
POLITECNICO DI TORINO
Department of control and computer

engineering

Master Degree Thesis
in

Computer Engineering

A Secure Password Wallet
based on the SEcube™

framework

Supervisors
Prof. Paolo Ernesto Prinetto
Dr. Giuseppe Airò Farulla

Candidates
Walter Gallego Gómez

matricola: s225140

July 2018

This work is subject to the Creative Commons Licence

To my mom
† In memory of my father

iii

Summary
Nowadays, having a large quantity of digital passwords is the norm, and as
their number increases, it becomes impossible to memorize all of them. This
is specially true considering one should adopt strong passwords which are in
general very long and complex, and therefore hard to remember. This has led
users to rely on software applications to manage their passwords, the most
common cases being web browsers and password wallets. The drawback of
this approach is that security may be compromised, since all the passwords
are stored in the same place and an attacker could gain access to them.
For users particularly interested in ensuring the security of their systems,
this software based approach may not be acceptable. This work presents an
alternative solution based on the SEcube™ framework that guarantees the
security of the stored passwords.

The SEcube™ (Secure Environment cube) framework consist of an open
source security-oriented hardware platform designed by the Blu5 Group, and
a set of open source software libraries developed by European research institu-
tions. The core of the framework is the SEcube™ chip, which integrates three
key security elements in a single package: A fast floating-point Cortex-M4
CPU, a high-performance FPGA and an EAL5+ certified Security Controller
(Smart Card). These elements, in conjunction with a set of custom software
libraries allow developers to implement highly reliable security applications.

The desktop application developed in this work, named SEcubeWallet,
was written in C/C++ and Qt. It manages passwords using secureSQlite,
one of the SEcube™ libraries, which wraps the functionalities of the SQlite
standard to create SEcube™ secured databases. In short, the data of interest
is encrypted using the SEcube™ device, and can only be decrypted if the
device is connected and the user authenticates using a master password.
As the core operations are performed by the device, not by the host, the
encryption/decryption can be done in any computer where an appropriate
version of Qt is installed and the device is connected.

As front end, the application presents the user with a pleasant and intuitive

iv

graphical user interface. With it, the user can easily create, delete, open,
and modify password wallets. The GUI is easily configurable and is cross-
platform. Additionally, the application can suggest strong Passwords and
Passphrases and verify the entropy of the ones provided by the user.

In conclusion, SEcubeWallet is an excellent application for the storing and
management of passwords. As it relies on the SEcube™ framework it is trust-
worthy and the information is virtually impossible to steal. Thanks to the
developed GUI it is easy to use, and it offers some interesting functionalities
to increase the user experience.

v

Acknowledgements
I would like to express my gratitude to Prof. Paolo Prinetto for giving me the
opportunity and responsibility to work on this project. I would also like to
thank Dr. Giuseppe Airò Farulla for his continuous support and constructive
suggestions during the development of this thesis work. I wish to acknowledge
the help provided by Dr. Antonio Varriale, by solving some specifics doubts
regarding the SEcube™ framework.

Further gratitude is extended to Politecnico di Torino directives and staff
supporting the international students program, and the internationaliza-
tion department in my Alma Mater, Universidad de Antioquia, managed
by Maritza Areiza Pérez.

Finally, I wish to thank my family, especially my mother, for all of her help
and support during my academic career, and my girlfriend Daniela Quintero,
for her unconditional love.

vi

Contents

List of Figures x

List of Tables xii

Listings xiii

1 Introduction 1

2 Related Work 5
2.1 Hardware Password Wallets 5

2.1.1 YubiKey . 5
2.1.2 Mooltipass: A Simple Offline Password Keeper 8

2.2 SEcube™ based applications 11
2.2.1 Secure Text Editor and Secure Image Viewer 11
2.2.2 secureSQLiteBrowser 12

3 Frameworks, Libraries and software tools 15
3.1 The SEcube™ framework . 15

3.1.1 The SEcube™ Chip . 16
3.1.2 Development board: The SEcube™ DevKit 16
3.1.3 Final product: USEcube™ Stick 18
3.1.4 SEcube™ Open SDK 19
3.1.5 Level 2: Intermediate Security APIs 20
3.1.6 SEfile . 20
3.1.7 secureSQLite . 22

3.2 SQLite Data Base management system 22
3.3 Graphical User Interface: the Qt framework 23
3.4 Device side development: Eclipse 24
3.5 PwGen: Pronounceable Password generator 26
3.6 zxcvbn: Password strength estimation 28

vii

3.7 PassPhrase Generator . 34

4 Application Development 37
4.1 Design . 37

4.1.1 L0 and L1 Authentication libraries 37
4.1.2 secureSQLite3 . 38
4.1.3 SQLite3 . 38
4.1.4 Password Generator 39
4.1.5 PassPhrase Generator 39
4.1.6 Strength Estimator . 40

4.2 Implementation . 40
4.2.1 User authentication . 40
4.2.2 Main Window . 44
4.2.3 Wallet actions . 46
4.2.4 Table actions and display 53
4.2.5 Entries actions . 62
4.2.6 Other functionalities 66
4.2.7 PwGen: Pronounceable Passwords Generator 68
4.2.8 zxcvbn Password strength estimator 70
4.2.9 PassPhrase Generator 77
4.2.10 The FAT32 bug . 82

5 Results, Discussion and Future work 89
5.1 Results . 89
5.2 Application’s drawbacks . 90

5.2.1 First table corruption 90
5.2.2 The FAT32 bug . 91
5.2.3 Only Linux has been tested 91
5.2.4 Missing icons . 91

5.3 Future work . 91
5.3.1 SEkey integration . 92
5.3.2 Browser integration . 93
5.3.3 More than just static Passwords 93
5.3.4 Hardware button on SEcube™ device 94
5.3.5 Mobile application (Android) 94
5.3.6 Eliminate dependability on the OS 94
5.3.7 Custom columns . 94
5.3.8 Expired passwords notification 95

viii

6 Conclusions 97

Bibliography 99

ix

List of Figures

2.1 The YubiKey family . 6
2.2 The mooltipass device and smartcard 8
2.3 The mooltipass application . 9
2.4 The Mooltipass basic architecture 10
2.5 SEfile demo applications . 12
2.6 secureSQLiteBrowser GUI . 13

3.1 SEcube™ Block Diagram . 17
3.2 SEcube™ Devkit . 18
3.3 USEcube Stick . 19
3.4 Libraries Hierarchy Levels . 21
3.5 Secure File structure . 22
3.6 DevKit and ST-Link/V2 connections to PC 25
3.7 Password strength, xkcd [43] 29
3.8 comparison between zxcvbn and popular websites’ strength

meters . 30

4.1 Basic Design: Used Libraries 38
4.2 Login Dialogue and possible outcomes 41
4.3 SEcubeWallet main window 45
4.4 Save Confirmation dialogue 46
4.5 Save Wallet dialogues . 47
4.6 Open Wallet dialogues . 50
4.7 The Qt Model View Architecture 57
4.8 Date Older Than filter . 61
4.9 Add Entry subwindow . 64
4.10 Environment subwindow . 67
4.11 PwGen settings in the preference window 70
4.12 zxcvbn general dictionaries configuration 74
4.13 Crack times for different attacker capabilities 77

x

4.14 Password broke down by the zxcvbn algorithm 78
4.15 Settings for PassPhrase Generator 79
4.16 secureSQLite Databases in a FAT32 file system 82
4.17 Error Traceback . 84
4.18 Return and errno values for a save operation 86

5.1 Host side SEcube™ architecture, including the SEkey library . 92

xi

List of Tables

4.1 A few l33t examples . 68
4.2 A few PwGen generated passwords 72
4.3 PassPhrases examples for different configurations 81

xii

Listings
3.1 Including STLink rules to udev manager in Linux 26
4.1 Connected Devices discovery 41
4.2 Open device and try to login 43
4.3 Modification in SEcube™ Firmware, file se3_cmd1.c 44
4.4 New in memory database . 47
4.5 secure_ls declaration . 48
4.6 simplified Save process . 49
4.7 Simplified Open Wallet action 51
4.8 Callback functions for Sqlite3 SELECT 52
4.9 Delete an in-disk database . 53
4.10 Add a New Table . 54
4.11 Delete Table . 55
4.12 Rename Table . 55
4.13 Model/View architecture implementation 58
4.14 update the model/view . 59
4.15 Show/Hide Passwords . 60
4.16 Aligned Filters definition . 61
4.17 Table View and aligned filters connection 62
4.18 Filters implementation . 63
4.19 Add entry to database using model 65
4.20 PwGen call inside AddEntry 71
4.21 Qlibrary basic usage . 75
4.22 ZxcvbnMatch function declaration 76
4.23 PassPhraseGen function declaration 78
4.24 FAT32 Error’s origin at secure_seek 85

xiii

Chapter 1

Introduction
This work of Thesis deals with the design and development of a hardware-
based password manager system. The need to work on such a topic can be
explained by trying to answer the following questions

• Are passwords still relevant?
• Why should people use password managers?
• Why are hardware-based approaches more reliable?

The answer to the first question is pretty straightforward. Yes. Passwords
are, to the date, the dominant form of authentication in a lot of scenarios,
including computer/server logins and web services.

Password managers are the recommended option for password keeping
since they allow to securely store a virtually infinite amount of strong pass-
words, all different from each other, a task an average person is not able to
do on its own.

Hardware-based managers use a two-factor authentication method, in
which the user needs to prove their identity by connecting a unique and
portable device to the host machine and entering a master password. In
software-based approaches only the master password is required, making
them less secure.

The following paragraphs elaborate in the previous answers.
Passwords, as the primary form of authentication in many fields, need to

be protected. Even if other forms of authentication are already being widely
use (hardware token devices and one-time passwords in banking; biometrics
in smartphones), those applications still depend on passwords either as a
fallback system (a smartphone will ask the user for a pin/password if the

1

1 – Introduction

fingerprint recognition failed) or as a complementary security measure (to
generate a one-time password, the user must enter first a regular password).

Unauthorized access to computers or smartphones, a web service, bank-
ing information or company servers, all can have catastrophic consequences
for victims. Personal data such as photos and emails, intellectual properties,
money and even somebody’s identity are just a few examples of what authen-
tication systems are protecting, reasons more than enough to be concerned
about the reliability of passwords.

Because passwords use is omnipresent, one would expect it to be a highly
secure authentication method. This however, is in general not true. Since
people have a large an increasing number of passwords that have to be memo-
rized, they tend to use ones that are not strong but rather, easy to remember.
The three most common bad practices are:

• Using short and low complex passwords that include common sequences
or words.

• Using passwords with some significance, like a birthday or a pet’s name.
• Reusing the same password for multiple services, with small modifica-

tions or non at all.

With password managers the story is different. People no longer need to
worry about remembering their passwords, managers will do that for them.
Usually they also offer the capability to generate long, complex and com-
pletely random passwords. As a result, people can use a strong and unique
password for each of their accounts, thus making eventually attackers’ job
infinitely harder.

The use of a password manager seems like the perfect solution, but there is
one concern that arises. If all of the passwords are stored in the same place,
it will become for sure a new target for attacks. Therefore the manager
needs to be as robust and trustworthy as possible. Software-based managers
usually work with a master password to encrypt/decrypt the data (i.e the
other passwords). This means an attack could be carried out either by:

• Cracking the encryption algorithm used by the manager
• Cracking the user’s master password. This usually happens if an attacker

has access to the encrypted data and have the ability to try billions and
billions of passwords until they guess the right one.

• Corrupting the manager application or the host machine OS.

2

1 – Introduction

The algorithms used by good password managers are usually standard
ones, meaning they are the state of the art, and therefore sturdy. The weak
points of the system may be in the master password and in the application
being corrupted. A hardware-based manager boost the security of the system
by improving in this two points.

A hardware-based manager uses a two-factor authentication method. In
order to encrypt/decrypt the data, two elements are required: a master pass-
word and a portable and unique device which is connected to the host ma-
chine (user’s computer for instance). Therefore, even if an attacker has access
to the encrypted data, without the device, they can not even start trying to
crack the master password.

Regarding the second point, in a lot of cases the portable device is the
one doing all the actual encryption/decryption of data. The host machine
is only used to provide the GUI so the user can enter their master password
and to display their protected passwords. As the portable device is custom
designed to be as secure as possible, it is much more harder to corrupt than
an OS or a software application.

In conclusion, storing and protecting passwords is a major goal in digi-
tal security, and one of the best approaches to the date are hardware-based
managers. This work regards one of them, implemented as a desktop appli-
cation that exploits the capabilities of the SEcube™ (Secure Environment
cube) hardware and software framework. The core of the framework is the
SEcube™ chip developed by the Blu5 Group[4], which integrates three key se-
curity elements in a single package: A fast floating-point Cortex-M4 CPU, a
high-performance FPGA and an EAL5+ certified Security Controller (Smart
Card). This chip, in conjunction with a set of custom device-side software
libraries [21] developed by European research institutions, act as the pass-
word manager’s hardware device, and is in charge of authenticating the user
and encrypting/decrypting the data.

The desktop application, named SEcubeWallet, was written in C/C++
and Qt, and it interacts with the SEcube™ device, requesting services like
authentication and encryption. Its main tasks are:

• Manage the set of passwords (hereinafter referred to as a Wallet) using
secureSQLite, one of the SEcube™ host-side libraries, that works by
wrapping the functionalities of the SQlite standard to create SEcube™
secured databases.

• Serve as GUI so the user can authenticate to the SEcube™ device and
create, open, edit, save and delete wallets with ease. The GUI displays

3

1 – Introduction

the wallet’s content in a table view and each column can be filtered
individually.

• Suggest strong Passwords (and Passphrases) which can be used with
confidence in any login service. The application also verifies the entropy
(strength measure) of the generated passwords, or of the ones provided
by the user.

The remaining of the thesis is organized as follows:
Chapter 2 gives an overview of some existent hardware-based password

managers, as well as of some applications based on the SEcube™ framework.
In chapter 3 the hardware and software libraries, tools and IDEs used in

the development of the application are reviewed.
In chapter 4 the application development process is explained, by first

covering its general design and then going into the details of the actual im-
plementation, showing also relevant portions of code.

In chapter 5 the results obtained in this work, the problems faced during
development and ideas for future improvements are given.

Finally, chapter 6 concludes this work with a critical review of the achieved
results and knowledge, and examines the importance of the subject studied
here.

4

Chapter 2

Related Work
This chapter gives a review of a few projects that are related to this work.
The first section deals with projects that have as objective the securing of
passwords using a hardware approach. The second section regards applica-
tions using the SEcube™ framework.

2.1 Hardware Password Wallets
Over the last decade the security field saw an increase in the interest for more
reliable password managers. This led to the conception and development of
a handful of hardware based password wallets, most of them starting as
crowfunding projects in websites like kickstarter and crowdsupply. A few
examples of this projects are Pastilda [17], Sidekick [24], Signet [25], YubiKey
and Mooltipass. These last two projects are explained in details as they are
the most mature and interesting for this work.

2.1.1 YubiKey
YubiKey is a family of hardware authentication devices developed by Yubico
[29]. The members in the family differ in several aspects including the com-
munication protocol they support (usb-a, usb-c, nfc), the security services
provided (Smart card, One time password, etc.), or the intended use (for
desktop or mobile, for regular users or government). This review does not go
into the details of each device, but rather it gives a general overview of the
provided security services.

“A single YubiKey has multiple functions for protecting access to your

5

2 – Related Work

email, your apps and your physical spaces. Use one or more YubiKey fea-
tures, or use them all. The versatile YubiKey does not require software
installation or a battery; just plug it into a USB port, and touch the button
for secure and strong authentication . . . Even if someone steals your username
and password (which is happening in bunches lately) they can’t get into your
account without your physical key.” [31]

Figure 2.1 depicts some members of the YubiKey family.

Figure 2.1: The YubiKey family

The top supported services include Google Accounts, Facebook Accounts,
GitHub, Docker, Dropbox, Salesforce, LastPass Premium password manager
and Dashlane Premium password manager.

The options provided by YubiKey are (taken from [31]):
Static Passwords: A basic YubiKey feature that generates a 38-character

static password compatible with any application log-in. It is most-often used
with legacy systems that cannot be retrofitted to enable other 2nd factor
authentication schemes, such as pre-boot login.

Yubico One-Time Password (OTP): The YubiKey generates an en-
crypted password that can only be used once. Hackers require physical access
of the user’s YubiKey to generate the OTP.

OATH – HOTP (EVENT): The YubiKey generates a six or eight
character one-time password (OTP) for logging into any service that supports
OATH-HOTP, a strong open authentication standard. The action is event-
based, meaning a new one-time password is generated for each event.

6

2.1 – Hardware Password Wallets

OATH – TOTP (TIME): The YubiKey generates a six or eight char-
acter time-based one-time password (OTP) (in conjunction with a helper ap-
plication) for logging into any service that supports OATH-TOTP, a strong
authentication standard. A new password is generated at a set time interval,
typically every 30 seconds.

Challenge and Response (HMAC-SHA1, Yubico OTP): The Chal-
lenge Response method is best suited for offline validations. Used for Win-
dows, Mac, and Linux computer login.

All of the previous features are available on every version of YubiKey
except the U2F Security Key.

PIV-Compatible Smart Card: Smart cards contain a computer chip
that brokers data exchanges. These same features are contained in the Yu-
biKey 4 and YubiKey NEO, based on the industry standard Personal Identity
and Verification Card (PIV) interface over the CCID protocol, which sup-
ports PIV on a USB interface.

OpenPGP: In the physical world, documents and data are often vali-
dated with a signature. In the virtual world, OpenPGP is a standards-based
public key cryptography for signing, encrypting, and decrypting texts, e-
mails, files, etc. Both the YubiKey 4 and Yubikey NEO can securely hold
the PGP key.

FIDO U2F: An emerging standard from the FIDO Alliance for applying
two-factor authentication to any number of web-based applications, such as
Gmail. Works via the browser, Chrome today, Firefox under development)
and does not require any drivers. Does not require any client software or
drivers. Read more about FIDO U2F. U2F is available on every version of
YubiKey except the YubiKey Standard and YubiKey Nano.

In May of 2016 Yubico decided to stop using the OpenPGP standard for
the YubiKey 4 series in favour of close source code [23]. A lot of concern
was raised by the community as in security applications open source code is
often preferred as it allows for independent control on security flaws.

The variety of products and services offered by the YubiKey family allowed
them to reach to a large pool of customers. Unfortunately, their decision to
not use open source code makes it a hard choice to trust them and the
reliability of their products.

7

2 – Related Work

2.1.2 Mooltipass: A Simple Offline Password Keeper
The Mooltipass is a hardware-based password keeper commercial product
that allows users to safely carry their credentials with them all the time, and
use them when needed by connecting a portable device to a computer and
authenticating using a 4 characters pin. Figure 2.2 depicts the mooltipass
system.

Figure 2.2: The mooltipass device and smartcard

Its use is very, simple, as explained in their official website [13]:
“The Mooltipass is designed to be as simple as possible to use for users of

all backgrounds and ages:

1. Plug the Mooltipass to your computer/tablet/phone. No driver is re-
quired

2. Insert your smartcard, unlock it with your PIN. Without the PIN, the
card is useless.

3. Visit a website that needs a login. If using our browser plugin, the
Mooltipass asks your permission to send the stored credentials, or asks
you to save new ones if you are logging in for the first time.

4. If you are not using the browser plugin or are logging in on something
other than a browser, you can tell the Mooltipass to type your logins
and passwords for you, just like a keyboard.

The Mooltipass emulates a standard USB keyboard, and can therefore
type your passwords for you on Windows, Linux, Mac and even most Apple
and Android devices (through the USB On-The-Go port). It doesn’t need
any special drivers to function.”

8

2.1 – Hardware Password Wallets

Figure 2.3: The mooltipass application

The browser plugins offer a GUI where the user see and manage their
passwords, as shown in Figure 2.3

The Mooltipass works by storing an encrypted version of the passwords,
and allowing their decryption only when the proper smartcard is connected
and the correct pin introduced. From the website:

“The Mooltipass has an internal flash in which the user encrypted creden-
tials are stored, while a PIN-locked smartcard contains the AES-256bits key
required for their decryption. Like any chip and pin card, 3 false tries will
permanently disable the Mooltipass card. Credentials are sent over HID, any
password accessing operation needs to be physically approved by the user on
the device.”

Mooltipass is open software and open hardware. In fact they encourage
the community to develop and review code, so that the system’s reliability is
increased. Their GitHub repository host all the sources from the beginning
of the project. [14].

The Mooltipass project started off as a Hackday post from developer Math-
ieu Stephan, that gained enough recognition by the community to be founded
by a kickstarter campaign. The Hackday project website [15] contains more
details regarding the hardware implementation:

9

2 – Related Work

• ST662ACD-TR: Power Management
• ATMEGA32U4-MU: Arduino compatible Microprocessor
• AT88SC102: Secure Memory Smart Card
• AT45DB011D-SSH-T: FLASH Memory

Figure 2.4 shows the basic architecture.

Figure 2.4: The Mooltipass basic architecture

In conclusion, mooltipass is a mature project that follows the same idea
developed in this work: Guarantee the security of a set of passwords by
allowing their decryption only through the use of a hardware device that the
user will carry with them, hopefully, all the time. However there are some
important difference between their system and SEcubeWallet:

1. SEcubeWallet is based on the SEcube™ platform, making it much more
trustworthy and robust, as this is a platform even used in military ap-
plications, and has been tested in the most demanding conditions.

2. Because SEcube™ integrates all the required security elements into one
single chip, the final product is much more smaller (The size of a regular
USB stick) than the mooltipass device.

3. Because the SEcube™ platform offers more possibilities for the devel-
opment of applications, for example using the open source libraries, or
the FPGA inside the chip, the SEcubeWallet can be extended or be
integrated with other projects.

4. SEcubeWallet offers a couple of additional functionalities: Strong Pass-
word generation and entropy estimation, increasing the user experience.

10

2.2 – SEcube™ based applications

2.2 SEcube™ based applications
The SEcube™ Open SDK available at [21] is a set of libraries, for both
the SEcube™ device and the host machine. These libraries include low-
abstraction level communication and security functions, as well as high level
demos and applications built in top of them.

Before starting the application development, the following three projects
were studied in order to familiarize with the SEcube™ framework and li-
braries usage. All of the projects make part of the SEfile SDK available at
[21] and are covered in details in the L2 user Manual [38].

2.2.1 Secure Text Editor and Secure Image Viewer
This two projects are very similar, both use the SEcube™ framework, in
particular the SEfile library, to encrypt/decrypt plain text files and images
respectively. They are not intended to be final user applications, but demos
that allow developers to learn how to use the SEcube™ libraries.

“Both these two projects have been developed in C++ with Qt libraries.
They are based on 3 major security classes, in a one-to-one mapping with
the 3 most important security operations: the first one manages the security
platform to which the user wants to log in, the second one allows the selection
of the secure environment through the secure_update() function, while
the third one manages the opening and creation of files resorting on the
secure_ls().”[38].

The secure text editor, in short SEfile_TXT offers the possibility to cre-
ate/edit/open plain text documents, and generate an encrypted version of
the file that will be stored in the same directory. “It is possible to verify
that encrypted files cannot be read properly from regular text editors; con-
versely, the Secure Text Editor can transparently read any encrypted file
(decrypting also the file name) which content has not been altered and is,
thus, trusted. Unauthenticated content (i.e., content not corresponding to
the file signature) is, instead, discarded”.

The secure image viewer, in short SEfile_IMG allows the user to open
the most common image formats, png, jpg/jpeg and bmp, and generates the
encrypted version, which can only be opened using the same application.

Figure 2.5 depicts the GUI of SEfile_TXT and SEfile_IMG.
These two demo applications were used to learn the basis of the SEcube™

libraries, specially how to open the communication with the device, how to

11

2 – Related Work

(a) SEfile_TXT demo application (b) SEfile_IMG

Figure 2.5: SEfile demo applications

authenticate (login) and how to logout. The login dialogue used in the SE-
cubeWallet application is an improved version of these demos’ login dialogue.
The environmental dialogue was borrowed without any modification.

2.2.2 secureSQLiteBrowser
This application integrates the SEcube™ secureSQLite library with the DB
Browser for SQLite [6] project, resulting in a powerful manager of encrypted
SQLite databases.

The secureSQLite library, that makes part of the SEfile SDK, modifies
the SQLite system to use the SEfile library in order to manage files, rather
than using directly the OS calls. The result is a library that accepts all the
standard SQLite commands, but stores the database as an encrypted file.

DB Browser for SQLite is an application developed in Qt that allows
to manage SQLite DB from a powerful GUI. “DB Browser for SQLite is a
high quality, visual, open source tool to create, design, and edit database
files compatible with SQLite. It is for users and developers wanting to create
databases, search, and edit data. It uses a familiar spreadsheet-like interface,
and you don’t need to learn complicated SQL commands.” [6]

By merging this two projects, the result is an excellent application to create
encrypted SQLite databases using an elegant and powerful GUI, depicted in
figure 2.6, with tons of options, where the users can visually edit the DB
tables, and store them as SEcube™ secured files.

Because SEcubeWallet is heavily based on the use of the secureSQLite
library, this application was used to learn how to integrate the library into
a Qt project. Additionally, it was used as inspiration for some of the GUI

12

2.2 – SEcube™ based applications

Figure 2.6: secureSQLiteBrowser GUI

elements, like the filters above each column and the use of menus and tool-
bars. It was also use to diagnose the SEcubeWallet in the developing stage,
by creating a DB with one application and opening it in the other.

secureSQLiteBrowser could be use as a password manager in the sense that
it can securely store and display wallets as tables, but it lacks the simplicity
and additional functionalities that make SEcubeWallet attractive to users.

13

14

Chapter 3

Frameworks, Libraries
and software tools

As explained previously, the core of the design is the use of the SEcube™
chip as device to perform security operations in order to encrypt/decrypt
some data stored in the host (PC). The requests to the device are made
from the C/C++/Qt application developed in this work, which runs in the
host machine. Said application exploits the existing C libraries SEfile and
secureSQLite from the SEcube™ framework to ease the communication with
the device. The chip’s firmware, written in C, can be modified using the
Eclipse IDE. Additionally, the application uses the random password genera-
tor PwGen and the password strength estimator zxcvbn, both of them open
source libraries. A passphrase generator function was developed and from a
conceptual point of view, it is treated as a library.

In the following sections a review of the SEcube™ platform’s hardware and
software components is given. Then a brief explanation of the C/C++/Qt
framework and why it was chosen. Finally the additional software tools and
libraries are presented.

3.1 The SEcube™ framework
“The SEcube™ (Secure Environment cube) Open Security Platform is an
open source security oriented hardware and software platform, designed and
constructed with ease of integration and service-orientation in mind. The
hardware part of the platform was originally designed by Blu5 Group [4],

15

3 – Frameworks, Libraries and software tools

whereas the software libraries stem from a strong cooperation among inter-
national research institutions.” [37].

The main hardware products, explained in detail in the following sec-
tions, are:

• The Chip, named SEcube™ Chip, or simply SEcube™
• The Development Board, named SEcube™ DevKit
• The USB Stick, named USEcube™ Stick.
The SEcube™ chip is the main hardware component, and both the devkit

and USB Stick are designed around it. The Development Board provides
several communication protocols as well as debugging capabilities. For the
final product the board would be of course too inconvenient to carry, and
instead the USEcube™ Stick is preferred.

3.1.1 The SEcube™ Chip
“The SEcube™ (Secure Environment cube) is a powerful chip which inte-
grates three key security elements in a single package. A fast floating-point
Cortex-M4 CPU, a high-performance FPGA and an EAL5+ certified Se-
curity Controller (Smart Card). The result of this innovative combination
gives an extremely versatile secure environment in a single SoC, in which de-
velopers can rapidly implement complex applications and appliances. . . The
SEcube™ is the ultimate solution for high-end design, delivering integration
of a flexible, configurable and certified secure element.” [34]

We can then see the SEcube™ chip as a powerful device offering the
flexibility of an ARM CPU, the speed of an FPGA and the reliable security
of a certified Smart Card, all bounded together and easily integrated in any
project thanks to the available communication protocols, among them USB,
UART, Ethernet and JTAG.

The chip includes a true random number generator which relies in 240 noise
seeds, all physical and therefore unpredictable. This allows the creation of
true random noise. Additionally the user can choose what type of noise they
want to generate, for instance white or Fourier noise.

In figure 3.1 a simplified SEcube™ architecture is shown.

3.1.2 Development board: The SEcube™ DevKit
The development board integrates the SEcube™ chip with several peripherals
that allow the user to easily communicate with, program and debug the chip.

16

3.1 – The SEcube™ framework

Figure 3.1: SEcube™ Block Diagram

(Figure 3.2)
The main peripherals in the SEcube™ devkit are:

• J1000: USB 2.0 to UART
• J2000: Ethernet 10/100 socket
• J4000: SEcube™ embedded FPGA and CPU GPIOs
• J4001: SEcube™ embedded CPU JTAG
• J4002: microSD card
• J4004: SEcube™ embedded FPGA and CPU GPIOs
• J5000: USB 2.0 High Speed
• LEDx: Leds
• SWx00y: Switches

17

3 – Frameworks, Libraries and software tools

(a) (b)

Figure 3.2: SEcube™ Devkit

3.1.3 Final product: USEcube™ Stick

For the final product, its is desired that the user carries all the SEcube™
functionalities in a small and convenient package, so they can encrypt/de-
crypt the passwords in any PC by just connecting the USEcube™ Stick and
running the SEcubeWallet application.

The USEcube™ Stick is compatible with any Operating System and the
SEcube™ functionalities are easily exposed to applications and services with-
out installing any driver.

The USEcube™ offers only the strictly required components: The SE-
cube™ chip, a USB 2.0 High-Speed interface and an SDcard socket. See
Figure 3.3 for more details.

Since the USEcube™ Stick storage capability is based on a external mi-
croSD card, the security of the system is improved, as this allows to have
a separation of encrypted data from the encryptor/decryptor. Additionally,
both the size and the speed can be tuned by the user’s requirement and
can be changed at any time, just replacing the microSD, without buying a
new USEcube™ Stick. The microSD card socket is embedded in the USB
connector allowing to save space making the USEcube™ stick very compact
and, at the same time dust and water-resistant. Since the USEcube™ Stick
is not provided with the JTAG interface, to inject the firmware previously

18

3.1 – The SEcube™ framework

developed and tested on the SEcube™ DevKit, all the devices come with an
embedded secure boot loader.

(a) (b)

Figure 3.3: USEcube Stick

3.1.4 SEcube™ Open SDK
The SEcube™ Open SDK available at [21] is a set of libraries, for both the
SEcube™ device and the host machine. In general, the user interacts with
the host libraries requesting security services. The host in turn pass those
requests to the device libraries, which are the ones to actually execute any
security algorithms. The results are passed back to the host and ultimately
to the user.

“The software libraries and design environment allow developers who are
not willing or able to produce the security APIs and protocols themselves to
exploit the ready functions provided (currently as APIs and soon as services)
within the SEcube™ platform and experience the platform as a high-security
black box.” [38]

“From the user/developer point of view, the APIs have been implemented
targeting two nested environments depending on where physically the code
runs:

• Device-Side, including the libraries of basic functionalities that are
executed on the embedded processor of the SEcube™ based hardware
device.

19

3 – Frameworks, Libraries and software tools

• Host-Side, containing libraries of functions executed on the host PC
and interface functions for calling services and processes residing on the
embedded processor of the SEcube™ device.

From the architectural point of view, the Host-Side Libraries have been
implemented targeting 4 hierarchical abstraction levels, namely:

• Level 0: Communication Protocol and Provisioning APIs
• Level 1: Basic Security APIs
• Level 2: Intermediate Security APIs
• Level 3: Advanced Security APIs

At each level, each component represents a "service" for the upper level
and relies on "services" provided by the next lower level, only.” [38]

The Device-Side Libraries only have the lower two levels of abstraction,
and each of these levels communicates with its host-side counterpart.

In Figure 3.4 a graphical representation of the hierarchical levels is pre-
sented. For each level, an example of a function/application belonging to it
is shown.

3.1.5 Level 2: Intermediate Security APIs
SEcubeWallet is a Level 3 application that relies heavily on the Level 2 APIs
SEfile and secureSQLite. In this section a review of these APIs is given.

“Level L2 relies on L1 services to provide the APIs for implementing more
abstract secure functionalities. Typical examples include APIs for the pro-
tection of data both at rest and in-motion, or negotiating parameters (e.g.,
keys, algorithms) for establishing secure sessions, without being forced to un-
derstand in details all the low-level hardware and security mechanisms.”[38]

L2 can be considered as the merge of two projects: SEfile, concerning
data at rest, and SElink, concerning instead data at motion.

3.1.6 SEfile
“SEfile targets any user that, by moving inside a secure environment, wants
to perform basic operation on regular files. It must be pointed out that all
encryption functionalities are demanded to the secure device in their entirety.
In addition, SEfile does not expose to the host device details about what,
or where it is reading/writing data: thus, the host OS, which might be
untrusted, is totally unaware of what it is writing”. [38].

20

3.1 – The SEcube™ framework

Level 3: Advanced Security APIs
(SEcubeWallet, secureSQLiteBrowser)

Text

Level 0: Communication Protocol and
Provisioning APIs

(L0_open, L0_discover_init)

Level 0: Communication Protocol
and Provisioning APIs

(L0d_echo, L0d_factory_init)

Level 1: Basic Security APIs
(L1d_crypto_init, L1d_challenge)

Level 2: Intermediate Security APIs
(SEfile, secureSQLite, SElink)

Level 1: Basic Security APIs
(L1_login, L1_get_algorithms)

Host HW SEcube HW

L1 protocol

L0 protocol

HW interconnection (USB)

Figure 3.4: Libraries Hierarchy Levels

A secured file has the structure shown in figure 3.5. The data is divided in
sectors, and each of them is encrypted and signed. The first sector does not
contain data, but metadata on the file itself, and it is known as the header.

When a portion of the file wants to be read or written (i.e. encrypted
or decrypted), it is not necessary to process the whole file. Only the re-
quired sectors are manipulated, thus reducing the overhead time of securing
operations.

For file encryption, SEfile uses The Advanced Encryption Standard (AES),
established by the U.S. National Institute of Standards and Technology
(NIST). For each data sector AES-256-CTR is used, while the header sector
is encrypted using AES-256-ECB.

For authentication, “each sector, including the header, is signed using an
authenticated signature obtained with SHA-256-HMAC, meaning that the
signature depends on both the data contained in the sector itself and on a
chosen encryption key. To use two different keys to encrypt data and to digest
authentication, a feature increasing overall system security, SEfile leverages
on the pbkdf2() function already implemented within the SDK.”[38]

21

3 – Frameworks, Libraries and software tools

Blog
Keywords

Social Media

DATA

Length
Signature

DATA

Length
Signature

DATA

Length
Signature

Header

Length
Signature

Padding

Figure 3.5: Secure File structure

3.1.7 secureSQLite
Based on the SQLite data base management system, and using SEfile, this
API allows the user to create SEcube™ secured data bases. “Leveraging on
its modularity, the SQLite system has been modified to resort on a custom
functionalities wrapper based on SEfile, rather than using directly the OS
calls. The starting point of this work was the template offered as example
for making a custom VFS interface distributed along with SQLite, version
3.13.0.”[38]

Every database created with secureSQLite is cyphered and signed up to its
file name before being stored, thus making it impossible to read the database
contents without authenticating and using the library.

3.2 SQLite Data Base management system
A Data Base is a structured set of data stored and accessed electronically
using a data base management system.

SQLite [26] is one of such management systems. It implements most of
the SQL (Structured Query Language) standard. Unlike most other SQL
databases, it is serverless, meaning there is not separate server process, and
an application can access directly the database file without the need of inter-
process communication. SQLite is ACID (Atomicity, Consistency, Isolation,
Durability) compliant, meaning database transactions are valid even in case
of errors produced by program crashes, OS crashes or power failures. It can
run in any operating system, even embedded ones. SQLite is implemented

22

3.3 – Graphical User Interface: the Qt framework

in generic C, and it is self-contained in a C library, meaning it has very few
dependencies and all the code is encapsulated single source code file.

In this work the Qt SQLite plugin was used to manage the in-memory
SQLite databases. “The Qt SQLite plugin makes it possible to access SQLite
databases. . . SQLite operates on a single file, which must be set as the database
name when opening a connection. If the file does not exist, SQLite will try to
create it. SQLite also supports in-memory and temporary databases. Simply
pass respectively ":memory:" or an empty string as the database name.” [18].

3.3 Graphical User Interface: the Qt frame-
work

The application’s graphical user interface was developed using theQt frame-
work, version 5.11.1, available for download at [8]. (Qt 5.10 or higher is re-
quired to compile the sources of this project, as it uses the QRandomGenerator
Class included in that version).

“Qt is a cross-platform application development framework for desktop,
embedded and mobile. Supported Platforms include Linux, OS X, Windows,
VxWorks, QNX, Android, iOS, BlackBerry, Sailfish OS and others. Qt is not
a programming language on its own. It is a framework written in C++. A
preprocessor, the MOC (Meta-Object Compiler), is used to extend the C++
language with features like signals and slots. Before the compilation step,
the MOC parses the source files written in Qt-extended C++ and generates
standard compliant C++ sources from them. Thus the framework itself and
applications/libraries using it can be compiled by any standard compliant
C++ compiler like Clang, GCC, ICC, MinGW and MSVC”.[1]

For writing, compiling and debugging source code, the IDE Qt Creator,
version 4.6.2 was used.

“Qt Creator provides a cross-platform, complete integrated development
environment (IDE) for application developers to create applications for mul-
tiple desktop, embedded, and mobile device platforms, such as Android and
iOS. It is available for Linux, macOS and Windows operating systems”.[19].

The reasons behind the use of Qt are as follows:

• Qt is a C++ library, and as such, allows for a seamless use of the C
libraries SEfile and secureSQLite, which are the backbone of this project.

• Qt is cross-platform, meaning the developed application can be compiled
to work on any of the major OSes. In particular, the development was

23

3 – Frameworks, Libraries and software tools

carried out an tested on a Linux machine, but the application should
work with no problems in Windows and MacOS.

• Because of good designed and ready-to-use display items such as tables,
menus and dialogues, it is possible to focus in writing the functional
portions of the application without worrying too much about the GUI.
And as it is open source, any Qt item can be modified and extended
when it does not meet the expectations out of the box. In this project
several display elements were improved, as will be seen in section 4.2.

• Thanks to the multitude of functions dedicated to ease the use of C++
libraries and OS calls, one can be more productive, and the resulting
code is more reliable. For instance, this project makes extensive use of
such libraries, like QSqlDatabase, QString, QProcess, etc. Again, more
details are given in section 4.2

• The Related works described in section 2.2, secureSQLiteBrowser, SE-
file_TXT and SEfile_IMG, are written in Qt.

• Qt is widely used, meaning it is possible to find tons of documentation,
forums and additional libraries on the web. This also ensures the Qt
framework will have continuous support from the developers and the
community.

3.4 Device side development: Eclipse
For device-side development, the Eclipse IDE for C/C++, version Neon.3
Release (4.6.3) [7] was used.

Although this thesis work regards mostly host-side code development (i.e.
the Qt application SEcubeWallet), it was necessary to do some slight modi-
fications to the firmware running in the SEcube™ chip, as will be explained
in details in section 4.2.1.

Eclipse is the recommended IDE for SEcube™ firmware development, as
stated in the Getting Started guide [37]. With Eclipse it is possible to perform
all the operations required to effectively modify the code running inside the
SEcube™ chip, namely write/modify the code, compile it, load it into the
chip, and if necessary debug it. But because the code will run in an embedded
system, more specifically in an ARM microprocessor, some additional tools
and plugins are needed.

In order to program and debug the chip, an ST-Link/V2 was used. The
ST-Link/V2 is an professional tool to debug and program STM8 and STM32

24

3.4 – Device side development: Eclipse

MCUs. It communicates with the microcontroller using the JTAG/SWD
connection present in the DevKit board, as see in figure 3.6

(a) (b)

Figure 3.6: DevKit and ST-Link/V2 connections to PC

The Getting Started guide does a very good job explaining in detail how
to install all the necessary software. Here a brief recap of the followed steps
is giving, plus some additional configurations that are required when running
the IDE on Linux (In the author’s case, Linux Mint 17.1, kernel 3.13.0-37).

1. Java Runtime Environment: Necessary to run Eclipse, as it is a Java
program. The version 1.8.0_171 was installed, available at [10]

2. Eclipse: Eclipse for C/C++, Neon version was used. Available at [7]
3. AC6 Tools Eclipse Plugin: Embedded Toolchain for ARM, which

includes the building tools (GCC-based ARM cross compiler, assembler
and linker), OpenOCD (Open On-Chip Debugger) and GDB debugging
tools. In Linux, OpenOCD allows the communication with the STLink-
V2 and therefore, the debugging. Available at [16].

4. STM32CubeMX: This is a STM32Cube initialization code generator
that includes standard toolchains and embedded software libraries and
middleware components (e.g., Open-source TCP/IP stack, USB drivers,
open-source FAT file system, open source RTOS). Available at [27].

5. udev rules (Linux Only): On Linux, it is required to include the ST-
Link/V2 device rules in the udev device manager. To do so, instead of

25

3 – Frameworks, Libraries and software tools

writing them manually it is easier to use the rules already generated in
the mcu-gnu-eclipse version of openocd available in [9]. After download-
ing the appropriate version (*centos64.tgz for a 64 bits Linux machine),
the .tgz file is extracted and the 60-openocd.rules file copied into
the rules.d/ directory using the commands in listing 3.1:

Listing 3.1: Including STLink rules to udev manager in Linux
sudo cp /gnu-mcu-eclipse/openocd/0.10.0-8-20180512-1921/
contrib/60-openocd.rules /etc/udev/rules.d/

sudo udevadm control --reload-rules

6. SEcube™ Open SDK: Finally, the Open SDK available at [21] can be
used. There is an already configured environment for development, in
the zip file SEcubeSDK_GAF_14gen2017/SEcube_SDK/Development/
Environment.zip. After extracting it, the folder /Environment/ws
can be used as Eclipse workspace. This opens the current version of the
SEcube™ firmware, that can be then modified and loaded into the chip.

3.5 PwGen: Pronounceable Password gener-
ator

The most secure type of passwords are random ones. A random password
sufficiently long is considered to be virtually unbreakable. But this rises two
problems: First of all, humans are inherently bad at creating true random
passwords. Second, a random password is not suited to be remembered
or even used (as it probably is too annoying to type). These two reasons
motivated the inclusion of a Password Generator.

PwGen [41] is an open source program that generates human friendly
passwords that are also secure. It is available in the official Linux repositories,
and there is a Windows version as well, but in this work the source files where
used.

“The pwgen program generates passwords which are designed to be easily
memorized by humans, while being as secure as possible. Human-memorable
passwords are never going to be as secure as completely completely random
passwords. In particular, passwords generated by pwgen without the -s op-
tion should not be used in places where the password could be attacked via

26

3.5 – PwGen: Pronounceable Password generator

an off-line brute-force attack. On the other hand, completely randomly gen-
erated passwords have a tendency to be written down, and are subject to
being compromised in that fashion” [41].

PwGen offers several options that can drastically change the type of gen-
erated password. Here is a list of the options available for users of SEcube-
Wallet:

• Length: The desired length of the password. It is recommended to be
at least 12 for non-random passwords and 8 for random ones.

• -0, no numerals: Don’t include numbers in the generated passwords.

• -A, no capitalize: Don’t bother to include any capital letters in the
generated passwords.

• -B, ambiguous: Don’t use characters that could be confused by the
user when printed, such as ’l’ and ’1’, or ’0’ or ’O’. This reduces the num-
ber of possible passwords significantly, and as such reduces the quality
of the passwords. It may be useful for users who have bad vision, but in
general use of this option is not recommended.

• -c, capitalize: Include at least one capital letter in the password.

• -n, numerals: Include at least one number in the password.

• -s, secure: Generate completely random, hard-to-memorize passwords.

• -v, no vowels: Generate random passwords that do not contain vowels
or numbers that might be mistaken for vowels. It provides less secure
passwords to allow system administrators to not have to worry with
random passwords accidentally contain offensive substrings.

• -y, symbols: Include at least one special character in the password.

By default pwgen behaves as if the options -nc were used, that is, pro-
nounceable passwords with at least 1 capital letter and 1 number.

The strongest passwords this program can generate are obtained with the
options -ys, as it results in random passwords with special symbols, numbers
and capital letters (These last two enabled by default). They are very hard
to remember, and should only be used if the user is willing to open the
SEcubeWallet application each time they need to use one of the passwords.

27

3 – Frameworks, Libraries and software tools

3.6 zxcvbn: Password strength estimation
An important feature to have in a password manager is the possibility to
realistically estimate how strong a password is, i.e., how hard could it be
for hackers to crack it, as there is no point in using the SEcube™ system
to protect weak passwords, that could be easily guessed with brute force
attacks. As it is out of the author expertise to write a reliable function to
make this estimation, it was decided to use a trusted project developed during
the dropbox hackweek event in 2012. The estimator called zxcvbn was
originally written in JavaScript aiming for an easy integration with multiple
web browsers and OS. Fortunately, the community ported the library to a
wide variety of languages including Python, Ruby and C/C++. In this work
the C++ implementation was used. The project is Open Source and available
for free use on GitHub [32].

zxcvbn is regarded by the community as one of the most reliable and
mathematically advanced open source password estimators. In security fo-
rums and discussion it always pops out as an excellent tool, much better than
other passwords estimators commonly used in web pages. In [39], the author
compares zxcvbn to other popular java meters and arrives to the conclu-
sion that only zxcvbn is reliable enough to actually give an useful feedback.
In [40], the author makes an evaluation of several password generators and
strength estimators. PwGen and zxcvbn, the two libraries used in this work,
always give excellent results.

“For over 30 years, password requirements and feedback have largely re-
mained a product of LUDS: counts of Lower- and Uppercase letters, Digits
and Symbols. LUDS remains ubiquitous despite being a conclusively bur-
densome and ineffective security practice. zxcvbn is an alternative password
strength estimator that is small, fast, and crucially no harder than LUDS to
adopt. Using leaked passwords, we compare its estimations to the best of
four modern guessing attacks and show it to be accurate and conservative at
low magnitudes, suitable for mitigating online attacks. We find 1.5 MB of
compressed storage is sufficient to accurately estimate the best-known guess-
ing attacks up to 105 guesses, or 104 and 103 guesses, respectively, given 245
kB and 29 kB. zxcvbn can be adopted with 4 lines of code and downloaded in
seconds. It runs in milliseconds and works as-is on web, iOS and Android”.
[42]

“People of course choose patterns — dictionary words, spatial patterns
like qwerty, asdf or zxcvbn, repeats like aaaaaaa, sequences like abcdef
or 654321, or some combination of the above. For passwords with uppercase

28

3.6 – zxcvbn: Password strength estimation

letters, odds are it’s the first letter that’s uppercase. Numbers and symbols
are often predictable as well: l33t speak (3 for e, 0 for o, @ or 4 for a),
years, dates, zip codes, and so on. As a result, simplistic strength estimation
gives bad advice. Without checking for common patterns, the practice of
encouraging numbers and symbols means encouraging passwords that might
only be slightly harder for a computer to crack, and yet frustratingly harder
for a human to remember. xkcd nailed it”. (see figure 3.7). [33]

Figure 3.7: Password strength, xkcd [43]

To put it in other words, the authors of the project argue that a pass-
word like correcthorsebatterystaple (a nonsense English phrase) is
more strong than a password like Tr0ub4dour&3, even if the former does
not have any upper cases or numbers, and the latter seems more compli-
cated.

The table in figure 3.8 (taken from [33]), show how zxcvbn is different

29

3 – Frameworks, Libraries and software tools

Figure 3.8: comparison between zxcvbn and popular websites’ strength
meters

30

3.6 – zxcvbn: Password strength estimation

from strength meters used in popular web services. (disclaimer: The data in
the table is from 2012). From it we can learn:

1. Passwords like qwER43@!, which is a spatial password: it uses the keys
qwer4321, with shift pressed for the keys er and 21 (the @ symbol in
the English keyboard is shift+2), is not considered week by most of
the meters, but it should. It is probably due to the fact that it includes
a combination of numbers and symbols that makes it look strong, but
in reality, because of keyboard spatiality, is not.

2. Passwords like Tr0ub4dour&3, which is generated by replacing some of
Troubadour letters with numbers, and adding two more characters, is
regarded as a very strong password for all of the meters except zxcvbn.
Even if the base word is uncommon, and it has some variations, it is not
long enough to be considered so strong.

3. A password like correcthorsebatterystaple is not considered strong
by most of the meters except zxcvbn, and it is not even allowed in some
cases because it lacks numbers, Upper-cases or symbols.

The superiority of zxcvbn over the other meters in the table may seem like
cherry picking, but the way zxcvbn is constructed explains these differences:

Matching

Enumerates all the (possibly overlapping) patterns it can detect. Currently
zxcvbn matches against:

• Dictionaries: Common words the user is likely to use as password.
Multiple dictionaries, in a simple .txt format can be used. In this work,
we present a few: English words, Italian words, names and surnames,
Burnett’s 10,000 common passwords, words from tv and films. The
match has an associated frequency rank, where words like ’the’ and
’good’ have low rank, and words like ’photojournalist’ and ’maelstrom’
have high one. This lets zxcvbn scale the calculation to an appropriate
dictionary size on the fly, because if a password contains only common
words, a cracker can succeed with a smaller dictionary. For all dictio-
naries, match recognizes uppercasing and common l33t substitutions.

• Spatial keyboard patterns: Some users are likely to choose passwords
based on spatial pattern. For instance a user could choose the first row
of letters from right to left: poiuytrewq as they password. qwerty
keyboard, Dvorak keyboard, and keypad are considered.

31

3 – Frameworks, Libraries and software tools

• Repeats: Users are also prone to use repetition of characters, like rrrr.
• Sequences: Numeric or alphabetic sequences like 123 or fedcba
• Years and dates: The year or full date of a special event, like anniver-

sary or birthday. Years from 1900 to 2019 are considered and dates in
different formats. (3-13-1997, 13.3.1997, 1331997).

Entropy calculation of a single pattern

Depending on the type of matching, the entropy calculation is done differ-
ently, but for all the cases the idea is the same: How many different cases
a hacker would have to try before guessing the pattern? For example, for
the repeat case, if the user chooses zzzzz, as it is repeated five times, and if
we assume the hacker starts by the letter a, then the number of cases would
be N = 26 × 5 = 130. (The sequence the hacker would try is: a, b, c,

d...,z, aa, bb, cc,...,...,zzzz, aaaaa, bbbbb,....zzzzz).
As the number of possible cases can be pretty large, the entropy is not

given as a raw value but as e = log2(N), known as the entropy bits, and
in some cases as f = log10(N), known as the log entropy. In the example,
entropy bits: e = log2(130) = 7bits.

The entropy bits and log entropy are related by:

N = 2e = 10f

f = e × log10(2)
e = f × log2(10)

Minimum entropy search of whole password

“Given the full set of possibly overlapping matches, the algorithm finds the
simplest (lowest entropy) non-overlapping sequence. For example, if the pass-
word is damnation, that could be analysed as two words, dam and nation,
or as one. It’s important that it be analysed as one, because an attacker
trying dictionary words will crack it as one word long before two.

zxcvbn calculates a password’s entropy to be the sum of its constituent
patterns. Any gaps between matched patterns are treated as brute-force
"patterns" that also contribute to the total entropy. That a password’s en-
tropy is the sum of its parts is a big assumption. However, it’s a conservative
assumption. By disregarding the "configuration entropy" — the entropy from
the number and arrangement of the pieces — zxcvbn is purposely underesti-
mating, by giving a password’s structure away for free: It assumes attackers

32

3.6 – zxcvbn: Password strength estimation

already know the structure (for example, surname-bruteforce-keypad), and
from there, it calculates how many guesses they’d need to iterate through.”[33]

From entropy bits to rank and estimated crack time

To estimate the cracking time, it is necessary to make some assumptions
about what kind of attack will be subjected the user. zxcvbn considers four
possible scenarios according to the number of attempts/time the hacker can
do:

1. Online throttling (100 per hour): Online attack on a service that
ratelimits password authentication attempts.

2. Online no throttling (10 per second): Online attack on a service
that does not ratelimit or where an attacker has outsmarted ratelimiting.

3. Offline slow hashing (1e4 per second): Offline attack. assumes
multiple attackers, proper user-unique salting, and a slow hash function
with moderate work factor, such as bcrypt, scrypt, PBKDF2.

4. Offline fast hashing (1e10 per second): Offline attack with user
unique salting but a fast hash function like SHA1, SHA256 or MD5.
A wide range of reasonable numbers anywhere from one billion to one
trillion guesses per second, depending on number of cores and machines.
Ballparking at 10B per sec.

zxcvbn then ranks a password with a security level from 0 to 4 according
to its entropy value:

• Level0 if (N < 103): Too guessable, risky password
• Level1 if (N < 106): Very guessable, protection from throttled online

attacks.
• Level2 if (N < 108): Somewhat guessable, protection from unthrottled

online attacks.
• Level3 if (N < 1010): Safely unguessable, moderate protection from

offline slow-hash scenario.
• Level4 if (N > 1010): Very unguessable: strong protection from offline

slow-hash scenario

Where N is the number of possibilities a hacker would have to try for crack
the password. So for instance, if the password is level 2, it could be cracked
in around 108 guesses.

33

3 – Frameworks, Libraries and software tools

For Level0 the above rule in terms of the entropy bits is e < log2(103). In
terms of the log entropy bits, it simply is f < 3.

The level and estimated crack time for each type of attack is presented
to the user. With this information, the user will, hopefully, choose a Level4
password. Additionally, the user also receives feedback about how the pass-
word was cracked, so they know how to improve it.

3.7 PassPhrase Generator
From the previous two sections there seems to be a disagreement on what
a good password looks like. PwGen can generate totally random passwords
or pseudo-random pronounceable passwords, but even the later go against
what zxcvbn proposes: PassPhrases that are very easy to remember, but long
enough to give excellent entropy results. To fill this gap, a PassPhrase gen-
erator that gives results along the lines of CorrectHorseBatteryStaple is
used.

The PassPhrase generator developed by the author works by randomly
picking out words from dictionary files. The user can tune the PassPhrase
generation as follows:

• Dictionaries: The user must select appropriate dictionaries, containing
a sufficiently large number of lines (larger than 10000) to ensure the
picked words are really random. The English and Italian dictionaries
used by zxcvbn are a good example. The user can work with as many
dictionaries as desired, an the format must be one word per line. Only
the first word of each line is counted, as everything after a space is
trimmed.

• Number of words: The user can configure the number of words the
generated PassPhrases are composed of. The recommended size is four,
but it can be as long as the user wants.

• Minimum Length of Words: With this option is possible to select
only random words whose length is higher than a certain value. This is
to make sure the resulting PassPhrase is not too short and therefore too
insecure. The drawback here is that the higher the selected threshold,
the fewer the available words in the dictionaries.

• Only use infrequent words: If the dictionaries follow the same format
as those used for zxcvbn, that is, the words are ordered by frequency,
having the most uncommon words in the lower part of the dictionary,

34

3.7 – PassPhrase Generator

the user can then ask to generate PassPhrases containing only unusual
words. The drawback here is, again, fewer words to choose from. The
percentage of words that are used is configurable.

• Capitalize first letter: To make the PassPhrases more readable, the
first letter of each word can be capitalized.

35

36

Chapter 4

Application Development

In this chapter the actual implementation is explained, by covering the design
and general architecture, what is the role of each of the libraries, and how
they were used, including relevant commented code.

4.1 Design

The purpose of this section is to give the reader a clear overview of how the
application works in general terms.

A simplified design architecture is displayed in figure 4.1. It shows which
software libraries are used by the application and when it uses them.

The following is a brief explanation of how this libraries were used. More
details about each Library and why they were chosen were given in section
3 and section 4.2 deals with the actual implementation.

4.1.1 L0 and L1 Authentication libraries

When the user starts any application based on the SEcube™ platform, the
first steps to perform are to open the communication with the device using
Level 0 functions from both host and device, and to authenticate the user
by checking the login pin, using Level 1 functions (again, from both sides).
Figure 4.1 depicts how the SEcubeWallet uses the authentication functions
and they in turn communicate with the SEcube™ chip.

37

4 – Application Development

PwGen
PassWord Generator zxcvbn

Password Strength
Estimator

SecureSQLite

SQLite

SEfile

SEcube

L0 & L1
Authentication

SEcubeWallet

In-Memory
Wallet

In-disk
encrypted

Wallet

Text

Evaluate
Password

Edit
Wallet

Wallet to / from
Disk

Login
Logout

PpGen
PassPhrase Generator

Create
Password

Figure 4.1: Basic Design: Used Libraries

4.1.2 secureSQLite3
As explained before, wallets are managed as SQLite DataBases, that need to
be securely stored. Fortunately, the SEcube™ SDK library secureSQLite3
already provides the functionality of managing encrypted SQLite DBs.

secureSQLite is used to create/edit/save/open databases that when writ-
ten to the disk are encrypted and can only be read when the SEcube™ is
connected. As the library is implemented using wrappers, the developer only
needs to include the source files in the project and can manage secureSQLite
DB with the same functions used for regular SQLite DB.

Figure 4.1 shows the SEcubeWallet application using secureSQLite to
read/write the encrypted wallet stored in disk.

4.1.3 SQLite3
Because each call to the secureSQLite library involves a request to the SE-
cube™ device, in order to avoid an unnecessary high amount transmitted
data, a regular SQLite3 DB is also used, but its unencrypted data is never

38

4.1 – Design

saved to the disk. SQLite3 allows for the creation of an In-Memory DB,
i.e. a DB whose content is always in the application’s memory space and is
therefore secured by the operating system.

The In-memory DB is used for editing. When the user want to save the
wallet, i.e. write it to the disk, the contents of the In-Memory DB are dumped
to the encrypted secureSQLite DB. When the user opens a wallet from the
disk, the reverse process occurs.

With the In-memory DB, the user experience is increased as the applica-
tion is very responsive when editing, while a high level of security is main-
tained.

4.1.4 Password Generator
As the purpose of the application is to securely store passwords, said pass-
words should be as strong as possible. It does not make sense to protect a
password that can be easily cracked by a hacker using brute force. That is
why the application also includes a Password Generator.

The PwGen [41] open source library is used to generate passwords, that
can either be easy to remember, or completely random. Random passwords
are more secure, but as the are difficult to remember, their use only makes
sense when the user stores them in a wallet manager. Among other aspects,
length and characters used (Numbers, Upper cases) can be configured too.

When the user is adding a new entry to a wallet, they can chose to enter
a password or to automatically generate one.

4.1.5 PassPhrase Generator
In addition to the Password Generator PwGen, the user has the possibility to
generate PassPhrases instead. PassPhrases are a popular alternative because
they are easier to memorize and therefore can be longer, which in turns make
them more secure. Further details about the usefulness of PassPhrases and
how they compare against regular Passwords were given in section 3.6.

Although the PassPhrase Generator is not a library per se, it was included
in the diagram because of its close relation with the PwGen and zxcvbn
libraries. It was developed by the author, and it works by selecting random
words out of dictionary files.

The user can configure how many words each passphrase must have, the
minimum length of said words, and which dictionary files to use, among other
options.

39

4 – Application Development

4.1.6 Strength Estimator
To give the users feedback on how good the password they are about to store
is, the application uses the open source project zxcvbn to give an estimation
of the passwords entropy, and how long it would take for a hacker to break
it. zxcvbn evaluates if the password is a common word, or a combination
of them, a last name, a date, or letters close to each other in a keyboard
(thus the name zxcvbn). With the estimator users are encouraged to create
good passwords that are not necessarily completely random and difficult to
remember, or annoying to type.

4.2 Implementation
To recap what has been explained in previous sections, these are the key
aspects of the used libraries:

• To start the connection with the SEcube™, the Level 0 library is used
• To authenticate the user, by checking if the entered login pin is the same

as the pin stored in the SEcube™, the Level 1 library is used.
• A SQLite in-memory database is used for editing the wallet.
• A secureSQLite encrypted data base is used for storing the wallet in

disk.
• The application includes a password and a passphrase generator with

several configuration options.
• The application also includes an strength estimator, so the user has an

idea of how good their passwords are.

In the following sections each of the elements and functionalities of the
application will be explained, how they were implemented, some interesting
pieces of code and examples of use.

4.2.1 User authentication
When the user starts the application, the first window to appear is the Login
Dialogue, shown in figure 4.2a. In it the user is asked to enter the login pin
and by clicking accept the Challenge-Based Authentication process between
the SEcubeWallet application and the SEcube™ chip starts. If the authen-
tication fails because the entered pin is wrong, the message in 4.2b is shown.

40

4.2 – Implementation

If it fails because there was already an opened session, the confirmation dia-
logue shown in 4.2c appears. If the authentication is completed successfully
the user is granted access to the main window.

(a) Login Dialogue (b) Wrong Password (c) Already an open session

Figure 4.2: Login Dialogue and possible outcomes

The authentication process begins with the discovery of SEcube™ devices
connected to the PC. This is achieved using Level 0 APIs as seen in the
listing 4.1. Each discovered device is added to the QComboBox displayed in
the login dialogue, and to a QList.

Listing 4.1: Connected Devices discovery

1 //// *** variables declaration ***
2 se3_disco_it it;
3 QList<se3_disco_it> device_found;
4 QComboBox* chooseDevice;
5 bool found = true;
6

7 //*** Refresh button slot *****
8 L0_discover_init(&it); //initialize iterator
9 while((found = L0_discover_next(&it))){ //move to next device

10 chooseDevice->addItem(QString::fromLocal8Bit(
11 it.device_info.path, -1)); //add to GUI
12 device_found.push_back(it); //add to QList
13 }

The user then selects one of the discovered devices using the QComboBox,
enters their login pin and clicks accept. This triggers the listing 4.2. The
first step is to open the device communication using the Level 0 function
L0_open. Then L1_login starts the actual challenged based authentication
using the login pin entered by the user. Using this type of authentication
ensures the login pin is never communicated between the devices and is never
stolen with a physical attack on the USB cable. Rather, a random number

41

4 – Application Development

is generated in the host and transmitted to the device. The login pin is then
used in both the host and the device to encrypt this random number using
a pbkdf2 function. The resulting key on the device is sent to the host, who
compares it with its just generated key. If they are the same it means the
login pin entered by the user is equal to the login pin stored in the device,
and the only information transmitted are random numbers that an attacker
cannot understand. (The actual authentication procedure implemented is a
little bit more complex, but is based on the same idea described here).

After the same key is shared by both the device and the host, it is used to
encrypt the communication channel. A token is generated in the device and
transmitted on the encrypted channel to the host. This token is a random
number, and is used from that point on to validate any communication be-
tween host and device. The SEcube™ Chip does not accept any command
from the host if the token it sends is not the correct one. The only command
accepted without a token is off course, login. In the logout procedure, this
token is cleared (set to zeros), so a login later on is possible.

One problem found during the development of the application is the fol-
lowing: If after login in, the SEcubeWallet application crashes, the logout
command, that is usually issued when closing, is never executed, and the de-
vice remains with an active token value. Therefore, when the user launches
the application again, the login will fail, because the device expects a token
value from the host. To solve this issue a few options were considered:

• Make sure the application never crashes. Because software applications
are rarely completely bug-free, and even if they are, an external problem
like a bug in the OS can make them crash, this option is not feasible.

• Make sure the logout command is issued even in the case the application
crashes. This option sounded promising, and a two-process idea was even
developed. Process 1 is only in charge of calling Process 2, in which the
actual application is executed. if Process 2 crashes, Process 1 remains
alive and performs the logout procedure. To make this work, shared
memory was used to communicate the session variable (were the token
is stored), so both processes could send commands to the device. The
idea was latter on dropped because of two main reasons: First of all, it
did not solve the case were the problem is external (OS bug), secondly,
it was too complicated because of the sharing memory mechanism (The
session variable is a fairly complex structure, with a lot of pointers), and
because the token was being shared by two processes, this could open
another possibility of attacks.

42

4.2 – Implementation

Listing 4.2: Open device and try to login

1 // *** variables declaration ***
2 //use selected index at QComboBox to retrieve 'it' from QList.
3 int device_index = chooseDevice->currentIndex();
4 se3_disco_it it = device_found.at(device_index);
5

6 se3_session s;
7 se3_device dev;
8 int ret;
9 bool logout = false; //if true, L1_login logs out first

10

11 //*** Accept button slot *****
12 if(!dev.opened) // open communication with device
13 if((L0_open(&dev, &(it.device_info), SE3_TIMEOUT))!= SE3_OK)
14 exit(1); //error
15

16 ret = L1_login(&s, &dev, pin, SE3_ACCESS_USER, logout); //login
17

18 if (ret != SE3_OK){ //error at login
19 if (ret == SE3_ERR_PIN) //The password is wrong
20 show_wrong_pass_messsage;
21

22 else if (ret == SE3_ERR_OPENED){
23 // there is already an opened session, ask user if he wants

to close it
24 if(confirmation_dialog_reply == Yes){
25 logout = true;
26 call_this_function_again;
27 //next time L1_login will close the existing session
28 }
29 }else
30 exit(1);//other error
31 }else
32 accept();//All ok, go to main window

• As the two previous ideas failed, it was decided that a small modification
to the login behaviour on the SEcube™ firmware was necessary. The
modification consist on letting the login function clear the token field if
necessary. This does not compromise the security of the system because
access to the chip is only granted if the login pin entered by the user is
the right one. One concern that may rise is that, while an application

43

4 – Application Development

is using the SEcube™, another one could close the session by issuing a
Login command, but this is not possible because the L0_open function
only allows one process to communicate with the chip at a time, using
a file locker in the .se3magic file saved in the SEcube™ SDcard.

The new behaviour is implemented in listings 4.3. If after a crash the
session in the SEcube™ remains open, and the host tries to login again, the
SEcube™ returns the new error code SE3_ERR_OPENED. The host then can
decide if it wants to force the SEcube™ to close the opened session so it can
login, with the new command SE3_CMD1_LOGOUT_FORCED, which forces a
logout without checking the token. After this command the host can login
as usual. This steps are included in the host side L1_login function, which
now has an additional parameter to control whether to force a logout or not.
This parameter is the one used in listings 4.2, set to true when the user clicks
yes in the confirmation dialogue asking whether or not to close the previous
session.

Listing 4.3: Modification in SEcube™ Firmware, file se3_cmd1.c

1 if (se3c1.login.y) { // if there is already an opened session
2 if (memcmp(se3c1.login.token, req_params.token,

SE3_L1_TOKEN_SIZE)) { //and token mismatch
3 if (req_params.cmd==SE3_CMD1_CHALLENGE)//someone (maybe same

user after a crash) trying to login.
4 return SE3_ERR_OPENED;//notify host there is already an

opened session, if host wants to continue, it will call
SE3_CMD1_LOGOUT_FORCED

5 else if (req_params.cmd==SE3_CMD1_LOGOUT_FORCED)//if the
user agreed to close the existing session by forcing a
logout

6 req_params.cmd=SE3_CMD1_LOGOUT;//call logout as usual
7 else
8 return SE3_ERR_ACCESS;
9 }

10 }

4.2.2 Main Window
The SEcubeWallet GUI’s main window developed using Qt is shown in figure
4.3.

44

4.2 – Implementation

Figure 4.3: SEcubeWallet main window

The main window is composed of the following elements:

• Table View: Used for displaying the wallet entries. It resizes smoothly
with the window, can be ordered by any of the columns, and the pass-
words are hidden by default but can be shown if the user wants to.

• Filters: The user can search in each of the table’s columns using filters.
These filters are implemented inside a separate container, but they resize
together with the table.

• Entries Tool Bar: It is positioned to the left of the table. It has the
actions: add/edit/delete entries, show passwords, fit table, change date
filter, launch domain and select table.

• Tables Tool Bar: It is positioned in the top right of the table. It has
the actions: add/rename/delete table.

• Wallets Tool Bar: It is positioned to the top left of the table. It has
the actions: new/open/delete/save/save as/close Wallet.
All of the above Tool Bars are movable.

• Menu Bar: It is positioned at the top of the window. It contains all
the previous actions, plus preferences and help.

• Status Bar: Positioned at the bottom of the window, it is used to
display some success/error messages to the user, and the current wallet
name.

45

4 – Application Development

4.2.3 Wallet actions

The actions regarding wallets: New, Save, Save As, Open, Close and Delete
are explained in detail in the following.

New Wallet action

When the user triggers the the New_Wallet action, the first step to execute
is to check if there is another wallet opened and if it has unsaved changes.
If, so the confirmation dialogue in figure 4.4 is shown, so the user can decide
whether to save the changes, discard them, or cancel the creation of a new
wallet.

Figure 4.4: Save Confirmation dialogue

In case the user clicks Save, the Save_Wallet action is triggered before
continuing. Discard continues without saving, and Cancel returns without
doing anything.

If the process continues, the next step is to close any previous in-memory
database handlers, save the table_view geometry (if any), and open a new
in-memory database using the Qt class QSqlDatabase, as seen in listings
4.4.

As explained before the in-memory data base is used for editing. It has
the advantage of being fast because there is no access to the hard disk, and
secure, because all the data is in the application memory space, and therefore
is protected by the OS.

The last step is to update the GUI state, by enabling some action like
Add_Table and Save_Wallet, and disabling others, like Delete_Table

and Rename_Table.

46

4.2 – Implementation

Listing 4.4: New in memory database

1 QSqlDatabase dbMem; //The database handler, declared in header
2

3 //Check if SQLite is installed on OS
4 if(!(QSqlDatabase::isDriverAvailable("QSQLITE")))
5 exit (1); //the application does not work without SQLite
6

7 if (dbMem.isOpen()){
8 save_table_geometry;
9 dbMem.close();//close any prev. opened database

10 }
11

12 dbMem = QSqlDatabase::addDatabase("QSQLITE");
13 dbMem.setDatabaseName(":memory:"); // in-memory database
14 if(!dbMem.open()){
15 return;//Error opening, do nothing
16 }

Save Wallet action

To write the wallet contents to the disk, it is necessary to have a filename, so
the first step is to check if the user already entered one (from previous saves).
If not, with the dialogues in figure 4.5 the user can choose the directory and
the filename to save.

(a) User can enter a New name. Current
wallets are displayed

(b) if Browse is clicked a QFileDialog
is launched

Figure 4.5: Save Wallet dialogues

47

4 – Application Development

The need for two dialogues instead of a regular file browser comes from
the fact that the chosen filename will not be readable from the OS, since
SEfile also encrypts it. Similarly, wallets already saved in the directory
cannot be displayed with a regular file browser, so it is necessary to use the
SEfile function secure_ls and display its output in the list seen in figure
4.5a. The declaration of this function is in listings 4.5. To chose the working
directory, it is enough to use the QFileDialog class. If the user wishes they
can overwrite an existent wallet.

Listing 4.5: secure_ls declaration

1 /* This function identifies which encrypted files and encrypted
directories are present in the directory pointed by path

and writes them in list. It only recognizes the ones
encrypted with the current environmental parameters.*/

2

3 uint16_t secure_ls(//returns 0 in case of success
4 char *path, //[in]Path to the directory to browse
5 char *list, //[out]Allocated array to store filenames
6 uint32_t *list_length//[out]Num of char written in list
7);

After having a filename the next step is to read all of the tables in the
current in-memory database, row by row. Then, for each row a SQLite

statement of the form INSERT INTO table VALUES(user, dom, pass,

date, desc) is created. All of them are merged into a single statement
which is executed into the secured in-disk database. This ensures only one
access to the SEcube™ and disk. This process is somewhat slow and the
GUI is disabled while it is performed. A simplified version of the code is
shown in listing 4.6

One problem found during the open process of a secured in-disk wallet is
that the first table is always corrupt and gives the error: database disk

image is malformed. The error only occurs when using the SEcube™
version of the SQLite library. Because it was impossible to find the origin of
the error, it was decided to use a workaround: In the save wallet process, an
empty table is inserted at the beginning of the in disk database (see line 16
in listings 4.6). When opening a wallet, the empty table is simply ignored.
With this, the real tables are always correctly read an the application works
as intended.

48

4.2 – Implementation

Listing 4.6: simplified Save process

1 sqlite3 *dbSec; //Secure database declaration, in header
2 QSqlDatabase dbMem;//The database handler, declared in header
3 QSqlQuery query; //To exec SQLite statements, dec. in header
4

5 //Create SQLite DB, with filename specified by user If SEcube is
connected, the resulting file is encry.

6 sqlite3_open_v2 (fileName.toUtf8(),
7 &dbSec,
8 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE ,
9 NULL)

10

11 QString finalSql; //To Merge all the SQLite statements.
12 static const QString insert =
13 QStringLiteral("INSERT INTO '%1' VALUES(%2);"); //statement
14

15 dbMem.tables(QSql::Tables); //list of the tables in in-memory DB
16 tables.prepend("NoEmpty"); //Workaround: prepend Empty table
17 foreach (const QString table, tables) { // loop all the tables
18 QString sql= "create table '"+table+//Create table statement
19 "'(id integer primary key, "
20 "Username TEXT, "
21 "Domain TEXT, "
22 "Password TEXT, "
23 "Date TEXT, "
24 "Description TEXT);" ;
25 sqlite3_exec(dbSec, sql.toUtf8(), NULL, 0, &zErrMsg);// exec
26

27 if (table=="NoEmpty"){//just an empty table
28 set_values_to_empty;
29 finalSql += insert.arg(table).arg(values.join(", "));
30 }else{
31 query.prepare(QString("SELECT * FROM [%1]").arg(table));
32 query.exec()
33 while (query.next()){ //row by row
34 values = query_read_row();
35 finalSql += insert.arg(table).arg(values.join(", "));
36 }
37 }
38 //single write into secure database, fill the tables
39 sqlite3_exec(dbSec, finalSql.toUtf8(), NULL, 0, &zErrMsg);

49

4 – Application Development

Save Wallet As action

This action is very simple, it just clears the current filename (if any), and
calls the Save_Wallet action; as there is no filename, the user is forced
to enter a new one. The only point to be careful about is that, in case
the Save_Wallet_As process is aborted, the previous filename needs to be
recovered, so before clearing, the filename is temporary stored in case it is
needed.

Open Wallet action

Similarly to the New_Wallet action, the first step is to check for unsaved
changes and ask the user if save them, discard them or cancel, with the
dialogue in figure 4.4

If the user decides to continue, the dialogues in figure 4.6 allow them to
choose from the list the wallet to open.

(a) User chooses the wallet to open from
the list

(b) if Browse is clicked a QFileDialog
is launched

Figure 4.6: Open Wallet dialogues

The application proceeds doing the inverse process to the Save_action,
that is, read all the tables from the secure in-disk database and create an in-
memory database with this data. To do so, the listings in 4.7 is used. First,
the in-disk data base is opened as read only, and a list named tables with
the existent tables in it is generated. Then an in-memory database is created.
Finally, for each table in tables, its contents are read, a correspondent table
is created in the in-memory database, and the later is populated with the

50

4.2 – Implementation

read contents from the in-disk DB.

Listing 4.7: Simplified Open Wallet action

1 sqlite3_open_v2(fileName.toUtf8(),
2 &dbSec,
3 SQLITE_OPEN_READONLY, NULL)); //open in-disk DB
4

5 QString tableNames="SELECT name FROM sqlite_master "
6 "WHERE type='table' "
7 "ORDER BY name;";
8 sqlite3_exec(
9 dbSec, tableNames.toUtf8(),

10 callback_createTableList,//builds the 'tables' list
11 this, &zErrMsg);
12

13 if (dbMem.isOpen()){
14 save_table_geometry;
15 dbMem.close();//close any prev. opened database
16 }
17 dbMem = QSqlDatabase::addDatabase("QSQLITE");
18 dbMem.setDatabaseName(":memory:");
19 dbMem.open();
20 query = QSqlQuery(dbMem);
21

22 foreach (const QString table, tables){
23 QString sql = "create table '"+table+
24 "'(id integer primary key, "
25 "Username TEXT, "
26 "Domain TEXT, "
27 "Password TEXT, "
28 "Date TEXT, "
29 "Description TEXT);";
30 if (table!="NoEmpty"){ //Workaround: ignore empty
31 query.prepare(sql);
32 query.exec(); //create table in in-mem DB
33 }
34 QString SqlStatement =
35 QStringLiteral("SELECT * FROM '%1';").arg(table);
36 sqlite3_exec(
37 dbSec, SqlStatement.toUtf8(),
38 callback_populateTable, //populates in-mem DB
39 this, &zErrMsg);
40 }

51

4 – Application Development

The SELECT FROM statements in sqlite3 require the use of a callback
function, which is called for every result row, and receive the actual data
from the data base as an argv[] argument. In the open process two of these
functions are needed, shown in listing 4.8. In create_TableList, the list
tables is build by simply reading the only element in the argv[] array, as
each row only consists of a table’s name. In populatetable, the table in
the in-memory DB is populated, row by row with each call. In this case the
argv[] array holds the values in a single row coming from the in-disk DB.

Finally the GUI is updated, by enabling some elements and disabling
others.

Listing 4.8: Callback functions for Sqlite3 SELECT

1 //Build TableList from in-disk DB
2 callback_createTableList(int argc, char**argv, char**azColName){
3 tables << argv[0]; //only one arg, the table name
4 return 0;
5 }
6 //fill 'table' in in-mem DB with data from in-disk DB
7 callback_populateTable(int argc, char **argv, char **azColName){
8 if (table=="NoEmpty") // we dont want NoEmpty in the in-mem db
9 return 0;

10 int i;
11

12 static const QString insert =
13 QStringLiteral("INSERT INTO '%1' VALUES (%2);");
14

15 QStringList values;
16 QString aux;
17 for(i = 0; i<argc; i++){//argv holds values from a single row
18 aux = argv[i];
19 values << "'"+aux+"'";
20 }
21 query.prepare(insert.arg(table).arg(values.join(", ")));
22 query.exec();
23 return 0;
24 }

52

4.2 – Implementation

Close Wallet action

This action is very simple. As usual, before closing the current wallet a check
for unsaved changes is performed, and the user is asked what to do with them
using a confirmation dialogue. If the user decides to continue, the in-memory
database handler is closed, and the table geometries are saved. Finally the
GUI is updated.

Delete Wallet action

Deleting a wallet involves deleting an in-memory database and/or an in-disk
database.

If only the in-memory database exists (user has not save it to disk yet),
the wallet is simply closed, as in the previous section.

If there is no opened wallet, and the user wishes to delete an in-disk
database, a select file dialogue equal to the one in the Open_Wallet action
is shown, where the user can chose the wallet to delete. Then the wallet is
deleted as shown in listing 4.9. First we obtain the encrypted version of the
filename, using the SEcube™ API, and then the file in the disk is deleted
using standard OS calls.

Listing 4.9: Delete an in-disk database

1 crypto_filename(fileName.toUtf8().data(),
2 enc_filename, &enc_len
3);
4 QFile::remove(enc_filename); //OS call

If both in-disk and in-memory wallets are to be deleted, that is, if there is
an opened wallet that has been already saved to disk, there is no need for a
select file dialogue, as the filename is known from the Save_Wallet process.
The in-memory database handler is closed and the in-disk encrypted wallet
file deleted as explained above.

In all the above cases, a confirmation dialogue ask the user if they are sure
about deleting the wallet.

4.2.4 Table actions and display
Actions and classes regarding tables, they creation and display, are explained
in the following sections:

53

4 – Application Development

Add Table action

With an in-memory wallet opened, the user can add a new table to it by
simply entering a name. the listing 4.10 shows this process. With the
QIntputDialog class, it is possible to ask the user for a name easily. If
the name is valid, the sqlite query to add the table is executed. It may be
the case the table already exists, in which case the query execution returns
an error and the user is notified.

Listing 4.10: Add a New Table

1 bool ok;
2 QString tableName = QInputDialog::getText
3 (this, "New Table",
4 "Enter new table name",
5 QLineEdit::Normal,"", &ok);
6

7 if (!ok || tableName.isEmpty())
8 return;
9

10 QSqlQuery query(dbMem);
11 query.prepare("create table '"+tableName+
12 "'(id integer primary key, "
13 "Username TEXT, "
14 "Domain TEXT, "
15 "Password TEXT, "
16 "Date TEXT, "
17 "Description TEXT)");
18

19 if (!query.exec()){
20 return; // maybe a table with that name already exists, or is

a reserved SQLite command

If the table is the first one to be added in the wallet, a table view and
filters are created and added to the GUI, in order to display the table.
Otherwise, the table view is just updated. These elements are explained
in details in the upcoming sections.

Delete Table action

To delete a table it is enough to use the SQLite DROP TABLE command as
seen in listings 4.11. With the QMessageBox the user is asked to confirm

54

4.2 – Implementation

before deleting.
After deleting, the table view needs to be updated, to show the next

table in the wallet. If there are no more tables, the view is simply hidden,
and other GUI elements like Add Entry disabled.

Listing 4.11: Delete Table

1 reply = QMessageBox::question
2 (this,
3 "Delete",
4 "Are you sure you want to delete Table "+tableName,
5 QMessageBox::Yes|QMessageBox::No);
6 if (reply == QMessageBox::No)
7 return;
8

9 QSqlQuery query(dbMem);
10 query.prepare("DROP TABLE '" + tableName+"'");

Rename Table action

To Rename a table the SQLite command ALTER TABLE RENAME TO is used
as seen in listing 4.12. After this, the QComboBox used to select the current
table being displayed is updated to reflect the name change.

Listing 4.12: Rename Table

1 QSqlQuery query(dbMem);
2 query.prepare("ALTER TABLE '" + currentName + "' RENAME TO '"+

newName+"'");
3 query.exec();

Select Table

To allow the user to select one table to display out of the existent ones in
the current Wallet, a QComboBox is added to the Entries Tool Bar. Each
time a Wallet is opened/closed, or a table is added/renamed/deleted, the
items in the QComboBox are updated accordingly. When the selected item in

55

4 – Application Development

the QComboBox changes, the tableView update procedure explained in the
following section is triggered.

Table display

To display the entries in each of the Wallet tables, a Model/View architec-
ture was followed. From the official Qt documentation [12]:

“Model-View-Controller (MVC) is a design pattern originating from Smalltalk
that is often used when building user interfaces. In Design Patterns, Gamma
et al. write:

MVC consists of three kinds of objects. The Model is the application
object, the View is its screen presentation, and the Controller defines the way
the user interface reacts to user input. Before MVC, user interface designs
tended to lump these objects together. MVC decouples them to increase
flexibility and reuse.

If the view and the controller objects are combined, the result is the mod-
el/view architecture. This still separates the way that data is stored from
the way that it is presented to the user, but provides a simpler framework
based on the same principles.”

“The model communicates with a source of data, providing an interface for
the other components in the architecture. The nature of the communication
depends on the type of data source, and the way the model is implemented.

The view obtains model indexes from the model; these are references to
items of data. By supplying model indexes to the model, the view can retrieve
items of data from the data source.

In standard views, a delegate renders the items of data. When an item
is edited, the delegate communicates with the model directly using model
indexes.”

Figure 4.7 (taken from the Qt documentation), shows the way these three
elements interact between them and with the data.

In the SEcubeWallet application these elements correspond to:

• Data: The data coming from the database. As we are displaying only
one table at a time, the data actually corresponds to a single table.

• Model: QSqlTableModel, a Qt class which provides an editable data
model for a single database table.

• Proxy Model: MySortFilterProxyModel, a class written by the au-
thor inheriting from the QSortFilterProxyModel class. It implements
custom filtering for each of the columns, in particular for the date.

56

4.2 – Implementation

Figure 4.7: The Qt Model View Architecture

• View: MyQTableView, a class written by the author inheriting from the
QTableView class. MyQTableView reimplements the resizeEvent to
make sure the user has the best GUI experience. This new class allows
for manual resizing of each column as well as automatic resizing when
the widow size changes. Also, there is a button that allows the user to
fit the table in the available space by giving all the columns the same
width.

• Delegate: PasswordItemDelegate, a class written by the author in-
heriting from the QStyledItemDelegate class. It is used to implement
the show/hide password functionality.

In the previous list there is one element not mentioned in the model/View
architecture: the Proxy Model. It will be explained in details in the filters
section. The delegate will be explained in the Show Password section.

In listing 4.13 the model view architecture is implemented. Model, Proxy
Model and Delegate are interconnected among them, with the database table
and with the GUI’s table view. Additionally some display tweaks are made,
for instance the ID column, vertical header and passwords are hidden.

When it is necessary to change the table to be displayed, either because
the user changes walllet or table, or deletes one, the listing 4.14 is used. Only
the model needs to be updated, because it is the one connected to the data.

57

4 – Application Development

Listing 4.13: Model/View architecture implementation

1 // Create and configure model to access data in table
2 model = new QSqlTableModel;
3 model->setTable(tableName);
4 model->select();//update the model selection
5 model->setEditStrategy(QSqlTableModel::OnManualSubmit);
6 //Changes will be updated manually by calling submitAll()
7

8 //Create ProxyModel for filtering
9 proxyModel = new MySortFilterProxyModel(this);

10 proxyModel->setSourceModel(model); //connect proxyModel to Model
11

12 //Create and connect delegate to hide passwords
13 passDelegate=new PasswordItemDelegate(this);
14 ui->tableView->setItemDelegateForColumn(PASS_COL, passDelegate);
15

16 //Connect to table view, resulting in:
17 //Sql <--> Model <--> ProxyModel <--> Delegate <--> TableView
18 ui->tableView->setModel(proxyModel);
19

20 //Configure table
21 ui->tableView->//Hide SQLite ID column, not useful to user
22 setColumnHidden(IDENT_COL, true);
23 ui->tableView->//Hide row header, not useful
24 verticalHeader()->hide();
25 ui->tableView->//To make the table view not editable
26 setEditTriggers(QAbstractItemView::NoEditTriggers);
27 ui->tableView->//To allow only one row selection.
28 setSelectionBehavior(QAbstractItemView::SelectItems);
29 ui->tableView->//So we can edit one entry per time
30 setSelectionMode(QAbstractItemView::SingleSelection);
31

32 ui->tableView->show();// show table

The table view geometry needs to be saved and restored, because with the
data change, the columns are automatically resized by Qt to fit the new data,
which is visually annoying for the user.

Show Passwords action

To show the passwords it is enough to not use a delegate for the correspon-
dent column. Conversely, to hide them again, the delegate is used, as seen

58

4.2 – Implementation

Listing 4.14: update the model/view

1 save_table_geometry;//each column width
2 model->setTable(tableName);
3 model->select();
4

5 restore_table_geometry;
6 ui->tableView->setColumnHidden(IDENT_COL, true);//required

in listing 4.15. The delegate displayText method definition is also shown.
Its job is to return the bullet character eight times instead of the actual item
value.

Filters

The filters implementation comprise two classes. The first one is related to
the GUI, and its job is to align each of the filters with its corresponding table
column. The second class is related to the data filtering per se.

The filters alignment is based on the ColumnAlignedLayout class by
sashoalm [5]. This class is a Layout that inherits from the QHBoxLayout

class. It reimplements the setGeometry method to reposition each of the
elements in the layout to follow the correspondent column in the tableView
that is being tracked. This implementation allows to add any type of widget
to the layout, as long as the number of widgets equals the number of tracked
columns. The class definition is shown in listing 4.16.

To connect the aligned layout to the table view, the listing 4.17 is used.
In it, an aligned filter object is created and is set as the Layout of a widget
positioned over the tableView in the GUI. Then the aligned filter is set to
track the tableView’s horizontalHeader. Finally any geometry change in
the horizontalHeader, or in the horizontalScrollBar calls the slot
invalidateAlignedLayout, which in turns calls the invalidate method.
This method resets the Layout’s cached information, which forces a call to
setGeometry. This ensures any resizing of the table’s columns is reflected
in the filters position.

The data filtering is done using a custom SortFilterProxyModel. For
all the columns except the date, a simple case insensitive match is enough.
For the date, using a button in the GUI, the user can choose among two
options:

59

4 – Application Development

Listing 4.15: Show/Hide Passwords

1 // *** in pasworditemdelegate.cpp ***
2 PasswordItemDelegate::PasswordItemDelegte(QObject* parent):

QStyledItemDelegate(parent){}
3 //inherits from QStyledItemDelegate
4

5 QString PasswordItemDelegate::displayText
6 (const QVariant &value, const QLocale &locale) const {
7 return (QString("%1").arg(QChar(0x2022)).repeated(8));
8 } // just returns the bullet character 8 times
9

10 // *** in mainwindow.cpp ***
11 void MainWindow::on_action_Show_Passwords_toggled(bool show){
12

13 passDelegate=new PasswordItemDelegate(this);
14 if (!show)//do not show passwords: use passDelegate
15 ui->tableView->setItemDelegatForColumn(
16 PASS_COL, passDelegate);
17

18 else{ //show passwords: do not use delegate
19 QMessageBox::StandardButton reply;
20 reply = QMessageBox::question(
21 this,
22 "Passwords",
23 "Are you sure you want to show your passwords",
24 QMessageBox::Yes|QMessageBox::No);
25 if (reply == QMessageBox::No)
26 return;//if error or cancel, do nothing
27

28 ui->tableView->setItemDelegateForColumn(PASS_COL, 0);
29 }
30 }

• Exact Match filter: In this configuration, the user enters the exact
date they are looking for, using a QDateEdit input element.

• Older Than filter: Because this is a password wallet, looking for an
exact date may not be very useful. Instead, knowing which passwords
are older than a given amount of time, and have therefore expired is
more helpful. For instance the user could be interested in updating
their passwords each six months, so with this filter they can show only
those passwords that need to be changed. In figure 4.8 an Older Than

60

4.2 – Implementation

Listing 4.16: Aligned Filters definition

1 // *** filtersaligned.cpp ***
2 FiltersAligned::FiltersAligned(QWidget *parent) //constructor
3 : QHBoxLayout(parent){//inherits from horizontal Box Layout
4 add_filters_to_layout; //add filters (most of them QLineEdits)
5 }
6 void FiltersAligned::setTableColumnsToTrack(QHeaderView *view) {
7 headerView = view; //set tracked tableView
8 }
9 void FiltersAligned::setGeometry(const QRect &r){

10 QHBoxLayout::setGeometry(r);
11

12 int widgetX = parentWidget()->mapToGlobal(QPoint(0, 0)).x();
13 int headerX = headerView->mapToGlobal(QPoint(0, 0)).x();
14 int delta = headerX - widgetX;
15

16 // repositioning
17 for (int ii = 0; ii < headerView->count(); ++ii) {
18 int pos = headerView->sectionViewportPosition(ii);
19 int size = headerView->sectionSize(ii);
20 auto item = itemAt(ii);
21 auto r = item->geometry();
22 r.setLeft(pos + delta);
23 r.setWidth(size);
24 item->setGeometry(r);
25 }
26 }

six months filter is shown (as of July the 13th 2018).

(a) No filter (b) Older Than 6 Months

Figure 4.8: Date Older Than filter

61

4 – Application Development

Listing 4.17: Table View and aligned filters connection

1 // *** in mainwindow.cpp when the tableView is created:
2 filters = new FiltersAligned();
3 ui->filtersWidget->setLayout(filters);
4 filters->setTableColumnsToTrack(
5 ui->tableView->horizontalHeader());
6 filters->setParent(ui->filtersWidget);
7

8 connect(ui->tableView->horizontalHeader(),
9 SIGNAL(sectionResized(int,int,int)),

10 SLOT(invalidateAlignedLayout()));
11 connect(ui->tableView->horizontalScrollBar(),
12 SIGNAL(valueChanged(int)),
13 SLOT(invalidateAlignedLayout()));
14

15 //the SLOT
16 void MainWindow::invalidateAlignedLayout(){
17 filters->invalidate();
18 }//clears the cache, which forces a call to setGeometry

The filters implementation is very simple. It involves the reimplementation
of the filterAcceptsRow method in the ProxyModel as in listings 4.18.
This method is called each time the user changes one of the filters contents.
The filters work concurrently, so the user can search in multiple columns at
the same time. All of them except the date one accept RegExp, so a search
like google|gmail is possible. The password filter is only enabled when the
passwords are visible.

4.2.5 Entries actions
In this section, the implementation of the actions add/edit/delete entry are
explained.

Add Entry action

The AddEntry class allows users to input a new entry to one of the tables,
using the subwindow in figure 4.9

This subwindow is composed of:

• Text input elements: To enter the Username, Domain, Description

62

4.2 – Implementation

Listing 4.18: Filters implementation

1 bool MySortFilterProxyModel::filterAcceptsRow
2 (int sourceRow, const QModelIndex &sourceParent) const
3 {
4 QModelIndex userIndex =
5 sourceModel()->index(sourceRow, USER_COL, sourceParent);
6 QModelIndex domainIndex =
7 sourceModel()->index(sourceRow, DOM_COL, sourceParent);
8 QModelIndex passIndex =
9 sourceModel()->index(sourceRow, PASS_COL, sourceParent);

10 QModelIndex descIndex =
11 sourceModel()->index(sourceRow, DESC_COL, sourceParent);
12

13 QModelIndex dateIndex =
14 sourceModel()->index(sourceRow, DATE_COL, sourceParent);
15 QDate thisDate = QDate::fromString(
16 sourceModel()->data(dateIndex).toString(),format);
17

18 return (//only return rows where the conditions are met
19 sourceModel()->
20 data(userIndex).toString().contains(userRegExp) &&
21 sourceModel()->
22 data(domainIndex).toString().contains(domainRegExp) &&
23 sourceModel()->
24 data(passIndex).toString().contains(passRegExp) &&
25 sourceModel()->
26 data(descIndex).toString().contains(descRegExp) &&
27 (thisDate<=filterDate_older||!filterDate_older.isValid()) &&
28 (thisDate==filterDate_exact||!filterDate_exact.isValid()) &&
29);
30 }

and Password, five QLineEdit are used. The password needs to be
entered twice to make sure it is the desired one, and if it is not the same
in both text fields, an error message is displayed. The date is not entered
by the user, but generated automatically based on the system clock.

• Show password checkBox: By changing the echo mode in the pass-
word QLineEdit, it can be hidden or shown. It is hidden by default

• Password Generator Button: This triggers one of two available gen-
erators: PwGen or PassPhraseGen. These are explained in detail in
sections 4.2.7 and 4.2.9

63

4 – Application Development

(a) Passwords are shown and
do not match

(b) Passwords are shown and
do match

(c) Passwords are shown. zx-
cvbn library has not been
compiled

Figure 4.9: Add Entry subwindow

• l33t buttons: To increase the password strength the user can translate
it to l33t. If they are not happy with the result, a button to reverse the
action is also present. The l33t implementation is explained in section
4.2.6

• Password Strength elements: A Progress Bar used to display the
password strength calculated with the zxcvbn library, a label to show
some information about the strength, and a button to open a subwindow
showing the details of these calculations. If the zxcvbn library has not
been compiled by the user in the settings window, these elements are
disabled. The zxcvbn library is explained in details in section 4.2.8

• Bottom buttons: The ok button is only functional when all the text
fields (except for description, which is optional) are filled, and the two
passwords coincide. The settings button opens the settings subwin-
dow so the user can customize the password generators or the strength
estimator without having to close the AddEntry subwindow.

When the user clicks the ok button, the new entry needs to be added to
the database. Instead of using SQLite commands, it is easier to rely in the
high-abstraction level methods offered by the model, as seen in listing 4.19.

64

4.2 – Implementation

Listing 4.19: Add entry to database using model

1 AddEntry *add = new AddEntry(this);
2 add->exec(); //exec AddEntry subwindow
3 if(add->result()==QDialog::Rejected)
4 return; // Error or cancel, do nothing
5

6 QSqlRecord rec = model->record(); // Temp entry
7 rec.setGenerated("id", false); // is managed by SQLite
8

9 //Get the values entered by user in AddEntry subwindow
10 rec.setValue("Username" , add->getUser());
11 rec.setValue("Password" , add->getPassword());
12 rec.setValue("Domain" , add->getDomain());
13 rec.setValue("Description", add->getDescription());
14

15 rec.setValue("Date", QDate::currentDate());//sys clock
16

17 int newRecNo = model->rowCount(); //insert at the end of table
18 if (!model->insertRecord(newRecNo, rec))
19 return;
20 model->submitAll();// if insert ok, submit changes.

Edit Entry action

The user can edit any of the entries by selecting one of the cells in the
tableView and clicking the Edit Entry button, or by double-clicking any
of the cells. In either case, the data from the selected row is retrieved and
passed to new AddEntry object using its constructor. In this way, the user
is presented with an AddEntry subwindow where the input fields are already
filled with the current data. The user can then modify and save them by
clicking ok. In this process the ProxyModel is used instead of the model,
because the former allows to identify the items selected in the tableView.

Delete Entry action

Deleting an entry is very simple. The row index of the selected cell is used
in the ProxyModel method removeRow(row), and the change is submitted
with submitAll. Before deleting, the user is asked to confirm the action.

65

4 – Application Development

4.2.6 Other functionalities
In this section, a set of miscellaneous functionalities are explained.

Launch Domain action

Using the Qt function QDesktopServices::openUrl(QUrl(domain)), it
is straight forward to open the domain of the entry selected by the user. It
will be opened in the default web browser configured in the OS. The only
detail to play attention is the format. If the domain entered by the user does
not start with http:// or https://, then http:// is prepended. Also, if
the entered domain does not contain any dots apart from the one in www.,
then the most common top-level domain, .com is added. This will not work
in all the cases, but should help fixing some of the domains when the user
forgets to type the TLD.

Status Bar

The status bar, at the bottom of the main window, is used to display three
types of information:

• Wallet Name: The wallet name (with full path) is permanently dis-
played at the right side of the status bar in color blue. In case the wallet
does not have a name because the user has not saved yet, unnamed is
displayed. When the wallet has unsaved changes, an asterisk is added
to the end resulting in: /absolute_path/wallet_name*

• Success: After any save/open/delete operation, a black message is
shown for two seconds in the left side of the status bar, informing the
user the process concluded without issues.

• Error/Warning: In the eventuality of an error or warning during the
execution of a command, for instance, if it is not possible to load the
SQLite driver, a red message in the left side of the status bar informs
the user about the issue.

Preferences Subwindow

This subwindow is accessible from the Menu Bar and from the AddEntry

subwindow. It allows to customize the password generators and the strength
estimator. Their available configurations are covered in their respective sec-
tions.

66

4.2 – Implementation

Environment subwindow

From the environment subwindow the user can select which of the keys and
algorithms present in the SEcube™ chip to use for the encryption/decryption
process.

Keys are used to divide wallets into categories (work, banking, social)
and allow their sharing. A given user can have for instance one key that is
shared among co-workers, so all of them can access work-related passwords
using their respective SEcube™ devices. Similarly, other key can be shared
with their family to access banking accounts passwords, and finally have a
personal key that is not shared with anyone and is used to encrypt social
media passwords.

The current SEcube™ firmware version only includes one algorithm for the
data encryption/decryption process, but in the future it may provide more
than one. Different algorithms offer different security characteristics that
some advance user may find useful. For example one user could be concerned
about some specific type of attack that requires an special algorithm, or
regard one algorithm superior over the others.

Figure 4.10 depicts the environment subwindow.

Figure 4.10: Environment subwindow

Help Subwindow

This subwindow teaches the user a few tips about how to use the application
features, some of which may not be obvious, like the strength estimator or
the date filter. It also gives some information about the application, like the
author, year, and code sources.

67

4 – Application Development

l33t

This is a very simple converter that uses the capabilities of the QString

class to replace each occurrence of the letters o i z E A s b T B P with
the numbers 0 1 2 3 4 5 6 7 8 9 respectively, and the letter l with the
character |. To un-l33t, the reverse process is made. It is worth noticing
that password crackers (and strength estimators like zxcvbn) usually try an
l33t dictionary too, so this option may increase the password strength, but
not by too much. In table 4.1 a few passwords and their l33t version are
compared. The strength measured with zxcvbn is reported.

Table 4.1: A few l33t examples

Password Log Entropy (Level)

LeytonVariational 9.44 (Level 3)
Leyt0nVar1at10na| 10.22 (Level 4)

PenicuikCiting 9.09 (Level 3)
9en1cu1kC1t1ng 13.87 (Level 4)

LauraDrogheda 6.44 (Level 3)
LauraDr0gheda 6.74 (Level 4)

4.2.7 PwGen: Pronounceable Passwords Generator
As seen from previous sections, the PwGen program is open source and
available in the official Linux repositories. A very simple way of includ-
ing its functionalities into the SEcubeWallet application would be to use a
Qprocess to call PwGen as an external program. Although is tempting to
use this solution because of its simplicity, there are three drawbacks with this
approach:

1. It would require for the user to install the PwGen program, as it is
usually not included in common Linux distributions.

2. It would not be very portable, because even if there is a PwGen version
for windows, the available version or input parameters could differ in
different platforms.

68

4.2 – Implementation

3. Security could be compromised. As PwGen needs to communicate the
generated password back to the SEcubeWallet application, an attacker
could steal the password in this process.

For these reasons, it was decided to embed the PwGen sources directly
into the application, this ensure the password never leaves the application
memory space. To include the sources into the application, some slight mod-
ifications (mostly simplifications) to the PWGen main() function were nec-
essary. This is because the original sources are intended for the use of PwGen
as a independent console program called by users, so the main() contains
code dedicated to parse the input arguments in the standard argc argv[]

fashion. Only the pwgen.c and pwgen.h — files where the main() is im-
plemented — were modified.

Options GUI

As all the options for PwGen besides the password length are yes or no
questions, the checkable list shown in figure 4.11 is perfect for this purpose.

When the OK button is clicked, all the values are saved using the QSettings
class, so they are available even after restarting the application.

Usage

When the Generate Password button in the AddEntry class is clicked, the
settings values stored in with the QSettings class are read and from them a
char[] with the PwGen options syntax is built. Before calling the Genera-
tor, it is necessary to allocate a memory space equal to the desired password
length (in char) and pass this buffer as a pointer (char*) to PwGen. Pw-
Gen will write the generated password in this space. This steps can be seen
in the listing 4.20

Results

A few examples of the resulting Passwords are show in table 4.2, with their
respective zxcvbn Log entropy score and Level. As expected, the passwords
with highest entropy are those obtained using the -s (Random) and -sy

(Random and especial characters) options. Even with only 6 characters it is
possible to get a Level 4 password like TBw4)9. The drawback is, they are
hard to remember and type.

69

4 – Application Development

Figure 4.11: PwGen settings in the preference window

On the contrary, a password obtained with the -BA0 (No ambiguous, do
not capitalize, no numbers, pronounceable) options, like nofosootei, only
reaches a Level2, but it is very easy to remember and type.

4.2.8 zxcvbn Password strength estimator
The original zxcvbn project, developed in CoffeeScript became so popular it
was ported to a large variety of languages. In this work the C/C++ version
available at [32] was used. The files used in this project are:

70

4.2 – Implementation

Listing 4.20: PwGen call inside AddEntry

1 //read user settings (if existent)
2 if (settings.value("passGens/pwgen/1cap").toBool())
3 options.append("c");
4 if (settings.value("passGens/pwgen/1num").toBool())
5 options.append("n");
6 if (settings.value("passGens/pwgen/1spec").toBool())
7 options.append("y");
8 if (settings.value("passGens/pwgen/noAmb").toBool())
9 options.append("B");

10 if (settings.value("passGens/pwgen/noCap").toBool())
11 options.append("A");
12 if (settings.value("passGens/pwgen/noNum").toBool())
13 options.append("0");
14 if (settings.value("passGens/pwgen/noVow").toBool())
15 options.append("v");
16 if (settings.value("passGens/pwgen/random").toBool())
17 options.append("s");
18

19 //check if user entered an integer, if not, default is 16
20 if(settings.value("passGens/pwgen/len").toInt())
21 length = settings.value("passGens/pwgen/len").toInt();
22

23 //allocate space for password
24 buf = (char*)malloc(length+1);
25 if(!buf){
26 return;//error, could not allocate
27 }
28 //actual call to password generator
29 main_pwgen(
30 options.length(), //int, number of options
31 options.toLatin1().constData(), //char *, options
32 length, //password length
33 buf //char *, to return the

password
34);
35 genPass = QString::fromLatin1(buf,length);
36 free(buf);

• zxcvbn.c Main source file
• zxcvbn.h Main header file
• dict-generate.cpp Used for generating the dictionary sources

71

4 – Application Development

Table 4.2: A few PwGen generated passwords

Password Length Options
Log Entropy

& Level

iesohGhai3 10 - 9.75 (Level 3)
ees0cooLo2 10 - 10.47 (Level 4)
dX042wKqlW 10 s 17.86 (Level 4)
@!,Q*l5}+H 10 ys 18.15 (Level 4)
TBw4)9 6 ys 11.62 (Level 4)
B7t34Lck 8 v 11.87 (Level 4)
nofosootei 10 BA0 6.50 (Level 2)

• Makefile To compile the dictionary generator and main program.
• words-*.txt A few examples of dictionary files in plain text format.

Besides source files, zxcvbn also needs to compile the dictionary files, but
first lets define what is a dictionary, why are they important and why they
need to be compiled (For general dictionaries only. User dictionaries are
small and can be added at runtime).

General dictionaries

Dictionaries are a crucial part of the algorithm, because they are used to
estimate the security level of a password according to how common the used
words (if any) are. A password containing words present in any of the dictio-
naries will be easier to crack as hackers will probably try out those specific
words or a combination of them.

General dictionaries contain a large number of words that are useful for
all users. Examples of these type of dictionaries (included in this work) are:

• 100000 English words from wikipedia.
• 88800 Last names from the US census database
• 39000 English words from tv and film from the wikiproject [30]
• 47000 Most common passwords from Burnett [35]
• 15480 Italian words from the badip project [3]

72

4.2 – Implementation

• 4276 Female names from the US census database
• 1220 Male names from the US census database

As the dictionary files in plain text are pretty large, the algorithm does
not read from them directly. Instead, a DicNodes array is generated, using
the tool dict-generate, and this array is compiled into the source code.
To add their own dictionaries, the users need to make sure they are saved
as plain-text, (.txt UTF-8), and stored into the zxcvbn directory. The files
must have one word per line, with the first word being the most common
one. So for instance, in the English dictionary the first word is the and the
last one is surma. This is important as it is used to calculate the entropy
of the passwords. A password containing the word surma is far more secure
that one containing the word the.

Static Library vs Shared Library

Because the dictionaries are transformed into a source file and then compiled
together with the main program, it is not possible to add, remove or modify
dictionary files after the sources are compiled. Therefore the zxcvbn library
can not be embedded into the SEcubeWallet application as a static library (or
using the C sources directly), but rather, a shared library approach must
be followed, which allows the dynamic unload/update/load of the library.
This has some performance penalties over static libraries, but it is the only
way to give the users the possibility of customize the dictionaries as they
please.

Compilation process

The steps performed by the makefile in order to compile the dictionaries
and sources are:

1. Compile the source file dict-generate.cpp to obtain the dict genera-
tor executable dictgen.

2. Execute dictgen with the names of dictionaries to process as input
argument. As a result the file dict-src.h is created.

3. Compile the files zxcvbn.c and zxcvbn.h together with the just gen-
erated dict-src.h, using the gcc flag -fPIC so the resulting object file
zxcvbn-inline-pic.o is suitable for library inclusion.

4. Generate the shared library libzxcvbn.so from the object file. This is
the library used by the SEcubeWallet sources.

73

4 – Application Development

The compilation process can be started by the user from the preference
window, where they can also select the dictionaries to use, or clean the gener-
ated files. The compiling is made with OS calls, through the use of QProcess.
To avoid the application from crashing or getting stuck, the Qprocess has
a timeout. As the compile process may take a while depending on the dic-
tionaries size, this timeout can be configured by the user. In figure 4.12 the
GUI for these actions is shown.

(a) Tab dedicated to zxcvbn preferences (b) Checkable dialogue to enable
dictionaries, appears after clicking
the Choose button

Figure 4.12: zxcvbn general dictionaries configuration

Dynamic Library loading

To manage the zxcvbn shared library at runtime it is possible to use the qt
class Qlibrary, which provides access to the functionality in the library in
a platform independent way. To use it, is necessary to pass as argument to
the constructor the path to the library. Then load it and resolve the desired
functions. If no errors are found, the functions can be used as usual. Finally
unload the library when it is not needed any more. See Listing 4.21.

74

4.2 – Implementation

Listing 4.21: Qlibrary basic usage

1

2 /***** In header file *****/
3 //Main zxcvbn function type
4 typedef double (*ZxcvbnMatch_type)(const char *Passwd,
5 const char *UserDict[],
6 ZxcMatch_t **Info);
7 //Function used to free the Info structure
8 typedef void (*ZxcvbnFreeInfo_type)(ZxcMatch_t *Info);
9

10 QLibrary * zxcvbnLib = 0;
11 ZxcvbnMatch_type ZxcvbnMatch = 0;
12 ZxcvbnFreeInfo_type ZxcvbnFreeInfo = 0;
13

14 /***** In cpp file *****/
15 zxcvbnLib = new QLibrary(zxcvbn_lib_path);
16

17 if(zxcvbnLib->load()){
18 ZxcvbnMatch = (ZxcvbnMatch_type) zxcvbnLib->resolve("

ZxcvbnMatch");
19 ZxcvbnFreeInfo =(ZxcvbnFreeInfo_type) zxcvbnLib->resolve("

ZxcvbnFreeInfo");
20 }
21

22 if (!ZxcvbnMatch || !ZxcvbnFreeInfo){
23 //error: Any of the two functions was not resolved correctly
24 else{
25 //we can use the functions normally
26

27 //When not needed any more
28 zxcvbnLib->unload();
29 ZxcvbnMatch = 0;
30 ZxcvbnFreeInfo = 0;
31 free(zxcvbnLib);

User Dictionaries

The user dictionary contain words that are relevant only to a specific user.
For example, if the application is used to increase the strength level of pass-
words used by employees in a company, adding the company’s name to the
dictionary is a good idea. Furthermore, if the company works in the auto-
motive business, related words as motor, aerodynamic, wheels etc. should

75

4 – Application Development

be added. By adding those words to the user dictionary, the strength level
of passwords using them will decrease, and so the user will be encouraged to
never use words that are too easy to guess. The key to a good password is
in its randomness. When a hacker is trying to crack one, they will for sure
try words relevant to the target.

From the GUI the user can add words manually, or can load them from
a text file, but as the words are saved as a simple array, the text file size
should not be too large. For large files, it is better to add them as General
dictionaries.

Estimator Usage

After the library is loaded and the functions resolved, to use the estimator
one simply needs to call the main function ZxcvbnMatch whose declaration
we see in Listing 4.22

Listing 4.22: ZxcvbnMatch function declaration

1 double ZxcvbnMatch(//Returns: entropy value in bits.
2

3 const char *Passwd, //The password to be tested. Null
terminated string.

4

5 const char *UserDict[], //User supplied dictionary words to be
considered particulary bad. Passed as a pointer to array

of string pointers, with null last entry (like the argv
parameter to main()). May be null or point to empty array
when there are no user dictionary words.

6

7 ZxcMatch_t **Info //The address of a pointer variable to
receive information on the parts of the password. This

parameter can be null if no information is wanted. The data
should be freed by calling ZxcvbnFreeInfo().

8);

To obtain the password strength level, it is necessary to compare the
zxcvbnMatch return value (The entropy in bits) as seen in section 3.6. The
strength level is shown to the user with a progress bar. To the user may
be more relevant to see some estimates about how long it would take for
an attacker to crack the password. This information can be obtained from
the entropy, assuming some numbers for the attempts/time the attacker can

76

4.2 – Implementation

perform. These results are shown in a table like the one in figure 4.13

Figure 4.13: Crack times for different attacker capabilities

Some interesting additional information can be obtained from ZxcMatch_t

** Info. By traversing the data in this pointer, it is possible to see how the
zxcvbn algorithm broke down the password. The user can see this informa-
tion in a table like the one in figure 4.14

4.2.9 PassPhrase Generator
The PassPhraseGen C++ function implements the PassPhrase Generator.
The function call is done from the AddEntry class, when the Generate

Password button is clicked.
AddEntry reads the configuration values stored as QSettings, asserts

them and then makes the call. This values can be modified by the user
in the preferences window, shown in figure 4.15. After the user selects the
dictionaries and tunes the available options, they must click the apply button,
which will trigger a line by line read of the dictionaries, to count the number
of lines, that is, the number of words available. This is necessary as it is
not possible to know how many lines a file has without counting them, and
the total number is required in order to generate properly bounded random
numbers in the PassPhraseGen function.

The function declaration is shown in listings 4.23
The function first generates numWords random numbers in the range [1,

totalLen] with the Qt function QRandomGenerator (introduced in version

77

4 – Application Development

Figure 4.14: Password broke down by the zxcvbn algorithm

Listing 4.23: PassPhraseGen function declaration

1 QString PassPhraseGen(//Return: Generated PassPhrase
2 QString path, //path to dicts
3 QStringList dicts, //list of dicts
4 QStringList dictsLen, //cumulative list of dics lengths
5 int totalLen, //total number of candidate words
6 int numWords, //number of words in the password
7 bool ppgenMinLenEnab, //use only words longer than min len
8 int ppgenMinLen, //min length
9 bool capFirst, //uppercase first letter of each word

10 bool ppgenLowerEnab, //use only lower part of dicts
11 int ppgenLower //how much of the lower part to use
12);

5.10). The generated numbers represent Line numbers in the dictionary files.
As each line contains a word, the function indeed extracts random words.
There are a few things to consider in this process:

78

4.2 – Implementation

Figure 4.15: Settings for PassPhrase Generator

1. It is impossible to read a random line from a TextFile without reading all
the previous lines first. So, in order to extract the words it is necessary to
read the dictionary line by line and keep a counter to know the number
line we are at. To speed up the process making sure each line is read
only once, the random numbers are sorted in ascending order first. The
dictionary can then be read line by line extracting the words where the
counter equals one of the random numbers. When the last random line
is extracted, the file can be closed.

79

4 – Application Development

2. There can be multiple dictionaries. The generated random numbers
span the total of available words, so some random lines will be in some
dictionaries, some in others. Therefore, using the dictsLen list, which
contains the cumulative lengths of the dictionaries, we need to determine
in which dictionary and in which internal line, each random number is.
With this information, and the random numbers ordered, it is possible to
extract the words efficiently and making sure dictionary files are opened
only if necessary and only once.

3. When the minimum length option is enabled, the total number of avail-
able words is reduced. The algorithm accounts for this fact by counting
only the lines with a word larger than the minimum length. This is
done both in the preference window, where the total number of lines is
counted, and at the word extraction process. In this way, the random
lines are pinpointed as before, by reading line by line and comparing the
counter; the working logic is not altered, it just ignores the "disabled"
short lines.

4. Finally, to consider only the lower part of each dictionary the preferences
window counting process is not altered, and the modifications are all
done at the extraction process. If for example, the user wants to work
with the lower 30%, the random generated numbers are now bounded to
[1, (0.3)totalLen]. The corresponding dictionary and internal line
for each random number are calculated by taking into account that the
first 70% of each dictionary must be skipped. With this two values, the
files can be read as in the simple case. As this process is different from
the minimum length one, they do not interfere with each other.

Table 4.3 presents some PassPhrases examples for different configurations,
along side the score given by the zxcvbn estimator. The estimator uses the
same dictionaries as the generator, so this assumes a worst case scenario
where the hacker has access to all the possible words the user considered
when creating the PassPhrase.

Two dictionaries where used: words-eng_wiki.txt with 100000 lines
and words-it_badip.txt with 15480 lines (around 6 times smaller), so
most of the extracted words will be English.

The results in the table indicate the most important parameter is the
number of words. Three words are enough to reach a zxcvbn level 4, which,
as seen in previous sections, is very secure. A two-word PassPhrase as long as
DrammaturgicoSbatacchiare is not better than the shorter three-words
ImmobileCwSites, because the latter has one more word. The minimum

80

4.2 – Implementation

Table 4.3: PassPhrases examples for different configurations

PassPhrase
No. of
words

Min.
word
Len

% of
dict.
used

Log
Entropy
& Level

Cocchio 1 - - 4.27 (L1)
Melun 1 - - 4.93 (L1)
Legitimately 1 8 - 4.55 (L1)
Woodhaven 1 8 30% 4.94 (L1)

VestaOrman 2 - - 7.78 (L2)
ShorelineCech 2 - - 9.18 (L3)
MongoliaSimpsons 2 8 - 7.30 (L2)
McinnisPhaya 2 - 30% 9.14 (L3)
ZucchiniSalamandra 2 8 30% 9.19 (L3)
SacchettiVigevano 2 8 30% 9.11 (L3)
DrammaturgicoSbatacchiare 2 12 - 8.98 (L3)
MalformationsAstrophysical 2 12 - 9.60 (L3)

LatinaInterchangeFbo 3 - - 13.5 (L4)
OsaAymanCantinflas 3 - - 12.98 (L4)
ImmobileCwSites 3 - - 11.43 (L4)
RimmelBragFaenza 3 - 30% 13.49 (L4)
RecliningCanberraEcuadorian 3 8 - 13.69 (L4)
SeashellsHippocraticCameroun 3 8 30% 14.90 (L4)
InaspettatoRothschildsDisconcerting 3 8 30% 14.48 (L4)

word length also influences the PassPhrase entropy, but their effects are not
as pronounced. Finally, working only with to the lower part of the dictionary
may seem to not have any effect, but in reality its use is crucial: it ensures
the generated PassPhrases do not contain any of the most common words,

81

4 – Application Development

like the or essere. From the results on the table we can not appreciate this
fact, but at least we learn the option does not do any harm either. (Although
if the attacker finds out the user is generating PassPhrases using only the
30% most uncommon words on a given language, their job would get easier).

4.2.10 The FAT32 bug
During the application development a strange and elusive bug was found:
The secureSQLite library did not work properly with the FAT32 file sys-
tem. When the save directory was in a FAT32 system, (either a partition, an
external hard disk or an USB stick), the created databases were not stored
properly, and when trying to open them they were completely empty. Only
the database name was saved; any table in the wallet was lost. Moreover,
after saving, besides the .sqlite file, a .sqlite-journal was created.
Figure 4.16 depicts the presences of this file in a FAT32 file system.

Figure 4.16: secureSQLite Databases in a FAT32 file system

This file is known as a rollback journal and is used by the SQLite standard
to avoid database corruption when a transaction can not be completed. From
the SQLite official documentation [28]: “The rollback journal is always lo-
cated in the same directory as the database file and has the same name as the
database file except with the 8 characters "-journal" appended. The rollback
journal is usually created when a transaction is first started and is usually
deleted when a transaction commits or rolls back. The rollback journal file
is essential for implementing the atomic commit and rollback capabilities of
SQLite. Without a rollback journal, SQLite would be unable to rollback an
incomplete transaction, and if a crash or power loss occurred in the middle
of a transaction the entire database would likely go corrupt without a roll-
back journal. The rollback journal is usually created and destroyed at the
start and end of a transaction, respectively. But there are exceptions to this
rule. If a crash or power loss occurs in the middle of a transaction, then

82

4.2 – Implementation

the rollback journal file is left on disk. The next time another application
attempts to open the database file, it notices the presence of the abandoned
rollback journal (we call it a "hot journal" in this circumstance) and uses the
information in the journal to restore the database to its state prior to the
start of the incomplete transaction.”

The presence of the journal file hints at the problem being an interruption
during the execution of secureSQLite write functions when working on a
FAT32 system. A few test were performed to try to narrow down the error’s
origin:

• The application was tested in other computer running a different OS,
and the problem persisted, always in FAT32 systems, meaning it was
not an OS specific issue.

• The application secureSQLiteBrowser which also uses the secureSQLite
library was tested and presented the same problem, meaning it was not
an error in the library usage.

• The demo applications SEfile_IMG and SEfile_TXT were also tested,
and worked without any problems in FAT32 partitions. These appli-
cations do not use secureSQLite; they leverage directly the SEfile

library, which is also used by the secureSQLite library, meaning the
problem was not in SEfile but in secureSQLite. This was proved to
be a wrong assumption later on.

With these points in mind, the bug was searched inside the secureSQLite
library, but after several debug sessions, it was possible to trace the er-
ror’s origin to the SEfile library. Specifically, in the file SEfile.c, and
function secure_seek. Figure 4.17 shows the actual traceback, from the
call to sqlite3_exec in the Save_Wallet action, all the way up to the
secure_seek function.

The actual error is produced in the call to the OS function lseek() in
line 18 of listing 4.24.

The lseek() function, as defined in the linux manual page [11]:
off_t lseek(int fd, off_t offset, int whence);

“lseek() repositions the file offset of the open file description associated
with the file descriptor fd to the argument offset according to the directive
whence as follows:

SEEK_SET The file offset is set to offset bytes.
SEEK_CUR The file offset is set to its current location plus offset bytes.

83

4 – Application Development

Figure 4.17: Error Traceback

SEEK_END The file offset is set to the size of the file plus offset bytes.
lseek() allows the file offset to be set beyond the end of the file (but this does
not change the size of the file)

Return Value: Upon successful completion, lseek() returns the result-
ing offset location as measured in bytes from the beginning of the file. On
error, the value (off_t) -1 is returned and errno is set to indicate the
error.”

secure_seek() can be seen as a wrapper that uses the OS function
lseek() to move the file pointer correctly, taking into account the way the
SEfile library redefines a file, including the overhead added by sectors and
headers that allow the data to be encrypted (see figure 3.5).

To better understand what was causing the error, the return and errno

values for two save operations of the same database were compared. One
into a FAT32 file system and the other into a ext4 system.

When the FAT32 system was used, the return value was indeed (off_t)-1,
and the errno, was set to 22, which corresponds to:

“EINVAL: whence is not valid. Or: the resulting file offset would be neg-
ative, or beyond the end of a seekable device.”

When saving into an ext4 file system, the return value was 9844 (the
expected one) and errno was equal to zero.

Figure 4.18 shows this difference, and it is worth noticing that besides the
file descriptor and pointers (always different for different executions), the rest
of the variables have the same value.

Going back to the secure_seek() code in listing 4.24, the line 18 moves
the file pointer to the last LOGIC_DATA byte, because in order to keep the file
consistency, its is required to write empty sectors starting from this position

84

4.2 – Implementation

Listing 4.24: FAT32 Error’s origin at secure_seek

1 /**This function is used to move correctly the file pointer.
2 * [in] hFile The handle to the file to manipulate.
3 * [in] offset Amount of character we want to move.
4 * [out] position Pointer to int32_t to store the final pos.
5 * [in] whence Move from file start, end or current pos.
6 * [return] Returns '0' in case of success.*/
7 uint16_t secure_seek(SEFILE_FHANDLE *hFile, int32_t offset,

int32_t *position, uint8_t whence){
8 ...
9 buffer_size = *position - file_length;

10 if(buffer_size>0){
11 //if destination exceed the end of file, empty sectors are

inserted at the end to keep the file consistency
12 buffer=calloc(buffer_size, sizeof(uint8_t));
13 if(buffer==NULL)
14 return SEFILE_SEEK_ERROR;
15

16 if((file_length%SEFILE_LOGIC_DATA)){
17 errno = 0; //clear errno
18 hTmp->log_offset=lseek(// the error is produced here
19 hTmp->fd,
20 ((file_length%SEFILE_LOGIC_DATA)-SEFILE_SECTOR_SIZE),
21 SEEK_END);
22 error = errno;//capture errno, 22 when in FAT32 systems
23 if(hTmp->log_offset==4294967295)
24 //lseek returns (off_t)-1 when error. off_t is 32 bits,

so 2^32-1 = 4294967295
25 return SEFILE_SEEK_ERROR; //the upcoming secure_write

call fails anyway
26

27 if(secure_write(&hTmp, buffer, buffer_size)){
28 free(buffer);
29 return SEFILE_SEEK_ERROR;
30 }

until the end of the file. To do so, starting from the end of the file (thus the
argument SEEK_END), the function moves the pointer backwards the number
of empty bytes in the last sector.

In order to move backwards, the offset argument of lseek() must be
negative. In this case, it is equal to:

offset = (file_length%SEFILE_LOGIC_DATA)-SEFILE_SECTOR_SIZE

85

4 – Application Development

(a) FAT32 filesystem (b) ext4 filesystem

Figure 4.18: Return and errno values for a save operation

Which should always be always negative, but it turns out, in the case
of the FAT32 file system, this offset is not interpreted as a 2’s complement
negative value, but as a very large positive one. Therefore, the lseek()

function tries to move the pointer outside the file limit, explaining the error:
EINVAL: the resulting file offset would be negative, or beyond the end of a
seekable device.

To fix the error, a simple cast to int32_t for the offset argument is
enough, resulting in the call:

hTmp->log_offset=lseek(

hTmp->fd,

(int32_t)((file_lengh%SEFILE_LOGIC_DATA)-SEFILE_SECTOR_SIZE),

SEEK_END);

This kind of casting was actually found in other function calls in the
SEfile.c file, so it made sense to use it in this situation too.

The reason the problem only affected FAT32 partitions is probably related
to the fact that, as lseek() needs to move a file pointer, low-abstraction
level functions need to be used, which have different implementations for
each type of file system. The ext4 low level functions were able to interpret
the offset as negative whereas the FAT32 took it as positive.

Why the error only appears when using the secureSQLite library, and

86

4.2 – Implementation

not in the demo applications SEfile_IMG and SEfile_TXT honestly re-
mains a mystery. It may be that the condition in line 10 of listing 4.24
(if(buffer_size>0)), that evaluates if the destination exceeds the end of
file, is only met in rare occasions, and the way SQLite journaling works is
one of them.

87

88

Chapter 5

Results, Discussion and
Future work
In this chapter first an overview of the obtained results is given. Then, some
drawbacks of the chosen approach are discussed. Finally a few ideas for
future work an improvements are considered.

5.1 Results
The developed application, SEcubeWallet, is a completely functional and
reliable hardware-based Password Manager . All of the code is open source,
and is hosted in GitHub [22].

The application exploits the security-oriented capabilities of the SEcube™
framework, the facilities of the Qt library and the functionalities of a few
other open source tools to offer the following features:

1. Confidence in the safeness of the stored passwords. The user is assured
only with the correct device and master password is possible to decrypt
the data. Even if an attacker has access to the encrypted files (for
instance if the host machine is stolen), it is not possible to even try to
hack the master password without the SEcube™ device.

2. The application is very comfortable to use, as the graphical elements
used to display and manipulate the passwords are elegant and responsive.

3. The user can search easily for any password item, thanks to the powerful
filters, available for each field. Using the date special filter, it is possible
to look for expired passwords that need to be updated.

89

5 – Results, Discussion and Future work

4. The application can suggest passwords suited for any situation, rang-
ing from completely random ones, perfect for machine passwords, to
pronounceable passwords and random passphrases, easier to memorize
without compromising their strength.

5. If the user wishes to evaluate how strong their current passwords are,
they can use the strength estimator, which gives clear information on
how the password could be cracked and how long it would take.

Besides the application development, other results obtained during this
work are:

1. The implementation of an improved Login behaviour in the SEcube™
framework, that renders more usable SEcubeWallet and any other ap-
plication that uses the SEcube™ authentication system.

2. The discovery and fix of a bug in the SEfile library that did not allow
to use the secureSQLite library in a FAT32 file system.

5.2 Application’s drawbacks
In this section, the drawbacks of the SEcubeWallet application are discussed,
as well as some ideas about how to fix them.

5.2.1 First table corruption
As explained in session 4.2.3, during the application development it was im-
possible to find the origin (and solution) to an error concerning the database
saving and opening process: the first table in a wallet is always corrupt. The
problem is not present when using the regular SQLite API; it only appears
when using the secured version. This seems to point out the error is the
secureSQLite library’s fault. But because the secureSQLiteBrowser applica-
tion does not have this problem it is not possible to discard SEcubeWallet
as the origin of the problem.

The secureSQLiteBrowser and SEcubeWallet applications differ in the way
they use the secureSQLite API. secureSQLiteBrowser, as it is a data base
manager, uses complex SQLite functionalities like save points and pragma
statements to exploit all of the API’s capabilities, while SEcubeWallet only
uses simple open/exec/close SQLite functions. So in a way SEcubeWallet
is responsible for the error that could be avoided by using more complex

90

5.3 – Future work

SQLite statements. But the secureSQLite library should behave as the reg-
ular SQLite API, specially in the most simple cases.

In any case, the implemented workaround in SEcubeWallet (always having
an unused and empty first table to sacrifice) should be considered temporary,
not only because it is not optimal, but more importantly, because the unfixed
error may cause other problems in the future.

5.2.2 The FAT32 bug
Even if the FAT32 bug (see section 4.2.10) can be considered to be fixed, the
truth is its origin is not completely clear, and it may be the case the adopted
solution (casting to int) only works for a subset of cases.

5.2.3 Only Linux has been tested
The SEcubeWallet application has only been tested running on Linux. Al-
though Qt is platform independent, some of the application functionalities
may need some changes to work on Windows or Mac systems. For example,
the zxcvbn compilation process relies on gcc commands, that may not be
available in Windows. Moreover the FAT32 bug is a very OS specific issue,
as it involves the use of the lseek() function (Linux and Mac). It may be the
case the bug does not exists in a Windows machine, or on the contrary there
are other errors waiting to be fixed.

5.2.4 Missing icons
The reader of this thesis may have noticed the lack of icons in all of the
SEcubeWallet Windows. Due to tight time constraints, it was decided to
allocate most of the efforts into other aspects of the application, but that is
not to say icons are not important. Future version of the application will
definitely have icons to increase the user experience.

5.3 Future work
In this section, a few ideas about how to extend the SEcubeWallet func-
tionalities are given. None of them were considered for this work as they
are either too time consuming to implement, or are beyond of the author’s
expertise.

91

5 – Results, Discussion and Future work

5.3.1 SEkey integration

SEkey is a new library currently under development at Politecnico di Torino
by Mateus Françani as his master thesis work. The library will sit next to
SEfile and SElink, as depicted in Figure 5.1 taken from [36].

Figure 5.1: Host side SEcube™ architecture, including the SEkey library

The library will work as a key management system for the SEcube™
framework. Right now keys inside a SEcube™ chip can only be modified at
factory reset. This is not very useful in a working environment, as the purpose
of having multiple keys is to allow users to share information with selected
people (people sharing a key are known as a group). The job of the SEkey
library will be to allow an administrator to dynamically add and remove keys
to SEcube™ devices using an intuitive GUI. By doing so, the administrator
can conform groups of users, that later on can use their SEcube™ devices to
share sensitive information, knowing it will be secured against unauthorized
access (from people outside the group).

As the SEcubeWallet application already offers an intuitive GUI for the
management of passwords, it could be extended to support the management
of keys as well. If the person login in is an administrator, the application
should offer the possibility to edit the keys present in the SEcube™ device.
If it is a regular user, it should only let them see what keys they can use, i.e.
to which groups they belong.

92

5.3 – Future work

5.3.2 Browser integration
The vast majority of users store their internet passwords within their pre-
ferred web browser, alongside other sensitive information like browsing his-
tory and bookmarks. This allows them to use their passwords easily and
fast, as they can for example autofill login credentials in websites.

Exploit the capabilities of the SEcube™ platform to protect all that infor-
mation and allow to autofil logins, while maintaining ease of use and trans-
parency to the final user would be a great advance in the purpose of reaching
as many users as possible.

A couple of alternatives come to mind in order to implement this integra-
tion:

• Borrow the idea followed by the Mooltipass system, porting the entire Qt
application to a complement for the most popular web browsers (Firefox,
Chrome, Opera).

• Implement a web browser complement that "talks" with the SecubeWal-
let application and request for passwords when the user wishes to autofill
a login field.

• Follow the auto-type approach used by the software password manager
KeePass. [2]. “KeePass features an "Auto-Type" functionality. This
feature allows you to define a sequence of keypresses, which KeePass can
automatically perform for you. The simulated keypresses can be sent to
any other currently open window of your choice (browser windows, login
dialogs, ...). By default, the sent keystroke sequence is {username}
{tab} {password} {enter}, i.e. it first types the user name of the
selected entry, then presses the Tab key, then types the password of the
entry and finally presses the Enter key.”

In either case ensuring the new functionalities do not compromise the
security of the passwords must be the top priority.

5.3.3 More than just static Passwords
Other authentication methods besides static passwords have been gaining
popularity over the past two decades, among them One-Time passwords and
FIDO U2F. An interesting line of work could be supporting these standards
by using the capabilities of SEcube™ to extend the functionalities of the
wallet.

93

5 – Results, Discussion and Future work

5.3.4 Hardware button on SEcube™ device
A recurring interesting idea in many hardware-based password managers is
the presence of a hardware button in the device the user has to press in order
to allow any critical operation (Login, password decryption) to be completed.
This idea could be implemented in the SEcube™ DevKit, as it has multiple
buttons. Unfortunately, the USEcube™ Stick does not.

5.3.5 Mobile application (Android)
To have a functional SEcubeWallet for the Android system, three elements
would need to be ported:

• The SEcube™ chip. As far as the author knows, the Blu5 group is
working on a product that would allow to use the SEcube™ hardware
platform in smartphones running the Android OS.

• The software libraries. The SEfile and secureSQLite libraries are written
to work on Linux, Windows and Mac systems. Given that Android is
based on Linux, porting the libraries should be possible.

• The GUI. Qt for Android [20] “allows to run Qt 5 applications on devices
with Android v4.1 (API level 16) or later”. All of the Qt modules used
by SEcubeWallet are supported, but a GUI redesign is required in order
to cope with the constraints imposed by a smaller display.

5.3.6 Eliminate dependability on the OS
The application relies heavily on the operating system’s memory protection
feature to ensure no other process can access its private data and steal the
passwords while they are opened and temporary stored in the application’s
memory space. An interesting path of research is how to eliminate this de-
pendency, or at least decrease it, using the SEcube™ encryption capabilities.

5.3.7 Custom columns
Wallets in the SEcubeWallet application have a fixed set of columns (username,
domain, password, description, date). This set should be enough in
most of the cases as they are the standard for wallet managers, but some
users may want to add other custom columns, for instance to store "security

94

5.3 – Future work

questions and answers" used by some websites, an email associated to the
account, or multiple passwords in the same entry.

5.3.8 Expired passwords notification
Changing passwords regularly is important to keep a high level of security
in any system. If the user has a large number of passwords it may be hard
to remember when one of them needs to be updated. SEcubeWallet already
offers the possibility to search for passwords older than a given period of time
(for example passwords older than six months). This functionality could be
extended to notify the user when a password needs to be updated. The user
could configure the expiration time for each password individually, or for all
of them, and how they wish to be notified (Message inside the application,
desktop notification, email, etc).

95

96

Chapter 6

Conclusions
The followed approach and the chosen set of hardware and software libraries
proved to be more than appropriate for the implementation of a secure
hardware-based password manager.

The SEcube™ framework is robust enough to offer all the necessary tools
for reliable encryption of data, and the set of custom software libraries allow
developers non experts in cryptography to design and implement any security
related application. A project like the one explained in this work requires
knowledge in several fields, mainly embedded programming, digital security
and front end development. The well defined levels of abstraction given by
the software libraries allow to easily combine the expertise of a group of
developers to create any desired application.

The use of the Qt library did not led to any shortcomings or compatibility
problems. On the contrary because it is C++ based, is an excellent choice
for the development of applications making use of embedded devices and C
libraries. Additionally, all the high level wrappers hiding low level functions
and OS calls result in an easier and less error prone programming, and in a
cross-platform application.

In any password manager it is important to provide a tool to suggest
random passwords, because humans are inherently bad at generating really
random information, that guarantees the security of the protected system.
However, to increase the user experience, it is also desired to have the pos-
sibility of less-random more memorable passwords. It is equally important
to check the validity of said passwords by using an appropriate metric, for
instance their entropy, because even random generated passwords can end
up being too guessable

97

6 – Conclusions

All the used libraries in this project are open source, proving it is possible
to achieve a high level of security with the use of open software and hardware
tools. The biggest concern customers have when choosing a new security
related product is whether or not they can trust the designers, both in their
ethics and in their knowledge. Using open source platforms solve this issue,
as it allows the community to critically review the products for accidental or
intentional security flaws. There are already in the market similar products to
SEcubeWallet in terms of purpose, but none of them offers the combination
of completely open source hardware and software, and the reliability of a
mature and tested framework as the SEcube™.

The developed application still lacks some features in order to be con-
sidered a truly commercial product. Among them, the support for other
authorization standards (One Time Passwords, FIDO U2F) already offered
by other hardware password managers. Moreover, security can not be the
only goal, as users also look for the product offering the most comfortable
experience, and want the transition from software to hardware managers to
be as seamless as possible. So ideally, all the features already offered by soft-
ware managers should also be supported. A first step in this direction is the
possibility to auto complete login forms in websites without compromising
the security of the system.

98

Bibliography

[1] About Qt. https://wiki.qt.io/About_Qt.
[2] Auto-Type. https://keepass.info/help/base/autotype.

html.
[3] Banca dati dell’italiano parlato . http://badip.uni-graz.at/

en/corpus-lip/list-of-lemmata.
[4] Blue5 Group. http://www.blu5group.com/.
[5] Column Aligned Layout. https://github.com/sashoalm/

ColumnAlignedLayout.
[6] DB Browser for SQLite. http://sqlitebrowser.org/.
[7] Eclipse IDE for C/C++ Developers. https://www.eclipse.org/

downloads/packages/eclipse-ide-cc-developers/neon3.
[8] Get Qt. https://www.qt.io/download.
[9] GNU MCU Eclipse OpenOCD. https://github.com/

gnu-mcu-eclipse/openocd/releases.
[10] Java SE Development Kit 8 Downloads. http://www.

oracle.com/technetwork/java/javase/downloads/
jdk8-downloads-2133151.html.

[11] Linux Programmer’s Manual: LSEEK. http://man7.org/linux/
man-pages/man2/lseek.2.html.

[12] Model/View Programming. http://doc.qt.io/qt-5/
model-view-programming.html.

[13] Mooltipass. https://www.themooltipass.com/.
[14] Mooltipass Github repository. https://github.com/limpkin/

mooltipass.
[15] Mooltipass hackaday page. https://hackaday.io/project/

86-mooltipass-offline-password-keeper.
[16] Openstm32 System Workbench Eclipse Plugin. http:

//www.ac6-tools.com/Eclipse-updates/org.openstm32.
system-workbench.site/.

99

https://wiki.qt.io/About_Qt
https://keepass.info/help/base/autotype.html
https://keepass.info/help/base/autotype.html
http://badip.uni-graz.at/en/corpus-lip/list-of-lemmata
http://badip.uni-graz.at/en/corpus-lip/list-of-lemmata
http://www.blu5group.com/
https://github.com/sashoalm/ColumnAlignedLayout
https://github.com/sashoalm/ColumnAlignedLayout
http://sqlitebrowser.org/
https://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/neon3
https://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/neon3
https://www.qt.io/download
https://github.com/gnu-mcu-eclipse/openocd/releases
https://github.com/gnu-mcu-eclipse/openocd/releases
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://man7.org/linux/man-pages/man2/lseek.2.html
http://man7.org/linux/man-pages/man2/lseek.2.html
http://doc.qt.io/qt-5/model-view-programming.html
http://doc.qt.io/qt-5/model-view-programming.html
https://www.themooltipass.com/
https://github.com/limpkin/mooltipass
https://github.com/limpkin/mooltipass
https://hackaday.io/project/86-mooltipass-offline-password-keeper
https://hackaday.io/project/86-mooltipass-offline-password-keeper
http://www.ac6-tools.com/Eclipse-updates/org.openstm32.system-workbench.site/
http://www.ac6-tools.com/Eclipse-updates/org.openstm32.system-workbench.site/
http://www.ac6-tools.com/Eclipse-updates/org.openstm32.system-workbench.site/

Bibliography

[17] Pastilda. https://www.crowdsupply.com/third-pin/
pastilda.

[18] QSQLITE for SQLite (Version 3 and Above).
http://doc.qt.io/qt-5/sql-driver.html#
qsqlite-for-sqlite-version-3-and-above.

[19] Qt Creator. http://doc.qt.io/qtcreator/.
[20] Qt for Android. http://doc.qt.io/qt-5/android-support.

html.
[21] SEcube SDK. https://www.secube.eu/resources/.
[22] SEcubeWallet Sources on GitHub. https://github.com/

waltergallegog/SEcubeWallet.
[23] Secure Hardware vs. Open Source . https://www.yubico.com/

2016/05/secure-hardware-vs-open-source/.
[24] Sidekick. https://www.crowdsupply.com/biomio/sidekick.
[25] Signet. https://www.crowdsupply.com/nth-dimension/

signet.
[26] SQLite. https://www.sqlite.org/index.html.
[27] STM32CubeMX Eclipse plug in for STM32 configuration and

initialization C code generation . http://www.st.com/en/
development-tools/stsw-stm32095.html.

[28] Temporary Files Used By SQLite. https://www.sqlite.org/
tempfiles.html.

[29] The YubiKey Series. https://www.yubico.com/products/
yubikey-hardware/.

[30] Wiktionary:Frequency lists. https://en.wiktionary.org/
wiki/Wiktionary:Frequency_lists.

[31] Yubikey - How it works. https://www.yubico.com/
why-yubico/how-yubikey-works/.

[32] zxcvbn: Low-budget password strength estimation, c/c++, on github.
https://github.com/dropbox/zxcvbn.

[33] zxcvbn: Realistic password strength estimation.
https://blogs.dropbox.com/tech/2012/04/
zxcvbn-realistic-password-strength-estimation/.

[34] Secube data sheet introduction. https://www.secube.eu/
download/SEcube-Datasheet-R7.pdf, 2015.

[35] Burnett, M. 10,000 Top Passwords. https://xato.net/
10-000-top-passwords-6d6380716fe0.

[36] Farulla, G. A., Pane, A. J., Prinetto, P., and Varriale,

100

https://www.crowdsupply.com/third-pin/pastilda
https://www.crowdsupply.com/third-pin/pastilda
http://doc.qt.io/qt-5/sql-driver.html#qsqlite-for-sqlite-version-3-and-above
http://doc.qt.io/qt-5/sql-driver.html#qsqlite-for-sqlite-version-3-and-above
http://doc.qt.io/qtcreator/
http://doc.qt.io/qt-5/android-support.html
http://doc.qt.io/qt-5/android-support.html
https://www.secube.eu/resources/
https://github.com/waltergallegog/SEcubeWallet
https://github.com/waltergallegog/SEcubeWallet
https://www.yubico.com/2016/05/secure-hardware-vs-open-source/
https://www.yubico.com/2016/05/secure-hardware-vs-open-source/
https://www.crowdsupply.com/biomio/sidekick
https://www.crowdsupply.com/nth-dimension/signet
https://www.crowdsupply.com/nth-dimension/signet
https://www.sqlite.org/index.html
http://www.st.com/en/development-tools/stsw-stm32095.html
http://www.st.com/en/development-tools/stsw-stm32095.html
https://www.sqlite.org/tempfiles.html
https://www.sqlite.org/tempfiles.html
https://www.yubico.com/products/yubikey-hardware/
https://www.yubico.com/products/yubikey-hardware/
https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists
https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists
https://www.yubico.com/why-yubico/how-yubikey-works/
https://www.yubico.com/why-yubico/how-yubikey-works/
https://github.com/dropbox/zxcvbn
https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-strength-estimation/
https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-strength-estimation/
https://www.secube.eu/download/SEcube-Datasheet-R7.pdf
https://www.secube.eu/download/SEcube-Datasheet-R7.pdf
https://xato.net/10-000-top-passwords-6d6380716fe0
https://xato.net/10-000-top-passwords-6d6380716fe0

Bibliography

A. An object-oriented open software architecture for security applica-
tions. In 2017 IEEE East-West Design Test Symposium (EWDTS) (Sept
2017), pp. 1–6. https://ieeexplore.ieee.org/document/
8110070/.

[37] Farulla, G. A., Prinetto, P., Carelli, A., Somma,
G., and Varriale, A. Secube development kit: Get-
ting started. https://www.secube.eu/download/
SEcube-Development-Kit-Getting-Started-PUBLIC-v1.
4.pdf, 2017.

[38] Farulla, G. A., Prinetto, P., Ferri, N., Carelli, A.,
Scalia, G., Somma, G., and Varriale, A. Secube development
kit: L2 user manual. https://www.secube.eu/download/
SEcube-Development-Kit-L2-Manual-PUBLIC-v0.3.pdf.
pdf, 2017.

[39] Stockley, M. Why you STILL can’t trust password strength
meters. https://nakedsecurity.sophos.com/2016/08/17/
why-you-still-cant-trust-password-strength-meters/.

[40] Toponce, A. A document evaluating different open source password
generators and password strength testers. https://gist.github.
com/atoponce/173c113ea4a81a9657148ce5d4fa2fd3.

[41] Ts’o, T. pwgen(1) - Linux man page. https://linux.die.net/
man/1/pwgen.

[42] Wheeler, D. L. zxcvbn: Low-budget password strength estima-
tion. In 25th USENIX Security Symposium (USENIX Security 16)
(Austin, TX, 2016), USENIX Association, pp. 157–173. https:
//www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/wheeler.

[43] xkcd. Password strength. https://xkcd.com/936/?

101

https://ieeexplore.ieee.org/document/8110070/
https://ieeexplore.ieee.org/document/8110070/
https://www.secube.eu/download/SEcube-Development-Kit-Getting-Started-PUBLIC-v1.4.pdf
https://www.secube.eu/download/SEcube-Development-Kit-Getting-Started-PUBLIC-v1.4.pdf
https://www.secube.eu/download/SEcube-Development-Kit-Getting-Started-PUBLIC-v1.4.pdf
https://www.secube.eu/download/SEcube-Development-Kit-L2-Manual-PUBLIC-v0.3.pdf.pdf
https://www.secube.eu/download/SEcube-Development-Kit-L2-Manual-PUBLIC-v0.3.pdf.pdf
https://www.secube.eu/download/SEcube-Development-Kit-L2-Manual-PUBLIC-v0.3.pdf.pdf
https://nakedsecurity.sophos.com/2016/08/17/why-you-still-cant-trust-password-strength-meters/
https://nakedsecurity.sophos.com/2016/08/17/why-you-still-cant-trust-password-strength-meters/
https://gist.github.com/atoponce/173c113ea4a81a9657148ce5d4fa2fd3
https://gist.github.com/atoponce/173c113ea4a81a9657148ce5d4fa2fd3
https://linux.die.net/man/1/pwgen
https://linux.die.net/man/1/pwgen
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/wheeler
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/wheeler
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/wheeler
https://xkcd.com/936/?

	List of Figures
	List of Tables
	Listings
	Introduction
	Related Work
	Hardware Password Wallets
	YubiKey
	Mooltipass: A Simple Offline Password Keeper

	SEcube™ based applications
	Secure Text Editor and Secure Image Viewer
	secureSQLiteBrowser

	Frameworks, Libraries and software tools
	The SEcube™ framework
	The SEcube™ Chip
	Development board: The SEcube™ DevKit
	Final product: USEcube™ Stick
	SEcube™ Open SDK
	Level 2: Intermediate Security APIs
	SEfile
	secureSQLite

	SQLite Data Base management system
	Graphical User Interface: the Qt framework
	Device side development: Eclipse
	PwGen: Pronounceable Password generator
	zxcvbn: Password strength estimation
	PassPhrase Generator

	Application Development
	Design
	L0 and L1 Authentication libraries
	secureSQLite3
	SQLite3
	Password Generator
	PassPhrase Generator
	Strength Estimator

	Implementation
	User authentication
	Main Window
	Wallet actions
	Table actions and display
	Entries actions
	Other functionalities
	PwGen: Pronounceable Passwords Generator
	zxcvbn Password strength estimator
	PassPhrase Generator
	The FAT32 bug

	Results, Discussion and Future work
	Results
	Application's drawbacks
	First table corruption
	The FAT32 bug
	Only Linux has been tested
	Missing icons

	Future work
	SEkey integration
	Browser integration
	More than just static Passwords
	Hardware button on SEcube™ device
	Mobile application (Android)
	Eliminate dependability on the OS
	Custom columns
	Expired passwords notification

	Conclusions
	Bibliography

		Politecnico di Torino
	2018-07-22T10:01:08+0000
	Politecnico di Torino
	Paolo Ernesto Prinetto
	S

