile devices is becoming
increasingly significant in crowded locations, making widespread GNSS receivers a sensor
network for new positioning and navigation paradigms.
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Chapter 1

Introduction

In the last decades, innovation in positioning and navigation technologies has been fostered
by integrating Global Navigation Satellite System (GNSS) with a variety of additional
non-GNSS sensors. Inertial Navigation System (INS), Passive Ranging Sensor (PRS), and
camera-based visual systems are going to characterize the market of high-end vehicles and
portable devices to provide high-performance positioning and navigation capabilities [1].

In the past years, researchers have investigated cooperative navigation among multi-
agent systems to improve the performance of respective individual localization by sharing
navigation data and cognitive sensing of the surrounding environment [2]. According to this
paradigm as a cost-effective alternative to the aforementioned sensors, auxiliary navigation
information can be exchanged as external aids to support individual localization. Such
information are typically retrieved by PRS in the form of relative ranges among agents in
Line-of-Sight (LOS) [3],[4],[5].

The interest in extending this cooperation paradigm to groups of commercial, low-grade
GNSS receivers, is nowadays promising especially for urban environment where GNSS
satellites visibility is limited, as well as the possibility of having users in LOS. In terms of
applications this solution would be of particular interest in the field of ITS [6], considering
the presence of GNSS sensors in any GNSS-Based Positioning Terminals (GBPT). Indeed,
the density of GNSS-enabled mobile devices is becoming increasingly significant in crowded
locations, making widespread GNSS receivers a sensor network for new positioning and
navigation paradigms.

GNSS-based Positioning, Time and Velocity (PVT) solutions rely on the quality of
code or phase measurements performed by the receiver [7]. These quantities are inde-
pendently retrieved by each GNSS receivers w.r.t. the known position of the satellites.
Relying on such data, additional relative measurements can be cooperatively computed
by exploiting simultaneous visibility of a set of common satellites and respective pseudo-
range measurements [8][9][10]. Such ranging techniques overcome the limitations of LOS
required by PRS at the cost of a supporting telecommunication infrastructure (e.g. Direct
Short Range Communication, Vehicular Ad-hoc Network, C-V2X, cellular network). As an
alternative approach, this work presents the integration of the Inter Agent Range (IAR)
technique proposed in [11] to improve positioning performances as well as continuity of
PVT solutions in GNSS-partially-denied conditions.

IAR measurements are obtained through an aided computation between pairs of moving
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1 – Introduction

agents whenever a receiver experiences a reduced visibility of the sky and related poor
positioning performance. The aiding can be offered by any available member of the network
which is able to locate itself with pre-established precision and accuracy. The proposed
ranging technique relies on basic geometrical properties and it has been shown that it
guarantees better average performance than absolute position difference [12]. Navigation
data required for such a collaborative computation are assumed being transmitted over low
latency communication within a multi-agent network, that also exploits virtual positioning
to preserve confidentiality.

This dissertation is dedicated to the study and the design of GNSS-based positioning
units which integrate this cooperative ranging solution (the IAR). By analysing the param-
eters involved in IAR computation, this work investigates the feasibility and reliability of a
tight integration of GNSS and GNSS-collaboratively-derived measurements within a net-
work of moving asynchronous receivers. More in detail, a set of agents in the network that
experiences long time spans of partially-denied GNSS visibility is considered, observing the
behavior of the collaborative measurement and the estimated trajectory along the time.
With respect to previous works [11] [13] [12], timing and communication delays have been
introduced and the relative issues have been faced in the definition of new collaborative
algorithms for cooperative range estimation.

In correspondence of a GNSS-partially-denied period, the positioning solution of the
agent is not sufficiently precise to estimate reliable steering vectors, necessary for the IAR
computation. Two predictive stages are hence introduced along with the overall naviga-
tion algorithm to forecast such quantities. Multiple Kalman Filters (i.e. Kalman Filter
and Extended Kalman Filter) are combined to effectively pursue the GNSS/IAR tight inte-
gration. Then, IAR collaborative measurements are tightly-integrated with code measure-
ments pseudoranges in the structure of an EKF-based algorithm for positioning and nav-
igation. IAR collaborative measurements observed at different time instants, still showed
a Gaussian-like distribution. This characteristic allows to exploit the measurement as a
complementary input to the EKF, while guaranteeing the optimality of the filter output.
In this context, a comprehensive simulation environment permits a realistic assessment
of performances while supporting an empirical validation of algorithm’s enhancements to
improve the tight-integration process.

1.1 Overview on GNSS
A Global Navigation Satellite System (e.g. GPS, GALILEO, GLONASS, BeiDou) pro-
vides accurate location information to users on Earth equipped by a dedicated receiver.
A GNSS can support unlimited users since the receivers operates passively, exploiting ra-
dionavigation principles. In such a context the position and speed of a mobile user are
determined from the estimation of the parameters of an electromagnetic signal transmit-
ted by a satellite. If Line-of-Sight (LOS) propagation is satisfied, these parameters are
effectively converted to estimated distances from the transmitters, which can be exploited
to retrieve the positioning information if the locations of the sources are known.

A signal characteristic that is proportional to the user-to-satellite distance is the signal
propagation time (in LOS condition). In a GNSS, the concept of one-way Time Of Arrival
(TOA) ranging is employed to retrieve the time-of-flight information of the signal [14].
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1.1 – Overview on GNSS

This means that the signal must be timestamped with the transmission time and the
transmitters must be synchronized, since the user avoid to measuring by itself the time to
reach the satellite and come back (one way). As a consequence, the satellites’ payloads
include highly accurate atomic clocks that are synchronized to a common coordinated time
base of the satellite navigation system (i.e. UTC).

The knowledge of the distance from a referenced point in a three-dimensional space
locates the user on the surface of a sphere centered about the satellite. The position can
be inferred by the intersection of at least three spheres through a trilateration operation,
almost without ambiguity [14].

Basically, a GNSS is composed by three segments: a space segment composed by a con-
stellation of satellite vehicles (SV); a control segment, i.e. a network of stations distributed
over the Earth, that monitor the status of satellites and signals, occasionally correcting
signal generation; and a user segment made of receivers that determine their own position,
velocity and time (PVT). Three functionalities are essentially required to the user segment:
the identification of the satellites in view, the estimation of the user-to-satellite distance
and the consequent trilateration procedure. The latter is illustrated in the following para-
graphs.

1.1.1 Solution of the Trilateration Problem
The pseudorange

The position of a generic user i or satellite s are expressed in a three-dimensional cartesian
coordinate system by means of the position states

xi = (xi yi zi)> (1.1)
xs = (xs ys zs)> (1.2)

with respect to a given reference system. In order to obtain an estimate of (1.1), a user
needs to retrieve the distance from three reference points (i.e. the satellites). The user-to-
satellite range is thus defined as

rsi = ||xs − xi|| . (1.3)

and it can be easily inferred from a measure of the propagation time τ of the signal,
according to

rsi = c · τ , (1.4)
where c is the speed of light (i.e. approximately the phase velocity of the signal from
satellite’s orbit to Earth) and τ is the propagation time required for a signal to reach the
user receiver antenna. Notice that generally subscripted indexes refers to ground users
while superscripts indicates satellites when this notation does not generate confusion.

As mentioned, the satellites are equipped with high-precision atomic clocks and syn-
chronized time scales are maintained among all the SV of the constellation. Unfortunately,
it is not possible to extend the same features to the receivers and their clocks, at low cost
and complexity . Indeed the users’ clocks generally experience a non-negligible drift and
they are not kept synchronized. As a consequence, the actual propagation time measured
by the user i is affected by a time misalignment δti with respect to system time. For this
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1 – Introduction

reason, the range determined by the receiver after processing the signal from satellite s is
denoted with ρsi and called pseudorange, because includes a contribution dependent from
the user clock misalignment. It is then

ρsi = c · τ + c · δti
= rsi + bi

(1.5)

where
bi = c · δti (1.6)

is a quantity measured in meters and related to the user clock offset, called the user clock
bias.

Actually, another offset affects the pseudorang and it is related to the difference between
system time and satellite clock [14]. Nevertheless, the control segment determines the
corrections for the satellite clock offsets, which are then broadcasted to the users. Users
apply these corrections within the processing of the pseudoranges to compensate for it.

The measure of (1.5) is possible thanks to correlation with PRN codes that modulate
the signal and to the aforementioned time-stamping in GNSS signal architecture [14]. A
complete illustration of the determination of ρsi is out of the scope of this work and in the
rest of the dissertation a measured pseudorange ρsi is assumed available when the user i
experiences an unobstructed view of the signal of satellite s.

Being a measured quantity, the pseudorange is affected by error. Several error contribu-
tions [14] are present in the signal received by the user, but many of them are compensated
by the receiver thanks to a proper modeling of the systematic part [14], so that the residual
error εi is bias-free. Each εi is modeled as Gaussian i.i.d. with zero-mean and variance
σ2
UERE , where the acronym UERE stands for “User Equivalent Range Error” [14]. The

pseudorange considered throughout this dissertation is therefore a random variable, such
that

ρsi ∼ N (rsi + bi, σ
2
UERE) , (1.7)

and (1.5) is updated accordingly to include this uncertainty:

ρsi = c · τ + c · δti + εi

= rsi + bi + εi
(1.8)

Calculation of user position

Because of the necessity of estimation of the user clock bias, a GNSS receiver has to
determine four unknowns, in order to obtain the user position without ambiguity. The
unknowns are included for convenience in the state vector

xi = (xi yi zi bi)> . (1.9)

Each pseudorange ρsi is related to the elements of (1.9) through

ρsi =
√

(xs − xi)2 + (ys − yi)2 + (zs − zi)2 − bi , (1.10)
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1.1 – Overview on GNSS

therefore, solving a system of four equations like (1.10) will determine xi. The measure of
four different pseudoranges is needed in order to solve the following system of equations



ρ1
i =

√
(x1 − xi)2 + (y1 − yi)2 + (z1 − zi)2 − bi

ρ2
i =

√
(x2 − xi)2 + (y2 − yi)2 + (z2 − zi)2 − bi

ρ3
i =

√
(x3 − xi)2 + (y3 − yi)2 + (z3 − zi)2 − bi

ρ4
i =

√
(x4 − xi)2 + (y4 − yi)2 + (z4 − zi)2 − bi

(1.11)

where the satellite index s goes from 1 to 4.
This set of non-linear equations can be solved in a closed form [15] [16] with a consider-

able computational burden. An alternative is represented by iterative techniques based on
linearization. The elements of (1.9) can be written using incremental quantities (position
offsets) w.r.t. a known reference linearization point, such that

xi = x∗i + ∆xi (1.12)

where
x∗i = (x∗i y∗i z∗i b∗i )> (1.13)

is the known linearization point and

∆xi = (∆x∗i ∆y∗i ∆z∗i ∆b∗i )> . (1.14)

is the vector of incremental quantities w.r.t. the linearization point itself. We can then
write (1.10) as a function of position offsets, exploiting the equality in (1.12). In this way

ρsi =
√

(xs − xi)2 + (ys − yi)2 + (zs − zi)2 − bi
= f(xi, yi, zi, bi)
= f(x∗i + ∆xi, y∗i + ∆yi, z∗i + ∆zi, b∗i + ∆bi)

(1.15)

Once (1.10) is written as a function of incremental quantities it is possible to expand
it in a Taylor series about the linearized position vector x∗i . After a first order truncation,
the pseudorange measurement can be obtained as a linear function of the position offsets
and the known elements of (1.13), resulting in

f(xi, yi, zi, bi) = f(x∗i , y∗i , z∗i , b∗i )

+ ∂f(x∗i , y∗i , z∗i , b∗i )
∂x∗i

∆xi + ∂f(x∗i , y∗i , z∗i , b∗i )
∂y∗i

∆yi

+ ∂f(x∗i , y∗i , z∗i , b∗i )
∂z∗i

∆zi + ∂f(x∗i , y∗i , z∗i , b∗i )
∂b∗i

∆bi

(1.16)
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By explicitly computing the partial derivatives

∂f(x∗i , y∗i , z∗i , b∗i )
∂x∗i

= −xs − x
∗
i

rs∗i
= −hxs

∂f(x∗i , y∗i , z∗i , b∗i )
∂y∗i

= −ys − y
∗
i

rs∗i
= −hys

∂f(x∗i , y∗i , z∗i , b∗i )
∂z∗i

= −zs − z
∗
i

rs∗i
= −hzs

∂f(x∗i , y∗i , z∗i , b∗i )
∂b∗i

= −1

(1.17)

where
rs∗i =

√
(xs − x∗i )2 + (ys − y∗i )2 + (zs − z∗i )2 , (1.18)

we obtain the coefficients of a linearized equation for the pseudorange ρsi . Hence substi-
tuting (1.17) in (1.16) the following linear equation is obtained

∆ρsi = hxs∆xi + hys∆yi + hzs∆zi + ∆bi . (1.19)

if we set
∆ρsi = ρs∗i − ρsi . (1.20)

This linear expression in the variables in ∆xi, can be exploited as an alternative to the
non-linear system (1.11), such that

∆ρ1
i = hx1∆xi + hy1∆yi + hz1∆zi + ∆bi

∆ρ2
i = hx2∆xi + hy2∆yi + hz2∆zi + ∆bi

∆ρ3
i = hx3∆xi + hy3∆yi + hz3∆zi + ∆bi

∆ρ4
i = hx4∆xi + hy4∆yi + hz4∆zi + ∆bi

(1.21)

This operation can be expressed in the matrix form

∆ρi = H∆xi (1.22)

after the definition of
∆ρi = (∆ρ1

i ∆ρ2
i ∆ρ3

i ∆ρ4
i )> (1.23)

and

H =


hx1 hy1 hz1 1
hx2 hy2 hz2 1
hx3 hy3 hz3 1
hx4 hy4 hz4 1

 (1.24)

Then, by solving for ∆xi it is possible to ultimately compute the state vector xi through
(1.12) since the linearization point is known. The solution is therefore

∆xi = H−1∆ρi . (1.25)
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1.2 – Inter-Agent Range Fundamentals

Since, the pseudorange measurements are corrupted by a residual error (Sec. 1.1.1),
this error will be projected to ∆xi, according to (1.25). The error contribution to ∆xi can
be minimized by including more than four measurements in ∆ρi [14], i.e. by adding lines
to matrix H. To this purpose the alternative form

∆xi = (H>H)−1H>∆ρi (1.26)

is usually employed in receivers, since it holds also if H is non-invertible, as a non-square
matrix will be (provided that (H>H)−1 is non-singular).

This linearization procedure will converge to a solution as long as the linearization point
is close to the actual user location. To ensure a convergence, this process is usually iterated
updating at each step the linearization point x∗i with the last computed unknowns xi. This
process takes place within one fixing epoch (or update interval), which is the time interval
between the moment at which a GNSS receiver provides positioning data to the user and
the next position output by that receiver (i.e. the inverse of the receiver update rate [17])

1.2 Inter-Agent Range Fundamentals
Generally in satellite navigation systems, a higher number of available ranges mitigates the
error contribution and improve the precision of the positioning process. Obtaining a PVT
solution is an estimation problem, thus it is no surprise that more observations provide a
better quality of the estimate.

The Inter-agent Range (IAR) proposed in [11] is introduced as an additional range
to improve positioning performances as well as continuity of PVT solutions in reduced
visibility conditions. This collaborative ranging is based on the combination of indepen-
dent pseudorange measurements and geometrical positioning data coming from two non-
synchronized cooperating GNSS receivers. The cooperating receivers are supposed to be
part of a communication network and they are called agents or peers in this context.

1.2.1 A Collaborative GNSS-based Range
Figure 1.1 is considered to illustrate the geometry of a static scenario. The IAR is retrieved
by the aided agent A with the cooperation of the aiding agent B and they are both able
to track the satellite s to obtain the related pseudorange. Notice that A and B will be
always used in this work to denote the aided and the aiding agent respectively.

The true baseline vector between agent A and B is

rAB , xB − xA (1.27)

and the inter-agent range is defined as the norm of (1.27), i.e.

IsAB , ||xB − xA|| . (1.28)

An estimation of (1.28) is the quantity provided by the IAR method.
From the Carnot theorem, the baseline between xA and xB in Figure 1.1 can be obtained

knowing the other two edges of the triangle and the angle between them. Hence the IAR
can be computed through

IsAB =
√

(rsA)2 + (rsB)2 − 2rsArsB cos γ , (1.29)

19



1 – Introduction

Figure 1.1: IAR computation in a static scenario. A is the aided agent, B is the aiding
agent and s is the shared satellite.

where the true user-to-satellite ranges rsA and rsB are derived from pseudoranges ρsA and
ρsB. However these scalar quantities cannot provide information about the angle γ. To this
purpose, unitary steering vectors define the direction of the vector from the location of an
agent i to the position of the satellite s:

hsi ,
xs − xi
||xs − xi||

. (1.30)

Their definition is thus exploited in IAR computation to obtain γ:

γ = cos−1(hsA · hsB) = cos−1(hsAhsB
>) . (1.31)

As a result, (1.29) can be written as

IsAB =
√

(rsA)2 + (rsB)2 − 2rsArsB hsAhsB
> . (1.32)

highlighting all the elements necessary for the baseline length computation through the
IAR method: rsA, rsB, hsA, hsB. Since all the quantities in (1.32) need to be estimated,
the IAR algorithm will provide an estimation of IsAB, formally referred to as ÎsAB. The
symbol “ˆ” denotes the estimator of the underlying variable and this notation will be used
throughout all the text. It is worth noticing also, that with this method an estimation of
the range between two agents is obtained even with no LOS condition.

1.2.2 IAR Tight Integration
A receiver within a cooperative swarm of agents has the possibility to retrieve the additional
ranges as long as it has at least one satellite in LOS. The aiding will be offered by any
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1.2 – Inter-Agent Range Fundamentals

member of the network which is able to autonomously locate itself with sufficient precision
and accuracy. The cooperative ranges retrieved by an aided agent are integrated, extending
the PVT algorithm illustrated in Section 1.1. The resulting positioning solution, which
merges pseudoranges and collaborative measurements is a tightly-coupled integration [18]
and will be referred to as GNSS/IAR hybrid PVT.

Until now the generic GNSS user has been denoted with the index i. In order to give
a clear formalization of the network framework we define also the indexes:

• j for the generic aided agent;

• l for the generic aiding agent;

and moreover:

• the discrete time index k, which denotes the receiver’s current fixing epoch;

• the set of visible satellites for the receiver j: Gj,k;

• the set of IAR integrated in the PVT algorithm of the receiver j: Ij,k;

• the index n which identifies a IAR measurement in the set Ij,k.

The non-cooperative PVT algorithm described in Section 1.1 is based on the solution
of (1.22) for the incremental vector ∆xi. In this context the vector of incremental pseudo-
ranges ∆ρj measured by the aided peer is extended to incorporate also inter-agent ranges,
by means of vector composition, resulting in the vector

∆zj =

 ∆ρj

∆Ij

 (1.33)

where
∆Ij = (∆I1 ∆I2 . . . ∆I|Ij,k|)> (1.34)

is a vector of incremental quantities, one for each integrated IAR, similar to ∆ρj . Each
element ∆In of the vector is defined, analogously to (1.20), with respect to the approxi-
mation point x∗j chosen at each step of the PVT routine of the aided agent j. It is in fact

∆In = Is∗jl − Isjl (1.35)

where Is∗jl is computed according to the baseline definition (1.28), i.e.

Is∗jl = ||xl − x∗j ||

=
√

(xl − x∗j )2 + (yl − y∗j )2 + (zl − z∗j )2 .
(1.36)

In the end, (1.22) is adapted for the hybrid PVT becoming

∆zj = H̄∆xj (1.37)

where H̄ is necessarily an extended version of (1.24), that includes the first order derivatives
that are the coefficients associated to the elements of ∆Ij , analogously to (1.21).
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Following the same procedure reported in Section 1.1 in order to write (1.28) in a
linearized form, the first order partial derivatives are computed after the Taylor expansion:

∂Is∗jl
∂x∗j

= −
xl − x∗j
Is∗jl

= −~xn

∂Is∗jl
∂y∗j

= −
yl − y∗j
Is∗jl

= −~yn

∂Is∗jl
∂z∗j

= −
zl − z∗j
Is∗jl

= −~zn

∂Is∗jl
∂b∗j

= 0

(1.38)

It should be noticed from (1.38) that the computation of coefficients requires the knowledge
of the aiding agent position xl, in analogy with the non-cooperative PVT, where the
knowledge of the satellite location is demanded (1.17). The coefficients in (1.38) are then
included in the sub-matrix HI such that

H̄ =

 H

HI

 =



hx1 hy1 hz1 1
hx2 hy2 hz2 1
...

...
...

...
hx|Gk| hy|Gk| hz|Gk| 1

~x1 ~y1 ~z1 0
~x2 ~y2 ~z2 0
...

...
...

...
~x|Ik| ~y|Ik| ~z|Ik| 0


(1.39)

and finally the unknowns in ∆xj can be computed through

∆xj = (H̄>H̄)−1H̄>∆zj (1.40)

with the same method exploited in (1.26).
Notice that the inter-agent range, as retrieved by (1.32), is not dependent on the clock

bias bj of the aided agent, like the pseudorange does. For this reason the last partial
derivative in (1.38) is zero. It will be shown (Sec. 2.4.2), that in order to have an estimate
of Isjl free from the clock biases of agents j and l, a non-negligible error contribution is
added to the cooperative measurement. If instead no correction of the clock bias of the
aiding agent j would be done, such clock bias contribution bj would be present in all the
IAR measurements included in ∆Ij . If this would be the case, bj can be computed also with
the contribution of IAR measurements as it happens in the non-cooperative PVT, where
the pseudoranges are exploited to calculate bj thanks to a non-null derivative in (1.17).
Since Isjl would be dependent on bj , Is∗jl would be defined accordingly, thus resulting in a
non-null partial derivative:

∂Is∗jl
∂b∗j

/= 0 (1.41)
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This alternative procedure can be adopted only if the partial derivative in (1.41) can be
calculated. Further research will be hopefully oriented to this method, since it has the
potential to reduce the uncertainty on the estimation of Isjl.

Multiple IARs and Correlated IARs

A few words have to be also spent on the set of integrated IAR measurements Ij,k, whose
cardinality determines the dimensions of the vector ∆Ij and the sub-matrix HI . To each
aiding agent l able to interact with j to provide the cooperative range corresponds an
estimate of a different euclidean distance (the baseline between the two agents). Actually,
if the collaborating peers j and l share more than one satellite, the aided peer can obtain
more than one range from the aiding agent. But these estimated ranges would refer to the
same euclidean distance between the two. They are therefore contextually called multiple
IARs. The set Ij,k may include any Isjl coming from all possible aiding agent l and shared
satellite s for an aided agent j. In this case its cardinality |Ij,k| is the total number of
ranges that j is capable to obtain. This terminology will be often used to distinguish a set
of all the available cooperative measures, even multiple IARs, from a set of IARs relative
to the measure of distinct baselines (unique IARs).

It should be remarked also that several cooperative ranges can be obtained by j using
the same satellite s that is shared with multiple cooperating agents. This would lead
to different IAR measures, that represent an estimation of different euclidean distances
among peers. However, this class of ranges are highly correlated, since they are based on
one common measurement: the pseudorange of the aided agent ρsj . Cooperative ranges
from this category will be referred to as correlated IARs, and they will be mainly treated
in Section 2.1.3.

1.2.3 Virtual Landmarks
As underlined in Section 1.2.2, in order to build the hybrid matrix H̄ and obtain an
estimate of ∆xA through (1.40), the position of the aiding agents must be known at the
aided agent A as well as the position of the satellites. In fact, since we are solving a
trilateration problem, the locations of the reference landmarks from which the ranges are
measured must be known, weather they are pseudoranges or IAR.

In a network of collaborating peers, the knowledge of xB at the receiver A may cause
privacy problems, especially in ad hoc networks where validation of the user identity may
be an issue. However, a method to preserve the confidentiality among the collaborating
agents has been developed in [13] and it is here briefly reported.

The idea behind this technique is to mask the position information through the use
of Virtual Landmarks (VL), while preserving the reliability of the cooperative ranging.
Essentially an aiding agent generates an arbitrary set of position coordinates (the VL),
over which the computation of the necessary variables to retrieve the IAR will be based.
In other words, a new user-to-satellite range rs

B̃
is generated by translating xB on the

virtual landmark xB̃. First, the new range is calculated in its vectorial form rs
B̃
by means

of the displacement vector δxB→B̃, which is arbitrarily chosen from the aiding agent to
conceal its position information. Therefore

rs
B̃

= rsB · hsB + δxB→B̃ . (1.42)
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The range vector rs
B̃

is then decomposed in the range rs
B̃

and its unitary steering vector
hs
B̃
, such that

rs
B̃

= ||rs
B̃
|| (1.43)

hs
B̃

=
rs
B̃

rs
B̃

. (1.44)

Since the variables related to the aiding peer in (1.32) are now based on the virtual land-
mark xB̃, the IAR computation between A and B becomes

Is
AB̃

=
√

(rsA)2 + (rs
B̃

)2 − 2rsArsB̃ hsAhs>
B̃

. (1.45)

These operations are illustrated in Figure 1.2.

Figure 1.2: IAR computation in a static scenario with Virtual Landmark. xB is the position
of the aiding agent, while xB̃ is the Virtual Lanmark generated by the agent B.

The resulting cooperative range is now coherent with xB̃, therefore the latter is the
reference position that must be included in the cooperative sub-matrix HI in (1.39). In
other words, the generic aiding peer positions xl in (1.39) are replaced with their respective
virtual landmarks xl̃ and the confidentiality is preserved.

In summary, to accomplish the cooperative positioning procedure and take advantage
of the additional measurements in the PVT computation, several quantities provided by
the two cooperating agents are essential: some related to the agent A (rsA, hsA) and some
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to the agent B (rsB, hsB or their VL counterparts rs
B̃
, hs

B̃
). Furthermore the position xB of

the aiding agent (or the VL translation xB̃) is also needed. Unfortunately, knowing their
true values is not possible in a real implementation and nothing has been said so far on
their estimation process.

The rest of the thesis is organized as described in the following paragraphs. The next
chapter will be devoted to the estimation procedures of such variables and the issues related
to these processes. In particular, the constraints related to variable estimations and timing
of the IAR computation led to the definition of two alternative novel algorithms for IAR
retrieval, that include predictive stages based on Kalman filters. Furthermore, the effects
on the cooperative measurements of each single estimation process are deeply studied either
isolated or in combination.

A dedicated hybrid PVT algorithm based on Extended Kalman Filter (EKF) is also
presented, highlighting the main differences with respect to non-cooperative PVT. Ad hoc
solutions are designed in order to specifically adapt this filter to the IAR paradigm. The
estimation processes and the properly designed EKF for the PVT will eventually merge in
the two complete cooperative positioning algorithms that are described in this chapter.

Following the definition of specific procedures for IAR positioning, an experimental
evaluation of the effectiveness of this method will be performed by means of a Monte Carlo
simulation. Therefore the third chapter is focused on the simulation environment. This
chapter provides a mathematical formalization for the modeling of visibility conditions of
the agents and their consequent role in the cooperation. This mathematical framework will
be extensively exploited during the simulation. In addition, a description of environment
dynamics is provided, particularly focused on the noise sources and the modeling of the
latter within the simulation environment.

Finally an extensive analysis of experimental results is reported in Chapter 4. Several
scenarios are simulated, involving sky visibility, motion dynamics and network constraints.
Moreover throughout the chapter a fine-tuning of the algorithms and EKF-based hybrid
PVT proposed in Chapter 2 is carried out and assessed through experimental results.
Selection strategies on the set of available cooperative ranges are proposed and evaluated
as well. Eventually the resulting improved algorithm is tested in a dedicated simulation
experiment and compared to the earlier IAR positioning method. The proposed algorithm
is ultimately validated as a valuable cooperative solution for positioning, that also allows
navigation data protection and does not require Line-of-Sight condition.
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Chapter 2

Methodology and IAR
Analysis

Before taking advantage of the Inter-agent range in positioning, the problem of a feasible
retrieval of the involved quantities must be faced. To this purpose, ad hoc methods have
been developed, either defined in previous works or extended to suite this comprehensive
study. Such methodology must cope with the requirements of Inter-agent formula, while
sustaining all the environmental constraints.

This chapter provides a detailed description of the methods employed within the context
of the IAR estimation algorithm, and their consequences on the collaborative measure.

As a first innovation to the existing method, the hybridized positioning technique de-
scribed in [11] is here integrated into an Extended Kalman Filter (EKF) for providing a
fast-convergent PVT solution suited to a dynamic context. The estimated Inter-Agent
Range is then defined and the issues related to the retrieval of variables involved are intro-
duced. In particular, a motion prediction technique is needed and two different approaches
to accomplish it are presented: one based on EKF and the other on a plain Kalman Filter
(KF). Finally, the collaborative algorithm for the exchange of information presented in [11]
is here adapted to the requirements of variable estimations and predictions. Within this
context, a specific time sequence of operations is defined with respect to the round-trip
time (RTT) of the network and tailored to variable estimation constraints.

After this exhaustive explanation of the procedure steps necessary to accomplish the
IAR estimation, the statistical characteristics of the latter are presented. In particular, a
deep analysis on the effects caused by the involved parameters and techniques on the IAR
measure is given. Among the various factors of impact, the most critical ones are studied
in isolation, where possible, and through their overall combined effect in a final section, in
order to provide a meaningful characterization for a realistic scenario.

2.1 Extended Kalman Filter IAR Tight Integration
The Kalman Filter[19] is widely used in GNSS receivers. It provides a linear, unbiased and
optimal estimate of the state of a dynamical system from its noisy measurements. The
Extended Kalman Filter (EKF) is a KF version able to deal with non-linear systems (such
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as the pseudorange equations 1.11), and therefore it is widely employed in the navigation
community to determine the PVT. The EKF works by means of a linearization around an
approximation point, so its capacity to treat non-linear systems is good as long as a first-
order approximation is a sufficient model [20]. The linearization procedure is analogous
to the one employed in the LMS solution (Section 1.1), using the jacobian matrix H as a
measurement matrix of the EKF. Therefore a tight integration of cooperative measurements
can be implemented using the hybrid observation matrix H̄ in the EKF as well.

The EKF algorithm is illustrated below, as could be applied to agents in a cooperative
network. A receiver employs the EKF to compute its position, but within this context,
it may incorporate different type of measurements (pseudorange or IARs). Here the EKF
steps are illustrated in its cooperative adaptation, i.e. as performed by the aided agents
(exploiting hybrid observation matrix H̄). Despite this, the operations are essentially the
same of the regular EKF, thus this section is intended also as a general review of the filter
equations.

With respect to LMS theory introduced in Section 1.1, the position state xi,k indicates
explicitly the discrete time index k and has been extended to incorporate velocity variables.
The state of a generic agent i at a given time instant k is

xi,k = (xi,k yi,k zi,k ẋi,k ẏi,k żi,k bi,k ḃi,k)> (2.1)

where three dimensional coordinates and relative axial velocities are considered. States
bi,k and ḃi,k are the receiver clock bias and its derivative (clock drift) respectively. In the
following the agent’s index i will be omitted for simplicity.

It should be reminded that the basic state variables of the EKF are incremental quan-
tities [20]. However, since it is convenient to keep track of the total quantities (position,
velocity, etc.), the incremental form of variables will be avoided where possible, in the
following filter description.

The observation matrix H̄ is extended as well, with respect to Section 1.2, in order to
be consistent with the above definition of position state. It is

H̄k =

 Hk

HI,k

 =



hx1 hy1 hz1 0 0 0 1 0
hx2 hy2 hz2 0 0 0 1 0
...

...
...

...
...

...
...

...
hx|Gk| hy|Gk| hz|Gk| 0 0 0 1 0

~x1 ~y1 ~z1 0 0 0 0 0
~x2 ~y2 ~z2 0 0 0 0 0
...

...
...

...
...

...
...

...
~x|Ik| ~y|Ik| ~z|Ik| 0 0 0 0 0


(2.2)

where elements hxs ,hys and hzs are components of steering vectors steered toward satellite
s, and ~xj ,~yj and ~zj are pointing at collaborating peers, as defined in Section 1.2. Fur-
thermore, they are all based on the approximation point x∗k. Notice that generally more
than one line of the matrix HI,k may refer to the same aiding agent providing multiple
IAR from different satellites.
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2.1.1 Models Equations
The Extended Kalman filter theory is based on a system model equation and on a mea-
surement model equation. They are briefly recalled for the sake of completeness.

The system model equation considered in this framework is a linear equation. Hence it
describes the relation between past and current state by means of a transition matrix :

xk = Φxk−1 + η . (2.3)
being Φ the transition matrix

Φ =



1 0 0 Ts 0 0 0 0
0 1 0 0 Ts 0 0 0
0 0 1 0 0 Ts 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 Ts
0 0 0 0 0 0 0 1


(2.4)

where Ts is the time step; and η is the system noise such that
η ∼ N (0,Q) (2.5)

with Q covariance matrix.
The measurement model equation provides a relation between the state xk and the

measurements zk. For what concern GNSS systems this relation is non-linear, thus the
equation is in the form

zk = h(xk) + vk (2.6)
where h is a known non-linear function. In the equation, vk represents the measurement
noise and it is modeled such that

vk ∼ N (0, R̄) (2.7)
with R̄ covariance matrix.

Since the relationship between position state variables and pseudoranges cannot be
described by a linear equation [14], the EKF exploits linearization to deal with the trilat-
eration problem. The linearized measurement equation is

∆zk = H̄k∆xk + vk (2.8)
where ∆zk and ∆xk are vectors build around a chosen approximation point x∗k. ∆xk is
the difference between the actual state and the linearization point, such that

xk = x∗k + ∆xk . (2.9)
∆zk is the incremental measurement vector [20] and it is defined as

∆zk = zk − h(x∗k) . (2.10)
zk is the measurement vector and collects all the ranges that the agent has estimated, while
h(x∗k) is the measurements vector computed from the approximation point in the absence
of noise. It is then a vector of pseudo-distances between x∗k and the landmarks (satellites
or collaborative peers). In view of the above, the vector of incremental measurements ∆zk
is simply the set of differential ranges in Section 1.2.
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2.1.2 EKF Routine

The EKF routine starts with a prediction step that involves the projection of the last state
estimation x̂k−1 on the current instant k by means of the transition matrix:

x̂−k = Φx̂k−1 . (2.11)

At each step of the EKF routine, the predicted state estimation x̂−k is chosen as lin-
earization point x∗k, around which incremental quantities are build. Then, the incremental
measurements ∆zk and the hybrid matrix H̄k are computed w.r.t. this reference point.
The prediction is performed also on the error covariance matrix Pk−1:

P−k = ΦPk−1Φ> + Q . (2.12)

Following the prediction phase, the Kalman gain is computed as

Kk = P−k H̄>k (H̄kP−k H̄>k + R̄)−1. (2.13)

Notice that the gain is dependent on the measurement matrix H̄k, which, as stated, is
updated according to the approximation point at each time k. Therefore, since x∗k = x̂−k ,
the gain sequence will depend on the sequence of measurements of a particular realization
of the experiment [20].

Now, considering the incremental state estimate

∆x̂k = ∆x̂−k + Kk(∆zk − H̄k∆x̂−k ) (2.14)

it should be noticed that, since x∗k = x̂−k , the term ∆x̂−k is zero. Thus the equation 2.14
becomes

∆x̂k = Kk∆zk . (2.15)

Finally the state estimation can be obtained by correcting the approximation state with
the incremental estimate update:

x̂k = x∗k + ∆x̂k . (2.16)

The error covariance matrix is updated as well. This equation is implemented in a sym-
metric form (Joseph form), which is resilient to divergence phenomena [20]:

Pk = (I−KkH̄k)P−k (I−KkH̄k)> + KkR̄kK>k . (2.17)

2.1.3 Definition of Covariance Matrices

A few words should be additionally spent about the generation of noise covariance matrices
Qk and R̄k. A suitable system noise covariance matrix can be generated through a model
provided by Brown [20], which is based on time step Ts and spectral densities of the white
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noise driving functions of system model (2.3). The configuration is briefly reported:

Qk =



SpT 3
s

3 0 0 SpT 2
s

2 0 0 0 0
0 SpT 3

s

3 0 0 SpT 2
s

2 0 0 0
0 0 SpT 3

s

3 0 0 SpT 2
s

2 0 0
SpT 2

s

2 0 0 SpTs 0 0 0 0
0 SpT 2

s

2 0 0 SpTs 0 0 0
0 0 SpT 2

s

2 0 0 SpTs 0 0
0 0 0 0 0 0 SfTs + SgT 3

s

3
SgT 2

s

2
0 0 0 0 0 0 SgT 2

s

2 SgTs


. (2.18)

The parameters Sp,Sf and Sg are the spectral densities related to the system noise η. They
are associated, respectively, with the the position variables (x,y,z), the user clock bias error
bi, and the user clock drift ḃi1.

Each row of the covariance matrix R̄k models the noise of the correspondent measure-
ment that feeds the EKF. When measurement are pseudoranges, the relative covariance
matrix is usually a diagonal matrix, with pseudorange variances σ2

UERE on the main di-
agonal, since no correlation is assumed between these quantities [20]. In this cooperative
framework however, also IAR measures are involved in the measurement process and there-
fore the matrix R̄k should include elements associated to these quantities. In particular,
each IAR measurement is dependent on one of the pseudoranges included in the measure-
ment vector such that cross-correlation terms have to be taken into account for the filter
design.

The error covariance matrix designed for the proposed algorithm is no longer diagonal,
it is indeed defined as

R̄k =


Rρ RρI

R>ρI RI

 (2.19)

where the sub-matrix Rρ is a |Gk| × |Gk|2 diagonal covariance matrix with values defined
according to the σ2

UERE of each pseudorange.
Similarly the sub-matrix RI is a |Ik|×|Ik|3 matrix. If no correlated IARs are considered,

the IAR measurements will be all dependent on distinct pseudorange measurements. As
a consequence, cooperative ranges will be uncorrelated among each other and this sub-
matrix will include only diagonal elements. These non-null elements are the variances of
the measurements Îsjl.

1Actually the spectral densities parameters may be considered static throughout an observation time,
even if the system noise is a time-dependent process. As a consequence Qk = Q.

2|Gk| is the number of visible satellites for an agent at time k. Similar sets were defined in Section
1.2.

3|Ik| is the number of cooperative ranges that an agent is able to retrieve at time k.
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The investigation presented in [12] provides an useful upper bound for the variance of
estimated IAR:

σ2
Î
≤ σ2

UERE,j + σ2
UERE,l (2.20)

where j and l are the two agents involved in the cooperation. This result can be exploited
to adapt the measurement matrix to the IAR method, while being conservative in the
trust granted to the cooperative range. A further investigation in Sec. 4.3 will pursue less
conservative methods that include proper weighting of the upper bound on the basis of
experimental performances of the resulting matrix R̄k.

The RρI sub-matrix contains the cross-correlation terms which link pseudorange mea-
surements and IAR contributions. For these terms, the Cauchy-Schwarz inequality can
be exploited to assign to the covariance terms a value according to their lower or upper
bound, defined as

|σÎρ| ≤
√
σ2
Î
· σ2

UERE,j . (2.21)

The transposed matrix R>ρI can be then defined accordingly.
Assigning the maximum correlation between Îsjl and ρsj is a worst-case assumption.

Thus, a proper weight on this bound will be again discussed through experimental assess-
ment in Section 4.3. It should be underlined, however, that to exploit (2.19) as a model for
the integrated measurements, the latter should be normally distributed in order to satisfy
the Gaussian assumption [20]. This will prevent the EKF to be sub-optimal when dealing
with IARs.

This concludes the illustration of the EKF routine adapted for IAR collaborative posi-
tioning. The equations are not so far from the computational steps of a plain Kalman filter.
In fact, even if it is applied on non-linear problems, the EKF involves linear dynamics by
means of incremental quantities and linearization. As a matter of fact, the error covariance
equations (2.12) and (2.17), and the Kalman gain equation (2.13) are the same as in the
case of the regular Kalman filter.

2.1.4 Choice of the Linearization Point
A problem to be faced, is the choice of the linearisation point x∗k. The use of the estimated
trajectory x̂−k is a reasonable choice, since it is presumably the best estimate available at
time k before the measurement update. However, a poor choice for x∗k could cause the EKF
estimate to diverge if the first-order approximation on which the linearization is based is
not enough. Due to the feedback of measurements into the estimate equations, instability
phenomena may arise in the EKF. Several works have investigated the conditions for EKF
stability [21] [22], but such requirements are often too restrictive for realistic applications
[22].

This problem is especially critical in the initialization phase of the filter, when the
information on the position is scarce. In this phase, in order to select a x∗0, a LMS routine
is commonly employed [20], but it needs at least 4 ranges at disposal to converge to a
solution. Through IAR cooperative ranging the outage events are massively reduced and
a re-initialization of this kind is often possible, eventually compensating a divergent EKF
estimate sequence.

32



2.2 – Estimated Inter-agent Range

2.2 Estimated Inter-agent Range
The previous section was dedicated to the tight integration of cooperative ranges in the
hybrid PVT algorithm implemented through an EKF. Nevertheless, a description of the
estimation procedures necessary to ultimately retrieve the Inter-agent ranges is still missing.
The quantity involved in the IAR formula are known from Section 1.2, but their estimation
in a realistic scenario is not trivial and certainly requires to be illustrated. This is the
objective of the current section.

The basic formula for IAR calculation (1.32) was defined in Section 1.2. In (1.32) the
indexes A and B are employed to unambiguously underline specific roles in cooperation
(aided and aiding agent). Remember, however, that the pieces of information that B is
willing to share with the aided agent A are all based on its generated virtual landmark B̃,
as discussed in Section 1.2.3. For the sake of simplicity, the index B̃ is generally omitted
in favor of B, except for the last part of the section where the virtual landmark solution is
recalled. As usual the index i indicates a generic agent. Notice also that the time index k
is omitted as well throughout this section, assuming for each variable the same associated
time instant.

Ranges rsA and rsB are part of the set of elements to be retrieved. The information on
these ranges is carried by the respective pseudoranges ρsA and ρsB, but the user clock biases
error bA and bB need to be removed first. The corrected psuedoranges are thus obtained
for any agent i as

r̃si = ρsi − bi . (2.22)
Recalling Section 1.1, the pseudorange here considered are bias-free, i.e.

ρsi ∼ N (rsi + bi, σ
2
UERE) (2.23)

and consequently
r̃si ∼ N (rsi , σ2

UERE) . (2.24)
Unfortunately, a perfect knowledge of the user clock bias is not possible and an estimation
of it must be provided in this phase. As a consequence, the estimated IAR formula will
necessary include the corrected pseudorange estimations r̂sA and r̂sB, whose probability
distribution depends on the characteristics of the random variables b̂A and b̂B (estimated
user clock biases). Summarizing, to retrieve an estimation of the range variables in (1.32),
four quantities are needed: ρsA and b̂A for the aided agent, and ρsB and b̂B for the aiding
agent. Their relation is

r̂sA = ρsA − b̂A
r̂sB = ρsB − b̂B .

(2.25)

The two pseudoranges are independently measured by the two GNSS receivers, but the
estimation of a user clock bias bi would need a convergent PVT stage that computes the
state xi,k of the agent, or, at least, the non-derivative elements xi, yi, zi and bi in (2.1).

In the context of the proposed method, it is assumed that the receiver that plays the
role of aiding agent is always able to autonomously locate itself with sufficient precision
and accuracy, i.e. to obtain a reliable PVT solution without additional ranges. Its GNSS
positioning algorithm provides, among other state variables, b̂B, which is certainly its best
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estimate of the user clock bias error. On the contrary, the aided agent experiences poor
GNSS visibility conditions, thus additional ranges may be essential to obtain a convergent
PVT solution. However, in order to retrieve additional cooperative ranges, A would have to
get its user clock bias from a reliable PVT algorithm and so forth, resulting in a deadlock.

The solution for this agent is to estimate bA through a predictive filter. Moreover, since
it is eligible for being aided, at least one updated pseudorange is available to the agent A.
In fact, in order to retrieve a IAR measure, a satellite signal must be tracked by both the
receivers involved in the cooperative procedure, i.e. at least one satellite must be visible.
As a result, even if the pseudoranges are less than four (thus potentially leading to an
underestimated PVT problem), they are conveniently exploited at the last stage of the
IAR estimation process to obtain a clock bias estimate (Sec. 2.3). For this reasons, an
Extended Kalman Filter is a good choice as predictive filter, since it integrates the available
measurements and compensates for their scarcity with a model of the dynamics of the
system. Hence, besides being used in the hybrid PVT stage to provide a cooperatively-
obtained position, the EKF is also used at this preliminary stage, for the estimation of
variables involved in IAR estimation process. This is the critical part of the estimation of
rsA and rsB and further details on it will be presented in Section 2.3 discussing prediction
techniques.

The other two important actors in the IAR computation (1.32) are the steering vectors
hsA and hsB. These quantities needs to be estimated as well and the definition of estimated
steering vectors comes easily after (1.30), where position states xi and xs are replaced by
estimated quantities:

ĥsi = xs − x̂i
||xs − x̂i||

. (2.26)

When computing ĥsA and ĥsB through (2.26), the satellites position xs is known at the
receiver after the demodulation of the navigation message. The variables x̂A and x̂B are
instead estimated through a PVT algorithm.

The problem of their estimation is analogous to the issues related to b̂A and b̂B since,
while ĥsB can be based on the output x̂B of a non-cooperative PVT, ĥsA must be, at least
partially, predicted due to the impossibility of A to have a sufficiently reliable position
estimate x̂A without cooperation.

A predictive filter is again exploited to counteract this issue, but, since ĥsA is not
necessarily computed at the last stage of the IAR estimation process (as b̂A), the number
of observations with which the filter is fed may vary. For this reason the predictive filter
may be different. Further details on this prediction phase will be discussed in the next
section.

Recalling Section 1.2.3, prior to communicate the necessary data to the aided agent
A, the agent B needs to convert its position-related variables to a virtual-landmark-based
version. Since the true steering vector hsB and the true range rsB are generally unknown
to B, the operations that define the VL in Section 1.2.3 would be actually performed with
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estimated quantities, resulting in

r̂s
B̃

= r̂sB · ĥsB + δxB→B̃ (2.27)
r̂s
B̃

= ||r̂s
B̃
|| (2.28)

ĥs
B̃

=
r̂s
B̃

r̂s
B̃

(2.29)

where the notation r̂si represents the estimated corrected pseudorange in vector form.
Summarizing, the quantity provided by the IAR method is an estimate of (1.29), ulti-

mately computed after the estimations of rsA, rsB̃,h
s
A,hsB̃ through

Îs
AB̃

=
√

(r̂sA)2 + (r̂s
B̃

)2 − 2r̂sAr̂sB̃cos(γ̂) (2.30)

γ̂ = cos−1(ĥsAĥs>
B̃

) . (2.31)

2.3 A Priori Estimation and Collaborative Algorithm
In Sections 1.2 and 2.2, the IAR has been presented without showing the time dependence
of the variables involved. Basically, each variable has been retrieved regardless of the
communication latency, as if everything took place instantaneously. In order to provide
a precise picture of the IAR algorithm, the implicit assumption of instantaneous commu-
nication maintained so far is removed, and the variables involved may now be related to
distinct time instants. For this reason, a discrete time index k is often added to variables
notation, indicating the time-dependency. In particular, k indicates the receiver’s fixing
epoch (Sec. 1.1) at which operations take place, consistently with the GNSS receiver’s
update rate of the position (i.e. the granularity of fixing epochs).

If we set the fixing epoch k at which the IAR is retrieved and integrated in the PVT,
the time instants involved in IAR estimation procedure are essentially three:

• an initial time k −RTT , at which the agent A request aid;

• a time k− τ2, at which the agent B receives the request, processes the necessary data
and sends them back to A;

• a time k, at which A receives the response message from B and performs the hybrid
PVT.

Within this timeline the computational delay is neglected and the Round-Trip time (RTT)
of the communication channel is the network parameter that drives the overall algorithmic
delay. Hence, time delays are defined such that

RTT = τ1 + τ2 , (2.32)

where τ1 is the time elapsed from the transmission of the help request to the reception of
the latter and τ2 is the time interval between the communication of B’s response and its
reception by A.
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However, to be consistent with the discrete-time notation, the delays τ1, τ2 and RTT
are assumed integers and defined in order to be a measure of fixing epochs elapsed. In
other words, they are equal to the real continuous-time delay that they describe divided by
the interval between two fixing epochs (the update interval) and rounded up to the next
integer. If for example the real round-trip time is lower than the update interval, let’s say
0.5 s, k − RTT refers to the previous fixing epoch k − 1. In this way x̂k−1 indicates the
last position update available 0.5 s before the instant k, which is the most recent position
information available at that time. As a matter of fact, the main objective in the definition
of a suitable procedure, is to output a IAR estimate that involves the most up-to-date
state estimations, while preventing agent’s position from being openly shared.

Another important constraint is to have consistent ranges. This means that the vectors
involved in the Carnot theorem, on which IAR formula is based, must form a triangle, as
reproduced in Figure 1.1. This geometric structure must hold even considering a dynamic
environment where vectors change continuously. Figure 2.1 allows a better understanding
of the concept, while extending the static scenario of Figure 1.1.

Figure 2.1: IAR estimation in a dynamic scenario. The ranges involved in the computation
should be consistent.

In Figure 2.1, the position of the three items involved (aided agent A, satellite s and
aiding agent B) is shown at the three fundamental time instants (k−RTT , k− τ2 and k).
The IAR will be computed at time k, when the most recent pseudorange measured by A
can be exploited to obtain r̂sA,k, that will be used in equation (2.30). However, for what
concern data from B, the most recent information available for A at time k is τ2 seconds
old, because the communication delay cannot be bypassed. The problem is that these two
edges are not connected through a triangle, and this leads to an inconsistent result of the
Carnot theorem.
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To mitigate this problem, agent B has to predict a range that refers to the future
satellite position xs,k, starting from its current estimated range r̂sB,k−τ2

. The orbital data
of s are known from the demodulation of navigation message, hence the forecast of xs,k is
not an issue. An estimation of xB,k would require instead a blind prediction, but it is easily
avoided by considering an inter-epoch range as a consistent edge of the Carnot’s triangle,
computed w.r.t. xB,k−τ2 and xs,k such that:

r̂s∗B,k = r̂sB,k−τ2 + (xs,k − xs,k−τ2) (2.33)
r̂s∗B,k = ||r̂s∗B,k|| . (2.34)

The definition of (2.34) allows the computation of a baseline (IAR) between xB,k−τ2 , the
position of B when shares its data, and xA,k, the position of A when hybrid PVT is
accomplished (Figure 2.1). It has to be reminded however, that B computes its virtual
landmark xB̃,k−τ2

and uses it in place of its real position in the above computation, but
the considerations done so far hold anyway.

In view of the above characterization on the communication delay involved in the IAR
algorithm, some of the previous definitions of this chapter must be revised in order to
include a consistent time index and get rid of the instantaneous communication assumption.
In particular, the estimated IAR formula (2.30) is now written as

Îs
AB̃,k

=
√

(r̂sA,k)2 + (r̂s∗
B̃,k

)2 − 2r̂sA,kr̂s∗B̃,kcos(γ̂) (2.35)

where
γ̂ = cos−1(ĥsA,k · ĥs∗B̃,k) . (2.36)

and it integrates the inter-epoch range and the respective steering vector. The above
formula is reported just for completeness, but, in the rest of the dissertation, r̂s∗

B̃,k
and

ĥs∗
B̃,k

will be simply referred to as r̂s
B̃,k

and ĥs
B̃,k

, as they would be a regular range and its
steering vector, in order to avoid additional notation complexity.

The block diagram in Figure 2.2 provides a compact illustration of the cooperative
positioning algorithm adopted by the aided agent A. This high-level representation allows
to summarize the process, highlighting the variables involved. In order to obtain the
cooperative range ÎsAB, the aided agent needs an estimate of the variables involved in
(1.32). The variables ĥsA,k and r̂sA,k have been retrieved through a predictive stage based
on the position estimate of A (feedback). The predictive stage may also take advantage of
current pseudorange measurements ρA,k to provide the variables. The other two quantities
necessary to accomplish the IAR computation are ĥsB,k and r̂sB,k. They are provided by
the aiding peer B and are available to A after some delay (τ2). Finally the aided peer
integrates the additional range ÎsAB and the pseudoranges available at time k, in a hybrid
PVT stage (that exploits an EKF to perform a GNSS/IAR tight-integration). Notice that
also the non-cooperative PVT stage of agent B is based on an EKF routine.

In the next sections, the predictive stage block is discussed in details and the predictive
filters inside it are presented. The choice of the filters is tightly related to constraints
arisen from the premature estimation of hsA and bA, that will eventually lead to two different
implementations of the predictive stage and consequently to two versions of the cooperative
algorithm for retrieve ÎsAB.
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Figure 2.2: High level block diagram representation. Variables involved in IAR estimation
are highlighted. The “PVT blocks” incorporate the feedbacks explicitly showed in Figure
2.3 and 2.4. The feedback from PVT stage and prediction stage is left visible at this level
of representation.

2.3.1 KF A Priori Estimation

As mentioned, a key point is the estimation of hsA. In the algorithm proposed in [13], and
revised in Table 1, A sends an help request that includes the steering vector over which
the angle computation (γ̂) performed by B will be based.

This steering vector ĥsA is generated at time k−RTT , thus it is estimated through the
information available at that time. In particular, the estimation has to approximate the
position that A will have at time k. Basically A has to foresee 1 RTT ahead to estimate
the steering vector and it does not have the possibility to exploit future pseudorange
measurements to obtain the steering vector orientation at time k. This predictive operation
is thus accomplished only through the propagation of motion dynamics, according to (2.3).

This kind of estimation, that does not take advantage of state observations, will be re-
ferred to as a priori estimation (AP), in a way consistent with Kalman filter’s terminology.
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Algorithm 1 IAR Collaborative Algorithm with a priori estimation.

1: Time k −RTT : the aided agent A broadcasts to the potential aiding agent B its ĥsA
based on the KF-prediction for time k

2: Time k − τ2: B receives the request and generates a virtual landmark B̃
3: B computes its inter-epoch steering vector ĥs

B̃
w.r.t. B̃

4: B computes γ̂ using its inter-epoch steering vector ĥs
B̃
and the one received by A

5: B replies to A sending γ̂, r̂s
B̃
and xB̃

6: Time k: A receives the response and measures the pseudorange ρsA w.r.t. shared
satellite s

7: A estimates b̂A using EKF fed by available pseudoranges and computes r̂sA
8: A estimates Is

AB̃
using r̂sA, r̂sB̃ and γ̂

9: A obtain its position state x̂A through the EKF hybrid positioning routine

The predictive filter considered in this procedure is a plain Kalman filter (configured to
work with no input measurements). In fact, since the estimation of ĥsA is performed with-
out observations, a linearization of the measurement model equation (2.6) is not necessary
and the use of EKF would be redundant.

According to Algorithm 1, the agent A computes r̂sA in the last phase of the algorithm,
when the angle γ̂ has been already received from B. In this phase it is possible to exploit
the available pseudorange measurements to obtain a better estimate of bA and consequently
a more reliable r̂sA, according to (2.25). Measurements integration is generally convenient,
when possible, even though the aided agent experiences reduced visibility and a small
number of pseudoranges available. However, in order to integrate pseudoranges in bA
estimation, an EKF must be employed also in this phase.

Therefore the predictive stage in Figure 2.2 is composed by two filters: a plain KF that
predicts ĥsA without measurement observations and an EKF that provides b̂A. The block
diagram in Figure 2.3 illustrates the roles of such filters (indicated as KFAP and EKFQAP )
in the computation of states and cooperative ranges, for this version of the algorithm.
The scheme focuses on time occurrence and filter relationships. Variables involved in IAR
estimation are highlighted as outputs from the predictive stage and from a IAR variables
extrapolation block that simply extracts ĥsB and r̂sB from the position estimate provided by
the EKF. The four estimates can be then processed in the IAR estimation block at time
k, that consequently feeds the PVT stage of agent A. Feedbacks are also depicted since,
as it will be shown in Section 2.4, they play a key role in the performance of IAR.

This strategy has some disadvantages due to the prediction effort required and the ab-
sence of measurements in the steering vector prediction phase, but it is a more transparent
approach. In fact, by assigning to B the burden of γ calculation, A is forced to share some
information about its position: the steering vector ĥsA,k. The knowledge of its steering vec-
tor places A on an ambiguity line[11] that passes through xs,k (Figure 2.1). In a network of
peers this information could be an evidence of trustworthiness, especially in large ad hoc
networks, where identity and data validation may be an issue.
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Figure 2.3: Algorithm 1 block diagram. The dashed rectangle highlights the predictive
stages, where KFAP is the Kalman Filter a priori estimation and EKFQAP is the EKF
quasi-a-priori estimation.

2.3.2 EKF Quasi-a-priori Estimation

The other possible strategy privileges the use of the most recent information. The set of
IAR calculations is ultimately performed at instant k, when updated measurements can
be exploited to derive the steering vector ĥsA, instead of predicting such steering vector 1
RTT early.
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To accomplish this improvement, the collaborative algorithm must be revised in order
to let the agent A to compute the angle γ̂ in the final phase of the procedure. As a
consequence, B have to share its steering vector on the communication channel, leaving to
the aiding agent A all the computational burden. The privacy of B is still preserved due
to the Virtual Landmark mechanism. But the information provided by B is still subjected
to aging, since the communication delay τ2 cannot be bypassed. In this view, A is not
required to share anything, and can simply broadcast an help request over the network.
The steps involved are summarized in Algorithm 2.

Algorithm 2 IAR Collaborative Algorithm with quasi-a-priori estimation.
1: Time k −RTT : the aided agent A broadcasts to the potential aiding agent B a help

request
2: Time k − τ2: B receives the request and generates a virtual landmark B̃
3: B computes its inter-epoch steering vector ĥs

B̃
w.r.t. B̃

4: B replies to A sending ĥs
B̃
, r̂s

B̃
and xB̃

5: Time k: A receives the response and measures the pseudorange ρsA w.r.t. shared
satellite s

6: A estimates b̂A using EKF fed by available pseudoranges and computes r̂sA
7: A estimates ĥsA using EKF fed by available pseudoranges and computes γ̂
8: A estimates Is

AB̃
using r̂sA, r̂sB̃ and γ̂

9: A obtain its position state x̂A through the EKF hybrid positioning routine

Within this strategy, the estimation of hsA,k is derived from a preliminary estimated
position x̂A, performed using the observations available at the current time k and not
simply propagating the motion of the agent for the duration of a RTT. Since A needs to be
aided, the number of available measurements is not sufficient for the convergence of a single
point positioning algorithm. An EKF, however, is able to provide a state estimation even
with a reduced set of observations, and consistently with the non-linear relation between
measurements and state.

An EKF is therefore also employed at this stage, prior to the hybrid PVT (based on
EKF as well), to provide the variables ĥsA and r̂sA necessary for IAR estimation. As a
consequence, according to this version of the algorithm, the predictive stage block of the
high-level scheme in Figure 2.2 contains only an EKF (Figure 2.4), used as predictive filter
in the sense that it works with a reduced number of observations. This kind of estimation
that integrates measurement is usually called “a posteriori” in the Kalman filter’s theory.
In this text, the operations performed by the EKF employed in the predictive stage will
be referred to as quasi-a-priori estimation (QAP), with a small abuse of terminology. This
notation is used to distinguish this EKF, preliminary to IAR computation (EKFQAP ),
from the successive hybrid EKF estimation (within the Hybrid PVTA block in Figure 2.2),
that is performed with an enhanced number of measurements (pseudoranges and IARs) to
provide the definitive position.

The block diagram in Figure 2.4 clarifies the roles of filters in IAR retrieval and position
estimation for this algorithmic approach. Comparing block diagrams of Figures 2.3 and 2.4,
it should be remarked that the preventive estimation of bA (hidden inside r̂sA) is computed
at time k in both versions of the algorithm (Algorithm 1 and 2), when its estimation
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Figure 2.4: Algorithm 2 block diagram. The dashed rectangle highlights the a priori
estimation block, where EKFQAP is the EKF quasi-a-priori estimation stage.

can be performed exploiting updated pseudoranges (measured at time k). Hence, since
it is computed integrating measurements, b̂A is the output of an EKFQAP block in both
diagrams.

The use of EKF in the estimation of the steering vector hsA allows a general enhance-
ment of its quality, provided that the measurements employed are valuable. Besides this,
the main difference with respect to Algorithm 1, is that here A broadcasts a help message
without sharing its steering vector information (ĥsA), since the computation of γ̂ is not
performed by B (Algorithm 2). As a consequence, the potential aiding agents will have
to grant additional ranges in response to a bare help request. As it will be illustrated in
Chapter 2.4, the advantages of an estimation that integrates observations are significant.
On the other hand, the prediction effort required in an implementation of Algorithm 1 is 1
RTT and such a time interval could be very brief. If modern communication systems are
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considered, like the upcoming 5G [23], the round-trip latency addressed is around 1ms [24].
This low-latency feature is also particularly relevant if the RTT is compared to common
GNSS receiver update rates of 1Hz [17].

This part on the a priori estimations completes an extensive description on the method-
ology that concerns the IAR paradigm. It has been underlined, in particular, that the
quantities related to the aided agent represent a critical point, due to the necessity of an
estimation in a condition of insufficient data. As a consequence, these estimations require
ad hoc predictive procedures that involve measurements observation and feedbacks. Such
techniques could potentially lead to divergent outputs, and the stability of the EKF is put
to the test. For these reasons, their effects on the IAR measure need to be investigated
carefully.

In the upcoming section, this study is carried out through a careful analysis. The impact
of the aforementioned methods on the collaborative range is observed and, moreover, each
single component of IAR estimation formula is analyzed w.r.t. to its effects on the IAR
measure.

2.4 Inter-Agent Range Analysis

In the attempt of a deep understanding of the estimated IAR behavior, a look at the
quantities that are involved in its estimation is mandatory. In this section the estimated
IAR formula is taken apart and the impact of its components on the collaborative range
is analyzed from a statistical point of view.

The quantities to be investigated have been carefully described in previous sections.
However, even if the critical aspects have been individuated, the effects of their estimations’
quality on the IAR have not been addressed yet. The high-level block diagram of Figure
2.2 provides a compact illustration of the variables involved. It will be kept as a reference
throughout the section to have a clear picture of variables and their relationships, especially
when they will be studied in separation.

The investigation on isolated effects of variables will be carried out focusing on one of
the estimated quantities visible in Figure 2.2 and forcing the others to assume their true
values. The analysis will be first focused on corrected pseudorange estimates r̂sA and r̂sB,
assessing the impact of pseudorange variance σUERE and the consequences of the user clock
bias estimation. Then, steering vector estimation effects are inspected meticulously, either
coming from the aiding agent (ĥsB) or from the aided agent (ĥsA). Ultimately, the combined
effect of these estimations is presented and analyzed. It should be highlighted however,
that generally, the superposition principle cannot be exploited due to the non-linearity of
the system (e.g. IAR formula), but this still remains an effective method to take apart the
IAR estimation process.

A few words should be spent on the analysis criteria. The quality of the estimated IAR
is assessed by considering the difference w.r.t. a measure of the distance between A and
B, namely the IAR error. It is considered as a reference in this sense the distance between
the true position of agent B and the true position of agent A, since this quantity is the
ideal IAR IsAB, as it would be obtained from an error-free set of parameters imposed in
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(2.30). With this in mind, the IAR error is defined as

eI = IsAB − ÎsAB. (2.37)

2.4.1 Pseudorange impact
Among the variables involved in IAR estimation, an obvious impact factor of a GNSS-
based measure are the pseudoranges and their variance σ2

UERE . Besides affecting the
regular PVT solution, they are involved in IAR estimation formula since they are included
in the definition of the estimated corrected pseudoranges r̂sA and r̂sB. Recalling Section 2.2,
r̂si is obtained from pseudorange measurements:

r̂si = ρsi − b̂i. (2.38)

From (2.38) it can be noticed that the pseudorange ρsi is not the only random quantity
that affects the corrected pseudorange, in fact the estimated user clock bias affects r̂si as
well. As explained in Section 2.3, the user clock bias estimation is not straightforward,
especially for the aided agent A, for which predictive techniques are needed. Therefore a
specific analysis of its impact will be addressed in the next Section.

In order to simplify the problem a first analysis is done by considering a perfect esti-
mation of the user clock bias, so that b̂i = bi for every agent. As stated in Section 1.1, the
pseudorange error is modeled as a zero-mean normally distributed random variable such
that

ρsi ∼ N (rsi + bi, σ
2
UERE). (2.39)

In the case of an error-free estimation of the user clock bias, r̂si is simply obtained with
the addition of a deterministic value. As a consequence, the probability density function
shape is unchanged, resulting in

r̂si = r̃si ∼ N (rsi , σ2
UERE) (2.40)

where the variance is still σ2
UERE . This simplification ensures that the estimated range r̂si

will depend on a single random variable i.e. the pseudorange error with its variance.
It is worth noticing that now the estimator r̂si of the satellite-user distance is unbiased,

since
E[r̂si ] = rsi . (2.41)

With this assumption, the analysis of the pseudorange impact on ÎsAB can be carried
out in a more rigorous way. The issues derived from clock estimation are avoided, in
order to approach a study of the IAR independent from variables prediction. In fact, with
respect to the diagram in Figure 2.2, the use of true user clock biases bA and bB in the
corrected pseudoranges r̂sA and r̂sB results in a complete independence of these variables
from respectively, the predictive stage and the PVT section of agent B.

Similarly, a perfect steering vectors estimation, such that ĥsA = hsA and ĥsB = hsB,
produces the same effect on the aforementioned diagram. With these ideal assumptions, a
complete isolation of the effects provoked by σUERE on IsA,B is addressed. These relations
are summarized in the block diagram of Figure 2.5, which is a simplification of the scheme
of Figure 2.2 that fits this idealized case.
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Figure 2.5: IAR estimation block diagram with isolated ρ effect. Variables involved in IAR
estimation are highlighted, but b̂A, b̂B, ĥsA and ĥsB are assumed equal to their true values.

The characteristics of ÎsAB in this highly ideal situation are shown in Figure 2.6 through
mean and standard deviation evolution of the IAR error eI . The error is studied in com-
parison to the alterations of the variance of the pseudorange measurements σ2

UERE . It is
worth mentioning that σ2

UERE characterizes the pseudorange noise of the entire swarm of
agents: thus also contributions from aiding agents are affected by this variance.

Figure 2.6: IAR error evolution. Mean and standard deviation w.r.t. different σUERE
values. A perfect correction of the user clock bias in r̂sA is assumed as well as perfect
steering vectors estimations.

45



2 – Methodology and IAR Analysis

The error statistic is coherent with the intensity of pseudorange noise. For bigger values
of σUERE the mean error µeI

shows a wider dynamic. However, It must be noticed that
all these curves highlight a very limited bias. The intensity of fluctuations is proportional
to the amount of pseudorange noise involved in the IAR calculation, but the peaks have
negligible values even for a realistic σUERE of 7.03meters. In this favorable scenario the
bias is close to zero, approaching the better performances demonstrated in [12] with static
agents. This empirical result confirms also (2.41)

The standard deviation is consistent with the variations as well. For higher levels of
pseudorange noise it is generally larger. Particularly, the initial values of the curves are
already wide spread at the first instant of outage, since a strong σUERE directly affects the
IAR calculation producing a larger uncertainty of this measure.

In this phase of the IAR analysis it may be interesting to inspect the probability dis-
tribution of ÎsAB as a random quantity. In fact, the pseudoranges are the only random
variables involved in IAR estimation and the relative probability distribution represents a
highly simplified case, useful for future comparisons. Figure 2.7 shows the outcome of a
distribution fitting applied to IAR samples at the beginning of its evolution. The dataset

Figure 2.7: Probability distribution fitting on random variable ÎsAB at first instant. Pseu-
doranges are the only random variables involved in th estimation.

is compared with several distributions4 and the most suitable are plotted in order of fit.
As a result, the normal distribution is the probability distribution that better describes
the characteristics of the estimated IAR in this case.

Summarizing, the variance of the pseudorange error is certainly a major factor influ-
encing the standard deviation experienced by ÎsAB. It is responsible for the intensity of the

4The continuous probability distributions tested are: beta, Birnbaum-Saunders, exponential, extreme
value, gamma, generalized extreme value, generalized Pareto, inverse Gaussian, logistic, log-logistic,
lognormal, Nakagami, normal, Rayleigh, Rician, t location-scale, Weibull
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average fluctuations of ÎsAB around its true value IsAB, but it does not cause pronounced
non-stationary phenomena by itself: the σeI

curves does not deteriorate as the outage time
passes. In the same way, the average IAR error does not degenerate as well and moreover,
it is always set around limited values. The pseudorange error variance alone σ2

UERE is not
responsible for biases enhancement of ÎsAB nor it is involved in variance divergence.

2.4.2 User Clock Bias estimation effect
The estimation of the user clock bias bi is a critical aspect of this cooperative algorithm.
According to (2.38), bi is preliminary estimated to obtain the corrected pseudorange from
the pseudorange measurement. In the previous section, this estimation was considered
perfect, thus b̂i = bi was assumed. In this section instead, the non-ideal estimation of the
user clock bias is introduced in r̂si and its effect is specifically observed. The analysis is
carried out again varying the σUERE intensity and assuming a perfect estimation of the
steering vectors, in the tentative to observe the effects of b̂i in isolation.

As underlined in Section 2.2, aided agent A and aiding agent B have to overcome
different problems to obtain an estimate of bi. While b̂B is the result of a non-hybrid
PVT algorithm, b̂A cannot be retrieved through a plain GNSS PVT solution and has to
be predicted (Sec. 2.3) using the available measurement observations. Due to this issue,
the impact of the corrected pseudorange of agent A on IAR error is not straightforward.

The comparison with several levels of pseudorange noise discussed in the last section is
here repeated and the results are summarized in Figure 2.8.

Figure 2.8: IAR error evolution during GNSS-outage. Mean and standard deviation w.r.t.
different σUERE values.

With respect to Figure 2.6, where a perfect correction of the user clock bias in r̂sA was
assumed, a fast worsening of the variance is clearly visible. The curves related to σeI

rapidly grow within the outage period. They show an increasing trend and, notably, the
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slope is proportional to the intensity of σUERE . A similar effect is produced also on the
average IAR error, where the curves diverge proportionally to the intensity of pseudorange
error variance as well.

The divergent behavior of error curves is not surprising. Figure 2.9 is an adaption to
this case analysis of the more general high-level block diagram of Figure 2.2. Referring to
this figure, it is possible to observe that the feedback that links the PVTA block with the
prediction stage plays a crucial role in the arising of the divergent trend. Basically, the
IAR estimation that enters in the aided agent’s PVT block is based on the state estimation
that this block has produced at previous instant. In other words, ÎsAB, used to compute
the state x̂A,k, is calculated through r̂sA,k that is based on b̂A, which in turn is predicted
from x̂A,k−1.

Figure 2.9: IAR estimation block diagram with isolated b̂A and b̂B effect. Variables involved
in IAR estimation are highlighted, but ĥsA and ĥsB are assumed equal to their true values.

Through this closed loop, the state estimate re-enter (after processing) in the PVT block
as an observation measurement. As a consequence, errors in x̂A,k are easily “amplified”.
Moreover, the pseudoranges affect the IAR estimation in two ways: directly in r̂sA equation
2.38 and indirectly through the estimation in the EKFQAP block of b̂A. The slope increase
of curves in Figure 2.8 w.r.t. σUERE is therefore reasonable, since a poor pseudorange will
be re-injected in the closed loop more than one time (Figure 2.9).

2.4.3 Steering Vector impact
In this section, the estimations of steering vectors hsA and hsB are investigated with respect
to their influence on the range ÎsAB. It is foreseeable at this point, that the two estimated
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quantities ĥsA and ĥsB will have very different characteristics, caused by their distinct
estimation techniques (Sec. 2.2). In particular, ĥsA can be estimated through two different
methods (Sec. 2.3) that are compared in this section as well.

A precise characterization of the steering vectors effects demands an analysis where ĥsi
is the only random variable involved in IAR computation, besides measurement noise. For
this reason, the effects of the user clock bias estimation are nullified, imposing b̂i = bi for
all agents.

Furthermore, in order to specifically inspect the role of feedbacks in steering vectors’
determination, a comparison with random steering vectors will be provided. The intent
is to have steering vectors with arbitrary accuracy and precision, whose generation is also
independent from past epochs. In this way it is possible to distinguish the response of
the IAR estimation caused by an erroneous steering vector alone or by the presence of
the re-injection of errors through feedback. Random steering vectors are obtained from a
true position xi,k corrupted with white Gaussian noise. The resulting steering vector is
therefore a time-independent noisy version of hsi .

The following analyses are carried out differently w.r.t. to the agent considered. Since
the determination of ĥsB is the result of a plain non-hybrid PVT solution (Figure 2.2), a
first simpler analysis is devoted to the influence of the aiding agent’s steering vector on
IAR. To this purpose, the interference of the aided agent’s steering vector estimation is
erased, i.e. ĥsA = hsA is assumed. Subsequently, the effects of the prediction of hsA alone
are presented, studying both the a priori estimation procedures while assuming ĥsB = hsB.

Aiding agent steering vector impact

As mentioned, the isolated effects of the steering vector ĥsB on estimated IAR are assessed
imposing perfect estimations of user clock biases and steering vector hsA. These assumptions
lead to the block diagram of Figure 2.10, where ĥsB and ρ are the only random variables
left. The quantity ĥsB in particular, is influenced by the latter and by the state estimate
of agent B obtained through the PVT stage.

In Figure 2.11 the statistical characteristics of the IAR process are reported in these
idealized conditions.

The black curves are related to a steering vector estimation obtained from the EKF-
based PVT solution of the aiding agent B. In the left plot, regarding the IAR average
error µeI

, the curve exhibits a wide dynamic reaching non-negligible peaks of bias. The
evolution of this bias however, suggests a bounded behavior that does not give birth to a
divergent trend as the IAR estimation is reiterated through time. Similarly, the standard
deviation σeI

evolves smoothly and settles around a constant value, that is coherent with
the standard deviation associated to the pseudoranges involved (σUERE = 7.03m).

From these curves, related to the ĥsB derived from a EKF-based PVT, it can be noticed
that both average and STD of the IAR error are slow varying function of time. This suggests
the presence of time correlation in the process. Since in this case the PVT algorithm is
based on EKF, this comes at no surprise.

In Figure 2.11, the IAR error is also compared to one computed through a ĥsB vector
derived from a PVT solution based on a Least Mean Square algorithm (LMS). In this
case, the solution at each time is independent from the past and this is noticeable from a
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Figure 2.10: IAR estimation block diagram with isolated ĥsB effect. Variables involved in
IAR estimation are highlighted, but ĥsA, b̂A and b̂B are assumed equal to their true values.

Figure 2.11: IAR mean and standard deviation through time. A steering vector obtained
from a EKF-based PVT is compared to one obtained from a LMS-based PVT solution.
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less smooth bias characterization. Moreover, σeI
settles to higher values w.r.t to the EKF

counterpart, as it is expected by a LMS-based solution, provided that the Kalman’s model
assumptions are sufficiently accurate [25]. In this example, average and STD of eI are
consistent with the estimation characteristics of the aiding agent’s position.

In order to further investigate the influence of agent B’s position state estimation on
IAR, the generation of random steering vectors is exploited. As mentioned, they are based
on an exact position xi,k that has been corrupted with Gaussian noise. In particular, the
true position is affected by the noise vector wk, according to

xi,k + wk ∼ N (µ,Σ), (2.42)

where the mean vector µ is
µ = (µ µ µ)> (2.43)

and the covariance matrix Σ is

Σ =

 σ2 0 0
0 σ2 0
0 0 σ2

 . (2.44)

The values µ and σ2 are arbitrarily set in order to regulate the noise intensity and average.
If µ = 0 this technique produces an estimated steering vector that is unbiased, besides being
characterized by a stationary error. The intent is to have an overview on the toleration
of the IAR w.r.t. steering vectors received from an aiding peer with a poor position
precision. Several position variances have been investigated and their effect on the IAR
error is described by Figure 2.12 along with the case of ĥsB derived from an EKF-based
PVT solution.

Figure 2.12: IAR mean and standard deviation through time. A steering vector obtained
from a EKF-based PVT is compared to random ĥsB with different values of σ and µ.
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According to the plots, the steering vector estimated by B has generally a non-negligible
effect on the cooperative range. When ĥsB is random, the effects on the average IAR error
are again coherent with the estimated position characteristics. The same happens to σeI

,
which is substantially stationary, with values coherent with the standard deviation of the
corrupted position over which a random steering vector is based. This position’s error has
also no time-correlation and the IAR error curve behaves consistently.

To complete the investigation on effects of a poor position estimate of the aiding agent on
IAR, the comparison with a biased random steering vector ĥsB is also provided. The result
is outlined as well in Figure 2.12. As expected, the standard deviation is equal to the curve
relative to the same random steering vector characteristics with no forced bias. The average
error instead is clearly non-zero but the trend is constant. The statistical characteristics of
the IAR error are again coherent with random steering vector’s properties: this is a further
confirmation that the IAR estimation error behave consistently with aiding agent accuracy
and precision. Therefore as long as B does not obtain a poor position fix, the IAR is still
a valuable measure of euclidean distance. In other words, the IAR error does not diverge
when IAR estimation is fed by bounded position errors of the aiding agent.

This aspect foster a conservative choice of the aiding agent. Agent that are not expe-
riencing outage and are able to position themselves with no external aiding are certainly
a good choice. Furthermore in a crowded environment, a selection of collaborating peers
may be done on this basis, with respect to collaborative peers’ positioning quality (see Sec.
4.3).

Aided agent steering vector impact

A final investigation is devoted to the influence on IAR error of the steering vector es-
timated by A. As underlined throughout the chapter, this estimation must face a data
underestimation problem, thus, similarly to the estimation of bA, prediction techniques are
required that may put to the test algorithm’s stability.

In order to isolate the effects of ĥsA on the Inter-Agent Range, it is assumed in this part
a perfect estimation of ĥsB, b̂A and b̂B. As a result, the dependencies highlighted in Figure
2.2 are reduced, resulting in the simplified block diagram of Figure 2.13, where ĥsA and ρ
are the only random variables.

The estimated steering vector ĥsA is the outcome of a prediction step, weather it is an
a priori KF prediction that looks 1 RTT forward or a quasi-a-priori EKF step updated
with available pseudoranges (Section 2.3). The statistical characteristics of the IAR error
resulting from the application of both methods are compared in Figure 2.14.

The two curves in the aforementioned figure share a distinctive divergent trend. A
behavior similar to the one observed during the analysis devoted to effects of bi estimation.
At the beginning of observation time, both average and STD are characterized by small and
similar values. But, as the IAR algorithm is reiterated, the IAR error gradually degrade.

In the previous analysis on aiding agent’s influence, it has been observed that the esti-
mation of hsB is not subject to the same instability issues that characterized the estimation
of hsA. The feedback that links the output of hybrid PVT to the IAR computation is the
main difference between the two estimation procedures (highlighted in red in Figure 2.13).
Hence it is likely the cause of the different statistical characteristics of the IAR error in
the two analyses.
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Figure 2.13: IAR estimation block diagram with isolated ĥsA effect. Variables involved in
IAR estimation are highlighted, but ĥsB, b̂B and b̂A are assumed equal to their true values.

To distinguish between the feedback response from the sole effects of an erroneous
steering vector prediction, a comparison among IAR error caused by random steering
vectors is provided (Figure 2.15). It is the same technique employed above, since the
random steering vector’s generation is based on noisy time-independent positions that
emulates the absence of feedbacks.

Several considerations can be done regarding Figure 2.15. Focusing on random ĥsA,
it is clear that such steering vectors impact the IAR error variance with intensity that
depends on σ. Obviously a σ variation has almost no effect on IAR error bias since in this
case E[ĥsA] = hsA at any time instant. In any case a stationary variance of these steering
vectors produces a IAR error whose statistical characteristics does not change over time.
In fact, even a biased random steering vector (purple line) does not give birth to divergent
phenomena, while affecting the µeI . Random steering vectors provoke a IAR error whose
average and STD are constants, with values consistent with their stationary characteristics.
This confirms that the isolated use of erroneous steering vectors ĥsA is not responsible of
IAR error’s divergence of any kind.

The comparison with the curves related to the two prediction methods of hsA in Figure
2.14 suggests that the unavoidable prediction of the steering vector is another major con-
tributor to the growth of variance and bias in IAR estimation, causing a deterioration of
the cooperative range. As illustrated in the analysis of b̂i, this is a reasonable aftermath of
a priori estimation, since the latter introduce a feedback from a hybrid PVT (Figure 2.13).
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Figure 2.14: IAR mean and standard deviation through time. A steering vector obtained
through a EKF-based quasi-a-priori estimation is compared to one predicted through a
KF-based a priori estimation.

Figure 2.15: IAR mean and standard deviation through time. A steering vector obtained
from a EKF-based PVT is compared to random ĥsA with different values of σ and µ.

Errors in IAR estimation affect the PVT outcome which, in turn, influences the next IAR
estimations propagating such errors in the closed loop. Due to the feedback’s presence,
the injection of erroneous estimated steering vectors in the IAR algorithm is amplified
throughout the epochs and could potentially lead to instability issues. This phenomenon
is more intense in the KF prediction case, where the prediction stage is heavily based on
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previous PVT outcomes, because no measurement observations are exploited to estimate
ĥsA. As a result a more severe divergence can be observed.

2.4.4 Combined effect
To provide a complete statistical characterization of the IAR estimate, the evolution of
ÎsAB should be studied in presence of the concurrent effects of all the parameters involved.
The analysis of combined effects of all the variables previously described is presented in
this part. Envisioning a realistic implementation, it represents a meaningful statistical
characterization.

The assumptions made so far are removed and each quantity involved in IAR estimation
formula is retrieved as described in the IAR procedure. In particular, user clock bias and
steering vectors are estimated by aiding and aided agent as illustrated by the complete
block diagram of Figure 2.2.

Figure 2.16 illustrates the evolution of the IAR error in this realistic condition, com-
paring different prediction methods of hsA.

Figure 2.16: IAR error evolution through time. Mean and standard deviation w.r.t. dif-
ferent steering vector estimation methods. Realistic configuration with estimated steering
vectors and user clock bias errors. σUERE = 7.03m.

From the figure, it is possible to recognize the contributions from some of the parameters
investigated so far. Remember however that, as stated in the introduction of Section 2.4,
the superposition principle cannot be exploited due to the non-linearity of the system.
All previous components’ estimations contribute to bias and variance levels in the IAR
error, but the divergent trend of µeI and σeI

, introduced by the estimations of hsA and bA,
dominates the overall behavior. The a priori estimations of both hsA and bA are indeed
responsible for this deterioration.
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The combination of these two phenomena encourages the divergent trend of the curves as
the outage period passes. As a result this process is faster than in previous configurations:
the combined influence of the two parameters makes bias and STD worse in a briefer time.

It should be remarked however, that the deteriorations caused by the two predicted
variables have not the same intensity. According to their isolated effects (Figure 2.14 and
2.8), bias and variance provoked by the user clock bias estimation are far less harmful than
those caused by ĥsA, since their intensity is much smaller. Nevertheless, their combined
effect may be worse than their sum since the superposition principle does not hold. This
is reasonable because now, every time a poor position estimation is re-injected in the
IAR computation through the feedback, its negative effect is repeatedly spread over more
estimated variables (ĥsA and b̂A).

In accordance to previous results, also in this realistic situation, the strength of the
deterioration depends on the pseudorange error noise intensity, as suggested by the repre-
sentation of Figure 2.17. This means that IAR errors are more biased and less concentrated
as the time passes, and the worsen of these characteristics is faster when fed by pseudor-
anges characterized by a bigger σUERE .

Figure 2.17: IAR error evolution through time. Mean and standard deviation w.r.t. dif-
ferent σUERE levels. The steering vector ĥsA is obtained through EKF quasi-a-priori esti-
mation.

It is interesting to notice that the bias is not nullified even in presence of a very small
σUERE (0.1m). This means that even small fluctuations around true pseudorange values
are able to produce non-negligible effects, due to the wide impact that the measurement
noise has over the system described by Figure 2.2. In particular, the average IAR error is
mostly non-zero during its evolution, suggesting that

E[ÎsAB] /= IsAB (2.45)
for a generic time instant. Therefore, in general, the IAR method is a biased estimator of
the euclidean distance between two receivers.
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Now that all the estimated variables are included in the process, ÎsAB is a random vari-
able dependent from several random quantities. The study of its probability distribution
would complete the characterization of the statistical properties, but the derivation of an
analytical form is certainly non-trivial. Such characterization is assessed in this part by
means of an empirical approach.

A similar analysis was done in Section 2.4.1, where the gaussian distribution has been
identified as the closest matching result of a distribution fitting algorithm. The result
of Section 2.4.1 was derived in a highly-idealized situation, where the pseudorange noise
affected the IAR process only through corrected pseudoranges r̂si (Figure 2.5). With the
current realistic assumptions instead, ÎsAB is the result of a complex interaction among
variables affected by the pseudorange noise, and the outcome of a distribution fitting
algorithm may be unexpected.

Figure 2.18 illustrates the output of this procedure when applied to samples of IAR
error evaluated at the first instant of ÎsAB evolution5. The procedure is applied on IAR

Figure 2.18: Probability distribution fitting on random variable ÎsAB at first instant. Real-
istic configuration with estimated steering vectors and user clock bias errors. The steering
vector ĥsA is obtained through EKF quasi-a-priori estimation.

estimates obtained through the quasi-a-priori prediction method of hsA. Mean and variance
of the histogram in Figure 2.18 are therefore consistent with the ones read from Figure
2.16 at the first time instant. The closest distributions are shown in the figure legend in
order of fit.

The distribution with the highest matching is the same of the highly idealized case of
Section 2.4.1, i.e. the Gaussian distribution. This is quite reasonable since a snapshot at

5As before, the continuous probability distributions tested are: beta, Birnbaum-Saunders, exponen-
tial, extreme value, gamma, generalized extreme value, generalized Pareto, inverse Gaussian, logistic,
log-logistic, lognormal, Nakagami, normal, Rayleigh, Rician, t location-scale, Weibull
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early instants of the algorithm repetitions provides a collaborative estimate that is free
from effects induced by previous IAR estimation processes.

A different outcome of the fitting procedure may arise if the IAR error distribution
is analyzed when more seconds (and more algorithm repetitions) are elapsed. Mean and
variance are certainly expected to change, accordingly to values reported in Figure 2.16, but
the distribution shape may not remain the same throughout time evolution. Figure 2.19
summarizes the outcomes of this distribution fitting algorithm, applied to the realizations of
random variable ÎsAB when 24 seconds are elapsed. It is clear that the gaussian distribution
is still the closest matching among the probability distributions tested. This is an essential
result for the IAR measurement characterization.

Figure 2.19: Probability distribution fitting on random variable ÎsAB after 24 epochs of
IAR estimation processing. Realistic configuration with estimated steering vectors and
user clock bias errors. The steering vector ĥsA is obtained through EKF quasi-a-priori
estimation.

In the EKF measurement model from Section 2.1 the measurement noise in (2.6) is
assumed normally distributed. This is verified for the pseudoranges, but the vector zk
integrates also IAR collaborative measurements in this hybrid implementation of EKF. As
a consequence, the gaussian noise assumption must be true also for IAR measurements. The
covariance R̄k in fact, models their variances as well, and it is used in the EKF routine to
provide an optimal estimate, as long as the model is true. With this in mind, the empirical
result from the distribution fitting test represent a further confirmation that the EKF
measurement model is still a suitable choice when integrating Inter-agent collaborative
ranges. A further proof is given in Figure 2.20, where the fitting tests are performed at
more time instants and the results are shown together to provide a general perspective on
the evolution of the statistical properties through time.

From this extensive analysis of combined effect, it has been observed a significant wors-
ening of the statistical properties of ÎsAB. Precision and accuracy of the IAR estimate

58



2.5 – Final Remarks

Figure 2.20: Probability density estimation of a single IAR measurement along an outage
of 25 s. Snapshots obtained at 0 s,9 s, 17 s and 25 s.

are not constant throughout the repetitions of the process but rather deteriorate progres-
sively. As a consequence the statistical properties of ÎsAB are time-dependent: ÎsAB is a
non-stationary process with properties related to the outage duration.

It should be reminded however, that this behavior arises after many repetitions of IAR
algorithm, that would correspond to a long outage period experienced by an agent. More-
over the observation has been focused on the same Inter-agent range IsAB, that would not
necessary be the only collaborative measurement integrated in the hybrid PVT of an aided
agent. A generic aided agent A might be able to obtain several IAR measures, relative to
various aided agents and common satellites. In a realistic implementation, this diversity is
exploited by taking advantage from the integration of multiple collaborative ranges. This
will result in preventing the same estimation errors that affect a specific IAR, from being
continuously re-injected in the IAR estimation through feedback, thus producing the di-
vergent phenomena observed so far.

2.5 Final Remarks
This chapter has provided a comprehensive description of the methodology concerning
the IAR paradigm. Limits and constraints of the method has been discussed, along with
procedures necessary to face them. In particular, the GNSS/IAR tight integration has been
illustrated in its EKF implementation. The stability issues relative to the choice of the
linearization point has been presented as well as the possibility of a LMS re-initialization of
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the EKF, possible thanks to the IAR integration, useful to neutralize divergent phenomena.
Then, the IAR estimation procedure has been deeply discussed, presenting the quantities
involved and the relative estimation issues. In particular, a critical point is represented by
the variables related to the aided agent, which need to be estimated in a condition of lack
of sufficient data. Their evaluation requires the use of a priori estimation techniques that
have been illustrated as well. A comparison between these prediction strategies has been
presented, highlighting the advantages and drawbacks of the respective algorithms.

The last section was then devoted to an extensive analysis of the IAR estimate as a
random variable and to the impact that several system parameters and variables have on
it. From the analysis it has been verified that the sole injection of noise in the system is
not responsible for instability in the IAR algorithm. Divergence arises instead with the
concurrent presence of feedback, which is unfortunately unavoidable in the IAR estimation
scheme. With this in mind, it was observed that the prediction of the user clock bias
produces increasing bias and variance in the collaborative range error. This estimation
procedure is not the main responsible of IAR measure’s deterioration: the estimation of the
steering vector of the aided agent is certainly the primary cause of instability. On the other
hand, although it adds some uncertainty to the IAR computation, the estimation of the
steering vector of the aiding agent does not give birth to divergence phenomena, provided
non-divergent positioning solutions of this agent. This happens despite the fact that the
aiding agent makes use of a feedback in its PVT algorithm, due to the employment of EKF.
The latter introduces correlation but it does not cause error amplification nor instability in
the IAR estimation process. The key point is that, in this case the state estimate (and its
error) does not re-enter in the PVT computation as a measurement. Instead in the case of
aided agent, the state estimate is used to predict variables involved in IAR computation,
whose output will become a measurement used to compute the next state estimate. As
a consequence, errors contained in such estimates are easily amplified through this closed
loop.

The effectiveness of this cooperative paradigm in positioning has been also tested, ex-
ploiting a Monte Carlo simulation method. In the next chapter, the characteristics of such
simulation framework will be illustrated, along with the features of the software implemen-
tation.
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Chapter 3

Simulation Framework

To assess its applicability in a dynamic context, the cooperative navigation algorithm based
on IAR is tested through a Monte Carlo method in a software simulation environment. Be-
fore proceeding to the analysis of experimental results, a characterization of such simulation
environment is presented in order to provide a complete picture of the experiment.

A swarm of cooperating agents is managed within the simulation environment through
realistic motion dynamics and communication delays. Essentially, the implemented model
takes into account all the constraints related to the estimation of the involved variables, thus
besides dynamics and network properties, also environmental conditions like sky visibility
and measurement noise. In this chapter a classification of the agents is defined in order
to build a consistent framework for simulation and a solid basis for the roles of the peers
in the cooperative protocol. In a cooperative network of GNSS-based positioning units
several random factors may influence the state of the network. Hence, an overview on the
uncertainties modeled in the simulation is also presented to complete the picture on the
experimental framework.

3.1 Models for the Simulation

3.1.1 Visibility State

As recalled in the introductory part on GNSS (Section 1.1), a receiver that is able to get
4 pseudoranges from 4 satellites can locate itself on Earth. Actually by exploiting the
EKF in the navigation algorithm, this limitation can be overcome and a position estimate
is made available even for a reduced number of measurements. However the condition of
having at least 4 tracked satellites is still indicative of position estimation reliability, since
it permits single point positioning without additional information [25]. As mentioned in the
description of the IAR method (Section 1.2), the peers eligible for aiding are only those
who can position themselves autonomously, i.e. with an acceptable confidence. Hence,
we can exploit the aforementioned visibility condition as a good indicator of positioning
quality, in order to select a particular set of receivers eligible to become aiding agents. It
is convenient to anticipate here that, in this context, those receivers are said to be in a
Fixing state (F).
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Hereafter a mathematical formalization is defined to classify agents. The definitions
given for sets satellites and IAR measurements are resumed from Section 1.2 and extended
to be used throughout the chapter. Set notations are reported in Table 3.1. Notice that
each set is defined at a specific time instant k, hence the elements included may change
for each k.

Name Symbol
Set of receivers Nk
Set of satellites Mk

Set of visible satellites for the j-th receiver Gj,k
Set of collaborating agents for the j-th receiver Sj,k
Set of IAR integrated in the PVT algorithm of j-th receiver Ij,k
Set of agents in F state Fk
Set of agents in D state Dk
Set of agents in L state Lk

Table 3.1: Set definitions.

Assume for now, that everything takes place instantaneously, at time k, and, as a conse-
quence, the definitions that follow temporarily involve only this specific time instant. This
is done for clarity reasons, but a further formalization, that includes the communication
delays, will be given at the end of the section.

GNSS service availability is represented by means of a Satellite Visibility Matrix Vk,
defined as

Vk =


v1

1,k v2
1,k . . . v

|Mk|
1,k

v1
2,k v2

2,k . . . v
|Mk|
2,k

...
... . . . ...

v1
|Nk|,k v2

|Nk|,k . . . v
|Mk|
|Nk|,k

 (3.1)

where each element vsj,k is a binary variable that indicates if a receiver j sees and tracks
the satellite s at time k. More formally:

vsj,k =
{

1 if s ∈ Gj,k
0 otherwise

The Satellite Visibility matrix is defined to model the visibility conditions of the satellites
signals. Changes in visibility of the constellation or degradation in tracking performances
correspond to a binary transition of the elements in (3.1). In the simulation this matrix is
updated according to a given transition rate.

From the Satellite Visibility Matrix follows the cardinality of the set Gj,k, which for
each time instant k is

|Gj,k| =
|Mk|∑
s=1

vsj,k . (3.2)
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An analogous matrix is defined to manage the availability for cooperation among peers.
It is called Pairwise Visibility Matrix and it is defined as:

Wk =


w11,k w12,k . . . w1|Nk|,k
w21,k w22,k . . . w2|Nk|,k
...

... . . . ...
w|Nk|1,k w|Nk|2,k . . . w|Nk||Mk|,k

 (3.3)

Each element wjl,k of the matrix is again a binary variable that represents the possibility
for the agent j to start the IAR algorithm and to receive help from agent l. This event is
possible if two conditions are verified:

• a common satellite must be visible and tracked by both receivers;

• the aiding agent l should be in a F state.
The first condition is a necessary condition for the application of the IAR algorithm, while
the second is employed to provide a more conservative collaborative method.

The elements in the matrix Wk can be defined in a more rigorous way:

wjl,k =
{

1 if ∃ s ∈Mk : vsj,k + vsl,k = 2 , l ∈ Fk
0 otherwise

Now from this matrix, which in turn is completely determined by the matrix Vk, the
cardinality of the set of collaborating peers for the agent j can be inferred:

|Sj,k| =
|Nk|∑
l=1

wjl,k .

Each agent at any time instant k is characterized by the properties of its visibility
matrices, that define its role in the cooperation paradigm. The classification of the agent
in this sense is performed through the definition of a Visibility State that is based upon
Satellite Visibility matrix and Pairwise Visibility matrix. The formalizations introduced
so far are useful to unambiguously define the current Visibility State of agent j and its
transitions throughout the time.

As anticipated in this section, agents in a Fixing state (F) or Fixing agents are able to
retrieve their position by means of GNSS measurements and legacy positioning algorithms.
For this class of receivers, the continuity of service is guaranteed, as long as the tracking
of at least four satellites is maintained. In this context, they are eligible for the aiding of
GNSS-denied agents. It follows that

l ∈ Fk ⇐⇒ |Gl,k| ≥ 4 .

Among receivers that are not able to satisfy this condition, one particular class is able
to exploit collaborative positioning in order to retrieve at least 4 total ranges. Agents of
this class are said to be in a GNSS-denied state (D) (or GNSS-denied agents). They obtain
cooperative ranges from Fixing agents but are not allowed to provide aiding. In this case

j ∈ Dk ⇐⇒
{
|Gj,k|+ |Sj,k| ≥ 4
|Gj,k| < 4

.
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It should be stressed here that |Sj,k| is the number of single collaborative agents able
to interact with the agent j to provide the cooperative range. This means that only the
contributions from distinct agents are counted for making a peer eligible of being aided.
Actually, if the collaborating peers share more than one satellite, the aided peer can obtain
more than one range from the aiding agent. But these estimated ranges would refer to
the same euclidean distance between the two agents. Therefore, for conservative reasons,
it is chosen to prevent these multiple IARs (Sec. 1.2) to contribute to the visibility state
definition with more than one measurement. Nevertheless, they may be ultimately used in
the hybrid positioning algorithm. The use and managing of these quantities will be further
exploited in Chapter 4 when dealing with IAR selection strategies (Sec. 4.3.3).

The last possible Visibility State to which a receiver j can belong is the Lost state
and receivers in this condition are called Lost agents. Agents from this class have an
insufficient number of ranges at the disposal, whether they are pseudoranges or come from
collaborative peers. They cannot obtain a position fix. In this case

j ∈ Lk ⇐⇒ |Gj,k|+ |Sj,k| < 4 .

Notice that the entire set of definitions and states described so far is solely dependent
on the configuration of the Satellite Visibility matrix throughout time. In fact, the state of
an agent is completely determined by the transformations occurred to Vk, with respect to
its sky visibility and that of the other agents. Furthermore, each agent can be in only one
state at a time, but its visibility state will likely change several times. The Finite State
Machine (FSM) presented in Figure 3.1 illustrates in a compact way the states and their
transitions. Throughout an observation time of the simulation, each agent passes several
states and its role in the cooperative algorithm change accordingly. As a consequence,
an agent may have for instance, past positions based on legacy GNSS algorithms and a
current position obtained through hybridized solutions and vice versa.

To complete this formal characterization, the communication delay involved in the
IAR algorithm is now considered, in order to get rid of the instantaneous communication
assumption done at the beginning of the section. In section 2.3, a specific time sequence of
operations was defined w.r.t. RTT. As a consequence the above definitions must be refined
in order to consider timing constraints and latency.

In particular, the elements of the pairwise visibility matrix (3.3) are now modified: the
conditions for an agent j to cooperate with agent l to obtain a IAR, require that a common
satellite must have been visible at different time instants. Also, the agent l should have
been in Fixing state at that instant. In other words

wjl,k =
{

1 if ∃ s ∈Mk : vsj,k + vsl,k−τ2
= 2 , l ∈ Fk−τ2

0 otherwise
. (3.4)

All the other definitions are eventually updated according to (3.4) and they hold without
modification. The above condition completes the model, that is now totally coherent with
the structure of the Monte Carlo simulation implemented within the context of this work.

To conclude, the characteristics of each class of agents are summarized in Table 3.2,
along with a brief description of the visibility states and their definitions, for future refer-
ence throughout the reading.
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F D

L

Figure 3.1: Finite State Machine for visibility states. At each time instant k a transition
is triggered.

State Condition Description

Fixing (F) No. of SV in view ≥ 4 Agents able to obtain the po-
sition without external aiding.
They are available to provide
aid.

GNSS-denied (D) No. of SV in view < 4.
No. of SV in view +
no. of collaborating peers ≥ 4.

They are not able to retrieve
the position autonomously,
but can obtain more than 4
ranges through cooperation.
They are not allowed to pro-
vide aid.

Lost (L) No. of SV in view +
no. of collaborating peers < 4.

They cannot obtain a fix either
autonomously or with cooper-
ative ranges.

Table 3.2: Visibility State summary.

3.1.2 Environment Dynamics
In order to provide a complete picture of the experiment’s framework, one last section is
devoted to the description of randomness present in the system and consequently modeled
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in the simulation.
A complex network of moving and communicating peers is characterized by a high num-

ber of elements and many of them are modeled as random processes. Among the random
processes that influence the system behavior, the most significants are the measurements
noise, the navigation path and the progression of the visibility states. All of these random
processes evolve during the observation time and they are all independent among agents.

The measurement noise affects the pseudoranges and is normally-distributed, as de-
scribed in Section 1.1, with variance σ2

UERE = 7.03m [14] if not otherwise specified.
The navigation paths traveled by the agents are created mainly by two different genera-

tors. A generator produces motion dynamics according to the EKF motion model equation
(2.3). It corrupts an agent state obtained through (2.3) by means of matrix Φ, with a set of
random samples extracted from a multivariate normal distribution with covariance matrix
Qk. In this way the EKF has a perfect knowledge of the system noise and can perform at
its best, fostering an analysis focused on other sub-optimal effects. This generator is also
exploited to assess the validity of the algorithms on an unconstrained trajectory. To this
purpose, the resulting path will be referred to as random trajectory.

The other traffic generator is alternatively employed to pursue a more realistic scenario.
The generated trajectories are provided by the SUMO software1, which is a microscopic
road traffic simulator designed to handle large road networks. This kind of road simula-
tions are partially deterministic, but there are various options for introducing randomness.
However the details of the SUMO setup are omitted since they are outside of the scope of
this dissertation.

The visibility states are all derived from single satellite visibility conditions: for each
agent a given satellite may be visible or not with probability 0.5, i.e. in a discrete uniform
distribution fashion. With this assumption, the progression of visibility states is generated
for each agent. However, a constraint on the random generation is imposed at each instant,
in order to produce a desired number of agent in a D-state.

It has to be remarked, however, that these random processes are managed in different
ways, with respect to the experimental necessities. In fact, in order to have a meaningful
analysis, the path characteristics and the sky conditions relative to a single agent needs
to be repeated through each realization of the experiment. This allows to observe the
statistical properties of valuable outputs, such as position and IAR estimate, with respect
to specific sky visibility conditions and particular motion dynamics.

As a consequence, in this analysis framework either the visibility states and peers tra-
jectories repeatedly follows the same randomly extracted sequence during each realization
of the simulation, while measurements noise samples are unconditionally randomly ex-
tracted along time and across realizations. As a matter of fact, each measurement sample
is extracted from a Gaussian distribution and the random sequence is never reseeded while
spanning throughout the process realizations.

1Simulation of Urban MObility software [26]
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Chapter 4

Results

Within the extensive analysis on estimated IAR characteristics carried out in Chapter 2,
a non-trivial attribute of the IAR process emerged: a tight relationship of this cooperative
paradigm with past position estimates. Obviously the cooperative data alter the current
position estimate x̂A,k, since they are incorporated as additional ranges in the set of mea-
surements exploited to obtain the PVT solution. But the peculiarity of this relationship
is the fact that x̂A,k is partially involved in the computation of a measurement (the IAR)
for the forthcoming position estimate, due to the prediction efforts demanded by the IAR
estimation procedure. As a result, the IAR estimate ÎsAB is not only affected directly by
parameters that appear in IAR estimation formula (2.30), but also from all the events and
conditions that have an influence on position estimation. Therefore also network charac-
teristics, environmental conditions and specific trajectories realizations, that also affect x̂A
directly, will impact this collaborative range and consequently future position estimations.
The result is that all the variables involved in the hybrid PVT algorithm may have a broad
impact on the following positioning epochs, that, as seen in Section 2.4 could also lead to
instability.

A consequence of this widespread impact is that the evaluation of positioning perfor-
mances is a hard task, due to a non-straightforward analysis of the effects. As a result, the
accomplishment of a fine tuning of the algorithm is challenging, due to the difficulty related
to an empirical evaluation of optimal parameters. However, tuning is extremely important
and could prevent instability and divergence both in IAR and position estimations.

Another consequence is that a complete separation of the positioning performances from
its effects on IAR would be limiting, but in the tentative to keep a continuity with Section
2.4 and to provide a meaningful performance analysis, this chapter will be focused mainly
on positioning outcomes.

The objective of this chapter is to analyze the estimated position error of the aided
agent, when the GNSS fix is obtained through a hybrid PVT stage based on Inter-agent
Range. First, some preliminary results are reported, testing the cooperative algorithm as
presented so far. The analysis of results is mainly focused on single agents trajectories,
evaluating several scenarios through different case-studies, in order to show strengths and
weaknesses of the current algorithm configuration with respect to different situations. A
comparison with a EKF-based positioning solution, which does not exploit cooperative
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ranges is presented. In this case the outage periods are managed by the EKF, that inte-
grates the previous position and updates the estimate through available observations. This
analysis is carried out also to find room for improvements, therefore after this preliminary
evaluation some tunable aspects are discussed in order to reduce positioning errors.

A fine-tuning is carried out exploring different approaches. First, the investigation is
focused on possible measurement model refinements, assessed by means of an optimization
procedure. Consequently, the implementation of a heuristic technique that acts on the error
covariance matrix Pk is discussed. The analysis is then oriented mainly to the observation
of single user’s positioning within the network, i.e. with respect to the aiding received
by multiple agents. This point of view foster the study of the cooperative ranges as a
set, giving the chance to manage them through aggregation methods and selective criteria.
Thus after the refinement of Kalman filter’s models, these strategies are discussed and the
resulting positioning outcomes are presented.

In the end, the proposed configurations are tested and the effective improvement on
preliminary results is assessed. After performance validation the IAR method is extended
in order to integrate improvements.

It should be mentioned here that even if the analysis is mainly devoted to the study
of a single user’s position error, a network perspective is often provided. The evaluation
of overall average position errors experienced by the entire network of peers is important
in order to have a general point of view and to give a case-independent evaluation on
performance. In fact, more often than not, system tunable parameters have an impact on
position error that strictly depends on the current user’s scenario (motion dynamics, sky
visibility, neighboring peers). As a consequence, aggregated data are often used to assess
the average performance of the network and consequently provide a valuable metric for
parameters optimization.

4.1 Simulation Setup and Performance Metrics
The simulation setup is reported in Table 4.1. This configuration holds for all the analyses
presented throughout the chapter, unless different specifications are explicitly mentioned.
The constellation dynamics (Sec. 1.1) are extrapolated from rinex files and simulated with
respect to the specific location and time.

Before proceeding with the analyses of results, it is useful to define the position error

ep = xi − x̂i (4.1)
ep = (ex ey ez)> (4.2)

and its norm
ep = ||ep|| (4.3)

Notice that the position error ep is a random vector. Throughout the study then, each
position error ep, at any time instant, is characterized through a Monte Carlo approach, by
a high number of simulated realizations in order to be statistically meaningful. Moreover,
to deal with general network analyses, µN will be used to indicate the network average of
the mean position error µep experienced by each agent. In a similar way σN represents the
network average of the position error standard deviation of a single agent σep .
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Parameters Value
Number of Agents 30

Number of GNSS-denied Agents 10
GNSS System GPS

σUERE 7.03 m
Location Turin (45° 4’ 5.2716" N 7° 39’ 28.818" E)

Starting Time 9-22-2017 12:17:28 UTC
Observation Time 60 s

RTT 1 s
Agents geographical distribution (σ) 1000 m s

Visibility Matrix Vk update rate 10 s
Sp 1.0 (m/s2)2/Hz
Sf 0.4 · 10−18 (m/s2)2/Hz
Sg 1.58 · 10−18 (m/s2)2/Hz

Process Realizations 1000
Position update rate 1 Hz

Table 4.1: Simulation setup. Sp, Sf and Sg are spectral densities associated respectively
with position, clock bias and clock drift as defined in Section 2.1. Values taken from [20]

.

As a meaningful reference for performance evaluation, a comparison with the outcome of
a non-cooperative positioning algorithm is often provided. The PVT stage of this solution
is still based on an EKF, but the integration of cooperative measurements in the set of
observations is prevented. In this way the output of the EKF is based on the pseudoranges
only, which are integrated according to widely tested models, since the EKF is a well
established procedure for solving PVT in the GNSS community [27]. An EKF-based non-
cooperative PVT is thus a valuable benchmark for this comprehensive analysis.

4.2 Preliminary Results

In this section, some preliminary results from the application of IAR hybrid positioning
technique are presented. Because of the high heterogeneity of environmental conditions
and scenarios, several case-studies are presented. The simulated scenarios involve both
motion dynamics and sky visibility, but also network constraints (such as RTT). These
case-studies are investigated in order to provide a valuable analysis of hybrid positioning
performances that holds for the most common situations, or to show limiting conditions of
IAR paradigm’s applicability.

The algorithm is implemented in its basic architecture as described so far, without
additional modifications that will eventually follow from fine-tuning and optimization. In
particular, the elements of the measurement covariance matrix (2.19) are set to their upper
bounds (2.20) and (2.21), as a suitable conservative choice for this preliminary analysis.
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4.2.1 Case 1: Reduced Visibility
In Figure 4.1 the evolution of a receiver’s path is presented, over a time interval of 60 sec-
onds. An agent estimates its position along a trajectory, exploiting cooperative techniques
when needed, i.e. when less than four satellites signal are being tracked (GNSS-denied or
D state). Two types of predictive techniques can be employed within the IAR algorithm
(Sec. 2.3) and the resulting estimations are shown in Figure 4.1b and 4.1a. The two figures
show the evolution of true position state xA and estimated position state x̂A. Visibility
states are also displayed in the graphs.

(a) KF a priori estimation

(b) EKF quasi-a-priori estimation

Figure 4.1: Hybrid positioning with IAR measurements. Agent’s path observed for 60
seconds. Visibility states are highlighted.

In order to have a statistically meaningful result, each displayed position is the result
of 1000 Monte Carlo simulations (Table 4.1), where in each instance a different sequence
of measurement noise samples is extracted, while the agent motion evolution and GNSS
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visibility conditions are fixed, as described in Section 3.
During the fixing epochs the estimated trajectories show a small position error. The

real trajectory is smooth and the PVT routine can easily follow it. When a GNSS outage
occurs however, the number of tracked satellites is reduced and, despite the cooperative
aid, the estimated trajectories react slowly to the change in direction with both prediction
schemes (Figures 4.1a and 4.1b).

The effectiveness of a positioning algorithm is related to the number of measurements
exploited in the PVT calculation and their quality. From the analyses presented in Section
2.4, it was observed that the IAR is often a worse range estimate than pseudoranges,
especially after many outage epochs. As a result, the capability of the tightly-integrated
EKF to track an agent’s position is still dominated by the number of satellite in visibility
(and the relative pseudorange measurements available).

In order to inspect the visibility conditions deeper, Figure 4.2 is provided. In the picture
the number of ranges integrated in the PVT of the considered agent’s path is shown for each
epoch. Moreover, further information on performance is given: the evolution of position
error is summarized through the average and standard deviation of its norm.

Figure 4.2: Case 1: position error statistic. Average and STD of position error norm are
shown along with visibility states progression. An outage of 20 seconds is present.

Figure 4.2 shows that within the current trajectory, 3 satellite signals are tracked during
the outage period of 20 seconds. With such visibility, the EKF-based PVT is able to
provide quality results even in its non-cooperative version. As a matter of fact, it has been
simulated a plain non-cooperative positioning algorithm based on EKF, that integrates just
legacy GNSS measurements. The resulting positioning performance is shown in Figure 4.2
as well.

In these conditions, a non-hybrid PVT solution produces, in the outage interval, a
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smaller average position error, also characterized by a lower variance. A reason may be the
well known effectiveness of the EKF in satellite navigation systems [28]. In the case of the
regular non-cooperative PVT algorithms the ability of the EKF to optimally update an
estimate with the available measurements is widely used and efficiently exploited. Moreover
the Extended Kalman filter can provide optimal estimation with any number of input
measurements. A PVT stage based on LMS iterations would not be able to converge to
a solution with 3 input ranges, but an EKF is able to supply good quality estimates also
with a reduced sky visibility (4.2). Hence, this effectiveness is particularly relevant when
the PVT is just one measurement away from a full convergent LMS, as in the considered
scenario.

The high number of pseudorange observations may be the reason of success of the
non-cooperative PVT over the IAR paradigm, because in this condition the biased IAR
measurements may be overwhelmed by EKF’s optimality for the non-cooperative case,
making the additional ranges unnecessary.

4.2.2 Case 2: Severe Outage

During a more severe outage instead, the EKF-based PVT estimation may be not enough
accurate if a sufficient number of pseudorange measurements is not present. In this situa-
tion the use of additional ranges may be essential. In Figure 4.3 another realistic trajectory
is displayed. In this case the GNSS receiver moves within a more harsh environment and
it often experiences a reduced sky visibility.

Figure 4.3: Case 2: position error statistic. Average and STD of position error norm are
shown along with visibility states progression. A severe outage is present, where the signal
from only 1 satellite is tracked.
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In the first outage interval the agent is able to track only one satellite. The output of the
non-cooperative algorithm in this case is more prone to this single pseudorange variability
and the provided position estimate has a higher STD with respect to a cooperative solution,
where more measures are combined to obtain a position. After the outage, however, the
two cooperative positioning curves struggle to return to less harmful levels of position error,
and the non-cooperative PVT generally provides a better guess on position.

With the plain tight-integration model presented so far, the collaborative ranges are not
able to provide a significant advantage to the positioning. Furthermore, they eventually
cause the position error to drift after a long outage period (Figure 4.3).

4.2.3 Case 3: EKF Sub-optimality
The filter modeling is fundamental to accomplish good positioning performance. However,
the EKF/IAR tight integration is a novel approach and the modeling still need a fine-tuning
to be competitive with the non-cooperative EKF.

The design of the EKF is based on two model equations: the system model equation
and the measurement model equation (Section 2.1). A perfect knowledge of the real models
is generally not available and the rise of non-modeled effects makes the estimator to be
sub-optimal.

Nevertheless, the system model is the same for the cooperative and non-cooperative
case. It describes the system dynamics, which is independent from the measurements
integration. However, the use that the two paradigms do of such models is different. The
Kalman models are massively exploited within the IAR paradigm, since prediction filters
are essential to provide each additional Inter-agent range. For these reason, non-modeled
processes have a broader impact in hybrid positioning, along with all the other variables
involved, as explained in the analysis of impact factors of Section 2.4.

In the end, the model’s deficiency will penalize more the IAR paradigm than the non-
cooperative solution, producing poorer performance. As a consequence the rougher is the
model and the poorer will be the hybrid-PVT estimate w.r.t. the non-cooperative output.
To investigate this aspect a particular trajectory simulator is exploited. This simulator
outputs random trajectories (Sec. 3.1.2) that are build under the exact application of the
system model equation (2.3), here reported

xk = Φxk−1 + η ∼ N (0,Q) .

As explained during the simulation environment description (Sec. 3.1.2), this kind of path
realization is perfectly modeled by the EKF, which has an exact knowledge of the system
noise and consequently can perform at its best. Through a simulation experiment based on
this kind of trajectories the analysis can be focused on other effects and the comparison with
non-hybrid EKF is free from the impact of a sub-optimal modeling of system dynamics.

A sample trajectory of this kind is shown in Figure 4.4, where in the left panel a position
estimated through the IAR method is shown, while the outcome of a non-cooperative PVT
is drawn in the right panel. The figure provides a more informative representation of
an agent’s path, w.r.t. previous trajectories representations, because, besides the average
estimated trajectory, also the standard deviation information is presented by means of the
axis-relative errorbars.
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(a) Non-cooperative estimation

(b) EKF quasi-a-priori estimation

Figure 4.4: Case 3: simulated trajectories. Agent’s path observed for 60 seconds. Visibility
states are highlighted and STD errorbars are visible.

In this idealized estimation condition, the Kalman filters present in both positioning
paradigms (non-cooperative positioning and IAR hybrid positioning) model exactly the
motion dynamic of the agent. Under this assumption, a significant reduction of the gap
between the two techniques is observable, suggesting that the IAR method was more pe-
nalized by erroneous assumptions on the system model (2.3). The same benefits are not
visible looking at the STD. In fact the errorbars show a growing variance of the hybrid
estimation, that quickly become greater than its non-cooperative counterpart. Moreover,
the variance degradation continues after the outage period, due to the propagation of the
error covariance matrix Pk that takes into account the increased number of measurements
employed during the outage.

In order to have a less qualitative evaluation, a comparison among the position errors
is provided in Figure 4.5. The plots provide also a fair comparison w.r.t. Figure 4.4, since

74



4.2 – Preliminary Results

they show the norm of the position error, which takes into account all the three axis. The
plots include also the positioning error experienced by an agent that employs the KF as a
predictive filter.

Figure 4.5: Case 3: position error statistic of a randomly generated trajectory. Average
and STD of position error norm are shown throughout time, along with visibility states
progression.

Figure 4.5 confirms the previous considerations: the hybrid positioning is often able to
overcome the average position error given by the non-coperative estimations during outages,
but the σep curve is always higher. Therefore, in this case, the current implementation of
the IAR method results in a more accurate but less precise positioning during the outage
intervals.

Observing the hybrid positioning outcomes from the previous sample trajectories (Fig-
ure 4.2 and 4.3), it can be noticed that bias and variance of the error struggle to return to
less harmful levels after an outage period. This behavior may be the result of an excessive
trust of the filter in cooperative measurements, that are affected by a variance that does
not meet the model’s expectations. This trend is again present in this last example (Fig-
ure 4.5), where effects possibly caused by an imperfect knowledge of the statistic of system
noise were prevented. This is a further clue that a model refinement should be directed
toward a finer design of a measurement model (i.e. of the measurement noise covariance
matrix R̄) suited for the IAR paradigm. The current implementation represents a coarse
approximation of the reality that is often unacceptable and such refinement is essential to
design a competitive cooperative algorithm.

To this purpose, in Section 4.3 a fine-tuning of the IAR-related parameters of the
measurement model will be accomplished through empirical evaluations. Moreover, no
selective strategy has been applied so far on additional ranges and, if the measurement
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model is often a poor approximation, the management of a great number of unselected
cooperative ranges will likely make a fine estimation a harder task.

4.2.4 Effects of Communication Delay
Little attention has been paid so far to the comparison between the positioning performance
of the two different a priori estimation techniques involved in IAR algorithm. Referring
again to previous sample trajectories drawn in Figures 4.2, 4.3 and 4.5, some small differ-
ences can be noticed. The two estimated track are identical when the agent is in Fixing
state (3.2), but, as GNSS outage arises, the estimates based on KF prediction exhibit a
slightly worse position error, both w.r.t. average and STD. As underlined in previous chap-
ters, this technique involves an a priori estimation that does not exploit measurements,
and this affects the IAR estimation in a negative way. Hence it results in a poorer position
estimate as well.

This drawback of the KF predictive stage is even more dangerous in presence of non-
negligible communication delays, because the KF AP estimation is more influenced by the
network latency than the EKF QAP estimation. This is a consequence of the fact that
in the Algorithm 1, the aided agent transmits its steering vector ĥsA,k together with the
help request at time k − RTT . It needs therefore to predict its steering vector ĥsA,k 1
RTT forward, without available observations related to the future time k (Sec. 2.3.1). The
goodness of its prediction is then strongly dependent on the prediction effort required. On
the contrary, in the algorithm based on EKF QAP estimation (Algorithm 2), the estima-
tion of the steering vector hsA,k is performed at time k and taking advantage of current
measurements (Sec. 2.3.2). In this IAR estimation process, the only variables affected by
aging are those retrieved from agent B, r̂s∗B,k and ĥs∗B,k (2.35) which are necessarily depen-
dent on τ2, since the response communication delay cannot be bypassed (and this holds
also for the KF AP algorithm). As a result, positioning based on this last IAR estimation
algorithm is far more robust to network latency issues.

These considerations are confirmed by Figure 4.6 that summarizes the overall network
performances of these IAR implementations where three different RTT are experienced.
The dependency of the position error on the communication delay is in fact largely reduced
in the EKF-based prediction (Figure 4.6b) w.r.t. the KF case (Figure 4.6a).

Other differences in the reported curves may be due to the quality of variables involved
in (2.35). Since they change in time, an older variable has different characteristics that may
alter the position error. For this reason an evaluation of latency effects based on specific
trajectories as done so far would have produced misleading results. In fact a greater RTT
may lead sometimes to lower position errors if the chosen variables are accidentally more
accurate than a less aged version of them. An aggregated network metric has been then
employed to provide a more significant average behavior.

As shown by Figures 4.6a and 4.6b, the simulated network latencies are in the order
of seconds. Communication delays of this kind are fairly over-conservative envisioning a
modern communication system like the upcoming 5G, where the latencies addressed are
around 1ms [24]. Despite this, GNSS receiver’s usual update rate is 1Hz [17], therefore a
simulated RTT of 1 s represents a realistic choice. Due to the relatively slow update rate
in fact, the newest position available before the completion of the current PVT stage is 1
second old. Hence, as long as the RTT is less than the GNSS update interval, a RTT = 1 s
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(a) KF AP estimation (b) EKF QAP estimation

Figure 4.6: Network position error statistic. Network average of µep and σep . Different
network latencies are simulated.

suits the vast majority of cases and congested network scenarios.
Despite the bound imposed by the update rate, communication delays closer to the

characteristics of modern wireless communication systems have been simulated, to provide
a deeper investigation of the limits of the IAR paradigm. The experiment is carried out
simulating a GNSS update rate of 100Hz. Consequently a time step granularity of 10ms
is exploited to impose a RTT of 20ms and 100ms on the target network of agents (Figure
4.7).

Limited effects of RTT in the EKF QAP estimation version are also negligible in this
low-latency example. The behavior of the KF AP estimation version is instead more af-
fected by the delays experienced in the network as in Figure 4.6a. Notice the lower position
error present w.r.t. Figure 4.6, obtained thanks to the frequent availability of measure-
ments in fixing epochs and to the limited motion dynamics within this short observation
time (6 s).

4.2.5 Virtual Landmark Numerical Effects
As introduced in Section 1.2.3, the Virtual Landmark technique [13] is a method for hiding
the position of agent B, thus guaranteeing confidentiality during the cooperation. Until
now, this expedient has been considered an equivalent technique that does not affects
positioning performance. In fact, the determination of the virtual landmark (VL) B̃ and
its range r̂s

B̃
in (1.42), performed by means of the displacement vector δxB→B̃, is a known

transformation that does not add uncertainty to the quantities involved.
However, a different reference position of the aiding agentB in the cooperative algorithm
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(a) KF AP estimation (b) EKF QAP estimation

Figure 4.7: Network position error statistic. Network average of µep and σep . Observation
time is 6 s, GNSS update interval is 10ms.

alter the variance of the estimated IAR even if the range involved are affected by the same
error. In fact, due to the different geometries involved, the projection of the range error
on the estimated baseline Îs

AB̃
is characterized by a different uncertainty. In the end,

although the retrieved cooperative range Îs
AB̃

is consistent with the new position (the VL),
the positioning performance may be altered. As an example, the trajectory considered in
Section 4.2.1 is resumed in Figure 4.8. The agent is surrounded by the same collaborative
agents that this time take advantage of the VL technique. As a consequence, a different
outcome is observable w.r.t. the non-confidential cooperation already considered.

However, one of the critical points of the basic IAR estimation is the fact that the
calculation in (2.30) have to deal with extremely small angles γ. In fact, the relative
distance between any agent belonging to the same communication network can be certainly
assumed much smaller than the distances between such receivers and the GNSS satellite.
Small values of γ̂ cause indeed higher variances of the collaborative measurements [13].
Moreover, this kind of calculation are prone to numerical errors, that may result in very
large variations of the estimated euclidean distance between the two peers (ÎsAB).

A possible countermeasure is the introduction of displacement vectors with very large
magnitude, not necessarily comparable to the distance between the considered GNSS sys-
tem constellation and the Earth, but sufficiently large to cope with the finite precision of
the simulation platform (MATLAB). When dealing with larger baselines, the angles in-
volved in (2.30) take reasonable values. This efficient exploitation of the existing privacy
oriented VL technique results in a massive reduction of numerical errors phenomena.

This technique provides general benefits to the entire network, even if not directly
observable from the specific case of Figure 4.8. Therefore in Figure 4.9 an aggregated
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Figure 4.8: Position error statistic with virtual landmarks. EKF quasi-a-priori estimation
is employed. The average magnitude of the displacement vectors used by collaborating
peers is 350 km. .

network statistic is shown, in order to underline the general validity of this method.

4.3 Algorithm Tuning and Optimization
Experimental results from a preliminary hybrid positioning implementation show limited
improvements with respect to a non-cooperative positioning solution based on the Extended
Kalman filter. From the analysis, the weaknesses of the IAR method implementation
emerged, underlining the area towards which improvements of the algorithm should be
addressed. The feasibility of these improvements is assessed in this section and the proposed
solutions are evaluated by means of experimental results.

In particular, the optimization of tunable parameters applied to the Kalman filter’s
measurement model is achieved through empirical methods. In addition, the effectiveness of
a heuristic solution is also studied. Selective strategies on cooperative ranges are proposed
as well and evaluated with respect to different filtering criteria.

4.3.1 Measurement Model Optimization
The experimental results discussed in Section 4.2 suggests that the models over which
the EKF is based needs some further refinements in order to make the EKF/IAR tight
integration an effective cooperative strategy. The model of the system dynamics is common
to cooperative and regular positioning algorithms. It is indeed related to the user dynamic,
independently from measurement observations. Thus a perfect knowledge of the system
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(a) KF AP estimation (b) EKF QAP estimation

Figure 4.9: Network position error statistic with virtual landmarks. Network average of
µep and σep . The average magnitude of the displacement vectors used by collaborating
peers is 350 km.

dynamic would be optimal also for the IAR method and there is no need for specific
adjustments. This holds also when the imperfections of such model have a wider impact
on state estimation, as in the case of IAR positioning (Sec. 4.2). Hence, tuning efforts
needs to be oriented towards the measurement model equation of the Extended Kalman
filter. Particularly relevant in this case is the role of measurement noise covariance matrix
R̄k defined in (2.19).

In Section 2.1 the EKF routine was adapted to the IAR paradigm by a proper manip-
ulation of the measurement noise covariance matrix R̄k (2.19). Among the assumptions
made for the preliminary results reported at the beginning of this chapter, the diagonal
elements of RI (i.e. the variance terms σ2

Î
) were assumed equal to their upper bounds

(2.20). The other assumption made so far concerns the cross-correlation terms among
pseudoranges and cooperative ranges, that define the sub-matrix RρI (and its transpose
R>ρI). The elements of the matrix are the covariances σρÎ of random variables Îsjl and ρj
and they were set equal to their relative upper bounds (2.21).

Assigning the maximum value to elements of R̄k may result in an over-conservative
strategy. In order to improve the performance of the algorithm and to approach a covari-
ance matrix definition closer to the real noise characteristics, a finer configuration of the
matrix R̄k is required.

For what concerns Îsjl, the real value of the variance can be approached exploiting the
approximated formula derived in [12], where the IAR variance is defined as

σ2
Î

= (σ2
UERE,j + σ2

UERE,l)sin2[(φsj − φj,l)−
π

2 ]cos2(θsj ) (4.4)
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where φsj is the satellite azimuth, φj,l is the relative azimuth w.r.t. aiding agent, and θsj
is the satellite elevation [12]. Several approximations lead to the definition of (4.4). The
most relevant is the assumption of perfect steering vector estimations, leaving pseudorange
error as the only noise source. Within this framework, however, a similar simplification
is too optimistic. As deeply discussed in Section 2.4, the steering vector estimation and
its drawbacks play a significant role in the positioning error of a realistic IAR algorithm
implementation.

Regarding the value of σρÎ , the decision to assign the maximum correlation between
IAR and pseudorange reduces dramatically the role of the Inter-agent range in providing
position information. However, the analytical derivation of a closed form for this covariance
is not possible in this context.

In view of the absence of approximated formulas for the elements of RI and RρI , a
Monte Carlo simulation is exploited to achieve a refinement of (2.19). Approximations of
σ2
Î
and σÎρ can be thus derived through an empirical optimization procedure. A valuable

strategy is to base the elements of the matrix on their respective upper bounds, by fixing
a proper weight coefficient. To this aim is convenient to use a weight matrix WUB and a
matrix R̄UB,k that contains all the upper bounds of the measurement covariance matrix,
such that

R̄k = WUB ◦ R̄UB,k (4.5)

where the symbol “◦” denotes the Hadamard product or entrywise product, i.e. the matrices
are multiplied element-by-element.

The definition of the weight matrix affects the complexity of the optimization procedure.
The elements σ2

Î
and σρÎ of the covariance matrix are obviously dependent on the random

variables involved in the determination of Îsjl and, more notably, on the geometry gener-
ated by the involved agents and satellite. It follows that each entry of the sub-matrices
RI and RρI is dependent on the specific couple of agents considered and on the common
satellite. As a consequence, the optimal weights should be different for each entry of the
matrix. Therefore these coefficients should be adaptive, in order to approximate with suf-
ficient precision the correspondent variance and covariance. An analytical approximation
of the covariance formula is indeed a more valuable and adaptive approach and it will be
investigated in further research.

The optimal weight for each upper bound in R̄UB,k can be derived exploiting the Monte
Carlo simulation, but obtaining a joint optimization for each single entry of matrix WUB

would not be cost-effective in terms of computational burden. Therefore some simplifica-
tions are introduced, that eventually lead to a weight matrix with a more general validity.
The same weight coefficient α1 is assigned to all the IAR variances upper bounds. Simi-
larly, a single coefficient α2 regulates the weight of the covariance bounds. According to
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these assumptions, the definition of the weight matrix is

WUB =


Wρ WρI

WρI WI

 =



1 0 · · · 0 α2 α2 · · · α2

0 1 . . . ... α2 α2 · · · α2
... . . . . . . 0

...
... . . . ...

0 · · · 0 1 α2 α2 · · · α2
α2 α2 · · · α2 α1 0 · · · 0
α2 α2 · · · α2 0 α1

. . . ...
...

... . . . ...
... . . . . . . 0

α2 α2 · · · α2 0 · · · 0 α1


(4.6)

Eventually, in order to obtain a good approximation of σ2
Î
and σÎρ, the optimal pa-

rameters to seek for are the coefficients α1 and α2. The optimization criteria focus on the
minimization of the positioning error norm ep. In particular, two optimal weight matrices
WUB are derived, depending on the optimization criterion: one minimize µep and another
correspond to a minimum σep .

Actually in this context, a more general approach to the determination of optimal
weights is pursued. The optimization criteria are set to provide broader results, minimizing
the standard deviation and the average position error of the entire network (µN and σN ),
in order to obtain a solution that is independent from a specific trajectory or visibility
conditions. This strategy represents another approximation for the resulting measurement
model, accepted in the tentative to obtain a WUB suited to the majority of cases, while
preserving a reasonable computational cost.

The simulation carried out to support the optimization process is performed over a
random network of 30 agents, where the network positioning error is measured through µN
and σN for each combination of weight coefficients α1 and α2. In order to summarize the
positioning error performance in a single value for each tested WUB, some assumptions
must be done. A practical choice is to observe several realizations of the system performance
metrics at a fixed time (snapshot) and collect them for each configuration of the weight
matrix. The problem of the choice of the proper time instant arises: after some time the
system is more influenced by the parameter and its effects are more visible. Thus a snapshot
after a sufficiently long outage should be chosen as a valuable instant in which evaluate
the positioning error. However, after a long outage period the estimated IAR heavily
deteriorates and this could lead to an over-conservative optimization for the weights in
WI , assigned to IAR variances, since IAR measurements are poorly precise after such a
long time. In view of these issues, a reasonable time snapshot of 10 seconds has been
chosen to perform the simulation.

The outcome of the joint optimization are summarized in Figure 4.10 and 4.11, where
the results of both optimization criteria are shown. From the experiment the optimal
value of the weight coefficients obtained are

α1 = 1
α2 = −0.067 .
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(a) Network mean position error (b) Network STD position error

Figure 4.10: Network position error versus α1. The position error norm ep of each GNSS-
denid agent is collected after 10 seconds of outage. Statistical properties (mean and STD)
of ep are evaluated and averaged over the |Dk| agents in the network. Coefficient α2 is
fixed at its optimal value.

for the minimum µep criterion, and

α1 = 1
α2 = 0.2 .

for the minimum σep criterion. It can be noted that the coefficient α1, applied on variance
upper bound, minimizes on average both the standard deviation and the mean value of
the position error norm ep, as it can be seen from Figures 4.10a and 4.10b. The optimal
coefficient α2 is instead slightly different w.r.t. the two criteria. However, in order to
provide an overall good performance, it will be assumed α2 = 0 as a general optimal
coefficient.

The outcomes of this optimization have clear meanings. Optimal diagonal coefficients
of sub-matrix WI force the values of each σÎ to be equal to their upper bounds. Therefore
a cautious integration of IAR measurements is encouraged, probably due to the fast deteri-
oration that these ranges experience, as extensively discussed in Section 2.4. The optimal
value of coefficient α2 results in a model with no correlation among IAR measurements and
the pseudoranges on which they are based. This is obviously not true, but still α2 is the
value that minimizes both position error variance and mean. As discussed, the IAR esti-
mate is influenced by several random variables, both from current and past time instants.
It is possible that with this complex dependency relationships, the specific influence of ρsj
on the random variable Îsjl tends to approach negligible values, that are not observed with
the limited granularity of the above experimental optimization.
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(a) Network mean position error (b) Network STD position error

Figure 4.11: Network position error versus α2. The position error norm ep of each GNSS-
denid agent is collected after 10 seconds of outage. Statistical properties (mean and STD)
of ep are evaluated and averaged over the |Dk| agents in the network. Coefficient α1 is
fixed at its optimal value.

The optimal weight matrix retrieved has been added to the network simulation as a
general parameter. The resulting positioning error is compared to the curves of Figure 4.2.

The optimized WUB is clearly able to improve the positioning performance of the
preliminary implementation. The enhancement of performance is present for both version
of the predictive stage as well as for both µep and σep . However, for the selected trajectory,
this kind of network-wise tuning of parameters is not sufficiently accurate to attain the
position error levels of a non-cooperative, EKF-based, PVT. The weighting of the upper
bounds through a constant coefficient is a heuristic solution that represents a valuable
fine-tuning approach to the refinement of the measurement model of the IAR method, but
the algorithm still needs some refinements as long as an analytical approximation of the
true measurement covariance matrix is not available.

4.3.2 Error Covariance Matrix Heuristic
From preliminary results an important drawback of a coarse measurement model was ob-
served: the biased position estimate produced during an outage period, when additional
ranges were integrated, is propagated over the subsequent epochs for a considerable time.
The erroneous behavior is particularly visible when compared to non-cooperative posi-
tioning. In this last case the estimate is much less anchored to past estimations after an
outage.

In the EKF routine, the Kalman gain Kk acts as a blending factor [20], that “balances”
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Figure 4.12: Position error statistic. Average and STD of position error norm resulting from
IAR algorithm with KF predictive stage are shown along with visibility states progression.

Figure 4.13: Position error statistic. Average and STD of position error norm resulting from
IAR algorithm with EKF predictive stage are shown along with visibility states progression.
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the importance given to current measurements w.r.t. the a priori estimate, to output an
updated state estimate that is optimal. The Kalman gain is optimal in the sense that
minimizes the individual terms along the major diagonal of the error covariance matrix Pk

[20]. Recalling basic Kalman filter’s theory [20], the error covariance matrix associated to
state x̂A,k is

Pk = E[(xA,k − x̂A,k)(xA,k − x̂A,k)>] . (4.7)

The confidence in state estimate is regulated by the error covariance matrix Pk that
contains the information about the state error. On the basis of its projection P−k and of
the measurement covariance matrix R̄k, the Kalman gain regulates the filter’s use of the
a priori state and the current measurements (Section 2.1). Therefore, although the two
covariance matrices R̄k and Pk are not independent (2.17), the error covariance matrix Pk

have an indirect role in the importance given to cooperative ranges.
When additional ranges are integrated, the output state estimate is based on many ob-

servations and the error covariance matrix is updated accordingly: if the additional ranges
are far from the model expectations, an erroneous confidence on this state estimate may
be promoted through the matrix Pk. This is the main reason that causes cooperatively-
obtained positions to negatively influence the position error even when the regular GNSS
visibility (F state) has been recovered (Figures 4.2, 4.5 and 4.5).

This misleading behavior is well described by Figure 4.14, where the evolution of the
matrix Pk is represented, as observed along the path analyzed in the second case-study
(Sec. 4.2.2). In order to synthesize the configuration of (4.7) in a single value, the square
root of the trace of the matrix is taken at each time instant k and showed in the graph.

Figure 4.14: Time evolution of
√
tr(Pk). Different a priori estimation techniques are

compared to the non-cooperative case.

By looking at the curve relative the non-cooperative case, several spikes can be observed
(besides the initial transient) in correspondence to the time windows where the GNSS
service is partially denied (D state). A peak of

√
tr(Pk) means that the Kalman filter
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associates high variances to the elements of the state x̂A,k. As a consequence, the state
x̂A,k will be cautiously considered when computing the next state estimate x̂A,k+1. In the
case of the two curves related to cooperative PVT, these peaks are heavily smoothed. This
means that more trust will be granted to state x̂A,k when the next state will be estimated.
However if this

√
tr(Pk) reduction does not correspond to a real increase in the reliability

of x̂A,k, the next filter output will be misled.
A heuristic solution to this issue is to force the error covariance matrix to account only

for legacy GNSS measurements, without considered the additional ranges, even if the latter
are still integrated in the PVT computation. This is a less elegant solution with respect to
act directly on the measurement model by refining the measurement noise covariance matrix
R̄k. In fact, this countermeasure would be unnecessary if the measurement model included
a sufficiently good approximation of the true measurement noise covariance matrix. In
fact, R̄k is involved in Pk determination, thus a proper refinement of R̄k will produce also
a less erroneous error covariance matrix. However, since non-modeled characteristics are
at the origin of EKF sub-optimality, this heuristic may be a valuable solution to stem the
effects of the residual lack of modeling.

The scenario analyzed in the first case-study (Sec. 4.2.1) is here proposed again to show
the evolution of an estimated trajectory resulting from the application of this countermea-
sure. The benefits of this solution are clearly visible. The estimation is able to provide a

Figure 4.15: Position error statistic. Position errors obtained through IAR positioning that
employs a Pk matrix propagated as in the non-cooperative case are compared to plain IAR
positioning and non-cooperative positioning error curves. IAR positioning outcomes use
EKF QAP estimation.

better positioning after an outage event, giving a position estimate that is comparable to
the one provided by a non-cooperative PVT, both on average and w.r.t standard deviation.
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The same outcome is illustrated by the trajectory plots of Figure 4.16.

(a) Pk normal

(b) Pk updated as in non-cooperative PVT

Figure 4.16: Simulated trajectories w.r.t. Pk update methods. Agent’s path observed for 60
seconds. Visibility states are highlighted. The IAR cooperative algorithm is implemented
using the EKF quasi-a-priori estimation

The propagation of bias (and variance) is now massively reduced and the estimated
trajectory is closer to its true value during the outage period. This improvement is generally
experienced by the entire network, as described in Figure 4.17, reported here to observe
the general validity of this method. Despite this, the plain GNSS solution still provides
more accurate state estimations both in general (Figure 4.17) and w.r.t. the considered
path realization (Figure 4.15).

The two countermeasures to measurement model sub-optimality discussed so far are
simultaneously exploited to assess possible further performance improvements. The results
of these experiments are shown in Figures 4.19 and 4.18, where they are compared to
the single techniques for the algorithm’s improvement applied in isolation. Positioning
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Figure 4.17: Network position error statistic. Network-wise average norm of the position
error. Pk matrix propagation management techniques are compared. EKF QAP estimation
employed.

errors are generally reduced and it is possible to recognize the combined effect of the two
techniques: a generally reduced error thanks to the model’s refinement and curves that are
able to recover from the performance worsening caused by the outage period. However the
adjustments are less effective when KF is employed in IAR’s predictive stage, confirming
this version of the algorithm as the less performant in terms of estimated position error.

The combined use of the two techniques is illustrated also by the two trajectories drawn
in Figure 4.20, reported here as a reference for the improvements achieved so far.
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Figure 4.18: Position error statistic. Position errors obtained through non-cooperative Pk

matrix propagation and R̄k matrix refinement compared. IAR positioning outcomes use
KF AP estimation.

Figure 4.19: Position error statistic. Position errors obtained through non-cooperative Pk

matrix propagation and R̄k matrix refinement compared. IAR positioning outcomes use
EKF QAP estimation.
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(a) KF AP estimation

(b) EKF QAP estimation

Figure 4.20: Simulated trajectories. Agent’s path observed for 60 seconds. Positions
estimated using the refined R̄k matrix model and non-cooperative Pk matrix propagation.
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4.3.3 IAR Selective Filters
The previous sections were devoted to the management of the additional measurements
integrated in the PVT routine performed by the aided agent. By means of a model re-
finement and an error covariance matrix propagation strategy, the cooperative ranges are
integrated in the positioning algorithm in order to efficiently take advantage of the in-
formation carried by these additional measures. However, several issues still affect the
inter-agent ranges (bias, non-modeled effects) and, despite the tuning effort made so far,
the policy of integrating as many observations as possible may not be a successful ap-
proach for these kind of measurements. In particular, non-modeled effects arisen from a
sub-optimal measurement characterization in the EKF, are as more harmful as the number
of IAR contributions included in the PVT increases. Therefore, a selection strategy applied
on the retrievable cooperative ranges may be wiser than an unconditional IAR inclusion.
Moreover in a crowded hot-spot, several IARs are available for a networked GNSS receiver,
thus a selective approach may be even more effective.

The problem of which measurements should feed the PVT computation has not been
addressed yet and a decision rule is needed in order to select a valuable set of contributions.
An obvious criterion is minimizing the difference between the inter-agent range estimate Îsjl
and its true value Isjl, i.e. minimizing the IAR error. However, this decision rule requires
a knowledge at the aided agent j of the real euclidean distance from the aiding agents, in
which case the whole IAR retrieval process would be pointless. Hence, a decision rule that
can be performed exploiting the information available for agent j is needed. To this aim,
three selection strategies of the cooperatively-obtained measurements are presented in the
current section. An aggregation policy of the set of IAR is discussed as well.

The effectiveness of these management techniques, from now on referred to as IAR
filters, is evaluated from a network perspective. The refined Kalman measurement model,
derived in previous sections, acts on each single range integration, whereas IAR filters
work on an aggregated set of measurements. As a consequence, a study focused on a single
trajectory would provide a poor statistic in this sense. In fact, although it is characterized
by several realizations of the measurement noise (Section 3.1.2), many characteristics of
a specific Isjl retrieval, that will be exploited for discrimination (such as the geometry
of the agents and satellite involved), are repeated across the realizations of a specific
path. For these reasons it is convenient to assess the influence of IAR filtering policies on
positioning errors through an aggregated network metric. In particular, the usual statistical
characteristics of position error norm (µep and σep) of each agent are averaged among all
the agents in the network at each fixing epoch and the resulting metrics µN and σN are
observed.

Minimum Variance Criterion

The IAR approximated variance formula (4.4) was already recalled in this chapter when
dealing with the optimization of R̄k. In that context (4.4) was considered an excessive
approximation for achieving a fine-tuning of the measurement model. Within the assess-
ment of a selection strategy, however, this can be a valuable starting point for a qualitative
skimming of the worst measurements.

Cooperative ranges that exhibits the lowest IAR variances according to (4.4) are chosen
for the EKF tight integration. The quantity of additional ranges selected in this way allows
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the agent to reach a total of exactly 4 measurements, at each fixing epoch. This is done to
support EKF convergence1, while being strictly selective on the quantity of measurements
integrated and clearly observe the effects of filtering.

The results from the application of this decision rule are reported in Figure 4.21 and
compared with the average network performances of a non-selective integration of cooper-
ative ranges. As foreseen, the selective policy has produced improved results. Moreover,
the overall variance is reduced, in coherence with the criterion applied, even if (4.4) is a
strong approximation.

(a) KF AP estimation (b) EKF QAP estimation

Figure 4.21: Network position error statistic with minimum variance and bias filtering. µN
and σN are the network averages of µep and σep respectively.

A compact way to look at the average performances of the network is by observing the
empirical cumulative distribution function (empirical CDF). Empirical CDFs based on the
same datasets used for the plots in Figure 4.21 are drawn in Figure 4.22. From Figure 4.22
it is possible to confirm the strong reduction of positioning error when the filter is on. In
the 90% of the cases2, the positioning error changes from values around 100m to values
around 60m, in the right panel. For what concern the KF AP estimation (left panel) the
reduction is even more effective: the 90% of position errors go from 120m to 60m, reducing
the performance gap between the two a priori estimation techniques.

1With at least 4 measurements the solution of the trilateration equations is guaranteed.
2The empirical CDF is based on a dataset that contains the position error norm ep of all the agents

in the network for the entire observation time and for all the simulated realizations of the process.

93



4 – Results

(a) KF AP estimation (b) EKF QAP estimation

Figure 4.22: Empirical cumulative distribution function of average network position error
with minimum variance and bias filtering.

Minimum Bias Criterion

The results obtained in [12] can be exploited here to derive another filtering criterion. In
this work from Minetto an interesting empirical result is illustrated: the average IAR error
µeI

(i.e. the bias related to the IAR estimator Îsjl) tends to be minimum in accordance to
the geometries where the variance is maximum. The variance exhibited by the IAR under
these geometrical conditions is coherent with (4.4) and is empirically demonstrated in [12].

As a consequence, another possible decision rule to retrieve a selected set of coopera-
tive ranges may favor the minimization of bias, by selecting the triplets (agent j, agent
l and satellite s) that maximize (4.4). Again, the number of additional measurements
selected in this way is reduced to the essentials. The outcomes of this selection strategy
are summarized in Figures 4.21 and 4.22 too.

As expected, a reduction of the network mean position error µN is visible (Figure 4.21),
since the IAR integrated are the ones that minimize the estimated IAR bias. However,
more surprisingly, the position error reduction is observed also on σN curve, but it should
be remembered that this is a qualitative evaluation based on an approximated formula,
some unpredicted effects may arise. In the end an overall improvement is assessed with
this selective criterion and positioning errors are below 50m for the 90% of cases (Figure
4.22).

Multiple IAR Averaging

It was already mentioned (Section 1.2) that between a given couple of cooperating agents,
more than one IAR can be obtained by the aided agent if more than one satellite is shared
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with the aiding peer. These multiple IARs represent an estimate (computed under different
conditions) of the same euclidean distance. This multiplicity foster the aggregation of
these measurements by averaging them, in order to build a more robust estimation of the
euclidean distance.

This technique is applied to the network considered in previous sections and the aggre-
gated results are summarized in Figures 4.23 and 4.24.

(a) KF AP estimation (b) EKF QAP estimation

Figure 4.23: Network position error statistic with composite selective filtering. µN and σN
are the network averages of µep and σep respectively.

The advantages w.r.t. to the unfiltered integration are limited, especially if compared to
the improvements achieved with the other selection criteria previously tested (Figures 4.21
and 4.22). It should be noticed however that this aggregation technique average the set
of Îsjl retrieved by a collaborating couple, providing one (averaged) contribution for each
aiding agent integrated in the hybrid PVT. As a result, no discrimination is applied on the
choice of the aiding agent. Therefore with this implementation, the problems related to the
inter-agent ranges abundance (Sec. 4.2.3) are not overcome anymore. Hence, an additional
technique is needed to further reduce the number of integrated cooperative measurements
through a wise selection of collaborating agents.

A good idea is to merge the discussed methods in one composite selective strategy: the
averaging of multiple IARs is applied in order to choose a single Îsjl for each cooperating
peers’ couple, then the best aiding agents are selected either by using the minimum vari-
ance criterion or the minimum bias criterion3. Essentially the multiple IAR filter acts on
satellites shared by a given couple of agents, while one of the two already discussed filters

3Tho choose the best aiding agent, a satellite s must be chosen for the computation of (4.4). Since
the resulting IAR is the outcome of averaging, the satellite can be chosen arbitrarily among the shared
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(a) KF AP estimation (b) EKF QAP estimation

Figure 4.24: Empirical cumulative distribution function of average network position error
with minimum variance and bias filtering.

(minimum variance or minimum bias) acts on the peer couples in order to choose the best
aiding agent for a given aided user.

The composite IAR filtering techniques give high positioning performances that are
summarized, along with the plain multiple IAR averaging method, in Figures 4.23 and 4.24.
A significant improvement can be easily inferred by looking at the empirical cumulative
distribution function of the EKF QAP estimation version (Figure 4.24b): from a value of
80m (90% probability) with the plain multiple IAR averaging aggregation, the position
error ep is reduced up to less than 50m (90% probability), when the combined filtering
with the minimum bias criterion is applied. Similar results are obtained with the KF
AP estimation version of the algorithm, although even bigger enhancement are observed
(Figure 4.24a).

Minimum aiding agent’s position error criterion

The effects of an unreliable estimated position of an aiding peer on the IAR error were
already illustrated in Section 2.4.3, discussing the impact of non-accurate estimation of the
steering vector hsB involved in IAR computation. It was shown that a wrongful estimation
of the aiding agent’s position will increase the IAR error. It is then straightforward to
provide here a filtering policy based on the reliability of the estimated position of the
generic aiding agent l. Notice that, since this criterion can be applied only on an agent’s

ones. To this purpose, the satellite that gives the best result of (4.4) is chosen for the discrimination
among aiding agents.
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position basis, an additional decision rule is necessary to obtain a single Îsjl for each couple
of collaborating peers. To this purpose, the averaging of multiple IAR is employed.

(a) KF AP estimation (b) EKF QAP estimation

Figure 4.25: Network position error statistic with filtering based on aiding agent position
error. µN and σN are the network averages of µep and σep respectively. “Random IAR
selection” refers to a random selection of IAR to be integrated in the PVT.

The benefits derived from this technique are illustrated by Figures 4.25 and 4.26. The
behavior is very similar to the results provided by the application of the combined minimum
variance criterion, but generally slightly better. Actually this does not hold for the curves
related to σN (Figure 4.25), where the minimum variance criterion is still more effective.

At this point, after observing the analogies among the outcomes produced by the IAR
filtering methods, one may think that the benefits obtained by the system may be due to
the bare reduction of cooperative ranges integrated in the PVT. As repeatedly underlined in
fact, a reduction of the number of IAR in the measurements set of the positioning algorithm,
implies a reduction of non-modeled effects and consequently of EKF sub-optimality.

The advantages of a bare reduction of measurements are indeed visible in Figure 4.26,
where the results of a random IAR selection are shown and compared to the unfiltered
case. However the same picture highlights the advantages of a wise discrimination policy
of cooperative contributions, since the described criteria overcome the improvements de-
rived from a random IAR selection (visible also in Figure 4.25).

Finally, a further comparison among the best performing IAR filters is here provided in
order to understand which discrimination criteria generally provide the lowest positioning
errors. The best filtering techniques will be then implemented in combination with other
algorithm’s improvements, in the next section on final results.

Minimizing the bias according to results in [12] is empirically proven to be the best
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(a) KF AP estimation (b) EKF QAP estimation

Figure 4.26: Empirical cumulative distribution function of average network position error
with filtering based on aiding agent position error. “Random IAR selection” refers to a
random selection of IAR to be integrated in the PVT.

(a) KF AP estimation (b) EKF QAP estimation

Figure 4.27: Network position error statistic with selective strategies compared. µN and
σN are the network averages of µep and σep respectively.
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(a) KF AP estimation (b) EKF QAP estimation

Figure 4.28: Empirical cumulative distribution function of average network position error
with selective strategies compared.

selective strategy among those discussed in this chapter (Figures 4.27 and 4.28). This
method generally provides, w.r.t. a network average, the lowest average position errors
µep and also the lowest σep . However, since their performance is very similar, also the
same filtering technique combined with multiple IAR averaging will be considered in the
next analysis (Sec. 4.4) on joint effects of algorithm’s enhancements. In that simulation
experiment in fact, the performance obtained from filtering methods may slightly change.

4.4 Final Results: Performance of the Tuned System
As anticipated, the separate efforts made throughout this chapter to improve the IAR
algorithm should be observed in a joint experiment, to study their overall effect on ep.
Therefore in this section, the strategies that have been proved to be the most effective are
combined in a single simulation experiment and the enhancement of positioning perfor-
mance is assessed. As a consequence, the empirical CDFs depicted in Figure 4.29 are the
results of a selection filter based on a minimum bias criterion, either in combination with
multiple IAR averaging or not. Observing the right panel, slightly better performances can
be attributed to the EKF QAP estimation version of the IAR algorithm (less than 35m
at 90%). It is known that this algorithm provides generally the best results and this is
verified in this context once again.

In both cases, the use of virtual landmarks to preserve the confidentiality among the
agents in the network is not advantageous as it was before the tuning of the algorithm (Sec.
4.2.5). However this worsening is not very significant: when confidentiality is granted, the
position error increases on average of less than 3 meters in the 90% of cases (Figures 4.29a
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and 4.29b). In the end, the minimum bias selection strategy is the most successful in pres-
ence of any of the two a priori estimation methods, but when confidentiality is demanded,
the composite filter that includes aggregation of multiple IAR should be preferred.

(a) KF AP estimation (b) EKF QAP estimation

Figure 4.29: Empirical cumulative distribution function of average network position error
of tuned algorithm. The CDF are zoomed-in to appreciate the differences. The effects
derived form the employment of virtual landmarks are shown. Optimal WUB and Pk

forcing are applied.

The benefits of algorithm’s tuning are illustrated by Figure 4.30, where the enhanced
algorithm is tested on the trajectory considered in Section 4.2.1 for a preliminary implemen-
tation. With respect to this raw algorithm implementation, huge improvements have been
achieved. Using the proposed tuned algorithm, the average position error µep is smaller
than in the non-cooperative case, either for the EKF QAP estimation (Figure 4.30b) or the
KF AP estimation (Figure 4.30a). Moreover, for this latter case, the resulting standard
deviation σep is also lower.

During the outage period the IAR estimation algorithm is able to successfully track even
abrupt changes of direction, thanks to the adjustments made on the hybrid PVT routine
(Figure 4.31). Moreover, it should be stressed that these adjustments have a general
validity and no real-time tuning procedures are required to achieve the results of Figure
4.31. In other words, the configuration of the IAR algorithm resulted from the extensive
analysis provided in this chapter is not case-dependent. Thus, this improved algorithm is
ready to be implemented on a generic swarm of networked GNSS receivers.

Furthermore, if the proposed collaborative algorithm is compared to a non-cooperative
estimation of the same trajectory (Figure 4.32), the latter experiences a more severe drift.
Despite the partially-denied GNSS visibility, the IAR method is instead able to limit this
drift caused by the lack of positioning data (measurements), proving the effectiveness of
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(a) KF a priori estimation (b) EKF quasi-a-priori estimation

Figure 4.30: Position error statistic of the tuned system. The plots are focused on the
outage interval. Optimal WUB and Pk forcing are applied. Virtual landmarks are not
employed. The minimum bias criterion is imposed on IAR selection and the number of
total ranges refers to this method.

the information enhancement carried by the inter-agent range.
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(a) KF a priori estimation

(b) EKF quasi-a-priori estimation

Figure 4.31: Estimated trajectory with tuned IAR positioning algorithm compared to raw
algorithm estimation. Optimal WUB and Pk forcing are applied. Virtual landmarks are
not employed. The minimum bias criterion is imposed on IAR selection.
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(a) KF a priori estimation

(b) EKF quasi-a-priori estimation

Figure 4.32: Estimated trajectory with tuned IAR positioning algorithm compared to non-
cooperative estimation. Optimal WUB and Pk forcing are applied. Virtual landmarks are
not employed. The minimum bias criterion is imposed on IAR selection.
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Chapter 5

Conclusions

In this work, GNSS-users that experience reduced sky visibility conditions are supported
by members of a swarm of collaborating agents to improve their location and navigation
capabilities. The proposed solution guarantees an improved continuity of localization in
condition of poor sky visibility or bad satellites geometry once a proper amount of collab-
orative information is exchanged among networked agents.

These GNSS positioning units exploit an auxiliary, cooperative, range (IAR) whose
estimation and successive integration in the positioning algorithm have been the main
targets of this analysis, carried out either focusing on a pair of collaborating agents or by
a network perspective.

A measurement model for a GNSS/IAR tightly-coupled integration through an EKF has
been designed in order to preserve the optimality of the EKF-based positioning algorithm
when cooperative data are involved in the solution. The stability issues relative to the
choice of the linearization point has been presented as well as the possibility of a LMS
re-initialization of the EKF, possible thanks to the IAR integration, useful to mitigate
divergent phenomena.

The IAR estimation procedure has been deeply discussed, inspecting impact factors
and estimation issues in a dynamic context, with particular attention to communication
delays. It has been shown that a critical point is related to the variables associated to the
aided agent, which need to be estimated in a condition of lack of sufficient data. To this
purpose two predictive stages has been developed along with correspondent estimation
algorithms. After the definition of suitable algorithms, the IAR estimation process has
been taken apart in an extensive analysis, where all the impact factors have been isolated
and investigated. From the analysis it has been verified that the sole injection of noise
in the system is not responsible for instability in the cooperative positioning algorithm.
Divergence arises instead with the concurrent presence of feedback between PVT output
and IAR estimation, which is unavoidable in the IAR extrapolation scheme and becomes
particularly relevant after long time-span of poor GNSS visibility. However, it has been
show that even during severe reduction of the GNSS visibility, IAR measurements keep a
Gaussian-like distribution, justifying the implementation in a EKF for the positioning.

The effectiveness of the solution adopted for the IAR/GNSS tight integration in the
positioning algorithm has been investigated by means of a Monte Carlo simulation. The
key aspects of this IAR implementation in a multi-agent environment have been discussed
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and simulation results have been reported. The simulation environment has been exploited
to test the limits and performance of the IAR integration model and to retrieve a statistical
characterization of positioning outcomes and IAR estimates thanks to the high number of
realizations of the experiments.

In this context several scenarios have been analyzed, investigating different motion dy-
namics of the receivers, either constrained (urban environment) or random, and different
environmental conditions (such as sky visibility and measurement noise) and network con-
straints (i.e. communication delays). A technique to preserve confidentiality in the network
has also been tested and consistent improvements have been observed thanks to numerical
errors reduction.

Through experimental results, it has been shown that the proper modeling of system
dynamics and measurements integration in the EKF is of primary importance in the con-
text of the IAR paradigm, due to the widespread effects that non-modeled effects have in
the hybrid positioning routine. In particular a specific measurement model is fundamental
to accomplish an efficient integration of the additional cooperative measurements. To this
purpose, some parameters of this model have been configured after an empirical optimiza-
tion procedure. It has to be remarked that the optimization criteria have been based on
aggregated network metrics, hence optimized parameters have general validity and can be
adopted in the IAR algorithm.

The importance of a fine IAR measurement model is proportional to the number of
additional ranges integrated. Therefore, contextually to a model refinement, a wise se-
lection policy has been imposed on the collaborative range contributions retrieved from
the swarm of cooperating agents. Selective strategies and aggregation policies have been
therefore widely tested. From these results it has been confirmed that the reduction of
IAR contributions mitigates the effects of model sub-optimality, but a valuable selective
criterion is necessary to target a significant improvement of the positioning performance.

Despite of the challenging tuning of the proposed navigation algorithm, good benefits
have been obtained from this collaborative positioning solution that led to an improved
GNSS/IAR tight integration in the positioning algorithm. The enhanced algorithm has
been eventually tested and compared to an EKF-based non-cooperative PVT solution: the
robustness of the IAR method to GNSS visibility limitations has been verified. Despite
the limited sky visibility, the IAR method is able to limit the performance deterioration
caused by the lack of positioning data (measurements), proving the effectiveness of the
information enhancement carried by the inter-agent range.

A valuable measurement model of the inter-agent range has been proved as an essential
feature for the IAR integration algorithm to ultimately obtain a reliable position estima-
tion. With this in mind, a further research could be oriented to a finer definition of the
hybrid observation matrix H̄ and the measurement covariance matrix R̄k. In particular,
an adaptive real-time optimization on R̄k or the derivation of closed form equations for
IAR covariances that overcome the use of upper bounds, would lead to a measurement
covariance matrix that will better describe the IAR measurement from a statistical point
of view, significantly reducing the EKF sub-optimality.
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