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by Niccolò ROSSO

Objective. Recent studies have shown the possibility to achieve a proportional myo-
electric control of a lower limb exoskeleton for rehabilitation using a regression-based
approach, but optimal channel selection has been little investigated. In this study the
feasibility to localize the most informative channels to extract a proportional simultane-
ous myoelectric control for a multi degrees of freedom exoskeleton has been examined.
Approach. Five able-bodied subjects took part in this study, which was divided in two
experiments. High density surface electromyographic (sEMG) signals were recorded
with electrodes grids in both parts of this study. In details, four grids of 8x4 electrodes
and three grids of 8x8 electrodes have been used. Angle signals were recorded with
two electrogoniometers only in the second experiment. In the first experiment, subjects
performed ankle and knee movements separately (dorsiflexion/plantarflexion of the an-
kle, flexion/extension of the knee). In the second part of this study, subjects performed
movements with combinations of the two DoFs. Channel selection was performed in
the first experiment by least absolute shrinkage and selection operator (LASSO) method.
In both experiments, angles were estimated from EMG features with ridge regression
model using channel subsets selected by LASSO. Main results. Channel selection per-
formed by LASSO proved to be robust in terms of channel subsets chosen and training
data reduction. Performances obtained in angle reconstruction using complete config-
urations can be retained or even overcome with the smallest configurations (3 channels
for ankle, and 4 channels for knee). Significance. From analysis results, it is possible
to conclude that LASSO implements an effective and robust channel selection for natu-
ral, accurate and proportional control. We expect that our results will provide a useful
guideline to select most informative channels for the extraction of a proportional and
simultaneous myoelectric control of a rehabilitation exoskeleton for lower limb.
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Chapter 1

Introduction

Electromyographic (EMG) signals of residual muscles have been widely involved to con-
trol electrically powered upper and lower limb prostheses, because they have enough
information about muscular activity. Indeed, an enormous number of people lost their
limbs in various accidents or they are born without one or more limbs. So far, many
studies focused on patter recognition based approach to control prostheses, and many
progresses have been made in improving classification accuracies and in distinguishing
different emg patterns. Despite high performances and robustness issues have been re-
ported, most of pattern recognition based myoelectric prostheses demonstrated a crucial
limitation in practical use in only one degree of freedom can be controlled at time [8].
Recent works tried to extend classification to more movements at same time and to dis-
criminate combined motions but they still limit type of movements not allowing an in-
dependent proportional control. Conversely, natural movement can be reproduced only
using independent and proportional control. This type of control can be achieved with
regression technique. The major difference between classification and regression is that
regressor does not decide for a certain class but provides a continuous output command
for multiple DoFs, therefore become possible a more intuitive and natural control of my-
oelectric prostheses [5]. This need values not only for prostheses but also for exoskeleton,
indeed both cases there is a need to decode independent proportional and simultaneous
control of more DoFs. Robotic exoskeleton aims to rehabilitate and restore a movement
in subject that are not able to perform because of paraplegia or spinal cord injury (SCI).
Recovery of lower limb function after these injuries is fundamental to improve quality of
life and independence of this people. Generally muscles of this population are weak or
paralyze, thus they are not able to provide necessary activation to promote movements.
For this reason, combined strategy has been developed to provide external support dur-
ing movement wearing exoskeleton such as Functional Electrical Stimulation (FES) [1].
Rehabilitation procedure for people with these muscular issues is complicated because
extents, position and causes of muscular damages are patient specific, for this reason
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there is a need to locate and evaluate most informative areas of each muscle in order to
optimize rehabilitation procedure. Consequently, number of electrodes to acquire emg
signals is reduced and computational time benefits of this reduction: real time system
based are necessary to secure patient during rehabilitation procedure.

Regardless the strategy to exploit regression or classification, and type of prosthe-
ses or exoskeleton the first step in implementation of myoelectric control is to select
an appropriate number of electrodes and their optimal sites. As far as concern pattern
recognition based myoelectric control, channel selection has been widely investigated;
but to our best knowledge a few studies examined the impact of channel selection on re-
gression base myoelectric control [14], [5]. Generally, performances in control degraded
reducing number of electrodes, hence an important step toward clinical use is to find a
method that perform well with a small number of electrodes [9]. Since in term of clinical
application a method requires short time for the setup and little user training, the goal
of this study is to identify the best configurations of electrodes to obtain a simultaneous
proportional myoelectric control of two degrees of freedom. Linear regression model
has been used in this work to extract a control signal from ankle and knee joint in or-
der to drive a lower limb exoskeleton. In the last part of the study, angles sensors were
used only to evaluate the performances of the approach. The study is divided in two
experiments that are described in the following chapters.

1.1 Electromyography signal

The electromyography (EMG) signal is a manifestation of electric potential field due to
the depolarization of the sarcolemma which is the outer membrane of muscle fiber. To
detect it, intramuscular o surface electrodes are positioned on a certain distance from the
sources. The tissue inserted between electrodes and source acts as so called volume con-
ductor which is responsible for the features of the recorded signals, particularly for what
concern its frequency content and distance up to which can be detected. In intramus-
cular recordings, because electrodes are positioned very closely to the source the effect
of tissue is generally small. On the contrary, for surface detection the volume conductor
acts as low-pass filtering on emg signal [13].

Potential generated on muscle fiber is the emg source. In detail, when an electric im-
pulse propagating along motoneuron arrives at nerve terminal produces electrochemical
phenomenon that generates a depolarization zone, and the potential gradient propagates
along muscles fibers from neuromuscular junction to tendons. Potential due to activation
of a single motor unit is called motor unit action potential (MUAP). The action potential
propagates with a certain velocity that depends on type and fiber diameter, this velocity
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is called conduction velocity (CV). A schematic representation of what described is re-
ports in figure 1.1 (a) and (b). In surface electromyography, when emg signal is recorded
by monopolar detection it is affected by common mode components that causes inter-
ferences (for example power line) and also by low pass filtering effect of the tissue. To
compensate these drawbacks emg signals are detected as linear combination of signals
acquired from different electrodes, the simplest procedure is the bipolar montage which
can be seen as spatial filtering of monopolar surface emg signal [13].

(a) (b)

FIGURE 1.1: (a) Motor control mechanism of Motor Unit which is made of α-
motoneuron in spinal cord and the fibers of muscles innervated. (b)Propagation
of motor unit action potential. From innervation region of any fiber, two depolar-
ization zones propagate to limit of each fiber. Because of differences in innervation
region, electric field sources are not perfectly aligned under recording electrodes.
Therefore, the summation of all these contributions (MUAP) produce the resul-

tant signal[13].
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1.2 Regression-based approach

Regression-based approach estimates a continuous and multivariate outputs comprising
all DoFs simultaneously [4]. This allows an independent simultaneous and proportional
control which results more natural and fluent, providing a better estimation. On the
contrary, classification based approach decides for a specific class therefore there is a
lack of this natural control [11]. Regression-based approach combined with real time
feedback permits intuitive correction by the user. Since small variation in emg signal
causes variation in the output system, user getting the feedback can modify contraction
pattern in a intuitive way.

Data labels are required with emg data to train a regressor, several studies used
torque or forces of the corresponding DoFs to obtain labels, but it also possible to use
joint angles despite of forces for training [10]. In this study, the feasibility of extracting a
robust control signal using regression based approach providing angular labels will be
investigated.
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Chapter 2

Thesis aim

At Neuro-rehabilitation Engineering Laboratory of Imperial College, researchers make
studies on proportional and simultaneous myoelectric control of multiple degrees of
freedom prosthesis for upper limb. Recently, they conducted studies about EMG-driven
model based of multi-joint exoskeleton system for lower limb, joints of interest were an-
kle and knee. Indeed, degrees of freedom took into account in this work are two: one for
each joint. Most of Exoskeleton structures are bulky and for this reason are not suitable
for many electrodes grids and sensors placement on the subject skin. Therefore, there is
a need to localize most informative regions of each muscles in order to place on them
only a small number of electrodes. The aim of this study is to verify the feasibility to re-
duce number of electrodes needed to compute joint angular movements, without using
angles sensors, in order to extract a proportional myoelectric control for two degrees of
freedom exoskeleton.

Channels selection method used in this study is least absolute shrinkage and selec-
tion operator (LASSO), which is an efficient regularization method for high dimensional
regression [15]. Lasso is widely used for subset selection because it produce some coef-
ficients of linear regression exactly zero and hence it provides interpretable models. In
this work, lasso is used only to select bipolar emg channels, then the regression model
of the selected channel subsets is made using ridge regression method [8].

This was a preliminary study, therefore it was carried out only with healthy able-
bodied subjects, without wearing exoskeleton. This work was divided in two experi-
ments, then data were all acquired and then processed. During experiments, monopolar
high density surface emg signals were recorded using by electrodes grids placed on spe-
cific muscles of knee and ankle. Control signal, that was extracted from a limited num-
ber of channels for each joint, is an angular signals that estimated the angles performed
by joint during the task. In order to evaluate these estimation, control signal for ankle
and knee were compared to angular signals recorded using electrogoniometers. All data
were acquired only from the right lower limb of the subjects.
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Chapter 3

Materials and methods

3.1 Experimental procedure

Five healthy able-bodied subjects took part in this study which was divided in two parts.
Subjects were asked to move their leg and ankle following trapezoidal trajectories pro-
vided on the screen (figure 3.1). In both experiments on line feedback is provided to the
subject during the task, red dots were drawn on the trajectory to temporize movements,
furthermore patients is verbally encouraged and guided when necessary. The time used
for the cue was 30s: the first, the middle the last horizontal segment of the cue last about
5s and correspond to the maintenance of reference position, the other segments corre-
sponding to ’flexion’, ’extension’ and ’hold’ labels last about 3s. The reference position
and movements of flexion and extension depends on the joint and are explained in de-
tails in section 3.1.1.1 and 3.1.1.2. In both experiments data were obtained from right
lower limb of each subject.

(a) (b)

FIGURE 3.1: Target trajectories provided to subjects as visual feedback during
(a) ankle and (b) knee movements.
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3.1.1 First experimental procedure: single joint

The purpose of the first experiment is to realize an effective channels selection, that is
to find the subset of channels that better allows to reconstructs joint angles. In this first
part of the study angular signals were not recorded, only emg signals were acquired.
Subjects were required to follow a target trajectory on a screen. Ankle and knee joint
were evaluated separately, and for each joint emg signals corresponding to 10 repetitions
of the same movements were recorded. Therefore channel subsets were selected for
ankle joint and then for the knee joint.

3.1.1.1 Ankle

Subjects were set on a chair with fully contact between foot and floor. Subjects performed
10 times movement with 1 DOF, namely plantarflexion and dorsiflexion of the ankle, fol-
lowing the cue provided on a screen (figure 3.1(a)). In the reference position (rest posi-
tion) of the ankle joint the right foot is in complete contact with floor. As shown in figure
3.1(a), the reference position correspond to the horizontal segments of the trapezoidal
cue with label ’rest’. Ascendant and descendant segments correspond to plantarflexion
and dorsiflexion phase, whereas in the hold phase the subject kept the position reached
in plantarflexion or dorsiflexion. Angles found in literature associated with rest, com-
plete dorsiflexion (first hold phase) and complete plantarflexion (second hold phase)
phase are respectively: 0, 30, -50 degree. Figure 3.2 shows movements described.

(a) (b) (c)

FIGURE 3.2: Ankle joint: (a) dorsiflexion and (b) rest position (c) plantarflexion
performed by subject 2.
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3.1.1.2 Knee

Subjects were set on a physiotherapy table, in this situation there were no contact be-
tween foot and floor. As with the ankle, 10 repetitions of movement with 1 DOF, namely
flexion and extension of the knee, were recorded. In the reference position, horizontal
segment with label ’rest’, the leg was vertically aligned with the table legs (see figure
3.3 (b)), whereas ascendant and descendant phase are related to flexion and extension
of the leg. At the end of these phases subject kept the the position reached in complete
flexion and extension (figure 3.1(b)). Angles found in literature associated with reference
position, leg extension (first hold phase) and leg flexion (second hold phase) phase are
respectively: 0, 90,-35 degree. Figure 3.3 shows movements described above.

(a) (b) (c)

FIGURE 3.3: Knee joint: (a) leg flexion, (b) rest position and (c) leg extension
performed by subject 4.

(a) (b)

FIGURE 3.4: Physiological movements for the (a) ankle and (b) knee joint.
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3.1.2 Second experimental procedure: two jonts

The aim of this experiment is to evaluate the feasibility of decoding angles signals using
a reduct number of electrodes without motion sensors. But to prove it, there is a need
of a comparison between angles estimated and real angles provided by a motion sensor.
For this reason angles signals were recorded from both joints simultaneously by electro-
goniometers, and they are reconstructed using by channel subsets found in the previous
experiment (section 3.9). In contrast to first experiment, emg signals were acquired from
both joints simultaneously.

The protocol realized in this part of the experiment allowed to appreciate and eval-
uate emg and angle signals from both joints together, indeed movements with 2 DoFs
have been performed. Number of task repetitions recorded was 10. Subjects were set on
a physiotherapy table, and an elastic bend has been applied to generate plantar flexion
movement coherently with the first experiment. Figure 3.11 shows the complete setup.
In this part of the experiment, pilots study pointed out the presence of an offset about
angular position relative to reference position (rest position) of both joints. Because legs
of subject were not perfectly aligned along vertical direction and although the presence
of the elastic bend, sole of right foot is not parallel to the floor. For these reason before
processing data in first experiment, these offsets are calculated for ankle and knee of
each subject and then eliminated. In this part of the study subjects were asked to follow
knee cue and then perform movements as in section 3.1.1.2, but furthermore they were
required to combine ankle movements of dorsiflexion and plantarflexion during plateau
phase of knee cue. In the ascendant e descendant segments of the trajectory, subjects
were free to move the ankle in the way that made them comfortable. As shown in figure
3.5 this second experiment is structured as follow:

• phase (1): ankle and knee joint are in rest position;

• phase (2): from (1) to (2) subject is required to perform extension of knee till reaching
maximum extension range (2), at this point subject performs dorsiflexion of the
ankle during all duration of this phase. Once finished, subject returns leg in rest
position;

• phase (3): leg is in rest position and subject performs plantarlexion of the ankle. At
the end of this phase, subject starts to perform knee flexion and ankle is keeping in
freely position till phase (4);

• phase (4): at the begin of this phase, subject reaches the maximum flexion of the
knee, and then he starts acting a dorsiflexion of the ankle;
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• phase (5): from the end of phase (4) subject moves leg and ankle joint to the rest
position.

In particular, focusing on phase (2), (3) and (4) and comparing knee and ankle frames
is possible to appreciate the movement of dorsiflexion and plantarflxion of the ankle
joint.

(a)

(b)

FIGURE 3.5: For a more intuitive visualization of this experiments two rows
of frames are reported in (a): first and second row contains frames about main
phases movement of knee and ankle, respectively. The same phase are localized
along generic target trajectory displayed in (b). Phase 1 and 5 shows both joints
in rest position, phase 2 extension of knee and dorisflexion of ankle, phase 3 rest
position of knee and plantarflexion of ankle and phase 4 shows knee flexion and

ankle dorsiflexion.
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3.2 Data collection and instrumentation

During the experiments monopolar emg signals were detected using high-density (HD)
electrodes grids of two different size (figure 3.6): 8x4 and 8x8 (Lisin, OT-Bioelettronica,
10 mm inter-electrode distance (IED)) and acquired using a multichannel amplifier for
bioelectrical signals (OT-Bioelettronica, Quattrocento, Turin; 16 bit, sampling frequency
2048 Hz). Patient reference connector has been connected to the right ankle of the sub-
ject using a wet strip. Twin-axis electrogoniometers (Biometrics Ltd) have been used to
record angle signals from the joints of interest: ankle and knee (figure3.6). Seeing as how
only one DOF along sagittal plane has been studied for each joint, only one axis of the
electrogoniometers has been used for each joint. Angles signals were sampled at 2048
Hz by general purpose bluetooth device (OT-Bioelettronica DuePro,Turin). Acquisition
devices described are shown in figure 3.7(a) and 3.7(b).

(a) (b) (c)

FIGURE 3.6: Figure shows electrodes grids (a) 8x4, (b) 8x8 and (c) electrogo-
niometers: SG150 for knee (on the right) and SG100 for the ankle (on the left).

Electrogoniometers are connected to DuePro device.

(a) (b)

FIGURE 3.7: (a) Quattrocento amplifier and (b) DueStation with DuePro device.
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Synchronization between emg and angular signals was performed online sending data
recorded from DuePro to two auxiliary inputs channels of Quattrocento via DuePro
Station, which works as bluetooth token. Graphical User Interface (GUI) realized in
MATLAB R©allowed to evaluate monopolar emg online and to start acquisition of both
signals. While subject performed a task following the trajectory on a screen, signals have
been controlled on laptop monitor: emg using GUI whereas angles by DuePro software.
This allowed to monitor completely the experiment and to stop it when problem occurs.
Figure 3.8 shows the complete acquisition system used in this study.

FIGURE 3.8: Acquisition system used in this study.
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3.3 First experimental procedure setup

3.3.1 Electrodes grids

In order to evaluate emg signals of the two joints separately, electrodes grids have been
applied in two different times: at first on muscles working on the ankle, and secondly on
the muscles of knee. In both cases muscles were located palpating the skin and with the
help of an anatomy atlas. During this, subjects were requested to keep the anatomical
neutral position and to perform particular movements to identify muscles of interest.
Anatomical reference has been reported in figure 3.9 (a) for more intuitive understanding
of the placement. Different size electrodes grids were mounted depending on muscles
joint:

• ankle joint: 8x4 grids have been used with tibialis anterior (TA), gastrocnemius me-
dialis (GM), gastrocnemius lateralis (GL) (figure 3.9). Choice of these muscles is
accounted for type of movements of ankle: dorsiflexion and plantarflexion. In-
deed, tibialis anterior is responsible for dorsiflexion and gastrocnemius medialis
and lateralis are appointed of plantarflexion. 96 was the electrodes number dedi-
cated to muscles of the ankle;

• knee joint: 8x4 grids were placed on rectus femoris (RF), whereas 8x8 on vastus
lateralis (VL), vastus medialis (VM) and biceps femoris (BF). Semitendinosus mus-
cle has been already recorded with biceps femoris due to the size of the grid used
(figure 3.9). Rectus femoris, vastus lateralis and medialis are responsible for knee
extension, whereas biceps femoris for knee flexion. 224 were the electrodes placed
on muscles of knee.

When recordings about ankle were finished, grids were placed on knee meanwhile grids
on ankle were disconnected from the acquisition system but not removed from the sub-
ject. This protocol has been preferred instead of placing all electrodes grids since the
beginning, this to make the subject more comfortable and to preserve the attachment of
the grids, particularly for the 8x8 which are heavier than 8x4.
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(a)

(b)

FIGURE 3.9: Anatomical image is reports in (a) to show position and shape of
muscles studied. Electrodes grids placement for ankle and knee joint are shown
in (b), anterior and posterior view are reported in both images. Grids were at-
tached on tibialis anterior, gastrocnemius medialis, gastrocnemius lateralis for
ankle joint and on vastus lateralis, rectus femoris, vastus medialis and biceps

femoris for knee joint.
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3.3.2 Electrogoniometers

Angle signals were not acquired in this first procedure, nevertheless before acquiring
signals on muscles of knee, the electrogoniometers were placed (but not connected) on
the right leg (lateral side) following the Biometrics guideline: they have to be positioned
with spring in fully elongation along anatomical axes of the segment of interest. Subjects
were set on a physiotherapy table for the second part of the first experiment and also for
the second. Therefore this choice made easier the setup avoiding the patient to stand
and sit after positioning all grids and cables. Subjects were asked to keep anatomical
neutral position to find anatomical landmarks: greater trochanter, upper tibia and malle-
olus. Two segments were drawn on subject skin, the first between greater trochanter
and upper tibia, the second between upper tibia and malleolus. As shown in figure 3.10
knee and ankle electrogoniometers were arranged along these two segments, respec-
tively. Double-sided tape foam and hypafix have been used to avoid detachment of the
electrogoniometers during the movements.

FIGURE 3.10: Knee first experimental procedure: electrogoniometers placement
for ankle and knee joint.
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3.4 Second experimental procedure setup

In this part of the experiment emg signals and angle signals were acquired from muscles
of the two joints of interest, for this reason electrodes grids of muscles of the ankle and
electrogoniometers were connected to the acquisition system. In the second procedure
there is no contact between foot and floor. This is in contrast to the first procedure where
tiptoe and heel were in full contact with floor during plantarflexion and dorsiflexion of
the ankle, respectively. This could entail a different motion range of the ankle in the first
and in the second procedure, mainly about plantarflexion. Hence an elastic bend has
been assembled and its length has been adjusted depending on the leg of the subject. It
had twofold purpose: the first was to force about 90 degree position between sole of the
foot and the leg, the second was to generate a resistant force to plantarflexion (see figure
3.11).

(a) (b)

FIGURE 3.11: Second experimental procedure: (a) both joints are in rest position
and (b) knee is the rest position and ankle performed plantarflexion.
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3.5 Data analysis

3.5.1 Preprocessing

Monopolar emg recorded were bandpass filtered using a 4th order Butterworth filter
between 20 Hz and 400 Hz. Powerline interference was removed by 50 Hz recursive fil-
ter. Since monopolar configuration has a higher signal-to-noise ratio (SNR) than bipolar
configuration [7], bipolar emg were derived along longitudinal axis of the muscle. Here-
after bad channels were located and removed from further analysis using a graphical
user interface realized in MATLAB R©. Bad channels found in each movement were put
together, then a complete list was removed from every movement. This to ensure that
number of electrodes was the same for all trials performed.

3.5.2 Feature extraction

In this study logarithm of emg signal variance (log-var) were extracted from all available
bipolar channels on non overlapping epochs of 250 ms [3]. Consequently, trajectory cues
of first experiment and angle signals recorded in second experiment were downsampled
to 4 Hz. The choice of this feature depends on the use of linear regression model, indeed
to obtain reasonable performance with this model the relationship between emg feature
and motion data should be as linear as possible. It has been confirmed in several studies
[5], [6] that log-var feature shows best linear characteristic with respect to joint angles. At
the end of these operation a feature matrix was obtained, whose columns were feature
samples, and rows were the number of bipolar electrodes available.

3.5.3 Regression model

Regressor predicts a continuous target variable from a continuous input features. To fit
the underlying problem it is important to choose a suitable complexity for the regression
model, because a too low complexity of the model not allows to approximate target
variables adequately, and a too high complexity increases the risk of overfitting to the
training data. Complexity should be high enough to model the underlying problem, for
this reason regularization techniques can be used.

Let X ∈ RCxS denote the feature matrix whose columns correspond to C dimensional
feature vectors that is the number of bipolar channels of a single joint for the s-th time
observation xs = (x1

s , ..., xC
s )

T and Y ∈ RDxS. D is the number of DoF considered, par-
ticularly D is one in the first experimental procedure for ankle and knee, whereas D is
two in the second experimental procedure where DoFs of ankle and knee were evaluated
simultaneously. A linear regression model has the form:
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Ŷ = WTX + w0 (1)

where Ŷ is the angle signals approximation of Y. Since angles were not recorded in the
first experiment, Y is the angle signal defined by user using angles values found in liter-
ature for ankle and knee joint (see section 3.1.1.1 and 3.1.1.2). W ∈ RCxD is the matrix of
regression coefficients wd = (w1

d, ..., wC
d )

T. w0 is the bias that has been included in W by
extending all Xs with the constant 1. Minimize the sum of squared residuals of the linear
regression model is the approach chosen to fit the linear model:

Ŵ = argmin ∑
d
(yd − wT

d X)(yd − wT
d X)T (2)

However a ridge regression model is used, hence a regularization term including the L2

norm of W in (2) has been added:

Ŵridge = argmin ∑
d
(yd − wT

d X)(yd − wT
d X)T + λ2 ∑

c
∑
d
‖wc

d‖2 (3)

the regularization parameter that controls the amount of shrinkage of the coefficients is
λ2 ≥ 0: as λ2 is increased, the coefficients are shrunk toward zero. The solution of the
ridge regression optimization problem can be obtained in a closed form:

W = (XXT + λ2 I)−1XYT (4)

where I is the identity matrix. Optimization of λ2 parameter is developed by a grid
search with a nested cross validation [5].

3.5.4 Nested cross validation

A ten-fold nested cross-validation was applied to evaluate the performances of recon-
structing trajectory angles. Data set was made of 10 movements and it was split into
10 folds: one movement in each fold, therefore leave-one-out cross-validation has been
performed. Lasso works at the outer level of the nested cross-validation selecting emg
channels then ridge regression model calculates weights for these subsets in the inner
level. In details nine folds were used as training data for selecting channel subsets, sev-
eral configurations for every subset were found. In the inner part the best configuration
was identified evaluating the performances of weights associated to that particular con-
figuration. From nine folds used in the outer level, eight were used as training data and
one as test set for calculating weights in the inner part. To this end, optimization of λ2

parameter was performed. The optimal parameter value λ2 in equation (4) has been
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determined through a grid search strategy [5]. This procedure was repeated until all
ten folds were tested once. The data set remaining in the outer part was used to iden-
tify the best one, evaluating the performances of the linear model. Since ten fold cross
validation was applied, ten are the possible configurations of weights for a specific sub-
set. Note that the movements used as training set or test set were provided randomly
concatenated to Lasso and regressor. As a performance metric r2 was used:

r2 = 1−
∑
i
(yi − fi)

2

∑
i
(yi − ȳ)

(5)

where yi and fi are the angles defined by user for the single DoF and angles estimated
by ridge regression method, respectively. The numerator is the residual sum of squares
and the denominator is the total sum of squared.
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3.6 Channel selection

The number of channels to select for the joint of knee and ankle was 196, 128, 96, 64, 32,
16, 8, 4 and 84, 64, 48, 32, 16, 8, 4, 3, respectively. The number of electrodes in every
subset has been chosen thinking about the setup realized in the first part for ankle and
knee joint. As described in the previous section, 10 fold nested cross validation was
applied to select subsets using Lasso, construct their linear regression models by ridge
regression method, and evaluate the performance of decoding angles using r2. This
procedure was applied for the joint of knee and ankle separately

3.6.1 Lasso

Lasso [15] is shrinkage method that differs from ridge regression because it provides a
sparse solution by using L1 penalty insted of L2 ridge [8]; the model is given as:

Ŵ lasso = argmin ∑
d
(yd − wT

d X)(yd − wT
d X)T + λ1 ∑

c
∑
d
‖wc

d‖1 (6)

where λ1 ≥ 0 is regularization parameter that controls the amount of sparsity of coeffi-
cients. The larger values of λ1 are, the smaller number of non zero regression coefficients
is led. This provides an effective subset selection method [15]. For this reason optimiza-
tion process of this parameter has been carrying out by empirical procedure. Therefore
channel selection can be performed eliminating channels that correspond to zero coeffi-
cients. Lasso coefficients are shrunk toward zero in order to find sparse solutions, as a
result Lasso coefficients are generally biased [2]. For this reason the purpose of Lasso is
only to select channel subsets: zero coefficients correspond to not informative channels,
therefore these channels are discarded, whereas non zero coefficients are considered in-
formative channels and hence selected. Ridge regression method has been used to find
and optimize weights only for the channels found by using Lasso [2]. Lasso function
implemented in MATLAB R©has been used to perform channels selection. If any values
of λ1 is supplied, this function calculates only the larger values of λ1 that not gives a
nonnull model, then the ratio between smallest to the largest value of this sequence and
the length of the vector of λ1 values. Experimentally has been noticed that this vector,
automatically chosen, is not sufficient to ensure the selection of any number of feature
(this case related to emg bipolar channels). For this reason a vector of λ1 values has been
defined by user and provided to this function. The vector contains a large number of
values logarithmically spaced. Moreover, algorithm was implemented in order to accept
only solutions containing exactly the number of channels required.
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3.7 Training data reduction

For clinical applications the training time should be as short as possible to reduce the
time to fit exoskeleton. To this end, the proposed method was evaluated varying num-
ber of data used as training and test set. On the whole four cross validation were imple-
mented:

1. leave-one-out cross-validation, data set is complete (10 movements);

2. leave-one-out cross validation, data set was reduced by 50%;

3. train set = 40% of data set complete, test set = 60% of data set complete;

4. train set = 40% of data set reduced by 50%, test set = 60% of data set reduce by 50%.

3.8 Robustness test

To investigate the robustness of the channel selection reducing training data, three tests
has been developed considering also the main procedure described in the section 3.5.4.

3.8.1 IED evaluation

Since a k-fold cross-validation is performed to select every subset, there are k possible
configurations for a specific subset. The way to identify the best one is described in 3.5.4.
Channels selected in all these configurations for the i-sh subset are defined in common.
There is a need to locate the channels not in common, because in many cases one elec-
trode is in all configurations except one. This is a way to verify if not in common chan-
nels of different configurations of the same subset are close to each other. For this reason,
IED was calculated among channels not in common belonging different configurations
for the same subset. This evaluation has been performed on each single muscle.

3.8.2 Subsets weight homogeneity

The best weight matrix of every subset was obtained in the inner part of cross validation
through an average process of all matrix weight corresponding to the optimal value of
λ2 found. Thus, the variation of the weights associated to same channels for every subset
has been examined.
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3.8.3 Overlap ratio

To investigate the feasibility of reducing data training, the overlap coefficient [16] has
been calculated to measure for every subset the similarity between the electrodes se-
lected operating the four different data reduction and to verify how many channels are
in common between each subset and its previous:

overlap(X, Y) =
| X ∩Y |

min(| X |, | Y |) (7)

where X and Y are the two sets took in exam. The coefficient is calculated dividing the
size of the intersection by the smaller size of the two sets. If one of the two set is a subset
of the other, the overlap coefficient value is 1.
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3.9 Angles decoding

In the second experiment, to reconstruct angles signals linear regression model has been
used as in section 3.5.3, indeed the model is the same described in (1) but with some
differences: X ∈ RCxS is the feature matrix where C is the number of all available bipolar
channels calculated for ankle (84) and knee (196) for the s-th time observation. X is
made of concatenating ankle feature matrix with knee feature matrix along columns. Ŷ
denote the angles estimation of Y ∈ RDxS, D is two because we are evaluating two DoFs
simultaneously. Despite the first experiment, in the second angles signals from both
joints have been recorded by electrogoniometers. W ∈ RCxD is the matrix of regression
coefficients of both joint, the first and the second column contains matrix weight of the
ankle and knee respectively. Since eight subsets were defined for each joint (see table
3.1), complete matrix of weights obtained were eight. A complete matrix of weights has
the form:

W =



w1 0
...

...
w84 0
0 w85
...

...
0 w280


(8)

Emg acquired in second experiment followed the preprocessing described in section
3.5.1 and 3.5.2 except for bad channels. To avoid mismatch of dimension between W
and X, bad channels eliminated in the first experiment were supposed to be the same
also in this second experiment, thus they were reinserted in W but their weights were
force to be zero.

Channel subsets

Ankle 196 128 96 64 32 16 8 4
Knee 84 64 48 32 16 8 4 3

TABLE 3.1: Channel subsets defined for ankle and knee joint.
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Chapter 4

Results

4.1 First experiment results

4.1.1 Impact of reduced training data

Figure 4.1 shows the mean r2 value of all channel subsets found in each cross validation
implemented. A comparison between results obtained from subjects 1 and 3 has been
done.

(a) (b)

(c) (d)

FIGURE 4.1: Performances of all subsets of channels selected for (a) ankle and (b)
knee joint of subject 1 and for (c) ankle (d) knee joint of subject 3. The vertical bars

represent the standard deviation of the r2 estimated for every channel subsets.
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It can be seen as the number of electrodes is reduced the performances had the same
trend for both joints: they were constant for the first four subsets and then they decreased
considerably when electrodes were reduced by 60% and 80% for ankle and knee, respec-
tively. This occurs regardless of the number of movements used in the train and test
set, even if the lowest trend is obtained when only two trials were used to train (purple
line in figure 4.1(c)). In the first experiment, but also in second, performances of chan-
nel subsets found for knee are generally higher than those found for ankle. Moreover,
from these figures appears that performances obtained with 10 trials LOOCV and 5 trials
LOOCV are comparable in almost all subset configurations, this behavior is the same in
all subjects. For this reason, results from only these two types of cross validation will
be analyzed in the following sections. An intuitive example of the performances esti-
mated above is provided in figure 4.2 (a) for the ankle and in figure 4.2 (b) for knee. The
best channels configuration for each subset is used to estimate angle signals of two joints
separately. Note that in the first experiment angles for both joints were not recorded but
provided by a target trajectory on a screen, indeed the regressor output (the trapezoidal
cue) is the same for all 10 movements of the subject. The green line in 4.2 represents the
trajectory followed by subjects, and the dashed lines coloured in red and blue represent
the estimated angles using 10 trials LOOCV and 5 trials LOOCV, respectively. In each
graph blue line superimposes the red one, there is evidence that high accuracy perfor-
mances were achieved either using 10 trial LOOCV or 5 trials LOOCV. It means that
for this first part of the protocol, 5 trial are enough to obtain satisfying performances
in angles decoding. In each graphic, r2 values displayed for both methods are compa-
rable high, but whereas the angles decoded for knee are very close to trapezoidal cue,
angles for the ankle shows some inaccuracies when number of electrodes is drastically
reduced. Especially during dorsiflexion (see 4.2 (a) between about second 5 and 15) and
plantarflexion (see 4.2 (a) between about second 18 and 28). It is hard to follow the green
cue in the ascending and descending phase, this can be seen particularly in configuration
of 3-channels or 4-channels. Moreover, once subjects got the maximum range of plan-
tarflexion (between 20 and 25 second), probably they decreased the contraction instead
keeping it constant for the duration of this hold phase. This can be seen in 3-channels
configuration where blue and red line start to rise before second 25.
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(a)

(b)

FIGURE 4.2: An example of (a) ankle and (b) knee angles reconstruction respect
to the number of selected channels. Green line is the trajectory target, the red
and blue dashed line represent angles estimated related to 10 trials LOOCV and

5 trials LOOCV. Data derived from trial 8 performed by subject 3.
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4.1.2 Robustness test

4.1.2.1 Consistency of electrode selection

In this analysis minimum distance between channels not in common among different
configurations of the same subset was evaluated. As shown in figure 4.1, mean r2 values
are high and the confidence interval are small, this figures out that for both joints al-
most all possible configurations for a specific subset are similar but they differ by some
electrodes. Figure 4.3 gives information about the percentage of channels in common
among different configuration of the same subset averaged on all subsets, this has been
evaluated for each four different cross validation methods. The behavior is the same for
both joints: the more trials are used the higher the percentage of channels in common
among configurations of same subset is. Moreover 4.3 (a) shows a little difference be-
tween 10 trial LOOCV and 5 trial LOOCV whereas for the knee, in 4.3 (b), this difference
is significant, probably this is due to the greater number of electrodes used for knee than
ankle.

(a) (b)

FIGURE 4.3: Percentage of channels in common among different configurations
of same subset averaged on all subsets of a specific cross validation method. Data

displayed are related to analysis on (a) ankle and (b) knee joint of subject 3.

In order to verify if electrodes not in common among configurations of same subset were
however located in the same area, IED evaluation has been performed on every muscle
separately. Results related to the muscles of the ankle and knee are displayed in Fig-
ure 4.4 and 4.5, respectively. The x-axis shows the interelectrode distance available for
a specific muscle, namely for a specific electrodes grids. Note that the electrodes grids
used were made of 32 and 64 electrodes, but as described in section 3.5.1 bipolar sig-
nals have been used. For this reason, considering bipolar emg signals, electrodes matrix
consisted of 28 (7x4) and 56 (8x7) electrodes. Hence the maximum IED available for the
two grids described before was 7 and 9, respectively. Gray labels were applied to better
identify each subset of channels. On x-axis there is also IED equal zero, this because
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experimentally has been noticed that some of these electrodes not in common belong to
most of the configurations available for a subset except few of them. Therefore when all
channels not in common of a subset were evaluated, if two configuration had same elec-
trodes their IED in that case counted zero. In case of complete number of electrodes this
evaluation has not been performed. For example, the graphics related to tibialis anterior
with subset of 64-channels, in the upper part of figure 4.4 (a), shows that about 25% of all
electrodes of this muscle are electrodes not in common between different configurations
for this subset of 64-channels. In details slightly above 10% of these electrodes not in
common has IED equal 0, less than 10% has IED equal 1 and 2. As the number of trials is
reduced, minimum IED between electrodes not in common is increased slightly, an intu-
itive example is provided by values related to tibialis anterior (96-channels subset) and
vastus lateralis (128-channels subset) shown in figure 4.4 (b) and 4.5 (b), respectively.
Nevertheless, this phenomenon seems affects quantitatively more higher channel sub-
sets than the lower, particularly first four subsets of each joint. This can be appreciated
comparing results from 10 trials LOOCV and 5 trials LOOCV reported for ankle and
knee joint in figure 4.4 and 4.5 respectively. Moreover, what displayed in these figures
occurs for every subject of this study: the majority of electrodes not in common for ankle
muscles are related to a IED range between 0 and 2, whereas in the case of knee this
range is wider: from IED equal 0 up to IED equal 3. Probably it occurs because of larger
dimension of the electrodes grids placed on muscles of knee. Regardless this difference
between joints, both methods have proved to be suitable providing robust results: IED
between electrodes not in common for a specific subset is contained, it means that also
these electrodes are chosen near the same muscular region of interest.
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(a)

(b)

FIGURE 4.4: (a) 10 trials LOOCV and (b) 5 trials LOOCV data for the eval-
uation of distance between channels not in common among all available config-
urations for every subset. The analysis was performed on each muscle of ankle

separately. Data were derived from subject 3.
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(a)

(b)

FIGURE 4.5: (a) 10 trials LOOCV and (b) 5 trials LOOCV data for the eval-
uation of distance between channels not in common among all available config-
urations for every subset. The analysis was performed on each muscle of knee

separately. Data were derived from subject 3.
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4.1.2.2 Subsets weight homogeneity

In the previous sections, channels of different configurations available for the same sub-
set were analyzed. Indeed, it has been proved that all possible configurations of chan-
nels selected for a specific subset have the majority of electrodes in common, and also
those not in common are localized rather close to each other. But same channels in more
configurations means not necessarily same weights associated to them. This because
as explained in section 3.5.4, lasso selected channels and then regression was used to
estimate their weights. For example in 10 trials LOOCV method, each best channels con-
figuration of each subset has 9 possible configurations of weights. One of these weight
configurations is the best for the subset selected by lasso. To verify the robustness of this
approach, variation of all weight configurations associated to best channel selection for
every subset has been examined. Figure 4.6 (a) shows result for ankle and Figure 4.6
(b) for knee. Moreover, for each joint an additional comparison between different cross
validation methods has been done.

All possible weights for each channel of a subset have been normalized to the maxi-
mum weight found, this value has been chosen as reference in order to obtain a distribu-
tion of percentage between 0% and 100%. The median gives overall information on how
weights variate their values with respect the normalization value. But regardless these
values, upper and lower interquartile gives the most meaningful information. Indeed, it
can be appreciated that variation of weights are generally around 30% in first 5 subsets
of each joints, regardless of the method. On the other hand, it can be seen that wider
variations are achieved for last three subset of each joint, probably due to the limited
number of channels. It is interesting to note that, number of trials used to obtain data
seems not affect particularly variation of weights, indeed comparing subsets of different
methods figures out that distance of lower and upper interquartile are almost the same
in each method, except in case of lower number of electrodes.
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(a)

(b)

FIGURE 4.6: Graphics show weights variation of all available weights associated
to channels of best configuration selected for each subset. (a) Ankle and (b) knee
data were taken from subject 3 analysis. To evaluate how number of trials affected
weights variation, this analysis has been conducted for the four different cross

validation.



Chapter 4. Results 33

4.1.2.3 Overlap ratio

Overlap ratio illustrated in figure 4.7 (a) for ankle and 4.7 (b) for knee, shows intersec-
tion of best channels configurations found for each subset using the 4 different cross
validation methods. It is interesting to see that overlap ratio decreases significantly as
the number of electrodes is decreased across 4 methods. Instead, 4.7 (c) and (d) display
intersection of best channels configurations found for each subset between only 2 cross
validation method: 10 trials LOOCV and 5 trials LOOCV. From these graphics it figures
out that the trials reduction impacts in a significant way the performances of selection
regardless number of channels for each subset.

(a) (b)

(c) (d)

FIGURE 4.7: (a), (b) Overlap ratio of best channel configurations for each subset
among 4 different types of cross validation. (c), (d) Overlap ratio of best channel
configurations for each subset between 10 trials LOOCV and 5 trials LOOCV.

(a), (c) Ankle and (b), (d) knee data derived from subject 3.

As touched upon, main methods took into account were 10 trials LOOCV and 5 trials
LOOCV, hence overlap ratio has been calculated for these methods. In details, the inter-
section between each subset and its previous subsets has been evaluated. This analysis
has the purpose to verify if there are some electrodes that contribute in all subsets, or
almost all. Figure 4.8 and 4.9 provide an intuitive illustration of the results. In these
figures, graphics related to the subset with the maximum number of electrode are empty
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because this is the complete configuration. Title of single graphic indicate the current
subset and on x-axis there are the previous subsets, on y-axis there is overlap ratio val-
ues explained between 0 and 1. For example, it can be seen that in figure 4.8 (a), partic-
ularly about subset made of 3-channels, all 3 electrodes chosen by algorithm were also
chosen in all previous subsets, except for subset with 16-electrodes where only some
of them where selected. About ankle results, overlap ratio has generally high perfor-
mances, regardless of the number of trials halved in 5 trails LOOCV. For what concern
knee, performances are lower in more subsets with few electrodes, moreover when trials
were halved. As shown in figure 4.9 (b) overlap ratio in lower subsets is higher than in
8 or 4-channels subset of 4.9 (a) where trials are 10. Probably less number of trials pro-
vides a more precise channels selection. Unfortunately, performances related to 5 trials
LOOCV depends on the trials selected. As mentioned, in this study when there is a need
to reduce number of original trails selecting some of them, the selection has been ran-
domly performed. Overall, for both joints, high performances results has been obtained
for this test, this proved the robustness of the selection method applied.
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(a)

(b)

FIGURE 4.8: Ankle joint: overlap ratio used to evaluate intersection of best chan-
nel configurations between each subset and the previous. (a) 10 trials LOOCV

and (b) 5 trials LOOCV data are derived from subject 3.
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(a)

(b)

FIGURE 4.9: Knee joint: overlap ratio used to evaluate intersection of best chan-
nel configurations between each subset and the previous. (a) 10 trials LOOCV

and (b) 5 trials LOOCV data are derived from subject 3.



Chapter 4. Results 37

4.1.3 Channel configurations obtained by Lasso

Figure 4.10 and figure 4.11 show an example of channel configurations of each DoFs
(ankle and knee respectively) selected by Lasso and their coefficient weights related to
a specific subsets. Channels chosen by Lasso are identified with symbol ’+’, whereas
’4’ is used to identify bad channels. Each colormap is related to a single muscle of the
joint studied, all colormaps of each subset are equipped with a colorbar which shows
intensity range of weights. Colormaps have the same dimension of bipolar channels
grids, 7x4 for tibialis anterior, gastrocnemius medialis, gastrocnemius lateralis and rectus
femoris, and 7x8 for vastus lateralis, vastus medialis and biceps femoris. Hence each
colored box in a colormap represents a bipolar channels and its weight during the tasks.
Complete configurations of both joints show which part of every single muscle is more
informative during all duration of the task. As discussed previously, weights can be
positive or negative, therefore most informative areas of each muscle are characterized
by weights with high positive or negative coefficients. This pattern seems to be coherent
also in the subsets with a lower number of channels. Looking at first four subsets of
each joints, can be seen that each muscle has channels with weights both positive and
negative. But examining the other 4 subsets of each joint, as the number of electrodes is
decreased weights on each muscle became almost only positive or negative. In details
muscular activation is described as follow:

• ankle joint: tibialis anterior is responsible for dorsiflexion, instead gastrocnemius
medialis and lateralis are responsible for plantarflexion;

• knee joint: rectus femoris, vastus lateralis and medialis are dedicated to extension,
whereas biceps femoris to flexion.

In the last 4 subsets of each joint, positive weights are principally on tibialis anterior,
vastus lateralis and medials, and rectus femoris whereas negative weights are on gas-
trocnemius medialis lateralis and biceps femoris. This behavior is observed in every
subjects of this study, except one that shows weights of different sign in the same mus-
cle. Could be a case of cocontraction, but in this study this aspect was not examine in
deep.

Emg signals and the weight associated to them were analyzed, 3-channels and 4-
channels subset of ankle and knee joint were examine in details.
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FIGURE 4.10: Colormaps show channels distribution and their coefficient
strengths related to the number of channels selected for ankle joint. Matrix of
regression coefficients used to illustrate coefficient weights derived from subject

3(10 trials LOOCV).
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FIGURE 4.11: Colormaps show channels distribution and their coefficient
strengths related to the number of channels selected for ankle joint. Observing
x-axis of the colormaps, it is possible to recognize 7x4 grid (rectus femoris) and
7x8 grids (vastus lateralis, medialis and biceps femoris). Matrix of regression
coefficients used to illustrate coefficient weights derived from subject 3 (10 trials

LOOCV).
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4.1.3.1 Ankle channel configuration analysis

As example, 3-channels configuration for the ankle is reported in figure 4.12 (b). Col-
ormaps are oriented same way as electrodes grids are placed in figure 4.12 (a). It means
that row 1, on y-axis, represents the most proximal part of the grid and consequently
7 represents the most distal portion. About x-axis, column 1 and 4 are the lateral and
medial part of the grids. Note that in figure 4.12 (a) are displayed monopolar electrodes
grids, whereas colormaps referred to bipolar signals. As discuss in advance, each coef-
ficient weight is related to a bipolar channels, for this reason bipolar emg signals were
provided in figure 4.13. In order to provide a better visualization, signals were normal-
ized to the maximum value of each muscle grid, bad channels were discarded from this
evaluation. Normalization value are shown in the title of 4.13 (a), (b), (c). On x-axis there
is time line from the begin to end of the task, and on y-axis there are biological signals
separated by offset. Red emg signals are the channels selected by Lasso corresponding to
weights represented by ’+’ in the colormap. Bad channels identified in colormaps using
the symbol ’4’ are displayed as horizontal null line. Graphics that include signals are
made of as many columns as the column of the grids. Each column contains 7 bipolar
emg signal, as 7 are the row of the grids of bipolar emg.

For what concern signals, examining tibialis anterior emg in figure 4.13 (a) it can be
appreciated that each burst of activation is well defined in its proper activation inter-
val between second 8 and 15. Activity was not recorded outside this activation interval,
during which muscle is responsible for dorsiflexion. Quite different is the case of gas-
trocnemius medialis and lateralis, indeed figure 4.13 (b) and (c) show muscles activation
between second 18 till the end, during plantarflexion, but it is possible to notice a lower
coactivation in the same activation interval of tibialis anterior. This phenomenon is re-
lated not only to subject 3 but also to the others.
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(a) (b)

FIGURE 4.12: (b) Colormaps show channels selected for 3-channels configura-
tion and their associated weights. Electrodes grids placement on ankle muscles
has been reported in (a) to explain colormaps orientation. The order of channels
displayed in the colormaps is the same as looking grids applied to the skin of the

subject. Data are derived from subject 3.

(a)
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(b)

(c)

FIGURE 4.13: Emg bipolar signals of (a) tibialis anterior, (b) gastrocnemius me-
dialis and (c) gastrocnemius lateralis of subject 3 trial 4. Channels selected by
Lasso are colored by red and bad channels were substituted by horizontal black

line.
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4.1.3.2 Knee channel configuration analysis

4-channels configuration has been taken as example for knee joint. Observing figure
4.14 (b) it is possible to note that 4 channels selected by Lasso belong to vastus lateralis
and biceps femoris, in details dark blue weight is related to semitendinosus due to its
position in the grid. No electrodes has been chosen on rectus femoris and vastus lat-
eralis. This choice recurs for the other four subjects configuration of 4-channels subset:
no channels on rectus femoris, and only one presents one channel on vastus medialis.
This means that probably there is a redundancy of information as far as concern vastus
lateralis and medialis, whereas perhaps rectus femoris was discarded because of its low
activity. Indeed, in figure 4.15 (a) it is possible to distinguish bursts of activation of rectus
femoris from remaining trace of signal, but the activity level of the burst is not so differ-
ent from the level of the complete trace. This could be done to thicker adipose tissue on
this muscle, this could explain the attenuation of the activity recorded for this muscle.
For what concern vastus lateralis seems that this grids has been placed too distal respect
muscle position, indeed last 2 channels of each column in figure 4.15 (b) show a lower
activation.

During this second experiment many trouble has been encountered with cables con-
tact. As a results of this contact, several spikes appeared on emg trace, this case spike is
not on the burst of interest but is not always so. This could be a problem for the algo-
rithm, therefore bipolar channels displaying high spikes are considered as bad channels.
As far as concern vastus medialis, it shows a lower activity respect to vastus lateralis,
particularly concentrated in medial zone. As discuss in advance, biceps femoris is re-
sponsible for leg flexion, but in second experiment of this subject, channels selected in
this grid seem belonging to semitendinosus. Green rectangle is used in 4.15 (c) to distin-
guish activation of semitensinosus from biceps femoris. The presence of semitendinosus
is due to the large dimension of the electrode grid (8x8 monopolar emg). Biceps femoris
shows activation between second 18 till the end of the task, but also between about sec-
ond 5 and 15. In this interval of time this muscle should not work during extension,
probably it is due to cocontraction.

In conclusion, as presented through figure 4.12 (b) and 4.14 (b) not all muscles are
necessary to decode movement, in details for ankle are enough 2 out of 3 and for knee 2
out of 4 muscles. This is what happen for subject 3, but also for the other subjects except
one. In this last case, for 3 channels configuration all muscles of ankle are considered (1
channels on every muscle) even if for knee is confirmed the previous situation.
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(a) (b)

FIGURE 4.14: (b) Colormaps show channels selected for 4-channels configura-
tion and their associated weights. Electrodes grids placement on knee muscles
has been reported in (a) to explain colormaps orientation. The order of channels
displayed in the colormaps is the same as looking grids applied to the skin of the

subject. Data are derived from subject 3.

(a)

(b)
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(c)

(d)

FIGURE 4.15: Emg bipolar signals of (a) rectus femoris, (b) vastus lateralis, (c)
vastus medialis and (d) biceps femoris of subject 3 trial 4. Channels selected by
Lasso are colored by red and bad channels were substituted by horizontal black

line.
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4.2 Second experiment results: angle reconstruction

In this section, angles signals reconstructed from both joints of two subjects are illus-
trated. A comparison of reconstruction obtained using 10 trial LOOCV method and 5
trials LOOCV has been proposed. Each graphic has on x-axis the time duration of the
experiment and on y-axis the angular range. Superior and inferior limits displayed on
y-axis depend on the recording provided by electrogoniometers. Same extreme values
of each joint were chosen by literature for all subjects in the first experiment, instead in
the second experiment they were derived from sensor recording affected with offset, as
described in 3.1.2, and misplacements of the sensors. For these reasons, angular ranges
of each joint are slightly different among all subjects and also from values used in first
part of the study. For example in the first experiment angular range of ankle was be-
tween 30 and -50 degree, in the graphics reported for subject 3 in figure 4.17 and for
subject 5 in figure 4.16 angular range are between 28 and -60 degree and between 33 and
-66 degree, respectively. Above each graphic the number of channels selected in that
specific configuration and the r2 values representing the reconstruction accuracy are re-
ported. In order to verify the angles reconstructions, angles signals related to same trial
were estimated using all subsets available. Each graphic shows angle signals recorded
by electrogoniometers (green line) and estimated angles signals (dashed black line). An
additional red line is drawn, this line represents the estimated angles filtered with a
moving average filter. The decision to filter the estimation arrived from a first analysis
of the signals reconstructed, the filtering is done in order to obtain smoother control sig-
nals. Indeed, the decoded angles signals are almost smooth but in some portion they can
manifest very high spike that have nothing to do with angular trend. These spikes are
due to contact between cables during the second part of experiment as shown in figure
4.15 (b) about vastus lateralis. Referring to figure 4.18 (a) and (b) the disturb localized at
about second 25 is attenuated by filtering (see difference between dashed black line and
red line). Moreover, the presence of this spike decreased as the number of electrodes is
reduced. Not only, but also for this reason the reconstruction performances expressed
by r2 are higher for subsets with a lower number of channels respect to subsets with an
enormous number of electrodes (see 4-channels subset and complete configuration in
figure 4.18 (a) and (b)). Probably because disturbs are located on specific channels that
are discarded across channel subsets selection.
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4.2.1 Ankle

Subject 5 shows constant values of performances about decoding ankle angles (figure
4.16 (a) and (b)), on the whole are lower than those of subject 3. Reducing in number of
electrodes implies not necessarily a monotonic increase or decrease in performances, as
demonstrated in figure 4.16 (a) with 16-channels configuration. r2 values are particularly
below on average, best differences can be appreciated in second half of the task since
second 15. This occurs probably because weights associated to one or more channels are
not suitable, or rather weights found in first experiment for this channels are not suitable
for this task of second experiment. In particular, this situation can occur about ankle
joint, because condition in which task has been performed in first and second experiment
are quite different. Moreover, about 8, 4 and 3-channels subsets can see that estimated
angles are not able to follow closely signals provided by sensor also in first part of the
task. The causes are potentially two: a small number of channels is not enough to decode
angles of the ankle of this subject or weights associated to them are not suitable.

Different situation can be appreciated analyzing angles reconstructions for ankle joint
of subject 3, in figure 4.17 (a) and (b). It figures out that signals were estimated better
with a restricted number of electrodes, as indicated by r2 values. In contrast with data
of the previous subject, limited number of channels is enough to follow almost closely
angular trend provided by sensor. This behavior matched for both method tested: 10
trials LOOCV and 5 trials LOOCV. Regardless the number of trials is reduced by half,
for this subject performances are comparable between these two methods. It means that
angles decoding can be obtained with a reduct number of trials.
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(a)

(b)

FIGURE 4.16: Green line represents ankle signal provided by electrogoniometer,
dashed black line is the angle estimation and red line is angle estimation filtered
using moving average filter. Each graphic shows reconstruction for trial 3 of
subject 5 with each subset. Data from 10 trials LOOCV were used in (a) and 5

trials LOOCV in (b).
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(a)

(b)

FIGURE 4.17: Green line represents ankle signal provided by electrogoniometer,
dashed black line is the angle estimation and red line is angle estimation filtered
using moving average filter. Each graphic shows reconstruction for trial 4 of
subject 3 with each subset. Data from 10 trials LOOCV were used in (a) and 5

trials LOOCV in (b).



Chapter 4. Results 50

4.2.2 Knee

About data of knee joint of subject 5 can be seen that performances in reconstruction are
high, moreover they increased as number of electrodes is decreased. Probably, redun-
dancy information complicate decoding phase, sometimes decreasing the accuracy per-
formances. As touched upon at the beginning of the section, the presence of the spike
is attenuated reducing number of channels and optimizing the weights. Indeed, for
method applied in figure 4.18 (a) has been verified that channels selected in 4-channels
subset are included in 8-channels configuration but they are complete different to chan-
nels chosen in 16-channels configuration. It means that the presence of that spike is
related to a specific channels affected by contact between cables during task.

For what concern knee joint of subject 3 (figure 4.19 (a) and (b)), performances kept
constant even if number of channels is reduced, this has value for both methods. There
is no differences between results obtained for knee joint with two different number of
trials. For both methods, angles reconstructed can follow angles provided by sensor
with great accuracy, regardless number of channels involved.

As result of discussion through figure 4.16-4.19,can be appreciated that generally
angles signals decoded for ankle have lower accuracy performances than those recon-
structed for knee joint. This occurs regardless subject and method, but what figures out
is that same performances in reconstruction of angles for both joints can be achieved
using only 5 trials, this allows to halve the time of the experiment.
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(a)

(b)

FIGURE 4.18: Green line represents knee signal provided by electrogoniometer,
dashed black line is the angle estimation and red line is angle estimation filtered
using moving average filter. Each graphic shows reconstruction for trial 3 of
subject 5 with each subset. Data from 10 trials LOOCV were used in (a) and 5

trials LOOCV in (b).
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(a)

(b)

FIGURE 4.19: Green line represents knee signal provided by electrogoniometer,
dashed black line is the angle estimation and red line is angle estimation filtered
using moving average filter. Each graphic shows reconstruction for trial 4 of
subject 3 with each subset. Data from 10 trials LOOCV were used in (a) and 5

trials LOOCV in (b).
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4.2.3 Statistical analysis

Statistical analysis has been conducted to check what factors influenced the channel se-
lection method proposed in this study. For this reason three-way ANOVA has been
performed to evaluate the dependence of algorithm performances from 3 main factors:
subjects, channel subsets, and joint of interest (ankle and knee). Channel subsets means
the eight subsets defined for ankle and knee joint (table 3.1). To evaluate performances
r2 and rmse values has been used in two separated analysis. In details, data set used
for every subject depends on type of cross validation used, for this reason this evalua-
tion has been performed for 10 trials LOOCV and 5 trials LOOCV hence the data set of
movements, for each subject, was made of 10 and 5 movements, respectively. For this
reason three-way ANOVA was performed 4 times. In table 4.1 it can be observed that
same results were obtained regardless the reduced number of trials. Channel selection
method proposed in this study is strongly influenced by subjects and joints, but in the
same way it is strongly independent by number of channels that defined a subset. In
other words, this approach is patient specific, or rather depends on physiological and
anatomical characteristics of the subject. It means that, unfortunately, this approach can
be not generalized for every patient: channels selected depend on subject, but it is not
influenced by number of channels request.

10 Trials LOOCV 5 Trials LOOCV
r2 rmse r2 rmse

subjects p<0.05 p<0.05 p<0.05 p<0.05
subsets NS NS NS NS
joints p<0.05 p<0.05 p<0.05 p<0.05

TABLE 4.1: Table reports p values related to four analysis evaluated with three-
way ANOVA: first two columns are related to performances metric extracted by
10 trials LOOCV, instead the last two columns are related to 5 trials LOOCV and
its performances results. Factor subjects depends on the cross validation: number
of patients are always five, but number of trials associated to them depends on

choice of method.



54

Chapter 5

Conclusion

In this study channel selection method was examined to prove its robustness for the ex-
traction of a lower limb exoskeleton control signal based on regression technique. The
proposed approach allows to determine optimal position of a specific number of elec-
trodes with high density sEMG recording to provide angular control signals. For this
reason, the feasibility to reconstruct angle signals using a small number of electrodes
has been demonstrated. In particular has been proved that this approach is suitable
for able-body healthy subjects also without using angle sensors. Generally, these type
of sensor request time to be positioned accurately and to be calibrated for each specific
subject. Moreover, since most of exoskeleton structure are bulky, the placement of many
electrodes grids and external sensors could be not suitable.

The drawback of this approach is that it depends on the movements performed in
first experiment: angular range of task in second experiment movements have to be
included in angular range of those of first experiment. Indeed, it is important to highlight
that trapezoidal cues of first experiment used to perform effective channel selection were
created for healthy able-bodied patient. This way these trajectories need to be conformed
to the subject physiological characteristics in case of a pathological patient. In particular,
angular range (maximum and minimum values) for each joint needs to be measured
manually on subject and then trajectories can be modeled on his proper angular range.
This because is fundamental that subject follows the cue as best he can in order to achieve
a valid channels selection.

In second experiment performances related to knee joint were higher than those ob-
tained for ankle joint. Probably, because movements for first and second experiment
were more similar for knee than for the ankle. Indeed, for future experiments this is an
aspect to improve in order to enhance performances on ankle. Considering all robust-
ness test results and reconstruction performances, it is possible to use this approach with
a reduct number of trial to select most informative channels, this aspect allows to save
time in term of clinical use.
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In terms of clinical use, computational time to select channels and find their weights
was taken into account. Algorithm employed less than ten minutes to select a channel
subset for knee, and less than 5 minutes for ankle. Time difference between to joints
depends on number of channels placed. On the other hand, many challenges needed
to be overcome before experimental setup described in this study became suitable for
a clinical use. Encumbrance and interferences provided by cables are the main prob-
lems which can be resolve, for example, with bluetooth technologies. Also, experimental
setup requires much time that has to be reduced in order to make this protocol suitable
for clinical application.

In this preliminary study, the proposed approach has been evaluated only offline,
moreover angles and emg signals information were evaluated, but to improve this ap-
proach muscle force estimation has to be take into account. In this work, subjects per-
formed the experiments without wearing exoskeleton, hence in a future experiment the
feasibility of this protocol has to be tested in a complete experiment where subject wear
exoskeleton frame. Moreover because different levels of force can be recorded from mus-
cles to reach same angles position. How to combined angle and force information is one
of the main aspect to examine in future works.

The aim behind this approach was to individuate the most informative areas of mus-
cular region and hence to reduce number of channels that best allow to generate a robust
angular control signal. In terms of clinical use, this protocol has been designed to be ap-
plied once in a rehabilitation process. Successively, a limited number of electrodes will
be applied only in positions of interest found for every muscle in the first application.
In conclusion, analysis results of this study showed that generally reconstruction per-
formances obtain with complete configurations of electrodes can be achieved and also
overcame with a lower number of channels, most of cases with the smallest subset of
channels. Hence, this work provides evidence of feasibility to extract a robust control
signal for a proportional myoelectric control with a limited number of electrodes located
on the most informative regions of muscle.
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