
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Elettronica

Tesi di Laurea Magistrale

HSG Algorithm for Pedestrian
Detection

Relatori:
Prof. Guido Masera
Prof. Maurizio Martina

Candidato:
Giuseppe Davidde

Luglio 2018

Acknowledgments

I

Table of contents

Acknowledgments I

1 Introduction 1
1.1 Road traffic safety and security . 1
1.2 Smart Driving . 4
1.3 Pedestrian detection overview . 5

2 Current promising Pedestrian Detection systems 8
2.1 Pedestrian Protection System high-level view 8
2.2 Pedestrian detection algorithms . 10

2.2.1 Basic ideas . 10
2.3 Feature detectors based on sliding window approach 17

3 Architecture for HSG pedestrian detector 35
3.1 General Overview . 35
3.2 Stream Interface architecture . 37
3.3 Gradients computation architecture 41
3.4 Magnitude and Threshold computation architecture 44
3.5 QFLAG architecture . 47
3.6 Tangent computation architecture . 48
3.7 Histogram 8× 8 block architecture 51

4 Testbench and Simulations 52
4.1 Testbench environment . 52
4.2 Simulation environment . 61

5 RTL Synthesis and Test 63

6 Conclusions and future works 66

Bibliography 68

II

List of tables

1.1 Distribution of road injuries . 4
3.1 Key of DFG of HSG detector . 36
3.2 Approximate Values of tanΘ . 49
3.3 Tangent Entity hardware cost . 50
5.1 HSG @maximum frequency . 65
5.2 HSG @1MHz . 65

III

List of figures

1.1 Death causes . 2
2.1 Description of PPS . 8
2.2 Statistical distribution of pedestrians 9
2.3 Example of Image Pyramid . 12
2.4 Binary classifier . 13
2.5 Example of ROC curves . 14
2.6 Example of Miss rate curve . 15
2.7 Datasets comparison . 16
2.8 The Haar wavelet . 18
2.9 Experiment with the Haar Filters . 19
2.10 Haar wavelet set . 21
2.11 Rectangle features . 22
2.12 Integral Image concept . 23
2.13 HOG Preprocessing . 24
2.14 Magnitude and Gradients images . 25
2.15 Filling procedure of Histogram of Gradients 27
2.16 Particular case of HOG filling . 27
2.17 Example of HOG . 28
2.18 `2 Normalization Step HOG . 29
2.19 Example of HOG descriptor output 30
2.20 HSG DET and ROC curves . 31
2.21 HSG and EOH in nonoverlapped cells 32
3.1 DFG of HSG detector . 35
3.2 Stream Interface . 37
3.3 Timing Stream Interface . 38
3.4 Different Stream Interface implementations 38
3.5 FIFO Memory Block diagram . 39
3.6 FIFO Memory Working . 40
3.7 Filling procedure 2-D Matrix . 41
3.8 Gradients computation . 42
3.9 Timing Gradients block . 43
3.10 Absolute value architecture . 44
3.11 Increase of precision of the Gradients absolute value 45
3.12 Threshold architecture . 46
3.13 QFLAG architecture . 47
3.14 Angle to Bin conversion . 48

IV

3.15 Tangent approximate architecture . 49
3.16 Parallel computation of tangent values 50
3.17 Flow Diagram Histogram Block . 51
4.1 High Level view of Testbench environment 52
4.2 Matlab code to generate .hex file . 53
4.3 Image Memory Read and Store capability 54
4.4 Reference image and sending procedure 54
4.5 Reading procedure of Gx, Gy values 55
4.6 Matlab script for Gx,Gy . 56
4.7 Gradient process operations flow . 57
4.8 HSG final result . 58
4.9 Matlab script for HSG final result . 59
4.10 HSG and HOG comparison . 60
4.11 Timing diagram of the overall architecture 62
5.1 Netlist generation . 64
5.2 Monitoring routine for power estimation 64
6.1 HSG and HOG comparison . 67

V

Chapter 1

Introduction

1.1 Road traffic safety and security

A big amount of injuries, in many parts of the World, is due to the not proper

car usage. In order to estimate and try to devise ideas that are able to reduce the

number of people died because of car crashes, a division of ”World Health Organi-

zation”[1] , called ”Road Safety”[1] , has been founded.

Based on the data written in the ”Global status report on road safety”[1] it can be

noticed that, roughly, 1.2 million of World’s inhabitants lose their lives each year

due to road traffic injuries.

This large number has a huge impact in different aspects of daily life, such as, health

and society progress. The reduction of these incidents has also an economic goal,

because nowadays, it is possible to estimate that the road traffic crashes have a cost,

approximately, equal to 3% of GPD (Gross Domestic Product).

The leading cause of death for young people, having an age between 15 and 29 years,

is this kind of accidents (fig.1.1) and it is easy to understand that it is a dramatic

result. An accurate analysis of the report shows that low and middle-income coun-

tries are the places where the highest percentage of death is recorded (fig.1.1).

Looking at the growth rate of population it can be observed that the increment

is equal to 4% between 2010 and 2013, meanwhile, the number of registered cars

increases of 16% [1].

This trend needs to be stopped for many reasons. According to the ”WHO” pro-

jection, road traffic injuries are now estimated as the ninth leading cause of death

and they will become the seventh leading cause of death by 2030.

Other bad aspects of the uncontrolled growth of the number of cars are represented

to the increase of traffic congestion and then the rising vehicle tailpipe emissions,

that lead to an increase of respiratory diseases.

1

1 – Introduction

Figure 1.1: (1)Causes of death for people aged 15-29 years (2)Places with highest
percentage of fatal injuries [1].

2

1.1 – Road traffic safety and security

In the end, another not negligible problem is the reduction of physical activities such

as walking and cycling, with well known healthy consequences.

In order to overcome these problems, in 2015 ”WHO” has published the so-called

”2030 Agenda for Sustainable Development” [1], where the main goal is represented

to obtain a 50% decrease of global death rate due, in particular, to car traffic.

Analysing the problem, this target can be reached through action on at least two

sides:

a) Improvements about road safety legislation;

b) Actions to make road infrastructure more safer.

Having strict laws people become more responsible about, at least, five key risk

factors:

• Driving speed;

• Drink-driving;

• Use of helmets;

• Use of seat-belts;

• Child restraints

This way of thinking is correct, because, exist a great inequality, about road safety,

between countries with good legislation and ones with poor rules.

About the second side, it is based on two main aspects :

• A safer cohabitation between cars and other, most vulnerable, road users (as

pedestrians, cyclists) is the result of in-depth and aware analysis about urban

and road design;

• A production of smarter cars able to interact with the external environment

in order to make them always safer.

Regarding to the percentage of car traffic fatalities that involve weak road users

(pedestrians, motorcyclists and cyclists), it is, almost, equal to 50%. In this per-

centage, about the 22% is identified by the pedestrian (Table 1.1). Comparing this

3

1 – Introduction

data with different World regions, it can be seen that Africa has the highest value,

this is due to the fact that people mostly use walking for moving (1.1). Based on

these values, it is clear how it is important to develop car systems able to prevent

injuries. With the purpose of summarizing the distribution of road victims in the

World divided for road users categories, the Table (1.1) has been realized.

Table 1.1: Distribution of road injuries among road users categories (in
percentage)

(data in percentage %) Cy Ped Motorcy Car Pass Others
Eastern Mediterranean 3 27 11 45 14

Europe 4 26 9 51 10
South-East Asia 3 13 34 16 34

Africa 4 39 7 40 11
Western Pacific 7 23 34 22 14

America 3 22 20 35 21
World 4 22 23 31 21

1.2 Smart Driving

Until recently, improvements in automobile safety have been focused on the reduc-

tion of damages during accidents. Based on this way of thinking, technologies like

airbags, seat belts pretensioners and crash-smoothing features have been realized.

Nowadays, in contrast with the previous trend, a big amount of work is done with

the aim of trying to directly avoid injuries. The meaning of this work is to imple-

ment clever on-board systems with the capability of control the environment and

send a proper alert message to the driver when a dangerous situations arise. The

research field that attract many IT companies and car factories, is focused on the

realization of efficient driverless cars. Unfortunately, nowadays, the main drawback,

that reduce the effort, financial speaking, in this direction, it is the deficiency of

laws that allow to commercialize the autonomous cars. Nevertheless, in order to

overcome these issues, European Union has defined a roadmap that has the goal

of defining basic rules about automated cars development [2]. The guidelines have

a validity up to 2030 , where it can be observed that the excepted technological

4

1.3 – Pedestrian detection overview

evolution is divided in 5 steps:

1. Driver assistance : autonomous features are activated only when an unavoidable

incident is detected (i.e. Pre Collision System (PCS));

2. Partial automation : automated driving or parking can be turned on by the

human driver;

3. Conditional automation : the car is able to detect automatically friendly condi-

tions and then active the autonomous capabilities;

4. High automation : the vehicle is thinking to drive itself, the human takes the

control only in emergency cases;

5. Full automation : in this futuristic environment no human interactions are needed

during the driving.

The projections indicate that, with a massive autonomous cars usage, it is pos-

sible to fall down steeply the amount of traffic collisions. So all of this translates

into save hundreds of billions of dollars in terms of car damages on one side and on

the other side, the health-costs decrease suddenly [3]. The biggest difficulty about

the on-board systems development is due to the fact that chips have to capabil-

ities to ”discover” and ”understand” the environment [4]. These kind of systems

are dubbed Advanced Driver Assistance Systems (ADAS). Regarding to the basic

features, these electronic architectures need to have, at least, an alarm that starts in

dangerous situations and execute corrective operations. In the commercial World,

some examples are given to the adaptive cruise control, where the distinctiveness is

to maintain a safe gap between other cars, and to the departure warning that alerts

the driver when the car is out of the lane.

1.3 Pedestrian detection overview

In ADAS World one of the most interesting type is called Pedestrian Protection

System (PPS) . Its distinguishing feature is to detect both stationary and moving

people inside a specific region of interest (ROI), such as the vehicle perimeter and act

5

1 – Introduction

specific actions if the collision is unavoidable. Based on [5], an interesting statistic

indicates that 70% of pedestrians, in an accident, are in front of the car ; in addition,

90% of these are moving. With the purpose of reducing significantly the number of

humans killed by cars, every PPS has to, as mandatory elements, frontal sensors.

Looking at other application fields, Pedestrian Detection is very suitable for many

intelligent video surveillance systems. The kinds of operations that involve the

detection of pedestrians are really hard to perform for, at least, three aspects :

1. High changing of scenarios : Humans, in this case intended as pedestrians,

tend to have different poses and clothes, but, this is not the only problem,

because, due to the perspective, it is possible to view the same thing with

different sizes.

2. Adverse surroundings conditions : In order to detect pedestrians it is manda-

tory to work in outdoor urban area contexts. These working areas have many

elements that can reduce the efficiency and reliability of the systems, such as:

• crowded background (it is typical of urban areas);

• big variations of ambient light conditions;

• partial overlap of the human by other objects.

3. Real-time requirement : These systems have to consider as life-saving devices

and then the reaction and its accuracy (in terms of ratio between false alarms

and misdetections) are crucial aspects.

From research point of view, in the last few decades many algorithms have been

developed and proposed but, the exponential computational complexity has meant

that only in the few past years it was possible to start with the real implementations.

In order to do this there are two potential ways to follow :

• Software Implementation : this kind of realization has many positive aspects,

among them, sticks out its flexibility. It is a mandatory condition, especially,

when the requested system needs to be tuned pursuant to experimental re-

sults, before to be commercialized. As stated above, the Pedestrian Detection

algorithms need to respect, strictly, real-time standards (it means to work, at

6

1.3 – Pedestrian detection overview

least, with 30 fps). For many years, this was the main problem, because, in

order to maintain the requirements on a general-purpose CPU, the only solu-

tion was a significant reduction of accuracy and, of course, it was not the right

solution. With the aim of overcoming these issues the parallel approach has

been exploited. The great improvement was given by the Graphical Processor

Unit (GPU) usage, because, in this way, the designers could use ”Divide et

Impera” method by splitting the algorithm in many threads executed in par-

allel. This way of thinking was really attractive, because, the final result was

a noticeable increase of performance associated to no leaks in terms of flexi-

bility. All of these good things, otherwise, have a cost. The main drawback

stems from the fact that this complex and expensive architectures (PPS) can

be placed only on luxury cars.

• Hardware Implementation : this development way has the aim of producing

systems suitable also for cheaper cars. By deeply studying the maximum

internal parallelism and the needed basic elements an ad hoc integrated circuit

can be realized. It is possible to summarize the positive aspects of this line of

thought as follows:

– Higher performance than SW implementation;

– Lower per-unit realization cost if an enough number of samples is pro-

duced.

Looking at the drawback, it is pretty obvious the waste of flexibility. Based

on the previous concern, a crucial thing is to propose proper integrated archi-

tectures for the most interesting pedestrian detection algorithms, such that,

the customized hardware can be regarded as a long-term device and then car

industries, for instance, are more likely to invest their moneys.

7

Chapter 2

Current promising Pedestrian

Detection systems

2.1 Pedestrian Protection System high-level view

In figure (2.1) a generic splitting of PPS is proposed [5]. In order to understand how

Figure 2.1: Block diagram of a generic on-board PPS [5].

these systems work, it is useful to describe each block:

• Preprocessing : the goal of this part is to interact with sensors then acquire and

send the image in reliable and efficient way. Thanks to the current technology,

the duties, such as exposure time, camera calibration and illumination, are

accomplished by a single chip in very easy way.

• Foreground Segmentation : the aim of this block is to determine and extract

the Regions of Interest of the image to be analysed. This task is based on

the fact that weak road users are detected in a very limited band localized in

horizontal position respect to the center of the acquired picture (2.2).

• Object Classification : the block works receiving, as input, a group of ROI

with, the possibility of pedestrian presence inside of each of them. The idea

8

2.1 – Pedestrian Protection System high-level view

Figure 2.2: Typical location of pedestrian in an image. Based on statistical
distribution obtained with the Caltech dataset [6].

is to split these ROI into two categories : pedestrian and no pedestrian cat-

egories. This kind of operation is very crucial to do. For this reason many

scientists offer their brain effort to try solving this problem in efficient way.

Regarding to 2D object classification, the usual division is in silhouette match-

ing and appearance technique. The most reliable and faster algorithms base

their operations on the second, previous mentioned, technique. Looking at

appearance method in detail, it can be noticed that it is based on so-called

descriptors, also known as a space of image features. Moving to the Classifier,

the operation, called in the jargon, ”training” is carried out by using differ-

ent ROI, where their distinctiveness is to include either positive and negative

cases. Nowadays, the most used classifiers are the following ones:

– Support Vector Machines (SVM);

– AdaBoost ;

– Neural networks.

In the end, with the purpose of evaluating the performance of these systems,

9

2 – Current promising Pedestrian Detection systems

proper benchmarks have been developed. In this way it is possible to test

the capability to distinguish between false negatives and positive ones. In

particular, some used Datasets are : Caltech and INRIA.

• Verification/Refinement : the module works in way to take out false positives,

by enhancing ROI shape. In detail, this section executes also a segmentation

of the pedestrian in order to estimate the distance.

• Tracking : this step, present only on the most advanced systems, is able to

monitor the walking of the detected pedestrian. The operation is very useful,

on one side, to reduce the amount of false detections, by the virtue of the

fact that consecutive frames have been processed, and on the other side it is

possible to realize a proper feedback network. Mentioned network has the aim

of predicting the following detections.

• Application : the final step consists in to take a decision founded on the signals

produced by the previous blocks.

As mentioned above, the most troubled section of PPSs is the Classification one.

The proposed mechanisms that approach to this problem are called ”Pedestrian

detection algorithms”. In order to elucidate how they work, a briefly description in

the following is written.

2.2 Pedestrian detection algorithms

2.2.1 Basic ideas

All current pedestrian detection algorithms share the following elements:

Sliding window

The sliding window approach is based on to process the image by using a window

of defined size overlayed to the original picture. At each cycle, the window result is

classified and then the window is moved on the image of an amount of pixels, called

stride, and a new result is obtained. It is possible to define the number of windows

10

2.2 – Pedestrian detection algorithms

(W) computed for each frame as follows:

W =
w − wextracted

s
∗ h− hextracted

s
(2.1)

where:

• w = width of the input frame

• h = height of the input frame

• wextracted = width of the extracted window

• hextracted = height of the extracted window

• s = stride of the process

Pyramidal mechanism

A challenging duty is to choose the adequate image dimension. The difficulty consists

of the fact that in a picture, an human road user can exhibit different sizes. Based

on the data inside of the most common Dataset, in particular for Caltech dataset,

it can be noticed that 69% of samples have a height ranged from 30 to 60 pixels

[6]. The easiest solution requires a dynamic-size window, but, this choice has as

consequence a sudden increase of detector complexity. With the aim of overcoming

this problem, the solution is to use the so-called image pyramid approach. For this

purpose, the original image is resized many times to obtain a pyramid where the

base is represented by the input picture and the smallest version of this is placed

on the top. The sliding window process is carried out for each level of the pyramid

using a single fixed-size window. Every layer has a distance to the another one equal

to one octave.

Features extraction

One of the most important problem for the classifier is identified to the fact that the

traditional image encryption is not suitable enough. The previous concern justifies

why some elaborations have the aim of highlighting key features in the image to help

the classifier to identify the presence of a possible weak road user. In literature, it

11

2 – Current promising Pedestrian Detection systems

Figure 2.3: Typical Image Pyramid [7].

is possible to find a very big amount of features extraction techniques that have as

output a set of constant length vectors which are sent to the classifier.

Classification

The classification algorithms are derived by the Machine Learning theory. Thinking

about the system, it receives as input many vectors associated to, in general, N-

dimensional spaces and the output is simply a label that represents the category to

whom the input vectors belong. A particular kind of classifier is the binary classifier

which is defined as defined when only two categories are allowed. Their job can be

summarized in two different steps:

• Training : in this stage the target is to help the classifier to build, itself, a clas-

sification rule. To do that, the classifier is ”nourished” through proper labeled

examples having their category. Considering the case of a binary classifier ,

the classification rule commonly is the equation that describes an hyperplane

able to split the input space in two semi-spaces. It is possible to distinguish

two kinds of representation, illustrated in the following figure (2.4), where on

the left a non-linear function and on the right a linear function are depicted:

12

2.2 – Pedestrian detection algorithms

Figure 2.4: [1]Non-linear binary classifier [2] Linear binary classifier [8].

As you would except, a classifier with a non-linear function requires a lot of

effort to implement it.

• Testing : in this phase the aim is to validate the performance of the classifi-

cation. With this purpose a robust dataset with realistic pedestrian walking

situations is a mandatory thing. In particular, the ratio between false positives

(FP) and false negatives (FN) rates gives the best estimation as concerns the

performance of a pedestrian detector. This ratio can be measured, adopting at

least two mathematical tools:

1. ROC curves: where the alias means Receiver Operating Characteristic.

This kind of curves shows the diagnostic ability of a binary classifier at

the variation of its discrimination threshold. The graphical plot is ob-

tained by using the true positive rate (TPR) against the false positive rate

(FPR) when the threshold changes. In particular, the true positive rate

is also known as sensitivity which measures the proportion of positives

that are correctly identified and the false positive rate can be treated as

(1-specificity) [9] , where the specificity indicates the proportion of nega-

tive that are correctly identified. Based on these previous concerns it is

obvious that bigger is the area under the curve, better is the classifier.

13

2 – Current promising Pedestrian Detection systems

Figure 2.5: [1,2] Two kinds of representation of ROC curves [3] TPR and
FPR explanation [10] [9].

2. Miss rate curves or Detection Error Tradeoff (DET) curves : this is an-

other method to evaluate the false negatives. The plot is obtained by

14

2.2 – Pedestrian detection algorithms

using false negatives and false positives per image (FPPI). However, this

type of representation is more oriented to evaluate the performance of

the whole system and not only the classifier one. An example is shown

in figure 2.6:

Figure 2.6: Miss-rate curves that compare the performance of different
PPSs [11] .

In order to train and evaluate in efficient way the performance of pedestrian

detection algorithms, many datasets have been realized. The most common

are:

1. Caltech;

2. ETH;

3. Daimler;

4. TUD-Brussels;

5. INRIA.

15

2 – Current promising Pedestrian Detection systems

Figure 2.7: Examples based on different datasets [6] .

Regarding to the previous mentioned datasets, it can be said that the INRIA

is the eldest one, instead, nowadays, the widely used is the Caltech one. This

changing is born to the fact that the INRIA contains samples too easy to train

in proper way the current complex systems.

16

2.3 – Feature detectors based on sliding window approach

2.3 Feature detectors based on sliding window ap-

proach

Detectors based on Haar features

The main motivation that conducted, in 2000, Constantine Papageorgiou and Tomaso

Poggio to develop, at M.I.T., this detector was the steep growth of image and video

stemming from the Internet network [12]. The developed system is very famous due

to the fact that it was the first realized with sliding window technique. In detail,

the Feature extraction section is based on Haar wavelets expansion of the image and

then the Classification task is realized by using of a Support Vector Machine (SVM).

Haar wavelet overview

In general, the term Wavelets indicates a useful mathematical construction for mul-

tiresolution analysis. The basic idea is to create a set of approximated subspaces,

in a way that the following expression is satisfied:

V 0 ⊂ V 1 ⊂ .. ⊂ V j ⊂ V j+1 (2.2)

The meaning of (2.2) is to obtain a vector space V j+1 with the property of describe

more details respect to space V j. Looking at the Haar wavelet, it represents a

sequence of rescaled ”square-shaped” functions that form a wavelet family or basis

[13]. Regarding to the history of the Haar sequence, it was proposed by Haar [14] in

1909, with the purpose of describing an orthonormal system for the square-integrable

functions on the interval [0,1]. The main issue of this kind of wavelet derives to the

fact that it is not continuous and then not differentiable. However, this drawback

can be treated as an advantage when the application field is based on the analysis of

signal with drastic transitions. Mathematically speaking, it is possible to describe

the Haar wavelet’s mother wavelet function ψ(t) as follows:

ψ(t) =


1 0 ≤ t < 1

2
,

−1 1
2
≤ t < 1,

0 otherwise.

(2.3)

17

2 – Current promising Pedestrian Detection systems

Figure 2.8: The Haar wavelet example [13] .

Practical relationship between scaling and wavelet functions

By using the FFT analysis the main dilemma is the following one:

”High resolution in the frequency domain means a poor resolution in time

domain. High resolution in time domain, means a poor resolution in the

frequency domain.”

Wavelets have the aim of solving this problem, by defining the, above written,

Mother wavelet function (2.3). At this point it is useful to explain how ”Discrete

Wavelet Transform” (DWT) works. To do this, the basic elements to consider are

the following [15] :

• Discrete-time signal, called f[.] of lenght N ;

• An analysis filter bank, composed by the filters h[.] and g[.] of length M . The

purpose is to compute DWT (f[.]);

• A synthesis filter bank, obtained by two filters h̄[.] and ḡ[.], respectively. The

goal is to compute IDWT (f[.]);

• The ”mother wavelet” (wavelet function), that can be expressed both as (2.3)

that as a recursive formulation like the following one:

ψ(t) =
∑
k

gk ∗ φ(2t− k) (2.4)

18

2.3 – Feature detectors based on sliding window approach

• The ”father wavelet” (scaling function), that has two kind of expressions.

1)

φ(t) =

1 0 ≤ t < 1,

0 otherwise.
(2.5)

2)

φ(t) =
∑
k

hk ∗ φ(2t− k) (2.6)

In order to describe completely the system, it is necessary to explain the rela-

tionship between the four, previous mentioned, filters:

a) h̄k = hM−k−1

b) gk = (−1)khM−k−1

c) ḡk = (−1)k+1hk

These equations mean that if one of the parameter changes, all the others are directly

influenced. The results, after a proper decomposition of f[.] in sub-signals having

different frequency contents, are shown in figure (2.9):

Figure 2.9: (A): reference signal; (B) its third-level DWT; (C): modi-
fied third-level DWT; (D): reconstructed signal; Below (D): father and
mother wavelets [15] .

19

2 – Current promising Pedestrian Detection systems

Looking at 2D DWT applied to images, it can be observed that both scaling and

wavelet filters are applied to rows and columns. The output result depends on the

order which these filters are used :

• Wavelet filter applied both on rows/columns : the result is an highlight of

diagonal details of the reference image;

• Wavelet filter applied on rows / Scaling filter applied on columns : the final

outcome emphasises the vertical details of the initial image;

• Scaling filter applied on rows / Wavelet filter applied on columns : the out-

put points out the horizontal details of the input image.

Papageorgiou and Poggio method

The solution proposed in [12] has the aim of encoding the difference, in terms of

average intensity, amidst local regions along various orientations. To do this, a

quadruple density dictionary of wavelets is computed. In particular, this technique

allows to avoid downsampling in some sections of the computation. Looking at

the kind of wavelet response, it is possible to detect an intensity change, boundary

presence and in particular at which location in the image it appears. Another

noticeable thing is represented how the output values are selected and sent to the

SVM. In detail, the more relevant wavelet coefficients are 1326 [12]. In figure (2.10)

are depicted the elements on which this feature extraction technique is founded.

20

2.3 – Feature detectors based on sliding window approach

Figure 2.10: (A): ”father” and ”mother” Haar wavelets; (B) three 2-D non-
standard Haar wavelets; (C): shift in the standard DWT and proposed
quadruple dense shift to obtain a dictionary of wavelets [12] .

This proposed detector highlights a very high accuracy performance but at the

cost to have an unsustainable latency; in fact, the requested time to elaborate just

a single frame was estimated in roughly 20 minutes on a CPU of that age [12].

Fast computation of Haar-like features

In 2004, thanks to Paul Viola and Michael J.Jones a faster Haar features based

detector was developed [16]. This system classifies images according to the value of

simple features. The types of features are three and in detail :

• Two-rectangle feature : it is computed as the difference among the sum of the

pixels inside two rectangular regions ;

• Three-rectangle feature : it is derived as the sum within two outside rectangles

subtracted from the summ in a center rectangle;

• Four-rectangle feature : it is obtained as the difference between diagonal pairs

of rectangles.

21

2 – Current promising Pedestrian Detection systems

Figure 2.11: The sum of the pixels which extend inside the white rectangles
are subtracted from the sum of pixels inside the grey rectangles. (A),(B):
2-Rectangle features; (C): 3-Rectangle feature; (D): Four-Rectangle fea-
ture [16].

The main innovation provided by this detector was the Integral Image concept

[16]. By adopting this kind of intermediate representation for the input image, it

is possible to compute in very fast way the, previous mentioned, Rectangle features.

Mathematically speaking, the Integral Image, at location (x,y), is defined as

follows [16] :

ii(x,y) =
∑

x′≤x,y′≤y

i(x′,y′) (2.7)

ii(x,y) integral image

i(x,y) original image

s(x,y) = s(x,y − 1) + i(x,y) (2.8)

ii(x,y) = ii(x− 1,y) + s(x,y) (2.9)

22

2.3 – Feature detectors based on sliding window approach

s(x,y) cumulative row sum s(x,− 1) = 0

ii(x,y) integral image ii(−1,y) = 0

This method allows to compute the Integral Image in only one pass over the

original image.

Figure 2.12: [1] The value of the integral image at point (x,y) is the sum
of all the pixels above and to the left; [2] The sum of the pixels inside
rectangle D can be obtained with only 4 memory accesses. The value
at point (1) is the sum of the pixels in A, the value at location (2) is
A+B, the value at point (3) is A+C and then the point (4) has the value
A+ B + C +D. In detail, the sum within D is computed as 4 + 1− (2 + 3)
[16] .

In the end, another great advantage, in terms of performance, derives to the

AdaBoost classifier usage [17].

Histogram of Oriented Gradients Detector

This kind of detector, introduced in 2005, thanks to N.Dalal and B.Triggs [18],

is based on sliding window approach. One of the most important blocks is called

Feature Descriptor, that represents an alternative representation of the reference

image, with the aim of simplifying the extraction of useful informations unwrapping

the redundant ones. In detail, it takes as input an image of size W×H×N, with N=

number of channels , and it is able to produce as output a so-called feature vector.

This vector is composed by helpful values for an image classification algorithm such

23

2 – Current promising Pedestrian Detection systems

as Support Vector Machine (SVM). Looking at the HOG feature descriptor, the used

features are the distribution (also known as histograms) of directions of gradients

(oriented gradients). In detail, the Gradients

(
Gx =

∂f(x,y)

∂x
and Gy =

∂f(x,y)

∂y

)
of an image are the optimal candidates by virtue of the fact that their magnitude

is high enough around edges and corners (also defined as regions of abrupt intensity

changes). These values shall ensure to have very detailed informations about the

shape of the ”target” object. At this point, it is useful to describe all required steps

to calculate the final HOG feature vector [18] [19] :

• Preprocessing : starting from an image of any size, the first thing to do is

to crop it in order to obtain a fixed aspect ratio (typically 1 : 2) patch of

the input image. The final operation consists to have a resized version of this

patch, according to [18], the final dimensions are 64× 128. In this step, also,

sometimes it is common to apply different kinds of ”kernel filter” [20], with the

purpose of obtaining a better version of the image to process. The procedure

is illustrated in figure (2.13):

Figure 2.13: [1] Original Image of any size; [2] Cropped version; [3] Resized
version [19].

• Gradients calculation : this is the first analytical step, where the purpose is to

compute both the horizontal (Gx) and vertical (Gy) gradients. This is easily

24

2.3 – Feature detectors based on sliding window approach

obtained by filtering the image with proper kernels, like these (2.10) :
[
−1 0 1

]
and


−1

0

1

 (2.10)

where the left one is used for Gx computation, instead, the right one is used

for Gy.

• Magnitude and Direction of gradient : these values can be obtained by the use

of the following relations: |G| =
√
G2

x +G2
y

θ = atan
(

Gy

Gx

) (2.11)

After these computations, a graphical result is given by the figure (2.14):

Figure 2.14: [1] Absolute value of Gx; [2] Absolute value of Gy; [3] Magni-
tude of Gradient [19].

From (2.14) it can be noticed that :

a) Gradient image : it is able to unwrap a lot of non-essential informations

(like constant background), highlighting, instead, the outlines. Looking

25

2 – Current promising Pedestrian Detection systems

at the gradient image it is possible to say, in very easy way, if a person

is inside of the image.

b) Magnitude of gradient : the purpose is to emphasise every noticeable

change in terms of intensity.

• Division in cells and HOG computation : at this point, according to [18], a

division in ”cells” of the input image is done. Considering an image of size

64 × 128, the process produces 128 blocks, each of them having 8 × 8 pixels.

Each image patch, after the magnitude and direction computation, exhibits

an output composed by 128 numbers (every pixel in the cell is expressed with

two numbers. 8× 8× 2). The following procedure has the aim of representing

in compact, alternative and robust, in terms of noise, way these 128 num-

bers by using a 9-bin histogram. By using the so-called ”unsigned” gradients

representation, the angles are between 0 and π and then the nine elements

of the array are related to angles 0◦,20◦,40◦,60◦,..,160◦ (”unsigned gradients

representation”). The steps to fill this vector are explained in the following

figure (2.15):

26

2.3 – Feature detectors based on sliding window approach

Figure 2.15: In this example the purpose is to emphasise how the pixel
vote is splitted in half way between 0◦ and 20◦ due to the fact that 10◦ is
in the middle of the range [19].

The most challenging situation appears when the gradient direction is greater

than 160◦. In this peculiar case, the algorithm defines that the pixel value

contributes in proportional way for both 0◦ bin and 160◦ bin. The figure

(2.16) has the aim of clarifying this aspect:

Figure 2.16: The pixel angle is greater than 160◦ and the relative pixel
value is splitted in two angle-bin of the HOG [19].

27

2 – Current promising Pedestrian Detection systems

At this point the final Histogram of Oriented Gradients related to all 8 × 8

cells present in the image, is obtained by adding whole pixel contributions. An

example is given by the figure (2.17):

Figure 2.17: Alternative way to ”visualize” HOG [19].

• Block Normalization : looking at the results arising from the Gradients com-

putation it is really clear that these values are sensitive to the light changing.

With the purpose of overcoming this issue, the Block Normalization opera-

tion is needed. Considering, for instance, an RGB color vector of dimensions[
128 64 32

]
, by a simple arithmetical operation it is possible to determine

the length of this vector as |v| =
√

1282 + 642 + 322 = 146.64. A common

kind of normalization is the so-called `2-norm, where the ”normalized vector”

is obtained dividing each element of the input vector by |v|. An interesting

result is that the final vector
[
0.87 0.43 0.22

]
is the same, independently

from the scale (if the aspect ratio between the dimensions is fixed). Accord-

ing to [18], the best results are reached by adopting 16× 16 block, where the

internal 4 histograms can be concatenated in order to build a 36 × 1 vector.

In the end, other operation, that is able to suppress the ”aliasing presence” is

to move the window in ”overlapped way” (i.e. 8 pixels per time) :

28

2.3 – Feature detectors based on sliding window approach

Figure 2.18: [1] First 16×16 block; [2] Second 16×16 block moved with 50%
overlap [19] .

• HOG feature vector computation : this step requires to concatenate the 36×1

vectors into one massive vector. In order to compute the dimension of this

final vector, the considerations to do are (i.e. 64× 128 input image divided in

128 blocks of 8× 8 pixels):

a) Number of positions of the 16× 16 blocks : for the previous mentioned

example, the number of position are, respectively, 7 for the horizontal

axis and 15 for the vertical one. In the end, the total is obtained as the

product 7× 15 = 105 positions;

b) Each 36× 1 vector is represented by a 16× 16 block : it means to have

a one giant vector of 36× 105 = 3780 dimensional vector.

An optional task is to try plotting the 9× 1 normalized histograms based on

8 × 8 cells, in such a way as to have an idea of which data are sent to the

classifier (SVM) (figure (2.19)):

29

2 – Current promising Pedestrian Detection systems

Figure 2.19: It can be noticed that as the dominant direction of the his-
togram is able to follow the shape of the person, particularly around the
torso and legs [19] .

30

2.3 – Feature detectors based on sliding window approach

Histogram of Significant Gradients Detector

Starting from the fact that HOG [18] is promoted as superior to all other single fea-

tures proposed for pedestrian detection, the purpose of many scientists was to merge

HOG with more elaborated features in ”cascade schemes” in order to obtain higher

detection rates. These ways of thinking, however, lead to very complex and power

expensive hardware and software implementations. The main drawback born to the

fact that HOG, in its implementation, requires inherently difficult floating point op-

erations and repeated memory accesses. The work proposed in [21] addresses these

issues by adopting a fast and proficient object detection environment requiring a

low-complexity feature based on Histogram of Gradients combined with a Lookup

table (LUT)-based kernel SVM classifier. In detail, the proposed detector, called

Histogram of significant gradients (HSG), albeit being substantially less computa-

tionally hungry than the HOG, exhibits better classification when INRIA and ETH

datasets are used, as shown in figure(2.20):

Figure 2.20: Comparison between HSG framework and the original HOG.
a) DET curves based on INRIA data set. b) ROC curves obtained with
ETH data set. [21] .

At this point, it is useful to summarize the differences which make the HSG

implementation better, in terms of performance, respect to the HOG one :

• Padding procedure of histogram : starting from an image of size 64× 128, di-

vided into blocks 8 × 8. The procedure to compute both gradient magnitude

31

2 – Current promising Pedestrian Detection systems

and orientation is equal to HOG one. The main difference is that instead

of populating histogram by the use of bilinear interpolated magnitudes, with

HSG, the average gradient magnitude in the block is used as param-

eter [21]. This value is helpful to define a threshold which allows only those

edges to make a binary vote to the orientation histogram. HSG compared to

EOH [22], however, shows in more efficient way the shape contours, due to the

fact that the only more significant edges are used. A graphical comparison is

depicted in figure (2.21):

Figure 2.21: Left : Grayscale reference image. Middle: EOH histograms
appears as uniformly distributed with no noticeable shapes, due to the
fact that EOH allows every gradient to vote [22]. Right : HSG histograms
are more related to the shape of objects in the edge image. This is the
result of the use of only dominant edges for voting procedure. [21] .

• Alternative way to implement SVM : in the work proposed by M.Bilal and et.

[21] another great advantage, in terms of performance, is due to the fact that

the SVM algorithm is implement by using a LUT-like architecture. Adopting

32

2.3 – Feature detectors based on sliding window approach

the formulation (2.12) for describe SVM classification function ”h” :

h(x) =
n∑

i=1

(
m∑
j=1

αjK(x(i),SVj(i))

)
+ b (2.12)

– x , input feature vector of n elements

– SVj , jth support vector

– i , access index for x and SVj

– αj , support vector learned coefficient

– b , learned bias

– K , kernel function [23]

Assuming that x(i) is a linear term and the elements in the bracket can be

computed preemptively, it is possible to simplify (2.12) as follows :

hlinear(x) =
n∑

i=1

(x(i) ∗ C(i)) + b (2.13)

– C(i) , precomputed coefficient vector

Looking at equation (2.13) it can be noticed that, for the linear case, SVM

classification is a simple dot product among input feature vector and a coef-

ficient vector added to the learned bias [21]. Remembering that the real-time

computation is a mandatory requirement, the speed of the overall system can

be increased if a LUT, with only integer values in a limited dynamic range of

x(i), is used. An helpful example is to assume that the kernel function ”K”

finds the minimum of the elements related both input feature vector

and the current support vector. According to [24], the best solution con-

sists to store inside a 2D LUT all the possible values depending on x(i) (2.12).

To this end, the final mathematical expression for the classification function

”h” is (2.15).

T (i,k) =
m∑
j=1

(αjmin(k,SVj(i))) (2.14)

33

2 – Current promising Pedestrian Detection systems

hHIK(x) =
n∑

i=1

(T (i,x(i))) + b (2.15)

Regards to (2.14), the noticeable things are represented to :

a) T contains the precomputed values for the full dynamic range of x(i);

b) T assumes only positive integer values of x(i) and then k has a range

that starts from 0 to the maximum value that x(i) can take;

c) T has floating point values stemming from the multiplication between αj

and the integer-values of min(k,SVj(i)).

The most relevant optimization depends on the fact that, thanks to the use

of LUT, the number of operations required per classification is only n floating

point additions (2.15) instead of n floating point multiplications plus n floating

point additions needed by linear SVM [25]. This leads to obtain a dramatical

speedup and also gaining better discrimination power than HIK SVM [21].

34

Chapter 3

Architecture for HSG pedestrian

detector

3.1 General Overview

The following hardware implementation of HSG detector is the result of the instruc-

tions of M.Bilal and et. in [21]. This work has the purpose of proposing many

dedicated architectural solutions for different sections of the algorithm. This way of

thinking leads to implement the structures on one side with a parallel approach and

on the other side looking at the power consumptions. A general description of how

the architecture has been thought is depicted in figure (3.1):

Stream Gx Gy

Entity

G

Entity

Interface

QFLAG

Entity

Entity

Entity

Tan Hist Block

8 × 8
(1)

(5)

(4)

(3)(2)

(7)

(8)

(9)

(6) (11)(10)

(14)(12)

(13)

(16)

(15)

(∗) (∗)(∗)

Figure 3.1: High Level View of HSG detector

Proposed implementation, shown in figure (3.1), is customized for elaborating

RGB images having a resolution of (128 × 64) pixel, according to [18]. However,

the parametric description allows to adapt in easy way the entire structure for

different, higher resolutions. Focused on the first operation it can been noticed

that a conversion from RGB to Gray scale colour space is done. The goal of this

operation is to unwrap the useless informations given by RGB image (such as :

background colours etc.) because, the detector needs to highlight the pedestrian’s

35

3 – Architecture for HSG pedestrian detector

Table 3.1: Key of (3.1)

Signal bits Signal bits Signal bits Signal bits

(1)
RGB data

64× 24

(6)
|G|,

|Gx| × 8,
|Gy| × 8,
GThreshold

(8× 8)× 4,
(8× 8)× 16,
(8× 8)× 16,

4

(10)
gxtan20,..,80

16
(14)

Valid Output
1

(2)
Gray scale data

64× 8
(7)

QFLAG1,..,4
16

(11)
gxtan′20,..,80

16
(15)

HSG8× 8′
36× 4

(3)
|Gx|,
|Gy|

64× 9
(8)

|Gx| × 8′
(8× 8)× 16

(12)
|G|′′,

|Gy| × 8′′,
G′′Threshold,
QFLAG′′1,..,4

(8× 8)× 4,
(8× 8)× 16,

4,
16

(16)
Valid Output’

1

(4),(5)
|Gx|′,
|Gy|′

64× 9

(9)
|G|′,

|Gy| × 8′,
G′Threshold,
QFLAG′1,..,4

(8× 8)× 4,
(8× 8)× 16,

4,
16

(13)
HSG8× 8

36× 4
(*)

Pipe Registers

shape. A detailed explanation can be read in section (3.2). In the wake of colour

space conversion, according to [21], the computation of the gradients is done (see

section (3.3)). This operation is useful to derive two important quantities, which:

a) Magnitude : expressed as |G|;

b) Sign of

(
Gy

Gx

)
: expressed as QFLAGi with i=1..4;

The section below, according to [26] (more details in section (3.6)), computes tangent

values for different angles with the aim of avoiding a wasteful mathematical operation

such as the arctangent one. Finally, the block called Histogram 8×8, executing many

operations (see section (3.7)), is able to compute a 1-D vector composed by 36× 4

bits related to the incoming 8× 8 pixels block. Another noticeable thing to observe

is the pipe registers presence and, in particular, their amount. This choice has

the purpose of trying stopping the combinational path and then incrementing the

overall system performance. In detail, at the end of each section, one pipe register

has been placed. This is not a casual positioning, because by adopting proper

software (section (5)), the results, in terms of timing, area and power consumption,

lead to conclude that solution is nearly to the optimum one. In the end, the two

final registers which inputs/outputs are, respectively, (13),(14),(15),(16) have

the goal of ensuring that the internal timing is unrelated to the external world.

36

3.2 – Stream Interface architecture

3.2 Stream Interface architecture

The architecture has been thought on one side to reduce the complexity of the data

treated by the downstream blocks and on the other side, by the FIFO usage, to

prevent the loss of input data. In detail, the RGB input data can be expressed as

a 3-D matrix of dimensions : 8× 8× 3. After the procedure, these data become a

2-D matrix of dimensions : 8 × 8. Speaking about the data parallelism, it means

to execute the following reduction : 192 numbers of 8 bits → 64 numbers of 8 bits.

With the goal of using the minimum amount of hardware resources, the exploited

algorithm to do the conversion from RGB colour space to the Gray one is :

Gray = 0 .3125 × R + 0 .5625 ×G + 0 .125 × B (3.1)

Looking at the eq.(3.3), it can be observed that it is possible to achieve the result

by using only simple additions of right shifts of power of two. In particular, eq.(3.3)

can be reworded as follows :

Gray = R >> 2 + R >> 4 + G >> 1 + G >> 4 + B >> 3 (3.2)

A more detailed description of the internal structure of this block is given by the

figure (3.2):

FIFO

4 Blocks
64 × RGB2Gray

Block

CLK

Rst

64 × RGB

En

(64 × 24)
(64 × 8)

64 × Gray

8 × 8 Gray

(64 × 8)

Full FIFO

Figure 3.2: High Level View of Stream Interface block

The behaviour of the interface depends both the correct sampling of the ”En”

signal and the presence of valid ”Gray” input data. According to the first constraint,

the generation of ”En” stems from a video source (such as camera). The timing

37

3 – Architecture for HSG pedestrian detector

diagram, depicted in figure (3.3), clarifies how this architecture works :

CLK

En

Din 1 2 3 RGB data

Gray 1* 2* 3* Gray data

FIFO out 1* 2* 3* FIFO out

Figure 3.3: Timing diagram of Stream Interface block

At this point, it is clear that the combinatorial delay requested by the RGB2Gray

Entity is a mandatory condition to satisfy, in order to obtain the correct working of

the block. Regarding to the figure (3.2), a thing that stands out is the presence of 64

RGB2Gray blocks that work in parallel. The eq.(3.2) can be mapped in hardware

in many approaches, but, the most efficient one, in terms of asymptotic behaviour,

is based on a tree-like structure. In this way, it is possible to obtain a total delay

T (n), depending on the data parallelism, with a logarithmic law : T (n) ∝ log2(n).

In figure (3.4) are represented two possible hardware implementations of RGB2Gray

block:

>>2

>>4

>>1

>>4

>>3

R

Gray

B

G

G

R

+

++

+

>>2

>>4

R

R

+ + +

>>1

G

>>4

G

+

>>3

B

Gray

Figure 3.4: Left : Implementation having a logarithmic behaviour ;
Right : Implementation with a linear behaviour.

Looking at the figure (3.4), a remarkable thing is that the left implementation

exhibits a critical path composed by one shifter block plus three adders, instead

38

3.2 – Stream Interface architecture

of a delay composed by one shifter block and four adders inherent to the right

solution. The two solutions are equivalent in terms of required hardware resources,

but, in order to have a faster conversion, the left representation is the preferred

one. To describe the ”logarithmic” structure, the VHDL code was chosen and its

implementation is the following one :

−−−−−−RGB2Gray Entity−−−−−−−−−−−−−−−−
RGB2Gray process : p roc e s s (R,G,B, Rst)

v a r i ab l e R int , G int , R G int : s t d l o g i c v e c t o r (7 downto 0) ;

begin

i f Rst = ’1 ’ then

Gray <= (othe r s => ’0 ’);

R int := (o the r s => ’0 ’);

G int := (o the r s => ’0 ’);

R G int := (othe r s => ’0 ’);

e l s e

−−Gray = 0.3125∗R + 0.5625∗G + 0.125∗B−−−−−
R int := s t d l o g i c v e c t o r (s h i f t r i g h t (unsigned (R) ,2)+ s h i f t r i g h t (unsigned (R) , 4)) ;

G int := s t d l o g i c v e c t o r (s h i f t r i g h t (unsigned (G) ,1)+ s h i f t r i g h t (unsigned (G) , 4)) ;

R G int := R int + G int ;

Gray <= R G int + s t d l o g i c v e c t o r (s h i f t r i g h t (unsigned (B) , 3)) ;

end i f ;

end proce s s RGB2Gray process ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

In the end, the brief description of the FIFO (First Input First Ouput) memory,

proposed in figures (3.5) and (3.6), is useful to clarify its functioning.

Write

Interface

Dual port

Memory

Write
Pointer

Compare

Logic

Read

Interface

Read

Pointer

EmptyFULL FIFO

FULL
FIFO

WD

WE

WD

WA RA

RD

RD

RE

Figure 3.5: (1) Block diagram of a FIFO Memory.

39

3 – Architecture for HSG pedestrian detector

Figure 3.6: FIFO working explanation [27], where WP = Write Pointer
and RP = Read Pointer.

The proposed array size (4 Blocks) is the optimal one and it was obtained through

many simulations, paying attention to the FULL FIFO flag. In presence of an active

FULL FIFO, the current input stream is irrecoverably lost.

40

3.3 – Gradients computation architecture

3.3 Gradients computation architecture

Din (56)

Width 8 bits
Din (0)

Din (7)

Block 8×8
(0,7)

−−−−−−INPUT DATA FROM STREAM INTERFACE−−−−−
f o r r in 0 to 7 loop
Block 8x8 (r , 0) := Din (r) ;
end loop ;
f o r r in 0 to 7 loop
Block 8x8 (r , 1) := Din (r +8);
end loop ;
f o r r in 0 to 7 loop
Block 8x8 (r , 2) := Din (r +16);
end loop ;
f o r r in 0 to 7 loop
Block 8x8 (r , 3) := Din (r +24);
end loop ;
f o r r in 0 to 7 loop
Block 8x8 (r , 4) := Din (r +32);
end loop ;
f o r r in 0 to 7 loop
Block 8x8 (r , 5) := Din (r +40);
end loop ;
f o r r in 0 to 7 loop
Block 8x8 (r , 6) := Din (r +48);
end loop ;
f o r r in 0 to 7 loop
Block 8x8 (r , 7) := Din (r +56);
end loop ;

−−−

Figure 3.7: (1) Parallel Load of 2-D Matrix, (2) VHDL Description.

According to the figure (3.1) (signal (2)), this architecture has been thought to

work with blocks having, respectively 8 rows and 8 columns of data with a width

equal to 8 bits (”unsigned” representation in the Gray colour space). The first

operation requires the filling of a 2-D matrix. To do this, a parallel approach to

41

3 – Architecture for HSG pedestrian detector

describe the hardware was exploited, as clearly explained in figure (3.7) and the

relative code (3.7). This particular choice allows to execute the entire procedure

in one clock cycle speeding up the system performance. In the wake of the filling

procedure, the emphasis shifts to the gradients computation. With the goal of using

the minimum number of hardware resources, instead of use more complex kernels

(such as (2.10)), the following very simple masks were exploited:[−1 1
]

and

−1

1

 (3.3)

where the left one is used for Gx and the right one for Gy .

Width 8 bits

Block 8×8
(0,7)

Gx(0,0)=Block 8×8(0,1)−Block 8×8(0,0)

[1][−1]

[1]

Gy(1,0)=Block 8×8(2,0)−Block 8×8(1,0)

[−1]

[−1]

[1]

[1]

−−−Gx and Gy Matrix by us ing ’ intermediate ’ technique−−−
f o r r in 0 to 7 loop

f o r c in 0 to 6 loop
Gx(r , c) <= (Block 8x8 (r , c+1))−(Block 8x8 (r , c)) ;

end loop ;
end loop ;
f o r c in 0 to 7 loop

f o r r in 0 to 6 loop
Gy(r , c) <= (Block 8x8 (r+1,c))−(Block 8x8 (r , c)) ;

end loop ;
end loop ;
−−

Figure 3.8: (1) Graphical representation of Gradients computation, (2)
VHDL Description.

A noticeable thing is related to the fact that also if this technique is very basic,

42

3.3 – Gradients computation architecture

it is able to produce very accurate results (see section (4)). Regarding to the used

hardware resources, this block requires :

• Block 8× 8(r,c) : 64 registers (each of them of 8 bits) to store the input data;

• 128: 2’s complement adders to compute both Gx and Gy;

• Gx(r,c) and Gy(r,c) : 128 registers (each of them of 8 bits) to store the com-

puted gradients values.

In the end, the timing diagram, depicted in figure (3.9), clarifies the behaviour of

the entire section:

CLK

En

Din 1 2 3 Din data

Block_8x8 1* 2* 3* Block data

Gx,Gy combinatorial 1* 2* 3* Gx,Gy out

Figure 3.9: Timing diagram of Gx Gy block

Looking at the above timing diagram it is clear that, thanks to the parallel

approach, all the needed operations are accomplished in only one clock cycle. In

detail, the critical path of this section is equal to one adder (subtractor), having

inputs on 8 bits.

43

3 – Architecture for HSG pedestrian detector

3.4 Magnitude and Threshold computation archi-

tecture

This section has as inputs two blocks 8× 8, respectively for Gx and Gy. According

to [21], with the aim of saving hardware resources, the magnitude computation is

accomplished by using the following approximate expression : |G | = |Gx |+ |Gy |.
Looking at the ”sign bit” (MSB) of Gx and Gy it is possible to compute their

absolute values. For reasons that will become clear later, in this section also a

left shift of a factor 3 (in other words, a multiplication by 8) has been performed

for either gradients. The architecture and code, in figure (3.10), have the aim of

explaining in which way the first duty is accomplished:

+1

0

1

(7)

Gx(r,c)

Gx(r,c)

8

9
9

Gy(r,c)

Gy(r,c)

(7)

|Gx(r,c)|

|Gy(r,c)|

−−−−−−−−Gradient ABS COMPUTATION−−−−−−−−
f o r k in 0 to 7 loop
f o r l in 0 to 7 loop
−−−−−−−−2’s complement−−−−−−−−−−−−−−−−−−
i f (Gx(k , l) (7) = ’1 ’) then
Gx abs int (k , l) := not (Gx(k , l))+1;
e l s e
Gx abs int (k , l) := Gx(k , l) ;
end i f ;
i f (Gy(k , l) (7) = ’1 ’) then
Gy abs int (k , l) := not (Gy(k , l))+1;
e l s e
Gy abs int (k , l) := Gy(k , l) ;
end i f ;
−−
end loop ;
end loop ;
−−

Figure 3.10: Gradients absolute value computation

44

3.4 – Magnitude and Threshold computation architecture

Regarding to the above mentioned section code, the hardware costs can be sum-

marized as follows:

• Inverter : 64× 2;

• Adder : 64× 2;

• Mux : 64× 2;

• Register : 64× 2.

In detail, exploiting the parallel approach, this computation is done in one clock

cycle with a critical path composed by an inverter plus one adder and a mux.

−−−−Gx e Gy AUGMENTED PRECISION−−−−−−−−−−−
f o r k in 0 to 7 loop
f o r l in 0 to 7 loop
Gx abs x8 (k , l) <= s h i f t l e f t (unsigned (Gx abs int (k , l)) , 3) ;
Gy abs x8 (k , l) <= s h i f t l e f t (unsigned (Gy abs int (k , l)) , 3) ;
end loop ;
end loop ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 3.11: Left shift of Gradients absolute value

The code (3.11) represents a ”trick” to overcome the poor resolution arising

from the precomputed tangent values (see section 3.6). In particular, basing on

experimental results (see chapter 4), the parallelism of each output data was chosen

equal to 16 bits. In the end, this block is able to compute a peculiar parameter,

called ”G Threshold”. This value is crucial to compute in correct way [21] the

various ”orientation histograms”. Regarding to the hardware implementation, the

parallel approach has been chosen and the proposed architecture is depicted in figure

(3.12)

45

3 – Architecture for HSG pedestrian detector

G(0,0)

G(3,0)

G(1,0)

G(2,0)

+

+

+
G(03,0)

G(4,0)

G(7,0)

G(5,0)

G(6,0)

+

+

+

G(47,0)

+
G(07,0)

+

G(03,1)

G(47,1)

+
G(07,1)

G(07,01)

G(07,03)

+

G(07,47)

+

+

G(07,07)

>> 3
4

G(47,7)

G(07,23)

G(03,7)

G(07,7)

G(07,6)

G(07,67)

G(07,45)

I II III

Figure 3.12: Threshold computation parallel architecture

Looking at figure (3.12) it is possible to estimate a critical path composed by

6 adders plus a right shifter (its aim is to realize a division of the final result by a

factor 64). The needed hardware can be summarized as follows :

• Section I : (4× 8) + (2× 8) adders;

• Section II : 8 adders;

• Section III : 4 adders;

• Final Section : 2 + 1 adders.

46

3.5 – QFLAG architecture

3.5 QFLAG architecture

This block, starting from Gx and Gy values, is able to give an information about the

sign of Gy

Gx
ratio. This kind of parameter is very useful to associate the vote to the

correct histogram bin. In order to speed up this computation, a parallel approach has

been exploited. In particular, the incoming 8 × 8 block has been divided into four

4×4 blocks. The basic idea is to compare the MSBs of the two inputs, subsequently

of these results, proper registers are filled with 0s or 1s. With the aim of clarifying

how this operation is done, the proposed architecture is depicted in the following

figure (3.13):

0

1

0

1

=

Gx(0,0)(7) Gy(0,0)(7)

QFLAG1(0)

0

1

0

1

=

Gx(3,3)(7) Gy(3,3)(7)

QFLAG1(15)

Figure 3.13: QFLAG computation parallel architecture

By a simple graphical inspection, the hardware cost can be summarized as fol-

lows:

• Mux : 16× 4;

• Comparators : 16× 4;

• Registers : 4 of 16 bits.

In detail, the critical path of this architecture is very small, in fact it is composed

by a 1− bit comparator plus a 2to1 mux.

47

3 – Architecture for HSG pedestrian detector

3.6 Tangent computation architecture

This section speeds-up significantly the performance of the overall system. The

main drawback, in terms of delay and complexity, for the other kinds of hardware

implementations is represented by the computation of the arctangent function. For

the algorithm nature, the orientation values, expressed as:

Θ = atan

(
Gy

Gx

)
(3.4)

are used to fill correctly the histogram bins. Various hardware implementations in

literature uses complex architectures such as CORDIC [28] to do it, but, in many

cases the reached precision is worthless. In order to overcome this issue, following

the instructions written in [26] it is possible to avoid the arctangent computation.

In detail, the solution consists to solve the inequality (3.5), instead of the above

mentioned trigonometric function. According to [26], the mathematical definition

of tan(Θ) has a very interesting characteristic which is represented by the following

inequality:

tan(Θi) ≤ tan(Θ) < tan(Θi+1)

By harnessing (3.4), it is possible to write the final expression :

Gx(x,y) ∗ tan(Θi) ≤ Gy(x,y) < Gx(x,y) ∗ tan(Θi+1) (3.5)

By adopting the so-called unsigned representation, it is possible to limit the calcula-

tion for a restricted range of angles that starts from 0◦ to 180◦. Following [21], the

above mentioned range is divided into 9 bins, it means to have a representation like

the figure (3.14):

Figure 3.14: Angle to Bin conversion [26]

48

3.6 – Tangent computation architecture

In detail, as will become clear in the section that involves the Histogram 8 ×
8 computation, the data produced by the ”QFLAG architecture” are helpful to

reduce the amount of values to compute. Regarding to the previous concern, the

approximate values computed by this architecture can be summarized through the

table (3.2):

Table 3.2: Approximate Values of tanΘ

tangent Approximate value
tan0◦ 0
tan20◦ 2−2 + 2−3

tan40◦ 2−1 + 2−2 + 2−4

tan60◦ 1 + 2−1 + 2−2

tan80◦ 22 + 1 + 2−1 + 2−3 + 2−5

Looking at the above table the noticeable things are:

• Power of two relations: the five required values are obtained only by simple

shift and add operations. It means that the effort to obtain the final result is

very limited;

• Parallel Approach: this idea to implement in hardware the relations is the best

one to obtain all results in one clock cycle.

Talking about the proposed parallel approach architecture, an example is de-

picted in figure (3.15):

Gx(0,0)

Gx(7,7)

tan(20)(0,0)

tan(20)(7,7)

+

+

>> 2

>> 3

>> 2

>> 3

Figure 3.15: Tangent approximate architecture for tan20◦

49

3 – Architecture for HSG pedestrian detector

The related code that describes entirely the structure is the following one:

−−−−−−−−TANGENT APPROXIMATE ENTITY−−−
f o r k in 0 to 7 loop

f o r l in 0 to 7 loop
gxtan20 (k , l)<=s t d l o g i c v e c t o r (r e s i z e (unsigned (s h i f t r i g h t ((Gx abs x8 (k , l)) ,2)+
s h i f t r i g h t ((Gx abs x8 (k , l)) , 3)) , 1 6)) ;
gxtan40 (k , l)<=s t d l o g i c v e c t o r (r e s i z e (unsigned (s h i f t r i g h t ((Gx abs x8 (k , l)) ,1)+
s h i f t r i g h t ((Gx abs x8 (k , l)) ,2)+
s h i f t r i g h t ((Gx abs x8 (k , l)) , 4)) , 1 6)) ;
gxtan60 (k , l)<=s t d l o g i c v e c t o r (r e s i z e (unsigned ((Gx abs x8 (k , l))+
s h i f t r i g h t ((Gx abs x8 (k , l)) ,1)+ s h i f t r i g h t ((Gx abs x8 (k , l)) , 2)) , 1 6)) ;
gxtan80 (k , l)<=s t d l o g i c v e c t o r (r e s i z e (unsigned (s h i f t l e f t ((Gx abs x8 (k , l)) ,2)+
(Gx abs x8 (k , l))+ s h i f t r i g h t ((Gx abs x8 (k , l)) ,1)+
s h i f t r i g h t ((Gx abs x8 (k , l)) ,3)+ s h i f t r i g h t ((Gx abs x8 (k , l)) , 5)) , 1 6)) ;

end loop ;
end loop ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 3.16: Tangent values computed starting from the ”augment preci-
sion” version of Gx values

In code (3.16) can be seen that the final results are on 16 bits. This internal par-

allelism, based on experiments (see chapter(4)), produces the most accurate results.

In the end, the hardware cost can be estimated in this way :

Table 3.3: Summary of Tangent approximate architecture hardware cost

tangent Hardware Cost
tan0◦ 0
tan20◦ 64× 4× 2−2 shifter + 64× 4× 2−3 shifter + 64× 4 adder
tan40◦ 64× 4× 2−1 shifter + 64× 4× 2−2 shifter+64× 4× 2−4 shifter + 64× 4× 2 adder
tan60◦ 64× connection +64× 4× 2−1 shifter+64× 4× 2−2 shifter + 64× 4× 2 adder
tan80◦ 64× 4× 22 shifter+64× connection + 64× 4× 2−1 shifter+64× 4× 2−3 shifter+64× 4× 2−5 shifter + 64× 4× 4 adder

50

3.7 – Histogram 8× 8 block architecture

3.7 Histogram 8× 8 block architecture

This final section has the aim of producing a vector of 36 elements, each of them

represented on 4 bits. The amount of 36 elements is related to the fact that the

entire 8×8 block is divided in 4 blocks having dimensions 4×4. In detail, each 4×4

block produces a vector of 9 elements, according to the explanation given in section

(3.6). Following the algorithm in [21], every output block is called ”histogram”. The

simple nature of its computation can be depicted through the flow diagram (3.17):

G(r,c) > G_thr

Gy(r,c) >= 0

&&
Gy(r,c) < Gx*tan(20)

QFLAG(qflag_ind) = '0'

 bin := 0;
hist(0) := hist(0) +1;

Gy(r,c) >= Gx*tan(40)
&&

Gy(r,c) < Gx*tan(60)

Gy(r,c) >= Gx*tan(20)
&&

Gy(r,c) < Gx*tan(40)

Gy(r,c) >= Gx*tan(60)
&&

Gy(r,c) < Gx*tan(80)
Gy(r,c) >= Gx*tan(80)

Red line -> "NO"
Black line -> "YES"

 bin := 8;
hist(8) := hist(8) +1;

QFLAG(qflag_ind) = '0'

 bin := 1;
hist(1) := hist(1) +1;

 bin := 7;
hist(7) := hist(7) +1;

QFLAG(qflag_ind) = '0'

 bin := 2;
hist(2) := hist(2) +1;

 bin := 6;
hist(6) := hist(6) +1;

QFLAG(qflag_ind) = '0'

 bin := 3;
hist(3) := hist(3) +1;

 bin := 5;
hist(5) := hist(5) +1;

 bin := 4;
hist(4) := hist(4)+1;

I Histogram : II Histogram : III Histogram : IV Histogram :
r := 0 to 3 r := 0 to 3 r := 4 to 7 r := 4 to 7
c := 0 to 3 c := 4 to 7 c:= 0 to 3 c:= 4 to 7qflag_ind := 0 to 15

Figure 3.17: Flow diagram to compute an histogram based on HSG

51

Chapter 4

Testbench and Simulations

4.1 Testbench environment

With the aim of verifying the correct behaviour of the proposed architecture, the

testbench environment is depicted in figure (4.1):

Stream Gx Gy

Entity

G

Entity

Interface

QFLAG

Entity

Entity

Entity

Tan Hist Block

8 × 8

Memory

Image

Counter

60fps

TC

CLK RST

Entity

Results .txt

UUT

TB

Figure 4.1: Testbench environment of the developed architecture

The 60fps Counter has the purpose of ensuring that the overall structure is

”nourished” with 60 frames per second.

Image Memory

This element has been thought to the aim of feeding the system with an image

having a rate equal to 60fps. To do this a Matlab script has been developed to

generate an .hex file, where each line represents a single 24-bits RGB pixel of the

reference image. In detail, the proposed code is the following one (4.2):

52

4.1 – Testbench environment

f unc t i on [RGB,RGB hex , Gray mat]=RGB hex(rgb image)

%%%%Three main components%%%%%%%%%%
red channe l = rgb image (: , : , 1) ;
g reen channe l = rgb image (: , : , 2) ;
b lue channe l = rgb image (: , : , 3) ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%3 Matrixes each o f 8x1024 e lements%%%%%%%%%
%%%%%Image 128x64%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fo r r = 1 : 1 : 1 6 %%%128 rows d iv ided by 8
i f r == 1
a = 1 ;
b = 8 ;
a1 = 1 ;
b1 = 8 ;
c i n = 1 ;
c end= 8 ;
e l s e
a = 1 ;
b = 8 ;
c i n=c i n +8;
c end=c i n +7;
end
f o r c = 1 : 1 : 8 %%%64 columns d iv ided by 8
Block R (1 : 8 , a1 : b1) = red channe l (c i n : c end , a : b) ;
Block G (1 : 8 , a1 : b1) = green channe l (c i n : c end , a : b) ;
Block B (1 : 8 , a1 : b1) = blue channe l (c i n : c end , a : b) ;
a1 = a1+8;
b1 = a1+7;
a=a+8;
b=a+7;
end
end
%%%

%%8x8 b locks (f i x ed columns and vary ing row)%%
RGB = cat (3 , Block R , Block G , Block B) ;
% hex vers ion , where i . e Red = 4E Green = 5B Blue = 66%
RGB hex = [dec2hex (RGB(: , : , 1)) dec2hex (RGB(: , : , 2)) dec2hex (RGB(: , : , 3))] ;
%%%
end

%%%%.txt f i l e%%
dlmwrite (’ . / VHDL input/img . ixxx /RGBHex. txt ’ , RGB hex , ’ d e l im i t e r ’ , ’ ’) ;
%%%

Figure 4.2: Matlab script able to generate an .hex file that represents an
RGB reference image

The VHDL memory has the capability to ”read and store” the RGB.txt file

content. In detail, at each clock cycle, according to specified conditions, the output

memory is composed by a block of 8×8 values. A portion of the code that implements

this kind of memory is (4.3):

53

4 – Testbench and Simulations

type rom array i s array (0 to m−1) o f s t d l o g i c v e c t o r (n−1 downto 0) ;

impure func t i on read data ROM return rom array i s

f i l e i n f i l e 1 : t ex t open READMODE i s ” ./ tb/RGBHex. txt ” ;
v a r i ab l e buf1 : l i n e ;
v a r i ab l e value1 : s t d l o g i c v e c t o r (n−1 downto 0) ;
v a r i ab l e ROM: rom array :=(othe r s=>(o the r s => ’0 ’));
v a r i ab l e I : i n t e g e r range 0 to m ;

begin

whi l e not e n d f i l e (i n f i l e 1) loop
r e ad l i n e (i n f i l e 1 , buf1) ; −−− i n f i l e 1 in buf1
hread (buf1 , va lue1) ; −−−buf1 hex in s t d l o g i c v e c t o r value1
ROM(I):= s t d l o g i c v e c t o r (unsigned (value1)) ;
I := I+1;
end loop ;
re turn ROM;
end func t i on ;

constant ROM: rom array :=read data ROM ;

Figure 4.3: Portion code that explains how the Image Memory is able to
read and store the content of a .txt file

RGB image to analyze

RGB image to VHDL

Figure 4.4: Left: Reference image; Right: Image sent to the VHDL archi-
tecture

54

4.1 – Testbench environment

Results Entity

This block was described to give a graphical meaning to the outputs produced by

the proposed architecture. This entity is composed by two processes, divided as

follows:

I) Gradients process: the behavioural description is reported in (4.5):

Gx Gy resu l t s proc : p roce s s (Gx,Gy, Rst)
f i l e Gx f i l e : t ex t open WRITEMODE i s ” ./ r e s u l t s / Gx re su l t s . txt ” ;
f i l e Gy f i l e : t ex t open WRITEMODE i s ” ./ r e s u l t s / Gy re su l t s . txt ” ;
v a r i ab l e Gx l ine , Gy l ine : l i n e ;
v a r i ab l e c oun t l i n e : i n t e g e r range 0 to 8191 ;
begin −− proce s s
i f Rst = ’1 ’ then −− asynchronous r e s e t (a c t i v e high)
nu l l ;
valid Gx Gy <= 0 ;
c oun t l i n e := 0 ;
e l s e
i f valid Gx Gy = 0 then
valid Gx Gy <= valid Gx Gy + 1 ;
end i f ;

i f valid Gx Gy > 0 and c oun t l i n e < 8191 then
f o r k in 0 to 7 loop
f o r j in 0 to 7 loop
c oun t l i n e := coun t l i n e + 1 ;
wr i t e (Gx l ine , t o i n t e g e r (s igned (Gx(k , j)))) ;
w r i t e l i n e (Gx f i l e , Gx l ine) ;
wr i t e (Gy l ine , t o i n t e g e r (s igned (Gy(k , j)))) ;
w r i t e l i n e (Gy f i l e , Gy l ine) ;
end loop ;
end loop ;
end i f ;
end i f ;
end proce s s ;

Figure 4.5: Reading procedure of Gx, Gy values computed by the VHDL
architecture

Looking at the above code (4.5), it is possible to observe the presence of par-

ticular signals, like : valid Gx Gy and count line. The first mentioned allows

to discard the initial no valid outputs (due to the pipelined structure), instead,

the second one has the aim of validating the end of the procedure based on

128 blocks, each of them of 8× 8 dimensions (i.e. a 128× 64 image produces

a vector of length equal to 8192 elements). At this point, in order to depict in

graphical way these results a Matlab was developed (4.6) :

55

4 – Testbench and Simulations

f unc t i on [Gx VHDL,Gy VHDL] = Gx Gy VHDL(Gx VHDL temp , Gx VHDL vector ,Gy VHDL temp , Gy VHDL vector)

Gx VHDL = ze ro s (128 , 6 4) ;
Gy VHDL = ze ro s (128 , 6 4) ;

%%%%%%%%%%%%%%%%%%%128x64 Gx,Gy VHDL Matrixes%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fo r r V t = 1 : 1 : 1024 %%%8192 elements to 1024x8 matrix
i f r V t == 1
r V v t = r V t ;
e l s e
r V v t = r V v t + 8 ;
end
Gx VHDL temp(r V t ,1 :8)= (Gx VHDL vector (r V v t : (r V v t +7))) ;
Gy VHDL temp(r V t ,1 :8)= (Gy VHDL vector (r V v t : (r V v t +7))) ;
end
% Gx VHDL(1 : 8 , 1 : 8) = Gx VHDL temp (1 : 8 , 1 : 8) ;
% Gx VHDL(1 :8 , 9 : 16)= Gx VHDL temp (9 : 1 6 , 1 : 8) ;
s t a r t = 1 ;
f o r r VHDL = 1 : 1 : 1 6 %%% 16∗8= 128 rows (r V in t+8) , 8∗8= 64 columns (c V in t+8)
i f r VHDL == 1
r V in t = r VHDL ;
e l s e
r V in t = r V in t +8;
end
f o r c VHDL = 1 : 1 : 8
i f c VHDL == 1
c V int = c VHDL ;
e l s e
c V in t = c V int +8;
end
i f c VHDL == 1 && s t a r t == 1
ind V int = c VHDL ;
s t a r t = 0 ; %%%%r e s t a r t the count ing procedure
e l s e
ind V int = ind V int +8;
end
Gx VHDL(r V in t : r V in t +7, c V in t : c V in t+7) = (Gx VHDL temp(ind V int : i nd V int +7 ,1 : 8)) ;
Gy VHDL(r V in t : r V in t +7, c V in t : c V in t+7) = (Gy VHDL temp(ind V int : i nd V int +7 ,1 : 8)) ;
end
end

end

Figure 4.6: Matlab script to draw the Gx,Gy values coming from VHDL
architecture

These computations are not influenced by any rounding procedure, to verify it,

the Matlab command isequal(Gx VHDL,Gx Matlab) was issued. As expected,

the answer was 1, due to the fact that the architecture executes the same

operations of the Matlab algorithm (’intermediate’). In the end, figure (4.7)

summarizes the operations flow :

56

4.1 – Testbench environment

RGB image to analyze Gray scale image to analyze

Gx VHDL Gy VHDL

Figure 4.7: Operation flow

Starting from the RGB image, the first operation is the Gray scale conversion

(top right). In the bottom left, a gradient image in the x direction measuring

horizontal change in intensity. On the right, a gradient image in the y direction

measuring vertical change in intensity. A useful consideration is that gray

pixels have a small gradient; black or white pixels have a large gradient.

57

4 – Testbench and Simulations

II) HSG final result process: the behavioural description is reported in (4.8):

HSG resu l t s proc : p roce s s (CLK, Rst)
f i l e HSG f i le : t ex t open WRITEMODE i s ” ./ r e s u l t s /HSG results . txt ” ;
v a r i ab l e count e lements : i n t e g e r range 0 to 4608 ;
v a r i ab l e HSG line : l i n e ;
begin −− proce s s
i f Rst = ’1 ’ then −− asynchronous r e s e t (a c t i v e low)
nu l l ;
END SIM <= ’0 ’ ;
count e l ements := 0 ;
e l s i f CLK’ event and CLK = ’1 ’ then
i f Valid Output = ’1 ’ and count e lements < 4607 then
f o r k in 0 to 35 loop
count e lements := count e lements + 1 ;
wr i t e (HSG line , t o i n t e g e r (unsigned (HSG fea tu r e vec to r in t (k)))) ;
w r i t e l i n e (HSG fi le , HSG line) ;
end loop ;
e l s i f count e l ements > 4607 then
END SIM <= ’1 ’ ;
end i f ;
end i f ;
end proce s s ;

Figure 4.8: Generation of the final result of the HSG algorithm

According to the HSG algorithm [21], for every iteration four vectors, each

of them of 9 elements, are produced, it means to have 36 values for a single

iteration. The total procedure, for a 128 × 64 image, requires to work on

128 blocks (each of them of 8 × 8 dimensions). It means to have, in the end,

128 × 36 = 4608 values. The above code has the aim of producing a text file

containing all produced values with a vector-like style. At this point, in order

to depict in graphical way these results a Matlab was developed (4.9) :

58

4.1 – Testbench environment

f unc t i on [HSG VHDL] = HSG VHDL plot (HSG VHDL vector)

HSG VHDL=ze ro s (3 2 , 1 6 , 9) ;
HSG VHDL temp = ze ro s (5 12 , 9) ;
HSG vector = HSG VHDL vector ’ ;

s ta r t H = 1 ;

%%512X9 MATRIX WHERE EACH COLUMN IDENTIFIES IS EQUAL TO A BIN %%%%%%%
fo r r = 0 : 1 : 5 11
f o r c = 0 : 1 : 8
i f c==0 && star t H ==1
c i n t = c+1;
s ta r t H = 0 ;
e l s e
c i n t = c i n t +1;
end
HSG VHDL temp(r+1,c+1) = HSG vector (c i n t) ;
end
end
%%

star t A = 1 ;

%%%%%%%%%%%%%THE OVERALL IS OBTAINED BY FOLLOWING THIS RULE : %%%%
%%%%%%%%%%%%%4 HISTOGRAMS OF A BLOCK ARE PLACED IN THIS ORDER %%%%
%%%%%%%%%%%%%%%%%%[r 0 , (c 0 , c 1)] (h i s t −1, h i s t−2)%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%[r 1 , (c 0 , c 1)] (h i s t −3, h i s t−4)%%%%%%%%%%%%%%%%%
fo r i = 0 : 2 : 3 0
f o r j = 0 : 2 : 1 4
f o r r = 0 : 1 : 1
f o r c = 0 : 1 : 1
i f c == 0 && star t A == 1
star t A = 0 ;
acc = c+1;
e l s e
acc = acc+1;
end
HSG VHDL(r+i +1,c+j +1,1)=HSG VHDL temp(acc , 1) ;
HSG VHDL(r+i +1,c+j +1,2)=HSG VHDL temp(acc , 2) ;
HSG VHDL(r+i +1,c+j +1,3)=HSG VHDL temp(acc , 3) ;
HSG VHDL(r+i +1,c+j +1,4)=HSG VHDL temp(acc , 4) ;
HSG VHDL(r+i +1,c+j +1,5)=HSG VHDL temp(acc , 5) ;
HSG VHDL(r+i +1,c+j +1,6)=HSG VHDL temp(acc , 6) ;
HSG VHDL(r+i +1,c+j +1,7)=HSG VHDL temp(acc , 7) ;
HSG VHDL(r+i +1,c+j +1,8)=HSG VHDL temp(acc , 8) ;
HSG VHDL(r+i +1,c+j +1,9)=HSG VHDL temp(acc , 9) ;
end
end
end
end
%%
end

Figure 4.9: Portion of the Matlab script for obtain a graphic visualization
of the HSG descriptor output

59

4 – Testbench and Simulations

Gray scale image to analyze HSG Matlab exact

HSG VHDL
HOG Matlab

Figure 4.10: HSG and HOG comparison final results

Regarding to the figure (4.10), it can be noticed how HSG algorithm is ”more

descriptive” than HOG one. The great difference is due to the fact that the

60

4.2 – Simulation environment

”vote” is executed based on a threshold and then only relatively big intensity

variations are reported in the final histogram. In particular, comparing the

figure named ”HSG Matlab exact” and ”HSG VHDL” it is possible to notice

slight differences. The reason is that in the first case both the magnitude and

orientation are computed in exact way by using, respectively, the equations

|G| =
√
G2

x +G2
y and Θ = atan

(
Gy

Gx

)
.

4.2 Simulation environment

With the goal of checking the correct behaviour of the overall system in the time

domain, ModelSim was used. The minimum size of ”60 fps counter” that allows to

work at 60 fps, was obtained by solving this equation :

•
(

1

128× 60

)
=

(
fck
N

)

• fck = 1 MHz

• N = 130 − > 8 bits

The timing diagrams that clarify how the architecture works are reported in figures

(4.11):

61

4 – Testbench and Simulations

000000000000000000000000000000000000

0

/tb_HSG/CLK_i

/tb_HSG/Rst_i

/tb_HSG/Din_i

/tb_HSG/HSG_feature_vector_i 000000000000000000000000000000000000

/tb_HSG/Gray_data_i

/tb_HSG/En_i

/tb_HSG/En_1_i

/tb_HSG/En_2_i

/tb_HSG/Full_FIFO_i

/tb_HSG/Valid_Output_i

/tb_HSG/END_SIM_i

Entity:tb_HSG Architecture: Date: Sun Jun 17 19:28:57 CEST 2018 Row: 1 Page: 1

1f423a1e29224933297d685b8c7266765e58887368977f6823423c212d27452e267d6a5f8f776d6f57528572698f796920423b1d2d27412d2578645b8d776f71585279655d7f6b633d46423538344a383178635a8a756d785f59836f6488756e2a413c2936314c3831735d5588716a79605c7f6a6088746c2144401f3732483427735e558f776f7e6661705b5576615b23434121393448362769544d8e776d785f5a6d595377635e1f413d1e37324635265d4940826c6178615b6f5b52847169

000000000000000000000000000000000000 010270010000411000110162110100241200

00 3422376b776377813626326c7a5b767b362430687a5e686d41353b677864717837303c6076666d78382c37617a6b5f65372f38587a645c66332c364c70665d75

/tb_HSG/CLK_i

/tb_HSG/Rst_i

/tb_HSG/Din_i 1f423a1e29224933297d685b8c7266765e58887368977f6823423c212d27452e267d6a5f8f776d6f57528572698f796920423b1d2d27412d2578645b8d776f71585279655d7f6b633d46423538344a383178635a8a756d785f59836f6488756e2a413c2936314c3831735d5588716a79605c7f6a6088746c2144401f3732483427735e558f776f7e6661705b5576615b23434121393448362769544d8e776d785f5a6d595377635e1f413d1e37324635265d4940826c6178615b6f5b52847169

/tb_HSG/HSG_feature_vector_i 000000000000000000000000000000000000 010270010000411000110162110100241200

/tb_HSG/Gray_data_i 00 3422376b776377813626326c7a5b767b362430687a5e686d41353b677864717837303c6076666d78382c37617a6b5f65372f38587a645c66332c364c70665d75

/tb_HSG/En_i

/tb_HSG/En_1_i

/tb_HSG/En_2_i

/tb_HSG/Full_FIFO_i

/tb_HSG/Valid_Output_i

/tb_HSG/END_SIM_i

Entity:tb_HSG Architecture: Date: Sun Jun 17 19:32:29 CEST 2018 Row: 1 Page: 1

Figure 4.11: Timing diagram of the overall architecture

62

Chapter 5

RTL Synthesis and Test

The final step of testing is carried out by adopting Synopsys Design Compiler c©.

This software is able to extrapolate two kinds of important informations from the

provided VHDL description, such as :

• Netlist as .v file : a netlist is a description of the connectivity of an electronic

circuit. In its simplest form, a netlist consists of a list of the electronic com-

ponents in a circuit and a list of the nodes they are connected to. [29]

• .sdf (Synopsys c© delay format) file : SDF file contains the delay value of each

timing arc corresponding to each cell in the netlist. These delay values in

the SDF file are extracted under a given conditions of the netlist. It may be

that the SDF corresponds to just an after synthesis netlist, with wire loads

estimated according to some wire load model, or it may be that the SDF

corresponds to a neltist which has been laid out, with actual position of cell,

actual load on the cell, actual metal wires connected to the cells. [30]

In figure (5.1) is explained the typical flow of operations which allows to map

the behavioural architecture into a sequence of physic basic cells:

63

5 – RTL Synthesis and Test

Figure 5.1: Scheme of how a netlist is generated [31]

In particular, the used Technology Library is ”uk65lscllmvbbr 120c25 tc” with

BUFM2R as basic cell. The produced netlist was tested on ModelSim to check the

correct behaviour. With the purpose of obtaining a power estimation of the system,

a proper script was used inside the Verilog Testbench (5.2):

i n i t i a l begin
$ r e a d l i b s a i f (” . / s a i f /uk65 . s a i f ”) ;
$ s e t g a t e l e v e l mon i t o r i n g (” on ”) ;
$ s e t t o g g l e r e g i o n (UUT) ;
$ t o g g l e s t a r t ;
end

always @ (END SIM i) begin
i f (END SIM i) begin
$ t ogg l e s t op ;
$ t o g g l e r e p o r t (” . / s a i f /HSG back . s a i f ” , 1 . 0 e−9, ”tb HSG .UUT”) ;
end
end

Figure 5.2: UUT monitored to estimate its switching activity

In the following tables (5.1 and 5.2) are summarized the most interesting results

64

obtained later on the synthesis procedure :

Table 5.1: HSG @maximum frequency

HSG 65nm @ maximum frequency
frequency (MHz) 297.61

power (mW) 23.17
area (µm2) 178396

Table 5.2: HSG @1MHz

HSG 65nm @ 1MHz (candidate working frequency)
frequency (MHz) 1

power (µW) 87.535
area (µm2) 163458

Regarding to the values written in table (5.2) it can be noticed that a working

frequency of 1MHz is enough to ensure processing the input images at 60 fps. This

particular description, also, ensures a very low power consumption.

65

Chapter 6

Conclusions and future works

The HSG algorithm has proved to be an excellent solution for pedestrian detection

and other applications (2.20). In this thesis, therefore, an architecture that com-

putes the histogram to send an Hardware Neural Network was developed. The work

was organized by following two steps, the first required to check the correct compu-

tation, the second one was focused on the optimizations, in particular by describing

parallel structures where it was possible. Regarding to the future improvements of

this architecture, the first one could be applying the clock gating technique by ex-

ploiting the Synopsys c© capabilities and another one could be the using of a proper

Neural Network to obtain DET and ROC curves. The final graphical result is ob-

tained after 128 iterations and it leads to have a final feature vector composed by

4608 elements (instead of 3780 elements of the HOG implementations). This over-

head is compensated by the fact that on one side all results inside the proposed

architecture are obtained by adopting an integer arithmetic and on the other side

stride percentage is equal to 0%. In the end, merely looking to the graphical results,

it can be noticed that algorithm produces histograms where wasteful informations

are unwrapped (6.1):

66

RGB image to analyze HOG Matlab

HSG VHDL

Figure 6.1: HSG and HOG comparison final results
67

Bibliography

[1] W. H. ORGANIZATION, World Health Organization. Global status report on

road safety. Management of Noncommunicable Diseases, Disability, Violence

and Injury Prevention (NVI), 2015.

[2] ERTRAC, Automated Driving Roadmap, 2015.

[3] M. Stanley, “Autonomous cars: The future is now.” Blue Papers, 2015.

[4] W. D. Jones., “Building safer cars,” IEEE Spectrum, 2002.

[5] D. Geronimo, M. Lopez, D. Sappa, and T. Graf, “Survey of pedestrian detection

for advanced driver assistance systems.” PAMI, vol. 32, 2010.

[6] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: An

evaluation of the state of the art,” PAMI, vol. 34, 2012.

[7] R. Wang, “Edge detection with image pyramid,” http://fourier.eng.hmc.edu/

e161/lectures/canny/node2.html, 2013.

[8] “Support vector machine,” https://en.wikipedia.org/wiki/Support vector

machine.

[9] “Roc,” https://en.wikipedia.org/wiki/Receiver operating characteristic, 2013.

[10] O. S. Software, “Drawing roc curve,” https://docs.eyesopen.com/toolkits/

cookbook/python/plotting/roc.html, 2018.

[11] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: A bench-

mark,” in CVPR, 2009.

[12] C. Papageorgiou and T. Poggio, “A trainable system for object detection,”

International Journal of Computer Vision, vol. 38, no. 1, pp. 15–33, 2000.

[13] “Haar wavelet,” https://en.wikipedia.org/wiki/Haar wavelet.

[14] A. Haar, “Zur theorie der orthogonalen funktionensysteme,” Mathematische

Annalen, vol. 69, no. 3, pp. 331–371, 1910.

[15] R. C. Guido, “A note on a practical relationship between filter coefficients and

scaling and wavelet functions of discrete wavelet transforms,” Applied Mathe-

matics Letters, vol. 24, no. 7, pp. 1257–1259, 2011.

[16] P. Viola and M. J. Jones, “Robust real-time face detection,” International jour-

nal of computer vision, vol. 57, no. 2, pp. 137–154, 2004.

68

http://fourier.eng.hmc.edu/e161/lectures/canny/node2.html
http://fourier.eng.hmc.edu/e161/lectures/canny/node2.html
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://docs.eyesopen.com/toolkits/cookbook/python/plotting/roc.html
https://docs.eyesopen.com/toolkits/cookbook/python/plotting/roc.html
https://en.wikipedia.org/wiki/Haar_wavelet

Bibliography

[17] D. Peleshko and K. Soroka, “Research of usage of haar-like features and ad-

aboost algorithm in viola-jones method of object detection,” in Experience

of Designing and Application of CAD Systems in Microelectronics (CADSM),

2013 12th International Conference on the. IEEE, 2013, pp. 284–286.

[18] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detec-

tion,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, vol. 1. IEEE, 2005, pp. 886–893.

[19] “Histogram of oriented gradients,” https://www.learnopencv.com/

histogram-of-oriented-gradients/.

[20] “Image kernels, explained visually,” http://setosa.io/ev/image-kernels/.

[21] M. Bilal, A. Khan, M. U. K. Khan, and C.-M. Kyung, “A low-complexity

pedestrian detection framework for smart video surveillance systems,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 27, no. 10,

pp. 2260–2273, 2017.

[22] H. Ren and Z.-N. Li, “Object detection using edge histogram of oriented gra-

dient,” in Image Processing (ICIP), 2014 IEEE International Conference on.

IEEE, 2014, pp. 4057–4061.

[23] J. Wu, “Efficient hik svm learning for image classification,” IEEE Transactions

on Image Processing, vol. 21, no. 10, pp. 4442–4453, 2012.

[24] J. Wu and J. M. Rehg, “Beyond the euclidean distance: Creating effective visual

codebooks using the histogram intersection kernel,” in Computer Vision, 2009

IEEE 12th International Conference on. IEEE, 2009, pp. 630–637.

[25] “Caltech pedestrian detection benchmark,” http://www.vision.caltech.edu/

Image Datasets/CaltechPedestrians/.

[26] P.-Y. Chen, C.-C. Huang, C.-Y. Lien, and Y.-H. Tsai, “An efficient hardware

implementation of hog feature extraction for human detection,” IEEE Transac-

tions on Intelligent Transportation Systems, vol. 15, no. 2, pp. 656–662, 2014.

[27] “Fifo working,” http://electrosofts.com/verilog/fifo.html.

[28] J. E. Volder, “The cordic trigonometric computing technique,” IRE Transac-

tions on electronic computers, no. 3, pp. 330–334, 1959.

[29] “Netlist meaning,” https://en.wikipedia.org/wiki/Netlist.

[30] “Sdf meaning,” http://www.vlsiip.com/asic dictionary/B/back annotation.

html.

69

https://www.learnopencv.com/histogram-of-oriented-gradients/
https://www.learnopencv.com/histogram-of-oriented-gradients/
http://setosa.io/ev/image-kernels/
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
http://electrosofts.com/verilog/fifo.html
https://en.wikipedia.org/wiki/Netlist
http://www.vlsiip.com/asic_dictionary/B/back_annotation.html
http://www.vlsiip.com/asic_dictionary/B/back_annotation.html

Bibliography

[31] “How netlist is generated,” http://www.eng.auburn.edu/∼nelson/courses/

elec5250 6250/slides/LogicSynthesis-Synopsys.pdf.

70

http://www.eng.auburn.edu/~nelson/courses/elec5250_6250/slides/LogicSynthesis-Synopsys.pdf
http://www.eng.auburn.edu/~nelson/courses/elec5250_6250/slides/LogicSynthesis-Synopsys.pdf

	Acknowledgments
	Introduction
	Road traffic safety and security
	Smart Driving
	Pedestrian detection overview

	Current promising Pedestrian Detection systems
	Pedestrian Protection System high-level view
	Pedestrian detection algorithms
	Basic ideas

	Feature detectors based on sliding window approach

	Architecture for HSG pedestrian detector
	General Overview
	Stream Interface architecture
	Gradients computation architecture
	Magnitude and Threshold computation architecture
	QFLAG architecture
	Tangent computation architecture
	Histogram 88 block architecture

	Testbench and Simulations
	Testbench environment
	Simulation environment

	RTL Synthesis and Test
	Conclusions and future works
	Bibliography

		Politecnico di Torino
	2018-07-09T12:52:55+0000
	Politecnico di Torino
	Guido Masera
	S

