

Politecnico di Torino

Corso di Laurea Magistrale in Ingegneria Civile

Tesi di Laurea Magistrale

Analisi fluidodinamica del fenomeno dell'Exclusion Zone in tubi di materiale polimerico a contatto di sostanze inquinanti

Relatori: Prof. Fulvio Boano Prof. Luca Ridolfi Dott.ssa Elisa Brussolo

> Candidato: Davide Martella

Nulla al mondo può prendere il posto della perseveranza. Non il talento, nulla è più comune di uomini di talento falliti. Non il genio; il genio incompreso è ormai un luogo comune. Non l'istruzione; il mondo è pieno di derelitti istruiti. Solo la perseveranza e la determinazione sono onnipotenti.

John Calvin Coolidge Jr.

Ringraziamenti

Desidero ricordare tutti coloro che mi hanno aiutato nella stesura della presente Tesi con consigli, critiche e riflessioni: a loro va la mia gratitudine, anche se a me compete la responsabilità di ogni errore contenuto.

Ringrazio anzitutto i Professori Fulvio Boano e Luca Ridolfi: senza il loro supporto, la loro professionalità, le loro conoscenze ed esperienze non avrei potuto svolgere al meglio il mio lavoro.

Ringrazio la Dottoressa Elisa Brussolo, mia responsabile all'interno del Centro Ricerche SMAT, per il fondamentale sostegno sia tecnico che scientifico e per aver messo a disposizione le sue competenze per la migliore riuscita della ricerca.

Un ringraziamento particolare va alla mia famiglia: questa Tesi rappresenta la conclusione di un percorso, possibile soltanto grazie ai sacrifici che hanno fatto in questi anni. A loro devo questo traguardo, che sia un punto di partenza per un futuro che li renda ancor più orgogliosi di me.

Vorrei infine ringraziare amici, colleghi, la mia compagna e tutti coloro che mi hanno accompagnato in questi anni.

Indice

	Intr	oduzione	1
1	Dese	crizione del fenomeno	3
	1.1	Acqua Strutturata	5
	1.2	Chemiotassi macromolecolare	7
	1.3	Diffusioforesi	8
	1.4	Teoria DLVO	11
	1.5	Termoforesi	12
	1.6	Sviluppo e prosieguo della sperimentazione	13
2	Арр	parato sperimentale	14
	2.1	Componente chimica	15
	2.2	Componente idraulica	17
		2.2.1 Pompa a siringa	17
		2.2.2 Tubi in Nafion	19
		2.2.3 Tubi Tygon E-3603	20
		2.2.4 Recipiente di raccolta	21
	2.3	Componente ottica	22
	2.4	Componente informatica	23
3	Acq	uisizione delle misure	25

	3.1	Valuta	zione delle dimensioni dei diametri dei tubi in Nafion	26
		3.1.1	Nafion TT030	26
		3.1.2	Nafion TT050	28
		3.1.3	Nafion TT110	28
	3.2	Valuta	zione delle velocità teoriche e delle portate analizzate	31
		3.2.1	Velocità teoriche	31
		3.2.2	Portate	35
		3.2.3	Temperatura	36
	3.3	Proced	limento di raccolta delle misure	39
		3.3.1	Operazioni preliminari: lavaggio dei tubi, preparazione della sospensione e avvio della componente idraulica	40
		3.3.2	Acquisizione di immagini e filmati	43
		3.3.3	Valutazione delle velocità sperimentali e delle relative devia- zioni standard	47
		3.3.4	Valutazione dell'ampiezza dello spessore della zona di esclu- sione (EZ)	52
4	Risu	ıltati sp	erimentali	54
	4.1	Taratu	ra e analisi con il tubo in Nafion TT110	55
		4.1.1	Caratteristiche idrauliche e modalità di acquisizione	55
		4.1.2	Profili di velocità per il Nafion TT110	58
	4.2	Analis	i dei profili di velocità con tubo in Nafion TT030	63
		4.2.1	Caratteristiche idrauiche	63
		4.2.2	Profili di velocità per il Nafion TT030	64
	4.3	Ampie	ezza dell'Exclusion Zone	67
		4.3.1	Tubo in Nafion TT030: risultati definitivi sulle dimensioni dell'EZ	69

		4.3.2	Tubo in Nafion TT050: risultati definitivi sulle dimensioni dell'EZ	73			
		4.3.3	Tubo in Nafion TT110: risultati definitivi sulle dimensionidell'EZ	76			
	4.4	Analisi	dei risultati sperimentali	83			
		4.4.1	Interpolazione con Legge di Potenza	84			
		4.4.2	Interpolazione con Legge Esponenziale	90			
		4.4.3	Interpolazione con Legge Logaritmica	96			
		4.4.4	Modello nel piano $\ln(Re) - \ln(EZ/D)$	102			
		4.4.5	Modello nel piano $Re - \ln(EZ/D)$	108			
		4.4.6	Modello nel piano $\ln(Re) - EZ/D$	114			
	4.5	Consid	erazioni generali	119			
5	Disc	ussione	e conclusioni	127			
	5.1	Analisi	della ricerca svolta	127			
	5.2	Risulta	ti ottenuti	128			
	5.3	Svilupp	bi futuri e applicazioni pratiche	129			
Bil	bliogr	afia		132			
Ар	Appendice ARisultati sperimentali delle velocità136						
Ар	Appendice B Risultati sperimentali delle dimensioni dell'Exclusion Zone 158						

V

Introduzione

La sempre più crescente richiesta di acqua nel mondo, pone numerosi quesiti nell'assicurare la disponibilità e la gestione sostenibile di questa preziosa risorsa. La grande sfida che si perseguita oggigiorno, è quella di trovare delle soluzioni accettabili, dal punto di vista energetico, per far fronte alla grande necessità per quanto riguarda il consumo umano. Lo studio di nuove tecnologie per il trattamento di depurazione e disinfezione delle acque, ha portato SMAT (società che gestisce il sistema idrico integrato di Torino e comuni limitrofi) a investire sulla ricerca in tal senso, con l'obiettivo di ridurre i prodotti di disinfezione e i relativi costi. Un particolare fenomeno, definito Exclusion Zone, è, attualmente, oggetto di analisi approfondita, in quanto sviluppa, in modo del tutto naturale, una zona esente dalla quasi totalità di particelle e sostanze nocive, consentendo così di estrarre acqua di alta qualità, senza particolari costi di produzione. In questa ricerca si colloca la presente Tesi, con l'obiettivo di determinare una relazione che possa legare tale fenomeno a determinati parametri idraulici (tra tutti il numero di Reynolds), in modo da rendere l'Exclusion Zone (EZ) applicabile dal punto di vista operativo. La ricerca è stata suddivisa in due fasi ben distinte; in fase preliminare, l'obiettivo è stato quello di consolidare i risultati già ottenuti dalla precedente ricerca di Tesi dell'Ing. Losero, cercando, nel contempo, di estendere alcune considerazioni nei riguardi di determinati parametri in gioco; successivamente, l'attenzione è stata posta sull'analisi della variabilità dell'EZ, nel tentativo di ottenere una relazione generale, che possa essere applicabile per la realizzazione di nuove tecnologie per lo sfruttamento sistematico di tale fenomeno. La presente ricerca è strutturata nei seguenti cinque capitoli:

 Capitolo 1. In questo capitolo sarà descritto, dal punto di vista fisico, il fenomeno dell'Exclusion Zone (EZ), presentando le principali teorie proposte, con l'obiettivo di spiegare le cause della nascita e dello sviluppo di tale fenomeno;

- *Capitolo 2*. In tale sezione sarà presentato l'apparato sperimentale nel suo complesso, messo a disposizione da SMAT. Verrà descritto ogni strumento utilizzato, sottolineando le particolarità di ognuno di esso e le caratteristiche principali che ne hanno reso fondamentale il suo utilizzo. Particolare attenzione sarà data al *Nafion*, un materiale polimero che è in grado di dar vita al fenomeno dell'Exclusion Zone in maniera stabile;
- *Capitolo 3.* L'acquisizione delle misure, descritta in questo capitolo, metterà in evidenza tutte le grandezze fisiche in gioco, soffermandosi, in particolare, sugli aspetti legati alla scelta delle variabili indipendenti. Saranno presentate le caratteristiche dimensionali dei tubi in Nafion analizzati; successivamente, l'attenzione sarà rivolta alla determinazione delle portate e dei profili di velocità teorici che saranno utilizzati per l'analisi fluidodinamica del fenomeno. Infine verranno determinate le portate (in funzione dei numeri di Reynolds scelti e dei diametri dei tubi esaminati) e le sospensioni per lo studio della variabilità dimensionale dell'Exclusion Zone;
- Capitolo 4. Tale capitolo sarà strutturato in due parti. Nella prima parte saranno presentati e discussi i risultati relativi al confronto tra i profili di velocità sperimentali e teorici. Nella seconda parte, invece, verranno analizzati i dati sperimentali delle dimensioni osservate dell'EZ; attraverso l'uso di determinati strumenti matematici, si cercherà di determinare una relazione analitica che leghi il fenomeno dell'Exclusion Zone a determinate variabili indipendenti, in modo da poterlo sfruttare, dal punto di vista operativo, per la realizzazione di tecnologie innovative;
- *Capitolo 5*. Infine, nell'ultimo capitolo, saranno presentati dei possibili risvolti pratici di tale fenomeno, sulla base dei risultati raggiunti nel Capitolo 4.

Infine, negli Allegati A e B saranno presentati tutti i dati ricavati dallo studio sperimentale, nei riguardi delle velocità misurate, al variare della portata e del diametro, e delle dimensioni dell'Exclusion Zone, al variare del diametro, del numero di Reynolds e della sospensione utilizzata.

Capitolo 1

Descrizione del fenomeno

L'Exclusion Zone (EZ) è un fenomeno fisico che si riscontra in prossimità della superficie interna, a contatto con acqua, di diversi materiali idrofili e consiste nella formazione spontanea, in condizioni di temperatura e pressione ordinarie, di una regione libera dalla presenza di una grande quantità di particelle o molecole di diversa natura e dimensione, potenzialmente presenti all'interno di acqua e sospensioni in generale. In Figura 1.1 è riportato un esempio di EZ, in cui si può notare chiaramente un distacco netto tra sospensione colloidale e superficie del condotto; l'immagine, inoltre, mette in evidenza anche una certa simmetria e costanza del fenomeno, in termini di ampiezza, lungo la superficie idrofila.

Figura 1.1 Fenomeno dell'Exclusion Zone ripreso da un microscopio invertito, [35]

Sono state condotte numerose sperimentazioni su questa regione, utilizzando più tipi di sospensione con caratteristiche colloidali e diversi materiali idrofili, come tessuti biologici, polimeri, idrogel e metalli ([1],[2],[3],[4],[5]). Le dimensioni dello spessore dell'Exclusion Zone oscillano tra le decine e le centinaia di micron; tale variazione è dipendente da diversi fattori, tra cui i principali riguardano il diametro del tubo utilizzato e il numero di Reynolds (o portata immessa). Al crescere del diametro del tubo analizzato è stato riscontrato, infatti, un aumento dello spessore dell'EZ, il quale, successivamente, tende a diminuire all'aumentare della portata. La particolarità e l'unicità del fenomeno fisico è di notevole interesse in ambito scientifico per la possibilità di dar vita allo sviluppo di nuove tecnologie ([1],[2],[3],[6]) in diversi campi tra i quali:

- Separazione e filtrazione delle acque: la presenza di uno strato libero da qualsiasi sostanza inquinante renderebbe più efficace e, potenzialmente, abbatterebbe i costi dei processi di depurazione e purificazione delle acque potabili
- Riduzione del fouling delle membrane utilizzate nei processi di filtrazione, con relativo abbattimento dei costi di gestione e pulizia di tali membrane
- Cromatografia a scambio ionico, utile per la purificazione di campioni analitici necessaria, in alcuni casi, per analizzare un anione in una matrice di cationi

In questa Tesi, lo studio del fenomeno è stato condotto utilizzando tubi in Nafion, un polimero sintetico molto utilizzato in ambito di ricerca per le sue proprietà ioniche [7] e per la capacità di dar vita ad una zona di esclusione stabile ed estesa.Dal punto di vista scientifico, le ragioni della formazione spontanea dell'Exclusion Zone non sono del tutto chiare, perciò sono state formulate differenti ipotesi sull'origine di tale fenomeno. Tale ipotesi sono tuttora al centro del dibattito scientifico a causa del fatto che nessuna di esse sia riuscita ad imporsi sulle altre. Di seguito sono riportate le principali teorie scientifiche che si sono maggiormente affermate durante le fasi di studio del fenomeno.

1.1 Acqua Strutturata

Una delle prime teorie che è stata avanzata per spiegare il fenomeno dell'Exclusion Zone è stata quella di considerare le caratteristiche di tale fenomeno simili a quelle della cosiddetta "Acqua Strutturata". La suddetta teoria è stata proposta da G. H. Pollack e i suoi collaboratori ([5],[8],[9],[10],[11],[12],[13]) attraverso esperimenti volti ad estrarre acqua purificata da condotti in Nafion sfruttando il fenomeno dell'EZ. La configurazione sperimentale utilizzata per separare l'acqua purificata della zona di esclusione corrispondeva all'utilizzo di un estrattore differenziale, costituito da un tubo di Nafion in cui erano inseriti dei tubi concentrici di acciaio inossidabile. La differenza tra i diametri corrispondeva con le dimensioni della zona di esclusione, così da essere in grado di estrarre l'acqua purificata. In Figura 1.2 si illustra l'apparato sperimentale utilizzato durante lo studio:

Figura 1.2 Configurazione sperimentale utilizzata per la purificazione dell'acqua. Le frecce indicano la direzione del flusso, [13]

La sperimentazione ha evidenziato come le dimensioni dell'Exclusion Zone aumentano al diminuire della portata immessa e della concentrazione e sono strettamente legate alla natura delle particelle presenti nell'acqua; infatti, in presenza di particelle di limo o argilla è stata riscontrata una certa difficoltà a purificare l'acqua, a causa della torbidità. Di contro, utilizzando microsfere in polistirene monodisperso (Polybead, Polysciences Inc.), i livelli di purificazione risultano essere molto alti. La maggior parte delle analisi effettuate da Pollack e i suoi collaboratori hanno portato a spiegare il fenomeno considerando la riorganizzazione dell'acqua come la causa scatenante. L'acqua strutturata si presenta come una fase liquido-cristallina, in cui le molecole tendono ad allinearsi dando vita ad una stratificazione che può estendersi fino a centinaia di micron. Gli strati ordinati di molecole d'acqua, durante la loro formazione a partire dalla superficie idrofila, tendono a sovrapporsi causando l'allontanamento delle particelle sospese, data la natura cinque volte più densa e due volte più rigida dell'acqua interfacciale rispetto alla restante. Ciò è dovuto alle particolari caratteristiche di alcuni materiali idrofili, come ad esempio il Nafion, che permettono lo scambio ionico e la conduzione protonica con la fase liquida adiacente. La valutazione delle differenze tra l'acqua strutturata e la restante acqua è stata effettuata attraverso tecniche particolari come la spettroscopia di risonanza magnetica nucleare (NMR), la fotografia di birifrangenza, la misurazione del potenziale elettrico e della viscosità e l'assorbimento dei raggi UV-VIS (ultravioletto-visibile) e NIR (radiazioni non ionizzanti). Secondo questo modello teorico, l'acqua adiacente alla superficie idrofila si troverebbe in una sorta di quarta fase ([14],[15],[16]), che prevede una struttura ordinata di molecole di H₃O₂, in cui gli atomi di idrogeno e ossigeno si dispongono in forma esagonale, dando origine ad una carica negativa e una positiva. Tale struttura potrebbe suggerire una similitudine con quella del ghiaccio ma, a differenza di quest'ultima, gli strati molecolari adiacenti hanno la possibilità di scorrere tra di loro, disponendosi in modo che la carica negativa di uno strato sia attratta da quella positiva dello strato successivo. La disposizione sfasata dei vari strati tende ad allontanare le particelle di soluto, le quali, per poter occupare le zone di EZ, sarebbero costrette a passare attraverso le aperture esagonali, ma ciò è impedito a causa delle piccole dimensioni delle aperture rispetto a quelle del soluto. Di seguito si riporta lo schema grafico della struttura del fenomeno nei dintorni della superficie idrofila in accordo con la teoria finora enunciata:

Figura 1.3 Formazione dell'Exclusion Zone in accordo con la teoria dell'acqua strutturata, [17]

1.2 Chemiotassi macromolecolare

La teoria presentata di seguito presuppone che lo sviluppo dell'Exclusion Zone possa essere assimilato alla "chemiotassi macromolecolare" ([1],[2],[6],[20],[21]), ossia il fenomeno con cui organismi biologici direzionano il loro moto a seconda del gradiente di concentrazione di un particolare soluto presente nel medesimo ambiente. In ambito biologico, il movimento di un micro-organismo è una combinazione alternata di due fasi, una cosiddetta di "tumbling", ossia di rotolamento e una di moto unidirezionale. Un batterio, o una cellula eucariota, all'interno di un ambiente uniforme si muove in modo casuale, prevalentemente diritto, intervallato da fasi di tumbling che riorientano l'organismo. In questo modo essi sono in grado di veicolare il proprio moto in direzione delle zone ad alta concentrazione di sostanze nutrienti ed evitare le sostanze nocive. Grazie a questo meccanismo, l'organismo sarà in grado di direzionare il proprio moto in base al gradiente chimico presente; nel caso in cui la direzione sia quella giusta, il movimento sarà prevalentemente diritto, mentre, nel caso in cui la direzione fosse sbagliata, la cellula cercherà nuove direzioni attraverso continui riorientamenti, fino a trovare la direzione di massima concentrazione. Il meccanismo che regola tutto ciò dipende dal tempo; l'organismo infatti, decide di modificare la propria direzione di moto in base a quanto tempo sia rimasto sulla stessa senza raggiungere la sostanza attrattante. In Figura 1.4 si evidenzia la natura del fenomeno attraverso la risposta alle sostanze nutrienti o repellenti da parte dell'organismo unicellulare:

Chemiotassi

Figura 1.4 Chemiotassi macromolecolare, riorientamento della cellula in base al gradiente chimico, [37]

Recenti studi hanno posto particolare attenzione a questo fenomeno, ipotizzando che possa essere considerato alla base del fenomeno dell'Exclusion Zone se si estende la chemiotassi anche alle particelle non biologiche. Si ipotizza, perciò, che in presenza di un qualunque gradiente termodinamico o termochimico, che possa instaurare una fase di non equilibrio, le particelle siano indotte a raggrupparsi e seguire una direzione comune. La sperimentazione è ancora lontana dal poter affermare che questa sia la vera causa della formazione dell'EZ ma rimane comunque una delle teorie maggiormente considerate. In Figura 1.5 si evidenzia il fenomeno della chemiotassi in relazione al fenomeno dell'Exclusion Zone:

Figura 1.5 Formazione dell'EZ sfruttando il fenomeno della Chemiotassi molecolare, [17]

1.3 Diffusioforesi

Nuovi studi condotti da I. N. Huszar et al. dell'università di Budapest ([3],[18],[19]), hanno messo in luce nuove possibilità sulla formazione dell'EZ. Studiando il fenomeno vicino alla superficie di un condotto in Nafion, utilizzando una sospensione costituita da sferette (5% di sfere di polistirene carbossilato in acqua Milli-Q), è stato riscontrato uno sviluppo, di centinaia di micron, della zona di esclusione. Tale crescita non era istantanea ma cresceva nel tempo seguendo la legge di potenza riportata di seguito:

$$d_{EZ}(t) = A \cdot t^b \tag{1.1}$$

in cui A è un coefficiente che descrive la velocità di sviluppo del processo, o,

per meglio dire, di diffusione fenomenologico, mentre **b** dipende da meccanismi microscopici. Gli esperimenti hanno evidenziato un valore di 0,6 per il coefficiente b, molto prossimo al valore di 0,5, tipico delle leggi di diffusione. Tali risultati hanno suggerito agli studiosi l'ipotesi che alla base della formazione del fenomeno dell'esclusione ci siano processi diffusivi. Lo studio inoltre, ha permesso di calcolare la forza, F_{EZ} , che è alla basa del processo di diffusione, attraverso un semplice bilancio delle forze:

$$F_{EZ} + F_{buoyant} + F_{weight} + F_{Stokes} = 0 \tag{1.2}$$

dove $\mathbf{F}_{buoyant}$ è il peso della soluzione esclusa dalla microsfera del soluto, \mathbf{F}_{weight} è il peso della microsfera e \mathbf{F}_{stokes} è la forza di resistenza idrodinamica. Date la massa e il volume molto piccoli di una singola microsfera, le forze $\mathbf{F}_{buoyant}$ e \mathbf{F}_{weight} possono essere trascurate, così come la forza di gravità, perciò il bilancio delle forze si riduce alla sola uguaglianza tra \mathbf{F}_{EZ} e \mathbf{F}_{Stokes} . Tra le possibili cause responsabili della diffusione e quindi della formazione dell'EZ, i ricercatori dell'università di Budapest ne hanno individuate quattro:

- a) Dissoluzione della superficie idrofila con diffusione dei fili polimerici che allontanano le particelle del soluto dalla superficie del condotto
- b) Meccanismo definito a "spazzola entropica" secondo la quale la superficie del condotto è costituita da numerose catene polimeriche lunghe, elastiche e a distanza molto ravvicinata tra di loro che tengono lontane le microsfere
- c) Formazione di una fase ben distinta all'interno di un processo di equilibrio termodinamico, simile alla teoria dell'acqua strutturata
- d) Gradiente chimico-fisico che sviluppa un processo di diffusione non di equilibrio

Figura 1.6 Illustrazione delle possibili cause che potrebbe essere alla base della diffusione, [20]

Da successive analisi è risultato che il volume del condotto rimaneva inalterato anche dopo lunghi lavaggi in diverse soluzioni; tale evidenza ha portato i ricercatori ad escludere la dissoluzione della superficie idrofila del condotto come possibile causa della formazione dell'EZ. Studi più approfonditi sulla microstruttura del Nafion hanno escluso anche la possibilità che vi fossero dei filamenti elastici e ordinati. Ulteriori studi sono stati portati avanti per cercare di capire quale tra la formazione di una fase distinta e la diffusione chimico-fisica fosse la reale causa di allontanamento delle sferette dalla superficie del condotto. L'esperimento che i ricercatori hanno eseguito poneva l'attenzione sulle microsfere intrappolate ad una certa distanza (di circa 50 μ m) dalla superficie, tenute lì fino al completo sviluppo della dimensione dell'EZ, fino a circa 100 μ m dalla superficie. Una volta rilasciate, è stato notato che le microsfere iniziavano a muoversi per raggiungere tutte le altre addensate nella zona oltre l'EZ. Le forze del gradiente di diffusione instauratesi all'interno della zona di esclusione non possono esserci se tale zona rappresenta una fase distinta e ordinata, perciò l'evidenza sperimentale ha escluso anche la terza possibilità in favore della quarta, ovvero del gradiente di diffusione chimico-fisico. Il fenomeno dell'Exclusion Zone, secondo tale teoria, è presente solo se è presente un gradiente, se infatti esso viene equilibrato, la causa della formazione dell'EZ svanisce. Lo scambio ionico che avviene con la superficie idrofila, in cui i cationi sono scambiati con ioni H+, instaura un gradiente di concentrazione degli ioni stessi che porta

all'allontanamento delle particelle dalla superficie idrofila. È questo il motivo per cui si definisce il fenomeno come un processo di non equilibrio accoppiato ad un trasporto guidato dalla diffusione. I ricercatori hanno messo in evidenza anche che la mobilità delle particelle è indipendente dalle loro dimensioni, fino a che la regione di interazione risulta più piccola di esse [22]. È stato inoltre riscontrato come la velocità di diffusione nella regione intorno alla parete risulta pari a 1 μ m/s, valore assimilabile a quelli dei fenomeni diffusivi, per i quali si hanno valori compresi tra 1 μ m/s e 10 μ m/s. La possibilità che un gradiente di concentrazione sia in grado di generare forze meccaniche che causano lo spostamento di particelle può essere assimilata alla teoria, descritta nel Paragrafo 1.2, della chemiotassi macromolecolare. In Figura 1.7 è riportato graficamente il fenomeno della diffusioforesi nell'intorno della superficie idrofila.

Figura 1.7 Diffusioforesi e sviluppo della zona di EZ, [17]

1.4 Teoria DLVO

La teoria DLVO [23], così definita dalle iniziali dei ricercatori che l'hanno sviluppata (B. Derjaguin, L. Landau, E. Verwey, T. Overbeek), può essere sfruttata per spiegare la formazione dell'Exclusion Zone, attraverso moti vibrazionali delle molecole d'acqua che causano importanti oscillazioni dei dipoli. La teoria DLVO studia l'interazione e la stabilità di due particelle in sospensione in un liquido. L'interazione tra due particelle è strettamente legata alla loro dimensione e concentrazione. Quando due particelle si avvicinano le loro atmosfere ioniche si sovrappongono sviluppando una forza di repulsione. Tutto ciò è spiegato attraverso il potenziale *z* o potenziale

elettrocinetico, responsabile dei fenomeni elettrocinetici e della stabilità dei colloidi, generato a seguito della formazione di un doppio strato elettrico (struttura originata all'interfaccia solido-liquido, in cui si ha un trasferimento di carica elettrica e reazioni di ossidoriduzione). La stabilità colloidale è influenzata dalle forze di Van der Waals e di Coulomb. Quando due particelle si avvicinano, l'attrazione di Van der Waals aumenta così come la repulsione elettrostatica e l'interferenza tra i loro doppi strati elettrici. La combinazione dà origine ad un punto definito "minimo primario". All'aumentare delle distanze invece, il profilo energetico attraversa una barriera di energia massima, passando attraverso un minimo superficiale, definito "minimo

Figura 1.8 Andamento del potenziale totale rispetto alla distanza tra le particelle; VE=forza di repulsione, VA=forza di attrazione, [36]

Per un sistema colloidale lo stato di equilibrio termodinamico può essere raggiunto nel punto di minimo primario, nel quale le forze attrattive superano quelle repulsive a basse distanze molecolari rendendo il processo irreversibile. Nel caso in cui le particelle si trovino nel punto di minimo secondario, esse svilupperanno forze di attrazione più deboli, rendendo il processo reversibile.

1.5 Termoforesi

Altra teoria considerata per spiegare la nascita e sviluppo dell'EZ si basa sugli effetti della termoforesi. Tale fenomeno si esplica nel trasporto di massa dovuto ad un

gradiente termico costante che instaura, a sua volta, un gradiente di concentrazione stazionario, in accordo con gli effetti Soret e Dufour. Il flusso totale di massa all'interno di una soluzione può essere definito come segue:

$$J = -D \cdot \nabla c - c \cdot D_t \cdot \nabla T \tag{1.3}$$

in cui **D** è il coefficiente di diffusione Browniana, **c** la concentrazione e D_t il coefficiente di diffusione termica. È stato riscontrato che il comportamento delle particelle in soluzione, per differenti sistemi contenenti particelle colloidali, presenta una forte dipendenza dalle loro dimensioni, dalla loro concentrazione e dalla temperatura. Per quanto riguarda la temperatura, è stato osservato un cambio di comportamento delle particelle al variare della temperatura, passando da termofiliche a termofobiche o viceversa, invertendo il loro verso di spostamento.

1.6 Sviluppo e prosieguo della sperimentazione

Come è stato illustrato nei paragrafi precedenti, risulta evidente che, per spiegare il fenomeno dell'Exclusion Zone, le varie teorie si basano su ipotesi differenti tra di esse. Al momento non è ancora chiaro quale sia la teoria, o la combinazione tra alcune di esse, che sia in grado di descrivere completamente i risultati sperimentali riportati in letteratura. L'approccio fluidodinamico si presenta come l'aspetto fondamentale di questa tesi, nel tentativo di rappresentale tale fenomeno sotto un altro punto di vista e con l'obiettivo di determinare una relazione che spieghi l'interazione fra le condizioni di moto in un fluido in prossimità della zona di esclusione e la zona di esclusione stessa, attraverso determinati parametri idraulici.

Capitolo 2

Apparato sperimentale

Lo studio del fenomeno è stato effettuato presso il Centro Ricerche di SMAT, all'interno del laboratorio di microscopia. È stato possibile operare con diversi strumenti estremamente funzionali per garantire i migliori risultati possibili. Le componenti dell'apparato sperimentale sono state divise nel seguente modo:

- componente chimica
- componente idraulica
- componente ottica
- componente informatica

Le singole componenti appena elencate costituiscono un unico sistema lineare ed omogeneo, il cui obiettivo è quello di consentire una raccolta dati coerente, finalizzata ad uno studio ottimale del fenomeno dell'Exclusion Zone. In Figura 2.1 si riporta l'apparato nel suo complesso.

Figura 2.1 Apparato sperimentale completo, [17]

Di seguito verranno presentati, nel dettaglio, gli strumenti di ogni componente.

2.1 Componente chimica

Elemento fondamentale alla base di qualsiasi sospensione è l'**Acqua Milli-Q Tipo 1**, acqua di elevata qualità e senza alcuna impurità. In Figura 2.2 è riportato l'impianto utilizzato presso il Centro Ricerche SMAT per purificare e deionizzare l'acqua, realizzato dalla Millipore Corporation. Inizialmente viene prodotta acqua pura dall'acqua di rete e, per garantire che essa sia di qualità costantemente elevata, si effettua un pretrattamento condotto mediante le tecniche dell'osmosi inversa e delle lampade germicide a UV, permettendo così la rimozione di particelle, ioni, residui di disinfezione e quant'altro fino al 95-99%. L'acqua pura così ottenuta viene stoccata in serbatoi in polietilene, i quali sono in grado di offrire un'efficace protezione dai contaminanti aerodispersi e prevengono la formazione di biofilm. Infine, per raggiungere il livello di qualità Milli-Q di Tipo 1, l'acqua fin qui purificata viene sottoposta all'azione di lampade UV di lunga durata a doppia lunghezza d'onda, che permette la degradazione delle molecole organiche mediante foto-ossidazione. Nell'impianto inoltre, viene utilizzata resina a scambio ionico per la sua capacità di

Figura 2.2 Impianto di produzione di acqua Milli-Q

catturare le specie ioniche con carica più debole.

Per quanto riguarda il tracciante utilizzato nelle sospensioni, si tratta di miscrosfere in polistirene monodisperso (Polybead, Polysciences Inc.) cariche negativamente, aventi diametro di 1 micron, con gruppi carbossilici in superficie in grado di dar vita a legami covalenti con proteine, biomolecole e altre. La loro composizione è costituita prevalentemente da acqua (97,5%)e sono disponibili in una soluzione con concentrazione pari a circa 4,55*10¹⁰ particelle/mL. Per l'analisi dei profili di velocità e dello spessore dell'EZ sono state definite una serie di sospensioni, tutte aventi lo stesso volume, pari a 30 mL di acqua Milli-Q, ma differente concentrazione, come verrà specificato in seguito. La sospensione è stata omogeneizzata attraverso l'utilizzo di una centrifuga elettrica (Figura 2.3), che permette una dispersione omogenea del tracciante. Il processo di agitazione ha una durata di circa 120 secondi ed essendo trascurabili gli effetti gravitazionali sulle microsfere, non sono stati riscontrati fenomeni di deposito nelle 24 ore successive alla fase di omogeneizzazione.

Figura 2.3 Centrifuga elettrica per omogeneizzazione della sospensione

2.2 Componente idraulica

La strumentazione idraulica costituisce il sistema di flussaggio della sospensione ed è stato estremamente importante, ai fini della validità dei risultati, eliminare o ridurre quanto più possibile qualsiasi discontinuità del sistema o perturbazioni del flusso. Le attrezzature e i materiali utilizzati, elencati di seguito, verranno approfonditi nei paragrafi successivi:

- pompa a siringa
- tubi in Nafion
- tubi Tygon E-3603
- recipiente di raccolta

2.2.1 Pompa a siringa

La portata della sospensione, all'interno del sistema idraulico, è controllata dalla pompa a siringa modello CNE-1000 (New Era Pump System, Inc.). Tale strumento è in grado di lavorare secondo due modalità, in aspirazione e in spinta. Lo studio del fenomeno è stato effettuato con la modalità in spinta, utilizzando quella in aspirazione per la pulizia dei vari condotti con acqua Milli-Q. La portata varia al variare della capacità della siringa e può arrivare ad un massimo di 2100 mL/h per le siringhe aventi volume pari a 60 mL. Per la sperimentazione sono state utilizzate proprio queste siringhe, in materiale plastico, e il trasferimento della sospensione nella siringa è stato possibile tramite aspirazione dalla provetta, facendo attenzione a mantenere l'ago della siringa ben immerso in modo da evitare introduzione di aria, deleteria ai fini della buona riuscita della sperimentazione. In Figura 2.4 è rappresentato il modello di pompa a siringa attualmente presente nel laboratorio di microscopia, mentre in Figura 2.5 sono riportate la siringa e la provetta utilizzate.

Figura 2.4 Pompa a siringa modello CNE-1000

Figura 2.5 Provetta e siringa

2.2.2 Tubi in Nafion

Il Nafion (Figura 2.6) è l'elemento di maggiore importanza per l'intero studio del fenomeno dell'Exclusion Zone, in quanto è in grado di dar vita ad una zona di esclusione costante, stabile e simmetrica. In commercio è possibile trovarlo in diversi formati, tra cui membrane e tubi. Il Nafion è un fluoropolimero-copolimero costituito da tetrafluoroetilene solfonato (struttura chimica riportata in Figura 2.5), scoperto alla fine degli anni sessanta da W. Grot della E.I DuPont Company [25], la quale ne detiene il brevetto e la produzione. Esso deriva dalla copolimerizzazione del tetrafluoroetilene (TFE).

 $- [(CFCF_2)(CF_2CF_2)_m] - \\ \downarrow \\ OCF_2CFOCF_2CF_2SO_3H \\ \downarrow \\ CF_3$

Figura 2.6 Struttura chimica del Nafion

Le proprietà ioniche derivano dalla presenza di gruppi eterei perfluorovinilici che terminano con gruppi solfonici su uno scheletro di tetrafluoroetilene. Inoltre, grazie alla sua stabilità termica e meccanica e alle sue importanti caratteristiche di scambio ionico, è utilizzato in elettrodialisi e in celle elettrolitiche per la rimozione degli ioni metallici [26]. Il Nafion presenta alta conduttività protonica ed elevata resistenza chimica, eccetto per i metalli alcalini (tra tutti il sodio), i quali sono in grado di degradarlo a normali condizioni di temperatura e pressione. Inoltre, è stata riscontrata ottima resistenza alle alte temperature e agli stress meccanici, oltre che permeabilità all'acqua.

Figura 2.7 Condotto in Nafion, [17]

Nel corso degli anni, le eccezionali proprietà fin qui descritte, che hanno trovato riscontro in numerosi test scientifici, hanno fatto del Nafion il materiale maggiormente utilizzato nelle ricerche di questo genere, nonostante in commercio siano presenti altri tipi di ionomeri perfluorinati (Arciplex o Flemion tra tutti). Il Nafion trova largo impiego nella produzione delle membrane PEM, acronimo di Proton Exchange Membrane oppure Polymeric exchange membrane [27], che permettono di produrre, a partire dall'acqua, ossigeno e idrogeno in una cella elettrolitica assorbendo energia; in alternativa, sfruttando l'ossidazione dell'idrogeno, viene utilizzata per produrre energia elettrica in una cella a combustione. Infine, sottoforma di membrana, evita il mescolamento delle componenti generate dall'anodo e dal catodo, nei dispositivi elettrochimici, permettendo allo stesso tempo il flusso di cationi. Per la presente tesi sono stati utilizzati i seguenti tubi in Nafion, che differiscono per il diametro e lo spessore, i cui valori sono consultabili nelle Tabelle 3.1, 3.2, 3.3 e 3.4:

- TT030
- TT050
- TT110

2.2.3 Tubi Tygon E-3603

I tubi Tygon sono composti da polimeri termoplastici in polivinilcloruro a cui sono aggiunti dei plastificanti. In laboratorio sono prevalentemente usati per raccordare altri tubi al fine di ottenere un sistema lineare e omogeneo. Per il presente lavoro di tesi sono stati utilizzati diversi tubi Tygon (Figura 2.8), con differenti diametri, per il raccordo dei diversi tubi in Nafion oggetto di analisi.

Figura 2.8 Tubi Tygon E-3603 per diversi diametri

Massima Pressione di utilizzo (a 23 °C)	1,7	bar
Resistenza a trazione	12,1	MPa
Allungamento a rottura	425	\$
Resistenza allo strappo	31	kN/m
Minima temperatura di utilizzo	-46	°C
Massima temperatura di utilizzo	74	°C
Sforzo di trazione al 100% dell'allungamento	4,0	MPa

Tabella 2.1 Principali proprietà fisiche dei tubi Tygon E-3603

Presentano elevata resistenza chimica, resistenza termica per temperature comprese tra -46°C e +74°C. Sono antiossidanti e resistenti alle contaminazioni, inoltre sono meno permeabili rispetto ai tubi in gomma e l'interno liscio e trasparente impedisce il verificarsi di accumuli e facilita la pulizia. In Tabella 2.1 sono riportate le principali proprietà fisiche dei tubi Tygon.

2.2.4 Recipiente di raccolta

Elemento terminale del sistema idraulico è il recipiente di raccolta, utilizzato per la stabilizzazione del carico idraulico e per la raccolta della portata presente. In Figura 2.9 si riporta una rappresentazione della parte terminale dell'impianto idraulico.

Figura 2.9 Recipiente di raccolta finale, [17]

2.3 Componente ottica

L'analisi del fenomeno dell'Exclusion Zone è stata effettuata tramite l'utilizzo del microscopio LEICA DM IRB, appartenente alla tipologia dei microscopi invertiti. Tali microscopi presentano la sorgente di luce e il condensatore al di sopra del tavolino portaoggetti, mentre gli obiettivi e la torretta rotante, su cui è possibile montare da 4 a 6 obiettivi con diversi ingrandimenti, sono posti al di sotto. La messa a fuoco viene regolata spostando la lente dell'obiettivo lungo un asse verticale, permettendo di allontanarla o avvicinarla al campione. Il meccanismo di messa a fuoco, inoltre, ha una doppia manopola concentrica che consente una maggiore precisione; in particolare, con tale meccanismo è come se si stesse sezionando l'oggetto tridimensionale e la messa a fuoco ottimale corrisponde alla visualizzazione della sezione orizzontale centrale del condotto. Il microscopio invertito è solitamente utilizzato per lo studio di cellule viventi o di microorganismi, ed è dotato di un dispositivo per il contrasto di fase che consente di osservare le cellule nelle colture in vitro, evitando così l'uso di coloranti e fissativi. Questi microscopi inoltre possono essere dotati di accessori per il montaggio di fotocamere e videocamere; in particolare, nel caso in esame, è stata utilizzata una fotocamera digitale a colori LEICA DFC450C, avente un sensore di alta qualità da 5 megapixel. Essa è collegata ad un terminale che consente una messa a fuoco veloce e precisa. In Figura 2.10 si riporta il microscopio e la fotocamera accoppiata, mettendo in evidenza le particolarità di tale strumento in Figura 2.11.

Figura 2.10 Componente ottica del sistema idraulico utilizzato in laboratorio, [17]

Figura 2.11 Particolare del piattino in cui è presente il tubo di Nafion raccordato ai tubi Tygon

2.4 Componente informatica

L'apparato informatico è risultato fondamentale per l'acquisizione e l'elaborazione dei dati. Come specificato nel Capitolo 2.3, la fotocamera LEICA DFC450C, accop-

piata al microscopio invertito, è collegata al computer tramite il software LAS (Leica Application Suite), il quale permette di visualizzare esattamente ciò che si osserva dagli oculari del microscopio. Il programma elabora l'immagine con un fotogramma di dimensioni 870 μ m x 653 μ m, su cui è possibile effettuare misurazioni, come ad esempio le dimensioni dell'EZ. È possibile inoltre acquisire dei filmati, attraverso una serie di fotogrammi, che possono essere successivamente analizzati tramite il software SFA (Speed Flux Analyzer). Tale programma calcola la velocità della portata in una specifica regione, all'interno del fotogramma, le cui dimensioni sono convertite in pixel (nello specifico si passa da 870 μ m x 653 μ m a 640 px x 480 px). La campagna dati, effettuata attraverso l'uso dei programmi sopra citati, termina con l'elaborazione e l'analisi di essi per mezzo di MATLAB ed Excel.

Capitolo 3

Acquisizione delle misure

La campagna di acquisizione dati ha reso necessaria un'attenta taratura dell'apparato sperimentale e una particolare attenzione sia nella fase di raccolta delle misure che nella fase di analisi di esse. Lo studio condotto ha visto due momenti ben distinti; in un primo momento l'attenzione è stata posta sullo studio dei profili di velocità, con l'obiettivo di validare le misure effettuate, grazie al confronto con i dati sperimentali presenti nella ricerca dell'Ing. Stefano Losero, di cui la presente tesi ne è la continuazione. In un secondo momento invece, l'analisi è stata incentrata sullo studio delle dimensioni della zona di esclusione al variare di alcuni parametri, tra i quali si citano la concentrazione delle sospensioni e il diametro del tubo. Nel seguente capitolo sono presentate le misure preliminari delle dimensioni dei tubi esaminati, le portate utilizzate e la temperatura osservata. Le misure dei tubi sono state ricavate attraverso l'utilizzo sia di un microscopio (differente rispetto a quello descritto nel Paragrafo 2.3) e sia di un calibro, avente precisione 0,5 mm. Le temperature invece sono state rilevate tramite una termosonda con precisione di $0,1^{\circ}C$. Inoltre, sono presentate le modalità di acquisizione delle immagini e dei filmati ai fini dell'analisi delle velocità e delle dimensioni dell'EZ.

3.1 Valutazione delle dimensioni dei diametri dei tubi in Nafion

3.1.1 Nafion TT030

Per la valutazione delle dimensioni dei tubi in esame sono state effettuate 10 ripetizioni di misura per ciascuna delle seguenti grandezze:

- diametro esterno
- diametro interno
- spessore

La migliore stima del valore di tali grandezze è la media campionaria:

$$\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{3.1}$$

in cui:

- N: numero totale di misure che compongono il campione
- x_i: i-esima misura della grandezza da stimare

A causa delle dimensioni assai ridotte dei tubi in Nafion TT030 e TT050, non è stato possibile utilizzare il calibro centesimale per l'acquisizione delle misure, perciò si è reso necessario l'uso del microscopio LEICA DM IL. A differenza del microscopio DM IRB descritto nel Paragrafo 2.3, il microscopio LEICA DM IL è dotato dell'ingrandimento 4x, necessario per la visualizzazione a video dell'intera sezione del tubo analizzato. Si specifica che per ottenere una migliore visualizzazione a video del tubo, è stata utilizzata acqua Milli-Q come mezzo di contrasto. L'immersione del Nafion in acqua ha comportato un aumento rilevante delle sue dimensioni, ragione per cui tutte le misure dei condotti utilizzati sono state acquisite in condizioni bagnate. In Figura 3.1 è presentato il calibro centesimale utilizzato, mentre in Figura 3.2 è rappresentato il diverso microscopio utilizzato in questa fase.

Figura 3.1 Calibro centesimale utilizzato

Figura 3.2 Microscopio ottico LEICA DM IL

Il Nafion TT030 è stato utilizzato sia in fase preliminare per l'analisi dei profili di velocità (per verificare che le condizioni fluidodinamiche fossero quelle attese), che per la valutazione delle dimensioni dell'Exclusion Zone. Le numerose prove effettuate hanno determinato un deterioramento delle caratteristiche del Nafion e ciò ha reso necessario l'utilizzo di più campioni, prelevati dallo stesso lotto. Le misurazioni effettuate sul Nafion TT030 hanno messo in evidenza una certa variazione delle dimensioni del tubo al variare del campione analizzato. Si presume che tale variabilità sia dovuta ad un problema di produzione, in cui è insita la difficoltà di realizzare un prodotto con grandezze regolari per tutto il suo sviluppo, viste le piccole dimensioni del tubo. In totale sono stati utilizzati cinque campioni di Nafion TT030. In Tabella 3.1 sono riportate le grandezze dei quattro campioni utilizzati in fase preliminare per lo studio dei profili di velocità. Per quanto riguarda invece lo studio delle dimensioni della zona di esclusione, è stato utilizzato un solo campione, le cui grandezze sono riportante in Tabella 3.2.

3.1.2 Nafion TT050

Così come per il Nafion TT030, le dimensioni del tubo TT050 sono state ottenute utilizzando il microscopio LEICA DM IL. Per lo studio delle dimensioni dell'EZ è stato impiegato un solo campione, le cui grandezze sono riportate in Tabella 3.3. Non è stato possibile invece acquisire i profili di velocità a causa della scarsa qualità dei video ottenuti dal microscopio, che hanno inficiato la bontà dei dati ricavati dal software SFA.

3.1.3 Nafion TT110

Il tubo in Nafion TT110 è stato di fondamentale importanza nelle prime fasi di approccio al problema, sia per quanto riguarda la taratura preliminare dell'apparato sperimentale, sia per quanto riguarda l'analisi dei profili di velocità, al fine di verificare che si ottenessero dei risultati in linea con quelli raggiunti dai precedenti studi condotti dall'Ing. Losero. È stato inoltre utilizzato un solo campione per analizzare lo sviluppo dell'EZ, le cui dimensioni sono riportate in Tabella 3.4. Date le dimensioni maggiori rispetto ai tubi TT030 e TT050, è stato possibile utilizzare il calibro centesimale di Figura 3.1, con il quale sono stati misurati i valori del diametro esterno e dello spessore, ricavando il valore del diametro interno attraverso la semplice relazione riportata di seguito:

$$D_{int} = D_{est} - 2s \tag{3.2}$$

	1° campione			2° campione		
Misure	D _{est}	D _{int}	S	D _{est}	D _{int}	S
	μ m	μ m	μ m	μ m	μ m	μ m
1	973.719	745.846	113.937	979.237	762.559	108.339
2	970.763	745.703	112.53	973.674	765.373	104.151
3	968.146	748.554	109.796	976.391	762.559	106.916
4	968.276	748.808	109.734	976.403	759.745	108.329
5	962.651	745.788	108.432	976.451	762.543	106.954
6	965.541	748.808	108.367	979.200	759.771	109.715
7	962.815	748.728	107.044	976.488	759.771	108.359
8	968.440	752.041	108.200	976.532	765.435	105.549
9	971.020	745.788	112.616	979.459	757.041	111.209
10	970.824	751.367	109.729	982.018	762.688	109.665
Media	968.220	748.143	110.038	977.585	761.749	107.918
σ	3.633	2.341	2.261	2.362	2.657	2.092

Tabella 3.1 Dimensioni dei campioni di Nafion TT030 utilizzate durante l'analisi dei profili di velocità

	3° campione			4° campione		
Misure	D _{est}	D _{int}	S	Dest	D _{int}	S
	μ m	μ m	μ m	μ m	μ m	μ m
1	973.719	745.846	113.937	949.438	733.980	107.729
2	970.763	745.703	112.530	944.389	731.686	106.352
3	968.146	748.554	109.796	947.039	733.959	106.540
4	968.276	748.808	109.734	947.039	736.565	105.237
5	962.651	745.788	108.432	952.222	731.434	110.394
6	965.541	748.808	108.367	944.473	734.174	105.150
7	962.815	748.728	107.044	947.216	734.049	106.584
8	968.440	752.041	108.200	944.473	736.473	104.000
9	971.020	745.788	112.616	947.150	731.542	107.804
10	970.824	751.367	109.729	947.216	734.049	106.584
Media	968.22	748.143	110.038	947.066	733.791	106.637
σ	3.072	1.361	1.390	2.424	1.834	1.760

5° campione						
Misure	Dest	D _{int}	S			
	μ m	μ m	μ m			
1	976.423	762.543	106.940			
2	976.646	762.559	107.044			
3	973.719	759.771	106.974			
4	967.982	765.352	101.315			
5	979.237	762.559	108.339			
6	973.719	756.958	108.381			
7	973.577	765.373	104.102			
8	976.391	765.481	105.455			
9	973.772	762.725	105.524			
10	973.577	759.771	106.903			
Media	974.504	762.309	106.098			
σ	2.803	2.680	0.971			

Tabella 3.2 Dimensioni del campione di Nafion TT030 utilizzate durante lo studio delle dimensioni della zona di esclusione

Tabella 3.3 Dimensioni del campione di Nafion TT050 utilizzate durante lo studio delle dimensioni dell'EZ

Misure	D _{est}	D _{int}	S
	μ m	μ m	μ m
1	1536.393	1207.197	164.598
2	1536.454	1207.115	164.670
3	1530.794	1204.301	163.247
4	1536.369	1204.354	166.008
5	1533.517	1204.304	164.607
6	1533.514	1201.491	166.012
7	1533.579	1201.540	166.020
8	1533.579	1201.491	166.044
9	1527.928	1198.677	164.626
10	1536.369	1204.354	166.008
Media	1533.850	1203.482	165.184
σ	2.803	2.680	0.971
Misure	D _{est}	D _{int}	S
--------	------------------	------------------	---------
	μm	μ m	μ m
1	3150.0	2450.0	350.0
2	3150.0	2450.0	350.0
3	3200.0	2400.0	400.0
4	3200.0	2400.0	400.0
5	3100.0	2300.0	400.0
6	3250.0	2550.0	350.0
7	3300.0	2600.0	350.0
8	3200.0	2500.0	350.0
9	3150.0	2350.0	400.0
10	3300.0	2600.0	350.0
Media	3200.0	2460.0	370.0
σ	66.667	102.198	25.820

Tabella 3.4 Dimensioni del campione di Nafion TT110 utilizzate durante lo studio delle dimensioni della zona di esclusione

Si specifica che con D_{int} si è indicato il diametro interno, con D_{est} il diametro esterno e con s lo spessore.

3.2 Valutazione delle velocità teoriche e delle portate analizzate

Lo studio sul fenomeno dell'Exclusion Zone, come già specificato nei paragrafi precedenti, si è incentrato sull'analisi fluidodinamica, verificando che i profili di velocità stimati fossero coerenti con quelli teorici, al variare della portata e del diametro, e sulle misurazioni della zona di esclusione, anch'esse, al variare della portata e della soluzione utilizzata. Nei seguenti paragrafi viene presentata la trattazione teorica dei dati di input dell'intera ricerca.

3.2.1 Velocità teoriche

Per verificare la convergenza, dal punto di vista fluidodinamico, dei dati teorici con quelli stimati, sono state adoperate le stesse portate impiegate nella precedente tesi, comprese nel range 0.2 e 6.8 mL/h. In questo contesto, l'unico regime di moto per

lo studio dei profili di velocità è il moto laminare [28], date le basse velocità. Esso consiste nel considerare nulle le componenti di agitazione turbolenta delle velocità, assicurando così traiettorie coincidenti con il moto medio, parallelo all'asse centrale del condotto. L'equazione globale di equilibrio di un fluido viscoso e incomprimibile, di volume W e contorno A, può essere definita attraverso l'equazione di Navier:

$$G + \Pi_i + M_1 - M_2 + I - T = 0 \tag{3.3}$$

in cui:

- G: risultante delle forze di massa
- Π_i : risultante delle spinte sul contorno dovute alla pressione p
- M₁, M₂: flusso di quantità di moto entrante e uscente
- I: inerzia agente all'interno del volume W
- T: azione di trascinamento della corrente, in cui n è la normale alla superficie diretta verso l'interno. La determinazione di tale parametro è possibile applicando la seguente formula:

$$T = \int_{A} \frac{dv}{dn} \, \mathrm{d}A \tag{3.4}$$

Grazie alla particolare condizione geometrica, è possibile semplificare l'equazione 3.3 in un'equazione differenziale del primo ordine, nella variabile r, della distribuzione della velocità:

$$\frac{dv}{dr} = -\frac{\gamma}{2\mu}rJ \tag{3.5}$$

dove:

- γ : peso specifico del fluido
- μ : viscosità del fluido

- r: raggio del condotto
- v: velocità
- J: cadente piezometrica, ossia la perdita di energia subita dall'unità di peso del liquido nell'unità di percorso

È possibile calcolare la cadente piezometrica applicando la formulazione di Darcy-Weisbach, per la quale J risulta essere proporzionale alla velocità media V (data dal rapporto tra portata e area della sezione del condotto), al diametro **D** del condotto e all'indice di resistenza λ :

$$J = \lambda \frac{V^2}{2gD} \tag{3.6}$$

L'indice di resistenza λ risulta essere un parametro caratteristico del moto laminare ed è definito come segue:

$$\lambda = \frac{64}{Re} \tag{3.7}$$

Da tale formulazione si evince la dipendenza di λ dal numero di Reynolds, Re, il quale rappresenta un indice del grado di turbolenza presente nel fluido. Valori piccole di Re determinano un moto laminare, caratterizzato da uniformità delle traiettorie delle particelle, valori molto grandi invece definiscono il cosiddetto moto turbolento, in cui il moto rettilineo delle particelle è fortemente disturbato dalle componenti di agitazione turbolenta che agiscono in qualsiasi direzione. Infine, per valori intermedi si ha la zona di transizione. Le numerose sperimentazioni eseguite a tal proposito, hanno portato Reynolds a definire un valore limite, pari a 2000, al di sotto del quale si è nella zona del moto laminare, mentre al di sopra si ha l'insorgere di turbolenze. L'espressione con cui è possibile definire il numero di Reynolds è presentata di seguito:

$$Re = \frac{\rho u D}{\mu} \tag{3.8}$$

con ρ densità del fluido. Ritornando all'equazione 3.5, integrandola nella variabile r, si ottiene la seguente relazione:

$$v = -\frac{\gamma J}{4\mu}r^2 + C \tag{3.9}$$

La costante C si ottiene imponendo la condizione al contorno secondo cui si ha velocità nulla alla parete del condotto:

$$v = 0 \quad per \quad r = \frac{D}{2} \tag{3.10}$$

in cui D rappresenta il diametro del condotto.

Calcolando in questo modo la costante e sostituendola nell'equzione 3.8, ne deriva la seguente formulazione:

$$v = \frac{\gamma J}{4\mu} (\frac{D^2}{4} - r^2)$$
(3.11)

Dall'equazione così ottenuta si evince un andamento parabolico della velocità, tipico del moto laminare, in cui si ha il valore massimo in corrispondenza dell'asse centrale del tubo e valore nullo alle pareti. L'analisi dei profili di velocità è stata condotta in fase preliminare sul condotto in Nafion TT110, per la taratura e la messa a punto dell'intero apparato sperimentale e, successivamente, sul condotto in Nafion TT030, per verificare che le condizioni fluidodinamiche fossero rispettate anche al variare del diametro. Nelle Tabelle 3.5 e 3.6 sono riportati i valori delle velocità teoriche calcolati, per i due diversi diametri, al variare della portata considerata.

	Nafion TT110								
D _{int}	S	А	Q	Q	$\overline{\mathcal{V}}$	Re	λ	J	Vmax teorica
mm	mm	mm^2	mL/h	mm ³ /s	mm/s	-	-	-	mm/s
			0.2	0.06	0.01	0.029	2225.74	0.000006	0.02
			0.4	0.11	0.02	0.058	1112.89	0.000013	0.05
24 (0 0 295 47 52		0.6	0.17	0.04	0.086	741.90	0.000019	0.07	
	17 52	0.8	0.22	0.05	0.115	556.44	0.000025	0.09	
24.00	0.385	47.55	2.2	0.61	0.13	0.316	202.34	0.000069	0.26
		2.5	0.69	0.15	0.359	178.06	0.000079	0.29	
			5	1.39	0.29	0.719	89.03	0.000158	0.58
			6.8	1.89	0.40	0.978	65.46	0.000214	0.79

Tabella 3.5 Velocità teoriche del condotto in Nafion TT110 al variare della portata considerata

Tabella 3.6 Velocità teoriche del condotto in Nafion TT030 al variare della portata considerata

	Nafion TT030									
D _{int}	S	А	Q	Q	$\overline{\mathcal{V}}$	Re	λ	J	v _{max teorica}	
mm	mm	mm^2	mL/h	mm ³ /s	mm/s	-	-	-	mm/s	
			0.2	0.06	0.12	0.093	689.44	0.0007	0.24	
			0.4	0.11	0.24	0.186	344.72	0.0014	0.49	
			0.6	0.17	0.37	0.278	229.81	0.0021	0.73	
0.762	0.11	0.46	0.8	0.22	0.49	0.371	172.36	0.0027	0.97	
0.762	0.11	0.40	2.2	0.61	1.34	1.021	62.68	0.0075	2.68	
			2.5	0.69	1.52	1.160	55.16	0.0086	3.05	
			5	1.39	3.05	2.321	27.58	0.0171	6.09	
			6.8	1.89	4.14	3.156	20.28	0.0233	8.28	

3.2.2 Portate

La valutazione delle dimensioni dell'Exclusion Zone, come già specificato nei paragrafi precedenti, è stata condotta sui seguenti tubi:

- Nafion TT030
- Nafion TT050

• Nafion TT110

Il tubo in Nafion TT030, in particolare il campione avente diametro interno medio pari a 0,762 mm, è stato il primo ad essere stato analizzato. Sono state impiegate differenti portate e concentrazioni di microsfere in sospensione, al fine di verificare la dipendenza, da tali fattori, della dimensione dell'EZ. Per quanto concerne la scelta delle portate, in Tabella 3.7 sono riportate quelle analizzate per il TT030. Per lo studio degli altri diametri sono stati fissati i valori dei numeri di Reynolds, in modo tale da avere coerenza e uniformità nei risultati; da Reynolds sono state ricavate le portate da impiegare nell'analisi degli altri due condotti. Con riferimento ai diametri dei tubi in Nafion TT110 e TT050, sono state calcolate le loro aree e, quindi, le rispettive velocità medie dall'inverso della formula del numero di Reynolds:

$$\bar{v} = \frac{Re \cdot v}{D_{int}} \tag{3.12}$$

in cui v rappresenta la viscosità cinematica dell'acqua alla temperatura di 20°C. A questo punto, ricavato il valore della velocità media, è possibile calcolare le portate Q moltiplicando la velocità media per l'area A del condotto analizzato:

$$Q = \bar{v} \cdot A \tag{3.13}$$

Si specifica che il valore della portata è dapprima calcolato in μ m³/s, in quanto la misura del diametro interno è data in μ m, e successivamente è trasformato in mL/h, poiché questa è l'unità di misura implementata nel sistema di pompaggio utilizzato. In Tabella 3.8 e 3.9 sono riportati i valori delle portate analizzate per il tubo in Nafion TT050 e TT110. Per agevolare la consultazione dei risultati ottenuti precedentemente, in Tabella 3.10 sono riportati, per ogni tubo, diametro interno, area e portata analizzata.

3.2.3 Temperatura

La valutazione della temperatura è stata effettuata attraverso la termosonda modello HD9219 Delta Ohm (Figura 3.3), dotata di rilevamento elettronico e ad alta precisione (l'errore pari a 0.1°C). L'operazione di misura consiste nel posizionare la sonda all'interno della provetta contenente la sospensione per un tempo non inferiore a 2

D _{int}	А	Re	v _{media}	Q	Q
μ m	$\mu { m m}^2$	-	μm/s	μ m ³ /s	mL/h
		0.093	121.72	55556000	0.2
		0.186	243.45	111110000	0.4
762.309 450		0.278	365.18	166670000	0.6
	1561067	0.371	486.89	222220000	0.8
	430400.7	1.021	1338.96	611110000	2.2
		1.160	1521.54	694440000	2.5
		2.320	3043.12	1.389E+09	5.0
		3.155	4138.63	1.889E+09	6.8

Tabella 3.7 Portate utilizzate per la valutazione della dimensione dell'EZ, per il tubo in Nafion TT030

Tabella 3.8 Portate utilizzate per la valutazione della dimensione dell'EZ, per il tubo in Nafion TT050

D _{int}	А	Re	v _{media}	Q	Q
μm	$\mu { m m}^2$	-	μm/s	μ m ³ /s	mL/h
		0.093	77.10	87708092.41	0.32
	0.186	154.20	175413027.3	0.63	
		0.278	231.31	263127434.7	0.95
1202 492	1127547	0.371	308.41	350826054.7	1.26
1203.482	115/34/	1.021	848.12	964779544.1	3.47
		1.160	963.77	1096335368	3.95
		2.320	1927.57	2192702310	7.89
		3.155	2621.49	2982068827	10.74

Tabella 3.9 Portate utilizzate per la valutazione della dimensione dell'EZ, per il tubo in Nafion TT110

D _{int}	А	Re	v _{media}	Q	Q
μ m	$\mu { m m}^2$	-	μm/s	$\mu m^3/s$	mL/h
		0.093	37.72	179281315.1	0.65
		0.186	75.44	358556176	1.29
		0.278	113.16	537850399.2	1.94
2460	4752016	0.371	150.88	717112352.1	2.58
2400	4752910	1.021	414.92	1972075103	7.10
		1.160	471.50	2240984168	8.07
		2.320	943.01	4482032876	16.14
		3.155	1282.49	6095551804	21.94

minuti, in quanto la stabilizzazione del valore di temperatura è fondamentale per evitare errori di misurazione. Le rilevazioni sono avvenute nei giorni di analisi dello sviluppo dell'Exclusion Zone, sui tubi in Nafion TT050 e TT110. Non è stata invece misurata durante lo studio dei profili di velocità, in quanto l'interesse è stato rivolto principalmente alla taratura dell'apparato sperimentale.

Figura 3.3 Termosonda modello HD9219 Delta Ohm

Tipologia tubo	D _{int}	А	Q
	μ m	$\mu { m m}^2$	mL/h
			0.2
			0.4
			0.6
Nation TT030	762 300	456406 7	0.8
	102.309	430400.7	2.2
			2.5
			5
			6.8
			0.32
			0.63
			0.95
Nation TT050	1203 /82	1137547	1.26
Nafion TT050	1203.402	1137347	3.47
			3.95
			7.89
			10.74
			0.65
			1.29
			1.94
Nation TT110	2460	4752016	2.58
Nation TT110	2400	4752910	7.1
			8.07
			16.14
			21.94

Tabella 3.10 Riassunto delle principali grandezze ottenute

3.3 Procedimento di raccolta delle misure

In questo paragrafo verranno illustrate le modalità di acquisizione dei dati sperimentali, effettuate attraverso l'utilizzo della componente informatica, in parte già analizzata nel Capitolo 2.4, costituita dal software per l'acquisizione di immagini e filmati, dal software di analisi delle immagini e dal software di calcolo. Essendo l'Exclusion Zone un fenomeno che si sviluppa su scala micrometrica, è stato fondamentale approcciarsi al problema in modo rigoroso e sistematico, in modo da ridurre al minimo eventuali errori o imprecisioni sulla stima delle velocità e sulle dimensioni dell'EZ.

3.3.1 Operazioni preliminari: lavaggio dei tubi, preparazione della sospensione e avvio della componente idraulica

Prima dell'avvio e al termine di ogni prova, l'intero sistema idraulico, costituito dai tubi Tygon e Nafion, è stato oggetto di lavaggio per garantire che i risultati non fossero alterati da residui di precedenti analisi. È stato riscontrato infatti, che il Nafion, non soggetto a questo trattamento, presenta delle zone di esclusione irregolari e asimmetriche. Tale operazione consiste nel far circolare acqua ultrapura Milli-Q all'interno del sistema idraulico, tramite il sistema di pompa e siringa. Il processo si articola in due fasi:

- Fase iniziale; prima dell'avvio di ogni prova l'operazione è in modalità flussaggio, utilizzando 20 mL di acqua Milli-Q e impostando una portata pari a 90 mL/h. In questo modo tutti i condotti sono interessati molto velocemente dal flusso di portata e la velocità di esso permette una rapida pulizia. La prova ha la durata di 10 minuti
- Fase finale; al termine di ogni giornata di prova, si esegue un ulteriore trattamento di pulizia, utilizzando 60 mL di acqua Milli-Q e impostando una portata pari a 0.5 mL/h, per una durata complessiva di 12 ore

Per quanto concerne la preparazione delle sospensioni, è stato necessario utilizzare la tecnica delle diluizioni seriali per garantire un corretto bilanciamento delle quantità di solvente e soluto tra le successive sospensioni. È stata impiegata acqua Milli-Q come solvente e microsfere in polistirene monodisperso come tracciante, avente concentrazione iniziale pari a $4.55 \cdot 10^{10}$ particelle per mL. La prima sospensione è stata preparata introducendo 375 μ l di soluzione di microsfere in 150 mL di acqua Milli-Q ultrapura. La miscela così ottenuta presentava una concentrazione iniziale pari a $5.7 \cdot 10^8$ particelle per 150 mL di acqua, corrispondenti a $4.00 \cdot 10^6$ particelle per mL. La seconda sospensione è stata prodotta diluendo 120 mL della prima sospensione in 30 mL di acqua Milli-Q. In tal modo la seconda miscela presentava una densità nominale pari a $3.20 \cdot 10^6$ particelle per mL. Ripetendo tale operazione per sette volte, sono state ottenute le seguenti sospensioni:

- $1.06 \cdot 10^6$ particelle per mL
- 1.31.10⁶ particelle per mL
- $1.64 \cdot 10^6$ particelle per mL
- $2.05 \cdot 10^6$ particelle per mL
- $2.56 \cdot 10^6$ particelle per mL
- $3.20 \cdot 10^6$ particelle per mL
- $4.00 \cdot 10^6$ particelle per mL

Per ottenere sospensioni con una densità nominale maggiore, è stata utilizzata una miscela iniziale costituita da 500 μ l di tracciante in 49.5 mL di acqua Milli-Q, corrispondente alla soluzione avente $4.6 \cdot 10^8$ particelle per mL. A partire da essa, diluendo con rapporto 1:10, è stata ottenuta l'ultima sospensione analizzata. Di seguito si riportano le sospensioni aventi concentrazioni maggiori di tracciante:

- $4.60 \cdot 10^7$ particelle per mL
- $4.60 \cdot 10^8$ particelle per mL

Sono state ottenute anche due sospensioni aventi rispettivamente $1.00 \cdot 10^4$ e $1.00 \cdot 10^5$ particelle per mL, operando una diluizione, con rapporto 1:100, a partire dalla sospensione avente $1.06 \cdot 10^6$ particelle per mL. Si specifica che non è stato possibile analizzare queste ultime due sospensioni a causa della difficoltà di rilevamento a video delle particelle. In Figura 3.4 è rappresentata la pipetta utilizzata per la produzione delle sospensioni.

Figura 3.4 Pipetta 1000 in dotazione del Centro Ricerche SMAT

Una volta prodotte, le sospensioni sono state sottoposte ad una fase di agitazione mediante centrifuga elettrica, già descritta nel Paragrafo 2.1, impostando una frequenza pari a 35 Hz per circa due minuti. Tale operazione ha permesso una miscelazione ottimale del tracciante in acqua. La siringa, con all'interno la sospensione, è stata posizionata e fissata sulla pompa. Ad essa è stato collegato il primo tubo Tygon, previo inserimento di un beccuccio, avente la funzione di rendere ermetica la giunzione tra le due parti, la quale se non fosse verificata indurrebbe alterazioni nella fase di acquisizione dei dati. Il collegamento tra tubo Tygon e tubo in Nafion è stato invece ottenuto inserendo l'uno nell'altro in condizione asciutta; in seguito il campione di Nafion è stato fissato all'interno di un piattino circolare ed immerso in acqua, favorendo così una giunzione ermetica, grazie all'aumento di volume del polimero. L'avvio della componente idraulica è stato effettuato impostando una portata pari a 100 mL/h, così da rendere rapido il riempimento di tutti i tubi fino al recipiente di raccolta. Infine, è stata impostata la portata di interesse e fatta partire la prova.

3.3.2 Acquisizione di immagini e filmati

L'acquisizione di immagini e filmati è stata effettuata grazie all'utilizzo della componente ottica e informatica in dotazione del Centro Ricerche, già descritti nel Paragrafo 2.3 e 2.4. Il binomio microscopio e fotocamera hanno permesso di agevolare la visualizzazione a video del tubo analizzato e di acquisire i dati in maniera precisa e omogenea. Di fondamentale importanza è stato il settaggio di determinati parametri riguardanti sia il microscopio che il relativo software di acquisizioni delle immagini (LAS). In particolare, dal punto di vista della componente ottica, sono stati regolati i seguenti parametri:

- **Contrasto di fase**, impostato sul rapporto 10/20, il migliore per visualizzare al meglio l'ingrandimento 10x
- Luminosità, impostata preferenzialmente sul valore di 2,5 per la maggior parte delle analisi effettuate

Per quanto riguarda invece la componente informatica, è stata posta attenzione sui parametri quali esposizione, guadagno e gamma, i cui valori sono stati variati al variare del tubo analizzato. In Tabella 3.11 sono riassunte le impostazioni utilizzate al variare dei tubi esaminati, che hanno permesso di visualizzare al meglio le microsfere e, allo stesso tempo, di ottenere immagini e filmati di dimensioni plausibili in termini di memoria. A tal proposito, la fotocamera è stata impostata, dal punto di vista dell'acquisizione dei fotogrammi, alle dimensioni 640 pixel X 480 pixel, corrispondenti a 870 μ m X 653 μ m, in scala di grigi.

Tubo in Nafion	Esposizione [ms]	Guadagno	Gamma
Nafion TT030	17.3	2.4	5
Nafion TT050	1.76	1.7x	10
Nafion TT110	18.3	1.7x	8.22

Tabella 3.11 Impostazioni utilizzate per la visualizzazione delle microsfere per i diversi tubi analizzati

Il sofware LAS permette l'acquisizione di filmati in formato .avi; le registrazioni effettuate in laboratorio hanno avuto durata di 20 secondi, corrispondenti a circa

100 frame per secondo, per un totale di circa 2000 frame. Tali filmati sono stati successivamente analizzati per mezzo del sofware SFA, acronimo di Speed Flux Analyzer, il quale ha permesso di verificare che la teoria fluidodinamica, esplicata attraverso il calcolo delle velocità delle particelle, fosse rispettata anche in presenza di EZ. Il programma SFA, per poter essere operativo, necessita di un cambio di formato video, da .avi a sfa.avi. La schermata principale del software presenta una serie di parametri che devono essere opportunamente modificati per la corretta analisi dei filmati. Si ricordi, inoltre, che la registrazione dei video deve avvenire in particolari condizioni di quiete, evitando qualsiasi interferenza esterna (urti, vibrazioni, rumori, etc.), in modo da garantire un'ottima visibilità delle particelle per ogni frame. Di seguito si riportano le varie impostazioni che è possibile modificare dall'interfaccia del software SFA:

Rapporto pixel/micron. I frame che costituiscono il filmato hanno le dimensioni in μm, il software SFA rielabora tali immagini trasformandole in pixel, aventi dimensioni 640 pixel X 480 pixel. Il rapporto, dunque, risulta essere il seguente:

$$\frac{640\,px}{870\,\mu m} = 0.74\frac{px}{\mu m} \tag{3.14}$$

Tale rapporto è stato utilizzato per tutti i tubi esaminati

- Direzione del flusso, da destra verso sinistra, avendo impostato il sistema di pompaggio in modalità flussaggio
- Larghezza e altezza della ROI (Region Of Interest). La ROI è la regione, aventi dimensioni opportunamente scelte, in cui il sofware SFA calcola la velocità media del tracciante. Come si nota in Figura 3.5, questa regione è divisa in due sotto regioni, una di colore verde, che descrive l'effettiva area analizzata, e una di colore rosso, che invece indica la massima estensione dell'area di ricerca. Le dimensioni della ROI variano tra un massimo corrispondente alla grandezza del fotogramma, pari a 640 px X 480 px, e un minimo avente dimensioni 255 px X 26 px, equivalenti a 344.6 μ m X 35.14 μ m

Figura 3.5 Sezione della ROI utilizzata per lo studio delle velocità

La regione di interesse può essere posizionata in qualsiasi punto all'interno del fotogramma, sia trascinandola con il mouse, sia modificando le coordinate X e Y nelle impostazioni presenti

- Massimo numero di frame da analizzare. Per fare in modo che i valori di velocità in output dal programma siano quanto più robusti e coerenti possibili, è stato deciso di impostare il numero massimo di 500 frame, corrispondenti a 5 secondi di filmato. In tal modo sono stati ricavati quattro valori di velocità per ogni regione esaminata
- Velocità [μm/s]; rappresenta la velocità media, supposta costante per ogni intervallo temporale analizzato, delle microsfere intercettate all'interno della zona verde della regione di interesse
- **Spostamento per frame** [px], ovvero lo spostamento medio per frame delle particelle all'interno della regione verde della ROI
- Deviazione standard [px]. Tale valore rappresenta la deviazione standard media dello spostamento per frame, riferito al frame e all'intervallo di tempo considerato (in Figura 3.9 è rappresentato quanto detto in forma grafica). La deviazione standard costituisce un valore molto importante per capire la bontà dei risultati; se infatti essa risulta minore di 1 px, la misura si considera accurata, mentre se superiore a 2 px deve essere scartata. In accordo con le considerazioni presenti sul precedente lavoro di tesi [17], in Tabella 3.12 sono evidenziati i valori limite accettabili di deviazione standard per diversi intervalli di velocità.

V	Intervallo σ_i
μm/s	px
0.00 - 120.00	0.00 - 0.05
120.00 - 250.00	0.02 - 0.12
250.00 - 450.00	0.12 - 0.24
450.00 - 650.00	0.22 - 0.30
650.00 - 750.00	0.22 - 0.35
750.00 - 950.00	0.34 - 0.47
950.00 - 1200.00	0.45 - 0.58
1200.00 - 1450.00	0.58 - 0.8

Tabella 3.12 Intervalli di accettazione delle misure

In Figura 3.6 sono rappresentate le impostazioni presenti nell'interfaccia del programma SFA, mentre in Figura 3.7 sono riportate le impostazioni riguardanti il programma LAS.

Property	Value			
 Acquisition settings 				
Pixel/micron	0,74			
Flux direction	Left to right			
A ROI geometry	[(0, 34), 255 x 26]			
Х	0			
γ	34			
Width	255			
Height	26			
Processing constraints				
Max number of frame	500			

Figura 3.6 Impostazioni presenti nella schermata principale del software SFA

Figura 3.7 Impostazioni presenti nella schermata principale del software SFA

3.3.3 Valutazione delle velocità sperimentali e delle relative deviazioni standard

Al termine delle operazioni di impostazione del software SFA, è stato fissato il sistema di riferimento, sfruttando determinati punti fissi della schermata video. Per semplicità, si è deciso di posizionare la regione di interesse in corrispondenza del bordo interno del tubo e, allo stesso momento, addossata al lato sinistro della schermata, così da garantire sempre la corretta acquisizione dei dati. Avendo scelto questo sistema di riferimento, i filmati sono stati analizzati muovendosi dall'alto verso il basso, associando ordinata y = 0 al centro del tubo e ordinata y = R al bordo interno. Le stesse condizioni sono state successivamente implementate nel software di calcolo MATLAB, al fine di garantire uniformità per quanto riguarda la convenzione scelta. In Figura 3.8 viene riportato un esempio di posizionamento

tipico della ROI. Si specifica che il lato in alto della figura rappresenta il bordo interno del tubo da cui si parte per la raccolta delle misure.

Figura 3.8 Esempio di posizionamento della ROI all'interno della schermata video del software SFA

Per assicurare che l'analisi effettuata fosse coerente con quanto fatto dalla precedente ricerca di tesi, la raccolta dati è stata svolta in maniera rigorosa, considerando la velocità come il valore rappresentativo della particella posta al centro della ROI, in accordo con la convenzione implementata nel software SFA. Pertanto, posizionando la regione di interesse sul bordo interno del tubo, la prima misura di velocità fa riferimento alla seguente ordinata:

$$y_1 = r - \frac{35.14}{2} \left[\mu m\right] \tag{3.15}$$

Si specifica inoltre che, al fine di ottimizzare i dati rilevabili da una singola schermata, a partire dalla prima misura sono stati scelti diversi passi, a seconda della dimensione del tubo; in particolare si ha:

- passo di 52 pixel per il tubo in Nafion TT110, pari al doppio dell'altezza minima della ROI
- passo di 26 pixel per il tubo in Nafion TT030, pari all'altezza minima della ROI

Il passo differente è dovuto al diametro del tubo esaminato; infatti, per il Nafion TT030 è stato necessario infittire la raccolta dati per rendente affidabile l'interpolazione e il confronto di quest'ultima con la curva teorica; di contro, per il Nafion TT110, avente diametro di gran lunga superiore al TT030 (Tabella 3.10), è risultato sufficiente raccogliere i dati in punti più distanti tra di loro. Ciò ha permesso di velocizzare le operazioni senza rinunciare ad un'accurata analisi nelle fasi successive. In definitiva, partendo dalla prima misurazione avente ordinata y_1 , le successive sono state ottenute sommando alla prima il passo scelto. Come accennato precedentemente, al fine di rendere più robusta l'analisi dei dati ricavati dal software, è stato necessario suddividere il video in quattro intervalli di 5 secondi, contenenti ognuno circa 500 frame. Tale scelta ha determinato quattro stime di velocità media, v_i , spostamento, s_i , e deviazione standard, σ_i , delle microsfere. In Figura 3.9 si è messo in evidenza quanto detto finora.

Figura 3.9 Esempio di elaborazione dei dati ricavati da SFA, per ogni posizione occupata dalla ROI, [17]

Il programma calcola i dati in pixel, ad eccezione della velocità, per la quale i valori sono dati in μ m/s. Si è resa necessaria perciò la conversione delle unità di misura dei risultati ottenuti, in modo tale da poterli confrontare con quelli teorici. Inoltre, per rendere ancor di più affidabile l'intero processo di acquisizione delle misure, è stata calcolata la velocità media delle microsfere, per ogni intervallo di

tempo, partendo dal valore dello spostamento, s_i . La relazione che ha permesso di ricavare la velocità è la seguente:

$$v_{s,i} = \frac{s_i \cdot 500}{0.74 \cdot 5} \left[\frac{\mu m}{s}\right]$$
(3.16)

in cui:

- s_i: spostamento per frame relativo all'i-esimo intervallo [pixel]
- 500: numero di frame che il software analizza per ogni intervallo i-esimo
- 0.74: rapporto pixel/micron, già ricavata al paragrafo 3.3.2 [px/μm]
- 5: durata dell'i-esimo intervallo

L'operazione di calcolo appena mostrata è stata effettuata anche per i valori di deviazione standard. Facendo riferimento all'equazione 3.16, è possibile determinare i valori di deviazione standard a partire da quelli dati dal software:

$$\sigma_{\nu_{s,i}} = \frac{\sigma_{s_i} \cdot 500}{0.74 \cdot 5} \left[\frac{\mu m}{s}\right] \tag{3.17}$$

in cui:

- $\sigma_{v_{s,i}}$: deviazione standard della velocità ricavata dallo spostamento per frame si nell'i-esimo intervallo [μ m/s]
- σ_{s_i} : deviazione standard dello spostamento per frame fornita dal software e riferita all'i-esimo intervallo

Noti quindi i valori della velocità media e della relativa deviazione standard, sono stati definiti i valori stimati delle due grandezze al fine di ottenere i profili di velocità sperimentali. Data la suddivisione del video in quattro blocchi, per ogni posizione della regione di interesse sono stati calcolati quattro valori di velocità media e di deviazione standard. Per quanto riguarda la velocità, ad ogni posizione della ROI è stato assegnato un unico valore, ricavato dalla media delle quattro stime di velocità precedentemente ottenute:

$$v_y = \frac{1}{N} \sum_{k=1}^{N} (v_{i,s})_y \tag{3.18}$$

in cui:

- N: numero di valori di velocità per ogni ordinata esaminata (N = 4)
- (v_{i,s})_y: velocità media riferita allo spostamento per frame, relativa all'i-esimo intervallo e per ogni ordinata y

Per quanto concerne la deviazione standard, essendo per definizione uno scarto quadratico, non è possibile utilizzare la relazione della media campionaria per calcolarne il suo valor medio, ma viene eseguita una somma in quadratura delle quattro stime possedute. Si ricorda che il campione di misura è costituito da quattro valori di velocità media, ognuno con la propria deviazione standard, e per poter applicare la teoria della propagazione degli errori per il calcolo della varianza della media campionaria, è stato necessario utilizzare la seguente formulazione, riferita al caso generale in cui si hanno misurazioni indipendenti tra di loro [31]:

$$\sigma_y^2 = \sum_{k=1}^4 (\frac{df}{dx_k})^2 \cdot \sigma_{x_k}^2$$
(3.19)

in cui:

- x_k: misure effettuate
- **f**: campione di misura n-dimensionale formato dalle misure x_k.

In riferimento al caso in esame, considerando che la somma delle derivate parziali è pari a 1/N, è possibile riscrivere l'equazione 3.19 nel seguente modo:

$$\sigma_{v_y} = \sqrt{\frac{\sigma_{v_{s,1}}^2 + \sigma_{v_{s,2}}^2 + \sigma_{v_{s,3}}^2 + \sigma_{v_{s,4}}^2}{N}}$$
(3.20)

in cui:

• $\sigma^2_{vs,i}$: quadrato della deviazione standard i-esima dello spostamento per frame forniti dal software e convertiti in μ m/s

In Tabella 3.13 è riportata la modalità di tabulazione e calcolo effettuate per ogni prova riguardo l'analisi dei profili di velocità.

Frame	t	Х	Y	v	Shift x frame	σ	v	σ	$\overline{\mathcal{V}}$	$\overline{\sigma}$
	s	px	px	μm/s	px	px	μm/s	μm/s	μm/s	μm/s
0-500	5	0	129	127	0.94	0.05	127.0	6.8		
500-1000	5	0	129	120	0.89	0.07	120.3	9.5	102.2	8.0
1000-1500	5	0	129	124	0.92	0.08	124.3	10.8	125.5	0.9
1500-2000	5	0	129	122	0.9	0.06	121.6	8.1		

Tabella 3.13 Esempio di organizzazione dei dati e relativi calcoli per la stima finale di velocità media e deviazione standard media

3.3.4 Valutazione dell'ampiezza dello spessore della zona di esclusione (EZ)

Il software di acquisizione delle immagini LAS, oltre a permettere la registrazione di filmati, consente di catturare delle immagini e di poter valutare, su di esse, l'ampiezza dell'EZ. Avendo impostato l'ingrandimento del microscopio al valore 10x, sono state catturate delle immagini con dimensioni pari a 870 μ m X 653 μ m, ovvero 640 pixel X 480 pixel. In Figura 3.10 è riportato un esempio di acquisizione delle dimensioni dell'EZ tramite il programma LAS.

Figura 3.10 Modalità di acquisizione delle dimensioni dell'EZ

Come è già stato specificato in precedenza, è stato esaminato lo sviluppo dell'Exclusion Zone sui condotti in Nafion TT030, TT050 e TT110, al variare delle sospensioni riportate nel Paragrafo 3.3.1 e al variare delle portate presenti in Tabella 3.10. Si specifica inoltre che sono state acquisite le dimensioni dell'EZ in tre punti differenti a partire da ognuno dei due bordi interni del tubo analizzato. Per ogni portata, la prova ha avuto durata di un'ora, misurando lo sviluppo dell'EZ ad intervalli di 15 minuti, per un totale di 12 misure per ogni bordo. La migliore stima tra tutti i valori coì ottenuti, è stata ricavata applicando la formula della media campionaria nei riguardi dei 6 valori acquisiti durante l'ultimo intervallo, in cui si è supposto che l'EZ fosse completamente sviluppata:

$$\mu_{EZ} = \frac{1}{N} \sum_{i=1}^{6} EZ_i \tag{3.21}$$

in cui μ_{EZ} rappresenta la media campionaria dei sei valori ottenuti, mentre \mathbf{EZ}_i rappresenta il valore i-esimo della zona di esclusione al variare della portata analizzata. Per ognuno dei valori acquisiti inoltre, è stata calcolata la deviazione standard tramite la seguente relazione:

$$\sigma_{EZ} = \sqrt{\frac{\sum_{i=1}^{6} (EZ_i - \mu_{EZ})^2}{N - 1}}$$
(3.22)

In Tabella 3.14 sono illustrate le modalità di tabulazione e calcolo effettuate per ogni prova riguardo l'analisi dello sviluppo dell'EZ.

Tabella 3.14 Esempio di organizzazione dei dati e relativi calcoli per la stima delle dimensioni dell'EZ

Q		Bordo s	uperiore			Bordo inferiore				$\overline{\sigma}$
mL/h	15'	30'	45'	60'	15'	30'	45'	60'	μm	μm
	202.5	212.6	211.5	207.0	213.7	208.1	207.0	207.0		
0.32	202.5	202.5	213.7	209.3	201.4	213.8	200.3	207.1	208.9	3.1
	203.6	209.3	207.0	208.1	216.0	203.6	213.8	214.9		

Capitolo 4

Risultati sperimentali

Nel seguente capitolo verranno presentati i risultati sperimentali relativi all'analisi dei profili di velocità e allo studio delle dimensioni dell'Exclusion Zone. In particolare, verranno confrontati, per i tubi analizzati, i profili di velocità sperimentali con i relativi profili teorici. Come già specificato nei capitoli precedenti, questo studio è stato suddiviso in due fasi:

- 1° fase di taratura, effettuata tramite l'utilizzo del tubo in Nafion TT110, al fine di mettere a punto gli strumenti di laboratorio e al contempo, cercare di ricondursi, dal punto di vista fluidodinamico, a dei risultati in linea con quelli raggiunti dalla precedente ricerca
- 2° fase di analisi sul tubo in Nafion TT030, per appurare che le condizioni fluidodinamiche siano rispettate anche per diametri inferiori

Per quanto riguarda invece lo studio sulle dimensioni dell'EZ, sono state eseguite le misurazioni al variare della portata e della sospensione, cercando di giungere ad una relazione che leghi il fenomeno dell'EZ a determinate grandezze idrauliche.

4.1 Taratura e analisi con il tubo in Nafion TT110

4.1.1 Caratteristiche idrauliche e modalità di acquisizione

La fase di taratura delle apparecchiature sperimentali è stata di fondamentale importanza per cercare di ottenere dei risultati quanto più robusti e coerenti possibili. L'uso del condotto in Nafion TT110, da un lato ha consentito la messa a punto del microscopio ottico e del software di acquisizione delle immagini LAS, dall'altro ha dato la possibilità di verificare che si ottenessero dei risultati in linea con quelli già consolidati dalla precedente ricerca. Di seguito si riportano le variabili utilizzate per confrontare i profili di velocità sperimentali con i relativi profili teorici:

- D_{int}, ovvero diametro interno del tubo riportato in Tabella 3.10
- Q, portata imposta a sistema di flussaggio
- v, velocità media, il cui valore è pari al rapporto tra la portata immessa Q e l'area della sezione trasversale del tubo A
- J, ossia cadente piezometrica, già definita dall'equazione 3.6
- Re, numero di Reynolds, già definito dall'equazione 3.8

Definiti i parametri di interesse, sono state scelte le portate seguenti, comprese nel range 0.2 - 6.8 mL/h (si ricorda che sono state considerate le stesse portate già analizzate dalla precedente ricerca dell'Ing. Losero, in modo tale da avere un confronto diretto tra i diversi risultati):

- 0.6 mL/h
- 0.8 mL/h
- 2.5 mL/h

Per quanto riguarda la scelta delle sospensioni, nella fase preliminare non è stata posta attenzione alla sospensione da utilizzare, in quanto è stato dimostrato che la caratterizzazione fluidodinamica risulta essere indipendente da essa (tale ipotesi non sarà più valida durante lo studio riguardo lo sviluppo delle dimensioni dell'EZ). È stato perciò deciso di analizzare una sospensione costituita da 50 μ l di microsfere in 50 mL di acqua Milli-Q. Le portate analizzate sono state scelte in funzione della migliore visualizzazione delle microsfere da parte dei software LAS e SFA. La scelta di portate superiori, e quindi di velocità maggiori, avrebbe comportato una visione meno chiara del tracciante e di conseguenza stime di velocità meno accurate. Per il prosieguo della trattazione, è necessario tenere in conto di alcuni fattori che hanno determinato una leggera differenza tra i valori di velocità sperimentali e teorici. Dal punto di vista del microscopio, essendo il LEICA DM IRB un microscopio di tipo invertito, presenta gli obiettivi al di sotto del piattino portaoggetti. Ciò comporta che il fascio luminoso arrivi alla sezione orizzontale, posta al centro del tubo, dopo aver superato la piastra del microscopio, lo strato di acqua Milli-Q, lo spessore del tubo e le microsfere. Tale situazione porta a commettere degli errori di stima, considerati però accettabili, essendo di entità limitata. Un altro fattore che tende a provocare errori di acquisizione riguarda la grandezza del fotogramma che LAS è in grado di elaborare. Come è già stato specificato nel paragrafo 3.3.2, la grandezza di tale fotogramma corrisponde a 800 μ m x 653 μ m, dimensioni di gran lunga inferiori rispetto a quella del tubo in Nafion TT110, che non permettono di raggiungere il centro del tubo con una sola schermata. L'analisi di una sola schermata ha messo in evidenza una tendenza alla sottostima della velocità, spostandosi dal bordo interno verso il centro del tubo, per una distanza pari a 653 μ m (ovvero la larghezza verticale del fotogramma). Per ovviare a tali problemi, è stato necessario acquisire più schermate, tra di loro sovrapposte, spostando la piastra del microscopio in direzione verticale, rispettando, per ogni fotogramma, la stessa verticale; in tal modo, si è riusciti a minimizzare le differenze tra i profili di velocità sperimentali e teorici. Si noti inoltre che non è stato possibile analizzare portate inferiori a 0.02 mL/h in quanto l'eccessiva riduzione della velocità non ha permesso al software di acquisire dati robusti, a causa dei disturbi di fondo, particolarmente incisivi per portate di questo genere. In Figura 4.1 è riportata una rappresentazione delle modalità di acquisizione delle successive schermate.

Figura 4.1 Modalità di acquisizione delle successive schermate per la corretta stima delle velocità

In Tabella 4.1 si riportano le portate analizzate e i relativi parametri necessari alla definizione della curva di velocità teorica:

Q	Q	$\overline{\mathcal{V}}$	Re	λ	J	V _{max teorica}
μ L/h	μ m ³ /s	μm/s	-	-	-	μm/s
0.6	1.67E+08	35.067	0.086	741.904	1.89E-05	70.134
0.8	2.22E+08	46.754	0.115	556.444	2.52E-05	93.509
2.5	6.94E+08	146.108	0.359	178.062	7.88E-05	292.216

Tabella 4.1 Portate analizzate e parametri di riferimento del tubo in Nafion TT110

Si ricorda che tutti i parametri utilizzati per caratterizzare il problema fluidodinamico, in riferimento al Nafion TT110, sono stati calcolati in condizioni bagnate, situazione in cui il Nafion manifesta variazioni dimensionali. L'assenza di microsfere all'interno dell'Exclusion Zone non ha permesso, in tale zona, la valutazione della velocità da parte del software SFA, ragion per cui sono stati assegnati valori nulli di velocità. In Figura 4.2 è ben rappresentato quanto appena detto.

Figura 4.2 Esempio di profilo di velocità in presenza del fenomeno dell'EZ

4.1.2 Profili di velocità per il Nafion TT110

Le modalità di acquisizione dei dati sperimentali di velocità, così come sono state ampiamente spiegate nei precedenti paragrafi, hanno permesso di raggiungere lo scopo prefissato e i dati raccolti sono stati tabellati in modo tale da garantire una corretta lettura dei parametri in gioco. In Figura 4.3 è riportato un esempio di tabulazione dei dati, utilizzata per tutte le sperimentazioni effettuate. Si riporta, di seguito, una breve descrizione dei parametri presenti:

Frame. Descrive gli intervalli di tempo utilizzati (4) per campionare la velocità, lo spostamento per frame e la deviazione standard.

t. Indica la durata di ogni intervallo di tempo analizzato, pari a 5 secondi, per un totale di 20 secondi per ogni registrazione.

X, **Y**. Rappresentano le coordinate del vertice alto sinistro della ROI. Il valore della coordinata X è pari a 0, in quanto la posizione di tale regione è a contatto con il bordo sinistro della schermata video. I valori delle coordinate sono riportati in pixel, essendo l'unità di misura usata dal software SFA, mentre per quanto riguarda la coordinata Y sono riportati anche in micron, in modo da uniformare tutte le unità di misura.

 $v_{stimata}$, Shift x frame, $\sigma_{stimata}$. Tali valori indicano le stime di velocità, spostamento per frame e deviazione standard rivelati dal software SFA.

Figura 4.3 Esempio delle modalità di tabulazione dei dati acquisiti

 $v_{calcolata}$, $\sigma_{calcolata}$. Essi rappresentano i valori di velocità e deviazione standard calcolati a partire dallo spostamento per frame. Come già spiegato precedentemente, tale operazione è necessaria per valutare la bontà degli arrotondamenti che il software SFA apporta arbitrariamente.

 \overline{v} , $\overline{\sigma}$. Indicano i valori medi di velocità e deviazione standard (la loro determinazione è stata affrontata nel paragrafo 3.3.3). Questi rappresentano i valori utilizzati per descrivere i profili di velocità sperimentali da confrontare con quelli teorici.

In riferimento alla Figura 4.3 è evidente come sia stata posta la massima cura all'acquisizione dei dati sperimentali. La suddivisione del campionamento in quattro intervalli ha permesso di escludere i valori di velocità non in linea con i restanti, appartenenti alla medesima ordinata. Come già accennato precedentemente, le perturbazioni esterne al fenomeno, impossibili da prevedere, possono causare alterazioni alle velocità delle microsfere, data l'estrema sensibilità della fotocamera e del software LAS, il quale calcola tali perturbazioni come effettivi spostamenti delle particelle. Tali problemi sono resi ancor più evidenti dai valori di deviazione standard; infatti, ricordando le limitazioni presenti in Tabella 3.12, si può notare immediatamente l'alterazione della stima da parte di LAS. Alla luce di quanto detto, è stato quindi deciso di non considerare tali valori per il calcolo della velocità media e della deviazione standard media. È necessario sottolineare che, all'interno dell'Exclusion Zone, si hanno valori nulli di velocità a causa dell'assenza del tracciante e non perché si abbia acqua "ferma" (le particelle sono infatti l'unico elemento che permette al software SFA di stimare le velocità); inoltre, in relazione a quanto detto, sono state riscontrate deviazione standard eccessivamente alte; la causa può essere imputata alla presenza del bordo interno del tubo, che potrebbe provocare perturbazioni, su scala microscopica, tali da alterare qualsiasi stima delle misure. Dai risultati sperimentali riportati in Appendice A, è possibile notare che al variare della portata analizzata, e quindi all'aumentare della velocità del flusso, si hanno estensioni ridotte di EZ e tale evidenza si può chiaramente riscontrare nei grafici dei profili di velocità. Dal punto di vista grafico, in Figura 4.4 si riporta un esempio di profilo di velocità confrontato con quello teorico. Grazie all'utilizzo del software di calcolo Matlab, è stato possibile elaborare i dati e verificare la coerenza tra i dati sperimentali e quelli teorici.

Figura 4.4 Esempio di elaborazione dei dati sperimentali tramite l'utilizzo del software Matlab

Si specifica che, nella Figura appena riportata, la curva di velocità teorica è stata raffigurata da una linea continua blu, in modo tale da evidenziare la sovrapposizione con i dati sperimentali riportati in giallo. La linea rossa tratteggiata rappresenta il limite, a partite dal bordo interno del tubo, dello spessore raggiunto dall'Exclusion Zone per una data portata. In Figura 4.5, 4.6 e 4.7 sono riportate le curve sperimentali e teoriche riferite alle tre portate analizzare per il tubo in Nafion TT110. È possibile notare che la presenza dell'EZ, all'interno della sezione del tubo, non altera in alcun modo il profilo parabolico della velocità, tipico del moto laminare. Si può notare inoltre, che nei dintorni dell'asse centrale del tubo (corrispondente all'ordinata radiale Y = 0) non ci sia perfetta corrispondenza tra dati sperimentali e quelli teorici; ciò è dovuto, molto probabilmente, alle perturbazioni provocate dalle alte velocità presenti che, insieme agli errori di acquisizione da parte dei software LAS e SFA, ne hanno compromesso la stima corretta. In linea di massima però, i risultati si dimostrano coerenti dal punto di vista fluidodinamico e questo ha permesso di terminare la fase di taratura e di affermare che ci sia coerenza con i risultati ottenuti dalla precedente ricerca.

Figura 4.5 Confronto tra curva sperimentale e teorica per Q = 0.6 mL/h, Nafion TT110

Figura 4.6 Confronto tra curva sperimentale e teorica per Q = 0.8 mL/h, Nafion TT110

Figura 4.7 Confronto tra curva sperimentale e teorica per Q = 2.5 mL/h, Nafion TT110

Si specifica che per la portata Q = 2.5 mL/h, a differenza di quanto riportato nel paragrafo 3.3.3, è stato utilizzato un passo pari a 26 pixel, ovvero pari all'altezza minima della ROI.

In Tabella 4.2 sono riportati i valori di EZ che sono stati registrati al variare della portata analizzata:

Q	EZ			
mL/h	μ m			
0.6	340.904			
0.8	335.640			
2.5	214.159			

Tabella 4.2 Ampiezze di EZ misurate al variare delle portate analizzate, Nafion TT110

4.2 Analisi dei profili di velocità con tubo in Nafion TT030

4.2.1 Caratteristiche idrauiche

Definita la taratura dell'apparato sperimentale e verificata la corrispondenza dei risultati raggiunti con le precedenti ricerche, è stato analizzato il condotto in Nafion TT030, per confermare che la teoria fluidodinamica fosse rispettata, in presenza di EZ, anche al variare delle dimensioni del condotto. Le numerose prove, in questa fase, sono state effettuate utilizzando quattro diversi campioni, le cui dimensioni possono essere consultate in Tabella 3.1. Dal punto di vista della sospensione, sono state rispettate le condizioni già utilizzate in fase di taratura per il tubo in Nafion TT110. In riferimento alla Tabella 3.6, è possibile notare che per portate superiori a 0.8 mL/h si hanno valori elevati di velocità, i quali, come già ampiamente spiegato, potrebbero determinare delle perturbazioni che comprometterebbero la stima dei dati da parte del software SFA (dalle analisi infatti, sono risultati valori di deviazione standard eccessivamente alti, non rispettando, così, i limiti riportati in Tabella 3.12). Inoltre, la sperimentazione sul tubo in questione, ha messo in luce alcune difficoltà nel ricavare i profili di velocità per le portate inferiori a 0.2 ml/h. Per quanto riguarda le portate basse infatti, è stata riscontrata un'eccessiva sensibilità del sistema al passaggio del flusso, molto probabilmente dovuta allo spessore molto sottile e alle micro-bolle d'aria che si creavano all'interno dei tubi di raccordo; per questi motivi, la sperimentazione sul tubo in Nafion TT030 è stata effettuata analizzando le seguenti portate:

0.2 mL/h

0.4 mL/h 0.6 mL/h 0.8 mL/h

In tal modo è stato possibile acquisire stime robuste di velocità e superare le limitazioni date dalla componente informatica. In Tabella 4.3 si riportano i parametri necessari alla definizione della curva di velocità teorica, in riferimento alle portate analizzate.

Q	Q	$\overline{\mathcal{V}}$	Re	λ	J	v _{max teorica}
mL/h	$\mu m^3/s$	μm/s	-	-	-	μm/s
0.2	55556000	121.725	0.093	689.715	0.000684	243.450
0.4	111110000	243.445	0.186	344.864	0.001368	486.890
0.6	166670000	365.179	0.278	229.902	0.002052	730.357

Tabella 4.3 Portate analizzate e parametri di riferimento del tubo in Nafion TT030

Le variabili fluidodinamiche utilizzate corrispondono a quelle riportate per il tubo in Nafion TT110.

4.2.2 Profili di velocità per il Nafion TT030

Le modalità di acquisizione delle velocità sperimentali sono le stesse utilizzate, in fase di taratura, per il tubo in Nafion TT110. Date le dimensioni assai ridotte del condotto TT030, è stato possibile visualizzare completamente la sua sezione nella schermata video del software Speed Flux Analyzer. Questa situazione ha consentito di applicare un passo di 56 pixel, ovvero pari al doppio dell'altezza minima della ROI, per la raccolta dei dati, rendendo le operazioni di acquisizione più veloci, senza rinunciare alla robustezza delle stime. Quanto appena detto ha portato a definire i profili di velocità dell'intera sezione del tubo, rappresentati nelle Figure 4.8, 4.9, 4.10 e 4.11:

Figura 4.8 Confronto tra curva sperimentale e teorica per Q = 0.2 mL/h, Nafion TT030

Figura 4.9 Confronto tra curva sperimentale e teorica per Q = 0.4 mL/h, Nafion TT030

Figura 4.10 Confronto tra curva sperimentale e teorica per Q = 0.6 mL/h, Nafion TT030

Figura 4.11 Confronto tra curva sperimentale e teorica per Q = 0.8 mL/h, Nafion TT030

È necessario specificare che, in corrispondenza dell'interfaccia con l'EZ, essendo in presenza di acqua senza microsfere, la luminosità aumenta sensibilmente a causa della trasparenza del Nafion e questo non ha permesso la stima delle velocità in tale regione. Tuttavia, i valori sperimentali di velocità corrispondono, entro la propria deviazione standard, alla curva teorica. Per quanto riguarda invece le dimensioni dell'EZ, in Tabella 4.4 sono stati definiti i valori raggiunti dall'EZ a ridosso del
bordo superiore e inferiore del tubo. Per ognuno di essi sono stati misurati tre valori e, successivamente, ne è stata eseguita la media campionaria.

Tabella 4.4 Ampiezze di EZ misurate al variare delle portate analizzate per il tubo in Nafion TT030

Q		\overline{EZ}			
mL/h		μn	1		μ m
0.2	Bordo sup	112.874	112.86	111.872	112.535
	Bordo inf	107.730	105.678	104.668	106.025
0.4	Bordo sup	80.025	77.973	81.057	79.685
	Bordo inf	81.050	80.031	80.031	80.371
0.6	Bordo sup	70.791	71.817	73.876	72.161
	Bordo inf	76.947	73.876	75.921	75.581
0.8	Bordo sup	68.739	66.695	67.721	67.718
	Bordo inf	66.687	65.693	67.721	66.700

4.3 Ampiezza dell'Exclusion Zone

Parte fondamentale della presente tesi ha riguardato lo studio delle dimensioni dell'EZ, all'interno dei condotti in Nafion, e la ricerca di una relazione che leghi tale fenomeno a determinate caratteristiche idrauliche. L'attenzione è stata posta sulla variazione dei seguenti parametri:

- D_{int}, ovvero diametro interno dei condotti in Nafion
- *Concentrazione di microsfere in sospensione*, già affrontate nel paragrafo 3.3.1 nei riguardi della preparazione delle varie sospensioni
- *Numero di Reynolds*, da cui sono state ottenute le portate imposte al sistema di pompa e siringa

Come è già stato specificato nel paragrafo 3.2.2, per quanto riguarda il calcolo delle portate, sono stati fissati otto numeri di Reynolds e sono state determinate le portate corrispondenti al variare delle dimensioni dei condotti. I risultati così ottenuti possono essere consultati in Tabella 3.10. Si ricorda inoltre che, per quanto riguarda i

valori dei tubi analizzati, essi fanno riferimento alle condizioni bagnate, in quanto, il Nafion è un materiale che varia le sue dimensioni a contatto con l'acqua. Di seguito si riportano i diametri su cui è stata eseguita l'analisi:

- Nafion TT110, avente diametro interno di 2460.00 μ m
- Nafion TT050, avente diametro interno di 1203.50 μ m
- Nafion TT030, avente diametro interno di 762.30 μ m

) [m1/b]				EZ [µum]			
2 [IIII/II]		Bordo	superiore			Bordo in	feriore	
	15'	30'	45'	60'	15'	30'	45'	60'
0.2	91.476	93.383	101.125	102.401	93.383	88.883	86.633	94.508
	89.024	90.029	99.001	102.376	91.133	100.151	93.403	95.633
	92.658	93.376	95.653	101.257	95.686	100.126	93.403	99.001
	91.126	87.758	85.501	87.751	90.029	84.383	86.633	90.001
0.4	84.376	87.751	88.876	91.133	84.406	84.406	92.279	88.876
	91.126	92.258	91.126	87.758	87.751	88.905	81.009	92.258
	76.509	90.008	78.759	82.126	82.134	79.884	86.626	83.259
0.6	87.883	90.001	84.376	85.508	85.501	81.001	81.009	86.633
	86.655	85.501	87.751	88.876	88.883	82.126	87.758	84.383
	73.216	68.635	74.251	76.501	75.376	76.509	75.376	72.01
0.8	74.251	72.01	73.126	77.626	74.259	74.251	73.135	81.001
	69.751	77.634	74.251	77.634	73.126	72.001	76.501	79.876
	57.376	59.626	59.626	57.387	65.251	59.626	59.626	59.626
2.2	60.751	60.761	60.761	61.876	64.76	60.751	60.792	59.626
	63.001	64.126	60.844	61.876	56.262	59.626	61.876	64.51
	54.001	60.011	52.888	54.676	61.876	58.501	51.751	59.626
2.5	57.376	52.888	59.626	55.229	56.262	57.387	57.42	59.626
	59.636	60.761	51.763	57.376	61.876	55.137	58.501	55.126
	39.254	41.658	44.625	43.876	41.255	43.225	43.751	43.876
5	42.336	40.001	45.001	47.251	42.265	44.005	43.751	42.751
	43.596	39.998	46.626	47.251	42.256	41.251	46.001	47.251
	38.267	38.25	41.625	38.25	43.89	40.5	41.625	38.267
6.8	41.625	41.625	41.625	37.142	42.765	38.25	39.392	39.375
	38.25	38.25	42.765	38.25	41.001	39.375	41.625	39.375

Stime dello spessore dell'EZ effettuate a partire dal bordo superiore del tubo

Stime dello spessore dell'EZ effettuate a partire dal bordo inferiore del tubo

Figura 4.12 Esempio di tabulazione delle stime delle dimensioni dell'EZ

Per queste tre tipologie di tubi sono state applicate le modalità di acquisizione ed elaborazione riportate nel paragrafo 3.3.4, relativo alla valutazione delle dimensioni

dell'EZ. Si ricorda inoltre, che le prove, per ogni portata analizzata, sono durate 60 minuti e, a partire dal bordo inferiore e superiore del tubo, sono state effettuate tre misurazioni ogni 15 minuti, per un totale di 12 stime per ogni bordo interno. In Figura 4.12 è riportato un esempio di tabulazione dei dati utilizzata per tutte le sperimentazioni effettuate. In Figura 4.13, invece, è raffigurato un fotogramma del software LAS, in cui è possibile osservare la modalità di acquisizione delle misure effettuate in laboratorio.

Figura 4.13 Schermata del software LAS ed esempio di acquisizione delle misure dell'EZ

Nei paragrafi successivi saranno presentati i principali risultati raggiunti per le tre tipologie di tubo analizzate, al variare delle sospensioni e delle portate. In Allegato B, inoltre, è possibile consultare i dati completi ottenuti dalle varie sperimentazioni.

4.3.1 Tubo in Nafion TT030: risultati definitivi sulle dimensioni dell'EZ

Le sperimentazioni effettuate sul condotto in Nafion TT030 hanno evidenziato i risultati presentati di seguito; in particolare, sono riportati i valori di EZ e la loro normalizzazione rispetto al diametro interno, in quanto è il principale discriminante tra le diverse tipologie di tubo analizzate. Tale operazione risulterà importante nella

fase successiva di analisi dei risultati. Si specifica inoltre, che i risultati sono stati suddivisi per sospensione analizzata, avente come unità di misura la concentrazione di microsfere per millilitro (beads/mL).

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ} /D	$\overline{\sigma}/D$
-	μ m	μm	-	-
0.093	99.196	3.445	0.13	0.005
0.186	89.630	1.839	0.118	0.002
0.278	85.131	2.430	0.112	0.003
0.371	77.441	3.132	0.102	0.004
1.021	60.817	2.469	0.080	0.003
1.160	56.943	2.279	0.075	0.003
2.320	45.376	2.095	0.060	0.003
3.155	38.443	0.841	0.050	0.001
) a		1.0.6	1061	

Tabella 4.5 Risultati principali sulle dimensioni dell'EZ per il tubo in Nafion TT030

a) Sospensione: 1.06 x 10⁶ beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	$\overline{\sigma}/D$
-	μ m	μm	-	-
0.093	95.256	1.536	0.125	0.002
0.186	87.568	1.938	0.115	0.003
0.278	83.653	1.865	0.110	0.002
0.371	75.200	2.699	0.099	0.004
1.021	57.775	1.531	0.076	0.002
1.160	53.072	1.479	0.070	0.002
2.320	44.443	1.551	0.058	0.002
3.155	36.384	1.542	0.048	0.002
1 \ 0	•	1.01	1061	1 / 7

b) Sospensione: 1.31 x 10⁶ beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	σ/D	
-	μ m	μm	-	-	
0.093	90.383	1.368	0.119	0.002	
0.186	82.880	1.694	0.109	0.002	
0.278	75.004	4.004	0.098	0.005	
0.371	70.503	2.814	0.092	0.004	
1.021	52.128	1.696	0.068	0.002	
1.160	51.003	2.429	0.067	0.003	
2.320	40.700	2.624	0.053	0.003	
3.155	35.444	2.536	0.046	0.003	
c) Sospensione: 1.64 x 10 ⁶ beads/mL					

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	$\overline{\sigma}/D$
-	μ m	μ m	-	-
0.093	89.817	1.653	0.118	0.002
0.186	80.440	3.159	0.106	0.004
0.278	70.708	1.958	0.093	0.003
0.371	67.151	2.176	0.088	0.003
1.021	52.128	1.837	0.068	0.002
1.160	45.195	2.609	0.059	0.003
2.320	39.191	3.511	0.051	0.005
3.155	33.938	1.106	0.045	0.001
1) 0	•	2.05	1061	1 / T

d) Sospensione: 2.05 x 10⁶ beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	$\overline{\sigma}/D$
-	μ m	μm	-	-
0.093	86.731	1.017	0.114	0.001
0.186	78.507	1.975	0.103	0.003
0.278	67.354	1.585	0.088	0.002
0.371	62.820	3.370	0.082	0.004
1.021	48.378	2.016	0.063	0.003
1.160	44.255	1.838	0.058	0.002
2.320	37.125	1.882	0.049	0.002
3.155	32.625	0.712	0.043	0.001
	•	2.56	1061	1 / T

e) Sospensione: 2.56×10^6 beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	$\overline{\sigma}/D$	
-	μ m	μ m	-	-	
0.093	78.004	3.459	0.102	0.005	
0.186	62.448	3.891	0.082	0.005	
0.278	52.511	2.089	0.069	0.003	
0.371	47.256	2.563	0.062	0.003	
1.021	41.048	3.139	0.054	0.004	
1.160	39.188	2.405	0.051	0.003	
2.320	33.094	1.246	0.043	0.002	
3.155	28.879	2.327	0.038	0.003	
f) Sospensione: 3.20 x 10 ⁶ beads/mL					

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ} /D	$\overline{\sigma}/D$
-	μ m	μ m	-	-
0.093	69.193	3.162	0.091	0.004
0.186	50.443	2.603	0.066	0.003
0.278	46.322	2.163	0.061	0.003
0.371	41.253	1.533	0.054	0.002
1.021	32.861	1.007	0.043	0.001
1.160	31.128	2.995	0.041	0.004
2.320	28.774	0.664	0.038	0.001
3.155	26.337	2.464	0.035	0.003
	•	4.00	106.1	1 / т

g) Sospensione: 4.00 x 10⁶ beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	$\overline{\sigma}/D$
-	μ m	μm	-	-
0.093	89.253	1.363	0.117	0.002
0.186	73.690	4.073	0.097	0.005
0.278	65.251	4.500	0.086	0.006
0.371	53.448	2.330	0.070	0.003
1.021	40.508	1.882	0.053	0.002
1.160	39.384	3.413	0.052	0.004
2.320	27.750	2.212	0.036	0.003
3.155	24.009	1.168	0.031	0.002
1 \ 6		1.60	1071	

h) Sospensione: 4.60 x 10⁷ beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	$\overline{\sigma}/D$
-	μ m	μ m	-	-
0.093	57.430	4.034	0.075	0.005
0.186	48.572	1.496	0.064	0.002
0.278	46.274	1.576	0.061	0.002
0.371	40.031	0.871	0.053	0.001
1.021	30.566	1.101	0.040	0.001
1.160	30.000	1.694	0.039	0.002
2.320	25.125	0.581	0.033	0.001
3.155	22.130	0.914	0.029	0.001

i) Sospensione: 4.60 x 10⁸ beads/mL

4.3.2 Tubo in Nafion TT050: risultati definitivi sulle dimensioni dell'EZ

Si riportano i principali risultati ottenuti dalle sperimentazioni effettuate sul condotto in Nafion TT050. Anche in questo caso valgono le stesse considerazioni fatte per la tipologia di tubo TT030.

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ} /D	$\overline{\sigma}/D$
-	μ m	μ m	-	-
0.093	208.891	3.072	0.174	0.003
0.186	177.007	2.992	0.147	0.002
0.278	165.569	2.067	0.138	0.002
0.371	153.760	1.973	0.128	0.002
1.021	110.819	2.106	0.092	0.002
1.160	106.88	2.014	0.089	0.002
2.320	83.627	1.970	0.069	0.002
3.155	69.940	0.844	0.058	0.001

Tabella 4.6 Risultati principali sulle dimensioni dell'EZ per il tubo in Nafion TT050

a) Sospensione: 1.06 x 10⁶ beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	$\overline{\sigma}/D$
-	μ m	μ m	-	-
0.093	187.153	1.697	0.156	0.001
0.186	171.390	4.712	0.142	0.004
0.278	155.827	4.433	0.129	0.004
0.371	145.516	1.843	0.121	0.002
1.021	108.575	3.996	0.090	0.003
1.160	102.751	2.430	0.085	0.002
2.320	82.693	1.179	0.069	0.001
3.155	67.129	2.212	0.056	0.002
			6	

b) Sospensione: 1.31 x 10⁶ beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	$\overline{\sigma}/D$
-	μ m	μ m	-	-
0.093	189.943	5.755	0.158	0.005
0.186	166.698	10.866	0.139	0.009
0.278	156.485	2.570	0.130	0.002
0.371	139.716	2.408	0.116	0.002
1.021	103.514	3.550	0.086	0.003
1.160	98.837	1.905	0.082	0.002
2.320	80.254	1.363	0.067	0.001
3.155	68.815	2.407	0.057	0.002
			(

c) Sospensione: 1.64 x 10⁶ beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	$\overline{\sigma}/D$
-	μ m	μm	-	-
0.093	186.399	5.066	0.155	0.004
0.186	168.565	5.002	0.140	0.004
0.278	156.005	7.072	0.130	0.006
0.371	137.450	2.172	0.114	0.002
1.021	103.140	1.160	0.086	0.001
1.160	98.441	1.980	0.082	0.002
2.320	80.069	1.938	0.067	0.002
3.155	69.193	1.549	0.057	0.001
			(

d) Sospensione: 2.05 x 10⁶ beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	$\overline{\sigma}/D$
-	μ m	μ m	-	-
0.093	197.290	2.524	0.164	0.002
0.186	168.766	4.219	0.140	0.004
0.278	156.386	2.659	0.130	0.002
0.371	137.257	3.695	0.114	0.003
1.021	102.195	1.657	0.085	0.001
1.160	96.752	3.487	0.080	0.003
2.320	77.441	1.937	0.064	0.002
3.155	69.005	2.633	0.057	0.002
		0.56	1061 1	/ τ

e) Sospensione: 2.56 x 10⁶ beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	$\overline{\sigma}/D$
-	μ m	μ m	-	-
0.093	191.817	2.441	0.159	0.002
0.186	166.322	1.937	0.138	0.002
0.278	145.882	3.742	0.121	0.003
0.371	135.76	1.976	0.113	0.002
1.021	99.338	4.160	0.083	0.003
1.160	93.752	1.361	0.078	0.001
2.320	75.940	1.550	0.063	0.001
3.155	68.628	1.591	0.057	0.001

f) Sospensione: 3.20 x 10⁶ beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	$\overline{\sigma}/D$
-	μ m	μ m	-	-
0.093	179.088	3.671	0.149	0.003
0.186	155.635	4.430	0.129	0.004
0.278	137.633	3.155	0.114	0.003
0.371	128.826	1.982	0.107	0.002
1.021	96.752	2.359	0.080	0.002
1.160	92.632	1.158	0.077	0.001
2.320	72.376	2.630	0.060	0.002
3.155	65.254	1.418	0.054	0.001
			(

g) Sospensione: 4.00 x 10⁶ beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	$\overline{\sigma}/D$
-	μ m	μ m	-	-
0.093	150.694	5.031	0.125	0.004
0.186	121.133	2.538	0.101	0.002
0.278	108.197	2.065	0.090	0.002
0.371	98.069	3.726	0.081	0.003
1.021	70.131	3.156	0.058	0.003
1.160	67.879	3.158	0.056	0.003
2.320	53.628	2.431	0.045	0.002
3.155	48.382	1.885	0.040	0.002
1		1.00	1071 1	/ T

h) Sospensione: 4.60×10^7 beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	σ/D
-	μ m	μ m	-	-
0.093	58.506	2.935	0.049	0.002
0.186	51.380	2.820	0.043	0.002
0.278	48.568	3.135	0.040	0.003
0.371	47.255	3.560	0.039	0.003
1.021	34.892	3.118	0.029	0.003
1.160	33.941	3.586	0.028	0.003
2.320	30.000	2.095	0.025	0.002
3.155	24.563	1.802	0.02	0.001
		1 60		

i) Sospensione: 4.60 x 10⁸ beads/mL

4.3.3 Tubo in Nafion TT110: risultati definitivi sulle dimensioni dell'EZ

Allo stesso modo di quanto esposto per i due precedenti tubi, si riportano i principali risultati ottenuti dalle sperimentazioni effettuate sul condotto in Nafion TT110.

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	$\overline{\sigma}/D$
-	μ m	μ m	-	-
0.093	327.740	3.088	0.133	0.001
0.186	280.765	3.117	0.114	0.001
0.278	254.961	3.551	0.104	0.001
0.371	224.925	4.582	0.091	0.002
1.021	163.765	3.242	0.067	0.001
1.160	156.835	2.323	0.064	0.001
2.320	129.252	5.394	0.053	0.002
3.155	119.312	3.023	0.049	0.001
D (-	· · · · · · · · · · · · · · · · · · ·	1.06	10611	. /T

Tabella 4.7 Risultati principali sulle dimensioni dell'EZ per il tubo in Nafion TT110

a) Sospensione: 1.06 x 10⁶ beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	$\overline{\sigma}/D$
-	μ m	μ m	-	-
0.093	310.884	2.535	0.126	0.001
0.186	269.079	2.500	0.109	0.001
0.278	237.576	4.098	0.097	0.002
0.371	221.451	3.982	0.090	0.002
1.021	157.523	4.310	0.064	0.002
1.160	139.883	2.631	0.057	0.001
2.320	119.255	3.625	0.048	0.001
3.155	107.422	3.553	0.044	0.001
			6	

b) Sospensione: 1.31×10^6 beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	$\overline{\sigma}/D$
-	μ m	μ m	-	-
0.093	325.155	3.092	0.132	0.001
0.186	274.143	1.840	0.111	0.001
0.278	245.268	7.249	0.100	0.003
0.371	211.703	3.859	0.086	0.002
1.021	158.442	3.859	0.064	0.002
1.160	150.382	4.915	0.061	0.002
2.320	119.637	2.535	0.049	0.001
3.155	106.517	4.312	0.043	0.002
			(

c) Sospensione: 1.64 x 10⁶ beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	$\overline{\sigma}/D$
-	μ m	μ m	-	-
0.093	311.455	1.100	0.127	0.001
0.186	269.262	2.632	0.109	0.001
0.278	237.197	1.314	0.096	0.001
0.371	218.265	4.439	0.089	0.002
1.021	156.773	5.265	0.064	0.002
1.160	142.318	4.914	0.058	0.002
2.320	117.005	4.330	0.048	0.002
3.155	103.321	3.208	0.042	0.001
			(

d) Sospensione: 2.05 x 10⁶ beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	σ/D
-	μ m	μ m	-	-
0.093	335.944	7.738	0.137	0.003
0.186	276.409	4.133	0.112	0.002
0.278	241.133	2.720	0.098	0.001
0.371	217.329	4.309	0.088	0.002
1.021	156.942	4.314	0.064	0.002
1.160	145.133	2.758	0.059	0.001
2.320	117.379	2.211	0.048	0.001
3.155	106.464	4.220	0.043	0.002
		0.56	1061 1	/ T

e) Sospensione: 2.56 x 10⁶ beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	σ/D
-	μ m	μ m	-	-
0.093	335.944	7.738	0.137	0.003
0.186	276.409	4.133	0.112	0.002
0.278	241.133	2.720	0.098	0.001
0.371	217.329	4.309	0.088	0.002
1.021	156.942	4.314	0.064	0.002
1.160	145.133	2.758	0.059	0.001
2.320	117.379	2.211	0.048	0.001
3.155	106.464	4.220	0.043	0.002
			(

f) Sospensione: 3.20 x 10⁶ beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	$\overline{\sigma}/D$
-	μ m	μ m	-	-
0.093	323.840	0.854	0.132	0.001
0.186	276.770	1.882	0.113	0.001
0.278	246.959	3.542	0.100	0.001
0.371	226.702	6.385	0.092	0.003
1.021	157.721	5.408	0.064	0.002
1.160	151.523	2.619	0.062	0.001
2.320	119.629	3.809	0.049	0.002
3.155	107.440	1.376	0.044	0.001
	•	1.00	1061 1	/ T

g) Sospensione: 4.00 x 10⁶ beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	$\overline{\sigma}/D$
-	μ m	μ m	-	-
0.093	324.504	4.404	0.132	0.002
0.186	263.452	2.593	0.107	0.001
0.278	240.212	6.415	0.098	0.003
0.371	214.865	8.653	0.087	0.004
1.021	160.323	1.175	0.065	0.001
1.160	153.387	1.963	0.062	0.001
2.320	117.010	3.700	0.048	0.002
3.155	104.254	2.431	0.042	0.001
1) 0	•	1.00	1071 1	/ T

h) Sospensione: 4.60×10^7 beads/mL

Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}/D	$\overline{\sigma}/D$
-	μ m	μ m	-	-
0.093	324.504	4.404	0.132	0.002
0.186	263.452	2.593	0.107	0.001
0.278	240.212	6.415	0.098	0.003
0.371	214.865	8.653	0.087	0.004
1.021	160.323	1.175	0.065	0.001
1.160	153.387	1.963	0.062	0.001
2.320	117.010	3.700	0.048	0.002
3.155	104.254	2.431	0.042	0.001

i) Sospensione: 4.60 x 10⁸ beads/mL

Per una più rapida consultazione dei risultati sperimentali, in Tabella 4.8 sono riportate le dimensioni dell'EZ, al variare del numero di Reynolds e della sospensione, per le tre tipologie di tubo analizzate.

Tabella 4.8 Principali risultati sperimentali delle dimensioni dell'EZ relativi alle tre tipologie di tubo analizzate

	Nafion '	TT030	Nafion 7	ГТ050	Nafion 7	TT110
Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}	$\overline{\sigma}$
-	μm	μ m	μ m	μ m	μ m	μ m
0.093	99.196	3.445	208.891	3.072	383.448	5.975
0.186	89.630	1.839	177.007	2.992	323.840	3.922
0.278	85.131	2.430	165.569	2.067	283.509	5.132
0.371	77.441	3.132	153.760	1.973	260.820	2.062
1.021	60.817	2.469	110.819	2.106	184.513	1.424
1.160	56.943	2.279	106.880	2.014	172.131	1.423
2.320	45.376	2.095	83.627	1.970	139.883	2.819
3.155	38.443	0.841	69.940	0.844	129.201	3.927

a) Sospensione: 1.06×10^6 beads/mL

	Nafion '	TT030	Nafion 7	ГТ050	Nafion 7	FT110
Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}	$\overline{\sigma}$
-	μ m	μm	μ m	μ m	μ m	μ m
0.093	95.256	1.536	187.153	1.697	310.884	2.535
0.186	87.568	1.938	171.390	4.712	269.079	2.500
0.278	83.653	1.865	155.827	4.433	237.576	4.098
0.371	75.200	2.699	145.516	1.843	221.451	3.982
1.021	57.775	1.531	108.575	3.996	157.523	4.310
1.160	53.072	1.479	102.751	2.430	139.883	2.631
2.320	44.443	1.551	82.693	1.179	119.255	3.625
3.155	36.384	1.542	67.129	2.212	107.422	3.553
	\mathbf{b}	ocnancio	$n \mathbf{p} \cdot 1 31 \mathbf{v}$	10^{6} beau	le/mI	

b) Sospensione: 1.31 x 10⁶ beads/mL

	Nafion '	TT030	Nafion '	Nafion TT050		TT110
Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}	$\overline{\sigma}$
-	μm	μ m	μ m	μ m	μ m	μ m
0.093	90.383	1.368	189.943	5.755	325.155	3.092
0.186	82.880	1.694	166.698	10.866	274.143	1.840
0.278	75.004	4.004	156.485	2.570	245.268	7.249
0.371	70.503	2.814	139.716	2.408	211.703	3.859
1.021	52.128	1.696	103.514	3.550	158.442	3.859
1.160	51.003	2.429	98.837	1.905	150.382	4.915
2.320	40.700	2.624	80.254	1.363	119.637	2.535
3.155	35.444	2.536	68.815	2.407	106.517	4.312
		•	1 (1	1061 1	/ T	

c) Sospensione: 1.64 x 10⁶ beads/mL

	Nafion TT030		Nafion 7	TT050	Nafion TT110	
Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}	$\overline{\sigma}$
-	μm	μ m	μ m	μ m	μ m	μm
0.093	89.817	1.653	186.399	5.066	311.455	1.100
0.186	80.440	3.159	168.565	5.002	269.262	2.632
0.278	70.708	1.958	156.005	7.072	237.197	1.314
0.371	67.151	2.176	137.450	2.172	218.265	4.439
1.021	52.128	1.837	103.140	1.160	156.773	5.265
1.160	45.195	2.609	98.4410	1.980	142.318	4.914
2.320	39.191	3.511	80.069	1.938	117.005	4.330
3.155	33.938	1.106	69.193	1.549	103.321	3.208

d) Sospensione: 2.05 x 10⁶ beads/mL

	Nafion '	TT030	Nafion 7	ГТ050	Nafion 7	TT110
Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}	$\overline{\sigma}$
-	μm	μ m	μ m	μ m	μ m	μm
0.093	86.731	1.017	197.290	2.524	335.944	7.738
0.186	78.507	1.975	168.766	4.219	276.409	4.133
0.278	67.354	1.585	156.386	2.659	241.133	2.720
0.371	62.820	3.370	137.257	3.695	217.329	4.309
1.021	48.378	2.016	102.195	1.657	156.942	4.314
1.160	44.255	1.838	96.752	3.487	145.133	2.758
2.320	37.125	1.882	77.441	1.937	117.379	2.211
3.155	32.625	0.712	69.005	2.633	106.464	4.220

e) Sospensione: 2.56 x 10⁶ beads/mL

Nafion '	TT030	Nafion 7	ГТ050	Nafion 7	TT110
\overline{EZ}	$\overline{\sigma}$	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}	$\overline{\sigma}$
μ m	μ m	μ m	μ m	μ m	μ m
78.004	3.459	191.817	2.441	316.886	6.394
62.448	3.891	166.322	1.937	270.198	5.835
52.511	2.089	145.882	3.742	236.818	4.373
47.256	2.563	135.76	1.976	219.004	3.074
41.048	3.139	99.338	4.160	157.501	1.425
39.188	2.405	93.752	1.361	150.380	1.695
33.094	1.246	75.940	1.550	118.691	2.913
28.879	2.327	68.628	1.591	108.755	1.539
	Nafion EZ μm 78.004 62.448 52.511 47.256 41.048 39.188 33.094 28.879	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Nafion TT030Nafion T \overline{EZ} $\overline{\sigma}$ \overline{EZ} μ m μ m μ m78.0043.459191.81762.4483.891166.32252.5112.089145.88247.2562.563135.7641.0483.13999.33839.1882.40593.75233.0941.24675.94028.8792.32768.628	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

f) Sospensione: 3.20 x 10⁶ beads/mL

	Nafion '	TT030	Nafion 7	ГТ050	Nafion TT110		
Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}	$\overline{\sigma}$	
-	μm	μm	μ m	μ m	μ m	μm	
0.093	69.193	3.162	179.088	3.671	323.840	0.854	
0.186	50.443	2.603	155.635	4.430	276.770	1.882	
0.278	46.322	2.163	137.633	3.155	246.959	3.542	
0.371	41.253	1.533	128.826	1.982	226.702	6.385	
1.021	32.861	1.007	96.752	2.359	157.721	5.408	
1.160	31.128	2.995	92.632	1.158	151.523	2.619	
2.320	28.774	0.664	72.376	2.630	119.629	3.809	
3.155	26.337	2.464	65.254	1.418	107.440	1.376	

g) Sospensione: 4.00 x 10⁶ beads/mL

	Nafion TT030		Nafion TT050		Nafion TT110	
Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}	$\overline{\sigma}$
-	μm	μm	μ m	μm	μ m	μm
0.093	89.253	1.363	150.694	5.031	324.504	4.404
0.186	73.690	4.073	121.133	2.538	263.452	2.593
0.278	65.251	4.500	108.197	2.065	240.212	6.415
0.371	53.448	2.330	98.069	3.726	214.865	8.653
1.021	40.508	1.882	70.131	3.156	160.323	1.175
1.160	39.384	3.413	67.879	3.158	153.387	1.963
2.320	27.750	2.212	53.628	2.431	117.010	3.700
3.155	24.009	1.168	48.382	1.885	104.254	2.431

h) Sospensione: 4.60 x 10⁷ beads/mL

	Nafion TT030		Nafion '	Nafion TT050		Nafion TT110	
Re	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}	$\overline{\sigma}$	\overline{EZ}	$\overline{\sigma}$	
-	μ m	μ m	μ m	μ m	μ m	μ m	
0.093	57.430	4.034	58.506	2.935	126.202	2.610	
0.186	48.572	1.496	51.380	2.820	105.756	1.235	
0.278	46.274	1.576	48.568	3.135	93.377	3.102	
0.371	40.031	0.871	47.255	3.560	85.878	2.098	
1.021	30.566	1.101	34.892	3.118	67.879	3.386	
1.160	30.000	1.694	33.941	3.586	58.699	3.290	
2.320	25.125	0.581	30.000	2.095	47.628	3.386	
3.155	22.130	0.914	24.563	1.802	39.943	2.105	

i) Sospensione: 4.60 x 10⁸ beads/mL

4.4 Analisi dei risultati sperimentali

I risultati presentati nei paragrafi precedenti, sono stati elaborati al fine di ottenere una relazione che legasse la variabile dipendente EZ alle seguenti variabili indipendenti:

*D*_{int}, diametro interno del tubo analizzato *Re*, numero di Reynolds *Sospensione utilizzata*, espressa in *beads/mL*

In quest'ottica, l'interpolazione dei dati sperimentali è stato lo strumento matematico che ha permesso di ricercare dei legami tra le varie grandezze fisiche in gioco; in particolare, sono state esaminate le seguenti interpolazioni:

Legge di Potenza Legge Esponenziale Legge Logaritmica Modello nel piano ln(Re) – ln(EZ/D) Modello nel piano Re – ln(EZ/D) Modello nel piano ln(Re) – EZ/D Tali leggi saranno analizzate nel dettaglio nei paragrafi successivi, in cui verranno evidenziati gli esiti dell'applicazione delle interpolazioni suddette.

4.4.1 Interpolazione con Legge di Potenza

In prima analisi è stata applicata l'**interpolazione in Legge di Potenza** per ogni sospensione data. La relazione che descrive tale modello è riportata di seguito:

$$\frac{EZ}{D} = a \cdot Re^b \tag{4.1}$$

in cui il valore di EZ, normalizzato al diametro, è funzione del numero di Reynolds e dei parametri **a** e **b**, questi ultimi caratteristici della particolare interpolazione considerata. In Tabella 4.9 sono riportati i valori dei parametri a e b, nonché del coefficiente di correlazione \mathbb{R}^2 , che rappresenta una proporzione tra la variabilità dei dati e la correttezza del modello statistico utilizzato. In altre parole, tale parametro rappresenta la bontà dell'interpolazione rispetto ai dati sperimentali; il suo valore varia tra 0 e 1: quando è 0, il modello non spiega per nulla i dati; quando è 1 spiega perfettamente i dati. Nelle Figure 4.14, 4.15 e 4.16 sono rappresentati i dati sperimentali, e relativa interpolazione, delle dimensioni dell'EZ normalizzate al diametro interno dei tre tubi considerati, in funzione del numero di Reynolds e al variare della sospensione analizzata.

Figura 4.14 Interpolazione in Legge di Potenza per il tubo in Nafion TT030

	Sospensione	а	b	\mathbb{R}^2
	Beads/mL	-	-	-
	1.06 x 10 ⁶	0.0752	-0.267	0.9684
	1.31 x 10 ⁶	0.0721	-0.273	0.9648
	1.64 x 10 ⁶	0.0675	-0.271	0.9815
	2.05 x 10 ⁶	0.0644	-0.279	0.9839
Nafion TT030	2.56 x 10 ⁶	0.0614	-0.282	0.9909
	$3.20 \ge 10^6$	0.0522	-0.259	0.9773
	4.00 x 10 ⁶	0.0455	-0.258	0.9697
	$4.60 \ge 10^7$	0.0510	-0.270	0.9883
	$4.60 \ge 10^8$	0.0407	-0.270	0.9938
	1.06 x 10 ⁶	0.0896	-0.306	0.9828
	1.31 x 10 ⁶	0.0863	-0.288	0.9698
	1.64 x 10 ⁶	0.0847	-0.291	0.9864
	2.05 x 10 ⁶	0.0845	-0.288	0.9850
Nafion TT050	2.56 x 10 ⁶	0.0837	-0.304	0.9935
	$3.20 \ge 10^6$	0.0818	-0.299	0.9962
	4.00 x 10 ⁶	0.0784	-0.290	0.9931
	$4.60 \ge 10^7$	0.0587	-0.323	0.9996
	4.60 x 10 ⁸	0.0290	-0.238	0.9744
	1.06 x 10 ⁶	0.0678	-0.299	0.9961
	1.31 x 10 ⁶	0.0630	-0.315	0.9914
	1.64 x 10 ⁶	0.0638	-0.321	0.9967
	2.05 x 10 ⁶	0.0623	-0.322	0.9934
Nafion TT110	2.56 x 10 ⁶	0.0623	-0.332	0.9988
	$3.20 \ge 10^6$	0.0638	-0.312	0.9972
	$4.00 \ge 10^6$	0.0645	-0.323	0.9950
	$4.60 \ge 10^7$	0.0634	-0.319	0.9954
	$4.60 \ge 10^8$	0.0252	-0.317	0.9847

Tabella 4.9 Valori dei parametri a, b e R^2 derivanti dall'interpolazione con Legge di Potenza, relativi ai tre tubi analizzati

Figura 4.15 Interpolazione in Legge di Potenza per il tubo in Nafion TT050

Figura 4.16 Interpolazione in Legge di Potenza per il tubo in Nafion TT110

Da una prima analisi si evince che, per il condotto in Nafion TT030, i valori di EZ decrescono sensibilmente al crescere della concentrazione delle microsfere in sospensione [29]. Nel tubo in Nafion TT050 invece, le dimensioni dell'EZ risultano pressocchè costanti per quanto riguarda le sospensioni comprese nel range (1.06 – 4.00) x 10^6 beads/mL; al contrario, si nota una netta diminuzione all'aumentare dell'ordine di grandezza delle microsfere per millilitro. Tale tendenza è resa ancora

più marcata nel condotto in Nafion TT110, in cui si evince una netta diminuzione dell'EZ per la sospensione pari a 4.60 x 10⁸ beads/mL, mentre per le restanti sospensioni, l'Exclusion Zone collassa su un'unica curva. Alla luce delle considerazioni appena fatte, si può affermare che all'aumentare del diametro analizzato, i dati sperimentali, rilevati per le sospensioni con lo stesso ordine di grandezza (10⁶), tendono a concentrarsi su un'unica curva, invece, per ordini di grandezza superiori (10⁷, 10⁸) si raggiunge il limite dimensionale, oltre il quale lo spessore dell'Exclusion Zone non riesce a svilupparsi. Nelle Figure seguenti sono riportati i grafici di tali parametri per le tre tipologie di condotto esaminate.

a) Legge di Potenza: parametro a per il tubo in Nafion TT030

b) Legge di Potenza: parametro a per il tubo in Nafion TT050

c) Legge di Potenza: parametro a per il tubo in Nafion TT110

Figura 4.17 Andamento del parametro a in funzione della sospensione, per le tre tipologie di tubo esaminate

a) Legge di Potenza: parametro b per il tubo in Nafion TT030

b) Legge di Potenza: parametro b per il tubo in Nafion TT050

c) Legge di Potenza: parametro b per il tubo in Nafion TT110

Figura 4.18 Andamento del parametro b in funzione della sospensione, per le tre tipologie di tubo esaminate

I risultati riportati nelle Figure 4.17 e 4.18, mostrano come i valori di a e b tendano ad allinearsi e a determinare un legame lineare con la sospensione (i cui valori sono stati riportati in funzione logaritmica di base 10, in modo da rappresentare al meglio il range di concentrazione analizzato). In definitiva, l'interpolazione in Legge di Potenza permette di avere una buona modellazione analitica dei risultati sperimentali, e l'andamento dei parametri a e b che la caratterizzano potrebbero permettere una formulazione pratica per le previsioni delle dimensioni dell'EZ.

4.4.2 Interpolazione con Legge Esponenziale

In seconda analisi è stata effettuata l'interpolazione con Legge Esponenziale, la cui relazione è riportata di seguito:

$$\frac{Re}{D} = a \cdot e^{b \cdot Re} \tag{4.2}$$

in cui a e b rappresentano i parametri caratterizzati la suddetta interpolazione. Anche in questo caso, valgono le medesime considerazioni fatte per la Legge di Potenza e in Tabella 4.10 sono riportati i valori dei parametri a, b e R². Nelle Figure 4.19, 4.20 e 4.21 sono rappresentati i dati sperimentali, e relativa interpolazione, delle dimensioni dell'EZ, normalizzate al diametro interno dei tre tubi considerati, in funzione del numero di Reynolds e al variare della sospensione analizzata.

Figura 4.19 Interpolazione in Legge Esponenziale per il tubo in Nafion TT030

	Sospensione	а	b	\mathbb{R}^2
	Beads/mL	-	-	-
	1.06 x 10 ⁶	0.1185	-0.295	0.9404
	1.31 x 10 ⁶	0.1148	-0.300	0.9306
	1.64 x 10 ⁶	0.1064	-0.292	0.9142
	2.05 x 10 ⁶	0.1023	-0.296	0.8861
Nafion TT030	2.56 x 10 ⁶	0.0978	-0.297	0.8778
	$3.20 \ge 10^6$	0.0792	-0.262	0.8007
	4.00 x 10 ⁶	0.0665	-0.248	0.7141
	$4.60 \ge 10^7$	0.0942	-0.392	0.8885
	4.60 x 10 ⁸	0.0633	-0.281	0.8586
	1.06 x 10 ⁶	0.1497	-0.330	0.9178
	1.31 x 10 ⁶	0.1409	-0.317	0.9352
	1.64 x 10 ⁶	0.1376	-0.311	0.9007
	$2.05 \ge 10^6$	0.1365	-0.307	0.8978
Nafion TT050	2.56 x 10 ⁶	0.1382	-0.320	0.8784
	$3.20 \ge 10^6$	0.1336	-0.312	0.8678
	4.00 x 10 ⁶	0.1267	-0.307	0.8912
	$4.60 \ge 10^7$	0.0994	-0.333	0.8501
	$4.60 \ge 10^8$	0.0433	-0.256	0.9023
	1.06 x 10 ⁶	0.1102	-0.307	0.8397
	1.31 x 10 ⁶	0.1054	-0.326	0.8518
	1.64 x 10 ⁶	0.1079	-0.333	0.8606
	$2.05 \ge 10^6$	0.1058	-0.337	0.8707
Nafion TT110	2.56 x 10 ⁶	0.1086	-0.341	0.8440
	3.20×10^6	0.1064	-0.325	0.8633
	$4.00 \ge 10^6$	0.1096	-0.338	0.8704
	$4.60 \ge 10^7$	0.1074	-0.336	0.8821
	4.60 x 10 ⁸	0.0427	-0.340	0.9005

Tabella 4.10 Valori dei parametri a, b e R^2 derivanti dall'interpolazione con Legge Esponenziale, relativi ai tre tubi analizzati

Figura 4.20 Interpolazione in Legge Esponenziale per il tubo in Nafion TT050

Figura 4.21 Interpolazione in Legge Esponenziale per il tubo in Nafion TT110

Nelle Figure 4.22 e 4.23 sono riportati i grafici dei parametri a e b per le tre tipologie di condotto esaminate. Dai risultati ottenuti si evince che il modello esponenziale non interpola al meglio i dati sperimentali e ciò comporta che i valori di a e b non si allineino nell'intorno di una retta. Tali ragioni hanno portato ad escludere il modello esponenziale dalle possibili leggi capaci di descrivere il fenomeno dell'EZ dal punto di vista idraulico.

a) Legge Esponenziale: parametro a per il tubo in Nafion TT030

b) Legge Esponenziale: parametro a per il tubo in Nafion TT050

c) Legge Esponenziale: parametro a per il tubo in Nafion TT110

Figura 4.22 Andamento del parametro a in funzione della sospensione, per le tre tipologie di tubo esaminate

a) Legge Esponenziale: parametro b per il tubo in Nafion TT030

b) Legge Esponenziale: parametro b per il tubo in Nafion TT050

c) Legge Esponenziale: parametro b per il tubo in Nafion TT110

Figura 4.23 Andamento del parametro b in funzione della sospensione, per le tre tipologie di tubo esaminate

4.4.3 Interpolazione con Legge Logaritmica

In terza analisi, è stato preso in considerazione il modello con interpolazione in Legge Logaritmica, la cui relazione è presentata di seguito:

$$\frac{Re}{D} = a \cdot \ln(Re) + b \tag{4.3}$$

in cui i valori di a e b sono i parametri caratterizzanti il suddetto modello. Anche in questo caso valgono le stesse considerazioni fatte precedentemente e in Tabella 4.11 sono riportati i valori dei parametri a, b e R². Nelle Figure 4.24, 4.25 e 4.26 sono rappresentati i dati sperimentali, e relativa interpolazione, delle dimensioni dell'EZ, normalizzate al diametro interno dei tre tubi considerati, in funzione del numero di Reynolds e al variare della sospensione analizzata.

Figura 4.24 Interpolazione in Legge Logaritmica per il tubo in Nafion TT030

	Sospensione	a	b	R ²
	Beads/mL	-	-	-
	1.06 x 10 ⁶	-0.023	0.0787	0.9949
	1.31 x 10 ⁶	-0.023	0.0787	0.9890
	1.64 x 10 ⁶	-0.021	0.0706	0.9966
	2.05 x 10 ⁶	-0.021	0.0644	0.9916
Nafion TT030	2.56 x 10 ⁶	-0.021	0.0644	0.9904
	3.20 x 10 ⁶	-0.016	0.0541	0.9337
	4.00 x 10 ⁶	-0.014	0.0461	0.9050
	$4.60 \ge 10^7$	-0.024	0.0553	0.9808
	4.60 x 10 ⁸	-0.013	0.0424	0.9867
	1.06 x 10 ⁶	-0.032	0.0949	0.9982
	1.31 x 10 ⁶	-0.029	0.091	0.9957
	1.64 x 10 ⁶	-0.029	0.0889	0.9960
	2.05 x 10 ⁶	-0.029	0.0889	0.9934
Nafion TT050	2.56 x 10 ⁶	-0.031	0.0884	0.9927
	$3.20 \ge 10^6$	-0.029	0.0862	0.9918
	4.00 x 10 ⁶	-0.027	0.0824	0.9962
	$4.60 \ge 10^7$	-0.024	0.0623	0.9806
	$4.60 \ge 10^8$	-0.008	0.0301	0.9907
	1.06 x 10 ⁶	-0.025	0.0714	0.9853
	1.31 x 10 ⁶	-0.024	0.0799	0.9875
	1.64 x 10 ⁶	-0.025	0.0677	0.9848
	2.05 x 10 ⁶	-0.024	0.0663	0.9912
Nafion TT110	$2.56 \ge 10^6$	-0.026	0.0674	0.9803
	$3.20 \ge 10^6$	-0.024	0.0676	0.9899
	$4.00 \ge 10^6$	-0.025	0.0686	0.9919
	$4.60 \ge 10^7$	-0.025	0.0673	0.9887
	$4.60 \ge 10^8$	-0.010	0.0267	0.9904

Tabella 4.11 Valori dei parametri a, b e R^2 derivanti dall'interpolazione con Legge Logaritmica, relativi ai tre tubi analizzati

Figura 4.25 Interpolazione in Legge Logaritmica per il tubo in Nafion TT050

Figura 4.26 Interpolazione in Legge Logaritmica per il tubo in Nafion TT110

Nelle Figure 4.27 e 4.28 sono riportati i grafici dei parametri a e b per le tre tipologie di condotto esaminate. Dal punto di vista del coefficiente di correlazione, si nota immediatamente che la Legge Logaritmica è il modello che interpola i dati sperimentali nel modo migliore; d'altro canto però, cresce sensibilmente la variabilità dei parametri a e b, i quali non possono essere interpolati con legge lineare.

a) Legge Logaritmica: parametro a per il tubo in Nafion TT030

b) Legge Logaritmica: parametro a per il tubo in Nafion TT050

c) Legge Logaritmica: parametro a per il tubo in Nafion TT110

Figura 4.27 Andamento del parametro a in funzione della sospensione, per le tre tipologie di tubo esaminate

a) Legge Logaritmica: parametro b per il tubo in Nafion TT030

b) Legge Logaritmica: parametro b per il tubo in Nafion TT050

c) Legge Esponenziale: parametro b per il tubo in Nafion TT110

Figura 4.28 Andamento del parametro b in funzione della sospensione, per le tre tipologie di tubo esaminate

4.4.4 Modello nel piano $\ln(Re) - \ln(EZ/D)$

Con riferimento alla Legge di Potenza, sono stati rappresentati i risultati nel diagramma cartesiano avente:

asse x: ln(Re) asse y: ln(EZ/D)

la cui relazione è la seguente:

$$\ln\frac{EZ}{D} = a + b \cdot \ln(Re) \tag{4.4}$$

In Tabella 4.12 sono riportati i valori dei parametri a, b e \mathbb{R}^2 caratterizzanti la presente interpolazione. Nelle Figure 4.29, 4.30 e 4.31 sono rappresentati i dati sperimentali, e relativa interpolazione, delle dimensioni dell'EZ, normalizzate al diametro interno dei tre tubi considerati, in funzione del numero di Reynolds e al variare della sospensione analizzata. Si specifica inoltre che, trasformando entrambi gli assi cartesiani in scala logaritmica, l'unica interpolazione possibile dei dati sperimentali è quella lineare.

Figura 4.29 Modello nel piano ln(Re) - ln(EZ/D) per il tubo in Nafion TT030
	Sospensione	а	b	\mathbf{R}^2
	Beads/mL	-	-	-
	1.06 x 10 ⁶	-0.2674	-3.7598	0.9684
	1.31 x 10 ⁶	-0.2734	-3.8015	0.9648
	1.64 x 10 ⁶	-0.2708	-3.8674	0.9815
	2.05 x 10 ⁶	-0.2821	-3.9620	0.9834
Nafion TT030	2.56 x 10 ⁶	-0.2821	-3.9620	0.9909
	3.20 x 10 ⁶	-0.2590	-4.1238	0.9773
	$4.00 \ge 10^6$	-0.2581	-4.2833	0.9697
	$4.60 \ge 10^7$	-0.3698	-4.1477	0.9883
	4.60 x 10 ⁸	-0.2704	-4.3740	0.9938
	1.06 x 10 ⁶	-0.3056	-2.4128	0.9228
	1.31 x 10 ⁶	-0.2881	-2.4499	0.9698
	1.64 x 10 ⁶	-0.2909	-2.4690	0.9864
	2.05 x 10 ⁶	-0.2879	-2.4714	0.9850
Nafion TT050	2.56 x 10 ⁶	-0.3037	-2.4801	0.9935
	3.20 x 10 ⁶	-0.2988	-2.5035	0.9926
	4.00 x 10 ⁶	-0.2895	-2.5466	0.9931
	$4.60 \ge 10^7$	-0.3231	-2.8531	0.9996
	$4.60 \ge 10^8$	-0.2379	-3.5388	0.9744
	1.06 x 10 ⁶	-0.2986	-2.6907	0.9961
	1.31 x 10 ⁶	-0.3145	-2.7640	0.9914
	1.64 x 10 ⁶	-0.3205	-2.7517	0.9670
	2.05 x 10 ⁶	-0.3216	-2.7751	0.9934
Nafion TT110	2.56 x 10 ⁶	-0.3320	-2.7595	0.9988
	$3.20 \ge 10^6$	-0.3118	-2.7515	0.9972
	$4.00 \ge 10^6$	-0.3194	-2.7413	0.9950
	$4.60 \ge 10^7$	-0.3194	-2.7586	0.9954
	4.60 x 10 ⁸	-0.3173	-3.6822	0.9847

Tabella 4.12 Valori dei parametri a, b e R^2 derivanti dal modello nel piano ln(Re) - ln(EZ/D), relativi ai tre tubi analizzati

Figura 4.30 Modello nel piano ln(Re) - ln(EZ/D) per il tubo in Nafion TT050

Figura 4.31 Modello nel piano ln(Re) - ln(EZ/D) per il tubo in Nafion TT110

Nelle Figure 4.32 e 4.33 sono riportati i grafici dei parametri a e b per le tre tipologie di condotto esaminate. Il modello nel piano $\ln(\text{Re}) - \ln(\text{EZ/D})$ interpola molto bene i dati sperimentali; tale evidenza si nota anche dai valori molto alti di R^2 , prossimi a 1. Tuttavia, i valori dei parametri a e b presentano una sempre più crescente variabilità, ragion per cui si prestano poco ad essere interpolati con legge lineare.

a) Modello nel piano ln(Re) - ln(EZ/D): parametro a per il tubo in Nafion TT030

b) Modello nel piano ln(Re) - ln(EZ/D): parametro a per il tubo in Nafion TT050

c) Modello nel piano ln(Re) - ln(EZ/D): parametro a per il tubo in Nafion TT110

Figura 4.32 Andamento del parametro a in funzione della sospensione, per le tre tipologie di tubo esaminate

a) Modello nel piano ln(Re) - ln(EZ/D): parametro b per il tubo in Nafion TT030

b) Modello nel piano ln(Re) - ln(EZ/D): parametro b per il tubo in Nafion TT050

c) Modello nel piano ln(Re) - ln(EZ/D): parametro b per il tubo in Nafion TT110

Figura 4.33 Andamento del parametro b in funzione della sospensione, per le tre tipologie di tubo esaminate

4.4.5 Modello nel piano *Re* - ln(*EZ/D*)

Con riferimento alla Legge Esponenziale, sono stati rappresentati i risultati nel diagramma cartesiano avente:

asse x: Re asse y: ln(EZ/D)

la cui relazione è la seguente:

$$\ln \frac{EZ}{D} = \ln(a) + b \cdot Re \tag{4.5}$$

In Tabella 4.13 sono riportati i valori dei parametri a, b e \mathbb{R}^2 caratterizzanti la presente interpolazione. Nelle Figure 4.34, 4.35 e 4.36 sono rappresentati i dati sperimentali, e relativa interpolazione, delle dimensioni dell'EZ, normalizzate al diametro interno dei tre tubi considerati, in funzione del numero di Reynolds e al variare della sospensione analizzata. In questo caso, l'interpolazione dei dati è fatta utilizzando la legge logaritmica.

Figura 4.34 Modello nel piano Re - ln(EZ/D) per il tubo in Nafion TT030

	Sospensione	а	b	\mathbb{R}^2
	Beads/mL	-	-	-
	1.06 x 10 ⁶	-0.267	-3.7598	0.9684
	1.31 x 10 ⁶	-0.273	-3.8015	0.9648
	1.64 x 10 ⁶	-0.271	-3.8674	0.9815
	2.05 x 10 ⁶	-0.279	-3.9149	0.9839
Nafion TT030	2.56 x 10 ⁶	-0.282	-3.9620	0.9909
	$3.20 \ge 10^6$	-0.259	-4.1238	0.9773
	4.00 x 10 ⁶	-0.258	-4.2833	0.9697
	4.60 x 10 ⁷	-0.370	-4.1477	0.9883
	$4.60 \ge 10^8$	-0.270	-4.3740	0.9938
	1.06 x 10 ⁶	-0.306	-2.4128	0.9828
	1.31 x 10 ⁶	-0.288	-2.4499	0.9698
	1.64 x 10 ⁶	-0.291	-2.4690	0.9864
	2.05 x 10 ⁶	-0.288	-2.4714	0.9850
Nafion TT050	2.56 x 10 ⁶	-0.304	-2.4801	0.9935
	$3.20 \ge 10^6$	-0.299	-2.5035	0.9926
	4.00 x 10 ⁶	-0.290	-2.5466	0.9931
	$4.60 \ge 10^7$	-0.323	-2.8351	0.9996
	4.60 x 10 ⁸	-0.238	-3.5388	0.9744
	1.06 x 10 ⁶	-0.299	-2.6907	0.9961
	1.31 x 10 ⁶	-0.315	-2.7640	0.9914
	1.64 x 10 ⁶	-0.321	-2.7517	0.9967
	2.05 x 10 ⁶	-0.322	-2.7751	0.9934
Nafion TT110	2.56 x 10 ⁶	-0.332	-2.7595	0.9988
	$3.20 \ge 10^6$	-0.312	-2.7515	0.9972
	4.00 x 10 ⁶	-0.323	-2.7413	0.995
	$4.60 \ge 10^7$	-0.319	-2.7586	0.9954
	4.60 x 10 ⁸	-0.317	-3.6822	0.9847

Tabella 4.13 Valori dei parametri a, b e \mathbb{R}^2 derivanti dal modello nel piano Re - ln(EZ/D), relativi ai tre tubi analizzati

Figura 4.35 Modello nel piano Re - ln(EZ/D) per il tubo in Nafion TT050

Figura 4.36 Modello nel piano Re - ln(EZ/D) per il tubo in Nafion TT110

Nelle Figure 4.37 e 4.38 sono riportati i grafici dei parametri a e b per le tre tipologie di condotto esaminate. Il modello appena presentato, nonostante interpoli molto bene i dati sperimentali, presenta i parametri a e b con una certa dispersione. Tale situazione non permette di descrivere al meglio il fenomeno dell'EZ.

a) Modello nel piano Re - ln(EZ/D): parametro a per il tubo in Nafion TT030

b) Modello nel piano Re - ln(EZ/D): parametro a per il tubo in Nafion TT050

c) Modello nel piano Re - ln(EZ/D): parametro a per il tubo in Nafion TT110

Figura 4.37 Andamento del parametro a in funzione della sospensione, per le tre tipologie di tubo esaminate

a) Modello nel piano Re - ln(EZ/D): parametro b per il tubo in Nafion TT030

b) Modello nel piano Re - ln(EZ/D): parametro b per il tubo in Nafion TT050

c) Modello nel piano Re - ln(EZ/D): parametro b per il tubo in Nafion TT110

Figura 4.38 Andamento del parametro b in funzione della sospensione, per le tre tipologie di tubo esaminate

4.4.6 Modello nel piano ln(*Re*) – *EZ/D*

Con riferimento alla Legge Logaritmica, sono stati rappresentati i risultati nel diagramma cartesiano avente:

asse x: ln(Re) asse y: EZ/D

la cui relazione è la seguente:

$$\frac{EZ}{D} = a \cdot \ln(Re) + b \tag{4.6}$$

In Tabella 4.14 sono riportati i valori dei parametri a, b e \mathbb{R}^2 caratterizzanti la presente interpolazione. Nelle Figure 4.39, 4.40 e 4.41 sono rappresentati i dati sperimentali, e relativa interpolazione, delle dimensioni dell'EZ, normalizzate al diametro interno dei tre tubi considerati, in funzione del numero di Reynolds e al variare della sospensione analizzata. In questo caso, l'interpolazione dei dati è fatta utilizzando la legge lineare.

Figura 4.39 Modello nel piano ln(Re) – EZ/D per il tubo in Nafion TT030

	Sospensione	a	b	R ²
	Beads/mL	-	-	-
	1.06 x 10 ⁶	-0.0071	0.0244	0.9949
	1.31 x 10 ⁶	-0.0070	0.0235	0.9890
	1.64 x 10 ⁶	-0.0065	0.0219	0.9966
	$2.05 \ge 10^6$	-0.0065	0.0209	0.9916
Nafion TT030	2.56 x 106	-0.0064	0.0199	0.9904
	$3.20 \ge 10^6$	-0.0051	0.0168	0.9337
	$4.00 \ge 10^6$	-0.0044	0.0143	0.9050
	$4.60 \ge 10^7$	-0.0074	0.0171	0.9808
	$4.60 \ge 10^8$	-0.0040	0.0131	0.9867
	1.06 x 10 ⁶	-0.0324	0.0949	0.9982
	1.31 x 10 ⁶	-0.0288	0.0910	0.9957
	1.64 x 10 ⁶	-0.0290	0.0892	0.9960
	$2.05 \ge 10^6$	-0.0286	0.0889	0.9934
Nafion TT050	2.56 x 10 ⁶	-0.0306	0.0884	0.9927
	$3.20 \ge 10^6$	-0.0294	0.0862	0.9918
	4.00 x 10 ⁶	-0.0269	0.0824	0.9962
	$4.60 \ge 10^7$	-0.0235	0.0623	0.9806
	$4.60 \ge 10^8$	-0.0078	0.0301	0.9907
	1.06 x 10 ⁶	-0.0246	0.0714	0.9853
	1.31 x 10 ⁶	-0.0242	0.0688	0.9875
	1.64 x 10 ⁶	-0.0242	0.0668	0.9875
	2.05 x 10 ⁶	-0.0245	0.0663	0.9912
Nafion TT110	2.56 x 10 ⁶	-0.0263	0.0674	0.9803
	$3.20 \ge 10^6$	-0.0242	0.0676	0.9899
	$4.00 \ge 10^6$	-0.0254	0.0686	0.9919
	$4.60 \ge 10^7$	-0.0247	0.0673	0.9887
	$4.60 \ge 10^8$	-0.0096	0.0267	0.9904

Tabella 4.14 Valori dei parametri a, b e R^2 derivanti dal modello nel piano ln(Re) – EZ/D, relativi ai tre tubi analizzati

Figura 4.40 Modello nel piano ln(Re) – EZ/D per il tubo in Nafion TT050

Figura 4.41 Modello nel piano ln(Re) – EZ/D per il tubo in Nafion TT110

Nelle Figure 4.42 e 4.43 sono riportati i grafici dei parametri a e b per le tre tipologie di condotto esaminate. Come per il caso precedente, ad un'ottima interpolazione dei dati sperimentali, corrisponde una sensibile variabilità dei parametri a e b, ragion per cui anche il presente modello non permette di costruire una relazione che possa descrivere il fenomeno dell'Exclusion Zone nel migliore dei modi.

a) Modello nel piano ln(Re) – EZ/D: parametro a per il tubo in Nafion TT030

b) Modello nel piano ln(Re) – EZ/D: parametro a per il tubo in Nafion TT050

c) Modello nel piano ln(Re) – EZ/D: parametro a per il tubo in Nafion TT110

Figura 4.42 Andamento del parametro a in funzione della sospensione, per le tre tipologie di tubo esaminate

a) Modello nel piano ln(Re) – EZ/D: parametro b per il tubo in Nafion TT030

b) Modello nel piano ln(Re) – EZ/D: parametro b per il tubo in Nafion TT050

c) Modello nel piano ln(Re) – EZ/D: parametro b per il tubo in Nafion TT110

Figura 4.43 Andamento del parametro b in funzione della sospensione, per le tre tipologie di tubo esaminate

4.5 Considerazioni generali

Alla luce di quanto emerso dall'analisi dei risultati sperimentali, è possibile individuare i modelli che meglio si adattano ai dati raccolti.

Tubo	Beads/mL	Beads/mL Potenza Esponenziale Logaritmico		$\ln(Re) - \ln(\frac{EZ}{D})$	$Re-\ln(\frac{EZ}{D})$	$\ln(Re)$ - $\frac{EZ}{D}$	
	1.06 x 10 ⁶	0.968	0.940	0.995	0.968	0.968	0.995
	1.31 x 10 ⁶	0.965	0.931	0.989	0.965	0.965	0.989
	1.64 x 10 ⁶	0.982	0.914	0.997	0.982	0.982	0.997
	$2.05 \ge 10^6$	0.984	0.886	0.992	0.983	0.984	0.992
TT030	2.56 x 10 ⁶	0.991	0.878	0.990	0.991	0.991	0.990
	$3.20 \ge 10^6$	0.978	0.801	0.934	0.977	0.977	0.934
	$4.00 \ge 10^6$	0.970	0.714	0.905	0.970	0.970	0.905
	$4.60 \ge 10^7$	0.989	0.889	0.981	0.988	0.988	0.981
	$4.60 \ge 10^8$	0.994	0.859	0.987	0.994	0.994	0.987
	1.06 x 10 ⁶	0.983	0.918	0.998	0.923	0.983	0.998
	1.31 x 10 ⁶	0.967	0.935	0.996	0.970	0.970	0.996
	1.64 x 10 ⁶	0.986	0.901	0.996	0.986	0.986	0.996
	$2.05 \ge 10^6$	0.985	0.898	0.993	0.985	0.985	0.993
TT050	$2.56 \ge 10^6$	0.994	0.878	0.993	0.994	0.994	0.993
	$3.20 \ge 10^6$	0.996	0.868	0.992	0.993	0.993	0.992
	$4.00 \ge 10^6$	0.993	0.891	0.996	0.993	0.993	0.996
	$4.60 \ge 10^7$	0.999	0.850	0.981	0.999	0.999	0.981
	$4.60 \ge 10^8$	0.974	0.902	0.991	0.974	0.974	0.991
	1.06 x 10 ⁶	0.996	0.840	0.985	0.996	0.996	0.985
	1.31 x 10 ⁶	0.991	0.852	0.987	0.991	0.991	0.988
	1.64 x 10 ⁶	0.997	0.861	0.985	0.97	0.997	0.988
	2.05 x 10 ⁶	0.994	0.871	0.991	0.993	0.993	0.991
TT110	$2.56 \ge 10^6$	0.999	0.844	0.980	0.999	0.999	0.980
	$3.20 \ge 10^6$	0.997	0.863	0.990	0.997	0.997	0.990
	$4.00 \ge 10^6$	0.995	0.870	0.992	0.995	0.995	0.992
	$4.60 \ge 10^7$	0.995	0.882	0.989	0.995	0.995	0.989
	4.60 x 10 ⁸	0.985	0.901	0.990	0.985	0.985	0.990

Tabella 4.15 Valori di \mathbb{R}^2 per ogni modello analitico esaminato, al variare della sospensione utilizzata

A tal proposito, in Tabella 4.15 si riportano i valori di R^2 per ognuna delle interpolazioni esaminate, al variare della sospensione analizzata. Da questa Tabella è possibile notare che, tutti i modelli analitici utilizzati, interpolano bene i dati sperimentali, eccezion fatta per la Legge Esponenziale; inoltre, i modelli adottati nei piani $\ln(\text{Re})-\ln(\text{EZ/D})$, Re- $\ln(\text{EZ/D})$, $\ln(\text{Re})-\text{EZ/D}$, nonostante abbiano dei valori molto alti di R^2 (prossimi a 1), presentano una certa variabilità per quanto riguarda i parametri a e b, tale da non permettere una formulazione generale del fenomeno dell'EZ. Tale evidenza è presente anche per l'interpolazione con Legge Logaritmica, mentre per la Legge di Potenza, con riferimento alle Figure 4.17 e 4.18, si può notare come i valori di a e b convergono nell'intorno di una linea retta. Dunque, a partire dalla Legge di Potenza:

$$\frac{EZ}{D} = a \cdot Re^b \tag{4.7}$$

è possibile affermare che il valore dimensionale dell'Exclusion Zone dipende dal numero di Reynolds e dai parametri adimensionali a e b definiti dalle seguenti leggi lineari, al variare della tipologia di tubo analizzata. In particolare, si ha:

• Tubo in Nafion TT030:

$$a = -0.0109 \cdot \log(beads/mL) + 0.1323 \tag{4.8}$$

$$b = 0.0006 \cdot \log(beads/mL) - 0.2742 \tag{4.9}$$

in cui beads/mL indica la concentrazione di microsfere in sospensione

• Tubo in Nafion TT050:

$$a = -0.0222 \cdot \log(beads/mL) + 0.2243 \tag{4.10}$$

$$b = 0.0141 \cdot \log(beads/mL) - 0.3867 \tag{4.11}$$

• Tubo in Nafion TT110:

$$a = -0.0126 \cdot \log(beads/mL) + 0.1441 \tag{4.12}$$

$$b = -0.0012 \cdot \log(beads/mL) - 0.3098 \tag{4.13}$$

A questo punto, per verificare la validità dei risultati analitici raggiunti, sono stati ricalcolati i valori di a e b a partire dalle equazioni appena determinate (4.8,4.9,4.10,4.11,4.12,4.13); tali valori, per ogni tubo analizzato, possono essere consultati nelle Tabelle riportate di seguito.

	Nafar	TT020	Nafar	TT050	N.C		
Sospensione	мапоп	11030	мапоп	11050	Nation 11110		
Sospensione	а	b	а	b	а	b	
Beads/mL	-	-	-	-	-	-	
1.06 x 10 ⁶	0.0666	-0.2706	0.0905	-0.3017	0.0682	-0.3170	
1.31 x 10 ⁶	0.0656	-0.2705	0.0885	-0.3004	0.0670	-0.3171	
1.64 x 10 ⁶	0.0646	-0.2705	0.0863	-0.2991	0.0658	-0.3173	
$2.05 \ge 10^6$	0.0635	-0.2704	0.0842	-0.2977	0.0646	-0.3174	
$2.56 \ge 10^6$	0.0625	-0.2704	0.0820	-0.2963	0.0634	-0.3175	
$3.20 \ge 10^6$	0.0614	-0.2703	0.0799	-0.2950	0.0621	-0.3176	
$4.00 \ge 10^6$	0.0603	-0.2702	0.0777	-0.2936	0.0609	-0.3177	
$4.60 \ge 10^7$	0.0488	-0.2696	0.0542	-0.2787	0.0475	-0.3190	
$4.60 \ge 10^8$	0.0379	-0.2690	0.0320	-0.2646	0.0349	-0.3202	

Tabella 4.16 Valori di a e b ricalcolati

Ottenuti i valori di a e b nel modo appena indicato, inserendoli nell'equazione caratterizzante la Legge di Potenza, sono stati determinati i valori dimensionali di EZ, normalizzati al valore del diametro. Nelle Tabelle successive si riportano i risultati ottenuti da tale operazione per le tre tipologie di tubo in Nafion analizzate.

EZ/D [-]												
Sospensione [Beads/mL]												
1.06×10^{6}	1.31×10^{6}	1.64×10^{6}	2.05×10^{6}	2.56×10^{6}	3.20×10^{6}	4.00×10^{6}	4.60×10^7	4.60×10^8				
0.1268	0.1248	0.1228	0.1208	0.1188	0.1167	0.1147	0.0926	0.0718				
0.1051	0.1035	0.1018	0.1001	0.0985	0.0968	0.0951	0.0768	0.0596				
0.0942	0.0927	0.0912	0.0897	0.0882	0.0867	0.0852	0.0689	0.0534				
0.0871	0.0858	0.0844	0.0830	0.0816	0.0803	0.0789	0.0637	0.0494				
0.0663	0.0653	0.0642	0.0632	0.0621	0.0611	0.0600	0.0485	0.0377				
0.0640	0.0630	0.0620	0.0610	0.0600	0.0590	0.0580	0.0469	0.0364				
0.0531	0.0523	0.0514	0.0506	0.0497	0.0489	0.0481	0.0389	0.0302				
0.0488	0.0481	0.0473	0.0465	0.0458	0.0450	0.0442	0.0358	0.0278				

Tabella 4.17 Valori EZ/D, in funzione dei numeri di Reynolds analizzati, per il tubo in Nafion TT030

Tabella 4.18 Valori EZ/D, in funzione dei numeri di Reynolds analizzati, per il tubo in Nafion TT050

EZ/D [-]												
Sospensione [Beads/mL]												
1.06×10^{6}	1.31×10^{6}	1.64×10^{6}	2.05×10^{6}	2.56×10^{6}	3.20×10^{6}	4.00×10^{6}	4.60×10^7	4.60×10^8				
0.1855	0.1808	0.1758	0.1708	0.1660	0.1611	0.1562	0.1051	0.0600				
0.1505	0.1468	0.1429	0.1390	0.1351	0.1313	0.1275	0.0866	0.0499				
0.1332	0.1300	0.1265	0.1232	0.1198	0.1165	0.1132	0.0774	0.0449				
0.1221	0.1192	0.1161	0.1131	0.1100	0.1070	0.1040	0.0714	0.0416				
0.0900	0.0880	0.0858	0.0837	0.0815	0.0794	0.0773	0.0539	0.0318				
0.0866	0.0846	0.0826	0.0805	0.0785	0.0765	0.0744	0.0520	0.0308				
0.0702	0.0687	0.0671	0.0655	0.0639	0.0623	0.0607	0.0429	0.0256				
0.0640	0.0627	0.0612	0.0598	0.0584	0.0569	0.0555	0.0393	0.0236				

EZ/D [-]												
Sospensione [Beads/mL]												
1.06×10^{6}	1.31×10^{6}	1.64×10^{6}	2.05×10^{6}	2.56×10^{6}	3.20×10^{6}	4.00×10^{6}	4.60×10^7	4.60×10^8				
0.1449	0.1425	0.1399	0.1373	0.1348	0.1322	0.1296	0.1015	0.0748				
0.1163	0.1143	0.1399	0.1102	0.1081	0.1061	0.1040	0.0814	0.0599				
0.1023	0.1005	0.1400	0.0969	0.0951	0.0933	0.0914	0.0715	0.0526				
0.0934	0.0918	0.1400	0.0884	0.0868	0.0851	0.0835	0.0652	0.0480				
0.0677	0.0666	0.1400	0.0642	0.0629	0.0617	0.0605	0.0472	0.0347				
0.0650	0.0639	0.1405	0.0616	0.0604	0.0593	0.0581	0.0454	0.0333				
0.0522	0.0513	0.1409	0.0494	0.0485	0.0476	0.0466	0.0364	0.0267				
0.0474	0.0466	0.0658	0.0448	0.0440	0.0431	0.0423	0.0330	0.0242				

Tabella 4.19 Valori EZ/D, in funzione dei numeri di Reynolds analizzati, per il tubo in Nafion TT110

I risultati, così ottenuti, hanno permesso di determinare i valori di R^2 nei riguardi dei dati sperimentali presenti nelle Tabelle 4.5, 4.6, 4.7 e ciò ha consentito di confrontarli con i rispettivi valori di R^2 , ottenuti dall'interpolazione in Legge di Potenza, riportati in Tabella 4.15.

Sospensione	Nafion TT030	Nafion TT050	Nafion TT110
Bead/mL		R ² ricalcolati	
1.06 x 10 ⁶	0.9812	0.9909	0.9961
1.31 x 10 ⁶	0.9773	0.9809	0.9938
1.64 x 10 ⁶	0.9868	0.9897	0.4688
2.05 x 10 ⁶	0.9912	0.9872	0.9948
2.56 x 10 ⁶	0.9936	0.9951	0.9993
$3.20 \ge 10^6$	0.9875	0.9968	0.9973
4.00 x 10 ⁶	0.9823	0.9956	0.9955
$4.60 \ge 10^7$	0.9964	0.9999	0.9981
$4.60 \ge 10^8$	0.9959	0.9858	0.9943

Tabella 4.20 Valori di R^2 ricalcolati

Tale confronto mostra come i valori di R^2 siano molto simili a quelli derivanti dall'applicazione della Legge di Potenza e ciò permette di affermare che i risultati

analitici raggiunti sono in grado di descrivere in maniera coerente il fenomeno dell'Exclusion Zone.

Risulta necessario specificare che per quanto riguarda la sospensione 4.60 x 10^7 sul tubo in Nafion TT030, l'interpolazione dei dati sperimentali ha mostrato un andamento che si sovrappone a quello delle altre sospensioni. Le prove sono state ripetute più volte, rispettando le stesse condizioni, e i dati rilevati sono risultati i medesimi. La causa di tale incongruenza può essere spiegata dal diametro molto piccolo del TT030, nel quale le interferenze tra il bordo interno e l'EZ risultano preponderanti rispetto a quelle che si potrebbero avere per i diametri più grandi, e ciò ha provocato delle alterazioni soprattutto per numeri di Reynolds molto bassi. Tale evidenza invece non si presenta per la sospensione 4.60 x 10^8 , in quanto essa costituisce un limite dimensionale, oltre il quale l'EZ non riesce a svilupparsi, non permettendo così la nascita di eventuali alterazioni.

A completare la trattazione analitica, è stato condotto un ulteriore studio per verificare che, al variare della concentrazione di microsfere in sospensione, le condizioni fluidodinamiche siano rispettate, in accordo con quando definito nel paragrafo 4.1, per quanto riguarda l'analisi dei profili di velocità. In Figura 4.44, sono riportati i profili teorici e sperimentali delle velocità ricavati sul tubo in Nafion TT030, per tre sospensioni differenti; le prove sono state condotte per le portate pari a 0.6 mL/h e 2.2 mL/h. Dalla Figura si evince che i profili sperimentali di velocità corrispondono, entro le deviazioni standard, ai profili teorici, perciò, è chiaro che i principi fluidodinamici, riferiti al moto laminare, siano rispettati, nonostante la variazione di concentrazione delle microsfere in sospensione. Si specifica inoltre, che non è stato possibile acquisire i dati di velocità sperimentali, al variare della sospensione, sui tubi in Nafion TT050 e TT110, in quanto le numerose interferenze esterne hanno impedito la corretta visualizzazione del tracciante a video.

Figura 4.44 Profili di velocità determinati al variare della sospensione, Nafion TT030

Capitolo 5

Discussione e conclusioni

5.1 Analisi della ricerca svolta

Il lavoro presentato in questa Tesi è la prosecuzione dei risultati raggiunti dall'Ing. Losero, il quale, con la sua ricerca sul fenomeno dell'Exclusion Zone, ha approfondito l'aspetto riguardante la caratterizzazione fluidodinamica di correnti laminari all'interno di tubi in Nafion. Durante le sperimentazioni, è stata osservata una sensibile diminuzione dello spessore dell'EZ, all'aumentare della portata all'interno del condotto. Tale evidenza ha spinto ad approfondire tale aspetto. Dopo una prima fase di taratura e messa a punto degli strumenti di laboratorio, in cui l'obiettivo principale è stato quello di riprodurre i risultati raggiunti dal precendete lavoro di Tesi, la ricerca è stata incentrata soprattutto sull'individuazione di una relazione che potesse descrivere il fenomeno dell'EZ attraverso determinati parametri idraulici. Il corretto utilizzo del microscopio ottico Leica DMIRB, e della relativa fotocamera Leica DFC450C, dei software LAS (di analisi delle immagini) e SFA (per la stima delle velocità) è stato possibile acquisire i dati di velocità e dimensioni dell'Exclusion Zone. Per quanto riguarda la stima delle velocità, sono state analizzate due tipologie di tubi, il Nafion TT030 e il Nafion TT110, verificando che le condizioni fluidodinamiche, riferite al moto laminare, fossero verificate anche per diametri differenti. In secondo luogo, è stata analizzata la variazione dello spessore dell'EZ al variare della sospensione (quindi all'aumentare della concentrazione di microsfere per millilitro) e al variare del numero di Reynolds. Sono stati esaminati i tubi in Nafion TT030, TT050 e TT110, sperimentando 9 sospensioni differenti, con diversi

ordini di grandezza, e 8 numeri di Reynolds. Tutti i dati ottenuti sono stati sono stati interpolati con diversi modelli, cercando di ottenere i più alti valori possibili di R^2 , ovvero del coefficiente di correlazione. Il confronto tra i risultati ottenuti ha portato a scegliere la migliore interpolazione e a determinare così, una relazione sperimentale del fenomeno del'EZ.

5.2 Risultati ottenuti

Dalle sperimentazioni effettuate sono emerse interessanti considerazioni. Innanzitutto, per quanto riguarda la caratterizzazione fluidodinamica, sovrapponendo i profili di velocità teorici con i rispettivi profili sperimentali, è stato verificato il rispetto delle leggi del moto laminare al variare del diametro del condotto esaminato. Dopo avere definito i risultati per il tubo in Nafion TT110, consultabili nel paragrafo 4.1.2, sono stati esaminati i risultati ottenuti sul tubo in Nafion TT030. In particolare, in riferimento a quanto definito nel paragrafo 4.2.2, si evince che, per tutta la sezione del condotto, i valori delle velocità sperimentali corrispondo, entro la rispettiva deviazione standard, al profilo teorico. Tale evidenza è stata fondamentale per il prosieguo della trattazione. Dal punto di vista, invece, della variazione dimensionale dell'Exclusion Zone, in riferimento ai paragrafi 4.3 e 4.4, si può notare lo sforzo fatto per individuare il modello analitico che meglio si adatta ai dati sperimentali raccolti. L'interpolazione è stata eseguita analizzando 6 modelli differenti, che si ricordano essere:

- Legge di Potenza
- Legge Esponenziale
- Legge Logaritmica
- Modello nel piano ln(Re) ln(EZ/D)
- Modello nel piano Re ln(EZ/D)
- Modello nel piano ln(Re) EZ/D

Confrontando i coefficienti di correlazione di ognuno di essi, e analizzando l'andamento dei parametri a e b, è risultato che la Legge di Potenza sia il modello

che consente la migliore interpolazione. Dunque, è stato possibile definire sia la legge generale che caratterizza il fenomeno dell'EZ, che le relative formulazioni nei riguardi dei parametri a e b, il tutto consultabile nel paragrafo 4.5

5.3 Sviluppi futuri e applicazioni pratiche

I risultati raggiunti in questa Tesi, aggiungono un importate tassello nei riguardi del fenomeno dell'Exclusion Zone, di cui ancora non si ha una spiegazione univocamente accettata. Nonostante le evidenze presentate in questa ricerca, il fenomeno è stato studiato, e continua ad esserlo, su scala microscopica, e ciò non permette un'immediata applicazione pratica. Tuttavia, è possibile trarre spunto dalle conclusioni raggiunte, per poter ipotizzare alcune tra le innumerevoli applicazioni pratiche che potrebbe permettere tale fenomeno. Innanzitutto, per quanto riguarda la separazione e filtrazione, l'idea, anche se ad oggi difficilmente realizzabile, potrebbe essere quella di produrre delle apparecchiature simili a quella già riportata in Figura 1.2, presente nel paragrafo 1.1. Tale impianto potrebbe garantire l'estrazione di acqua depurata, minimizzando i costi energetici e di gestione. Al momento, però, sono da escludersi applicazioni future a grande scala in impianti di depurazione o potabilizzazione, mentre sono quasi certamente auspicabili per operazioni mirate a piccola scala.

Un altro aspetto su cui potrebbe incidere tale fenomeno riguarda il *fouling delle membrane*, presente in tutti quei processi finalizzati all'ottenimento di acqua potabile attraverso la separazione delle particelle solide e, in generale, della quasi totalità degli inquinanti particellari. In base alla grandezza dei pori, è possibile ottenere diversi trattamenti, tra cui si ricordano: microfiltrazione (MF), ultrafiltrazione (UF), nanofiltrazione (NF), osmosi inversa (RO). Tutte le sostanze trattenute formano un deposito sulle membrane che provocano un aumento della pressione transmembrana e, per mantenere una permeabilità costante, sono necessari continui lavaggi e pulizie chimiche con cloro, acidi, acqua ossigeneta o detersivi. Tali trattamenti, qualora i lavaggi diventassero frequenti, inducono un sostanziale aumento dei consumi energetici. L'aumento dei trattamenti di lavaggio, oltre che indurre un aumento dei costi, alla lunga provocano anche un deterioramento della membrana stessa, costringendo ad una sostituzione, con conseguente aumento dei costi [30]. Lo sfruttamento del fenomeno Exclusion Zone potrebbe migliorare l'intero processo; infatti, non essendoci alcuna particella all'interno dell'EZ, si potrebbe proteggere la superficie della

membrana, rendendola inattaccabile da qualsiasi particella organica e non. Tutto ciò potrebbe evitare lavaggi frequenti, diminuzione dei costi di energia e gestione, un aumento della vita utile della membrana stessa e aumento delle prestazioni nelle successive fasi di disinfezione. L'utilizzo delle membrane in Nafion è già ampiamente studiato e potrebbe essere la principale applicazione pratica nel prossimo futuro.

Le membrane in Nafion potrebbero essere utilizzare per racchiudere un altro polimero, il cosiddetto MOF (Metal Organic Framework) [39]. I MOF sono dei polimeri metallo-organici costituiti da un'elevata porosità, essendo così in grado di immagazzinare le molecole d'acqua negli spazi vuoti presenti all'interno della struttura. L'intento è quello di realizzare un filtro che abbia la funzione di deumidificatore; in tal senso, il vapore acqueo passerà attraverso la membrana in Nafion, la quale veicolerà il flusso al MOF, il quale, assorbendo l'acqua, lascerà passare l'aria secca. Ad oggi il problema dei MOF è quello di sigillarli, in modo che non si disperdano all'interno dell'impianto, ma recenti studi hanno messo in evidenza come il Nafion potrebbe essere il materiale adatto per questa operazione, permettendo così la realizzazione di un filtro di acqua.

Infine, numerosi studi si stanno sviluppando (anche all'interno del Centro Ricerche di SMAT) sullo sfruttamento del fenomeno per prevenire, o al più rallentare, la formazione di biofilm associato all'utilizzo di dispositivi medici impiantabili, con sperimentazioni, per ora, a scala di laboratorio, ma che potrebbero risultare utili per applicazioni biomediche e spaziali. Con il termine "biofilm" [38] si intende indicare le colonie strutturate di cellule batteriche racchiuse in matrici polimeriche extracellulari autoprodotte e aderenti ad una superficie inerte o vivente, all'interfaccia con una fase liquida. Si ritiene che la formazione di biofilm si sviluppi secondo due fasi: inizialmente si ha l'adesione dei batteri su un substrato solido (superficie inerte), successivamente si ha l'adesione intercellulare, la quale induce la formazione degli strati di biofilm. Sono necessari anche pochi batteri per dare il via alla nascita del biofilm. Inoltre, dal biofilm maturo le cellule possono staccarsi e infettare altre zone, causando danni ai tessuti circostanti. Come è già stato accennato, le formazioni di biofilm hanno forti implicazioni in campo medico; in particolare si può riscontrare il problema nell'applicazione delle placche dentali, sulla superficie di impianti solidi nel corpo (es. protesi), sull'epitelio respiratorio dei polmoni, complicando le condizioni dei pazienti affetti da fibrosi cistica, in associazione con la faringite, nelle lenti intraoculari non sterilizzate e nelle infezioni del tratto urinario. Tutte queste problematiche potrebbero essere risolte, o comunque minimizzate, sfruttando

131

membrane in materiale polimerico, come il Nafion, che favoriscono lo sviluppo dell'Exclusion Zone, evitando così la nascita di colonie batteriche. Tale processo potrebbe migliorare le prestazioni dei dispositivi biomedici e la qualità degli stessi nel lungo termine.

Bibliografia

- D. Florea et al. «Long-range repulsion of colloids driven by ion exchange and diffusiophoresis». In: Proceedings of the National Academy of Sciences 111 (2014), pp. 6554-6559.
- [2] S. Musa et al. «*Convection associated with exclusion zone formation in colloidal suspensions*». In: *Soft Matter* 12 (2016), pp. 1127-1132.
- [3] D. Velegol et al. «Origins of concentration gradients for diffusiophoresis». In: Soft Matter 12 (2016), pp. 4686-4703.
- [4] J. Zheng e G.H. Pollack. «Long-range forces extending from polymergel surfaces». In: Physical Review E 68 (2003).
- [5] J. Zheng et al. «Surfaces and interfacial water: Evidence that hydrophilic surfaces have long-range impact». In: Advances in Colloid and Interface Science 127 (2006), pp. 19-27.
- [6] B. Abécassis et al. *«Boosting migration of large particles by solute contrasts».* In: *Nature Materials* 7 (2008), pp. 785-789.
- [7] K.A. Mauritz e R.B. Moore. *«State of Understanding of Nafion»*. In: *Chemical Reviews* 104 (2004), pp. 4535-4586.
- [8] B. Chai, H. Yoo e G.H. Pollack. «Effect of Radiant Energy on Near- Surface Water». In: The Journal of Phisical Chemistry B 113 (2009), pp. 13953-13958.
- [9] B. Chai et al. *«The Journal of Physical Chemistry A»*. In: *Chemical Reviews* 112 (2008), pp. 2242-2247.
- [10] R. Das e G.H. Pollack. «*Charge-Based Forces at the Nafion-Water Interface*». In: *Langmuir* 29 (2013), pp. 2651-2658.

- [11] G.H. Pollack. «Comment on "A Theory of Macromolecular Chemotaxis" and "Phenomena Associated with Gel-Water Interfaces. Analyses and Alternatives to the Long-Range Ordered Water Hypothesis"». In: The Journal of Physical Chemistry B 117 (2013), pp. 7843-7846.
- [12] Q. Zhao et al. «Unexpected Effect of Light on Colloidal Crystal Spacing». In: Langmuir 24 (2008), pp. 1750-1755.
- [13] G.H. Pollack et al. «New Method of Water Purification Based on the Particle-Exclusion Phenomenon». In: Environmental Science & Technology 42 (2008), pp. 6160-6166.
- [14] X. Chen et al. «InterfacialWater Structure Associated with Phospholipid Membranes Studied by Phase-Sensitive Vibrational Sum Frequency Generation Spectroscopy». In: Journal of the American Chemical Society 132 (2010), pp. 11336-11342.
- [15] E. Chiavazzo et al. «Scaling behaviour for the water transport in nanocon fident geometries». In: Nature Communications 5 (2014), pp. 1-11.
- [16] P.A. Mante et al. *«Probing Hydrophilic Interface of Solid/Liquid-Water by Nanoultrasonics»*. In: *Scientific Reports* 4 (2014), p. 6249.
- [17] S. Losero «Studio sperimentale dell'interazione tra Exclusion Zone e una corrente laminare». (2017).
- [18] J.L. Anderson. «Colloid Transport by Interfacial Forces». In: Annual Review of Fluid Mechanics 21 (1989), pp. 61-99.
- [19] H.J. Keh. «Diffusiophoresis of charged particles and diffusiosmosis of electrolyte solutions». In: Current Opinion in Colloid & Interface Science 24 (2016), pp. 13-22.
- [20] I.N. Huszàr et al. «Exclusion-Zone Dynamics Explored with Microfluidics and Optical Tweezers». In: Entropy 16 (2014), p. 4322.
- [21] J.M. Schurr et al. «A Theory of Macromolecular Chemotaxis». In: The Journal of Physical Chemistry B 117 (2013), pp. 7626-7652.

- [22] S. Shin et al. «Size-dependent control of colloid transport via solute gradients in dead-end channels». In: Proceedings Of The National Academy Of Sciences Of The United State Of America 113 (2016), pp. 257-261.
- [23] H. Frolic. «Long range coherence and the action of enzymes». In: Nature 228 (1970).
- [24] R.G. Mortimer e H. Eyring. «Elementary transition state theory of the Soret and Dufour effects». In: Proceedings Of The National Academy Of Sciences Of The United State Of America 77 (1980), pp. 1728-1731.
- [25] Nafion su Wikipedia. 2018. URL: https://it.wikipedia.org/wiki/Nafion.
- [26] K.A. Mauritz e R.B. Moore. «State of Understanding of Nafion». In: Chemical Reviews 104 (2004), pp. 257-261.
- [27] Home page Walther G. Grot. 2018. URL: http://www.nafion.mysite.com/.
- [28] D. Citrini e G. Noseda. «Idraulica». Casa Editrice Ambrosiana (1987), pp. 177-186.
- [29] I. Klyuzhin et al. «New Method of Water Purification Based on the Particle-Exclusion Phenomenon». In: Environmental Science & Technology 42 (2008), pp. 6160-6166.
- [30] *«Procedimenti riconosciuti di preparazione dell'acqua potabile».* Berna: Ufficio federale della sanità pubblica (2010), pp. 46-50.
- [31] J.R. Taylor. «Introduzione all'analisi degli errori. Lo studio delle incertezze nelle misure fisiche». Zanichelli (1981).
- [32] J. Zheng, A. Wexler e G.H. Pollack. «Effect of buffers on aqueous soluteexclusion zones around ion-exchange resins». In: Journal of colloid and interface science 332 (2009), pp. 511-514.
- [33] D. Toso et al. *«EXCLUSION ZONE: studio di fattibilità di trattamenti innovativi nel settore acquedottistico»*. In: *Industry & Chemistry* 4 (2015), pp. 90-95.

- [34] Sito DuPont USA. 2018. URL: http://www.dupont.com/.
- [35] V. Elia «Iterative Procedures to Highlight the Formation of Molecular Aggregates of Water Molecules in Pure Perturbed Water». In: News (2018).
- [36] E. Santacesaria «Interfasi: caratteristiche chimico-fisiche». In: Enciclopedia della Scienza e della Tecnica (2007), fig.14.
- [37] Chemiotassi macromolecolare. 2018. URL: https://www.slideshare.net/Zoologo/2batteri-stu-dbio/, slide 20 di 49.
- [38] Biofilm su Wikipedia. 2018. URL: https://it.wikipedia.org/wiki/Biofilm.
- [39] Nafion: la membrana del futuro?. 2018. URL: https://e-nsight.com/2018/06/15/nafion-la-membrana-del-futuro/.

Appendice A

Risultati sperimentali delle velocità

Nella presente Appendice sono riportate le tabelle relative ai dati sperimentali raccolti durante le analisi delle velocità, nei tubi in Nafion TT110 e TT030, al variare della portata. In Figura A.1, si riporta un esempio di modalità di acquisizione dei dati sperimentali, come già ampiamente spiegato nel paragrafo 4.1.2. Si ricorda inoltre che i dati sono stati raccolti dall'analisi di più registrazioni e, successivamente, sono stati uniti sovrapponendo le coordinate coincidenti tra i vari video. Per quanto riguarda il tubo in Nafion TT110, sono riportati i dati sperimentali riferiti alle seguenti portate:

0.6 mL/h 0.8 mL/h 2.5 mL/h

Per quanto riguarda, invece, il tubo in Nafion TT030, sono riportati i dati sperimentali relativi alle seguenti portate:

0.2 mL/h 0.4 mL/h 0.6 mL/h 0.8 mL/h

Figura A.1 Modalità di tabulazione dei dati acquisiti in riferimento alle velocità

Eromo	t	Х	Y	Y	V	Shift x frame	σ	V _{calc.}	$\sigma_{ m calc.}$	\overline{V}	$\overline{\sigma}$
Frame	S	рх	рх	μm	µm/s	px	рх	µm/s	µm/s	µm/s	μm/s
0-500	5	0	259	350	31	0.23	0.03	31.1	4.1		
500-1000	5	0	259	350	33	0.25	0.03	33.8	4.1	20.7	20
1000-1500	5	0	259	350	30	0.22	0.03	29.7	4.1	50.7	5.0
1500-2000	5	0	259	350	29	0.21	0.02	28.4	2.7		
0-500	5	0	311	420	37	0.27	0.01	36.5	1.4		
500-1000	5	0	311	420	39	0.29	0.03	39.2	4.1	26.8	2 7
1000-1500	5	0	311	420	36	0.27	0.02	36.5	2.7	50.0	3.2
1500-2000	5	0	311	420	36	0.26	0.03	35.1	4.1		
0-500	5	0	363	491	42	0.31	0.01	41.9	1.4		
500-1000	5	0	363	491	45	0.33	0.02	44.6	2.7	12.2	26
1000-1500	5	0	363	491	42	0.31	0.03	41.9	4.1	42.2	2.0
1500-2000	5	0	363	491	40	0.30	0.01	40.5	1.4		
0-500	5	0	415	561	45	0.33	0.03	44.6	4.1		
500-1000	5	0	415	561	50	0.37	0.02	50.0	2.7	17 2	21
1000-1500	5	0	415	561	49	0.36	0.02	48.6	2.7	47.5	3.1
1500-2000	5	0	415	561	45	0.34	0.02	45.9	2.7		
0-500	5	0	467	631	50	0.37	0.04	50.0	5.4		
500-1000	5	0	467	631	53	0.39	0.03	52.7	4.1	517	4.5
1000-1500	5	0	467	631	54	0.40	0.02	54.1	2.7	51.7	4.3
1500-2000	5	0	467	631	49	0.37	0.04	50.0	5.4		

Tabella A.1 Valori sperimentali delle velocità per Q = 0.6 mL/h, tubo di Nafion TT110 - 1° schermata
Eromo	t	Х	Y	Y	V	Shift x frame	σ	V _{calc.}	$\sigma_{ m calc.}$	\overline{V}	$\overline{\sigma}$
Fiame	s	рх	px	μm	μm/s	px	px	μm/s	μm/s	μm/s	μm/s
0-500	5	0	259	350	35	0.26	0.02	35.1	2.7		
500-1000	5	0	259	350	32	0.24	0.02	32.4	2.7	22.1	2 1
1000-1500	5	0	259	350	32	0.23	0.02	31.1	2.7	52.1	5.1
1500-2000	5	0	259	350	30	0.22	0.03	29.7	4.1		
0-500	5	0	311	420	40	0.30	0.03	40.5	4.1		
500-1000	5	0	311	420	37	0.27	0.02	36.5	2.7	275	15
1000-1500	5	0	311	420	36	0.27	0.04	36.5	5.4	57.5	4.3
1500-2000	5	0	311	420	37	0.27	0.04	36.5	5.4		
0-500	5	0	363	491	47	0.35	0.01	47.3	1.4		
500-1000	5	0	363	491	42	0.31	0.03	41.9	4.1	126	26
1000-1500	5	0	363	491	41	0.30	0.03	40.5	4.1	42.0	5.0
1500-2000	5	0	363	491	40	0.30	0.03	40.5	4.1		
0-500	5	0	415	561	50	0.37	0.02	50.0	2.7		
500-1000	5	0	415	561	46	0.34	0.02	45.9	2.7	16.2	2.4
1000-1500	5	0	415	561	44	0.33	0.01	44.6	1.4	40.5	2.4
1500-2000	5	0	415	561	44	0.33	0.02	44.6	2.7		
0-500	5	0	467	631	54	0.40	0.03	54.1	4.1		
500-1000	5	0	467	631	50	0.37	0.03	50.0	4.1	50.0	4.2
1000-1500	5	0	467	631	49	0.36	0.04	48.6	5.4	50.0	4.2
1500-2000	5	0	467	631	47	0.35	0.02	47.3	2.7		
0-500	5	0	519	701	58	0.43	0.03	58.1	4.1		
500-1000	5	0	519	701	53	0.39	0.01	52.7	1.4	52 1	2 2
1000-1500	5	0	519	701	52	0.38	0.03	51.4	4.1	33.4	3.2
1500-2000	5	0	519	701	51	0.38	0.02	51.4	2.7		
0-500	5	0	571	772	60	0.45	0.01	60.8	1.4		
500-1000	5	0	571	772	56	0.41	0.03	55.4	4.1	557	2.0
1000-1500	5	0	571	772	54	0.40	0.03	54.1	4.1	55.7	5.0
1500-2000	5	0	571	772	53	0.39	0.01	52.7	1.4		

Tabella A.2 Valori sperimentali delle velocità per Q = 0.6 mL/h, tubo di Nafion TT110 - 2° schermata

	t	Х	Y	Y	V	Shift x frame	σ	V _{calc.}	$\sigma_{ m calc.}$	\overline{V}	$\overline{\sigma}$
Frame	s	рх	px	μm	μm/s	px	px	μm/s	μm/s	μm/s	μm/s
0-500	5	0	363	491	47	0.35	0.01	47.3	1.4		
500-1000	5	0	363	491	46	0.34	0.02	45.9	2.7	11 2	2.2
1000-1500	5	0	363	491	43	0.31	0.03	41.9	4.1	44.3	3.2
1500-2000	5	0	363	491	42	0.31	0.03	41.9	4.1		
0-500	5	0	415	561	51	0.38	0.02	51.4	2.7		
500-1000	5	0	415	561	48	0.36	0.01	48.6	1.4	10.2	2.0
1000-1500	5	0	415	561	48	0.35	0.03	47.3	4.1	48.3	2.9
1500-2000	5	0	415	561	46	0.34	0.02	45.9	2.7		
0-500	5	0	467	631	56	0.41	0.02	55.4	2.7		
500-1000	5	0	467	631	52	0.38	0.04	51.4	5.4	514	2.6
1000-1500	5	0	467	631	49	0.37	0.02	50.0	2.7	51.4	3.0
1500-2000	5	0	467	631	49	0.36	0.02	48.6	2.7		
0-500	5	0	519	701	59	0.44	0.03	59.5	4.1		
500-1000	5	0	519	701	56	0.41	0.04	55.4	5.4	5 4 7	2.0
1000-1500	5	0	519	701	53	0.39	0.02	52.7	2.7	54.7	3.9
1500-2000	5	0	519	701	52	0.38	0.02	51.4	2.7		
0-500	5	0	571	772	62	0.46	0.03	62.2	4.1		
500-1000	5	0	571	772	58	0.43	0.03	58.1	4.1	56.0	2.4
1000-1500	5	0	571	772	55	0.40	0.02	54.1	2.7	56.8	3.4
1500-2000	5	0	571	772	53	0.39	0.02	52.7	2.7		
0-500	5	0	623	842	64	0.47	0.04	63.5	5.4		
500-1000	5	0	623	842	59	0.44	0.04	59.5	5.4	50.4	C 1
1000-1500	5	0	623	842	55	0.41	0.03	55.4	4.1	38.4	5.1
1500-2000	5	0	623	842	55	0.41	0.04	55.4	5.4		
0-500	5	0	675	912	66	0.49	0.01	66.2	1.4		
500-1000	5	0	675	912	62	0.46	0.02	62.2	2.7	(0.0	2.0
1000-1500	5	0	675	912	58	0.43	0.02	58.1	2.7	60.8	3.9
1500-2000	5	0	675	912	56	0.42	0.05	56.8	6.8		
0-500	5	0	727	982	68	0.50	0.04	67.6	5.4		
500-1000	5	0	727	982	63	0.47	0.03	63.5	4.1	(1.5	1.0
1000-1500	5	0	727	982	58	0.43	0.02	58.1	2.7	61.5	4.2
1500-2000	5	0	727	982	57	0.42	0.03	56.8	4.1		
0-500	5	0	779	1053	68	0.50	0.02	67.6	2.7		
500-1000	5	0	779	1053	62	0.46	0.02	62.2	2.7	(\mathbf{a}, \mathbf{a})	0.4
1000-1500	5	0	779	1053	60	0.45	0.02	60.8	2.7	62.2	2.4
1500-2000	5	0	779	1053	59	0.43	0.01	58.1	1.4		

Tabella A.3 Valori sperimentali delle velocità per Q = 0.6 mL/h, tubo di Nafion TT110 - 3° schermata

Enomo	t	Х	Y	Y	V	Shift x frame	σ	V _{calc.}	$\sigma_{ m calc.}$	\overline{V}	$\overline{\sigma}$
Frame	s	рх	px	μm	μm/s	px	px	μm/s	μm/s	μm/s	μm/s
0-500	5	0	623	842	66	0.49	0.02	66.2	2.7		
500-1000	5	0	623	842	54	0.40	0.02	54.1	2.7	500	2.1
1000-1500	5	0	623	842	54	0.40	0.02	54.1	2.7	30.0	5.1
1500-2000	5	0	623	842	61	0.45	0.03	60.8	4.1		
0-500	5	0	675	912	67	0.50	0.02	67.6	2.7		
500-1000	5	0	675	912	56	0.42	0.02	56.8	2.7	(0.9	2.1
1000-1500	5	0	675	912	56	0.42	0.02	56.8	2.7	00.8	5.1
1500-2000	5	0	675	912	62	0.46	0.03	62.2	4.1		
0-500	5	0	727	982	67	0.50	0.03	67.6	4.1		
500-1000	5	0	727	982	56	0.42	0.05	56.8	6.8	611	4.2
1000-1500	5	0	727	982	56	0.41	0.01	55.4	1.4	01.1	4.2
1500-2000	5	0	727	982	64	0.48	0.02	64.9	2.7		
0-500	5	0	779	1053	69	0.51	0.03	68.9	4.1		
500-1000	5	0	779	1053	58	0.43	0.01	58.1	1.4	() 5	2.2
1000-1500	5	0	779	1053	58	0.43	0.02	58.1	2.7	62.5	3.2
1500-2000	5	0	779	1053	65	0.48	0.03	64.9	4.1		
0-500	5	0	831	1123	68	0.51	0.03	68.9	4.1		
500-1000	5	0	831	1123	59	0.43	0.03	58.1	4.1	() 5	2.0
1000-1500	5	0	831	1123	58	0.43	0.02	58.1	2.7	02.3	3.8
1500-2000	5	0	831	1123	65	0.48	0.03	64.9	4.1		
0-500	5	0	883	1193	69	0.51	0.05	68.9	6.8		
500-1000	5	0	883	1193	58	0.43	0.04	58.1	5.4	() 5	16
1000-1500	5	0	883	1193	58	0.43	0.01	58.1	1.4	02.3	4.0
1500-2000	5	0	883	1193	65	0.48	0.02	64.9	2.7		
0-500	5	0	935	1264	69	0.51	0.03	68.9	4.1		
500-1000	5	0	935	1264	59	0.43	0.03	58.1	4.1	() 5	4 1
1000-1500	5	0	935	1264	58	0.43	0.03	58.1	4.1	02.3	4.1
1500-2000	5	0	935	1264	65	0.48	0.03	64.9	4.1		
0-500	5	0	987	1334	67	0.50	0.05	67.6	6.8		
500-1000	5	0	987	1334	57	0.42	0.02	56.8	2.7	611	4.1
1000-1500	5	0	987	1334	57	0.42	0.02	56.8	2.7	01.1	4.1
1500-2000	5	0	987	1334	64	0.47	0.02	63.5	2.7		
0-500	5	0	1039	1404	65	0.48	0.04	64.9	5.4		
500-1000	5	0	1039	1404	56	0.41	0.02	55.4	2.7	50.9	12
1000-1500	5	0	1039	1404	57	0.42	0.02	56.8	2.7	39.0	4.3
1500-2000	5	0	1039	1404	62	0.46	0.04	62.2	5.4		

Tabella A.4 Valori sperimentali delle velocità per Q = 0.6 mL/h, tubo di Nafion TT110 - 4° schermata

Fromo	t	Х	Y	Y	V	Shift x frame	σ	V _{calc.}	$\sigma_{ m calc.}$	\overline{V}	$\overline{\sigma}$
Flaine	S	px	рх	μm	μm/s	px	px	μm/s	µm/s	μm/s	μm/s
0-500	5	0	302	408	48	0.35	0.01	47.3	1.4		
500-1000	5	0	302	408	46	0.34	0.02	45.9	2.7	16.2	2.1
1000-1500	5	0	302	408	45	0.34	0.02	45.9	2.7	40.5	2.1
1500-2000	5	0	302	408	46	0.34	0.01	45.9	1.4		
0-500	5	0	354	478	52	0.38	0.03	51.4	4.1		
500-1000	5	0	354	478	53	0.39	0.02	52.7	2.7	517	4.2
1000-1500	5	0	354	478	52	0.39	0.04	52.7	5.4	31.7	4.2
1500-2000	5	0	354	478	50	0.37	0.03	50.0	4.1		
0-500	5	0	406	549	58	0.43	0.03	58.1	4.1		
500-1000	5	0	406	549	60	0.44	0.02	59.5	2.7	50 1	2.4
1000-1500	5	0	406	549	60	0.44	0.03	59.5	4.1	30.1	5.4
1500-2000	5	0	406	549	56	0.41	0.02	55.4	2.7		

Tabella A.5 Valori sperimentali delle velocità per Q = 0.8 mL/h, tubo di Nafion TT110 - 1° schermata

	t	Х	Y	Y	V	Shift x frame	σ	V _{calc.}	$\sigma_{ m calc.}$	\overline{V}	$\overline{\sigma}$
Frame	s	px	px	μm	μm/s	px	px	μm/s	μm/s	μm/s	μm/s
0-500	5	0	250	338	41	0.30	0.03	40.5	4.1		
500-1000	5	0	250	338	40	0.30	0.02	40.5	2.7	20.0	5.0
1000-1500	5	0	250	338	38	0.28	0.05	37.8	6.8	39.2	5.0
1500-2000	5	0	250	338	38	0.28	0.04	37.8	5.4		
0-500	5	0	302	408	45	0.34	0.02	45.9	2.7		
500-1000	5	0	302	408	47	0.34	0.04	45.9	5.4	16.2	5 2
1000-1500	5	0	302	408	47	0.35	0.04	47.3	5.4	40.3	5.5
1500-2000	5	0	302	408	46	0.34	0.05	45.9	6.8		
0-500	5	0	354	478	50	0.37	0.03	50.0	4.1		
500-1000	5	0	354	478	53	0.39	0.04	52.7	5.4	52.0	27
1000-1500	5	0	354	478	53	0.39	0.02	52.7	2.7	52.0	3.7
1500-2000	5	0	354	478	53	0.39	0.01	52.7	1.4		
0-500	5	0	406	549	56	0.42	0.03	56.8	4.1		
500-1000	5	0	406	549	58	0.43	0.02	58.1	2.7	57 1	2.2
1000-1500	5	0	406	549	58	0.43	0.01	58.1	1.4	57.4	3.2
1500-2000	5	0	406	549	56	0.42	0.03	56.8	4.1		
0-500	5	0	458	619	61	0.45	0.03	60.8	4.1		
500-1000	5	0	458	619	62	0.46	0.01	62.2	1.4	(1.1	
1000-1500	5	0	458	619	60	0.45	0.02	60.8	2.7	61.1	3.2
1500-2000	5	0	458	619	61	0.45	0.03	60.8	4.1		
0-500	5	0	510	689	66	0.49	0.04	66.2	5.4		
500-1000	5	0	510	689	66	0.49	0.03	66.2	4.1	(((4.0
1000-1500	5	0	510	689	65	0.48	0.03	64.9	4.1	00.0	4.2
1500-2000	5	0	510	689	68	0.51	0.02	68.9	2.7		
0-500	5	0	562	759	69	0.51	0.01	68.9	1.4		
500-1000	5	0	562	759	71	0.52	0.03	70.3	4.1	70.2	4.5
1000-1500	5	0	562	759	70	0.52	0.03	70.3	4.1	/0.3	4.5
1500-2000	5	0	562	759	71	0.53	0.05	71.6	6.8		
0-500	5	0	614	830	73	0.54	0.02	73.0	2.7		
500-1000	5	0	614	830	76	0.56	0.04	75.7	5.4	72 (45
1000-1500	5	0	614	830	73	0.54	0.04	73.0	5.4	/3.0	4.5
1500-2000	5	0	614	830	73	0.54	0.03	73.0	4.1		
0-500	5	0	666	900	75	0.56	0.02	75.7	2.7		
500-1000	5	0	666	900	77	0.57	0.04	77.0	5.4	77.0	5.0
1000-1500	5	0	666	900	77	0.57	0.04	77.0	5.4	//.0	5.3
1500-2000	5	0	666	900	79	0.58	0.05	78.4	6.8		

Tabella A.6 Valori sperimentali delle velocità per Q = 0.8 mL/h, tubo di Nafion TT110 - 2° schermata

	t	Х	Y	Y	V	Shift x frame	σ	V _{calc.}	$\sigma_{ m calc.}$	\overline{V}	$\overline{\sigma}$
Frame	S	px	px	μm	μm/s	px	px	μm/s	μm/s	μm/s	μm/s
0-500	5	0	458	619	64	0.47	0.03	63.5	4.1		
500-1000	5	0	458	619	67	0.49	0.03	66.2	4.1	(5 5	26
1000-1500	5	0	458	619	68	0.50	0.03	67.6	4.1	03.3	3.0
1500-2000	5	0	458	619	65	0.48	0.01	64.9	1.4		
0-500	5	0	510	689	67	0.49	0.04	66.2	5.4		
500-1000	5	0	510	689	71	0.53	0.03	71.6	4.1	60 0	4 4
1000-1500	5	0	510	689	70	0.52	0.04	70.3	5.4	08.9	4.4
1500-2000	5	0	510	689	68	0.50	0.01	67.6	1.4		
0-500	5	0	562	759	69	0.51	0.05	68.9	6.8		
500-1000	5	0	562	759	74	0.55	0.02	74.3	2.7	70.2	61
1000-1500	5	0	562	759	75	0.55	0.04	74.3	5.4	12.5	0.1
1500-2000	5	0	562	759	71	0.53	0.06	71.6	8.1		
0-500	5	0	614	830	73	0.54	0.02	73.0	2.7		
500-1000	5	0	614	830	74	0.55	0.05	74.3	6.8	74.0	61
1000-1500	5	0	614	830	76	0.56	0.04	75.7	5.4	/4.0	0.1
1500-2000	5	0	614	830	73	0.54	0.06	73.0	8.1		
0-500	5	0	666	900	75	0.55	0.04	74.3	5.4		
500-1000	5	0	666	900	77	0.57	0.04	77.0	5.4	76 1	51
1000-1500	5	0	666	900	79	0.58	0.03	78.4	4.1	/0.4	5.1
1500-2000	5	0	666	900	76	0.56	0.04	75.7	5.4		
0-500	5	0	718	970	76	0.56	0.03	75.7	4.1		
500-1000	5	0	718	970	79	0.59	0.06	79.7	8.1	78.0	58
1000-1500	5	0	718	970	80	0.59	0.05	79.7	6.8	78.0	5.8
1500-2000	5	0	718	970	77	0.57	0.02	77.0	2.7		
0-500	5	0	770	1041	77	0.57	0.05	77.0	6.8		
500-1000	5	0	770	1041	80	0.59	0.04	79.7	5.4	70.1	47
1000-1500	5	0	770	1041	81	0.60	0.02	81.1	2.7	79.1	4./
1500-2000	5	0	770	1041	78	0.58	0.02	78.4	2.7		
0-500	5	0	822	1111	78	0.58	0.02	78.4	2.7		
500-1000	5	0	822	1111	81	0.60	0.04	81.1	5.4	70 7	5.0
1000-1500	5	0	822	1111	81	0.60	0.05	81.1	6.8	1).1	5.0
1500-2000	5	0	822	1111	78	0.58	0.03	78.4	4.1		
0-500	5	0	874	1181	78	0.58	0.03	78.4	4.1		
500-1000	5	0	874	1181	79	0.58	0.05	78.4	6.8	70.1	16
1000-1500	5	0	874	1181	81	0.60	0.02	81.1	2.7	19.1	4.0
1500-2000	5	0	874	1181	79	0.58	0.03	78.4	4.1		

Tabella A.7 Valori sperimentali delle velocità per Q = 0.8 mL/h, tubo di Nafion TT110 - 3° schermata

Enomo	t	Х	Y	Y	V	Shift x frame	σ	V _{calc.}	$\sigma_{ m calc.}$	\overline{V}	$\overline{\sigma}$
Frame	S	px	px	μm	μm/s	px	px	μm/s	μm/s	μm/s	μm/s
0-500	5	0	666	900	80	0.59	0.04	79.7	5.4		
500-1000	5	0	666	900	78	0.58	0.04	78.4	5.4	75.2	60
1000-1500	5	0	666	900	71	0.52	0.04	70.3	5.4	15.5	0.2
1500-2000	5	0	666	900	73	0.54	0.06	73.0	8.1		
0-500	5	0	718	970	81	0.60	0.07	81.1	9.5		
500-1000	5	0	718	970	78	0.58	0.02	78.4	2.7		6.0
1000-1500	5	0	718	970	74	0.55	0.04	74.3	5.4	//./	0.0
1500-2000	5	0	718	970	77	0.57	0.03	77.0	4.1		
0-500	5	0	770	1041	83	0.61	0.04	82.4	5.4		
500-1000	5	0	770	1041	81	0.60	0.03	81.1	4.1	ר סר	62
1000-1500	5	0	770	1041	76	0.56	0.05	75.7	6.8	/0./	0.5
1500-2000	5	0	770	1041	76	0.56	0.06	75.7	8.1		
0-500	5	0	822	1111	83	0.62	0.02	83.8	2.7		
500-1000	5	0	822	1111	80	0.59	0.06	79.7	8.1	70.7	5 1
1000-1500	5	0	822	1111	76	0.56	0.03	75.7	4.1	/9./	5.4
1500-2000	5	0	822	1111	79	0.59	0.04	79.7	5.4		
0-500	5	0	874	1181	85	0.63	0.02	85.1	2.7		
500-1000	5	0	874	1181	80	0.59	0.03	79.7	4.1	00.1	5 1
1000-1500	5	0	874	1181	77	0.57	0.05	77.0	6.8	80.1	5.4
1500-2000	5	0	874	1181	78	0.58	0.05	78.4	6.8		
0-500	5	0	926	1251	83	0.61	0.03	82.4	4.1		
500-1000	5	0	926	1251	80	0.59	0.03	79.7	4.1	707	57
1000-1500	5	0	926	1251	75	0.56	0.04	75.7	5.4	/8./	5.7
1500-2000	5	0	926	1251	77	0.57	0.06	77.0	8.1		
0-500	5	0	978	1322	81	0.60	0.03	81.1	4.1		
500-1000	5	0	978	1322	79	0.58	0.02	78.4	2.7	70.0	2.4
1000-1500	5	0	978	1322	76	0.56	0.03	75.7	4.1	/8.0	3.4
1500-2000	5	0	978	1322	77	0.57	0.02	77.0	2.7		
0-500	5	0	1030	1392	79	0.59	0.04	79.7	5.4		
500-1000	5	0	1030	1392	77	0.57	0.04	77.0	5.4	76 1	15
1000-1500	5	0	1030	1392	73	0.54	0.03	73.0	4.1	/0.4	4.3
1500-2000	5	0	1030	1392	75	0.56	0.02	75.7	2.7		
0-500	5	0	1082	1462	78	0.58	0.03	78.4	4.1		
500-1000	5	0	1082	1462	77	0.57	0.05	77.0	6.8	740	56
1000-1500	5	0	1082	1462	70	0.52	0.03	70.3	4.1	/4.0	3.0
1500-2000	5	0	1082	1462	71	0.52	0.05	70.3	6.8		

Tabella A.8 Valori sperimentali delle velocità per Q = 0.8 mL/h, tubo di Nafion TT110 - 4° schermata

Frame	t	Х	Y	Y	V	Shift x frame	σ	V _{calc.}	$\sigma_{ m calc.}$	\overline{V}	$\overline{\sigma}$
Flaine	s	px	px	μm	μm/s	px	px	μm/s	μm/s	μm/s	μm/s
0-500	5	0	242	327	117	0.86	0.03	116.2	4.1		
500-1000	5	0	242	327	115	0.85	0.03	114.9	4.1	112.0	5 2
1000-1500	5	0	242	327	112	0.83	0.04	112.2	5.4	113.9	5.2
1500-2000	5	0	242	327	112	0.83	0.05	112.2	6.8		
0-500	5	0	294	397	136	1.01	0.06	136.5	8.1		
500-1000	5	0	294	397	135	1.00	0.04	135.1	5.4	124 1	69
1000-1500	5	0	294	397	133	0.98	0.05	132.4	6.8	134.1	0.8
1500-2000	5	0	294	397	132	0.98	0.05	132.4	6.8		
0-500	5	0	346	468	160	1.18	0.05	159.5	6.8		
500-1000	5	0	346	468	157	1.17	0.05	158.1	6.8	156.9	6.4
1000-1500	5	0	346	468	155	1.15	0.05	155.4	6.8	130.8	0.4
1500-2000	5	0	346	468	154	1.14	0.04	154.1	5.4		
0-500	5	0	398	538	179	1.32	0.04	178.4	5.4		
500-1000	5	0	398	538	179	1.33	0.04	179.7	5.4	176 1	7 2
1000-1500	5	0	398	538	173	1.28	0.07	173.0	9.5	170.4	7.5
1500-2000	5	0	398	538	175	1.29	0.06	174.3	8.1		
0-500	5	0	450	608	198	1.46	0.07	197.3	9.5		
500-1000	5	0	450	608	195	1.44	0.05	194.6	6.8	104.2	0.0
1000-1500	5	0	450	608	193	1.43	0.04	193.2	5.4	194.3	8.0
1500-2000	5	0	450	608	191	1.42	0.07	191.9	9.5		

Tabella A.9 Valori sperimentali delle velocità per Q = 2.5 mL/h, tubo di Nafion TT110 - 1° schermata

Fromo	t	Х	Y	Y	V	Shift x frame	σ	V _{calc.}	$\sigma_{ m calc.}$	\overline{V}	$\overline{\sigma}$
	S	px	px	μm	μm/s	px	px	μm/s	μm/s	μm/s	μm/s
0-500	5	0	242	327	122	0.90	0.05	121.6	6.8		
500-1000	5	0	242	327	121	0.90	0.05	121.6	6.8	121.3	75
1000-1500	5	0	242	327	121	0.89	0.06	120.3	8.1	121.3	7.5
1500-2000	5	0	242	327	122	0.90	0.06	121.6	8.1		
0-500	5	0	294	397	141	1.04	0.04	140.5	5.4		
500-1000	5	0	294	397	140	1.04	0.05	140.5	6.8	140.5	8.0
1000-1500	5	0	294	397	140	1.04	0.06	140.5	8.1	140.3	8.0
1500-2000	5	0	294	397	140	1.04	0.08	140.5	10.8		
0-500	5	0	346	468	161	1.19	0.08	160.8	10.8		
500-1000	5	0	346	468	158	1.17	0.09	158.1	12.2	150.1	10.0
1000-1500	5	0	346	468	160	1.18	0.05	159.5	6.8	139.1	10.0
1500-2000	5	0	346	468	159	1.17	0.07	158.1	9.5		
0-500	5	0	398	538	177	1.31	0.07	177.0	9.5		
500-1000	5	0	398	538	173	1.28	0.06	173.0	8.1	1757	00
1000-1500	5	0	398	538	176	1.30	0.07	175.7	9.5	175.7	0.0
1500-2000	5	0	398	538	177	1.31	0.06	177.0	8.1		
0-500	5	0	450	608	192	1.42	0.09	191.9	12.2		
500-1000	5	0	450	608	191	1.41	0.06	190.5	8.1	100.0	117
1000-1500	5	0	450	608	190	1.41	0.10	190.5	13.5	190.9	11./
1500-2000	5	0	450	608	191	1.41	0.09	190.5	12.2		
0-500	5	0	502	678	207	1.53	0.09	206.8	12.2		
500-1000	5	0	502	678	204	1.51	0.07	204.1	9.5	205 4	12.1
1000-1500	5	0	502	678	204	1.51	0.12	204.1	16.2	203.4	13.1
1500-2000	5	0	502	678	207	1.53	0.10	206.8	13.5		
0-500	5	0	554	749	218	1.61	0.10	217.6	13.5		
500-1000	5	0	554	749	216	1.60	0.07	216.2	9.5	216.0	11.2
1000-1500	5	0	554	749	218	1.62	0.07	218.9	9.5	210.9	11.5
1500-2000	5	0	554	749	215	1.59	0.09	214.9	12.2		
0-500	5	0	606	819	227	1.68	0.10	227.0	13.5		
500-1000	5	0	606	819	226	1.80	0.07	243.2	9.5	220.7	127
1000-1500	5	0	606	819	225	1.67	0.11	225.7	14.9	230.7	13.7
1500-2000	5	0	606	819	227	1.68	0.12	227.0	16.2		
0-500	5	0	658	889	235	1.74	0.08	235.1	10.8		
500-1000	5	0	658	889	233	1.72	0.07	232.4	9.5	222.6	10.4
1000-1500	5	0	658	889	234	1.73	0.08	233.8	10.8	233.0	10.4
1500-2000	5	0	658	889	233	1.72	0.15	232.4	20.3		

Tabella A.10 Valori sperimentali delle velocità per Q = 2.5 mL/h, tubo di Nafion TT110 - 2° schermata

	t	Х	Y	Y	V	Shift x frame	σ	V _{calc.}	$\sigma_{ m calc.}$	\overline{V}	$\overline{\sigma}$
Frame	S	px	px	μm	μm/s	px	px	μm/s	μm/s	μm/s	μm/s
0-500	5	0	606	819	216	1.60	0.13	216.2	17.6		
500-1000	5	0	606	819	216	1.59	0.16	214.9	21.6	215 5	10.7
1000-1500	5	0	606	819	214	1.58	0.13	213.5	17.6	213.3	19.7
1500-2000	5	0	606	819	218	1.61	0.16	217.6	21.6		
0-500	5	0	658	889	231	1.71	0.15	231.1	20.3		
500-1000	5	0	658	889	231	1.71	0.14	231.1	18.9	022.1	20.2
1000-1500	5	0	658	889	234	1.73	0.17	233.8	23.0	233.1	20.5
1500-2000	5	0	658	889	237	1.75	0.14	236.5	18.9		
0-500	5	0	710	959	240	1.78	0.13	240.5	17.6		
500-1000	5	0	710	959	240	1.78	0.13	240.5	17.6	242.0	19.6
1000-1500	5	0	710	959	243	1.80	0.15	243.2	20.3	242.9	18.0
1500-2000	5	0	710	959	247	1.83	0.14	247.3	18.9		
0-500	5	0	762	1030	249	1.84	0.15	248.6	20.3		
500-1000	5	0	762	1030	249	1.84	0.17	248.6	23.0	252.0	22.0
1000-1500	5	0	762	1030	251	1.86	0.18	251.4	24.3	252.0	23.0
1500-2000	5	0	762	1030	253	1.87	0.16	252.7	21.6		
0-500	5	0	814	1100	257	1.91	0.12	258.1	16.2		
500-1000	5	0	814	1100	255	1.88	0.14	254.1	18.9	057.4	10.4
1000-1500	5	0	814	1100	259	1.91	0.16	258.1	21.6	257.4	19.4
1500-2000	5	0	814	1100	260	1.92	0.15	259.5	20.3		
0-500	5	0	866	1170	258	1.91	0.15	258.1	20.3		
500-1000	5	0	866	1170	261	1.93	0.11	260.8	14.9	0(0.5	10.0
1000-1500	5	0	866	1170	264	1.96	0.16	264.9	21.6	262.5	19.8
1500-2000	5	0	866	1170	266	1.97	0.16	266.2	21.6		
0-500	5	0	918	1241	263	1.95	0.15	263.5	20.3		
500-1000	5	0	918	1241	264	1.96	0.15	264.9	20.3	965.0	01 0
1000-1500	5	0	918	1241	267	1.97	0.15	266.2	20.3	265.9	21.0
1500-2000	5	0	918	1241	268	1.99	0.17	268.9	23.0		
0-500	5	0	970	1311	268	1.99	0.14	268.9	18.9		
500-1000	5	0	970	1311	271	2.00	0.23	270.3	31.1	270.2	
1000-1500	5	0	970	1311	270	2.00	0.22	270.3	29.7	270.3	26.2
1500-2000	5	0	970	1311	272	2.01	0.17	271.6	23.0		
0-500	5	0	1022	1381	267	1.98	0.20	267.6	27.0		
500-1000	5	0	1022	1381	267	1.97	0.16	266.2	21.6	0 (0)(
1000-1500	5	0	1022	1381	270	2.00	0.19	270.3	25.7	268.6	24.1
1500-2000	5	0	1022	1381	271	2.00	0.16	270.3	21.6		

Tabella A.11 Valori sperimentali delle velocità per Q = 2.5 mL/h, tubo di Nafion TT110 - 3° schermata

Enomo	t	Х	Y	Y	V	Shift x frame	σ	V _{calc.}	$\sigma_{ m calc.}$	\overline{V}	$\overline{\sigma}$
Flaine	S	px	рх	μm	μm/s	px	px	μm/s	μm/s	μm/s	µm/s
0-500	5	0	0	0	266	1.97	0.42	266.2	56.8		
500-1000	5	0	0	0	278	2.03	0.78	274.3	65.4	283 1	72 4
1000-1500	5	0	0	0	285	2.11	0.58	285.1	78.4	263.4	12.4
1500-2000	5	0	0	0	309	2.28	1.40	308.1	89.2		
0-500	5	0	52	70	273	2.02	27.00	273.0	64.6		
500-1000	5	0	52	70	285	2.11	0.64	285.1	86.5	280.0	607
1000-1500	5	0	52	70	304	2.25	0.49	304.1	66.2	269.9	00.7
1500-2000	5	0	52	70	297	2.20	0.43	297.3	58.1		
0-500	5	0	104	141	275	2.03	0.28	274.3	37.8		
500-1000	5	0	104	141	293	2.17	0.55	293.2	74.3	200.5	60 5
1000-1500	5	0	104	141	298	2.20	0.40	297.3	54.1	290.3	00.5
1500-2000	5	0	104	141	297	2.20	0.51	297.3	68.9		
0-500	5	0	156	211	280	2.07	0.21	279.7	28.4		
500-1000	5	0	156	211	287	2.12	0.33	286.5	44.6	270.7	14.2
1000-1500	5	0	156	211	300	2.22	0.34	300.0	45.9	219.1	14.2
1500-2000	5	0	156	211	297	2.20	0.29	297.3	39.2		
0-500	5	0	208	281	275	2.03	0.20	274.3	27.0		
500-1000	5	0	208	281	288	2.13	0.25	287.8	33.8	274.2	27.0
1000-1500	5	0	208	281	295	2.18	0.26	294.6	35.1	274.3	27.0
1500-2000	5	0	208	281	294	2.17	0.25	293.2	33.8		
0-500	5	0	260	351	271	2.01	0.18	271.6	24.3		
500-1000	5	0	260	351	284	2.10	0.26	283.8	35.1	2015	20.7
1000-1500	5	0	260	351	292	2.16	0.20	291.9	27.0	284.3	29.1
1500-2000	5	0	260	351	290	2.15	0.23	290.5	31.1		
0-500	5	0	312	422	268	1.98	0.21	267.6	28.4		
500-1000	5	0	312	422	274	2.03	0.20	274.3	27.0	276 1	27.1
1000-1500	5	0	312	422	285	2.11	0.21	285.1	28.4	270.4	27.1
1500-2000	5	0	312	422	278	2.06	0.18	278.4	24.3		
0-500	5	0	364	492	259	1.91	0.11	258.1	14.9		
500-1000	5	0	364	492	266	1.97	0.20	266.2	27.0	260.2	21.5
1000-1500	5	0	364	492	278	2.05	0.18	277.0	24.3	209.5	21.3
1500-2000	5	0	364	492	276	2.04	0.13	275.7	17.6		
0-500	5	0	416	562	254	1.88	0.09	254.1	12.2		
500-1000	5	0	416	562	259	1.91	0.14	258.1	18.9	260 0	100
1000-1500	5	0	416	562	268	1.98	0.14	267.6	18.9	200.8	10.2
1500-2000	5	0	416	562	264	1.95	0.16	263.5	21.6		

Tabella A.12 Valori sperimentali delle velocità per Q = 2.5 mL/h, tubo di Nafion TT110 - 4° schermata

Eromo	t	Х	Y	Y	V	Shift x frame	σ	V _{calc.}	$\sigma_{ m calc.}$	\overline{V}	$\overline{\sigma}$
Frame	s	рх	px	μm	μm/s	px	px	μm/s	μm/s	μm/s	μm/s
0-500	5	0	104	141	153	1.13	0.09	152.7	12.2		
500-1000	5	0	104	141	166	1.23	0.04	166.2	5.4	161 1	05
1000-1500	5	0	104	141	165	1.22	0.06	164.9	8.1	101.1	8.3
1500-2000	5	0	104	141	161	1.19	0.05	160.8	6.8		
0-500	5	0	130	176	168	1.24	0.06	167.6	8.1		
500-1000	5	0	130	176	179	1.32	0.09	178.4	12.2	1747	12.1
1000-1500	5	0	130	176	182	1.35	0.13	182.4	17.6	1/4./	12.1
1500-2000	5	0	130	176	171	1.26	0.06	170.3	8.1		
0-500	5	0	156	211	183	1.36	0.07	183.8	9.5		
500-1000	5	0	156	211	208	1.54	0.09	208.1	12.2	200.2	10.2
1000-1500	5	0	156	211	214	1.58	0.08	213.5	10.8	200.5	10.2
1500-2000	5	0	156	211	196	1.45	0.06	195.9	8.1		
0-500	5	0	182	246	205	1.52	0.07	205.4	9.5		
500-1000	5	0	182	246	229	1.70	0.06	229.7	8.1	222.2	0.2
1000-1500	5	0	182	246	236	1.75	0.05	236.5	6.8	222.3	8.2
1500-2000	5	0	182	246	218	1.61	0.06	217.6	8.1		
0-500	5	0	208	281	221	1.63	0.06	220.3	8.1		
500-1000	5	0	208	281	240	1.78	0.03	240.5	4.1	224 5	6.0
1000-1500	5	0	208	281	244	1.81	0.03	244.6	4.1	234.3	0.0
1500-2000	5	0	208	281	232	1.72	0.05	232.4	6.8		
0-500	5	0	234	316	231	1.71	0.05	231.1	6.8		
500-1000	5	0	234	316	247	1.83	0.02	247.3	2.7	2426	16
1000-1500	5	0	234	316	249	1.84	0.03	248.6	4.1	242.0	4.0
1500-2000	5	0	234	316	243	1.80	0.03	243.2	4.1		
0-500	5	0	260	351	234	1.73	0.03	233.8	4.1		
500-1000	5	0	260	351	252	1.87	0.01	252.7	1.4	245.0	20
1000-1500	5	0	260	351	252	1.86	0.02	251.4	2.7	243.9	3.2
1500-2000	5	0	260	351	246	1.82	0.03	245.9	4.1		

Tabella A.13 Valori sperimentali delle velocità per Q = 0.2 mL/h, tubo di Nafion TT030 - Parte 1

Eromo	t	Х	Y	Y	V	Shift x frame	σ	V _{calc.}	$\sigma_{ m calc.}$	\overline{V}	$\overline{\sigma}$
Fiame	s	рх	px	μm	μm/s	px	px	μm/s	μm/s	μm/s	μm/s
0-500	5	0	286	386	235	1.74	0.03	235.1	4.1		
500-1000	5	0	286	386	251	1.86	0.02	251.4	2.7	245.0	2 2
1000-1500	5	0	286	386	254	1.88	0.03	254.1	4.1	243.9	5.2
1500-2000	5	0	286	386	243	1.80	0.01	243.2	1.4		
0-500	5	0	312	422	230	1.70	0.05	229.7	6.8		
500-1000	5	0	312	422	249	1.84	0.04	248.6	5.4	242.2	5.0
1000-1500	5	0	312	422	251	1.85	0.03	250.0	4.1	242.2	5.0
1500-2000	5	0	312	422	240	1.78	0.02	240.5	2.7		
0-500	5	0	338	457	224	1.66	0.05	224.3	6.8		
500-1000	5	0	338	457	242	1.79	0.04	241.9	5.4	226.0	57
1000-1500	5	0	338	457	246	1.82	0.02	245.9	2.7	230.8	5.7
1500-2000	5	0	338	457	235	1.74	0.05	235.1	6.8		
0-500	5	0	364	492	207	1.53	0.09	206.8	12.2		
500-1000	5	0	364	492	233	1.72	0.05	232.4	6.8	225 7	0.2
1000-1500	5	0	364	492	238	1.76	0.03	237.8	4.1	223.7	8.3
1500-2000	5	0	364	492	225	1.67	0.06	225.7	8.1		
0-500	5	0	390	527	189	1.40	0.08	189.2	10.8		
500-1000	5	0	390	527	214	1.58	0.08	213.5	10.8	206.1	11.0
1000-1500	5	0	390	527	218	1.61	0.10	217.6	13.5	200.1	11.2
1500-2000	5	0	390	527	204	1.51	0.07	204.1	9.5		
0-500	5	0	416	562	170	1.26	0.04	170.3	5.4		
500-1000	5	0	416	562	188	1.39	0.07	187.8	9.5	102 1	0.9
1000-1500	5	0	416	562	195	1.44	0.09	194.6	12.2	165.1	9.8
1500-2000	5	0	416	562	179	1.33	0.08	179.7	10.8		
0-500	5	0	442	597	160	1.19	0.05	160.8	6.8		
500-1000	5	0	442	597	169	1.25	0.03	168.9	4.1	166.0	5.0
1000-1500	5	0	442	597	169	1.25	0.04	168.9	5.4	100.2	5.0
1500-2000	5	0	442	597	166	1.23	0.02	166.2	2.7		

Tabella A.14 Valori sperimentali delle velocità per Q = 0.2 mL/h, tubo di Nafion TT030 - Parte 2

Eromo	t	Х	Y	Y	V	Shift x frame	σ	V _{calc.}	$\sigma_{ m calc.}$	\overline{V}	$\overline{\sigma}$
Flaine	S	px	рх	μm	μm/s	px	px	μm/s	μm/s	μm/s	μm/s
0-500	5	0	94	127	244	1.81	0.15	244.6	20.3		
500-1000	5	0	94	127	253	1.87	0.20	252.7	27.0	250.7	20.0
1000-1500	5	0	94	127	250	1.85	0.09	250.0	12.2	230.7	20.0
1500-2000	5	0	94	127	255	1.89	0.13	255.4	17.6		
0-500	5	0	120	162	294	2.17	0.19	293.2	25.7		
500-1000	5	0	120	162	305	2.25	0.17	304.1	23.0	200.7	24.1
1000-1500	5	0	120	162	294	2.18	0.20	294.6	27.0	299.1	24.1
1500-2000	5	0	120	162	307	2.27	0.15	306.8	20.3		
0-500	5	0	146	197	333	2.46	0.19	332.4	25.7		
500-1000	5	0	146	197	344	2.54	0.19	343.2	25.7	220.0	25 7
1000-1500	5	0	146	197	339	2.51	0.17	339.2	23.0	559.9	23.7
1500-2000	5	0	146	197	344	2.55	0.21	344.6	28.4		
0-500	5	0	172	232	368	2.72	0.17	367.6	23.0		
500-1000	5	0	172	232	382	2.82	0.19	381.1	25.7	270.0	22.0
1000-1500	5	0	172	232	379	2.80	0.35	378.4	47.3	578.0	33.8
1500-2000	5	0	172	232	386	2.85	0.25	385.1	33.8		
0-500	5	0	198	268	394	2.91	0.31	393.2	41.9		
500-1000	5	0	198	268	416	3.08	0.21	416.2	28.4	100 1	20 6
1000-1500	5	0	198	268	411	3.04	0.30	410.8	40.5	408.4	38.0
1500-2000	5	0	198	268	413	3.06	0.31	413.5	41.9		
0-500	5	0	224	303	417	3.08	0.24	416.2	32.4		
500-1000	5	0	224	303	433	3.20	0.29	432.4	39.2	426.0	20.9
1000-1500	5	0	224	303	424	3.14	0.33	424.3	44.6	420.0	39.8
1500-2000	5	0	224	303	432	3.19	0.31	431.1	41.9		
0-500	5	0	250	338	423	3.13	0.37	423.0	50.0		
500-1000	5	0	250	338	447	3.31	0.24	447.3	32.4	420.0	40.7
1000-1500	5	0	250	338	437	3.24	0.30	437.8	40.5	438.9	42.7
1500-2000	5	0	250	338	448	3.31	0.34	447.3	45.9		
0-500	5	0	276	373	443	3.28	0.32	443.2	43.2		
500-1000	5	0	276	373	460	3.40	0.28	459.5	37.8	1517	27 7
1000-1500	5	0	276	373	457	3.38	0.26	456.8	35.1	434./	51.1
1500-2000	5	0	276	373	460	3.40	0.25	459.5	33.8		

Tabella A.15 Valori sperimentali delle velocità per Q = 0.4 mL/h, tubo di Nafion TT030 - Parte 1

Eromo	t	Х	Y	Y	V	Shift x frame	σ	V _{calc.}	$\sigma_{ m calc.}$	\overline{V}	$\overline{\sigma}$
Fiame	S	рх	px	μm	μm/s	px	px	μm/s	µm/s	μm/s	µm/s
0-500	5	0	302	408	435	3.22	0.39	435.1	52.7		
500-1000	5	0	302	408	453	3.35	0.33	452.7	44.6	111 2	56 1
1000-1500	5	0	302	408	438	3.24	0.56	437.8	75.7	444.5	50.4
1500-2000	5	0	302	408	451	3.34	0.35	451.4	47.3		
0-500	5	0	328	443	420	3.11	0.31	420.3	41.9		
500-1000	5	0	328	443	442	3.27	0.30	441.9	40.5	122 1	115
1000-1500	5	0	328	443	433	3.20	0.38	432.4	51.4	433.1	44.3
1500-2000	5	0	328	443	438	3.24	0.32	437.8	43.2		
0-500	5	0	354	478	405	3.00	0.48	405.4	64.9		
500-1000	5	0	354	478	414	3.06	0.38	413.5	51.4	415.0	10.8
1000-1500	5	0	354	478	415	3.07	0.30	414.9	40.5	413.9	49.8
1500-2000	5	0	354	478	430	3.18	0.28	429.7	37.8		
0-500	5	0	380	514	385	2.85	0.31	385.1	41.9		
500-1000	5	0	380	514	399	2.95	0.32	398.6	43.2	204.2	50.9
1000-1500	5	0	380	514	395	2.93	0.23	395.9	31.1	394.3	30.8
1500-2000	5	0	380	514	398	2.94	0.56	397.3	75.7		
0-500	5	0	406	549	359	2.65	0.18	358.1	24.3		
500-1000	5	0	406	549	370	2.74	0.21	370.3	28.4	265.0	20.0
1000-1500	5	0	406	549	366	2.71	0.22	366.2	29.7	303.9	30.9
1500-2000	5	0	406	549	369	2.73	0.29	368.9	39.2		
0-500	5	0	432	584	320	2.37	0.16	320.3	21.6		
500-1000	5	0	432	584	331	2.45	0.20	331.1	27.0	220.4	24.1
1000-1500	5	0	432	584	333	2.47	0.17	333.8	23.0	529.4	24.1
1500-2000	5	0	432	584	333	2.46	0.18	332.4	24.3		
0-500	5	0	458	619	286	2.11	0.20	285.1	27.0		
500-1000	5	0	458	619	299	2.21	0.22	298.6	29.7	204.6	77 °
1000-1500	5	0	458	619	295	2.18	0.18	294.6	24.3	294.0	21.0
1500-2000	5	0	458	619	300	2.22	0.22	300.0	29.7		

Tabella A.16 Valori sperimentali delle velocità per Q = 0.4 mL/h, tubo di Nafion TT030 - Parte 2

Enomo	t	Х	Y	Y	V	Shift x frame	σ	V _{calc.}	$\sigma_{ m calc.}$	\overline{V}	$\overline{\sigma}$
Frame	S	рх	px	μm	μm/s	px	px	μm/s	μm/s	μm/s	μm/s
0-500	5	0	86	116	375	2.77	0.24	374.3	32.4		
500-1000	5	0	86	116	374	2.77	0.29	374.3	39.2	200 7	22.2
1000-1500	5	0	86	116	397	2.94	0.22	397.3	29.7	380.7	33.3
1500-2000	5	0	86	116	378	2.79	0.23	377.0	31.1		
0-500	5	0	112	151	455	3.37	0.23	455.4	31.1		
500-1000	5	0	112	151	457	3.38	0.22	456.8	29.7	162 5	20.1
1000-1500	5	0	112	151	480	3.56	0.20	481.1	27.0	405.5	29.1
1500-2000	5	0	112	151	460	3.41	0.21	460.8	28.4		
0-500	5	0	138	186	524	3.88	0.19	524.3	25.7		
500-1000	5	0	138	186	526	3.89	0.19	525.7	25.7	520.7	27.4
1000-1500	5	0	138	186	546	4.04	0.22	545.9	29.7	529.1	27.4
1500-2000	5	0	138	186	523	3.87	0.21	523.0	28.4		
0-500	5	0	164	222	585	4.33	0.09	585.1	12.2		
500-1000	5	0	164	222	590	4.37	0.15	590.5	20.3	500.0	165
1000-1500	5	0	164	222	602	4.46	0.13	602.7	17.6	389.9	10.5
1500-2000	5	0	164	222	581	4.30	0.11	581.1	14.9		
0-500	5	0	190	257	632	4.68	0.15	632.4	20.3		
500-1000	5	0	190	257	636	4.71	0.13	636.5	17.6	642.0	10 /
1000-1500	5	0	190	257	660	4.88	0.11	659.5	14.9	042.9	18.4
1500-2000	5	0	190	257	643	4.76	0.15	643.2	20.3		
0-500	5	0	216	292	667	4.93	0.07	666.2	9.5		
500-1000	5	0	216	292	673	4.98	0.08	673.0	10.8	670 7	10.5
1000-1500	5	0	216	292	698	5.17	0.07	698.6	9.5	0/8./	10.5
1500-2000	5	0	216	292	677	5.01	0.09	677.0	12.2		
0-500	5	0	242	327	693	5.13	0.07	693.2	9.5		
500-1000	5	0	242	327	694	5.14	0.05	694.6	6.8	600 7	0.2
1000-1500	5	0	242	327	719	5.32	0.07	718.9	9.5	099.7	9.2
1500-2000	5	0	242	327	691	5.12	0.08	691.9	10.8		
0-500	5	0	268	362	704	5.21	0.04	704.1	5.4		
500-1000	5	0	268	362	709	5.25	0.03	709.5	4.1	712 0	1 1
1000-1500	5	0	268	362	730	5.40	0.03	729.7	4.1	/12.0	4.4
1500-2000	5	0	268	362	707	5.24	0.03	708.1	4.1		

Tabella A.17 Valori sperimentali delle velocità per Q = 0.6 mL/h, tubo di Nafion TT030 - Parte 1

Eromo	t	Х	Y	Y	V	Shift x frame	σ	V _{calc.}	$\sigma_{ m calc.}$	\overline{V}	$\overline{\sigma}$
Frame	S	px	рх	μm	μm/s	px	рх	μm/s	μm/s	μm/s	µm/s
0-500	5	0	294	397	704	5.21	0.05	704.1	6.8		
500-1000	5	0	294	397	705	5.21	0.05	704.1	6.8	714 5	69
1000-1500	5	0	294	397	732	5.41	0.05	731.1	6.8	/14.3	0.0
1500-2000	5	0	294	397	718	5.32	0.05	718.9	6.8		
0-500	5	0	320	432	691	5.11	0.06	690.5	8.1		
500-1000	5	0	320	432	694	5.13	0.03	693.2	4.1	702 7	8.0
1000-1500	5	0	320	432	727	5.38	0.07	727.0	9.5	705.7	0.9
1500-2000	5	0	320	432	703	5.21	0.09	704.1	12.2		
0-500	5	0	346	468	669	4.95	0.07	668.9	9.5		
500-1000	5	0	346	468	673	4.98	0.10	673.0	13.5	677 1	10.6
1000-1500	5	0	346	468	692	5.12	0.07	691.9	9.5	077.4	10.0
1500-2000	5	0	346	468	676	5.00	0.07	675.7	9.5		
0-500	5	0	372	503	633	4.69	0.19	633.8	25.7		
500-1000	5	0	372	503	634	4.69	0.12	633.8	16.2	612 2	10.7
1000-1500	5	0	372	503	657	4.86	0.11	656.8	14.9	042.2	19.7
1500-2000	5	0	372	503	645	4.77	0.15	644.6	20.3		
0-500	5	0	398	538	585	4.33	0.08	585.1	10.8		
500-1000	5	0	398	538	590	4.37	0.12	590.5	16.2	5026	144
1000-1500	5	0	398	538	609	4.50	0.12	608.1	16.2	392.0	14.4
1500-2000	5	0	398	538	587	4.34	0.10	586.5	13.5		
0-500	5	0	424	573	531	3.93	0.14	531.1	18.9		
500-1000	5	0	424	573	531	3.93	0.18	531.1	24.3	525 5	22.2
1000-1500	5	0	424	573	550	4.07	0.21	550.0	28.4	555.5	23.3
1500-2000	5	0	424	573	530	3.92	0.15	529.7	20.3		
0-500	5	0	450	608	462	3.42	0.23	462.2	31.1		
500-1000	5	0	450	608	465	3.44	0.17	464.9	23.0	168.6	20.1
1000-1500	5	0	450	608	481	3.56	0.16	481.1	21.6	+00.0	27.1
1500-2000	5	0	450	608	466	3.45	0.28	466.2	37.8		

Tabella A.18 Valori sperimentali delle velocità per Q = 0.6 mL/h, tubo di Nafion TT030 - Parte 2

Enomo	t	Х	Y	Y	V	Shift x frame	σ	V _{calc.}	$\sigma_{ m calc.}$	\overline{V}	$\overline{\sigma}$
Flaine	S	px	рх	μm	μm/s	px	рх	μm/s	μm/s	μm/s	μm/s
0-500	5	0	89	120	548	4.06	0.30	548.6	40.5		
500-1000	5	0	89	120	554	4.10	0.27	554.1	36.5	542.2	20.6
1000-1500	5	0	89	120	524	3.88	0.31	524.3	41.9	342.2	39.0
1500-2000	5	0	89	120	542	4.01	0.29	541.9	39.2		
0-500	5	0	115	155	654	4.84	0.21	654.1	28.4		
500-1000	5	0	115	155	658	4.87	0.22	658.1	29.7	610 2	21.2
1000-1500	5	0	115	155	635	4.70	0.26	635.1	35.1	048.3	31.2
1500-2000	5	0	115	155	646	4.78	0.23	645.9	31.1		
0-500	5	0	141	191	749	5.54	0.15	748.6	20.3		
500-1000	5	0	141	191	751	5.56	0.17	751.4	23.0	720.2	25 7
1000-1500	5	0	141	191	718	5.32	0.20	718.9	27.0	139.2	23.1
1500-2000	5	0	141	191	738	5.46	0.23	737.8	31.1		
0-500	5	0	167	226	826	6.11	0.19	825.7	25.7		
500-1000	5	0	167	226	823	6.09	0.17	823.0	23.0	0120	22.0
1000-1500	5	0	167	226	789	5.84	0.19	789.2	25.7	812.8	23.8
1500-2000	5	0	167	226	813	6.02	0.15	813.5	20.3		
0-500	5	0	193	261	886	6.56	0.14	886.5	18.9		
500-1000	5	0	193	261	886	6.55	0.14	885.1	18.9	075 0	19.0
1000-1500	5	0	193	261	857	6.34	0.11	856.8	14.9	875.0	18.0
1500-2000	5	0	193	261	872	6.45	0.14	871.6	18.9		
0-500	5	0	219	296	931	6.89	0.08	931.1	10.8		
500-1000	5	0	219	296	932	6.90	0.08	932.4	10.8	017.0	10.7
1000-1500	5	0	219	296	890	6.59	0.12	890.5	16.2	917.9	12.7
1500-2000	5	0	219	296	917	6.79	0.09	917.6	12.2		
0-500	5	0	245	331	957	7.08	0.07	956.8	9.5		
500-1000	5	0	245	331	974	7.21	0.08	974.3	10.8	047.2	0.5
1000-1500	5	0	245	331	914	6.76	0.07	913.5	9.5	947.5	9.5
1500-2000	5	0	245	331	945	6.99	0.06	944.6	8.1		
0-500	5	0	271	366	971	7.18	0.06	970.3	8.1		
500-1000	5	0	271	366	986	7.30	0.06	986.5	8.1	050.9	70
1000-1500	5	0	271	366	926	6.85	0.06	925.7	8.1	939.8	1.0
1500-2000	5	0	271	366	957	7.08	0.05	956.8	6.8		

Tabella A.19 Valori sperimentali delle velocità per Q = 0.8 mL/h, tubo di Nafion TT030 - Parte 1

Fromo	t	Х	Y	Y	V	Shift x frame	σ	V _{calc.}	$\sigma_{ m calc.}$	\overline{V}	$\overline{\sigma}$
Flame	s	px	рх	μm	μm/s	px	рх	μm/s	µm/s	μm/s	μm/s
0-500	5	0	297	401	963	7.13	0.08	963.5	10.8		
500-1000	5	0	297	401	970	7.18	0.05	970.3	6.8	0514	0.2
1000-1500	5	0	297	401	922	6.82	0.08	921.6	10.8	931.4	9.5
1500-2000	5	0	297	401	950	7.03	0.06	950.0	8.1		
0-500	5	0	323	436	942	6.97	0.07	941.9	9.5		
500-1000	5	0	323	436	956	7.07	0.10	955.4	13.5	025.9	10.1
1000-1500	5	0	323	436	915	6.77	0.07	914.9	9.5	955.8	12.1
1500-2000	5	0	323	436	931	6.89	0.11	931.1	14.9		
0-500	5	0	349	472	903	6.68	0.11	902.7	14.9		
500-1000	5	0	349	472	904	6.69	0.10	904.1	13.5	2012	146
1000-1500	5	0	349	472	875	6.48	0.12	875.7	16.2	894.3	14.0
1500-2000	5	0	349	472	895	6.62	0.10	894.6	13.5		
0-500	5	0	375	507	851	6.29	0.14	850.0	18.9		
500-1000	5	0	375	507	852	6.30	0.16	851.4	21.6	041 7	10.2
1000-1500	5	0	375	507	824	6.10	0.14	824.3	18.9	841.2	19.5
1500-2000	5	0	375	507	840	6.21	0.13	839.2	17.6		
0-500	5	0	401	542	784	5.80	0.17	783.8	23.0		
500-1000	5	0	401	542	779	5.77	0.20	779.7	27.0	769 6	26.1
1000-1500	5	0	401	542	742	5.49	0.19	741.9	25.7	/08.0	20.1
1500-2000	5	0	401	542	769	5.69	0.21	768.9	28.4		
0-500	5	0	427	577	692	5.12	0.23	691.9	31.1		
500-1000	5	0	427	577	697	5.16	0.26	697.3	35.1	(97.)	20.2
1000-1500	5	0	427	577	673	4.98	0.21	673.0	28.4	087.2	30.3
1500-2000	5	0	427	577	686	5.08	0.19	686.5	25.7		
0-500	5	0	453	612	595	4.40	0.25	594.6	33.8		
500-1000	5	0	453	612	592	4.38	0.29	591.9	39.2	500 0	24.4
1000-1500	5	0	453	612	579	4.29	0.20	579.7	27.0	388.9	34.4
1500-2000	5	0	453	612	589	4.36	0.27	589.2	36.5		

Tabella A.20 Valori sperimentali delle velocità per Q = 0.8 mL/h, tubo di Nafion TT030 - Parte 2

Appendice B

Risultati sperimentali delle dimensioni dell'Exclusion Zone

Nella presente Appendice sono riportate le tabelle relative ai dati sperimentali raccolti durante lo studio delle dimensioni dell'Exclusion Zone, al variare del numero di Reynolds e della sospensione. In Figura B.1, si riporta un esempio di modalità di acquisizione dei dati sperimentali, come già ampiamente spiegato nel paragrafo 4.3. I risultati sono riferiti ai seguenti condotti analizzati:

Nafion TT030 Nafion TT030 Nafion TT030

analizzando le seguenti sospensioni:

 $1.06 \cdot 10^{6}$ beads per mL $1.31 \cdot 10^{6}$ beads per mL $1.64 \cdot 10^{6}$ beads per mL $2.05 \cdot 10^{6}$ beads per mL $3.20 \cdot 10^{6}$ beads per mL $4.00 \cdot 10^{6}$ beads per mL $4.60 \cdot 10^{7}$ beads per mL $4.60 \cdot 10^{8}$ beads per mL

								<u> </u>
O [ml/h]				EZ [µm]			
([]		Bordo	superiore			Bordo ir	lferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
0.2	91.476	93.383	101.125	102.401	93.383	88.883	86.633	94.50
	89.024	90.029	99.001	102.376	91.133	100.151	93.403	95.63
	92.658	93.376	95.653	101.257	95.686	100.126	93.403	99.00
	91.126	87.758	85.501	87.751	90.029	84.383	86.633	90.00
0.4	84.376	87.751	88.876	91.133	84.406	84.406	92.279	88.87
	91.126	92.258	91.126	87.758	87.751	88.905	81.009	92.25
	76.509	90.008	78.759	82.126	82.134	79.884	86.626	83.25
0.6	87.883	90.001	84.376	85.508	85.501	81.001	81.009	86.63
	86.655	85.501	87.751	88.876	88.883	82.126	87.758	84.38
	73.216	68.635	74.251	76.501	75.376	76.509	75.376	72.0
0.8	74.251	72.01	73.126	77.626	74.259	74.251	73.135	81.00
	69.751	77.634	74.251	77.634	73.126	72.001	76.501	79.87
	57.376	59.626	59.626	57.387	65.251	59.626	59.626	59.62
2.2	60.751	60.761	60.761	61.876	64.76	60.751	60.792	59.62
	63.001	64.126	60.844	61.876	56.262	59.626	61.876	64.5
	54.001	60.011	52.888	54.676	61.876	58.501	51.751	59.62
2.5	57.376	52.888	59.626	55.229	56.262	57.387	57.42	59.62
	59.636	60.761	51.763	57.376	61.876	55.137	58.501	55.12
	39.254	41.658	44.625	43.876	41.255	43.225	43.751	43.87
5	42.336	40.001	45.001	47.251	42.265	44.005	43.751	42.75
	43.596	39.998	46.626	47.251	42.256	41.251	46.001	47.25
	38.267	38.25	41.625	38.25	43.89	40.5	41.625	38.26
6.8	41.625	41.625	41.625	37.142	42.765	38.25	39.392	39.37
	38.25	38.25	42.765	38.25	41.001	39.375	41.625	39.37

Intervalli temporali campionati

Stime dello spessore dell'EZ effettuate a partire dal bordo superiore del tubo

→ Portate analizzate

Stime dello spessore dell'EZ effettuate a partire dal bordo inferiore del tubo

ľ

Figura B.1 Modalità di tabulazione dei dati acquisiti in riferimento alle dimensioni dell'Exclusion Zone

0 [1/]				EZ [/	um]			
Q [mi/n]		Bordo	superiore			Bordo ir	nferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
	91.476	93.383	101.125	102.401	93.383	88.883	86.633	94.508
0.2	89.024	90.029	99.001	102.376	91.133	100.151	93.403	95.633
	92.658	93.376	95.653	101.257	95.686	100.126	93.403	99.001
	91.126	87.758	85.501	87.751	90.029	84.383	86.633	90.001
0.4	84.376	87.751	88.876	91.133	84.406	84.406	92.279	88.876
	91.126	92.258	91.126	87.758	87.751	88.905	81.009	92.258
	76.509	90.008	78.759	82.126	82.134	79.884	86.626	83.259
0.6	87.883	90.001	84.376	85.508	85.501	81.001	81.009	86.633
	86.655	85.501	87.751	88.876	88.883	82.126	87.758	84.383
	73.216	68.635	74.251	76.501	75.376	76.509	75.376	72.010
0.8	74.251	72.010	73.126	77.626	74.259	74.251	73.135	81.001
	69.751	77.634	74.251	77.634	73.126	72.001	76.501	79.876
	57.376	59.626	59.626	57.387	65.251	59.626	59.626	59.626
2.2	60.751	60.761	60.761	61.876	64.760	60.751	60.792	59.626
	63.001	64.126	60.844	61.876	56.262	59.626	61.876	64.510
	54.001	60.011	52.888	54.676	61.876	58.501	51.751	59.626
2.5	57.376	52.888	59.626	55.229	56.262	57.387	57.420	59.626
	59.636	60.761	51.763	57.376	61.876	55.137	58.501	55.126
	39.254	41.658	44.625	43.876	41.255	43.225	43.751	43.876
5	42.336	40.001	45.001	47.251	42.265	44.005	43.751	42.751
	43.596	39.998	46.626	47.251	42.256	41.251	46.001	47.251
	38.267	38.250	41.625	38.250	43.890	40.500	41.625	38.267
6.8	41.625	41.625	41.625	37.142	42.765	38.250	39.392	39.375
	38.250	38.250	42.765	38.250	41.001	39.375	41.625	39.375

Tabella B.1 Valori sperimentali di EZ relativi alla sospensione: $1.06 \cdot 10^6$ beads/mL - TT030

O[m1/h]				EZ [[µm]			
Q [IIII/II]		Bordo s	superiore			Bordo ir	nferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
	91.001	93.383	101.251	97.876	93.383	88.883	86.633	94.508
0.2	94.756	90.029	99.001	95.633	91.133	100.251	93.403	95.633
	93.133	93.376	95.653	94.508	95.686	100.126	93.403	93.376
	91.126	87.758	85.501	87.751	90.029	84.383	86.633	85.508
0.4	84.376	87.751	88.876	91.133	84.406	84.406	92.279	86.633
	91.126	92.258	91.126	87.758	87.751	88.905	81.009	86.626
	76.509	82.134	78.759	82.134	82.314	79.884	81.001	85.508
0.6	84.376	84.376	84.376	85.633	85.501	81.001	81.009	81.001
	86.655	85.501	83.751	84.383	88.883	82.126	85.501	83.259
	73.126	68.635	74.251	75.409	75.376	76.509	75.376	72.010
0.8	74.251	72.010	73.126	75.384	74.259	74.251	76.501	73.135
	69.751	77.634	74.251	79.876	73.126	72.001	73.135	75.384
	57.376	59.626	59.626	57.387	65.251	59.623	59.626	59.626
2.2	60.751	60.751	60.751	56.251	69.760	60.751	60.792	59.626
	63.001	64.126	60.884	56.251	56.520	59.626	61.876	57.510
	54.001	51.763	52.888	50.676	55.137	58.501	51.751	52.876
2.5	57.376	52.888	59.626	54.001	56.251	57.387	57.420	55.126
	59.636	57.376	51.763	52.876	60.792	55.137	58.501	52.876
	44.358	39.056	45.001	43.876	41.005	45.001	42.751	43.876
5	41.005	41.565	44.576	45.015	40.256	43.005	43.978	42.751
	47.985	42.256	43.756	43.890	43.388	42.756	42.751	47.251
	38.267	38.250	37.125	33.750	40.500	39.375	37.125	37.142
6.8	41.625	41.625	37.125	36.018	38.250	41.625	41.625	37.125
	38.250	38.250	36.000	38.267	39.375	40.500	42.000	36.000

Tabella B.2 Valori sperimentali di EZ relativi alla sospensione: 1.31·10⁶ beads/mL - TT030

O[m1/h]				EZ [[µm]			
Q[IIII/II]		Bordo s	uperiore			Bordo i	nferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
	90.010	86.626	85.501	88.883	84.376	87.751	82.126	88.876
0.2	86.633	92.251	85.501	92.279	87.751	86.655	92.258	90.008
	86.633	91.133	85.501	91.126	86.655	91.126	85.531	91.126
	82.134	81.001	88.883	82.134	81.001	77.634	81.009	82.134
0.4	88.883	75.376	86.655	82.126	87.751	78.751	84.406	81.001
	81.009	82.126	85.501	85.508	78.751	81.001	78.783	84.376
	69.751	75.376	74.259	77.626	75.376	75.376	73.216	72.001
0.6	79.884	75.376	78.759	81.009	75.384	75.384	75.384	74.251
	75.384	73.135	81.009	75.376	69.760	69.760	75.384	69.760
	72.010	69.760	68.635	67.510	73.160	70.885	70.912	69.751
0.8	75.376	70.876	72.010	68.626	68.635	65.260	68.626	75.376
	74.259	72.010	65.251	72.001	70.876	64.126	73.126	69.751
	58.501	54.012	50.626	54.012	59.636	51.799	49.513	50.626
2.2	52.876	55.126	49.513	50.626	56.262	49.513	51.763	50.626
	55.229	55.216	54.001	52.876	52.888	52.876	49.501	54.001
	49.513	51.751	46.126	51.751	49.513	46.139	49.513	47.251
2.5	48.389	48.376	51.751	54.001	51.763	49.501	47.251	52.876
	54.012	48.376	47.264	49.513	49.501	51.763	52.876	50.626
	39.933	41.256	40.005	43.890	41.001	39.789	40.500	38.250
5	40.500	39.126	39.889	38.250	39.755	40.500	41.001	39.375
	38.756	40.001	40.005	43.933	39.755	43.126	40.500	40.500
	38.267	38.267	34.875	36.000	42.751	37.125	36.125	37.125
6.8	36.000	37.125	32.625	32.625	36.000	34.875	33.256	39.375
	37.125	39.375	36.018	33.769	36.018	39.375	34.155	33.769

Tabella B.3 Valori sperimentali di EZ relativi alla sospensione: $1.64 \cdot 10^6$ beads/mL - TT030

O[m1/h]				EZ [$Z [\mu m]$				
Q[IIII/II]		Bordo s	uperiore			Bordo i	nferiore		
	15'	30'	45'	60'	15'	30'	45'	60'	
	89.126	90.008	84.384	88.883	86.633	90.008	95.633	88.883	
0.2	90.001	84.386	91.126	90.001	86.633	83.259	86.633	91.126	
	88.157	83.251	86.633	87.758	88.883	85.508	91.126	92.251	
	88.876	77.634	81.001	84.376	88.883	82.126	84.376	78.751	
0.4	78.823	78.759	81.009	82.126	84.384	81.009	78.751	75.384	
	94.501	81.001	83.251	82.126	85.501	85.501	83.251	79.876	
	68.376	70.633	70.876	73.216	76.509	70.384	73.135	69.760	
0.6	71.389	79.500	72.141	70.876	70.885	69.126	67.510	70.876	
_	67.879	70.633	73.135	72.010	73.135	71.823	75.376	67.510	
	65.376	68.635	70.251	66.135	73.126	66.509	67.376	68.635	
0.8	64.259	69.010	73.126	65.626	74.251	69.251	71.010	64.126	
	68.126	70.001	68.256	69.751	69.751	69.001	70.256	68.635	
	48.376	43.876	54.001	49.501	45.001	49.501	47.264	52.876	
2.2	50.638	47.264	47.251	55.126	46.126	51.763	47.264	51.751	
	54.001	49.501	47.251	51.763	54.012	51.763	48.389	51.751	
	41.625	48.389	52.876	42.751	45.001	46.139	49.501	48.376	
2.5	48.376	43.876	43.876	47.264	48.389	40.501	50.626	45.015	
	48.389	43.126	48.376	41.625	48.376	47.251	47.251	46.139	
	39.753	41.256	38.756	39.375	39.661	37.789	38.126	34.875	
5	39.187	39.258	40.256	34.894	40.500	38.001	37.756	41.625	
	42.126	39.753	43.258	41.625	41.126	39.126	39.187	42.751	
	29.250	33.750	21.500	32.625	38.250	36.018	34.894	34.875	
6.8	36.000	34.894	33.750	32.625	37.125	30.375	34.948	34.875	
	36.000	38.250	38.250	33.750	36.018	37.125	36.018	34.875	

Tabella B.4 Valori sperimentali di EZ relativi alla sospensione: $2.05 \cdot 10^6$ beads/mL - TT030

O[m1/h]				EZ [[µm]			
Q[IIII/II]		Bordo s	uperiore			Bordo i	nferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
	87.258	90.008	84.384	87.300	86.633	90.008	86.062	84.815
0.2	84.216	84.376	91.126	87.336	86.633	83.259	86.633	87.300
	86.276	83.251	86.633	86.333	88.883	85.508	86.062	87.300
	88.876	77.634	81.010	81.065	88.883	82.126	84.376	78.751
0.4	78.823	78.759	81.009	77.383	84.384	81.009	78.751	75.384
	84.501	81.001	83.251	78.580	85.501	85.501	83.251	79.876
	69.751	75.376	67.450	68.638	78.751	75.376	71.098	68.593
0.6	79.884	75.376	69.840	66.099	73.135	57.384	66.099	64.852
	75.384	73.135	68.604	67.346	78.759	69.760	72.345	68.593
	63.001	61.886	57.376	61.886	68.635	65.885	64.126	57.376
0.8	65.260	63.001	60.761	61.886	68.635	65.260	64.136	66.376
	66.385	63.001	67.501	63.011	66.376	64.126	58.501	66.385
	48.376	43.876	45.001	47.251	46.139	50.626	48.376	46.126
2.2	50.626	47.251	47.251	47.251	49.513	47.250	49.513	51.763
	49.513	49.501	52.876	48.376	51.751	50.638	45.015	49.501
	45.001	45.015	46.126	41.625	47.251	45.015	48.339	46.139
2.5	43.876	42.765	46.139	43.876	46.180	45.015	47.251	42.765
	41.625	45.001	47.264	45.001	47.251	47.251	43.890	46.126
	39.001	39.375	41.625	39.375	36.754	41.001	33.258	34.875
5	40.500	35.988	34.894	36.000	35.258	38.259	34.126	39.375
	41.009	36.997	37.135	37.125	39.265	36.987	31.798	36.000
	39.250	33.750	31.500	32.625	38.250	36.018	34.894	32.625
6.8	36.000	34.894	33.750	32.625	37.125	30.375	34.948	31.500
	36.000	38.250	38.250	33.750	36.018	37.125	36.018	32.625

Tabella B.5 Valori sperimentali di EZ relativi alla sospensione: $2.56 \cdot 10^6$ beads/mL - TT030

O[m1/h]				EZ [[µm]			
Q[IIII/II]		Bordo s	uperiore			Bordo i	nferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
	58.501	65.260	74.259	77.634	69.760	67.510	78.751	74.259
0.2	63.011	61.876	74.251	76.501	65.251	61.886	83.259	75.376
	66.376	68.635	76.501	83.251	64.165	68.635	78.759	81.001
	57.376	64.136	66.376	64.126	61.876	58.544	60.761	59.636
0.4	60.761	61.876	58.501	57.376	56.262	59.636	64.126	68.663
	51.751	58.512	63.001	63.001	59.626	63.011	58.501	61.886
	58.512	55.126	51.763	55.137	52.888	50.638	45.015	50.676
0.6	50.626	55.126	48.389	54.001	56.251	54.012	46.375	52.876
_	56.251	52.888	46.139	49.501	56.262	48.389	52.876	52.876
	46.139	55.137	48.376	45.001	50.626	47.264	43.876	47.264
0.8	56.251	46.139	49.501	46.126	47.251	47.251	46.126	51.751
	49.513	51.763	46.126	48.376	45.015	51.763	45.015	45.015
	34.875	36.000	47.251	42.751	39.375	38.267	36.000	36.000
2.2	33.750	36.000	41.625	43.751	40.500	41.625	39.392	42.765
	38.250	31.500	38.250	42.751	39.375	40.516	39.376	38.267
	40.500	37.125	32.625	38.250	32.625	41.625	38.250	37.125
2.5	41.625	36.000	37.125	42.751	33.769	42.751	40.500	41.626
	38.250	37.142	38.250	37.125	40.500	37.125	38.250	38.250
	31.001	34.751	34.256	33.259	29.376	34.216	29.577	32.271
5	33.256	30.256	29.663	34.260	30.251	34.126	31.389	31.012
	29.159	31.886	32.512	34.126	33.634	31.751	32.139	33.638
	27.024	27.000	28.125	27.000	36.000	27.094	29.250	32.625
6.8	32.625	23.675	28.148	27.000	30.375	24.750	29.250	30.396
	28.125	27.000	25.900	27.000	25.875	31.520	33.769	29.250

Tabella B.6 Valori sperimentali di EZ relativi alla sospensione: 3.20·10⁶ beads/mL - TT030

O[m]/h]				EZ [[µm]			
Q [IIII/II]		Bordo s	uperiore			Bordo i	nferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
	58.501	60.761	65.260	65.260	54.001	55.126	65.251	65.251
0.2	59.636	58.512	67.538	72.010	54.001	50.638	59.626	69.751
	54.012	58.501	64.165	70.885	57.387	51.751	68.635	72.001
	47.251	55.126	47.251	48.376	43.876	51.763	47.251	46.139
0.4	56.251	56.262	51.800	52.876	49.513	52.876	40.500	51.751
	52.888	55.137	51.751	51.763	47.304	50.638	50.638	51.751
	42.403	47.392	47.408	48.376	42.403	44.897	48.639	45.001
0.6	39.909	44.897	43.650	47.251	42.403	51.133	49.902	46.126
	44.897	46.144	48.703	42.810	42.403	42.403	43.650	48.369
	49.501	39.375	38.250	39.392	41.625	33.750	37.125	42.751
0.8	43.876	39.375	38.250	39.375	45.015	38.250	41.641	41.625
	41.625	40.500	42.751	41.625	43.876	39.375	36.000	42.751
	33.673	32.426	28.684	31.250	28.684	33.673	26.190	33.769
2.2	31.179	29.932	31.179	32.625	31.179	31.179	28.684	33.520
	31.179	34.920	31.179	33.750	31.179	32.426	31.179	32.250
	27.000	33.750	24.776	28.125	27.000	34.875	32.625	30.375
2.5	28.125	29.250	24.750	34.875	30.375	24.750	23.652	29.250
	34.875	29.250	27.024	34.894	24.750	22.500	27.000	29.250
	25.875	20.250	29.250	29.250	24.750	27.024	27.000	28.126
5	27.000	24.750	24.750	28.756	23.625	19.125	22.500	29.753
	24.750	25.875	23.625	28.756	24.750	24.776	27.000	28.001
	18.000	24.776	20.250	22.500	23.625	21.375	23.625	27.000
6.8	24.075	22.500	21.375	24.750	19.125	20.250	19.125	27.000
	23.625	23.625	20.250	27.000	20.250	19.158	18.000	29.772

Tabella B.7 Valori sperimentali di EZ relativi alla sospensione: $4.00 \cdot 10^6$ beads/mL - TT030

O[m1/h]				EZ [[µm]			
Q[IIII/II]		Bordo s	uperiore			Bordo i	nferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
	85.508	85.508	92.258	86.626	88.876	83.259	91.133	90.001
0.2	87.758	88.879	92.251	90.008	84.383	79.908	85.501	88.883
	87.751	94.508	86.633	90.001	85.508	91.154	84.376	90.001
	64.136	66.385	76.501	69.751	77.634	73.135	76.501	76.509
0.4	73.135	76.509	78.759	72.001	75.376	74.259	82.157	77.626
	74.251	74.259	76.509	77.626	77.626	78.759	81.009	68.626
	66.385	69.751	61.876	58.501	70.885	63.011	66.385	68.626
0.6	57.376	70.885	67.510	61.876	69.787	65.260	66.385	70.876
	56.251	60.751	68.626	65.251	76.534	69.751	66.376	66.376
	60.751	57.387	54.001	49.501	55.126	54.047	52.888	56.251
0.8	59.626	55.126	56.251	54.001	51.763	56.262	55.126	55.126
	57.387	57.376	59.636	52.923	55.126	59.636	55.126	52.888
	41.625	40.516	39.375	42.751	43.876	40.500	45.015	40.516
2.2	42.765	43.876	43.890	39.375	42.765	46.139	39.375	38.267
	42.751	43.890	41.641	42.765	45.001	43.890	40.516	39.375
	33.750	41.625	37.125	40.500	41.625	38.267	39.375	36.018
2.5	34.875	46.216	41.641	41.626	37.143	38.267	38.250	34.875
	38.250	38.250	46.139	43.890	38.267	38.250	40.500	39.392
	34.875	21.375	23.625	23.625	27.000	30.375	28.125	28.125
5	24.750	22.500	22.500	29.250	30.375	22.528	29.250	29.250
	25.900	25.875	28.125	27.000	29.250	28.125	27.000	29.250
	27.000	23.625	23.625	23.625	24.750	27.000	29.250	22.500
6.8	28.125	21.375	25.875	23.625	25.875	28.125	24.750	23.652
	30.396	28.125	25.875	24.750	27.000	28.125	25.875	25.900

Tabella B.8 Valori sperimentali di EZ relativi alla sospensione: $4.60 \cdot 10^7$ beads/mL - TT030

O[m]/h]				EZ [[µm]			
Q[IIII/II]		Bordo s	uperiore			Bordo i	nferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
	60.751	56.251	61.876	52.923	59.626	59.626	58.512	63.011
0.2	50.638	58.501	51.763	54.001	58.501	63.041	60.751	60.751
	57.387	58.512	56.262	55.126	52.876	57.376	57.387	58.770
	54.376	46.010	53.513	46.139	54.376	48.467	50.431	49.513
0.4	51.239	49.431	52.421	49.501	56.467	53.330	51.416	47.251
	55.431	53.330	48.012	49.513	49.756	51.249	49.522	49.513
	47.251	47.251	45.001	45.001	50.626	48.376	55.126	46.126
0.6	47.251	48.376	47.251	46.126	49.501	52.876	54.001	47.751
	48.376	45.001	49.513	48.389	49.501	50.638	49.513	44.250
	45.001	40.500	42.251	38.267	49.501	45.001	43.376	40.376
0.8	45.015	43.876	41.216	40.500	46.126	46.126	40.890	40.264
	42.765	46.126	40.139	40.516	47.251	45.001	42.756	40.264
	36.000	30.375	36.000	29.272	36.000	36.000	32.625	31.500
2.2	36.000	34.875	33.750	31.500	34.875	36.000	33.769	31.500
	37.142	36.000	34.875	29.250	36.000	33.750	38.267	30.375
	33.750	30.375	30.375	29.250	33.769	34.875	33.750	27.000
2.5	27.000	31.500	33.750	30.375	31.500	31.500	31.500	31.500
	28.125	29.250	34.875	30.375	32.625	33.750	36.000	31.500
	24.193	23.625	26.094	24.750	25.345	27.000	24.750	25.875
5	23.041	25.875	23.625	24.750	24.193	25.875	23.625	25.875
	21.889	23.625	24.750	24.750	25.345	23.625	24.750	24.750
	20.250	19.125	21.524	21.375	22.500	19.125	21.524	22.500
6.8	21.375	20.250	23.789	21.405	23.625	20.250	22.657	23.625
	21.375	21.375	21.524	22.500	22.500	16.875	22.657	21.375

Tabella B.9 Valori sperimentali di EZ relativi alla sospensione: $4.60 \cdot 10^8$ beads/mL - TT030

O[ml/h]				EZ [[µm]			
Q[IIII/II]		Bordo s	uperiore			Bordo i	nferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
	202.502	212.628	211.503	207.006	213.753	208.127	207.015	207.002
0.32	202.531	202.502	213.755	209.265	201.428	213.779	200.265	207.051
	203.631	209.265	207.002	208.131	216.006	203.631	213.755	214.889
	177.752	175.506	177.756	175.506	180.002	174.392	181.159	172.127
0.63	168.757	176.627	177.766	177.756	180.006	180.006	180.006	177.766
	169.881	175.502	181.159	177.756	184.506	181.159	189.056	181.131
	153.018	164.256	162.002	163.127	169.877	159.752	178.891	163.131
0.95	154.127	168.756	185.631	166.506	172.127	166.506	158.643	167.642
	167.627	168.756	174.381	165.377	164.252	167.627	172.127	167.631
	155.268	157.997	151.893	156.381	155.252	154.127	150.756	153.002
1.26	154.143	155.976	150.756	154.164	147.377	151.881	150.769	150.752
	162.006	152.867	149.644	153.006	151.881	156.393	151.877	155.256
	105.751	105.751	108.007	113.626	113.626	114.751	106.882	112.507
3.47	106.876	117.001	108.001	110.251	110.257	114.757	112.507	109.132
	108.054	113.626	112.507	111.399	114.757	111.399	109.126	108.001
	106.876	103.507	109.132	106.882	104.626	102.376	106.882	108.001
3.95	102.401	103.501	104.632	103.501	108.054	110.274	110.251	108.007
	115.882	109.126	106.971	109.132	109.149	105.751	104.626	105.757
	86.626	81.001	86.633	84.376	81.009	86.626	81.134	82.126
7.89	87.758	82.126	85.508	81.001	94.508	85.501	83.259	83.259
	86.626	88.883	87.751	86.626	85.501	91.133	91.133	84.376
	73.135	73.126	73.126	69.751	65.251	77.626	74.251	69.751
10.74	66.376	73.126	69.760	70.876	68.626	73.135	69.751	70.876
	73.126	78.759	68.626	69.751	75.409	68.626	77.626	68.635

Tabella B.10 Valori sperimentali di EZ relativi alla sospensione: $1.06 \cdot 10^6$ beads/mL - TT050

O[m1/h]		$\mathrm{EZ}\left[\mu\mathrm{m}\right]$									
Q [IIII/II]		Bordo s	uperiore			Bordo i	nferiore				
	15'	30'	45'	60'	15'	30'	45'	60'			
	184.506	183.377	189.006	185.631	181.127	185.631	189.006	187.977			
0.32	173.256	184.506	185.658	186.756	190.131	182.266	183.391	186.766			
	186.766	184.502	182.256	190.131	190.157	181.127	186.766	185.658			
	182.252	159.752	169.881	167.627	173.252	177.756	173.252	175.502			
0.63	166.506	158.627	167.627	165.381	172.131	171.006	175.502	174.381			
	171.002	169.877	168.786	168.767	178.877	176.627	169.877	176.684			
	155.268	150.756	158.627	154.127	165.411	153.006	162002	155.289			
0.95	160.881	162.002	158.627	155.252	156.393	164.256	159.768	149.631			
	156.377	164.256	162.002	163.142	159.768	160.881	157.518	157.518			
	147.377	145.131	149.631	144.006	144.002	153.002	148.502	142.877			
1.26	142.881	153.006	145.131	147.394	150.752	148.502	148.506	145.144			
	145.131	154.131	154.127	147.381	149.627	151.877	151.914	146.291			
	114.751	114.757	118.126	108.001	110.251	109.132	104.626	105.757			
3.47	109.126	108.001	109.132	108.001	104.626	109.149	105.757	103.556			
	114.840	111.376	113.632	111.376	115.882	108.054	113.632	114.757			
	106.930	104.632	105.751	104.626	100.133	97.876	104.626	99.001			
3.95	103.501	102.376	100.133	105.751	97.902	103.501	105.751	102.376			
	101.276	105.751	100.126	103.501	103.507	101.251	103.501	101.251			
	93.376	81.001	81.009	84.376	84.376	81.001	84.376	81.001			
7.89	87.751	84.376	76.501	83.259	83.251	83.259	81.001	83.251			
	91.126	86.626	88.883	82.134	92.279	85.508	82.126	82.134			
	76.501	66.385	66.376	66.376	69.751	66.376	69.751	68.626			
10.74	68.626	64.126	68.626	64.126	68.626	69.751	68.626	65.260			
	70.885	66.385	68.635	69.751	66.385	72.001	65.251	68.635			

Tabella B.11 Valori sperimentali di EZ relativi alla sospensione: $1.31 \cdot 10^6$ beads/mL - TT050

O [ml/h]				EZ [$[\mu m]$			
Q [IIII/II]		Bordo s	uperiore			Bordo i	nferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
	187.908	181.127	171.002	186.756	196.877	191.256	199.131	192.390
0.32	166.517	183.377	180.016	181.127	196.881	201.377	198.002	195.752
	181.310	175.502	192.377	187.881	195.781	191.256	195.756	195.752
	141.770	153.002	153.018	164.267	177.756	171.002	183.381	173.252
0.63	133.877	155.252	156.377	151.893	172.160	172.259	168.767	172.142
	148.506	163.127	148.506	157.506	163.131	162.002	159.851	181.127
	130.502	147.381	142.881	154.252	150.756	150.752	155.256	156.381
0.95	142.877	132.752	144.002	158.756	138.381	153.018	160.881	153.006
	129.377	150.769	150.756	156.756	155.268	162.002	153.018	159.756
	142.894	140.627	141.752	139.520	140.627	138.377	136.131	138.381
1.26	147.415	140.627	141.756	141.756	149.631	141.752	139.542	136.145
	149.631	135.006	137.293	142.917	150.752	136.127	137.293	139.574
	93.376	91.133	103.501	103.526	103.501	118.126	101.251	103.507
3.47	126.001	102.382	102.376	105.757	106.876	106.882	101.251	104.632
	84.443	92.251	91.133	96.777	105.757	94.508	104.650	106.882
	90.008	92.279	101.251	101.257	108.001	99.008	102.376	99.001
3.95	92.258	86.633	97.883	97.876	96.758	104.632	102.376	100.126
	83.281	102.432	96.777	95.732	97.876	104.650	90.029	99.027
	77.634	72.001	78.751	81.001	88.876	81.009	77.626	81.001
7.89	77.634	67.510	76.509	77.626	82.134	84.406	76.501	81.001
	79.884	63.001	75.376	79.884	77.634	81.001	78.783	81.009
	67.501	65.251	66.385	67.501	65.260	72.001	67.501	68.626
10.74	68.626	65.251	70.876	66.376	73.135	75.409	69.751	69.751
	68.635	55.137	67.510	67.501	68.626	72.010	63.001	73.135

Tabella B.12 Valori sperimentali di EZ relativi alla sospensione: $1.64 \cdot 10^6$ beads/mL - TT050

O[m1/h]				EZ [[µm]			
Q [ml/h]		Bordo s	uperiore			Bordo i	nferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
	175.517	183.377	177.756	180.016	191.256	185.627	191.256	189.002
0.32	182.256	185.631	183.408	180.034	191.256	193.506	191.256	191.305
	190.141	187.931	186.766	190.131	192.430	194.657	190.131	187.908
	159.752	163.131	164.256	169.877	177.766	168.752	171.006	173.256
0.63	160.877	155.256	166.517	160.877	166.517	178.891	160.877	169.877
	161.131	171.017	162.002	164.252	167.642	173.256	165.411	173.252
	140.631	147.377	150.769	154.127	162.002	151.877	155.256	163.127
0.95	151.881	148.506	151.877	153.002	158.691	163.131	163.131	165.392
	144.006	142.877	156.381	146.252	149.627	168.752	157.538	154.127
	129.381	122.632	133.877	135.044	129.381	135.006	138.377	140.627
1.26	137.252	131.631	136.127	136.145	135.002	136.127	137.252	137.256
	126.007	135.020	130.521	139.502	133.895	123.772	127.131	136.127
	86.655	103.507	104.632	103.526	102.382	109.126	103.507	103.501
3.47	101.276	104.650	105.757	102.401	103.556	101.276	104.650	103.526
	101.257	106.876	103.507	104.626	97.876	103.526	95.633	101.257
	93.383	96.751	97.883	95.626	106.882	101.251	109.132	97.876
3.95	88.876	101.276	94.528	101.251	100.126	96.777	101.351	97.883
	99.008	100.126	99.001	97.883	87.758	96.751	95.686	100.126
	86.626	85.501	67.501	78.759	91.126	81.001	84.376	77.634
7.89	87.751	83.259	68.626	79.876	92.258	84.376	90.001	79.876
	87.751	81.009	79.876	81.009	92.251	88.876	96.758	83.259
	69.751	69.751	69.751	67.501	64.126	69.751	68.626	67.510
10.74	73.16	70.885	68.635	70.876	67.501	68.635	68.626	69.760
	73.126	72.010	72.010	70.876	72.001	70.876	70.876	68.635

Tabella B.13 Valori sperimentali di EZ relativi alla sospensione: $2.05 \cdot 10^6$ beads/mL - TT050

O[m1/h]				EZ [[µm]			
Q[IIII/II]		Bordo s	uperiore			Bordo i	nferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
	173.285	203.627	192.290	198.015	187.877	192.377	198.015	194.640
0.32	176.627	195.751	198.015	199.127	189.006	194.627	192.381	193.584
	176.627	200.252	195.015	199.131	189.006	194627	194.657	199.242
	172.127	162.002	173.252	166.506	164.256	172.131	165.377	162.002
0.63	165.377	165.381	168.756	171.061	175.506	176.641	178.934	169.877
	173.252	172.131	173.267	174.392	168.767	160.893	162.037	168.756
	147.377	148.570	151.893	157.518	147.394	141.752	145.127	159.752
0.95	151.881	146.269	162.006	151.893	150.752	146.269	148.506	155.256
	150.756	151.943	149.631	157.518	138.377	139.506	165.393	156.381
	139.506	141.756	138.395	133.881	136.127	142.881	146.256	138.377
1.26	136.127	142.881	137.270	135.006	129.381	138.381	146.256	144.002
	145.131	133.881	145.144	137.270	135.020	142.881	140.631	135.006
	95.626	105.751	104.632	104.626	93.376	104.626	96.751	100.126
3.47	100.126	103.501	106.876	103.507	97.883	96.751	101.257	101.257
	110.251	110.274	111.376	102.401	102.382	103.507	104.632	101.251
	106.900	92.251	96.751	95.626	94.528	97.876	94.501	93.376
3.95	111.376	101.257	94.501	99.008	102.376	94.501	87.751	96.751
	91.133	97.876	101.257	102.376	91.133	93.403	92.279	93.376
	75.376	78.751	76.501	75.384	73.135	70.876	74.251	78.751
7.89	77.626	76.501	84.384	79.876	74.251	75.384	69.760	78.759
	76.509	79.876	79.876	75.376	75.276	76.509	78.759	76.501
	67.501	66.376	64.126	72.001	65.251	69.751	66.385	65.251
10.74	67.501	74.251	68.626	70.885	72.001	68.626	60.761	67.501
	73.126	68.635	70.885	67.501	70.876	68.635	69.751	70.885

Tabella B.14 Valori sperimentali di EZ relativi alla sospensione: $2.56 \cdot 10^6$ beads/mL - TT050

O[ml/h]				EZ [[µm]			
Q[min]		Bordo s	uperiore			Bordo i	nferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
	183.377	185.641	202.502	189.002	190.127	193.502	191.256	193.515
0.32	184.502	187.881	192.390	189.002	198.006	189.002	187.891	193.502
	177.752	185.631	191.265	191.256	191.265	189.032	196.906	194.627
	165.377	158.631	163.127	166.517	177.756	168.756	163.127	164.256
0.63	167.661	163.131	164.252	165.377	162.006	169.881	163.131	169.881
	166.502	157.506	160.877	165.392	173.252	158.631	173.267	166.506
	151.877	146.252	154.127	145.131	155.252	150.752	147.381	140.627
0.95	151.877	151.881	148.506	145.144	160.881	159.752	146.256	150.756
	150.752	154.131	148.506	149.627	153.006	154.127	153.002	144.006
	136.131	127.131	130.506	135.002	140.627	129.377	138.377	136.131
1.26	138.381	133.877	136.131	135.006	136.131	136.127	138.381	138.395
	136.127	136.127	137.256	137.270	144.002	130.521	130.521	132.756
	101.251	100.133	99.001	100.126	101.251	100.133	94.508	94.501
3.47	103.501	100.126	97.883	100.132	100.126	99.001	101.257	96.758
	101.257	99.008	99.001	106.626	96.758	102.382	106.882	97.883
	91.133	92.251	99.001	94.501	93.376	95.626	91.133	92.251
3.95	96.751	91.126	92.251	94.501	94.508	90.001	91.126	93.376
	92.251	97.883	94.501	95.626	90.001	90.008	92.251	92.258
	75.376	77.634	74.259	76.501	73.126	77.626	77.626	75.384
7.89	74.251	75.376	72.001	77.626	78.751	78.751	69.751	74.251
	82.126	75.376	76.501	77.626	75.384	74.259	75.376	74.251
	67.501	68.626	673501	68.635	66.376	66.376	64.126	69.751
10.74	66.376	69.751	70.876	66.376	68.626	69.751	65.251	67.501
	70.876	68.626	66.385	70.876	73.126	66.376	60.751	68.626

Tabella B.15 Valori sperimentali di EZ relativi alla sospensione: $3.20 \cdot 10^6$ beads/mL - TT050
O[m]/h]				EZ [[µm]			
Q[IIII/II]		Bordo s	uperiore			Bordo i	nferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
	176.627	175.502	173.252	172.131	172.161	187.877	173.367	182.266
0.32	169.881	177.766	177.756	178.877	181.131	186.752	177.752	181.159
	176.627	178.881	172.127	178.881	181.127	182.256	182.256	181.214
	158.627	159.768	149.627	150.756	157.502	163.127	164.256	155.256
0.63	167.642	159.756	154.131	151.881	164.256	164.252	157.502	162.018
	158.627	162.100	165.411	154.131	165.438	155.252	159.752	159.768
	129.381	142.877	136.131	137.256	148.506	145.127	148.519	138.395
0.95	136.131	137.252	136.131	133.881	138.377	139.502	148.502	142.877
	137.256	137.256	135.006	135.006	147.381	139.506	138.381	138.381
	126.007	129.377	127.127	128.271	130.502	132.756	122.632	128.252
1.26	126.022	132.756	127.206	131.631	129.377	136.127	124.882	130.521
	122.022	132.756	126.007	128.271	133.881	138.377	138.395	126.007
	88.876	91.126	95.626	94.501	96.751	97.876	94.508	95.626
3.47	93.376	96.751	100.126	101.251	100.126	94.528	99.001	96.751
	93.383	93.376	99.001	96.751	86.633	95.626	90.008	95.633
	92.251	96.758	90.008	92.251	87.758	87.758	93.376	93.376
3.95	88.883	93.383	91.126	92.251	91.126	90.001	87.780	92.279
	87.751	96.751	93.383	94.501	87.758	95.653	84.383	91.133
	73.126	72.001	72.010	68.626	75.384	68.626	73.126	73.126
7.89	82.134	74.251	74.259	73.126	75.376	73.135	75.376	69.751
	76.509	81.001	75.376	74.251	76.509	73.160	72.001	75.376
	63.001	66.376	63.001	64.136	64.126	68.626	65.251	66.376
10.74	74.251	69.751	66.376	66.376	64.126	72.001	65.251	66.376
	65.260	66.385	70.876	65.251	67.510	63.001	64.126	63.011

Tabella B.16 Valori sperimentali di EZ relativi alla sospensione: $4.00 \cdot 10^6$ beads/mL - TT050

O[m1/h]				EZ [[µm]			
Q[min]		Bordo s	uperiore			Bordo i	nferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
	138.381	144.019	146.256	150.381	138.377	151.893	162.018	150.752
0.32	139.502	141.752	146.252	145.144	141.770	149.627	156.381	156.381
	144.019	151.877	146.256	145.127	141.792	150.756	146.256	156.377
	121.501	127.127	126.007	120.376	106.882	115.876	122.626	117.001
0.63	126.001	122.626	129.396	123.757	124.897	120.376	120.382	120.382
	124.876	121.501	121.507	121.507	117.050	121.507	122.709	123.772
	105.757	99.001	108.007	110.251	108.376	100.126	105.751	108.007
0.95	105.757	101.251	102.382	105.757	108.001	105.757	99.070	105.757
	109.126	110.257	114.757	110.257	114.757	104.632	103.526	109.150
	99.008	99.001	104.632	94.501	92.251	97.876	96.751	102.376
1.26	94.508	99.001	99.001	99.027	92.258	93.383	104.632	94.501
	95.633	102.382	91.133	102.376	97.883	97.876	96.751	95.633
	73.376	70.876	77.634	67.510	73.126	68.626	75.384	66.376
3.47	66.376	75.384	69.751	74.251	69.751	77.626	69.760	70.885
	74.259	61.886	66.385	73.135	70.885	67.510	72.001	68.626
	63.001	67.510	69.751	70.876	72.010	61.886	69.751	65.251
3.95	69.760	66.376	64.126	64.126	64.136	82.036	69.751	68.635
	70.876	73.135	66.376	72.010	68.635	73.126	67.538	66.376
	57.387	58.544	54.001	54.012	50.626	54.001	55.126	50.626
7.89	57.387	58.512	64.165	57.376	47.264	52.876	54.012	51.751
	57.387	58.511	55.126	55.126	47.251	60.751	56.262	52.876
	48.376	49.501	43.890	48.389	52.888	47.251	51.763	50.638
10.74	50.626	49.513	45.888	48.389	49.501	43.890	52.876	45.001
	49.513	46.139	48.389	49.501	51.763	48.389	51.763	48.376

Tabella B.17 Valori sperimentali di EZ relativi alla sospensione: $4.60 \cdot 10^7$ beads/mL - TT050

O[m1/h]	$\mathrm{EZ}\left[\mu\mathrm{m} ight]$									
Q[IIII/II]		Bordo s	uperiore			Bordo i	nferiore			
	15'	30'	45'	60'	15'	30'	45'	60'		
	54.001	64.126	56.251	57.387	63.001	59.626	55.126	58.501		
0.32	61.886	60.751	59.668	56.251	61.886	65.251	56.262	58.501		
	59.668	59.626	50.638	64.136	30.761	64.126	59.636	56.262		
	47.251	51.751	47.251	52.876	58.501	50.626	51.751	50.626		
0.63	48.376	51.751	46.139	49.501	52.888	50.626	50.626	52.888		
	50.626	56.251	47.251	47.251	54.048	51.799	51.751	55.137		
	43.876	41.625	42.765	46.139	49.501	49.501	50.626	50.638		
0.95	47.251	46.126	40.516	46.126	51.763	54.012	43.876	51.751		
_	39.375	45.015	41.625	45.001	48.428	51.800	51.799	51.751		
	45.001	43.876	45.001	47.251	42.750	45.001	49.501	51.751		
1.26	43.876	43.876	41.625	41.625	43.890	45.015	46.126	49.513		
	40.500	41.625	45.015	45.001	43.876	47.264	51.763	48.389		
	38.250	34.894	38.205	37.194	38.250	32.625	38.250	33.750		
3.47	37.125	33.750	37.125	32.625	39.375	34.875	37.125	37.142		
	36.018	34.875	36.000	30.375	37.125	34.894	30.375	38.267		
	38.250	29.520	38.250	28.125	39.375	33.750	33.750	32.645		
3.95	33.750	33.769	36.000	32.625	36.000	32.625	32.625	38.250		
	38.250	31.500	36.000	36.000	36.000	37.125	31.500	36.000		
	40.516	32.625	28.125	30.375	39.375	36.000	46.216	32.625		
7.89	39.375	33.750	29.250	28.125	37.125	36.000	45.001	31.500		
	41.625	32.625	29.250	27.000	36.000	33.750	43.876	30.375		
	23.625	25.875	27.000	24.750	28.125	28.125	21.375	25.875		
10.74	25.900	27.000	25.900	24.750	24.750	27.000	25.875	22.500		
	23.625	24.750	28.125	27.000	25.900	25.875	24.750	22.500		

Tabella B.18 Valori sperimentali di EZ relativi alla sospensione: $4.60 \cdot 10^8$ beads/mL - TT050

O [1/h]				EZ [[µm]			
Q [mi/n]		Bordo s	uperiore			Bordo i	nferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
	319.159	320.259	329.627	324.157	325.380	326.769	326.377	326.408
0.65	321.001	327.005	326.377	326.402	328.631	328.395	330.877	333.246
	324.756	326.256	325.289	327.528	324.253	326.894	329.756	328.699
	280.756	276.145	279.756	282.132	273.626	280.257	279.957	282.507
1.29	277.381	275.131	272.002	280.263	279.132	282.376	276.580	279.131
	280.769	281.770	284.256	275.789	275.751	280.257	282.078	284.765
	255.757	253.903	250.006	254.457	256.381	250.133	254.773	256.628
1.94	252.382	253.878	250.003	260.055	254.143	255.626	255.926	250.993
	254.632	251.630	250.013	256.620	255.268	250.126	254.757	251.013
	226.262	228.148	225.625	220.613	218.705	224.256	221.859	219.479
2.58	227.387	225.882	219.894	222.864	226.459	227.773	220.476	227.366
	228.501	221.507	223.506	228.483	223.001	231.256	228.894	230.742
	169.381	162.877	164.501	164.329	162.765	162.632	166.626	168.831
7.10	166.131	157.252	157.751	158.702	160.516	161.631	157.751	163.204
	157.256	167.256	162.279	164.326	161.625	155.020	157.751	163.200
	150.502	147.752	154.459	154.200	154.765	151.159	152.632	158.698
8.07	152.877	156.018	155.127	154.212	151.756	150.006	154.882	156.463
	149.377	159.002	163.252	159.827	159.005	159.056	158.395	157.609
	126.216	125.631	133.381	120.436	124.256	133.526	122.127	133.937
16.14	125.001	122.274	128.767	124.938	128.273	125.757	127.766	132.830
	133.876	126.762	129.851	130.560	128.273	126.777	131.131	132.811
	118.512	117.264	117.387	113.683	116.010	120.029	117.125	119.310
21.94	120.626	117.251	116.251	120.436	119.431	124.406	121.641	119.310
	116.251	121.763	116.251	120.430	123.330	117.751	116.894	122.702

Tabella B.19 Valori sperimentali di EZ relativi alla sospensione: $1.06 \cdot 10^6$ beads/mL - TT110

O[m1/h]				EZ [[µm]			
Q[IIII/II]		Bordo s	uperiore			Bordo i	nferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
	313.887	308.262	316.147	312.762	309.381	301.506	303.754	309.381
0.65	311.631	312.754	306.006	312.772	303.762	307.131	301.504	308.254
	308.256	309.379	308.262	313.879	304.931	308.254	308.286	308.256
	270.024	258.792	265.506	265.541	268.881	264.381	270.006	266.638
1.29	273.399	262.128	267.753	268.878	264.378	262.131	270.003	271.138
	270.006	263.263	268.881	271.128	270.006	268.878	270.013	271.149
	235.139	241.943	237.388	229.547	241.888	232.880	246.378	238.505
1.94	240.763	242.006	239.652	237.380	246.388	243.214	239.630	240.763
	246.388	244.128	240.753	239.630	236.253	243.026	243.003	239.628
	221.600	217.139	216.005	217.154	223.880	225.005	222.755	226.130
2.58	218.255	218.255	212.628	216.014	218.255	220.514	219.380	222.764
	216.005	221.628	219.381	223.880	226.139	216.005	228.380	222.764
	155.256	150.819	159.815	153.068	166.506	164.256	154.131	158.631
7.10	156.393	157.518	150.790	157.502	167.627	172.131	155.268	165.381
	155.252	158.643	151.881	155.268	168.767	163.162	155.256	155.289
	136.127	165.002	141.756	137.256	135.006	139.502	138.381	144.006
8.07	137.293	138.381	137.270	137.252	141.752	140.627	141.756	139.520
	130.502	138.395	133.881	141.756	137.252	141.756	137.270	139.506
	112.507	124.922	109.132	115.882	115.882	123.757	121.501	122.626
16.14	111.399	114.751	115.882	117.007	115.898	126.006	123.751	117.007
	110.257	123.751	121.507	118.132	115.876	124.882	119.273	124.876
	102.376	103.507	105.876	105.751	106.876	110.257	109.132	113.632
21.94	103.501	103.507	105.751	103.507	106.882	108.025	110.257	105.625
	110.251	104.632	102.376	106.882	111.427	105.757	103.526	109.132

Tabella B.20 Valori sperimentali di EZ relativi alla sospensione: $1.31 \cdot 10^6$ beads/mL - TT110

0 [1/]				EZ [[µm]			
Q [mi/n]		Bordo s	uperiore			Bordo i	nferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
	324.035	330.771	321.754	324.006	321.754	340.886	325.129	328.512
0.65	321.772	328.512	321.785	321.756	327.396	328.521	327.448	321.825
	329.646	324.012	322.887	328.504	330.771	334.176	326.324	326.324
	281.262	273.399	276.774	271.149	275.637	279.005	274.503	273.381
1.29	277.877	274.524	270.006	275.665	280.137	276.900	275.631	273.381
	284.628	276.753	274.512	275.649	281.334	278.024	275.665	275.631
	243.026	232.880	237.402	239.694	247.513	255.400	249.753	257.638
1.94	243.097	237.444	241.880	238.505	244.138	249.763	55.440	248.630
	249.816	247.503	245.253	240.753	246.401	253.130	244.151	246.388
	199.156	207.002	200.303	213.779	205.927	214.889	204.780	214.889
2.58	202.552	210.389	201.428	205.890	207.030	209.280	209.328	210.405
	211.514	212.628	203.677	209.252	210.405	203.631	207.051	216.005
	167.627	157.518	158.631	153.002	158.627	159.756	156.381	162.002
7.10	154.131	155.268	157.518	158.631	168.756	162.002	163.131	158.631
	157.518	157.506	150.756	155.256	166.506	164.256	163.131	163.131
	148.540	153.039	146.252	144.006	154.131	155.256	155.252	154.143
8.07	149.644	141.756	144.041	145.127	159.756	156.442	154.143	155.256
	146.321	148.519	148.506	149.627	153.068	153.018	149.644	154.131
	123.751	109.149	118.148	117.007	118.126	112.507	119.257	119.257
16.14	119.273	112.507	115.882	123.772	120.397	121.507	109.126	121.507
	117.001	111.399	121.507	118.148	115.882	120.376	118.126	118.132
	103.507	104.626	102.382	101.257	105.757	105.757	109.126	111.382
21.94	102.382	108.007	112.524	104.632	113.649	105.751	108.054	110.303
	104.632	105.757	102.401	102.401	109.126	101.251	106.882	109.126

Tabella B.21 Valori sperimentali di EZ relativi alla sospensione: $1.64 \cdot 10^6$ beads/mL - TT110

O[m1/h]				EZ [[µm]			
Q[IIII/II]		Bordo s	uperiore			Bordo i	nferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
	315.022	315.012	311.647	310.522	320.637	318.381	309.381	310.512
0.65	322.928	309.379	310.512	312.762	312.762	313.879	312.762	312.762
	317.254	316.131	310.536	310.536	313.881	312.772	312.762	311.637
	280.131	275.631	264.388	265.513	279.012	274.503	272.263	273.399
1.29	276.762	275.649	268.937	268.881	280.131	273.415	270.006	270.003
	282.387	277.915	270.003	267.774	279.024	275.628	265.513	270.003
	235.139	234.027	240.795	237.388	236.277	239.63	240.753	237.378
1.94	237.388	237.388	241.878	238.513	237.378	230.63	241.888	236.256
	236.255	238.527	244.130	238.505	238.513	235.139	239.628	235.139
	221.628	217.130	217.139	213.779	223.878	223.903	221.653	222.764
2.58	222.753	219.404	218.299	217.154	228.378	223.878	221.628	222.755
	229.528	225.003	211.502	212.631	222.778	221.630	218.264	220.505
	150.752	153.018	154.164	146.269	171.006	162.002	162.006	157.502
7.10	154.143	140.645	154.143	159.768	156.381	154.256	155.260	157.518
	148.506	157.518	151.914	159.815	171.002	163.189	172.131	159.768
	150.756	136.145	130.521	137.252	150.756	150.769	142.877	145.127
8.07	147.381	145.131	138.450	137.256	154.131	145.127	149.631	148.502
	150.769	141.770	137.270	139.520	155.268	145.131	146.252	146.252
	113.649	110.251	111.382	114.751	121.501	117.007	112.501	121.507
16.14	109.132	114.773	115.882	113.632	111.376	114.876	121.548	121.507
	117.050	120.382	119.273	111.376	129.377	121.507	121.507	119.257
	102.376	101.276	96.758	104.632	103.507	105.751	112.501	105.751
21.94	104.626	104.650	103.507	97.902	101.257	103.501	101.251	106.882
	109.132	100.151	97.883	102.376	109.178	99.008	106.882	102.382

Tabella B.22 Valori sperimentali di EZ relativi alla sospensione: $2.05 \cdot 10^6$ beads/mL - TT110

O[m1/h]	$\mathrm{EZ}\left[\mu\mathrm{m} ight]$									
Q[mm/n]		Bordo su	periore			Bordo i	nferiore			
	15'	30'	45'	60'	15'	30'	45'	60'		
	322.881	338.696	325.137	333.756	344.261	352.145	340.881	347.631		
0.65	319.552	343.146	328.512	330.754	340.881	344.271	339.756	335.262		
	326.285	343.131	330.756	326.254	338.646	352.129	342.006	342.004		
	267.756	268.881	272.274	272.263	272.290	272.256	270.013	281.289		
1.29	274.506	266.638	276.790	271.166	275.631	275.637	280.131	277.960		
	270.024	268.916	275.628	275.637	274.506	273.399	283.503	280.137		
	234.005	241.888	236.255	238.527	239.628	249.756	237.380	243.003		
1.94	236.277	243.045	238.527	241.880	238.505	255.378	238.505	239.630		
	239.630	240.753	241.888	238.503	238.505	254.293	239.652	245.253		
	212.630	211.505	216.005	216.014	217.128	214.880	221.630	218.225		
2.58	212.628	214.880	218.279	216.005	220.574	216.003	218.279	222.798		
	213.764	214.889	214.880	210.381	227.278	219.389	225.003	220.549		
	153.002	149.627	155.268	151.877	157.506	157.502	156.377	159.752		
7.10	156.377	155.256	153.002	155.252	154.127	156.381	160.877	158.631		
	157.502	151.881	157.506	153.006	160.877	156.377	159.756	163.131		
	149.631	142.881	142.881	142.881	148.502	147.394	146.256	149.631		
8.07	142.894	141.752	142.917	144.006	149.627	146.291	148.506	144.006		
	147.394	145.127	141.770	142.877	146.252	147.394	147.381	147.394		
	112.501	114.773	113.676	118.126	115.882	121.501	119.251	118.126		
16.14	117.007	1115.926	110.274	114.757	123.757	122.626	117.001	118.126		
	117.023	114.757	112.501	114.757	118.132	122.632	122.626	120.382		
	103.507	104.626	101.276	104.681	108.007	108.007	104.626	104.632		
21.94	102.382	108.025	102.432	103.507	112.501	112.642	108.025	111.382		
	104.632	109.126	103.507	102.382	111.382	110.303	111.376	112.201		

Tabella B.23 Valori sperimentali di EZ relativi alla sospensione: $2.56 \cdot 10^6$ beads/mL - TT110

O[m1/h]	$\mathrm{EZ}\left[\mu\mathrm{m} ight]$									
Q[IIII/II]		Bordo s	uperiore			Bordo i	nferiore			
	15'	30'	45'	60'	15'	30'	45'	60'		
	298.129	312.762	306.012	311.631	308.262	316.137	319.506	310.506		
0.65	292.512	312.540	308.254	312.756	310.506	326.254	328.506	325.146		
	306.012	312.762	318.397	324.004	309.397	325.131	326.271	317.272		
	280.137	275.686	268.878	259.900	273.378	277.881	275.631	270.003		
1.29	274.540	276.753	270.003	268.888	273.378	279.012	272.274	274.506		
	273.381	282.399	273.381	271.138	271.212	273.399	276.762	276.753		
	241.888	230.630	238.513	229.505	237.378	237.378	238.505	238.503		
1.94	240.753	230.630	238.503	234.005	236.253	239.638	240.753	238.503		
	244.128	236.253	240.753	238.505	241.878	231.796	243.003	241.888		
	218.253	214.878	217.130	217.130	216.014	212.628	225.003	218.253		
2.58	218.255	211.502	214.880	217.130	217.128	219.389	218.256	216.005		
	222.764	213.753	220.528	221.630	221.639	220.606	218.253	223.878		
	145.127	157.506	157.502	156.361	149.627	155.252	162.002	158.627		
7.10	150.756	151.877	157.506	159.752	156.377	153.002	160.877	156.381		
	150.752	156.377	155.252	156.377	155.289	156.381	160.893	157.506		
	158.627	145.131	148.502	149.631	157.506	151.893	151.877	150.752		
8.07	153.002	148.506	147.377	150.756	160.881	149.627	154.217	147.377		
	157.502	150.752	154.127	151.881	160.881	149.644	155.268	151.881		
	120.382	113.632	113.626	115.876	120.382	122.632	122.626	121.507		
16.14	117.001	114.773	115.876	115.876	121.507	120.382	123.757	122.626		
	119.273	115.882	115.882	117.001	118.132	120.376	122.632	119.257		
	105.751	110.251	108.007	105.751	109.149	109.126	110.251	109.132		
21.94	106.876	109.126	106.882	109.126	111.382	108.007	111.382	110.257		
	108.007	104.626	109.132	109.132	110.257	112.524	110.251	109.132		

Tabella B.24 Valori sperimentali di EZ relativi alla sospensione: $3.20 \cdot 10^6$ beads/mL - TT110

O[m1/h]				EZ [[µm]			
Q[IIII/II]		Bordo s	uperiore			Bordo i	nferiore	
	15'	30'	45'	60'	15'	30'	45'	60'
	322.881	321.803	320.637	324.074	321.754	317.256	317.262	324.012
0.65	317.304	326.271	322.896	322.887	324.004	320.629	319.535	324.035
	324.035	321.754	324.006	325.146	321.772	231.825	319.522	322.887
	277.881	274.506	264.378	273.381	279.006	276.756	273.388	279.003
1.29	277.881	276.756	271.128	277.881	276.774	277.881	276.762	276.790
	279.012	279.006	274.512	276.753	281.274	276.753	279.012	276.810
	241.878	236.255	241.901	243.003	255.388	239.630	255.380	250.888
1.94	250.969	239.638	245.294	247.513	250.878	240.795	248.631	243.045
	252.006	239.670	246.442	246.388	245.276	252.006	254.253	250.918
	217.154	218.253	219.380	223.889	221.653	232.889	230.628	235.130
2.58	216.014	218.253	213.764	222.778	219.381	220.528	225.005	234.005
	219.380	227.255	219.378	219.404	227.255	227.255	237.380	225.005
	148.502	159.756	156.381	154.164	160.881	163.127	162.006	167.631
7.10	150.752	151.893	154.143	157.518	157.506	166.517	166.502	156.377
	153.002	154.143	155.268	158.631	157.506	168.767	162.018	152.002
	148.540	145.127	149.644	147.394	156.381	155.252	156.381	155.252
8.07	158.627	153.002	148.506	150.857	153.006	158.627	157.502	151.877
	155.256	149.627	151.881	150.756	151.881	157.502	158.643	153.002
	118.132	117.007	113.632	120.376	124.876	121.501	126.001	121.507
16.14	113.626	120.376	112.501	112.507	126.006	122.647	129.396	120.376
	118.132	121.548	119.257	119.251	132.828	123.757	124.882	123.757
	106.876	105.751	105.751	108.001	110.251	113.626	110.257	108.001
21.94	112.507	103.507	106.876	105.757	106.876	109.132	102.376	108.001
	110.274	108.025	110.251	109.126	112.507	105.751	110.257	105.751

Tabella B.25 Valori sperimentali di EZ relativi alla sospensione: $4.00 \cdot 10^6$ beads/mL - TT110

O[m1/h]	$\mathrm{EZ}\left[\mu\mathrm{m} ight]$								
Q[IIII/II]		Bordo s	uperiore			Bordo i	nferiore		
	15'	30'	45'	60'	15'	30'	45'	60'	
	319.12	312.201	316.860	329.488	314.522	313.353	314.512	320.315	
0.65	313.404	316.841	316.860	319.113	311.047	308.745	217.959	322.586	
	319.130	317.961	317.978	327.194	321.434	311.049	315.674	328.328	
	260.381	270.748	268.432	261.573	269.577	270.726	263.817	260.361	
1.29	261.601	262.672	255.753	265.006	263.817	269.577	266.141	261.510	
	266.121	269.596	267.471	266.118	270.726	275.337	277.638	266.141	
	215.441	224.645	229.357	233.907	235.025	222.353	244.232	245.384	
1.94	224.752	216.584	230.447	233.873	230.408	221.237	244.273	243.080	
	222.353	230.405	224.692	236.177	228.104	223.520	248.848	248.848	
	205.074	195.845	201.608	206.213	221.192	218.885	217.736	221.216	
2.58	200.466	208.517	203.912	205.064	213.128	223.520	220.064	220.064	
	209.682	211.985	201.605	210.824	217.760	218.897	220.049	225.809	
	158.631	160.877	162.006	158.643	163.127	162.002	165.381	160.881	
7.10	159.756	163.127	151.877	159.768	160.877	162.002	157.506	160.881	
	156.377	162.018	159.752	159.756	160.881	162.002	153.006	162.006	
	158.627	154.131	142.877	153.002	155.256	150.756	151.877	155.252	
8.07	151.881	151.881	151.881	151.893	153.006	148.506	153.002	151.914	
	150.756	165.381	150.769	151.881	156.377	159.756	156.381	156.381	
	113.632	110.257	115.876	112.507	121.507	119.251	122.626	118.132	
16.14	114.751	112.507	114.751	114.751	123.757	117.007	121.501	122.647	
	120.382	114.751	118.148	114.773	121.501	123.757	122.632	119.251	
	105.751	97.883	102.376	105.757	100.126	103.507	105.757	103.507	
21.94	99.059	101.257	101.251	100.126	105.757	103.507	102.382	105.757	
	104.632	106.882	105.751	103.501	102.376	105.757	105.805	106.876	

Tabella B.26 Valori sperimentali di EZ relativi alla sospensione: $4.60 \cdot 10^7$ beads/mL - TT110

$O\left[m1/b\right]$	$\mathrm{EZ}\left[\mu\mathrm{m} ight]$									
Q [mi/n]		Bordo s	uperiore			Bordo i	nferiore			
	15'	30'	45'	60'	15'	30'	45'	60'		
	85.508	97.883	114.757	129.396	109.126	102.382	117.001	123.751		
0.65	95.653	104.632	117.023	127.146	95.626	97.876	120.397	122.647		
	85.531	95.626	106.882	128.271	99.027	99.008	111.399	126.002		
	105.757	103.526	104.632	105.757	102.376	104.626	103.501	105.757		
1.29	102.382	103.526	105.751	105.757	103.526	103.507	104.632	103.501		
	104.632	108.025	103.501	106.882	110.257	108.025	105.775	106.882		
	96.777	100.126	92.251	88.876	96.758	94.508	100.133	96.751		
1.94	95.653	94.501	88.876	92.251	95.633	92.258	95.626	95.633		
	97.876	95.626	95.626	91.126	94.501	96.758	100.126	95.626		
	85.508	84.376	84.383	85.501	93.376	91.133	90.008	84.376		
2.58	91.126	87.780	85.501	83.251	84.384	85.501	86.633	85.501		
	90.064	84.376	85.501	88.883	78.759	86.633	84.384	87.758		
	60.751	66.041	60.751	63.011	69.751	70.885	66.385	69.751		
7.10	64.126	66.376	60.751	69.751	68.635	70.876	68.626	69.760		
	67.501	64.136	63.001	64.126	65.260	68.635	69.760	70.876		
	59.636	56.262	59.626	54.001	64.126	63.011	60.751	60.751		
8.07	56.251	57.387	55.126	57.420	69.760	61.876	60.761	61.876		
	58.501	58.501	60.751	56.262	61.876	60.751	59.668	61.886		
	48.376	48.376	45.001	46.126	49.501	49.501	50.626	52.876		
16.14	50.638	49.501	45.001	43.876	51.751	49.501	54.001	50.626		
	48.376	48.376	47.251	46.139	47.264	52.888	49.501	46.126		
	40.516	38.250	40.500	39.375	46.126	42.751	38.250	38.251		
21.94	41.625	39.392	39.375	38.250	43.876	45.015	45.015	39.392		
	41.625	40.500	36.000	43.876	43.876	41.641	40.500	40.516		

Tabella B.27 Valori sperimentali di EZ relativi alla sospensione: $4.60 \cdot 10^8$ beads/mL - TT110