
POLITECNICO DI TORINO
Master of Science in Computer Engineering

Master Thesis

Design of a parallel hardware
architecture for Quantum

Annealing Algorithm acceleration

Advisors
Prof. Andrea Acquaviva
PhD Gianvito Urgese

Evelina Forno

July 2018

Abstract

Optimization problems can be encountered in many fields of science and technology.
To solve such problems means to select a best solution out of an exponentially large
set of discrete candidates; as the size of the problem increases, so does the solution
space, and brute-force techniques quickly become impracticable in the search for
an exact solution. In fact, many combinatorial optimization problems are NP-
hard in computational complexity. While exact solvers exist for several NP-hard
problems, resource utilization and computation times continue to be an issue. For
most practical applications, it is not necessary for the solution to be exact, as long
as it is of good enough quality. Research has then turned to heuristic solvers,
which guarantee a minimum quality of solution, while performing computation in
a deterministic time. These characteristics make them desirable as general-purpose
solvers as well as for safety-critical and real-time applications.

Many commonly-used solvers are metaheuristic algorithms that borrow ideas
from the world of physics and biology. Among these is Simulated Annealing (SA),
which utilizes the concept of slow cooling of a disordered system to explore the
solution space until settling at a minimal energy state when the temperature pa-
rameter reaches zero. Quantum Annealing (QA) is an emerging technique derived
from SA, originally proposed in the field of quantum computing. It attempts to
exploit quantum entanglement to explore the solution space as a superposition of
all possible system states at once. While an effective implementation of this type of
quantum computer has yet to be proven, Simulated Quantum Annealing (SQA), an
algorithm derived from QA theory and designed to run on classical computers, has
found success as a metaheuristic. SQA simulates quantum superposition by adding
one more dimension to the SA simulation space where a finite number of copies of
the system, called replicas, exist. Entanglement among states is approximated by
adding a correlation factor between replicas that has a function equivalent to that
of temperature in SA; as the annealing goes on, the correlation between neighbor
quantum states increases, eventually causing all replicas to collapse into a single
optimal solution.

Studies have shown that SQA can be applied to solve NP-hard problems with
faster convergence and better quality of result than other traditional heuristics.

3

However, due to the presence of several replicas, the computation cost of this algo-
rithm is quite higher than that of Simulated Annealing, requiring higher amounts
of memory and much longer execution times. At the same time, because of the
population-based nature of the algorithm, SQA is particularly suitable to paral-
lelization. In this context, I decided to study the feasibility of QA for the fully-
connected Ising model; results led me to concentrate instead on the Multidimen-
sional Knapsack Problem, which proved a better target for QA. I designed a parallel
hardware accelerator for the solver algorithm, partially developed during my intern-
ship in NEC Japan. The various phases of the project are detailed in this thesis.

The Ising spin glass model is a mathematical model of ferromagnetism used
in statistical mechanics. There are several variations of the Ising model depend-
ing on the connectivity between spins, which determines the geometry of the spin
glass. My first examination of the performance of QA, using the 2-dimensional
spin glass problem, confirmed literature results and showed definite improvement
over SA. However, the most interesting version of the Ising spin glass model for
practical application is the fully-connected model; in fact, mappings exist for many
NP problems to the fully-connected spin glass model, and a solver for this model
may be considered a universal solver for all such problems. A straightforward
implementation of the fully-connected spin glass model is impracticable: the com-
plexity of the interaction is exponential in the number of spins, and simulation of
one step takes long computation times; most importantly, since spin updates are
deeply correlated, parallelization is an arduous task. We considered then a minor
embedding scheme in the form of a Chimera graph, the same structure realized in
some hardware quantum annealers. I found that such a scheme was not effective
when running SQA, as the additional ferromagnetic couplings required to ensure
coherency of the Chimera graph interfere heavily with the Trotter coupling driv-
ing the annealing. As such, the realization of a general-purpose QA solver based
on fully-connected Ising with spin-flip dynamics is not possible without significant
modifications to the algorithm.

I turned then my attention to ad-hoc solvers. I selected the Multidimensional
Knapsack Problem (MKP), an NP-hard resource allocation problem with appli-
cations to computer task scheduling, network data packing, financial investment
planning and logistics. I implemented three software solvers in C++ for Simulated
Annealing, Quantum Annealing, and a hybrid PSO-genetic optimization algorithm.
I also implemented a variant of Quantum Annealing, Restricted Quantum Anneal-
ing (RQA), which strives to improve on the results of QA by restricting the search
space: partial solutions that are found multiple times during annealing are locked
and assumed to be part of the final solution. All algorithms were tested on the
SAC-94 and Chu-Beasley benchmarks, evaluating for each the mean absolute per-
cent error, the least error, the standard deviation of results and the CPU-time. The
results suggest that the efficacy of QA is indeed dependent on the problem param-
eters, as the Weingartner set of problems in the SAC-94 returned particularly poor

4

solutions; however, QA delivered better quality of result in all the ORLib bench-
marks. RQA outperformed other methods more significantly as the problem size
grew, with the large, strongly-constrained problems in the Chu-Beasley benchmark
showing the most benefit. The increase in computation time due to the complexity
of QA is significant, although when compared to the PSO, it scales better with
respect to the number of constraints.

I described the hardware implementation of the MKP-RQA solver behaviorally
in SystemC and performed high-level synthesis with the NEC CyberWorkBench
HLS compiler, then executed logic synthesis with Altera Quartus II for a Stratix
V FPGA kit. The system consists of an array of 16 processors, each representing
a Trotter replica for Quantum Annealing. The QA algorithm for solving MKP is
implemented within each processor as a finite state machine; copies of the problem
parameters are locally stored within each processor, and random number generation
is achieved with a 32-bit LFSR. I fine-tuned the behavioral description of the algo-
rithm with calculation simplifications and approximations to avoid multipliers and
exponential functions, which were replaced with shifters and look-up tables. Each
replica keeps its current solution in a register shared with its immediate neighbors.
A controller module ensures synchronization of the processors at every simulation
step. Since typical simulations for large problem instances can count millions of
steps, the precalculated 16-bit values for the coupling parameter at each simulation
step are offloaded to a fast on-chip memory connected to the design via a bus bridge
with an Avalon-Memory Mapped interface; the controller activates a pair of buffers
that alternately read from memory and make the data available to the processors.
The controller also receives the current fitness value from each replica and detects
when a new optimal solution has been found. Finally, an RQA engine module cal-
culates the frequency of partial solutions and outputs a binary vector describing
the locked items. Frequency calculation is performed with a SWAR algorithm for
popcount to avoid computing long sums.

Since the problem size and parameters are hard-coded into the implementation, I
performed synthesis multiple times for a variety of problem sizes. Synthesis results
show that the total area of logic utilization grows linearly with the number of
replicas and problem size in a deterministic way. As for the timing performance,
the maximum frequency decreases for larger problem implementations; this is to
be attributed to the exponential growth in number of interconnects and increasing
length of the combinational paths. At the maximum frequency of 164 MHz, the
FPGA solution is 150× faster than the software at executing the same number of
Monte Carlo steps. Fitting was performed with the most aggressive settings for
timing and the final area occupies 63% of the total logic. The power consumption
estimates also show energy savings of 99.7% with respect to the execution of the
same algorithm on CPU, while RTL simulations show that the hardware version
can produce a similar quality of result as the software.

5

Contents

List of Figures 8

List of Tables 10

1 Introduction 11

2 Background 15
2.1 Optimization metaheuristics . 15

2.1.1 Simulated Annealing . 15
2.1.2 Genetic Algorithms . 17
2.1.3 Particle Swarm Optimization 17

2.2 Quantum Annealing . 18
2.3 NP-hard Optimization Problems . 20

2.3.1 The Ising spin glass model 20
2.3.2 The Multidimensional Knapsack Problem 22

3 Materials and methods 25
3.1 Software implementations . 25

3.1.1 Quantum Annealing of the Ising spin glass model 25
3.1.2 Quantum Annealing of the Multidimensional Knapsack Prob-

lem . 28
3.1.3 Other implementations . 30

3.2 FPGA architecture . 31
3.2.1 MKP Processor . 33
3.2.2 Controller . 34
3.2.3 RQA Engine . 36

4 Results and discussion 37
4.1 Software testing results . 37

4.1.1 Ising spin glass model . 37
4.1.2 Multidimensional Knapsack Problem 40

4.2 FPGA synthesis results . 47
4.2.1 Logic synthesis results . 47

6

4.2.2 Result analysis . 48

5 Conclusion 55

A MKP Benchmark Results 57
A.1 SAC-94 benchmark . 57
A.2 Chu-Beasley benchmark . 61

Bibliography 83

7

List of Figures

2.1 The Quantum Annealing algorithm 19

3.1 Time evolution of 5 QA replicas solving a 2-dimensional 32×32 Ising
spin system . 27

3.2 Iterative embedding schema for the Chimera graph [31] 29
3.3 Block diagram of the FPGA architecture 32
3.4 Block diagram of the interconnection between the solver module, the

Avalon-MM bus, and the on-chip RAM 32
3.5 The MKP processor . 33
3.6 Block diagram of the Jt multiplication stage 34
3.7 Block diagram of the Controller module 35
3.8 Block diagram of the RQA engine 36

4.1 Performance comparison of SA and QA on the 2d Ising model . . . 38
4.2 Performance comparison of SA and QA on the 3d Ising model . . . 39
4.3 Performance comparison of SA and QA on the fully connected Ising

model with Chimera . 40
4.4 Performance comparison of SA, QA and HPSOGO on the SAC-94

library . 42
4.5 Standard Deviation for SA, QA and HPSOGO results on the SAC-94

library . 43
4.6 Computation times for SA, QA and HPSOGO results on the SAC-94

library . 43
4.7 Performance of SA, QA and HPSOGO on the ORLib library 44
4.8 Standard deviation for SA, QA and HPSOGO results on the ORLib

library . 45
4.9 Computation time for SA, QA and HPSOGO results on the ORLib

library . 46
4.10 Area estimation as a function of R 48
4.11 Area estimation as a function of C and N 50
4.12 Maximum frequency obtained by Quartus synthesis for varying hard-

ware size. 50

8

4.13 Comparison of results from the FPGA and software versions of the
algorithm . 51

4.14 Comparison of random trials per step as a function of τ , bench-
mark problem OR30x500-0.25. The regression function used for
the FPGA estimation is f(λ) ≈ 13.17λ0.12. 52

4.15 Execution times for the FPGA and software versions for the bench-
mark OR30x500-0.25 . 53

4.16 Speed of convergence to result for the software and FPGA versions,
benchmark problem OR30x500-0.25 53

9

List of Tables

4.1 Results of logic synthesis for the MKP-RQA module 47
4.2 Results of logic synthesis for the entire architecture 49

10

Chapter 1

Introduction

XKCD #1831 by Randall Munroe (CC BY-NC 2.5)

An optimization problem is the problem of selecting the "best" solution out
of the total space of feasible solutions. This type of problem is often encountered
across many fields of human activity; in computer engineering alone, we are familiar
with the many optimization methods involved in the logic and physical synthesis
of VLSI circuits, as well as issues such as task scheduling within operating systems
and the optimal insertion of scan stitching registers for circuit testing. But this
type of problem is also of paramount importance in fields such as finance and in-
vestments (capital budgeting [1], inventory management [2], portfolio optimization
[3]), production and distribution (machine allocation [4], transportation model [5],
choice of facility location [6]), human resources (employee scheduling [7], workforce
composition [8], office assignment [9]).

The variables in an optimization problem can be continuous or discrete; solving
a discrete optimization problem means to select a best configuration out of an
exponentially large, but finite, set of solutions. Such problems are also referred
to as combinatorial optimization problems. A combinatorial optimization problem
[10] is formally defined as a 4-tuple (I, f, m, g), where I is a set of problem instances,
f(x) is the set of feasible solutions for instance x, m(x, y) is the measure (or fitness)

11

1 – Introduction

associated with solution y, and g is the goal function, which can be a minimum or
maximum. Every combinatorial optimization problem has an associated decision
problem, a problem that has a "yes" or "no" answer, asking whether there exists
a feasible solution for a given measure m0. Combinatorial optimization problems
for which the decision problem is in NP are called NP-Optimization problems; this
means that there is no known algorithm that can solve them in polynomial time.

Indeed, these problems typically describe highly stressed systems. For exam-
ple, constrained optimization problems express explicit constraints on the variables
which can be modeled in variously complex ways, from a simple lower/upper bound
to systems of equalities and inequalities. Multi-objective optimization requires find-
ing a tradeoff between several conflicting parameters. As the number of constraints
and variables increases, the solution space also inflates, and the sheer number of
candidate solutions is impracticably large for brute-force methods and other basic
techniques that are subject to combinatorial explosion; more sophisticated algo-
rithms must be devised to explore the solution space in an intelligent and efficient
way.

Exact software solvers have been investigated for several NP optimization prob-
lems, and their development and improvement is a popular subject in academic
research. For example, the Traveling Salesman Problem (TSP) [11] [12] is one
of the most intensely studied among such problems: it involves finding the least-
distance circular tour of a set of cities. While the TSP has obvious applications
in the realm of transportation and interconnection design, it has a worst-case time
complexity of O(2N2), N being the number of cities in the graph. An exact solver,
the Concorde TSP Solver, was developed in the late ’90s based on the branch-and-
cut method. This solver is widely regarded as the fastest exact TSP solver and, in
2006, it accomplished the feat of solving every benchmark in the TSPLIB bench-
mark library, the largest being pla85900, a tour describing the travel time of a laser
drawing interconnections between 85,900 locations on a chip. Other exact solvers,
such as CORAL for the Multidimensional Knapsack Problem [13] and MaxSolver
for the Maximum Boolean Satisfiability Problem [14], have been proposed in lit-
erature, all utilizing efficient techniques such as dynamic programming, ILP and
branch-and-bound.

However, while exact solvers are successful in finding the best solution, resource
utilization and computation times continue to be an issue, as some of the largest
known benchmarks can require years (or centuries) of CPU time to reach the exact
solution. For example, the reported time to solution for pla85900 by Concorde
was 136 years; less dramatically, TSP instances of as few as 1,200 cities can take
more than 1,000 seconds to solve. Additionally, problem instances that appear
similar can require very different and unforeseeable amounts of computation time
to solve: the rl1304 benchmark takes Concorde only 189.20 seconds, while d1291,
an instance of similar size, takes 27393.72 seconds. Another factor that can heavily
influence computation complexity for exact solver is how constrained the problem is.

12

1 – Introduction

For the Multidimensional Knapsack Problem of 100 items, the CORAL developers
reported computation times of 10 ∼ 200 seconds for instances with 10 constraints;
when increasing the number of constraints to 30, time to solution runs up to 2,000
seconds.

All the above reasons explain the continued interest in heuristic solvers. For
many practical applications, the exact best solution is not necessary, as long as
an approximate solution of sufficient quality can be found. Good heuristic solvers
guarantee a minimum quality of solution within few per mille of the exact solution;
their computation time is generally deterministic, which is a desirable characteristic
in safety-critical and real-time application where a valid solution is required to be
produced in finite time. Since heuristic algorithms generally make use of stochastic
or "blind" permutation, they are less impacted than exact solvers by the presence
of a high number of constraints. Moreover, in situations where an exact solver is
not already available, the development of a heuristic algorithm can be much faster
and less expensive than that of an exact method.

13

14

Chapter 2

Background

There are a wide variety of approximate solvers for NP-Optimization problems.
The ones presented in this chapter are classified as metaheuristics, that is, they
are higher-level algorithms that implement mechanisms to choose between various
strategies to explore the solution space. As such, the fundamental difference be-
tween them is the implementation of the "artificial intelligence" driving this choice;
the inspiration behind this implementation has often come from observations in
the fields of biology and physics, with algorithm designers trying to reproduce the
innate efficiency of natural phenomena. Metaheuristic methods make extensive use
of stochastic optimization for an effective exploration of the search space, and re-
quire very few assumptions a priori about the problem to be solved, therefore they
are applicable to a wide range of problems with a few adaptations.

2.1 Optimization metaheuristics
In this section, we introduce three well-known metaheuristics. Simulated Annealing
is one of the simplest and most used approximate solvers, and the inspiration for
Quantum Annealing (QA); it has in common with QA the basic update mechanics.
Genetic Algorithms and Particle Swarm Optimization are, like QA, population-
based metaheuristics, but they employ fundamentally different update mechanics
[15].

2.1.1 Simulated Annealing
Simulated Annealing (SA) [16] may be the most popular optimization metaheuris-
tic. In fact, it is based upon the concept of annealing in metallurgy, itself one of
the first optimization methods ever discovered by man: the process of heating, then
slowly cooling down a metal alloy, inducing recrystallization and producing changes
in the material’s ductility and hardness.

15

2 – Background

The Simulated Annealing algorithm utilizes this concept of temperature as a
measure of the freedom of movement in the solution space. A high value for the
temperature parameter is set at the beginning of the annealing, allowing for strong
global search.

At each iteration of the algorithm, a new random solution is generated. The
fitness of the new solution, equivalent to the system Hamiltonian, is evaluated;
if the new solution improves on the current one, the current solution is replaced,
as in a local descent algorithm. Since local descent can easily cause the system
to be stuck in local minima, a mechanism is needed to escape local energy wells;
SA accomplishes this by applying at every step the Metropolis-Hastings algorithm.
While lower-energy solutions are always accepted, there is a chance to stochastically
accept a higher-energy solution and thus move to a potentially unexplored part of
the search space, if

ρ ≤ e
−∆H

T (2.1)

where ∆H is the energy difference between solutions, T is the current temperature,
and ρ is a randomly generated number in the range [0,1]. The probability of choos-
ing a worse solution becomes lower and lower as the annealing continues, and at
the end of the process the system ideally converges to a global minimum.

SA is well-tested, efficient and robust, but it can require long computation times
to converge to an acceptable solution for large problem instances. It is widely used
in the VLSI field for the generation of connection paths, placement and other opti-
mization. For example, it has been successfully employed in solving floorplanning
[17] and placement [18] problems, which are classified as NP, obtaining better re-
sults than other types of heuristics such as PSO and Ant Colony. An outstanding
example is the use of SA in placement algorithms within commercial software such
as Quartus II [19] for FPGA design optimization. Research within the field has
led to several improvements to SA, especially in parallelization efforts, which yield
better results and linear speedups with respect to the classic algorithm while trying
to balance the added complexity in synchronizing several solver processes.

There has been interest from several research teams in developing parallel hard-
ware architectures for accelerating SA on FPGAs and GPU. Since SA is an in-
herently sequential algorithm, workarounds are necessary to exploit concurrency;
solutions have been proposed both on CPU [18] [19] and GPU [20] which run in-
dependent SA solvers in separate threads, then choose the best solution reached
among all threads. A similar approach has been attempted on FPGA [21], re-
porting success for relatively small problems (1024-bit, corresponding to a 32-city
TSP problem). FPGA acceleration of Monte Carlo solvers, which apply concepts
compatible with SA, has found great success in physical simulations of the nearest-
neighbor Ising spin glass such as the Janus II computer [22]; however, most NP
problems require higher levels of connectivity.

16

2.1 – Optimization metaheuristics

2.1.2 Genetic Algorithms
Genetic Algorithms (GA) [23] are a family of metaheuristics inspired by the in-
heritance and random mutation of genetic characteristics. At first, a population
of chromosomes is generated, each representing a candidate solution. The genetic
simulation utilizes the seselection, crossover and mutation operators. The evolu-
tion of the group of chromosomes is simulated as an iterative process; each step
represents a generation, where the fitness of each solution is evaluated (using the
cost function of the problem) to select the parents of the next generation. This
selection operator can be implemented in different ways [15]; selection methods
generally involve stochastic sampling weighted by solution fitness.

In the crossover step, parts of the parent chromosomes are randomly swapped
to create new solutions. Various crossover implementations [15] define different
size, number and choice of boundary for the swapped sections.

Finally, the mutation operator introduces random changes in the chromosomes
in an effort to avoid getting stuck in local optima.

As generations succeed one another, the overall population tends to evolve to-
wards solutions of higher fitness.

GA is flexible and easy to extend by combining it with other algorithms. How-
ever, it exhibits slow convergence rates, and the quality of result is difficult to
control due to the stochastic nature of crossover and mutation [15].

2.1.3 Particle Swarm Optimization
Particle Swarm Optimization (PSO) [24] is a heuristic based on swarm intelligence.
The system consists of a population of particles; each particle is assigned a position
X in the solution space, corresponding to a candidate solution, and a velocity V
that determines its current and future displacement across the search space. Each
particle possesses information about its Local Best solution and the overall Global
Best solution. At each iteration i, the next position Xi+1 is computed for each
particle:

Xi+1 = Xi + Vi (2.2)
The speed term is also updated at every step:

Vi = cc · r1 · dBLS + cs · r2 · dBGS (2.3)

where r1 and r2 are two random numbers in the range [0,1]; dBLS and dBGS are
the distance of the current solution from the local and global best, respectively;
and cc and cs are two weights determining the attraction of the particle to the best
known solutions.

PSO is popular for its easy and fast implementation and efficient global search;
however its local search is weak with a slow convergence rate and it easily gets
caught in local minima when solving complex problems [15].

17

2 – Background

2.2 Quantum Annealing
Quantum Annealing is an emerging metaheuristic technique, originally proposed
in the field of quantum computing [25]. The algorithm is inspired by classical
Simulated Annealing, but instead of applying a thermal gradient to the system,
it applies a slowly diminishing transverse field. Real quantum computing-based
solutions rely on the quantum-mechanical superposition of all possible candidate
states with equal weights; the system is then allowed to evolve by the SchrÃűdinger
equation and explore the state space. As the strength of the transverse field reduces
to zero, the system collapses into the ground state of the classical Ising model
describing the Hamiltonian of the optimization problem. The algorithm performed
by hardware quantum annealers such as those produced by D-Wave Systems is
generally referred to as Adiabatic Quantum Computation, because the system stays
close to the Hamiltonian ground state during evolution with a slow rate of change
in the transverse field.

The quantum annealing process can be simulated in a traditional computer using
stochastic techniques variously referred to as Quantum Monte Carlo, Simulated
Quantum Annealing, Quantum Stochastic Optimization, and so on. This class of
algorithms involves an adaptation of the classical Metropolis-Hastings algorithm
(also used in Simulated Annealing) to step out of local optimum solutions [26].
Despite generating much enthusiasm in the scientific community for being one of
the first practical realizations of quantum computers, hardware quantum annealers
have generated just as much criticism [27]; the results of experimental runs so
far have failed to outperform classical computers in optimization problems. On
the contrary, Simulated Quantum Annealing, while drawing criticism for failing to
accurately model the mechanics of Adiabatic Quantum Computation, is proven to
be competitive as a classical metaheuristic: studies have shown that SQA can be
applied to solve NP-hard problems with faster convergence and better quality of
result than other traditional heuristics.

What sets apart Quantum Annealing from Simulated Annealing is the emula-
tion of the quantum tunneling effect for escaping local minima. The key parameter
Γ, which indicates the strength of the transverse field, represents the quantum tun-
neling width and determines the radius of local search. At first, the neighborhood
comprises the whole search space; during the annealing this radius is gradually
reduced.

SQA simulates quantum superposition by adding one more dimension to the SA
simulation space where a finite number R of copies of the system, called replicas,
exist. Entanglement among states is approximated by adding a correlation factor
Jt between replicas that has a function equivalent to that of temperature in SA; as
the annealing goes on, the correlation between neighbor quantum states increases,
eventually causing all replicas to collapse into a single optimal solution.

Figure 2.2 represents the flow of the Quantum Annealing algorithm. On the left,

18

2.2 – Quantum Annealing

Figure 2.1: The Quantum Annealing algorithm

we have a visual representation of replicas as a series of parallel threads exchanging
information with neighbors about their local solution; at the end of annealing, all
replicas shall converge to the same solution. On the right, the flowchart of the
algorithm executed within each replica: highlighted in red are the portions of the
program that can be rewritten to fit different problem types (e.g., to allow only
legal moves within the constraint system). The red dashed line indicates parts that
stay the same, save for the problem Hamiltonian.

Due to the presence of several replicas, the computation cost of this algorithm is
quite higher than that of Simulated Annealing, requiring higher amounts of memory
and much longer execution times. At the same time, because of the population-
based nature of the algorithm, SQA is particularly suitable to parallelization.

It should be noted that QA is not just a Simulated Annealing with R copies
running in parallel. Normally, SA is only able to pass to a neighboring state on the
energy landscape in one step, by thermal transitions. However QA theory [26] says
that, by adding the Jt coupling, the model will be able to tunnel through energy
barriers, avoiding local maxima, and exploring the state space more effectively.
This can explain the faster convergence of Quantum Annealing.

In particular, thermal transition probability between energy states for Simulated
Annealing is proportional to e

−∆
kBT (where ∆ is the height of the energy barrier, kB

is the Boltzmann constant, and T the annealing temperature). This probability is
dominated by the height ∆ of the barrier, which means it is difficult to get out of a

19

2 – Background

very deep well of local minimum by means of thermal fluctuations. However, it has
been demonstrated [28] that the quantum tunneling probability through the same
barrier is proportional to e

−
√

∆w
Γ .

The tunneling probability depends not only on the height ∆, but also on the
width w of the energy barrier. This means that QA shows significant advantage on
problems where the energy landscape presents a high amount of perturbation with
many high and thin barriers (w ≪ ∆). Indeed, the search of the ground state for
an Ising spin glass model is one of these problems: since many NP problems can
be formulated through the Ising model [29], we can apply QA to them and expect
favorable results.

Quantum Annealing, however, should not be considered a panacea for all dif-
ficult problems. For example, based on the above analysis, it is evident that QA
displays poor performance when the energy landscape presents wide and low energy
barriers. As such, success of QA in solving a problem depends heavily on the shape
of the energy landscape.

2.3 NP-hard Optimization Problems
In this section are presented two target problems for QA. A natural target for
optimization when considering Quantum Annealing is the Ising spin glass model,
as this is the problem architecture implemented in real quantum annealers. The
Ising model is a powerful tool for NP-Optimization, since mappings from various
NP problems to Ising have been defined; a solver for the fully-connected Ising
model would be a sort of universal solver. As an alternative approach, I also took
into exam a particular NP-Optimization problem, the Multidimensional Knapsack
Problem.

2.3.1 The Ising spin glass model
One of the first proposed applications of QA [25] was the Ising model, a mathemat-
ical model of ferromagnetism used in statistical mechanics. It consists of a system
of up/down spins organized in a graph. Each spin has a given radius of neighbor
spins that it is allowed to interact with. The model is described by the Hamiltonian

Hc = −
∑

<i,j>

Jijsisj (2.4)

where the N spins si can take the values ±1. The interaction between spins si and
sj on lattice sites i and j is described by the exchange coupling Jij. < i, j > means
that i and j are neighbor spins; the radius of neighborhood depends on the chosen
model. When spins are not neighbors their interaction is Jij = 0, therefore such
pairs do not contribute to the Hamiltonian.

20

2.3 – NP-hard Optimization Problems

The effectiveness of Simulated Annealing in finding the ground state of the Ising
model has been demonstrated in research [16]. Since then, the Ising model has been
used [26] as a benchmark to measure the performance of SA’s derivative algorithms
such as Quantum Annealing.

Several variations of the Ising spin glass model exist, based on the radius of
neighborhood considered for each spin when computing the Hamiltonian. We have
investigated a few of them, in the interest of evaluating their usefulness in solving
optimization problems and their feasibility of implementation in FPGA.

The 2-dimensional spin glass model

The 2d spin glass has the spins arranged in a planar lattice. It is a nearest-neighbor
(also known as Edwards-Anderson) model, usually considering only 4 neighbors for
each spin (north, south, west, east). Periodic boundary conditions are applied.

The 2d model can be heavily parallelized on FPGA [30]. In fact, due to its high
granularity, the update of each spin can be evaluated independently in each MCS.
The lattice is usually partitioned with a checkerboard scheme to ensure that no
neighboring spins are updated at the same time. For the nearest-neighbor model
with 4 neighbors per spin, only 2 partitions are necessary. This means that a model
of N spins can be realized with N

2 independent processors, attaining a full update
(MCS) in 2 clock cycles. Many FPGA realizations of this architecture exist; the
most important is the Janus II supercomputer [22] for the Monte Carlo simulation
of 2d Ising systems, consisting of a modular array of FPGAs.

The 3-dimensional spin glass model

The 3d spin glass model is identical to the 2d model, but the spins are arranged in a
cubic lattice. It is also a nearest-neighbor model, generally considering 6 neighbors
(north, south, west, east, front, back).

The 3d model can also be heavily parallelized on FPGA with little extra cost
compared to 2d. If we consider the same number of spins, the only overhead is
more complex connectivity due to the increased size of the neighborhood.

The 3d model is more appealing than the 2d model because there is no algo-
rithm that solves it exactly: therefore, a simulated heuristic that can provide an
approximate solution is considered interesting. However, literature [22] [29] sug-
gests that the usefulness of 3d spin glass models is limited to physics simulations,
and there was no evidence that any NP optimization problems could be mapped
to a 3d lattice effectively.

The fully-connected spin glass model

The fully-connected spin glass model is also known as the Sherrington-Kirkpatrick
model. It is an Ising model with long (potentially infinite) range couplings, where

21

2 – Background

any two spins can be aligned with a ferromagnetic or antiferromagnetic interaction.
This model is very interesting because many NP problems (e.g. partitioning,

covering and packing, knapsack, coloring and Hamiltonian cycle problems) can be
mapped [29] to a fully or partially connected graph. However, simulation of the
fully connected graph takes exponentially long computation times and is difficult
to parallelize: since every spin flip decision depends on the status of every other
spin, bonds must be evaluated sequentially to ensure the correctness of the system’s
evolution in time.

An FPGA architecture able to perform simulated annealing of the fully con-
nected spin glass was introduced [21] in 2017. As a workaround to the interdepen-
dency of spin updates, it proposed to parallelize spin update calculation at every
step, then execute only the spin flip that produces the best ∆H. It reported success
for relatively small (1024-spin) problems, but such a solution may be difficult to
scale to larger problems or to accommodate multiple replicas for QA. Additionally,
the fact that only one spin is updated at every step might make computations long
for large problem instances.

Minor embedding

Minor embedding is an alternative technique for performing annealing of fully-
connected models. It consists of mapping the fully-connected model onto a graph
with lower connectivity. This mapping is obtained by mapping every spin to a
chain of spins on the lower-order graph in such a way that chains have complete
connectivity; spins in the same chain are kept coherent by an interaction factor Jk.

The Chimera graph, a minor embedding scheme with fully-connected subgraphs
of order 8, is used on the D-Wave quantum annealer [31]. Therefore embedding
procedures for many problems’ data structures have already been developed.

I have considered the Chimera graph for an FPGA application because the real-
ization would be similar to 2d and 3d models, with slightly larger connectivity and
delay overhead. Unlike the actual fully-connected model, it could be implemented
by single spin flip dynamics. Moreover, this model is quite powerful since many
NP optimization problems can be mapped to it. However, it should be noted that
embedded problems have intrinsic embedding overhead, i.e., the time needed to
encode the correct embedding of the problem, which is typically not trivial.

2.3.2 The Multidimensional Knapsack Problem
The Knapsack (or Rucksack) Problem [32] is a well-known problem in combinato-
rial optimization. Given a set of items, each with an associated weight and value,
the solver is requested to select the items to insert in the knapsack such that (a) a
maximum weight is not exceeded and (b) the total value of the collection is maxi-
mized. It is a classic resource allocation problem that identifies a number of variants

22

2.3 – NP-hard Optimization Problems

by imposing or removing a limit on duplicate items, multiple constraints, etc. The
Multidimensional Zero-One Knapsack Problem (MKP) is one such variation, where
only one copy of each item is allowed and multiple weight constraints must be met.

Definition

Given:
• n : number of items to pack,
• Ui : vector of item values (size n),
• Mj : vector of constraints on item weights (size c),
• [pij] : matrix of positive weights (size n × c), where pij represents the cost of

inserting item i with respect to constaint j,
Find an assignment x = (xi)1≤i≤n ∈ {0,1}n such that the total value ∑n

i=1 Uixi is
maximised, while respecting the constraint set: ∑n

i=1 pijxi ≤ Mj, ∀j ∈ [[1, c]].
Real-life applications of the MKP include:

• Task scheduling problems, such as residential task scheduling under dynamic
pricing for smart power grid technologies [33];

• Packing problems such as the placement of virtual machines in a cluster of
physical machines for cloud computing [34];

• The optimization of financial operations such as securitization [35];

• Resource allocation for grid computing [36];

• Project portfolio management to optimize work practices within a business
or enterprise [37].

A realization of a solver for the one-constraint 0-1 Knapsack Problem has been
proposed on FPGA [38], but a hardware implementation for the MKP does not seem
to have been attempted yet. Meanwhile, an exact solver of the single-constraint
KP on GPU [39] reported a speedup of 26× over CPU for large instances.

23

24

Chapter 3

Materials and methods

3.1 Software implementations

3.1.1 Quantum Annealing of the Ising spin glass model

Heuristic simulation of the Ising model can be performed by the Monte Carlo
method, which relies on a combination of deterministic computation and random
sampling. The Monte Carlo simulation of the Ising spin glass consists of iterating
over every spin and performing an update, i.e., deciding whether or not to flip each
spin based on the status of its neighbors and the strength of its interaction with
them. A Monte Carlo step (MCS) is concluded when all the spins in the systems
have been updated.

The basis of QA implementations for the Ising model is the approach described
in [26]. The cost function for the problem is derived from the quantum Hamiltonian
via path-integral representation. To perform QA of Ising spin glasses, an additional
term is added to the Hamiltonian by applying a transverse magnetic field Γ:

Hq = −
N∑

i<j

Jijσiσj − Γ(t)
N∑
i

σi (3.1)

Γ starts out at a high value and is gradually reduced to zero during the anneal-
ing.

In computer-simulated QA, the quantum effect is simulated by mapping the
partition function of the quantum Ising model to that of a classical Ising model in
one higher dimension, called imaginary time dimension or Trotter dimension (as
the Suzuki-Trotter expansion is used to perform this mapping). This means that
the system is simulated simultaneously in R different iterations or replicas, which
start out completely independent but have a correlation factor Jt that grows in
time, forcing them to converge to a single solution at the end of annealing.

25

3 – Materials and methods

Jt is calculated each MCS as a function of Γ:

Jt = −1
2 log(tanh(Γ)) (3.2)

Note that equation 3.2 is the function I have settled on for my implementation,
but there are several variations in the definition of Jt across QA literature.

The 2-d and 3-d models

Both the 2-d and 3-d model include periodic boundary conditions along the imag-
inary time direction. The parameters of the problem are expressed by the matrix
[Jr] of random couplings between neighboring spin sites. The spin lattice is rep-
resented by a 3-d (for the 2-d model) or 4-d (for the 3-d model) array of integer
values, randomly initialized to +1 or -1, identifying the direction of the spin. Dur-
ing one Monte Carlo step, the algorithm iterates over every spin in the system
and attempts to perform a spin flip: the difference in energy for the potential spin
flip is computed, and if the flip is advantageous, it is performed. Otherwise, the
Metropolis-Hastings algorithm is performed to allow random acceptance of worse
solutions.

An additional improvement to the algorithm is brought by adding global updates
that flip a whole l-directed chain of spins occupying the same position, if it improves
the solution.

Listing 3.1: Pseudocode for QA of the Ising spin glass
for (s = 0; s < τ; s++) {

Update Γ with linear schedule: Γ = Γ0 · (1 − (s − 1
τ));

Update Jt: Jt = −1
2 log(tanh(Γ));

for (every spin i in the lattice) {
for (every replica l) {

∆Hpot = 2 · (
∑

j∈neighbors(i) J i,j
r · sl

j) · sl
i;

∆Hkin = 2 · Jt · (sl−1
i + sl+1

i) · sl
i;

∆H = ∆Hpot + ∆Hkin;
rand = generateRandomNumber();
if (∆Hpot < 0 || ∆H < 0 || rand < e−∆H) {

flip spin: sl
i = −sl

i;
}

}
δHchain =

∑R
l=1 ∆H i,l

pot;
if (∆Hchain < 0) {

flip all spins in the chain;
}

}
}

26

3.1 – Software implementations

Figure 3.1: Time evolution of 5 QA replicas solving a 2-dimensional
32 × 32 Ising spin system

27

3 – Materials and methods

The fully-connected model

In the fully-connected model the spins are not organized in a lattice; random cou-
plings are realized between every pair of spins, so there is no concept of neigh-
borhood of a spin. However, QA replicas are still organized in a nearest-neighbor
topology with periodic boundary conditions. The algorithm remains the same as
detailed in figure 3.1, the only difference being in the calculation of ∆Hpot:

∆Hpot,SK = 2 · (
N∑

j /=i

J i,j
r · sl

j) · sl
i (3.3)

Since the sum now runs over N − 1 spins, computations are considerably slower
than in the lattice graph.

The Chimera graph

Minor embedding with the Chimera graph can be implemented with the iterative
embedding [31] procedure. Each of the spins (logical bits, or LB) in the original
graph is mapped to 8 qubits in the Chimera graph following the modular triangle
scheme shown in figure 3.2. The 8 qubits representing the same LB are tied by a
nearest-neighbor ferromagnetic coupling JF with negative weight, which serves as
a sort of penalty function keeping the qubits in the chain coherent. The remaining
connections are used to model the original connections between LBs.

The energy difference equation becomes

∆Hpot,i = 2 · (
∑

d∈Chimera−nb

Jr · sd +
∑

p∈LB−nb

JF · sp) · si (3.4)

where Chimera − nb identifies the fully-connected neighbors in the same Chimera
graph, and LB − nb the neighbors in the LB chain, of spin si. The rest of the
algorithm remains identical to the one described in listing 3.1.

3.1.2 Quantum Annealing of the Multidimensional Knap-
sack Problem

The representation for the Multidimensional Knapsack Problem is not dissimilar to
the Ising spin model. Every replica works on a different knapsack and the knapsack
is represented by an N -spin integer vector, where N is the number of items; the
spin representing each item is +1 if the item is in the bag, -1 if not. It has been
demonstrated [32] that it is possible to use the simplified path-integral Hamilto-
nian by only allowing moves that take our system to another valid configuration,
i.e., only inserting and swapping items that do not violate any of the multidimen-
sional constraints. This is achieved by starting with an empty knapsack (all spins

28

3.1 – Software implementations

Figure 3.2: Iterative embedding schema for the Chimera graph [31]

= -1), adding random items until constraints are exceeded; then, all subsequent
trials require swapping an item in the bag for a random one outside, provided that
constraints are still met. The classical portion of the Hamiltonian is modified as:

Hpot,MKP =
n∑

i=1
Uixi (3.5)

that is, the total value of the items added to the knapsack.
I applied two modifications to the existing algorithm:

1. The proposed mutation is to try to exchange an item a outside the bag with
an item b inside the bag; if the exchange is not possible, “step back” by
removing item b from the bag. Instead of doing this unconditionally, I run a
new Metropolis-Hastings random trial to determine if b should be removed.
This modification improves the convergence time of the algorithm and the
quality of the result.

2. The value of Jt plays a paramount role in the annealing. However, no pre-
scription for it is given in [32]. I made a few trials to find a proper value for Jt.

29

3 – Materials and methods

The main problem is that the available benchmark problems present a very
broad range (10 − 1000) of possible values for the item prices, and therefore a
broad range of possible values for the potential energy ∆Hpot. Since stepping
out of the local optimum depends on the value of ∆H = ∆Hpot + ∆Hkin, it
is evident that ∆Hkin must be roughly of the same order of magnitude as
∆Hpot for the Metropolis dynamics to work. ∆Hkin is directly proportional
to Jt, therefore we want Jt to be of the same order of magnitude as the range
of item prices.
One possible way to change the value of Jt is to change the value of Γ0.
However, modifying Γ0 also influences the rate of growth of Jt. I identified the
ideal rate of growth as that corresponding to Γ0 = 3.0, as lower values cause
the Jt interaction to spike to high values too early in the annealing (preventing
the system from exploring the state space for most of the annealing), while
high values make the growth of Jt too slow (greatly reducing the quantum
tunneling effect).

A possible optimization for the MKP-QA solver is the Restrictive Quantum An-
nealing (RQA) paradigm proposed in [32]. RQA consists in disallowing the removal
of elements that appear in a certain percentage of replicas (called the blocking
frequency); it works on the assumption that if an edge appears in many partial
solutions it is highly likely that it will be part of the final solution. In practice,
the optimal blocking frequency varies depending on the benchmark problem, and
it would be up to the user to run the algorithm with varying frequency values and
find out the best value. However, as a rule of thumb, a frequency of 90% has been
observed to be effective on a wide range of problems.

3.1.3 Other implementations
Simulated Annealing

Adaptations of the Ising model and MKP into Simulated Annealing are straightfor-
ward; they employ as cost function the classical part (∆Hpot) of the Hamiltonian
described in the QA implementations. The random moves are also performed in the
exact same way. The threshold function for the Metropolis-Hastings algorithm is
slightly different (e∆H

T); temperature T is decreased with the same linear scheduled
employed for Γ in QA.

Hybrid PSO-Genetic Optimization of the MKP

A novel and effective method for solving the MKP has been proposed in Hybrid
PSO-Genetic Optimization (HPSOGO) [40]. This algorithm is a modification of
the PSO with an extra step at every iteration where an ulterior optimization is
performed on every particle using genetic operators. Once per iteration, two genetic

30

3.2 – FPGA architecture

mutations are performed: a random number of positions of the item vector are
copied first from the local, then from the global best solution. HPSOGO has
reported great results on the SAC-94 benchmark, but it had not yet been tested
on the entire Chu-Beasley set.

An important difference between HPSOGO and QA is that, while QA can only
produce valid solutions, HPSOGO has an update strategy that also temporarily
accepts solutions that violate constraints in order to explore the state space more
aggressively. In practice this means that HPSOGO can often fail to find a valid
solution at all. In fact, while results reported in literature showed that HPSOGO
was able to find a ground state for many instances, its success rate was often lower
than 100%.

In the interest of making a fair comparison between QA and HPSOGO, I chose
a severe penalty function, giving solutions that violate constraints a negative total
value. This ensures a 100% success rate while sacrificing some freedom of movement
in the solution space.

3.2 FPGA architecture
This section illustrates the application chosen for development on FPGA: a paral-
lelized Multidimensional Knapsack Problem solver with Restricted Quantum An-
nealing. The circuit takes as input the set of data representing the item profits,
knapsack capacities and constraints, and it produces the solution as a vector of bits
representing the items in the knapsack, together with its profit. I described this
circuit behaviorally in SystemC and performed high-level synthesis with the NEC
CyberWorkBench HLS compiler (CWB) [41], exporting the components to an RTL
format.

The following nomenclature describes the MKP instances:

• Profit: the price of an item, equivalent to the potential energy contribution
from the item. The goal of QA is to maximize the total profit of a knapsack.

• Weight: the cost of an item. In MKP an item can have multiple weights
describing as many constraints.

• Capacities: the maximum sum of weights for each constraint allowed in the
knapsack.

• Item vector: a binary vector of N bits describing the contents of the knapsack.
The ith bit is set if item i is in the knapsack.

The architecture (shown in Fig. 3.3) is composed of an array of R processors,
each representing a Trotter replica for Quantum Annealing. Each replica shares its
current item vector with its neighbors.

31

3 – Materials and methods

Figure 3.3: Block diagram of the FPGA architecture

There is also a RQA engine that receives the item vectors from the processors
and calculates the frequency of each item across all solutions. It outputs a binary
vector describing the locked items that replicas are no longer allowed to change.

Finally, there is a Controller module that ensures synchronization of the replicas
during one Monte Carlo step (MCS). It fetches Jt values for the next Monte Carlo
steps from an on-chip RAM, then enables the replicas to allow calculation of the
next step and sends them the appropriate Jt value. It also receives the current
total profit from each replica and detects when a new optimum has been found.
The controller implements a Memory Mapped interface to the Avalon bus [42] for
connection to the external RAM, as shown in Fig. 3.4.

In the following we will examine each module in detail.

Figure 3.4: Block diagram of the interconnection between the
solver module, the Avalon-MM bus, and the on-chip RAM

32

3.2 – FPGA architecture

3.2.1 MKP Processor
The basic structure of the MKP processor is the same for all replicas. The core
of this processor is a Finite State Machine that executes the operations for one
Monte Carlo step of Quantum Annealing. Every MKP processor stores a copy of
the problem data in local registers.

Figure 3.5: The MKP processor

The processor is a Finite State Machine of 23 states for the largest problem
(30x500); because of a few branches in the algorithm, the average latency due to
pipelining is lower than 23 cycles. However, since each random number generation
attempt using the LFSR introduces an extra cycle of latency, the latency of this
module in any given Monte Carlo step is not deterministic.

In fact, a key problem of implementing a stochastic algorithm on FPGA is
the quality of the random number generation. I used a simple 32-bit LFSR, which
provides good pseudorandom performance. From this LFSR up to 9 bits are selected
as an item identifier (itemRNG) and 16 bits for the Metropolis random number
(metroRNG). When the MKP solver needs a random number, it enables the LFSR
and waits for the next clock cycle. Since the LFSR is a synchronous circuit, it
necessarily introduces latency.

Most of the necessary instructions in the process datapath are adders, subtrac-
tors, and comparators. However, when we enter a Metropolis attempt to swap item
A with item B, the calculation of the quantum portion of the Hamiltonian:

∆Hkin = Jt · ((sl−1
A + sl+1

A) · 2sl
A + (sl−1

B + sl+1
B) · 2sl

B) (3.6)

would introduce at least one 16-bit multiplier. The result of the right hand side
parenthesis only has a few discrete possible values: −8, −4, 0, +4, +8. Then, the

33

3 – Materials and methods

∆Hkin calculation can be accomplished by using exclusively LUTs and shifters, as
shown in Fig. 3.6. This saves a considerable amount of area and reduces the critical
path.

Figure 3.6: Block diagram of the Jt multiplication stage

The calculation of the exponential e−∆H for the Metropolis trial is also pro-
hibitively expensive in FPGA, so I implemented it with a LUT indexed by ∆Hkin.
I experimentally determined that a high precision is not necessary for this operation
and the exponential LUT only needs 24 entries of 16 bits.

When it is necessary to evaluate ∆Hkin, each replica needs to have a stable copy
of the item vectors from its neighbors, and these vectors should be from the same
annealing step that the replica is currently in. FPGA implementations of the Ising
model solve this problem by partitioning the spins into two groups and sharing
each spin unit between two neighboring spins that are processed in separate clock
cycles.

From simulation statistics I determined that calculation of ∆Hkin is not per-
formed in 98-99% of annealing steps within a simulation. Then, the replicas can
indeed work in parallel most of the time. In the final implementation all the replicas
are enabled at once; because of the low granularity of moves in the MKP solver,
a replica can use a neighbor’s result from the previous MCS, accepting a possible
error of at most 2 bits. Simulations confirm that the quality of result is equivalent
to the one with the partitioned replicas. By allowing all replicas to process at the
same time, overall latency is improved by about 50%.

3.2.2 Controller
The Controller module fulfills multiple functions. Its main role is to keep replicas
synchronized over the same Monte Carlo step, by issuing the outEnable signal to

34

3.2 – FPGA architecture

all processors and releasing it once it receives the doneEO signal from all replicas
for that step. It also handles the transfer from memory of the 16-bit values for
Jt. A typical QA run can take a few million simulation steps in order to reach a
good quality solution. Since the calculation of Jt involves complex trigonometric
functions, and the same values can be reused in every simulation run, it is more
reasonable to precompute all values for Jt and store them in a fast on-chip memory
outside the solver module.

Figure 3.7: Block diagram of the Controller module

The memory is a RAM connected to the Avalon bus with a Memory Mapped
Slave interface [42]. The corresponding Master interface is implemented within two
JtBuffer modules inside the Controller. When the solver is reset, the Controller
enables the first buffer, which issues a burst read request on the Avalon bus. After
receiving the first 50 values, the buffer is full, and it raises the full signal; the Con-
troller then disables it and enables the second buffer who independently begins to
fetch the following 50 values. At the same time, the Controller raises the readNext
signal to request the first Jt value from the first buffer; as soon as it is available the
Controller forwards it to the replicas and enables the first annealing step. When all
the replicas are done updating, the controller disables them and requests the next
Jt value from the buffer. Then the replicas are enabled and a new MCS begins.
When all Jt values in a buffer have been consumed, it deasserts the full signal;
the Controller then enables the update for that buffer and switches to reading from
the other one, as long as it is full. Since the burst transfer takes less time than
the execution of 50 simulation steps, there is generally no stall in switching from a
buffer to the other.

The Controller also receives the fitness of each replica’s current solution and
determines when a new optimum has been found, outputting a new bestValue.

35

3 – Materials and methods

Once all simulation steps have been executed, the Controller raises the QA_done
output signal and stops the annealing.

3.2.3 RQA Engine
The Restricted Quantum Annealing (RQA) engine’s role is to keep track of the
frequency of appearance of each item across solutions. I accomplished this by
means of a SWAR algorithm for popcount (or Hamming weight counter), which is
essentially a series of log(R) + 1 sum, right shift and bit masking steps.

For each item i, the input to the popcount is built out of a vertical slice of all
the replicas’ item vectors, taking from each only the ith bit (as highlighted in red
in Fig. 3.8). The result of the popcount is stored in a frequency vector at position
i. If the frequency is greater than the RQA blocking frequency, the ith bit of the
output signal lockedItems is set.

Figure 3.8: Block diagram of the RQA engine

Using popcount lets us avoid computing long sums with the 500-position item
vectors of the hardest benchmark. Every vertical slice built is R bits long, which
is generally much shorter than the item vectors.

Additionally, it is possible to explore the design space for this component by
performing loop unrolling to control the quantity of items processed at the same
time and the pipeline depth of the frequency counter. I found that the smallest-
area, smallest-delay, longest-latency implementation is the most efficient: one item
is processed at a time, and CWB’s automatic scheduling reduces the delay as much
as possible, resulting in a (log(R) + 1)-cycle latency.

Although the replicas don’t have access to the most updated version of the
lockedItems vector at all times, RTL simulation results show that this minimized
implementation has no adverse effects on the speed of convergence of RQA or the
quality of result. Then, RQA can be added to the system with negligible impact
on area and maximum frequency.

36

Chapter 4

Results and discussion

4.1 Software testing results

4.1.1 Ising spin glass model
At first, I performed a feasibility study for the Ising spin glass model. I began by
trying to reproduce literature results about the 2d lattice, then moved on to in-
creasing connectivity modes. The final goal was to test whether the fully-connected
Ising model could be implemented with Quantum Annealing using a parallel hard-
ware architecture based on minor embedding, similar to the D-Wave machine’s
implementation.

The 2-d spin glass model

We performed a comparison of the performance of QA and SA on the 2d spin
glass model. QA is run with R = 50 replicas, the transverse field strength is set
to an initial Γ0 = 3.0 and decreased to 0 with a linear schedule. The algorithm
performs both local and global moves in the way described in section 3.1.1. SA
is performed with an initial temperature of T = 3.0, also decreased to 0 with a
linear schedule. Both algorithms were implemented in C++. The benchmark for
the test is a 32 × 32 spin lattice with randomly generated couplings [Jr] which are
real numbers uniformly distributed between -2 and +2. We performed simulation
of this model for different values of the annealing time τ , up to 3 million steps.

The results of this simple test confirm those found in literature. Figure 4.1
shows the final energy per spin of solutions reported by QA and SA, depending on
the number of simulation steps; the lower the energy value, the closer the solution
is to the exact solution (ground state of the system). Each data point is aver-
aged over the results of 10 trials. The dashed line QA-eq shows the results of QA
adjusted for equivalent computation effort to SA, that is, the corresponding data
point was actually computed in τ

R
simulations steps, to take into account the added

37

4 – Results and discussion

103 104 105 106

−1.51

−1.52

−1.53

−1.54

−1.55

−1.56

−1.57

−1.58

Monte Carlo steps

En
er

gy
pe

r
sp

in
SA

QA-eq
QA

Figure 4.1: Performance comparison of SA and QA on the 2d Ising
model

computation load due to the multiple replicas. Even when considering equivalent
computation effort, QA’s performance surpasses SA’s at a crossing point around
τ = 100,000. When taking into account the parallelization of replicas (continuous
red line), QA is able to converge to a better solutions in a lower number of Monte
Carlo steps than SA. We can conclude that the 2-d spin glass model is one where
the application of QA is beneficial.

For the sake of hardware acceleration, existing FPGA realizations of 2d spin
glasses could be easily extended to the QA model, at the cost of larger area and
more complex connectivity. New models of FPGA with large logic availability
would allow this.

I decided not to pursue hardware acceleration of the 2d spin glass model for
two reasons. Unlike higher order models, there already exist numerical methods
that solve the 2d spin glass problem exactly. This makes QA of the 2d spin glass
model unappealing as a simulation of a physical system. Moreover, I didn’t find
any evidence that any NP optimization problem can be mapped to 2d efficiently,
which means it would not be useful as a general-purpose heuristic solver.

The 3-d spin glass model

We ran another simple test to verify the performance of QA on the 3d model. The
algoithm parameters used are the same as those listed above for the 2d model. The
benchmark for the test is a 10 × 10 × 10 lattice with [Jr] uniformly distributed
between -2 and +2. Because of the added complexity of the graph, execution times

38

4.1 – Software testing results

are much longer than for the 2d model, so I was able to perform simulation for a
limited number of steps (up to τ = 30,000). The results of this partial test are
reported in figure 4.2.

102 103 104

−1.93
−1.94
−1.95
−1.96
−1.97
−1.98
−1.99

−2
−2.01
−2.02

Monte Carlo steps

En
er

gy
pe

r
sp

in

SA
QA

QA-eq

Figure 4.2: Performance comparison of SA and QA on the 3d Ising
model

QA still delivers a better performance than SA in terms of number of MCS,
but QA showed worse scaling on this model, and its advantage over Simulated
Annealing is not as strong as for the 2d model.

Minor embedding of the fully connected model

The fully connected model does not allow parallel spin updates and therefore did
not seem like a good candidate for parallelization. To work around this problem I
decided to test the minor embedding technique with the Chimera graph. In order
to test the effectiveness of the mapping, first I prepared a simple problem on a
fully connected graph. The problem has N = 80 spins and Jr couplings uniformly
distributed between -2 and +2. I verified that both QA and SA are able to find
the ground state of this problem in few thousand steps on the fully connected Ising
model. I then proceeded to map the fully connected graph to a 20 × 20 triangular
matrix of Chimera subgraphs by the iterative mapping method. The parameters for
SA and QA are the same as described above, with the addition of the ferromagnetic
coupling JF =

√
N among qubits belonging to the same Logical Bit group.

As it is evident from figure 4.3, the results of this test were fairly discouraging.
Running SA on the embedded fully-connected Ising model takes a higher number
of simulation steps than on the non-embedded version, but it eventually converges

39

4 – Results and discussion

103 104 105

−3
−3.5

−4
−4.5

−5
−5.5

−6
−6.5

−7

Monte Carlo steps

En
er

gy
pe

r
sp

in
SA

QA-eq
QA

Figure 4.3: Performance comparison of SA and QA on the fully
connected Ising model with Chimera

to a solution within few percent of the ground state, confirming the effectiveness of
the Chimera mapping.

However, SQA cannot be applied to the embedded fully-connected Ising model
in a straightforward way. The ferromagnetic couplings JF among qubits represent-
ing the same spin compete with the coupling Jt among imaginary-time replicas,
increasing the frustration of the system. In essence, the single spin dynamics are
frozen and the freedom of exploration in the solution space is very low. Attempts
to reduce the value of JF result in a more disordered system that often returns
invalid solutions where spins in a single qubit are not fully aligned.

Venturelli et al. [31] suggested it’s possible to overcome the freezing by using
cluster updates; however, adding a complex cluster-building algorithm would defeat
the purpose of trying to simplify the architecture by minor embedding. In addition,
parallelization of clustered version would be even more difficult. As such, the
realization of a general-purpose QA solver based on fully-connected Ising with spin-
flip dynamics is not possible without significant modifications to the algorithm.

4.1.2 Multidimensional Knapsack Problem
Given the limitations found in the Ising model, I decided to explore a different
implementation with the definition of a problem-specific algorithm, where Quantum
Monte Carlo dynamics can be applied without the rigid spin glass structure. I
wrote three software solvers for the Multidimensional Knapsack Problem (MKP) in
C++ for Simulated Annealing, Quantum Annealing, and the Hybrid PSO-Genetic

40

4.1 – Software testing results

Optimization algorithm (HPSOGO); the QA solver is designed to optionally apply
Restricted Quantum Annealing to improve the results. The implementation of the
three algorithms is explained in detail in section 3.1.2.

Testing architecture

I ran an exhaustive test for all three algorithms on two well-known benchmarks for
the MKP, the SAC-94 [43] and the ORLib [49] problem sets. Simulated Annealing
ran for τ = 1,000,000 steps with initial temperature T0 = 3,000 and a linear an-
nealing schedule. Quantum Annealing results are reported here for τ = 1,000,000.
The number of replicas is set to R = 32 and the initial transverse field parameter
is Γ0 = 3.0 with a linear annealing schedule. HPSOGO instantiates 15 replicas
and runs for 10,000 iterations; empirical tests showed that, on the average, these
parameters gave similar computation times to QA of a million steps. The social
and cognitive mutation weights are set to cc = cs = 2.05. I also tuned the velocity
calculation by multiplying the result of equation 2.3 by a factor χ = 0.729.

Tests were repeated 20 times per benchmark and the average quality of solution
is reported in detail in appendix A, together with the elapsed CPU time. The
parameters evaluated in the test are:

• Success Rate (SR): because HPSOGO has a chance of returning invalid
solution, it is necessary to evaluate this parameter. The SR is calculated as
the ratio of valid solutions returned over the total number of algorithm runs
and is expressed as a fraction. Because of the modifications I applied to the
HPSOGO penalty function, SR for all the algorithm runs in the test is 1.

• Mean Absolute Percent Error (MAPE): a percent measure of the mean
distance of solutions from the optimum. Given the known optimal solution
for the instance Sopt and solution Si returned by the algorithm at iteration i,
the MAPE over K iterations is:∑K

i=1(Sopt − Si)
K

· 1
Sopt

(4.1)

• Least Error (LE): the error of the best solution returned by the algorithm.

• Standard Deviation (SD): the SD of solutions returned by the algorithm.
It is a measure of the reliability of the algorithm in always producing the
same quality of result.

• CPU time: the computation time of the program in seconds, evaluated
using the clock() function from ISO C to measure the number of cycles
and divide the result by the system-dependent macro CLOCKS_PER_SEC. All
our implementations are single-threaded and they ran on an Intel i7 CPU at
2.67 GHz.

41

4 – Results and discussion

Test results (SAC-94)

SAC-94 is a library of benchmarks compiled from several sources in the literature.
It is a small set of 40 instances, but it contains a variety of parameters and most
of the instances are based on real-world problems. The average quality of solution
is reported in the graph, grouped by benchmark family and number of constraints:

sento weing1-6 weing7 weing8 weish

0

2

4

6
·10−2

M
A

PE
[%

]

SA QA HPSOGO

Figure 4.4: Performance comparison of SA, QA and HPSOGO on
the SAC-94 library

I have isolated the results for benchmarks weing7 and weing8 as the results
showed great disparity to the rest of the library. As we can see from the bar graph
in 4.4, Simulated Annealing had the most success in finding good quality solutions
across the library.

The Weingartner benchmarks 1 through 6 proved to be especially difficult for
Quantum Annealing. It is difficult to determine an exact reason for this because the
original paper [44] does not give details about how these benchmarks were generated
other than the fact that they are based on real-life capital budgeting problems.
Looking at the problem instances I conjectured that the poor performance of QA
may be due to the fact that these problems, unlike the others in the library, assign
a very wide range of values to the item profits (100 ∼ 30,000); this might make
QA reluctant to get rid of high-profit items that are not actually present in the
optimal solution. If this is the case, it will suffice to tune the QA parameters to
this particular instance to obtain better results.

While HPSOGO gave better results for Weingartner 1 through 6, QA out-
performed it on weing7 and weing8, and did even better than SA on weing8.
These two instances have a very high number of constraints, 105, in contrast to
weing[1-6] which have only 28 constraints. This confirms the fact that QA does
better in cases where the problem is highly constrained.

42

4.1 – Software testing results

QA also did better than SA on the sento benchmarks, and matched its perfor-
mance on the weish benchmarks.

sento weing1-6 weing7 weing8 weish

0

50

100

St
an

da
rd

D
ev

ia
tio

n

SA QA HPSOGO

Figure 4.5: Standard Deviation for SA, QA and HPSOGO results
on the SAC-94 library

Chart 4.5 shows the standard deviation for the three algorithms. Once again,
SA had the lowest deviation overall, and the Weingartner family of instances proved
the most difficult, with weing8 causing even SA to produce wildly different results.

It is interesting to note that the standard deviation for QA remained the same
throughout the Weingartner benchmark without being impacted by the number of
constraints.

sento weing1-6 weing7 weing8 weish

0

20

40

60

tim
e[

s]

SA QA HPSOGO

Figure 4.6: Computation times for SA, QA and HPSOGO results
on the SAC-94 library

As for the computation times, as expected, SA is the fastest, and QA takes

43

4 – Results and discussion

much longer than other methods due to the added complexity of the Trotter repli-
cas (however, appendix A include the results for QA of 100,000 steps, which show
that QA can converge to a solution faster for a few of these benchmarks). It is worth
noting that HPSOGO takes a particularly long time on the sento instances. This
may be because these problems have a larger size (30 items, 60 constraints), which
complicates the calculation of the penalty function within this algorithm. In gen-
eral, the HPSOGO computation time scales badly with the number of constraints,
while SA and QA are not significantly affected by it.

Test results (ORLib)

The ORLib benchmark was formulated in [45] for solution via Genetic Algorithm. It
is a set of 270 MKP instances with different sizes. The problems in this benchmark
are characterized by their tightness, a measure of capacity of the knapsack; instances
with a tightness of 0.75 are less tight (constraints are more relaxed, more items can
be inserted) and ones with a tightness of 0.25 are tighter. Since this benchmark
contains such a large number of instances, the results are reported here aggregated
by problem dimension.

C=5 C=10 C=30
0

5 · 10−2

0.1

M
A

PE
[%

]

(a) By number of constraints
N=100 N=250 N=500

0

5 · 10−2

0.1

M
A

PE
[%

]

(b) By number of items

T=0.25 T=0.50 T=0.75

0

5 · 10−2

0.1

0.15

M
A

PE
[%

]

SA
RQA-100
HPSOGO

(c) By knapsack tightness

Figure 4.7: Performance of SA, QA and HPSOGO on the ORLib
library

44

4.1 – Software testing results

The best performing version of QA on this benchmark is Restricted Quantum
Annealing with a blocking frequency of 100%. The results in chart 4.7 show a
definite dominance of QA over the other two methods when it comes to solution
quality. All three algorithms are slightly affected by changes in the number of
constraints, while the number of items affects quality of results more significantly,
especially for HPSOGO.

C=5 C=10 C=30
5

10

15

20

25

St
an

da
rd

D
ev

ia
tio

n

(a) By number of constraints
N=100 N=250 N=500

10

20

30

St
an

da
rd

D
ev

ia
tio

n

(b) By number of items

T=0.25 T=0.50 T=0.75

10

20

St
an

da
rd

D
ev

ia
tio

n SA
RQA-100
HPSOGO

(c) By knapsack tightness

Figure 4.8: Standard deviation for SA, QA and HPSOGO results
on the ORLib library

Chart 4.8 shows the standard deviation. QA results also report the lowest
standard deviation among solutions. Interestingly, while all three algorithms have
worse SD when the number of items grows, only QA seems to be significantly
influenced by the knapsack tightness.

Finally, timing results are reported in chart 4.9. SA remains the fastest algo-
rithm with an average computation time of few seconds. QA’s CPU-time lengthens
as the number of items grows, but remains constant with the number of constraints.
HPSOGO’s running time depends both on the number of items and on the number
of constraints; the average elapsed time for 30 constraints is on par with QA.

Overall, I found a marked difference of performance results among benchmark
tests depending on the size of the problem instance and the instance parameters. On

45

4 – Results and discussion

C=5 C=10 C=30

0

50

100

tim
e[

s]

(a) By number of constraints
N=100 N=250 N=500

0

100

200

tim
e[

s]

(b) By number of items

T=0.25 T=0.50 T=0.75

0

50

100

150

T
im

e[
s]

SA
RQA-100
HPSOGO

(c) By knapsack tightness

Figure 4.9: Computation time for SA, QA and HPSOGO results
on the ORLib library

smaller instances, such as those included in the SAC-94 benchmark, SA outperforms
the other algorithms both in speed of execution and in quality of result.

However, even among small instances there exist some problems, such as those
in the Weingartner family, that give surprising results; QA finds extraordinary dif-
ficulty in solving some of these while it outperforms the other algorithms in others;
this can probably be attributed by the instances having non-uniformly distributed
parameters such that some strategies are more effective than others in exploring
their solution space.

My version of HPSOGO showed worse results on SAC-94 than those reported in
[40], probably due to the adjusted penalty function. However, it still outperforms
QA on the smaller Weingartner problems. I also believe that the timing measure-
ment is still indicative of the computation effort required for the algorithm.

As for the much larger instances in the ORLib benchmark, Restricted Quantum
Annealing reported much better results, with an overall greater quality of result and
reliability, especially for the bigger problem instances, at the cost of longer compu-
tation times. Therefore, it seems well worth it to pursue hardware acceleration of
the MKP-RQA solver in order to tackle these difficult instances.

46

4.2 – FPGA synthesis results

4.2 FPGA synthesis results
I wrote the description of the hardware implementation of the MKP-RQA solver
(described in section 3.2) behaviorally in SystemC and performed high-level syn-
thesis with the NEC CyberWorkBench HLS compiler [41] (CWB), then I exported
the resulting Verilog files and executed logic synthesis with Altera Quartus Prime
after adding to the design an Avalon-MM bus and a fast on-chip RAM for storing
the Jt entries. The target is an Altera Stratix V [46] FPGA board.

4.2.1 Logic synthesis results
In table 4.1 are reported the logic synthesis results for RQA-MKP solver alone. Pa-
rameters are R = 16, τ = 1,000,000, 500 items and 30 constraints; The OR30x500
family of benchmarks is the biggest one available in literature and the one I con-
sidered for final implementation.

Pre-placement area
Device Family Stratix V
Logic utilization (in ALMs) N/A
Total registers 143108
Total pins 2
Total virtual pins 168
Total block memory bits 2,457,600

Post-placement area
Family Stratix V
Device 5SGXEA7N2F45C2
Logic utilization (in ALMs) 147,236 / 234,720 (63 %)
Total registers 157782
Total pins 2 / 1,064 (< 1 %)
Total virtual pins 168
Total block memory bits 2,457,600 / 52,428,800 (5 %)
Total RAM Blocks 128 / 2,560 (5 %)

Critical path
Worst case maximum frequency fmax 164 MHz

Power consumption
Total Thermal Power Dissipation 7133.23 mW
Core Dynamic Thermal Power Dissipation 5875.28 mW
Core Static Thermal Power Dissipation 1235.37 mW
I/O Thermal Power Dissipation 22.58 mW

Table 4.1: Results of logic synthesis for the MKP-RQA module

47

4 – Results and discussion

After a first synthesis of the RQA-MKP module, I connected the design to the
Avalon-Memory Mapped bus (as shown in Fig. 3.4) and added the fast on-chip
RAM of 1,000,000 16-bit entries that contains the Jt values. The result of logic
synthesis for the whole architecture are reported in table 4.2. Logic synthesis was
performed in Aggressive Performance Optimization Mode, which means that area
and power savings were sacrificed to meet timing constraints. Register duplication
was turned on for physical synthesis and routing to further improve the timing
performance.

The addition of the bus and external memory increases the power consumption,
but the final implementation also improves on the critical path with a higher worst-
case fmax. The high usage of block memory bits is due to the fact that every
processor stores a local copy of the item weights (30 × 500 = 15,000 entries of 18
bits for 16 replicas): this is to improve reading times and avoid access conflicts,
since every processor in the module should be allowed fast random access to any
row of values at any time to check for constraint violations at the item insertion
step.

4.2.2 Result analysis
Area

Since the problem size and parameters are hard-coded into the implementation,
I performed synthesis multiple times for a variety of problem sizes and number
of replicas. Figure 4.10 shows the estimated area for realizations of a OR5x100
benchmark solver. The total area of logic utilization grows linearly with the number
of replicas R; this is to be expected since every replica added corresponds to a new
processor core in the architecture.

R=8 R=16 R=32 R=64

1

2

·105

ar
ea

[A
LM

s]

Figure 4.10: Area estimation as a function of R

Examining the growth of area when varying the number of constraints and items
(figure 4.11) shows that area also grows linearly with the problem size. The reason

48

4.2 – FPGA synthesis results

Pre-placement area
Device Family Stratix V
Logic utilization (in ALMs) N/A
Total registers 143262
Total pins 86
Total virtual pins 0
Total block memory bits 18,457,600

Post-placement area
Family Stratix V
Device 5SGXEA7N2F45C2
Logic utilization (in ALMs) 148,145 / 234,720 (63 %)
Total registers 160936
Total pins 86 / 1,064 (< 8 %)
Total virtual pins 0
Total block memory bits 18,457,600 / 52,428,800 (35 %)
Total RAM Blocks 1,105 / 2,560 (43 %)

Critical path
Worst case maximum frequency fmax 178 MHz

Power consumption
Total Thermal Power Dissipation 8559.14 mW
Core Dynamic Thermal Power Dissipation 7110.49 mW
Core Static Thermal Power Dissipation 1381.29 mW
I/O Thermal Power Dissipation 67.36 mW

Table 4.2: Results of logic synthesis for the entire architecture

the area decreases only for the largest instance (C = 30, N = 500) is because
beyond a certain size threshold the CWB synthesis engine automatically maps the
memory containing the item weights to block memory instead of LUT-RAM. The
implementation of the weights memory is defined by a high-level macro provided by
the CWB software; due to time restrictions, I was not able to re-perform synthesis
by forcing the synthesis engine to utilize block memory for the smaller instances, but
it can be achieved by changing the aforementioned threshold in CWB’s synthesis
settings. This reduces logic utilization while introducing some overhead in the
RAM access time.

Critical path

I compared the maximum frequency estimated by Quartus Prime over a wide range
of synthesis results corresponding to various combinations of number of replicas,

49

4 – Results and discussion

C=5 C=10 C=30

1

2

·105

ar
ea

[A
LM

s]
N=100
N=250
N=500

(a) By number of constraints
N=100 N=250 N=500

1

2

·105

ar
ea

[A
LM

s]

C=5
C=10
C=30

(b) By number of items

Figure 4.11: Area estimation as a function of C and N

number of items, and number of constraints.
From Fig. 4.12, it is evident that the worst-case maximum frequency is de-

creasing as the area grows. There are at least two main reasons for this: first,
combinational paths become longer and slower as the width of parameters grows,
especially of the item vector. Second, interconnections also become longer and more
complex, causing increased delays. In practice, increasing the number of replicas
or the size of the problem makes the system slower.

0 0.5 1 1.5 2 2.5
·105

150

200

250

Area [ALMs]

f m
a

x
[M

H
z]

Figure 4.12: Maximum frequency obtained by Quartus synthesis
for varying hardware size.

50

4.2 – FPGA synthesis results

Latency

I created a bit-compatible integer model in software to estimate performance of
an FPGA version ahead of implementation and verified that its behavior matches
the floating-point version exactly. Then, it is fair to compare the behavior of the
FPGA implementation (in RTL simulation) with the floating-point software version
of the algorithm. Fig. 4.13 shows the results of the three versions for the benchmark
OR30x500-0.25, R = 16. The behavior is completely coherent in the two versions,
displaying similar convergence across a wide range of τ ; quality of result is not lost
in the transition from floating point (fp) to fixed point data representation.

103 104 105
0

0.5

1

1.5

2

·104

Monte Carlo steps

Av
er

ag
e

er
ro

r

Software
Software (fp)

FPGA

Figure 4.13: Comparison of results from the FPGA and software
versions of the algorithm

I used the integer model software to estimate the number of cycles needed for
the FPGA to execute longer simulations. In the integer version, the number of
cycles per step increases quite strongly as τ increases, moreso than in the software
version; this is probably due to non-idealities in the random number generation
using LFSR. Since the number of items is not necessarily a power of two, some
of the random numbers must be discarded, wasting a cycle, and the likelihood of
this happening increases with the length of the simulation. I compared the average
latency per step of the FPGA implementation with the average number of RNG
trials in the software version. It can be assumed that the two parameters are
directly proportional as the FPGA latency per step is predominantly determined
by the number of LFSR trials, with little (and generally constant) overhead from
the rest of the algorithm. Fig. 4.14 shows how the cycle latency due to the RNG

51

4 – Results and discussion

trials, after a sharp initial growth, settles into a slowly increasing curve, compatible
with that encountered in the software simulation. This means that, past a certain
threshold (around 100,000 steps), the FPGA implementation’s speedup will likely
maintain its advantage over the software version even as we increase the annealing
time.

0 0.2 0.4 0.6 0.8 1
·106

0

20

40

60

Monte Carlo steps

Av
er

ag
e

#
cy

cl
es

/s
te

p

Software
FPGA

FPGA (est.)

Figure 4.14: Comparison of random trials per step as a function of
τ , benchmark problem OR30x500-0.25. The regression function
used for the FPGA estimation is f(λ) ≈ 13.17λ0.12.

Knowing the average number of cycles per step cavg, I estimated the execution
time for different values of τ as τ · cavg

fmax
. The execution time for fmax = 164 MHz is

charted in Fig. 4.15 against the CPU-time measured for the integer-point software
version. The FPGA implementation is nearly 150× faster than the software at
executing the same number of Monte Carlo steps. The execution time of our solver
even compares well to the results of the exact branch-and-bound GPU solver from
[47], which reports a time of 1.44 s to solve a 500-item problem with only one
constraint; the FPGA implementation can execute a million simulation steps of a
500-item problem with 30 constraints in 421 ms.

Finally, Fig. 4.16 shows the speed of convergence to result for the two versions
of the algorithm. It is clear that the hardware version can produce a similar quality
of result as the software version in less computation time.

Power

Though synthesis provides limited information on the power consumption, it is still
possible to make an optimistic estimation of the energy savings.

The software version ran on a computer with an Intel i7 920 CPU; the datasheet
[48] reports a maximum Icc per core equal to 145 A and a typical associated Vcc

52

4.2 – FPGA synthesis results

0 0.5 1 1.5 2 2.5
·105

102

103

104

105

106

107

Monte Carlo steps

T
im

e
[µ

s]
Software
FPGA

Figure 4.15: Execution times for the FPGA and software versions
for the benchmark OR30x500-0.25

102 103 104 105 106 107
0

0.5

1

1.5

·104

Time [µs]

Av
er

ag
e

er
ro

r

Software
FPGA

Figure 4.16: Speed of convergence to result for the software and
FPGA versions, benchmark problem OR30x500-0.25

per core of 0.131 V. Assuming our single-thread software ran on a single core at
full load, that would mean an instantaneous power of 18.995 W; since running QA
for 250,000 steps takes 17.319 s, the estimated energy consumption is about 329 J.
Meanwhile, the FPGA energy consumption for 250,000 steps is around 8.559 W ×
0.108 s = 0.924 J, leading to estimated energy savings of 99.7%.

53

54

Chapter 5

Conclusion

In order to determine the implementation method for a hardware Quantum Anneal-
ing solver, a feasibility study was performed for the fully-connected Ising model,
targeting the Chimera graph as a candidate for hardware implementation. De-
spite this being a well-tested model for Adiabatic Quantum Computation, test
results showed that the Chimera graph is in fact not a favorable implementation
for Simulated Quantum Annealing, because of inherent limitations in this classical
algorithm.

Extensive tests were ran on the Multidimensional Knapsack Problem, solving
every instance in the SAC-94 [43] and ORLib [49] benchmarks. We compared
solution quality of Quantum Annealing with Simulated Annealing and a Hybrid
PSO-Genetic algorithm [40]. Results confirmed that, while Simulated Annealing
delivers the best solution quality for small instances, QA outperforms other meth-
ods more and more significantly as the size of the problem increases, delivering
highly optimized results with a low variance across algorithm iterations. The cost
of Quantum Annealing is a much longer execution time, which however is still rea-
sonable (within few minutes) when compared to exact solvers like CORAL [13]
which report execution times of several hours for these instance sizes. Therefore,
application of hardware acceleration for QA of large MKP instances seems benefi-
cial.

The hardware architecture was written in SystemC language and synthesized
with a Stratix V FPGA [46] as target; the parametric design instantiates multiple
computation cores, synchronized by a Controller module that regulates the anneal-
ing process. An optional module was implemented to further optimize computation
by applying Restricted Quantum Annealing [32], allowing to improve the quality
of result with a negligible cost in terms of area and latency. Since large problem
instances require long simulation times, precomputed data utilized during the simu-
lation is stored in a fast on-chip RAM, connected to our design via the Avalon-MM
bus [42]. Burst access to this memory through two alternating buffers allows to
access the data with a negligible latency overhead.

55

5 – Conclusion

RTL simulation proves that our QA solver provides the same quality of result
as the floating point software version. The final implementation, tailored to the
largest-size instance in the ORLib benchmark, utilizes 63% of the total area on the
target board, with a reported maximum frequency of 164 MHz. Analysis of the
average algorithm latency shows that the QA solver is about 150× faster than the
software implementation on a general-purpose CPU. The power consumption also
compares favorably to the software implementation, with estimated energy savings
of 99.7%.

All in all, parallelization of the Quantum Annealing algorithm can be success-
ful because of the population-based nature of the algorithm. The fact that the
quality of solution is comparable to the software version shows that the quantum
tunneling emulation properties of path-integral QA [26] are preserved despite the
approximations of the fixed-point model.

The hardware described in this thesis can be modified to run optimization prob-
lems different from MKP, by rewriting the behavioral description of the processor
module to fit the new problem; however further study would be required in order
to determine a feasible data structure for the implementation of the solver, as well
as storage of the benchmark values describing the instance. The main difficulty of
the implementation lies with the high volume of this data, which must be available
for fast random access to all parallel processors at any time during the simula-
tion. While this architecture achieved it by storing local copies of all data for each
processor, future implementations should strive to optimize storage of the problem
data and devise suitable access schemes in order to reduce block memory usage and
accommodate even larger instances.

56

Appendix A

MKP Benchmark Results

This appendix reports detailed results for the Simulated Annealing (SA), Hybrid
Particle Swarm/Genetic Optimization (HPSOGO) and Quantum Annealing (QA)
algorithms on the SAC-94 and ORLib benchmark instances for the Multidimen-
sional Knapsack Problem.

The evaluated parameters are Success Rate (SR), Mean Absolute Percent Error
(MAPE), Least Error (LE), Standard Deviation (SD) and computation time in
seconds. The definition of these parameters can be found in section 4.1.2.

A.1 SAC-94 benchmark
Quantum Annealing results are reported for τ = 100,000 (QA-100k) and τ =
1,000,000 (QA-1M).

instance C N solver SR MAPE LE SD time [s]
sento1 30 60 HPSOGO 1 0.0090 11 5.9900 23.2115

SA 1 0.0004 0 2.1389 1.5295
QA-100k 1 0.0002 0 1.7493 8.6015
QA-1M 1 0.0002 0 1.6748 58.2885

sento2 30 60 HPSOGO 1 0.0050 11 4.8425 23.3240
SA 1 0.0015 1 2.3916 1.5775
QA-100k 1 0.0010 0 2.1633 7.2080
QA-1M 1 0.0003 0 1.7320 53.9605

weing1 2 28 HPSOGO 1 0.0000 0 0.0000 1.9630
SA 1 0.0000 0 0.0000 0.8115
QA-100k 1 0.0064 0 30.9028 4.0190
QA-1M 1 0.0033 0 28.0629 34.7420

weing2 2 28 HPSOGO 1 0.0000 0 0.0000 1.9515
SA 1 0.0000 0 0.0000 0.9120
QA-100k 1 0.0253 0 52.7646 3.8715
QA-1M 1 0.0268 0 53.0564 32.3570

57

A – MKP Benchmark Results

instance C N solver SR MAPE LE SD time [s]
weing3 2 28 HPSOGO 1 0.0041 0 19.2873 1.9555

SA 1 0.0000 0 0.0000 0.7860
QA-100k 1 0.0085 0 21.2087 3.8050
QA-1M 1 0.0070 0 18.3269 29.3455

weing4 2 28 HPSOGO 1 0.0044 0 29.9003 1.9710
SA 1 0.0000 0 0.0000 0.8525
QA-100k 1 0.0092 0 34.7415 3.8525
QA-1M 1 0.0013 0 16.5545 29.3850

weing5 2 28 HPSOGO 1 0.0082 0 35.3929 1.9735
SA 1 0.0000 0 0.0000 0.9235
QA-100k 1 0.0343 0 23.8523 3.7310
QA-1M 1 0.0363 3009 16.9041 28.6445

weing6 2 28 HPSOGO 1 0.0015 0 13.9642 1.9435
SA 1 0.0000 0 0.0000 0.9055
QA-100k 1 0.0383 890 43.3122 3.8840
QA-1M 1 0.0304 0 48.0137 29.0825

weing7 2 105 HPSOGO 1 0.0078 4354 51.2013 7.1530
SA 1 0.0009 239 13.2961 2.1270
QA-100k 1 0.0038 1885 33.2683 9.0485
QA-1M 1 0.0029 410 34.3737 62.5570

weing8 2 105 HPSOGO 1 0.0602 16424 99.7067 7.6575
SA 1 0.0198 0 116.2410 1.4200
QA-100k 1 0.0128 3447 69.5781 5.6240
QA-1M 1 0.0080 4259 35.3161 39.4870

weish01 5 30 HPSOGO 1 0.0025 0 4.4311 3.6920
SA 1 0.0000 0 0.0000 0.9825
QA-100k 1 0.0016 0 3.6497 4.0040
QA-1M 1 0.0008 0 2.6514 30.0685

weish02 5 30 HPSOGO 1 0.0001 0 0.6892 3.7965
SA 1 0.0000 0 0.0000 0.7375
QA-100k 1 0.0000 0 0.0000 3.9740
QA-1M 1 0.0000 0 0.0000 29.9025

weish03 5 30 HPSOGO 1 0.0044 0 5.0408 3.7535
SA 1 0.0000 0 0.0000 0.8525
QA-100k 1 0.0004 0 1.8235 4.0685
QA-1M 1 0.0006 0 2.1354 30.1845

weish04 5 30 HPSOGO 1 0.0000 0 0.0000 3.8065
SA 1 0.0000 0 0.0000 1.0885
QA-100k 1 0.0000 0 0.0000 3.8025
QA-1M 1 0.0000 0 0.0000 29.2170

weish05 5 30 HPSOGO 1 0.0000 0 0.0000 3.6380
SA 1 0.0000 0 0.0000 1.0510
QA-100k 1 0.0000 0 0.0000 3.9905
QA-1M 1 0.0000 0 0.0000 29.3920

58

A.1 – SAC-94 benchmark

instance C N solver SR MAPE LE SD time [s]
weish06 5 40 HPSOGO 1 0.0021 0 3.7310 5.1215

SA 1 0.0001 0 1.1113 0.9105
QA-100k 1 0.0000 0 0.0000 4.3475
QA-1M 1 0.0000 0 0.0000 31.0575

weish07 5 40 HPSOGO 1 0.0015 0 3.2125 5.1605
SA 1 0.0000 0 0.0000 1.0785
QA-100k 1 0.0000 0 0.0000 4.2505
QA-1M 1 0.0000 0 0.0000 29.9295

weish08 5 40 HPSOGO 1 0.0013 0 3.2016 5.5495
SA 1 0.0000 0 0.0000 1.0435
QA-100k 1 0.0005 0 2.0199 4.1560
QA-1M 1 0.0003 0 1.5427 28.9450

weish09 5 40 HPSOGO 1 0.0006 0 2.4739 5.6345
SA 1 0.0000 0 0.0000 1.0475
QA-100k 1 0.0022 0 4.5891 4.3120
QA-1M 1 0.0006 0 2.4850 30.7035

weish10 5 50 HPSOGO 1 0.0047 0 5.0813 7.0170
SA 1 0.0004 0 2.2450 1.0110
QA-100k 1 0.0000 0 0.0000 4.8865
QA-1M 1 0.0000 0 0.0000 34.6890

weish11 5 50 HPSOGO 1 0.0054 0 5.7567 6.8530
SA 1 0.0000 0 0.0000 1.0900
QA-100k 1 0.0000 0 0.0000 4.7560
QA-1M 1 0.0000 0 0.0000 34.0335

weish12 5 50 HPSOGO 1 0.0037 0 5.1010 6.9370
SA 1 0.0002 0 1.4071 1.0410
QA-100k 1 0.0000 0 0.0000 4.8020
QA-1M 1 0.0000 0 0.0000 35.4420

weish13 5 50 HPSOGO 1 0.0033 0 5.3315 7.1970
SA 1 0.0000 0 0.0000 1.0340
QA-100k 1 0.0000 0 0.0000 4.8850
QA-1M 1 0.0000 0 0.0000 34.5695

weish14 5 60 HPSOGO 1 0.0030 0 4.9815 8.4890
SA 1 0.0011 0 3.4533 1.1750
QA-100k 1 0.0000 0 0.0000 4.9820
QA-1M 1 0.0000 0 0.0000 35.1740

weish15 5 60 HPSOGO 1 0.0042 0 4.4164 8.8110
SA 1 0.0002 0 1.6309 1.2645
QA-100k 1 0.0000 0 0.0000 4.7585
QA-1M 1 0.0000 0 0.0000 33.2020

weish16 5 60 HPSOGO 1 0.0036 0 4.8985 8.4575
SA 1 0.0016 0 3.9497 1.1405
QA-100k 1 0.0013 0 3.3347 4.7870
QA-1M 1 0.0035 0 5.4120 33.4235

59

A – MKP Benchmark Results

instance C N solver SR MAPE LE SD time [s]
weish17 5 60 HPSOGO 1 0.0014 0 2.8609 7.3915

SA 1 0.0004 0 2.1564 1.2020
QA-100k 1 0.0000 0 0.0000 4.8125
QA-1M 1 0.0000 0 0.0000 33.3565

weish18 5 70 HPSOGO 1 0.0055 15 4.6691 8.6170
SA 1 0.0011 0 3.5461 1.2075
QA-100k 1 0.0000 0 0.0000 5.0740
QA-1M 1 0.0000 0 0.0000 35.7920

weish19 5 70 HPSOGO 1 0.0138 0 7.6118 7.5140
SA 1 0.0020 0 4.1689 1.2280
QA-100k 1 0.0010 0 2.4980 5.3040
QA-1M 1 0.0014 0 3.0594 38.0690

weish20 5 70 HPSOGO 1 0.0067 0 6.4884 8.5820
SA 1 0.0009 0 3.1631 1.1700
QA-100k 1 0.0006 0 2.0833 5.1220
QA-1M 1 0.0004 0 2.0248 35.9335

weish21 5 70 HPSOGO 1 0.0091 0 6.5154 9.2385
SA 1 0.0020 0 4.7969 1.2745
QA-100k 1 0.0038 0 3.7947 5.1855
QA-1M 1 0.0042 0 3.7209 37.0505

weish22 5 80 HPSOGO 1 0.0162 0 8.4496 9.5940
SA 1 0.0063 0 5.5633 1.4115
QA-100k 1 0.0067 50 2.6125 5.5915
QA-1M 1 0.0065 0 3.1305 39.6050

weish23 5 80 HPSOGO 1 0.0218 3 8.6602 10.2490
SA 1 0.0053 0 6.2849 1.3695
QA-100k 1 0.0043 3 6.5399 5.7185
QA-1M 1 0.0003 0 0.7348 42.3705

weish24 5 80 HPSOGO 1 0.0090 5 6.4187 10.6455
SA 1 0.0024 0 4.6947 1.4275
QA-100k 1 0.0003 0 1.5083 5.5520
QA-1M 1 0.0001 0 1.3693 38.6340

weish25 5 80 HPSOGO 1 0.0083 0 5.7053 10.7200
SA 1 0.0024 0 4.6109 1.2835
QA-100k 1 0.0016 0 2.3875 5.6360
QA-1M 1 0.0018 0 3.7523 40.0465

weish26 5 90 HPSOGO 1 0.0227 78 8.1954 11.5615
SA 1 0.0041 6 3.7550 1.3870
QA-100k 1 0.0034 32 1.1113 5.8530
QA-1M 1 0.0035 32 1.8207 41.9150

weish27 5 90 HPSOGO 1 0.0283 121 8.1762 11.2750
SA 1 0.0064 0 7.5465 1.3745
QA-100k 1 0.0116 91 4.6087 5.9340
QA-1M 1 0.0095 0 4.2226 42.7010

60

A.2 – Chu-Beasley benchmark

instance C N solver SR MAPE LE SD time [s]
weish28 5 90 HPSOGO 1 0.0271 77 9.5499 12.3310

SA 1 0.0042 0 5.6476 1.4140
QA-100k 1 0.0106 0 7.1025 5.4480
QA-1M 1 0.0065 0 7.6381 41.3295

weish29 5 90 HPSOGO 1 0.0278 78 8.1548 11.9025
SA 1 0.0078 0 7.5366 1.3430
QA-100k 1 0.0117 56 5.5714 5.9320
QA-1M 1 0.0075 0 5.1788 41.4815

weish30 5 90 HPSOGO 1 0.0106 26 6.5161 11.9075
SA 1 0.0032 0 3.5036 1.3855
QA-100k 1 0.0023 0 3.1464 6.0470
QA-1M 1 0.0026 0 3.0397 42.2250

A.2 Chu-Beasley benchmark

instance C N solver SR MAPE LE SD time [s]
OR10x100-0.25_10 10 100 HPSOGO 1 0.0920 1626 18.2357 20.9270

SA 1 0.0321 411 11.6297 1.2950
RQA-100 1 0.0179 274 7.8835 56.6995

OR10x100-0.25_1 10 100 HPSOGO 1 0.0859 1375 15.0173 20.0295
SA 1 0.0278 387 11.1580 1.3000
RQA-100 1 0.0068 9 10.6410 57.5160

OR10x100-0.25_2 10 100 HPSOGO 1 0.0879 1265 16.5179 22.7385
SA 1 0.0291 401 11.5961 1.3010
RQA-100 1 0.0138 232 7.9869 58.2665

OR10x100-0.25_3 10 100 HPSOGO 1 0.0917 1535 16.4058 20.4985
SA 1 0.0277 265 12.1188 1.3660
RQA-100 1 0.0087 66 9.1367 56.7655

OR10x100-0.25_4 10 100 HPSOGO 1 0.0848 1300 17.4637 19.4920
SA 1 0.0301 412 10.8208 1.3075
RQA-100 1 0.0136 171 7.8708 57.9960

OR10x100-0.25_5 10 100 HPSOGO 1 0.0950 1533 15.7664 20.7145
SA 1 0.0288 124 11.6473 1.3000
RQA-100 1 0.0115 124 9.5729 58.1900

OR10x100-0.25_6 10 100 HPSOGO 1 0.0826 1502 15.5119 19.5335
SA 1 0.0318 511 11.1043 1.3300
RQA-100 1 0.0141 147 8.2158 56.5400

OR10x100-0.25_7 10 100 HPSOGO 1 0.0961 1402 18.1718 18.4175
SA 1 0.0248 178 11.9436 1.2970
RQA-100 1 0.0102 90 6.8702 55.3970

61

A – MKP Benchmark Results

instance C N solver SR MAPE LE SD time [s]
OR10x100-0.25_8 10 100 HPSOGO 1 0.0964 1690 16.2831 18.4270

SA 1 0.0278 381 10.7944 1.3040
RQA-100 1 0.0118 118 8.7086 57.0590

OR10x100-0.25_9 10 100 HPSOGO 1 0.0948 1249 20.2040 17.9445
SA 1 0.0265 294 12.2209 1.2940
RQA-100 1 0.0104 122 5.1986 55.9435

OR10x100-0.50_10 10 100 HPSOGO 1 0.0483 1174 17.3868 18.0340
SA 1 0.0186 574 9.4942 1.3110
RQA-100 1 0.0036 73 6.5345 63.2835

OR10x100-0.50_1 10 100 HPSOGO 1 0.0484 1579 13.5801 17.6600
SA 1 0.0187 325 15.1732 1.3090
RQA-100 1 0.0026 7 4.1623 63.0395

OR10x100-0.50_2 10 100 HPSOGO 1 0.0468 1432 15.8327 18.7200
SA 1 0.0125 239 11.6447 1.3190
RQA-100 1 0.0048 143 5.2378 63.3390

OR10x100-0.50_3 10 100 HPSOGO 1 0.0490 1578 14.8950 16.6820
SA 1 0.0135 154 12.8413 1.3105
RQA-100 1 0.0029 54 6.9857 66.4715

OR10x100-0.50_4 10 100 HPSOGO 1 0.0430 1341 16.5514 16.4995
SA 1 0.0185 186 13.8290 1.3110
RQA-100 1 0.0118 475 4.8631 67.3220

OR10x100-0.50_5 10 100 HPSOGO 1 0.0473 1330 16.3756 16.7405
SA 1 0.0163 280 11.5217 1.3115
RQA-100 1 0.0031 0 5.6903 63.5320

OR10x100-0.50_6 10 100 HPSOGO 1 0.0454 1172 18.2277 16.0160
SA 1 0.0155 296 12.7256 1.3080
RQA-100 1 0.0039 109 6.6483 63.8850

OR10x100-0.50_7 10 100 HPSOGO 1 0.0459 1155 18.2466 15.8395
SA 1 0.0171 357 14.3753 1.3180
RQA-100 1 0.0048 119 6.1604 64.4070

OR10x100-0.50_8 10 100 HPSOGO 1 0.0462 743 17.5647 15.9050
SA 1 0.0136 166 14.2741 1.3240
RQA-100 1 0.0044 96 7.3280 66.1570

OR10x100-0.50_9 10 100 HPSOGO 1 0.0513 1672 16.1972 16.1290
SA 1 0.0140 273 12.9482 1.3155
RQA-100 1 0.0027 52 6.9444 64.1375

OR10x100-0.75_10 10 100 HPSOGO 1 0.0269 1023 17.6832 16.9780
SA 1 0.0056 122 9.8742 1.4740
RQA-100 1 0.0001 0 2.4331 66.4410

OR10x100-0.75_1 10 100 HPSOGO 1 0.0277 916 16.5788 18.6885
SA 1 0.0075 0 11.3128 1.3040
RQA-100 1 0.0019 0 6.8586 69.5350

62

A.2 – Chu-Beasley benchmark

instance C N solver SR MAPE LE SD time [s]
OR10x100-0.75_2 10 100 HPSOGO 1 0.0258 1095 15.5242 20.7400

SA 1 0.0073 124 10.7515 1.3140
RQA-100 1 0.0009 0 7.1764 64.2580

OR10x100-0.75_3 10 100 HPSOGO 1 0.0256 1005 15.7797 20.6295
SA 1 0.0083 80 11.5070 1.3630
RQA-100 1 0.0015 46 4.4844 62.9135

OR10x100-0.75_4 10 100 HPSOGO 1 0.0258 955 16.3625 18.3885
SA 1 0.0082 320 11.9048 1.3465
RQA-100 1 0.0020 76 4.6723 64.2930

OR10x100-0.75_5 10 100 HPSOGO 1 0.0273 989 16.7301 18.5125
SA 1 0.0073 6 13.0579 1.3110
RQA-100 1 0.0000 0 1.5232 67.3280

OR10x100-0.75_6 10 100 HPSOGO 1 0.0275 1160 16.2450 18.1940
SA 1 0.0093 304 11.4782 1.3050
RQA-100 1 0.0021 83 4.8317 63.0790

OR10x100-0.75_7 10 100 HPSOGO 1 0.0269 1158 14.9377 18.5065
SA 1 0.0081 204 9.2068 1.3015
RQA-100 1 0.0016 26 7.3130 63.1600

OR10x100-0.75_8 10 100 HPSOGO 1 0.0279 878 16.8315 17.5010
SA 1 0.0078 59 12.2229 1.3065
RQA-100 1 0.0011 0 6.8600 64.0675

OR10x100-0.75_9 10 100 HPSOGO 1 0.0269 984 17.3234 18.3760
SA 1 0.0075 186 11.0984 1.3085
RQA-100 1 0.0022 0 6.0655 66.0285

OR10x250-0.25_10 10 250 HPSOGO 1 0.1694 7634 29.0563 48.1235
SA 1 0.0393 1957 16.1623 2.1450
RQA-100 1 0.0120 514 9.2715 104.6290

OR10x250-0.25_1 10 250 HPSOGO 1 0.1664 7983 27.9589 45.7035
SA 1 0.0326 1497 15.4447 2.1490
RQA-100 1 0.0120 516 7.6896 108.6720

OR10x250-0.25_2 10 250 HPSOGO 1 0.1637 8576 26.1441 44.8245
SA 1 0.0394 1736 17.0499 2.1560
RQA-100 1 0.0104 473 7.4646 104.8760

OR10x250-0.25_3 10 250 HPSOGO 1 0.1681 8251 25.3104 42.8510
SA 1 0.0389 1360 19.8969 2.1445
RQA-100 1 0.0093 310 7.9057 107.4570

OR10x250-0.25_4 10 250 HPSOGO 1 0.1635 8716 25.5774 39.7680
SA 1 0.0358 1438 17.8132 2.2010
RQA-100 1 0.0122 635 8.0281 101.6680

OR10x250-0.25_5 10 250 HPSOGO 1 0.1641 8304 27.2863 40.8235
SA 1 0.0319 1225 16.5153 2.2380
RQA-100 1 0.0104 491 7.3451 106.4780

63

A – MKP Benchmark Results

instance C N solver SR MAPE LE SD time [s]
OR10x250-0.25_6 10 250 HPSOGO 1 0.1652 8278 25.5783 43.6980

SA 1 0.0362 1422 16.7952 2.1560
RQA-100 1 0.0130 587 8.2492 103.0460

OR10x250-0.25_7 10 250 HPSOGO 1 0.1621 7918 26.0526 46.1880
SA 1 0.0385 1535 21.0787 2.1555
RQA-100 1 0.0143 750 6.9448 105.1330

OR10x250-0.25_8 10 250 HPSOGO 1 0.1620 8463 23.9854 41.9530
SA 1 0.0330 1377 16.0885 2.1545
RQA-100 1 0.0140 548 9.3005 102.9650

OR10x250-0.25_9 10 250 HPSOGO 1 0.1729 8566 25.9887 39.8805
SA 1 0.0327 1563 14.9385 2.1600
RQA-100 1 0.0099 418 8.6058 104.0640

OR10x250-0.50_10 10 250 HPSOGO 1 0.0842 7940 23.9977 38.4430
SA 1 0.0204 1275 20.4142 2.6820
RQA-100 1 0.0032 251 7.1554 121.8620

OR10x250-0.50_1 10 250 HPSOGO 1 0.0785 7302 21.9509 38.6520
SA 1 0.0206 1513 21.8142 2.6930
RQA-100 1 0.0035 214 7.6508 124.3200

OR10x250-0.50_2 10 250 HPSOGO 1 0.0836 7175 26.1550 38.3155
SA 1 0.0210 1536 19.0899 2.7880
RQA-100 1 0.0031 171 7.6498 125.6240

OR10x250-0.50_3 10 250 HPSOGO 1 0.0815 7678 26.5688 38.2700
SA 1 0.0222 1411 18.6703 2.6730
RQA-100 1 0.0030 236 7.2650 127.3110

OR10x250-0.50_4 10 250 HPSOGO 1 0.0805 7736 20.9561 38.3495
SA 1 0.0195 1409 18.8136 2.6780
RQA-100 1 0.0052 450 7.0534 126.1710

OR10x250-0.50_5 10 250 HPSOGO 1 0.0812 7450 21.6421 38.3565
SA 1 0.0219 1668 20.9933 2.6660
RQA-100 1 0.0032 172 6.8374 126.8980

OR10x250-0.50_6 10 250 HPSOGO 1 0.0814 7870 24.4369 38.2365
SA 1 0.0228 1696 18.4644 2.6915
RQA-100 1 0.0036 166 7.1708 123.8670

OR10x250-0.50_7 10 250 HPSOGO 1 0.0827 7656 21.3249 38.1685
SA 1 0.0224 1517 24.2348 2.6715
RQA-100 1 0.0029 218 7.0604 126.8540

OR10x250-0.50_8 10 250 HPSOGO 1 0.0833 7884 19.5029 38.4465
SA 1 0.0198 1334 21.7509 2.6725
RQA-100 1 0.0028 186 7.7750 124.0190

OR10x250-0.50_9 10 250 HPSOGO 1 0.0826 7683 23.0747 38.0385
SA 1 0.0216 1277 20.9764 2.6910
RQA-100 1 0.0025 158 7.1739 121.3300

64

A.2 – Chu-Beasley benchmark

instance C N solver SR MAPE LE SD time [s]
OR10x250-0.75_10 10 250 HPSOGO 1 0.0540 7154 22.8364 38.3215

SA 1 0.0112 1116 15.9355 2.4690
RQA-100 1 0.0013 138 5.5245 117.0670

OR10x250-0.75_1 10 250 HPSOGO 1 0.0543 6982 23.5497 38.3535
SA 1 0.0118 1092 18.7102 2.4555
RQA-100 1 0.0011 55 5.5839 116.2810

OR10x250-0.75_2 10 250 HPSOGO 1 0.0540 7122 24.8465 38.0640
SA 1 0.0107 810 15.4428 2.4675
RQA-100 1 0.0011 20 6.8000 114.8530

OR10x250-0.75_3 10 250 HPSOGO 1 0.0537 6975 22.7497 38.4970
SA 1 0.0103 1087 14.1651 2.4480
RQA-100 1 0.0012 43 6.5177 118.7660

OR10x250-0.75_4 10 250 HPSOGO 1 0.0519 6496 22.5579 38.4050
SA 1 0.0100 1127 13.5542 2.4480
RQA-100 1 0.0015 147 4.8410 115.5160

OR10x250-0.75_5 10 250 HPSOGO 1 0.0516 6671 21.8698 38.0415
SA 1 0.0106 912 18.7318 2.5920
RQA-100 1 0.0017 135 5.8673 113.4800

OR10x250-0.75_6 10 250 HPSOGO 1 0.0529 6924 21.0938 38.4960
SA 1 0.0108 1041 16.5849 2.5860
RQA-100 1 0.0011 29 7.3512 117.5580

OR10x250-0.75_7 10 250 HPSOGO 1 0.0555 7006 23.2330 38.6165
SA 1 0.0104 1178 15.5300 2.4595
RQA-100 1 0.0011 101 4.9371 117.8310

OR10x250-0.75_8 10 250 HPSOGO 1 0.0532 7223 21.5058 38.0865
SA 1 0.0105 989 17.1267 2.8740
RQA-100 1 0.0014 117 5.5077 117.8700

OR10x250-0.75_9 10 250 HPSOGO 1 0.0536 6941 20.3899 38.0715
SA 1 0.0115 1230 16.4451 2.4445
RQA-100 1 0.0011 105 6.0000 116.9590

OR10x500-0.25_10 10 500 HPSOGO 1 0.2051 22120 29.9164 93.6210
SA 1 0.0426 4094 22.1522 3.6445
RQA-100 1 0.0123 1175 10.1440 164.0750

OR10x500-0.25_1 10 500 HPSOGO 1 0.2016 21435 28.3266 88.7420
SA 1 0.0449 4064 24.5161 3.7565
RQA-100 1 0.0131 1334 8.3358 177.1430

OR10x500-0.25_2 10 500 HPSOGO 1 0.2029 21995 29.5660 84.3750
SA 1 0.0421 4215 19.9625 3.7085
RQA-100 1 0.0109 1131 8.4342 177.9740

OR10x500-0.25_3 10 500 HPSOGO 1 0.2047 20982 32.1692 98.7380
SA 1 0.0408 3584 25.1707 3.6510
RQA-100 1 0.0119 1093 10.2896 184.6420

65

A – MKP Benchmark Results

instance C N solver SR MAPE LE SD time [s]
OR10x500-0.25_4 10 500 HPSOGO 1 0.2001 21494 32.0949 106.4380

SA 1 0.0446 3906 23.5266 3.6705
RQA-100 1 0.0144 1479 10.0648 182.5020

OR10x500-0.25_5 10 500 HPSOGO 1 0.2013 21228 32.5434 106.9240
SA 1 0.0420 3470 26.7880 3.6380
RQA-100 1 0.0114 1153 8.5144 180.9070

OR10x500-0.25_6 10 500 HPSOGO 1 0.2150 23429 29.7296 106.1430
SA 1 0.0420 3550 20.5188 3.6390
RQA-100 1 0.0114 1161 9.1848 176.7600

OR10x500-0.25_7 10 500 HPSOGO 1 0.2066 22164 76.4228 94.1900
SA 1 0.0419 4124 21.2368 3.6455
RQA-100 1 0.0130 1321 10.5546 179.3070

OR10x500-0.25_8 10 500 HPSOGO 1 0.2034 22482 28.5598 102.3200
SA 1 0.0396 3537 21.4881 3.6600
RQA-100 1 0.0116 1085 9.8005 178.9930

OR10x500-0.25_9 10 500 HPSOGO 1 0.1963 19934 29.4571 107.9440
SA 1 0.0464 3871 24.1887 3.6540
RQA-100 1 0.0144 1497 10.4857 162.2620

OR10x500-0.50_10 10 500 HPSOGO 1 0.0988 19191 27.3361 107.2180
SA 1 0.0274 4810 28.3554 5.0305
RQA-100 1 0.0045 813 8.1817 235.4560

OR10x500-0.50_1 10 500 HPSOGO 1 0.0981 19681 23.4734 109.6880
SA 1 0.0254 4490 23.4041 4.7650
RQA-100 1 0.0043 751 8.7564 225.0060

OR10x500-0.50_2 10 500 HPSOGO 1 0.1006 20179 29.6162 109.7070
SA 1 0.0267 4417 25.6628 4.7920
RQA-100 1 0.0037 492 9.2817 203.3310

OR10x500-0.50_3 10 500 HPSOGO 1 0.1032 20264 30.8521 106.8740
SA 1 0.0263 4796 24.9780 4.7660
RQA-100 1 0.0040 747 8.1477 232.4040

OR10x500-0.50_4 10 500 HPSOGO 1 0.1028 20389 27.2324 107.0760
SA 1 0.0265 4270 26.6510 4.9810
RQA-100 1 0.0040 753 7.0640 223.8580

OR10x500-0.50_5 10 500 HPSOGO 1 0.0957 18431 29.1307 100.5890
SA 1 0.0252 3325 27.4691 4.7585
RQA-100 1 0.0038 553 8.9666 231.5800

OR10x500-0.50_6 10 500 HPSOGO 1 0.1055 20954 28.8353 104.1000
SA 1 0.0275 4733 23.7653 4.7965
RQA-100 1 0.0042 790 7.3519 214.4060

OR10x500-0.50_7 10 500 HPSOGO 1 0.1007 20120 30.6235 95.9880
SA 1 0.0254 4089 24.4141 4.7660
RQA-100 1 0.0040 747 8.2934 245.3570

66

A.2 – Chu-Beasley benchmark

instance C N solver SR MAPE LE SD time [s]
OR10x500-0.50_8 10 500 HPSOGO 1 0.1013 19796 26.9090 94.6400

SA 1 0.0270 4214 25.1951 4.7470
RQA-100 1 0.0037 680 7.9473 231.4500

OR10x500-0.50_9 10 500 HPSOGO 1 0.1010 19369 26.9844 93.7460
SA 1 0.0269 4366 26.4773 4.7770
RQA-100 1 0.0038 670 8.1854 232.2860

OR10x500-0.75_10 10 500 HPSOGO 1 0.0731 20799 30.4837 94.8360
SA 1 0.0139 3065 20.5266 4.2015
RQA-100 1 0.0015 378 6.0332 206.2680

OR10x500-0.75_1 10 500 HPSOGO 1 0.0747 20151 30.7441 93.4220
SA 1 0.0139 2906 26.2637 4.1895
RQA-100 1 0.0016 360 6.6843 207.2460

OR10x500-0.75_2 10 500 HPSOGO 1 0.0729 18767 33.4622 94.0215
SA 1 0.0131 2750 22.2450 4.2435
RQA-100 1 0.0015 324 6.9671 215.2560

OR10x500-0.75_3 10 500 HPSOGO 1 0.0691 19921 24.3084 88.2710
SA 1 0.0127 3119 21.3061 4.3560
RQA-100 1 0.0017 462 4.6363 209.5990

OR10x500-0.75_4 10 500 HPSOGO 1 0.0736 20220 32.8064 89.1480
SA 1 0.0144 3270 18.0707 4.1785
RQA-100 1 0.0015 335 6.6170 207.4950

OR10x500-0.75_5 10 500 HPSOGO 1 0.0749 20590 27.6405 85.5165
SA 1 0.0138 2983 23.2882 4.2135
RQA-100 1 0.0014 266 7.1764 204.3540

OR10x500-0.75_6 10 500 HPSOGO 1 0.0685 19206 27.8673 86.3160
SA 1 0.0147 2796 22.0873 4.2210
RQA-100 1 0.0019 445 7.1659 209.4210

OR10x500-0.75_7 10 500 HPSOGO 1 0.0720 18612 33.7680 90.0835
SA 1 0.0136 2658 22.0998 4.2500
RQA-100 1 0.0016 390 6.1984 202.4440

OR10x500-0.75_8 10 500 HPSOGO 1 0.0710 18983 32.0585 92.5415
SA 1 0.0136 2736 22.6528 4.2320
RQA-100 1 0.0016 321 7.4044 212.0270

OR10x500-0.75_9 10 500 HPSOGO 1 0.0734 20189 28.8870 94.8675
SA 1 0.0119 2537 22.6128 4.1945
RQA-100 1 0.0015 323 7.1648 214.3100

OR30x100-0.25_10 30 100 HPSOGO 1 0.0982 1588 17.0287 47.2120
SA 1 0.0236 78 10.3223 1.6890
RQA-100 1 0.0156 220 4.2866 73.4645

OR30x100-0.25_1 30 100 HPSOGO 1 0.0960 1002 19.9104 47.5455
SA 1 0.0250 299 11.4612 1.6515
RQA-100 1 0.0123 73 6.7639 74.2135

67

A – MKP Benchmark Results

instance C N solver SR MAPE LE SD time [s]
OR30x100-0.25_2 30 100 HPSOGO 1 0.1032 1521 16.5015 44.6165

SA 1 0.0305 355 12.7059 1.6560
RQA-100 1 0.0164 288 4.3162 67.4505

OR30x100-0.25_3 30 100 HPSOGO 1 0.0970 1561 15.6775 42.6000
SA 1 0.0306 387 10.9704 1.6485
RQA-100 1 0.0193 264 8.3388 69.4355

OR30x100-0.25_4 30 100 HPSOGO 1 0.0923 1248 16.6253 43.5260
SA 1 0.0253 306 9.4700 1.6660
RQA-100 1 0.0143 270 6.1563 69.8215

OR30x100-0.25_5 30 100 HPSOGO 1 0.1011 1519 19.4008 45.0090
SA 1 0.0252 263 11.3206 1.6590
RQA-100 1 0.0168 342 5.0190 73.2200

OR30x100-0.25_6 30 100 HPSOGO 1 0.0995 1513 16.2069 46.8435
SA 1 0.0244 74 14.2206 1.6590
RQA-100 1 0.0092 0 11.4512 68.9355

OR30x100-0.25_7 30 100 HPSOGO 1 0.0952 1693 13.5359 53.8800
SA 1 0.0297 352 10.9659 1.6510
RQA-100 1 0.0171 223 6.7617 68.3290

OR30x100-0.25_8 30 100 HPSOGO 1 0.1033 1528 16.4346 53.6630
SA 1 0.0258 248 12.4900 1.6675
RQA-100 1 0.0132 172 7.6658 72.3650

OR30x100-0.25_9 30 100 HPSOGO 1 0.0956 1076 17.0294 52.9760
SA 1 0.0292 334 11.5737 1.6650
RQA-100 1 0.0143 248 6.3182 74.0565

OR30x100-0.50_10 30 100 HPSOGO 1 0.0501 1454 17.2841 53.1765
SA 1 0.0126 347 10.0871 1.6580
RQA-100 1 0.0042 38 3.6966 75.0115

OR30x100-0.50_1 30 100 HPSOGO 1 0.0525 1576 14.7570 53.2505
SA 1 0.0175 304 11.2650 1.6550
RQA-100 1 0.0071 137 6.9878 74.3125

OR30x100-0.50_2 30 100 HPSOGO 1 0.0507 1434 16.1298 53.5080
SA 1 0.0151 234 14.4972 2.0380
RQA-100 1 0.0041 4 7.9215 73.0135

OR30x100-0.50_3 30 100 HPSOGO 1 0.0517 1513 17.4770 52.1880
SA 1 0.0169 362 13.1928 2.0250
RQA-100 1 0.0079 173 9.4101 71.6705

OR30x100-0.50_4 30 100 HPSOGO 1 0.0487 1559 15.5440 49.9520
SA 1 0.0128 316 11.7924 1.7655
RQA-100 1 0.0025 69 7.2990 74.3485

OR30x100-0.50_5 30 100 HPSOGO 1 0.0518 1338 17.5704 47.1200
SA 1 0.0175 440 13.2469 1.6700
RQA-100 1 0.0040 44 8.1437 70.8510

68

A.2 – Chu-Beasley benchmark

instance C N solver SR MAPE LE SD time [s]
OR30x100-0.50_6 30 100 HPSOGO 1 0.0475 1031 15.3251 49.2690

SA 1 0.0156 297 12.2963 1.9760
RQA-100 1 0.0019 0 6.7112 69.2775

OR30x100-0.50_7 30 100 HPSOGO 1 0.0520 1465 17.3534 53.6570
SA 1 0.0160 310 13.6220 2.0380
RQA-100 1 0.0044 81 5.2062 72.0365

OR30x100-0.50_8 30 100 HPSOGO 1 0.0521 1717 16.6942 52.4905
SA 1 0.0162 219 15.7987 1.6675
RQA-100 1 0.0025 50 5.6258 69.6505

OR30x100-0.50_9 30 100 HPSOGO 1 0.0522 1620 15.3281 54.1725
SA 1 0.0183 415 15.1493 1.6650
RQA-100 1 0.0057 239 1.5149 73.9725

OR30x100-0.75_10 30 100 HPSOGO 1 0.0314 1434 14.0926 53.9540
SA 1 0.0083 180 11.4804 1.6350
RQA-100 1 0.0011 0 6.8949 72.4805

OR30x100-0.75_1 30 100 HPSOGO 1 0.0314 1479 14.9382 53.9295
SA 1 0.0072 0 12.2229 1.6360
RQA-100 1 0.0000 0 0.0000 75.1210

OR30x100-0.75_2 30 100 HPSOGO 1 0.0295 1322 14.0650 53.7985
SA 1 0.0075 214 10.5880 1.6395
RQA-100 1 0.0014 0 7.7330 72.1940

OR30x100-0.75_3 30 100 HPSOGO 1 0.0292 932 16.6190 53.7800
SA 1 0.0077 74 11.5449 1.8650
RQA-100 1 0.0022 60 6.6348 72.5210

OR30x100-0.75_4 30 100 HPSOGO 1 0.0282 1039 16.9071 53.6220
SA 1 0.0073 264 9.9303 1.6550
RQA-100 1 0.0027 11 5.1884 72.7030

OR30x100-0.75_5 30 100 HPSOGO 1 0.0309 1235 16.3727 52.9735
SA 1 0.0088 275 12.8649 1.6245
RQA-100 1 0.0039 93 6.4869 75.7725

OR30x100-0.75_6 30 100 HPSOGO 1 0.0270 1093 15.1494 52.9675
SA 1 0.0069 97 12.1466 1.6685
RQA-100 1 0.0031 123 3.8872 72.8995

OR30x100-0.75_7 30 100 HPSOGO 1 0.0291 1300 14.1723 53.8865
SA 1 0.0069 28 12.2572 1.6305
RQA-100 1 0.0008 0 6.6464 80.4310

OR30x100-0.75_8 30 100 HPSOGO 1 0.0315 1233 16.3421 53.7230
SA 1 0.0080 253 10.6677 1.7185
RQA-100 1 0.0021 0 5.5045 74.6610

OR30x100-0.75_9 30 100 HPSOGO 1 0.0302 1163 13.2123 52.9865
SA 1 0.0078 155 11.5698 1.6370
RQA-100 1 0.0026 88 6.1449 70.9815

69

A – MKP Benchmark Results

instance C N solver SR MAPE LE SD time [s]
OR30x250-0.25_10 30 250 HPSOGO 1 0.1754 8405 24.5932 112.9900

SA 1 0.0320 1223 18.4293 2.5150
RQA-100 1 0.0112 487 9.1477 106.3000

OR30x250-0.25_1 30 250 HPSOGO 1 0.1846 9781 19.7489 106.0350
SA 1 0.0357 1263 16.8181 2.4585
RQA-100 1 0.0134 572 9.9401 108.1050

OR30x250-0.25_2 30 250 HPSOGO 1 0.1810 9144 26.8812 110.9750
SA 1 0.0385 1873 14.6301 2.4710
RQA-100 1 0.0194 914 9.4345 106.6910

OR30x250-0.25_3 30 250 HPSOGO 1 0.1874 9836 22.2636 130.4400
SA 1 0.0334 1475 16.3505 2.4825
RQA-100 1 0.0091 372 8.7977 105.8830

OR30x250-0.25_4 30 250 HPSOGO 1 0.1838 9173 28.4114 129.8800
SA 1 0.0363 1567 16.7975 2.5295
RQA-100 1 0.0110 452 9.6638 104.9300

OR30x250-0.25_5 30 250 HPSOGO 1 0.1749 7595 29.8278 128.8150
SA 1 0.0364 1520 18.2181 2.4680
RQA-100 1 0.0128 617 6.2578 105.4630

OR30x250-0.25_6 30 250 HPSOGO 1 0.1796 8411 24.5153 120.9470
SA 1 0.0329 1187 17.0422 2.4720
RQA-100 1 0.0114 533 8.4226 106.8710

OR30x250-0.25_7 30 250 HPSOGO 1 0.1737 8662 23.5128 130.9980
SA 1 0.0389 1315 15.9906 2.4895
RQA-100 1 0.0131 571 8.6562 108.2430

OR30x250-0.25_8 30 250 HPSOGO 1 0.1764 8708 23.0794 133.4050
SA 1 0.0364 1264 19.2702 2.4850
RQA-100 1 0.0093 335 7.5103 104.4860

OR30x250-0.25_9 30 250 HPSOGO 1 0.1659 8129 25.7125 131.1210
SA 1 0.0393 1423 18.8616 2.4745
RQA-100 1 0.0114 552 7.8070 105.9220

OR30x250-0.50_10 30 250 HPSOGO 1 0.0864 8083 21.4199 131.9460
SA 1 0.0200 1125 22.4288 3.0080
RQA-100 1 0.0046 393 7.2284 126.8770

OR30x250-0.50_1 30 250 HPSOGO 1 0.0898 8354 24.1173 130.1920
SA 1 0.0202 1530 18.4949 2.9970
RQA-100 1 0.0044 356 7.5766 128.0230

OR30x250-0.50_2 30 250 HPSOGO 1 0.0885 8345 24.9028 125.8910
SA 1 0.0200 1198 20.7699 2.9905
RQA-100 1 0.0036 246 6.7305 127.2860

OR30x250-0.50_3 30 250 HPSOGO 1 0.0840 7601 22.9532 124.1520
SA 1 0.0214 1534 19.1872 3.3085
RQA-100 1 0.0036 265 6.6310 125.6190

70

A.2 – Chu-Beasley benchmark

instance C N solver SR MAPE LE SD time [s]
OR30x250-0.50_4 30 250 HPSOGO 1 0.0875 8262 28.1420 116.9590

SA 1 0.0207 1332 18.9897 3.0205
RQA-100 1 0.0043 214 7.8013 127.5250

OR30x250-0.50_5 30 250 HPSOGO 1 0.0868 8271 21.2818 113.2880
SA 1 0.0193 1357 20.9800 3.0185
RQA-100 1 0.0037 305 6.8556 129.8750

OR30x250-0.50_6 30 250 HPSOGO 1 0.0846 7710 21.8211 113.8770
SA 1 0.0209 1405 18.8600 3.0750
RQA-100 1 0.0050 325 8.7567 126.2370

OR30x250-0.50_7 30 250 HPSOGO 1 0.0877 7791 22.5785 114.7950
SA 1 0.0226 1371 17.4780 3.0110
RQA-100 1 0.0046 319 7.3280 126.3120

OR30x250-0.50_8 30 250 HPSOGO 1 0.0893 7662 22.5526 108.7390
SA 1 0.0203 1458 19.7647 3.0000
RQA-100 1 0.0032 242 6.6933 131.0910

OR30x250-0.50_9 30 250 HPSOGO 1 0.0865 8247 20.9619 106.4230
SA 1 0.0227 1120 22.4695 3.0805
RQA-100 1 0.0038 202 7.4927 129.2660

OR30x250-0.75_10 30 250 HPSOGO 1 0.0554 6891 24.0816 105.6860
SA 1 0.0115 1110 17.9597 2.7970
RQA-100 1 0.0021 180 6.7450 118.3380

OR30x250-0.75_1 30 250 HPSOGO 1 0.0598 7354 22.0307 106.1330
SA 1 0.0109 834 17.3774 2.7965
RQA-100 1 0.0018 144 6.1725 114.1570

OR30x250-0.75_2 30 250 HPSOGO 1 0.0564 7652 21.1948 108.8440
SA 1 0.0104 998 18.6279 2.8255
RQA-100 1 0.0019 131 6.8877 113.0990

OR30x250-0.75_3 30 250 HPSOGO 1 0.0590 7761 23.2855 113.4170
SA 1 0.0119 750 20.7764 2.8040
RQA-100 1 0.0014 149 5.5335 111.7330

OR30x250-0.75_4 30 250 HPSOGO 1 0.0572 7617 24.2997 109.2220
SA 1 0.0119 1125 19.5172 2.8175
RQA-100 1 0.0020 207 5.6772 112.1840

OR30x250-0.75_5 30 250 HPSOGO 1 0.0551 6754 22.3505 103.6630
SA 1 0.0102 953 16.3907 2.8425
RQA-100 1 0.0019 0 6.1919 114.1830

OR30x250-0.75_6 30 250 HPSOGO 1 0.0541 6818 21.3192 104.3540
SA 1 0.0105 897 17.2583 2.8740
RQA-100 1 0.0017 166 6.2085 112.3150

OR30x250-0.75_7 30 250 HPSOGO 1 0.0582 7431 24.4683 103.4470
SA 1 0.0116 1094 20.9143 2.8745
RQA-100 1 0.0013 65 5.6701 110.2540

71

A – MKP Benchmark Results

instance C N solver SR MAPE LE SD time [s]
OR30x250-0.75_8 30 250 HPSOGO 1 0.0557 7291 25.2086 103.5260

SA 1 0.0112 911 20.4685 2.8025
RQA-100 1 0.0017 144 6.3344 114.0020

OR30x250-0.75_9 30 250 HPSOGO 1 0.0544 7499 20.3374 110.3560
SA 1 0.0111 918 21.5824 2.7965
RQA-100 1 0.0016 188 6.3119 116.5520

OR30x500-0.25_10 30 500 HPSOGO 1 0.2147 23321 31.7777 219.5610
SA 1 0.0432 3296 27.1382 3.9370
RQA-100 1 0.0122 1128 9.9938 179.8810

OR30x500-0.25_1 30 500 HPSOGO 1 0.2097 21551 32.9275 241.4460
SA 1 0.0411 3601 25.0619 3.9730
RQA-100 1 0.0135 1232 10.4805 156.9070

OR30x500-0.25_2 30 500 HPSOGO 1 0.2116 21506 30.5462 256.0100
SA 1 0.0455 4017 30.1471 4.4045
RQA-100 1 0.0108 927 10.7713 184.2570

OR30x500-0.25_3 30 500 HPSOGO 1 0.2119 22829 25.7963 252.5550
SA 1 0.0459 3890 23.8789 3.9625
RQA-100 1 0.0121 1061 10.4833 171.4910

OR30x500-0.25_4 30 500 HPSOGO 1 0.1995 20112 33.9659 257.9420
SA 1 0.0462 4454 22.5212 3.9745
RQA-100 1 0.0118 1202 9.4242 170.9690

OR30x500-0.25_5 30 500 HPSOGO 1 0.2018 21295 30.6346 261.0770
SA 1 0.0419 3675 21.4089 4.1090
RQA-100 1 0.0118 976 10.9343 181.0010

OR30x500-0.25_6 30 500 HPSOGO 1 0.2077 22789 26.7724 249.2330
SA 1 0.0449 3749 29.5397 3.9350
RQA-100 1 0.0157 1304 11.8004 177.5640

OR30x500-0.25_7 30 500 HPSOGO 1 0.2086 21368 28.5850 229.3330
SA 1 0.0405 3097 24.0734 3.9440
RQA-100 1 0.0133 1262 9.5134 172.8850

OR30x500-0.25_8 30 500 HPSOGO 1 0.2114 21736 30.0924 226.7200
SA 1 0.0396 3478 20.4989 3.9450
RQA-100 1 0.0123 1236 7.5040 187.5480

OR30x500-0.25_9 30 500 HPSOGO 1 0.2045 21448 29.6737 217.5080
SA 1 0.0414 3951 21.9367 3.9480
RQA-100 1 0.0139 1311 10.2742 183.9410

OR30x500-0.50_10 30 500 HPSOGO 1 0.1068 21841 24.9921 210.9530
SA 1 0.0252 3991 26.8254 5.0830
RQA-100 1 0.0044 607 9.3220 216.5470

OR30x500-0.50_1 30 500 HPSOGO 1 0.1093 22080 25.4244 219.7930
SA 1 0.0264 3863 30.5663 5.1305
RQA-100 1 0.0037 664 7.5598 217.8530

72

A.2 – Chu-Beasley benchmark

instance C N solver SR MAPE LE SD time [s]
OR30x500-0.50_2 30 500 HPSOGO 1 0.1030 20449 27.0585 211.8460

SA 1 0.0288 4528 28.4035 5.0725
RQA-100 1 0.0049 845 8.4487 220.2850

OR30x500-0.50_3 30 500 HPSOGO 1 0.1102 21476 25.9480 206.1260
SA 1 0.0281 4296 31.5963 5.1645
RQA-100 1 0.0042 750 7.7418 201.8760

OR30x500-0.50_4 30 500 HPSOGO 1 0.1076 21983 24.6576 212.7020
SA 1 0.0273 3861 31.1565 5.0850
RQA-100 1 0.0047 845 8.5756 205.0760

OR30x500-0.50_5 30 500 HPSOGO 1 0.1091 21389 28.9430 200.6850
SA 1 0.0276 3972 32.6846 5.0875
RQA-100 1 0.0043 789 6.9491 215.2090

OR30x500-0.50_6 30 500 HPSOGO 1 0.1047 21112 28.0393 200.1500
SA 1 0.0254 4129 27.0967 5.1645
RQA-100 1 0.0046 832 8.6371 219.2260

OR30x500-0.50_7 30 500 HPSOGO 1 0.1101 22025 24.4786 190.0310
SA 1 0.0280 4573 23.5243 5.4760
RQA-100 1 0.0036 625 8.1532 212.6360

OR30x500-0.50_8 30 500 HPSOGO 1 0.1074 21985 26.0108 189.6150
SA 1 0.0278 3837 30.4765 5.1680
RQA-100 1 0.0048 859 9.2596 221.8600

OR30x500-0.50_9 30 500 HPSOGO 1 0.1063 20978 30.7942 193.6430
SA 1 0.0287 4255 29.3241 5.1285
RQA-100 1 0.0044 606 8.8065 209.5060

OR30x500-0.75_10 30 500 HPSOGO 1 0.0730 19990 34.0404 188.3080
SA 1 0.0149 3085 23.4921 4.5685
RQA-100 1 0.0021 498 6.9455 196.7860

OR30x500-0.75_1 30 500 HPSOGO 1 0.0750 18754 28.2254 187.8940
SA 1 0.0137 3257 23.6025 4.5720
RQA-100 1 0.0020 440 7.7685 204.1960

OR30x500-0.75_2 30 500 HPSOGO 1 0.0724 20278 28.2024 184.5870
SA 1 0.0147 3016 27.7110 4.6315
RQA-100 1 0.0019 464 7.5236 195.9630

OR30x500-0.75_3 30 500 HPSOGO 1 0.0775 20810 34.0164 183.4460
SA 1 0.0130 2359 27.9778 4.5465
RQA-100 1 0.0016 346 7.7330 210.5900

OR30x500-0.75_4 30 500 HPSOGO 1 0.0743 20769 31.4002 184.1070
SA 1 0.0150 3330 26.6785 4.6045
RQA-100 1 0.0022 480 7.6453 198.7770

OR30x500-0.75_5 30 500 HPSOGO 1 0.0736 19259 32.5138 184.1290
SA 1 0.0140 2947 24.7285 4.7280
RQA-100 1 0.0021 513 7.8905 198.9930

73

A – MKP Benchmark Results

instance C N solver SR MAPE LE SD time [s]
OR30x500-0.75_6 30 500 HPSOGO 1 0.0738 19510 35.0366 183.8680

SA 1 0.0140 3144 25.4335 4.6545
RQA-100 1 0.0022 532 6.8702 195.4090

OR30x500-0.75_7 30 500 HPSOGO 1 0.0719 19514 30.1385 184.0370
SA 1 0.0158 3627 24.5474 4.9900
RQA-100 1 0.0019 451 7.1896 197.0200

OR30x500-0.75_8 30 500 HPSOGO 1 0.0768 22155 26.7292 191.6010
SA 1 0.0123 2746 21.3776 4.7545
RQA-100 1 0.0017 337 8.1117 208.3460

OR30x500-0.75_9 30 500 HPSOGO 1 0.0736 20288 34.4812 184.5400
SA 1 0.0141 2726 23.4725 5.1265
RQA-100 1 0.0019 416 8.4428 198.4100

OR5x100-0.25_10 5 100 HPSOGO 1 0.0713 939 16.5135 10.4165
SA 1 0.0217 217 11.5178 1.3255
RQA-100 1 0.0074 133 5.8975 55.1100

OR5x100-0.25_1 5 100 HPSOGO 1 0.0802 1546 15.5108 10.2720
SA 1 0.0207 192 11.1241 1.3495
RQA-100 1 0.0114 128 10.6705 52.7020

OR5x100-0.25_2 5 100 HPSOGO 1 0.0814 1606 15.0906 10.1670
SA 1 0.0247 159 13.0432 1.3940
RQA-100 1 0.0077 84 9.0222 52.3100

OR5x100-0.25_3 5 100 HPSOGO 1 0.0792 934 16.0181 10.5790
SA 1 0.0204 114 11.6634 1.2940
RQA-100 1 0.0056 28 7.2087 53.2445

OR5x100-0.25_4 5 100 HPSOGO 1 0.0769 1293 17.4436 11.3715
SA 1 0.0237 370 10.5617 1.2215
RQA-100 1 0.0073 118 6.8688 50.3120

OR5x100-0.25_5 5 100 HPSOGO 1 0.0753 841 18.1846 11.8885
SA 1 0.0215 238 12.2646 1.4130
RQA-100 1 0.0076 73 5.7810 52.7625

OR5x100-0.25_6 5 100 HPSOGO 1 0.0851 1343 18.1011 12.9560
SA 1 0.0245 227 13.4222 1.4110
RQA-100 1 0.0124 199 7.6030 49.5145

OR5x100-0.25_7 5 100 HPSOGO 1 0.0782 1322 18.7577 13.3400
SA 1 0.0255 423 11.4449 1.4320
RQA-100 1 0.0122 160 9.3408 49.2225

OR5x100-0.25_8 5 100 HPSOGO 1 0.0829 952 18.8280 13.0495
SA 1 0.0258 386 12.6819 1.1995
RQA-100 1 0.0061 80 6.6159 51.1165

OR5x100-0.25_9 5 100 HPSOGO 1 0.0748 864 16.7055 13.2460
SA 1 0.0247 252 12.6933 1.2325
RQA-100 1 0.0041 0 5.5136 49.5480

74

A.2 – Chu-Beasley benchmark

instance C N solver SR MAPE LE SD time [s]
OR5x100-0.50_10 5 100 HPSOGO 1 0.0384 1047 15.0781 12.3740

SA 1 0.0095 170 11.2621 1.2180
RQA-100 1 0.0017 43 5.9821 57.9785

OR5x100-0.50_1 5 100 HPSOGO 1 0.0415 1262 16.1096 13.9825
SA 1 0.0148 405 11.8148 1.2010
RQA-100 1 0.0014 0 6.5391 55.5340

OR5x100-0.50_2 5 100 HPSOGO 1 0.0397 1025 16.4767 14.2385
SA 1 0.0136 335 12.4467 1.2140
RQA-100 1 0.0006 0 5.4342 58.1170

OR5x100-0.50_3 5 100 HPSOGO 1 0.0364 1159 14.9845 14.8080
SA 1 0.0125 243 10.8812 1.2040
RQA-100 1 0.0010 22 4.8062 54.5915

OR5x100-0.50_4 5 100 HPSOGO 1 0.0401 1247 16.1012 14.1355
SA 1 0.0106 99 11.5929 1.2075
RQA-100 1 0.0009 0 5.0695 56.3200

OR5x100-0.50_5 5 100 HPSOGO 1 0.0418 1328 13.5333 12.8190
SA 1 0.0123 237 12.6317 1.2445
RQA-100 1 0.0019 26 7.4766 53.3460

OR5x100-0.50_6 5 100 HPSOGO 1 0.0394 1140 16.3707 12.9445
SA 1 0.0126 253 10.1242 1.2020
RQA-100 1 0.0024 52 5.1962 57.8395

OR5x100-0.50_7 5 100 HPSOGO 1 0.0402 1258 14.0472 12.3400
SA 1 0.0147 345 11.4636 1.2070
RQA-100 1 0.0017 0 6.1677 57.4930

OR5x100-0.50_8 5 100 HPSOGO 1 0.0435 1378 13.4374 11.7480
SA 1 0.0123 258 12.1947 1.2775
RQA-100 1 0.0029 77 4.6583 54.4110

OR5x100-0.50_9 5 100 HPSOGO 1 0.0394 1007 16.0800 13.1325
SA 1 0.0159 414 11.5263 1.3075
RQA-100 1 0.0032 78 5.4111 55.3675

OR5x100-0.75_10 5 100 HPSOGO 1 0.0254 1182 13.9684 13.7835
SA 1 0.0074 214 11.2818 1.3010
RQA-100 1 0.0005 5 5.0498 54.6885

OR5x100-0.75_1 5 100 HPSOGO 1 0.0240 976 14.0950 13.4450
SA 1 0.0079 167 10.2176 1.2300
RQA-100 1 0.0005 0 3.9294 56.6895

OR5x100-0.75_2 5 100 HPSOGO 1 0.0232 884 15.8442 11.5450
SA 1 0.0065 235 8.5598 1.2280
RQA-100 1 0.0019 0 5.0498 57.0680

OR5x100-0.75_3 5 100 HPSOGO 1 0.0233 905 13.3901 12.0645
SA 1 0.0053 140 9.0488 1.3685
RQA-100 1 0.0013 41 5.6877 56.6035

75

A – MKP Benchmark Results

instance C N solver SR MAPE LE SD time [s]
OR5x100-0.75_4 5 100 HPSOGO 1 0.0209 912 13.6066 11.7010

SA 1 0.0058 145 10.9791 1.2390
RQA-100 1 0.0007 0 4.3203 57.5250

OR5x100-0.75_5 5 100 HPSOGO 1 0.0255 1042 15.4328 11.8490
SA 1 0.0064 107 10.7247 1.3595
RQA-100 1 0.0010 12 3.5777 56.1630

OR5x100-0.75_6 5 100 HPSOGO 1 0.0238 1027 14.9613 11.3965
SA 1 0.0062 123 9.0407 1.2045
RQA-100 1 0.0007 0 3.4900 55.6260

OR5x100-0.75_7 5 100 HPSOGO 1 0.0239 768 18.0885 11.5550
SA 1 0.0065 99 11.1283 1.2125
RQA-100 1 0.0013 19 5.5911 58.2425

OR5x100-0.75_8 5 100 HPSOGO 1 0.0229 630 17.7206 11.6175
SA 1 0.0068 144 10.6715 1.2130
RQA-100 1 0.0002 0 3.9988 56.0585

OR5x100-0.75_9 5 100 HPSOGO 1 0.0254 627 16.6131 11.9035
SA 1 0.0082 233 10.0539 1.2060
RQA-100 1 0.0012 0 5.0725 55.9525

OR5x250-0.25_10 5 250 HPSOGO 1 0.1497 7656 22.2030 27.5935
SA 1 0.0313 1017 17.5699 2.3115
RQA-100 1 0.0073 345 7.0612 101.9480

OR5x250-0.25_1 5 250 HPSOGO 1 0.1636 8035 23.5741 31.6580
SA 1 0.0328 1242 16.7637 2.1475
RQA-100 1 0.0088 432 6.8993 102.7270

OR5x250-0.25_2 5 250 HPSOGO 1 0.1640 8756 27.0703 31.2155
SA 1 0.0338 1424 18.9182 2.0820
RQA-100 1 0.0108 501 8.5531 100.2340

OR5x250-0.25_3 5 250 HPSOGO 1 0.1613 8216 24.3247 32.2130
SA 1 0.0360 1627 18.0294 2.1025
RQA-100 1 0.0122 561 9.7831 100.4600

OR5x250-0.25_4 5 250 HPSOGO 1 0.1404 7063 25.8493 31.3340
SA 1 0.0341 1421 16.8083 2.0960
RQA-100 1 0.0125 602 8.2825 104.2400

OR5x250-0.25_5 5 250 HPSOGO 1 0.1507 7665 23.5893 31.1050
SA 1 0.0301 1215 15.9720 2.0920
RQA-100 1 0.0089 372 7.4243 99.2035

OR5x250-0.25_6 5 250 HPSOGO 1 0.1520 7442 27.2694 31.4255
SA 1 0.0375 1512 17.3094 2.0840
RQA-100 1 0.0125 561 7.9246 100.3170

OR5x250-0.25_7 5 250 HPSOGO 1 0.1568 7101 27.5392 31.5650
SA 1 0.0352 1448 19.7321 2.0785
RQA-100 1 0.0098 322 8.5758 100.9390

76

A.2 – Chu-Beasley benchmark

instance C N solver SR MAPE LE SD time [s]
OR5x250-0.25_8 5 250 HPSOGO 1 0.1508 6717 27.7852 29.2535

SA 1 0.0307 1205 17.4671 2.0860
RQA-100 1 0.0103 503 7.2360 101.4900

OR5x250-0.25_9 5 250 HPSOGO 1 0.1561 8123 25.1533 28.4390
SA 1 0.0338 1155 17.7679 2.0795
RQA-100 1 0.0096 449 8.2183 106.9570

OR5x250-0.50_10 5 250 HPSOGO 1 0.0748 6950 22.6577 29.0740
SA 1 0.0195 1297 17.7065 2.5535
RQA-100 1 0.0026 207 5.3474 122.8820

OR5x250-0.50_1 5 250 HPSOGO 1 0.0729 7171 20.3496 26.5765
SA 1 0.0187 1291 18.0700 2.5690
RQA-100 1 0.0031 253 6.5065 118.1420

OR5x250-0.50_2 5 250 HPSOGO 1 0.0747 7185 23.6992 25.8775
SA 1 0.0180 1222 17.1683 2.5635
RQA-100 1 0.0027 194 7.0813 116.9920

OR5x250-0.50_3 5 250 HPSOGO 1 0.0785 7026 22.9483 25.0560
SA 1 0.0190 1256 20.4217 2.5700
RQA-100 1 0.0017 104 5.5009 121.8500

OR5x250-0.50_4 5 250 HPSOGO 1 0.0772 7637 17.0112 25.1990
SA 1 0.0182 1591 16.7562 2.5685
RQA-100 1 0.0023 31 7.3086 127.1280

OR5x250-0.50_5 5 250 HPSOGO 1 0.0716 7203 22.6324 25.9030
SA 1 0.0214 1994 16.5378 2.5595
RQA-100 1 0.0025 141 6.9390 131.0560

OR5x250-0.50_6 5 250 HPSOGO 1 0.0737 7254 22.9772 30.5640
SA 1 0.0180 1519 16.3213 2.5565
RQA-100 1 0.0025 182 5.6732 126.0940

OR5x250-0.50_7 5 250 HPSOGO 1 0.0753 6279 22.6303 32.5725
SA 1 0.0168 1208 19.0788 2.9430
RQA-100 1 0.0025 202 6.3269 131.2820

OR5x250-0.50_8 5 250 HPSOGO 1 0.0725 6855 22.0673 29.9005
SA 1 0.0176 983 14.8694 2.5530
RQA-100 1 0.0031 241 6.3328 127.2250

OR5x250-0.50_9 5 250 HPSOGO 1 0.0762 7391 22.3987 29.6950
SA 1 0.0198 1458 18.6615 2.5460
RQA-100 1 0.0020 113 6.2984 123.9440

OR5x250-0.75_10 5 250 HPSOGO 1 0.0522 6433 25.8322 29.1210
SA 1 0.0093 967 14.3776 2.7475
RQA-100 1 0.0004 14 4.4283 115.7700

OR5x250-0.75_1 5 250 HPSOGO 1 0.0476 5152 23.7869 28.0415
SA 1 0.0096 668 15.1189 2.3370
RQA-100 1 0.0010 99 5.0666 115.1620

77

A – MKP Benchmark Results

instance C N solver SR MAPE LE SD time [s]
OR5x250-0.75_2 5 250 HPSOGO 1 0.0533 6507 28.6059 26.2205

SA 1 0.0094 1016 12.9906 2.3685
RQA-100 1 0.0008 60 5.3982 112.3330

OR5x250-0.75_3 5 250 HPSOGO 1 0.0491 6567 21.3401 26.1300
SA 1 0.0088 821 16.8045 2.3340
RQA-100 1 0.0014 131 4.6819 116.8470

OR5x250-0.75_4 5 250 HPSOGO 1 0.0502 6064 22.7420 26.6215
SA 1 0.0095 1022 13.7244 2.3360
RQA-100 1 0.0007 42 5.5353 114.6650

OR5x250-0.75_5 5 250 HPSOGO 1 0.0506 6541 22.7815 25.4620
SA 1 0.0094 859 14.7665 2.6090
RQA-100 1 0.0008 57 5.4130 113.7870

OR5x250-0.75_6 5 250 HPSOGO 1 0.0507 6585 21.8632 31.3410
SA 1 0.0101 1031 15.6764 2.3255
RQA-100 1 0.0012 121 4.8503 113.9140

OR5x250-0.75_7 5 250 HPSOGO 1 0.0515 6432 25.0708 30.4805
SA 1 0.0103 982 16.5499 2.3635
RQA-100 1 0.0009 26 5.3310 113.6910

OR5x250-0.75_8 5 250 HPSOGO 1 0.0528 6358 25.8175 28.3835
SA 1 0.0081 717 15.2807 2.3230
RQA-100 1 0.0007 55 4.8052 115.1330

OR5x250-0.75_9 5 250 HPSOGO 1 0.0517 7008 23.3843 27.2905
SA 1 0.0097 1084 16.9770 2.3265
RQA-100 1 0.0004 14 5.1303 113.4200

OR5x500-0.25_10 5 500 HPSOGO 1 0.2063 23069 31.2777 61.1155
SA 1 0.0392 3332 23.4868 3.5885
RQA-100 1 0.0113 1224 8.3833 159.3750

OR5x500-0.25_1 5 500 HPSOGO 1 0.1933 20744 30.7413 65.2450
SA 1 0.0393 3290 20.3686 3.5780
RQA-100 1 0.0125 1251 7.5551 158.0500

OR5x500-0.25_2 5 500 HPSOGO 1 0.1977 21488 31.6109 60.1515
SA 1 0.0407 3952 23.7396 3.6160
RQA-100 1 0.0122 1116 11.9352 164.3780

OR5x500-0.25_3 5 500 HPSOGO 1 0.1901 20535 27.9639 62.6610
SA 1 0.0397 3307 21.9238 3.5760
RQA-100 1 0.0114 854 11.2590 172.2380

OR5x500-0.25_4 5 500 HPSOGO 1 0.2001 22456 33.8615 56.1965
SA 1 0.0399 3932 22.8265 3.5995
RQA-100 1 0.0153 1458 9.8133 163.9920

OR5x500-0.25_5 5 500 HPSOGO 1 0.2048 22749 29.4433 61.2805
SA 1 0.0379 3619 23.5716 3.5895
RQA-100 1 0.0109 1126 9.6499 168.3920

78

A.2 – Chu-Beasley benchmark

instance C N solver SR MAPE LE SD time [s]
OR5x500-0.25_6 5 500 HPSOGO 1 0.2147 24342 29.1794 52.9320

SA 1 0.0373 3559 20.7014 3.5860
RQA-100 1 0.0128 1268 9.5854 181.0770

OR5x500-0.25_7 5 500 HPSOGO 1 0.2035 20245 35.1998 50.6235
SA 1 0.0396 3396 22.9116 3.5920
RQA-100 1 0.0106 999 8.4012 169.9220

OR5x500-0.25_8 5 500 HPSOGO 1 0.2065 21192 33.9731 52.6590
SA 1 0.0413 3927 20.6289 3.5780
RQA-100 1 0.0114 1078 10.9567 159.0370

OR5x500-0.25_9 5 500 HPSOGO 1 0.1929 20578 34.9763 61.1925
SA 1 0.0398 3620 26.9147 3.5920
RQA-100 1 0.0133 1373 9.7581 151.9860

OR5x500-0.50_10 5 500 HPSOGO 1 0.0943 18718 24.3619 58.2825
SA 1 0.0228 3624 22.8695 4.9105
RQA-100 1 0.0037 698 7.8753 246.3870

OR5x500-0.50_1 5 500 HPSOGO 1 0.0915 17451 29.6742 55.8545
SA 1 0.0221 3697 23.0257 4.6005
RQA-100 1 0.0039 712 8.0312 247.6300

OR5x500-0.50_2 5 500 HPSOGO 1 0.0943 18743 25.3047 51.9705
SA 1 0.0228 3502 24.8962 4.6085
RQA-100 1 0.0039 683 7.3263 198.2870

OR5x500-0.50_3 5 500 HPSOGO 1 0.0946 16671 31.1525 51.5395
SA 1 0.0222 4021 18.9953 4.6210
RQA-100 1 0.0031 554 6.9732 231.1660

OR5x500-0.50_4 5 500 HPSOGO 1 0.0962 19475 27.8704 61.5290
SA 1 0.0238 3773 28.7573 4.6200
RQA-100 1 0.0026 472 6.1156 229.4700

OR5x500-0.50_5 5 500 HPSOGO 1 0.0960 19359 25.5096 53.5610
SA 1 0.0261 4696 21.1764 4.6155
RQA-100 1 0.0030 337 8.0433 205.6060

OR5x500-0.50_6 5 500 HPSOGO 1 0.0969 20034 24.6759 50.0180
SA 1 0.0242 4262 20.6083 4.6430
RQA-100 1 0.0026 478 6.7153 230.7250

OR5x500-0.50_7 5 500 HPSOGO 1 0.0969 19030 28.7074 49.2515
SA 1 0.0231 3689 22.1376 4.6340
RQA-100 1 0.0034 565 8.0137 224.8190

OR5x500-0.50_8 5 500 HPSOGO 1 0.0947 19012 23.9654 49.1385
SA 1 0.0244 4385 21.4075 4.7535
RQA-100 1 0.0034 521 9.2499 220.6110

OR5x500-0.50_9 5 500 HPSOGO 1 0.0948 19000 31.6606 49.2685
SA 1 0.0248 3992 23.3645 4.6070
RQA-100 1 0.0032 579 6.9771 220.1250

79

A – MKP Benchmark Results

instance C N solver SR MAPE LE SD time [s]
OR5x500-0.75_10 5 500 HPSOGO 1 0.0727 19143 30.4953 48.9025

SA 1 0.0107 2353 19.5588 4.0050
RQA-100 1 0.0011 263 6.1380 220.9980

OR5x500-0.75_1 5 500 HPSOGO 1 0.0688 18341 26.5748 48.9000
SA 1 0.0117 2227 22.2070 4.0475
RQA-100 1 0.0014 345 4.8606 218.1030

OR5x500-0.75_2 5 500 HPSOGO 1 0.0699 19019 34.0746 48.8975
SA 1 0.0115 2747 20.2237 4.0330
RQA-100 1 0.0012 256 5.9632 216.1120

OR5x500-0.75_3 5 500 HPSOGO 1 0.0711 19234 27.4238 49.1380
SA 1 0.0111 2530 19.5597 4.3235
RQA-100 1 0.0013 254 6.0704 211.8480

OR5x500-0.75_4 5 500 HPSOGO 1 0.0694 18538 30.5531 48.8360
SA 1 0.0114 2689 20.0734 4.0475
RQA-100 1 0.0011 265 6.7030 218.5210

OR5x500-0.75_5 5 500 HPSOGO 1 0.0707 19396 28.3701 48.8975
SA 1 0.0109 2398 19.7829 4.0440
RQA-100 1 0.0012 307 5.2340 217.9460

OR5x500-0.75_6 5 500 HPSOGO 1 0.0717 19613 33.3697 49.1335
SA 1 0.0112 2619 21.5855 4.0060
RQA-100 1 0.0011 233 6.9699 209.6230

OR5x500-0.75_7 5 500 HPSOGO 1 0.0712 19765 27.7224 49.0875
SA 1 0.0115 2430 19.8531 4.0055
RQA-100 1 0.0013 301 5.2995 216.1530

OR5x500-0.75_8 5 500 HPSOGO 1 0.0705 19182 29.6816 49.8395
SA 1 0.0127 2977 20.2320 4.0380
RQA-100 1 0.0014 278 6.8800 206.2360

OR5x500-0.75_9 5 500 HPSOGO 1 0.0703 19787 26.2078 49.4645
SA 1 0.0119 2759 20.3187 4.0115
RQA-100 1 0.0011 239 5.4827 221.5800

80

Acknowledgements

Before all, I would like to thank my thesis advisor Prof. Andrea Acquaviva, for his
helpfulness and care in directing my work and for facilitating my internship with
NEC Japan.

I am also profoundly grateful to my thesis co-advisor Gianvito Urgese, who never
failed to address my doubts and followed my work with enthusiasm and friendliness.

It was a great pleasure to work with my internship supervisor in NEC Japan,
Yuki Kobayashi, and I thank him for his attentive and keen guidance and encour-
agement during my stay in Japan.

I also thank my colleague Marco for his friendship and for his invaluable assis-
tance in navigating the joys and troubles of my internship.

To my family, who supported me not only financially but morally throughout
my studies and afforded me the incredible privilege of pursuing two Bachelor’s
Degrees and one Master’s Degree, goes my deepest gratitude and affection.

I would be remiss not to thank all the talented, smart, and kind colleagues
that I have met throughout my years in Politecnico: your passion, dedication and
strength inspired me every day of my studies.

Last and not least, thank you to the friends who cheered me on through the
exams, the late nights, and the long months away from home: your support means
the world to me.

81

82

Bibliography

[1] James C. T. Mao and B. A. Wallingford. “An Extension of Lawler and Bell’s
Method of Discrete Optimization with Examples from Capital Budgeting”.
In: Management Science 15.2 (1968), B51–B60. issn: 00251909, 15265501.
url: http://www.jstor.org/stable/2628852.

[2] Jay D. Schwartz, Wenlin Wang, and Daniel E. Rivera. “Simulation-based
optimization of process control policies for inventory management in supply
chains”. In: Automatica 42.8 (2006). Optimal Control Applications to Man-
agement Sciences, pp. 1311–1320. issn: 0005-1098. doi: https://doi.org/
10.1016/j.automatica.2006.03.019. url: http://www.sciencedirect.
com/science/article/pii/S0005109806001464.

[3] Hanhong Zhu et al. “Particle Swarm Optimization (PSO) for the constrained
portfolio optimization problem”. In: Expert Systems with Applications 38.8
(2011), pp. 10161–10169. issn: 0957-4174. doi: https://doi.org/10.1016/
j.eswa.2011.02.075. url: http://www.sciencedirect.com/science/
article/pii/S0957417411002818.

[4] Felix T.S. Chan and Rahul Swarnkar. “Ant colony optimization approach to
a fuzzy goal programming model for a machine tool selection and operation
allocation problem in an FMS”. In: Robotics and Computer-Integrated Manu-
facturing 22.4 (2006), pp. 353–362. issn: 0736-5845. doi: https://doi.org/
10.1016/j.rcim.2005.08.001. url: http://www.sciencedirect.com/
science/article/pii/S073658450500061X.

[5] Mir Saman Pishvaee, Fariborz Jolai, and Jafar Razmi. “A stochastic opti-
mization model for integrated forward/reverse logistics network design”. In:
Journal of Manufacturing Systems 28.4 (2009), pp. 107–114. issn: 0278-6125.
doi: https : / / doi . org / 10 . 1016 / j . jmsy . 2010 . 05 . 001. url: http :
//www.sciencedirect.com/science/article/pii/S027861251000018X.

[6] Ali R. Guner and Mehmet Sevkli. “A Discrete Particle Swarm Optimization
Algorithm for Uncapacitated Facility Location Problem”. In: J. Artif. Evol.
App. 2008 (Jan. 2008), 10:1–10:9. issn: 1687-6229. doi: 10 . 1155 / 2008 /
861512. url: http://dx.doi.org/10.1155/2008/861512.

83

http://www.jstor.org/stable/2628852
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2006.03.019
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2006.03.019
http://www.sciencedirect.com/science/article/pii/S0005109806001464
http://www.sciencedirect.com/science/article/pii/S0005109806001464
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2011.02.075
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2011.02.075
http://www.sciencedirect.com/science/article/pii/S0957417411002818
http://www.sciencedirect.com/science/article/pii/S0957417411002818
http://dx.doi.org/https://doi.org/10.1016/j.rcim.2005.08.001
http://dx.doi.org/https://doi.org/10.1016/j.rcim.2005.08.001
http://www.sciencedirect.com/science/article/pii/S073658450500061X
http://www.sciencedirect.com/science/article/pii/S073658450500061X
http://dx.doi.org/https://doi.org/10.1016/j.jmsy.2010.05.001
http://www.sciencedirect.com/science/article/pii/S027861251000018X
http://www.sciencedirect.com/science/article/pii/S027861251000018X
http://dx.doi.org/10.1155/2008/861512
http://dx.doi.org/10.1155/2008/861512
http://dx.doi.org/10.1155/2008/861512

BIBLIOGRAPHY

[7] Brusco Michael J. and Jacobs Larry W. “A simulated annealing approach
to the cyclic staff-scheduling problem”. In: Naval Research Logistics (NRL)
40.1 (), pp. 69–84. doi: 10 . 1002 / 1520 - 6750(199302) 40 : 1<69 :: AID -
NAV3220400105> 3.0.CO;2- H. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/1520-6750%28199302%2940%3A1%3C69%3A%3AAID-
NAV3220400105%3E3.0.CO%3B2-H. url: https://onlinelibrary.wiley.
com/doi/abs/10.1002/1520-6750%28199302%2940%3A1%3C69%3A%3AAID-
NAV3220400105%3E3.0.CO%3B2-H.

[8] Jonathan F. Bard, David P. Morton, and Yong Min Wang. “Workforce plan-
ning at USPS mail processing and distribution centers using stochastic op-
timization”. In: Annals of Operations Research 155.1 (Nov. 2007), pp. 51–
78. issn: 1572-9338. doi: 10 . 1007 / s10479 - 007 - 0213 - 1. url: https :
//doi.org/10.1007/s10479-007-0213-1.

[9] Clayton Commander. “A Survey of the Quadratic Assignment Problem, with
Applications”. In: 4 (Jan. 2005).

[10] Optimization problem - Wikipedia, the free encyclopedia. https://en.wikipedia.
org/wiki/Optimization_problem.

[11] Concorde Home. http://www.math.uwaterloo.ca/tsp/concorde.html.
[12] TSPLIB. https://wwwproxy.iwr.uni-heidelberg.de/groups/comopt/

software/TSPLIB95.
[13] M.Grazia Speranza and Renata Mansini. “CORAL: An Exact Algorithm for

the Multidimensional Knapsack Problem”. In: 24 (July 2012), pp. 399–415.
[14] Zhao Xing and Weixiong Zhang. “MaxSolver: An efficient exact algorithm for

(weighted) maximum satisfiability”. In: Artificial Intelligence 164.1 (2005),
pp. 47–80. issn: 0004-3702. doi: https://doi.org/10.1016/j.artint.
2005.01.004. url: http://www.sciencedirect.com/science/article/
pii/S0004370205000160.

[15] Beheshti and Shamsuddin. “A Review of Population-based Meta-Heuristic
Algorithm”. In: Int. J. Advance. Soft Comput. Appl., Vol. 5, No. 1, March
2013 (2013).

[16] Scott Kirkpatrick, C. D. Gelatt, and Mario P. Vecchi. “Optimization by sim-
ulated annealing.” In: Science 220 4598 (1983), pp. 671–80.

[17] Jenifer J, Anand S, and Levingstan Y. “SIMULATED ANNEALING AL-
GORITHM FOR MODERN VLSI FLOORPLANNING PROBLEM”. In: 2
(Apr. 2016), pp. 175–181.

[18] Atanu Roy Karthik Ganesan Pillai. “Parallel Simulated Annealing for VLSI
Cell Placement Problem”. In: 2009.

84

http://dx.doi.org/10.1002/1520-6750(199302)40:1<69::AID-NAV3220400105>3.0.CO;2-H
http://dx.doi.org/10.1002/1520-6750(199302)40:1<69::AID-NAV3220400105>3.0.CO;2-H
https://onlinelibrary.wiley.com/doi/pdf/10.1002/1520-6750%28199302%2940%3A1%3C69%3A%3AAID-NAV3220400105%3E3.0.CO%3B2-H
https://onlinelibrary.wiley.com/doi/pdf/10.1002/1520-6750%28199302%2940%3A1%3C69%3A%3AAID-NAV3220400105%3E3.0.CO%3B2-H
https://onlinelibrary.wiley.com/doi/pdf/10.1002/1520-6750%28199302%2940%3A1%3C69%3A%3AAID-NAV3220400105%3E3.0.CO%3B2-H
https://onlinelibrary.wiley.com/doi/abs/10.1002/1520-6750%28199302%2940%3A1%3C69%3A%3AAID-NAV3220400105%3E3.0.CO%3B2-H
https://onlinelibrary.wiley.com/doi/abs/10.1002/1520-6750%28199302%2940%3A1%3C69%3A%3AAID-NAV3220400105%3E3.0.CO%3B2-H
https://onlinelibrary.wiley.com/doi/abs/10.1002/1520-6750%28199302%2940%3A1%3C69%3A%3AAID-NAV3220400105%3E3.0.CO%3B2-H
http://dx.doi.org/10.1007/s10479-007-0213-1
https://doi.org/10.1007/s10479-007-0213-1
https://doi.org/10.1007/s10479-007-0213-1
https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Optimization_problem
http://www.math.uwaterloo.ca/tsp/concorde.html
https://wwwproxy.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95
https://wwwproxy.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95
http://dx.doi.org/https://doi.org/10.1016/j.artint.2005.01.004
http://dx.doi.org/https://doi.org/10.1016/j.artint.2005.01.004
http://www.sciencedirect.com/science/article/pii/S0004370205000160
http://www.sciencedirect.com/science/article/pii/S0004370205000160

BIBLIOGRAPHY

[19] Adrian Ludwin and Vaughn Betz. “Efficient and Deterministic Parallel Place-
ment for FPGAs”. In: ACM Trans. Design Autom. Electr. Syst. 16 (2011),
22:1–22:23.

[20] Y. Han, S. Roy, and K. Chakraborty. “Optimizing simulated annealing on
GPU: A case study with IC floorplanning”. In: 2011 12th International Sym-
posium on Quality Electronic Design. Mar. 2011, pp. 1–7. doi: 10.1109/
ISQED.2011.5770735.

[21] Sanroku Tsukamoto et al. “An Accelerator Architecture for Combinatorial
Optimization Problems”. In: 2017.

[22] M. Baity-Jesi et al. “Janus II: A new generation application-driven computer
for spin-system simulations”. In: Computer Physics Communications 185.2
(2014), pp. 550–559. issn: 0010-4655. doi: https://doi.org/10.1016/
j.cpc.2013.10.019. url: http://www.sciencedirect.com/science/
article/pii/S0010465513003470.

[23] John H. Holland. Adaptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology, Control and Artificial Intelligence.
Cambridge, MA, USA: MIT Press, 1992. isbn: 0262082136.

[24] J. Kennedy and R. Eberhart. “Particle swarm optimization”. In: Neural Net-
works, 1995. Proceedings., IEEE International Conference on. Vol. 4. Nov.
1995, 1942–1948 vol.4. doi: 10.1109/ICNN.1995.488968.

[25] Tadashi Kadowaki and Hidetoshi Nishimori. “Quantum Annealing in the
Transverse Ising Model”. In: 58 (Apr. 1998).

[26] Roman Marto ňák, Giuseppe E. Santoro, and Erio Tosatti. “Quantum an-
nealing by the path-integral Monte Carlo method: The two-dimensional ran-
dom Ising model”. In: Phys. Rev. B 66 (9 Sept. 2002), p. 094203. doi: 10.
1103/PhysRevB.66.094203. url: https://link.aps.org/doi/10.1103/
PhysRevB.66.094203.

[27] Bettina Heim et al. “Quantum versus classical annealing of Ising spin glasses”.
In: Science 348.6231 (2015), pp. 215–217. issn: 0036-8075. doi: 10.1126/
science.aaa4170. eprint: http://science.sciencemag.org/content/
348 / 6231 / 215 . full . pdf. url: http : / / science . sciencemag . org /
content/348/6231/215.

[28] Arnab Das, Bikas K. Chakrabarti, and Robin B. Stinchcombe. “Quantum
annealing in a kinetically constrained system”. In: Phys. Rev. E 72 (2 Aug.
2005), p. 026701. doi: 10.1103/PhysRevE.72.026701. url: https://link.
aps.org/doi/10.1103/PhysRevE.72.026701.

85

http://dx.doi.org/10.1109/ISQED.2011.5770735
http://dx.doi.org/10.1109/ISQED.2011.5770735
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2013.10.019
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2013.10.019
http://www.sciencedirect.com/science/article/pii/S0010465513003470
http://www.sciencedirect.com/science/article/pii/S0010465513003470
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1103/PhysRevB.66.094203
http://dx.doi.org/10.1103/PhysRevB.66.094203
https://link.aps.org/doi/10.1103/PhysRevB.66.094203
https://link.aps.org/doi/10.1103/PhysRevB.66.094203
http://dx.doi.org/10.1126/science.aaa4170
http://dx.doi.org/10.1126/science.aaa4170
http://science.sciencemag.org/content/348/6231/215.full.pdf
http://science.sciencemag.org/content/348/6231/215.full.pdf
http://science.sciencemag.org/content/348/6231/215
http://science.sciencemag.org/content/348/6231/215
http://dx.doi.org/10.1103/PhysRevE.72.026701
https://link.aps.org/doi/10.1103/PhysRevE.72.026701
https://link.aps.org/doi/10.1103/PhysRevE.72.026701

BIBLIOGRAPHY

[29] Andrew Lucas. “Ising formulations of many NP problems”. In: Frontiers in
Physics 2 (2014), p. 5. issn: 2296-424X. doi: 10.3389/fphy.2014.00005.
url: https://www.frontiersin.org/article/10.3389/fphy.2014.
00005.

[30] F. Ortega-Zamorano et al. “FPGA Hardware Acceleration of Monte Carlo
Simulations for the Ising Model”. In: IEEE Transactions on Parallel and
Distributed Systems 27.9 (Sept. 2016), pp. 2618–2627. issn: 1045-9219. doi:
10.1109/TPDS.2015.2505725.

[31] Davide Venturelli et al. “Quantum Optimization of Fully Connected Spin
Glasses”. In: Phys. Rev. X 5 (3 Sept. 2015), p. 031040. doi: 10 . 1103 /
PhysRevX . 5 . 031040. url: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevX.5.031040.

[32] P. Bergé et al. “Restricting the search space to boost Quantum Annealing
performance”. In: 2016 IEEE Congress on Evolutionary Computation (CEC).
July 2016, pp. 3238–3245. doi: 10.1109/CEC.2016.7744199.

[33] N. Kumaraguruparan, H. Sivaramakrishnan, and S. S. Sapatnekar. “Resi-
dential task scheduling under dynamic pricing using the multiple knapsack
method”. In: 2012 IEEE PES Innovative Smart Grid Technologies (ISGT).
Jan. 2012, pp. 1–6. doi: 10.1109/ISGT.2012.6175656.

[34] R. Camati, A. Calsavara, and Jr L.L. “Solving the virtual machine placement
problem as a multiple multidimensional knapsack problem”. In: Proceedings
of ICN 2014, The Thirteenth. 2014. url: http://www.thinkmind.org/
index.php?View=article&articleid=icn_2014_11_10_30065.

[35] R. Mansini and M. G. Speranza. “A Multidimensional Knapsack Model for
Asset-Backed Securitization”. In: The Journal of the Operational Research
Society 53.8 (2002), pp. 822–832. issn: 01605682, 14769360. url: http://
www.jstor.org/stable/822910.

[36] D. C. Vanderster, N. J. Dimopoulos, and R. J. Sobie. “Metascheduling Mul-
tiple Resource Types using the MMKP”. In: 2006 7th IEEE/ACM Interna-
tional Conference on Grid Computing. Sept. 2006, pp. 231–237. doi: 10.
1109/ICGRID.2006.311020.

[37] Madjid Tavana, Kaveh Khalili-Damghani, and Amir-Reza Abtahi. “A fuzzy
multidimensional multiple-choice knapsack model for project portfolio selec-
tion using an evolutionary algorithm”. In: Annals of Operations Research
206.1 (July 2013), pp. 449–483. issn: 1572-9338. doi: 10.1007/s10479-013-
1387-3. url: https://doi.org/10.1007/s10479-013-1387-3.

86

http://dx.doi.org/10.3389/fphy.2014.00005
https://www.frontiersin.org/article/10.3389/fphy.2014.00005
https://www.frontiersin.org/article/10.3389/fphy.2014.00005
http://dx.doi.org/10.1109/TPDS.2015.2505725
http://dx.doi.org/10.1103/PhysRevX.5.031040
http://dx.doi.org/10.1103/PhysRevX.5.031040
https://link.aps.org/doi/10.1103/PhysRevX.5.031040
https://link.aps.org/doi/10.1103/PhysRevX.5.031040
http://dx.doi.org/10.1109/CEC.2016.7744199
http://dx.doi.org/10.1109/ISGT.2012.6175656
http://www.thinkmind.org/index.php?View=article&articleid=icn_2014_11_10_30065
http://www.thinkmind.org/index.php?View=article&articleid=icn_2014_11_10_30065
http://www.jstor.org/stable/822910
http://www.jstor.org/stable/822910
http://dx.doi.org/10.1109/ICGRID.2006.311020
http://dx.doi.org/10.1109/ICGRID.2006.311020
http://dx.doi.org/10.1007/s10479-013-1387-3
http://dx.doi.org/10.1007/s10479-013-1387-3
https://doi.org/10.1007/s10479-013-1387-3

BIBLIOGRAPHY

[38] Mohammed El-Shafei, Imtiaz Ahmad, and Mohammad Gh. Alfailakawi. “Hard-
ware accelerator for solving 0-1 knapsack problems using binary harmony
search”. In: International Journal of Parallel, Emergent and Distributed Sys-
tems 33.1 (2018), pp. 87–102. doi: 10 . 1080 / 17445760 . 2017 . 1324025.
eprint: https://doi.org/10.1080/17445760.2017.1324025. url: https:
//doi.org/10.1080/17445760.2017.1324025.

[39] Vincent Boyer, Didier El Baz, and Moussa Elkihel. “Solving knapsack prob-
lems on GPU”. In: Computers and Operations Research 39.1 (2012), pp. 42–
47. doi: 10.1016/j.cor.2011.03.014. url: https://hal.archives-
ouvertes.fr/hal-01152223.

[40] Luis Fernando Mingo López, Nuria Gómez Blas, and Alberto Arteta Albert.
“Multidimensional knapsack problem optimization using a binary particle
swarm model with genetic operations”. In: Soft Computing 22.8 (Apr. 2018),
pp. 2567–2582. issn: 1433-7479. doi: 10.1007/s00500-017-2511-0. url:
https://doi.org/10.1007/s00500-017-2511-0.

[41] Kazutoshi Wakabayashi. “CyberWorkBench: Integrated design environment
based on C-based behavior synthesis and verification”. In: VLSI Design, Au-
tomation and Test, 2005.(VLSI-TSA-DAT). 2005 IEEE VLSI-TSA Interna-
tional Symposium on. IEEE. 2005, pp. 173–176.

[42] Intel - Altera. Avalon Interface Specifications. url: https://www.altera.
com/documentation/nik1412467993397.html (visited on 06/29/2018).

[43] Zuse Institute Berlin - MP-Testdata - SAC-94 Multiple-Knapsack Problems.
http://elib.zib.de/pub/mp-testdata/ip/sac94-suite/index.html.

[44] H. Martin Weingartner and David N. Ness. “Methods for the Solution of
the Multidimensional 0/1 Knapsack Problem”. In: Operations Research 15.1
(1967), pp. 83–103. doi: 10.1287/opre.15.1.83. eprint: https://doi.org/
10.1287/opre.15.1.83. url: https://doi.org/10.1287/opre.15.1.83.

[45] P.C. Chu and J.E. Beasley. “A Genetic Algorithm for the Multidimensional
Knapsack Problem”. In: Journal of Heuristics 4.1 (June 1998), pp. 63–86.
issn: 1572-9397. doi: 10.1023/A:1009642405419. url: https://doi.org/
10.1023/A:1009642405419.

[46] Intel - Altera. Altera Stratix V FPGA. url: https://www.altera.com/
products/fpga/stratix-series/stratix-v/features.html (visited on
02/25/2017).

[47] A. Boukedjar, M. E. Lalami, and D. El-Baz. “Parallel Branch and Bound on
a CPU-GPU System”. In: 2012 20th Euromicro International Conference on
Parallel, Distributed and Network-based Processing. Feb. 2012, pp. 392–398.
doi: 10.1109/PDP.2012.23.

87

http://dx.doi.org/10.1080/17445760.2017.1324025
https://doi.org/10.1080/17445760.2017.1324025
https://doi.org/10.1080/17445760.2017.1324025
https://doi.org/10.1080/17445760.2017.1324025
http://dx.doi.org/10.1016/j.cor.2011.03.014
https://hal.archives-ouvertes.fr/hal-01152223
https://hal.archives-ouvertes.fr/hal-01152223
http://dx.doi.org/10.1007/s00500-017-2511-0
https://doi.org/10.1007/s00500-017-2511-0
https://www.altera.com/documentation/nik1412467993397.html
https://www.altera.com/documentation/nik1412467993397.html
http://elib.zib.de/pub/mp-testdata/ip/sac94-suite/index.html
http://dx.doi.org/10.1287/opre.15.1.83
https://doi.org/10.1287/opre.15.1.83
https://doi.org/10.1287/opre.15.1.83
https://doi.org/10.1287/opre.15.1.83
http://dx.doi.org/10.1023/A:1009642405419
https://doi.org/10.1023/A:1009642405419
https://doi.org/10.1023/A:1009642405419
https://www.altera.com/products/fpga/stratix-series/stratix-v/features.html
https://www.altera.com/products/fpga/stratix-series/stratix-v/features.html
http://dx.doi.org/10.1109/PDP.2012.23

BIBLIOGRAPHY

[48] Intel. Intel Core i7 Processor Series Datasheet, Vol. 1. url: https://www.
intel.com/content/www/us/en/processors/core/core-i7-900-ee-
and - desktop - processor - series - datasheet - vol - 1 . html (visited on
06/29/2018).

[49] OR-Library. http : / / people . brunel . ac . uk / ~mastjjb / jeb / orlib /
mknapinfo.html.

88

https://www.intel.com/content/www/us/en/processors/core/core-i7-900-ee-and-desktop-processor-series-datasheet-vol-1.html
https://www.intel.com/content/www/us/en/processors/core/core-i7-900-ee-and-desktop-processor-series-datasheet-vol-1.html
https://www.intel.com/content/www/us/en/processors/core/core-i7-900-ee-and-desktop-processor-series-datasheet-vol-1.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html

	List of Figures
	List of Tables
	Introduction
	Background
	Optimization metaheuristics
	Simulated Annealing
	Genetic Algorithms
	Particle Swarm Optimization

	Quantum Annealing
	NP-hard Optimization Problems
	The Ising spin glass model
	The Multidimensional Knapsack Problem

	Materials and methods
	Software implementations
	Quantum Annealing of the Ising spin glass model
	Quantum Annealing of the Multidimensional Knapsack Problem
	Other implementations

	FPGA architecture
	MKP Processor
	Controller
	RQA Engine

	Results and discussion
	Software testing results
	Ising spin glass model
	Multidimensional Knapsack Problem

	FPGA synthesis results
	Logic synthesis results
	Result analysis

	Conclusion
	MKP Benchmark Results
	SAC-94 benchmark
	Chu-Beasley benchmark

	Bibliography

		Politecnico di Torino
	2018-07-16T16:31:04+0000
	Politecnico di Torino
	Andrea Acquaviva
	S

