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Chapter 1

Introduction

Global climate emergencies have been representing a critical topic during the last
decades. Fires, floodings and other events have been hitting the entire world with
very high frequency, determing very difficult situations and, in worst cases, catas-
trophes. Since Earth is experiencing higher temperatures with respect to the past,
fires represent a huge issue to deal with. Europe and, especially, southern Europe,
thus, the Mediterranean Area, have been going through this kind of emergencies.
Here it is shown the incidence of forest fires in Europe, in a temporal range up to
2010:

Figure 1.1: - Forest fires- Europe and Mediterranean area [32]

In 1.1 it is showed the forest fires incidence in the european area by means of the
SSR: Seasonal Severity index, which is a weighted indicator for defining the average
fire severity of a specific area. As it is clearly showed, the Mediterranean area and,
especially, Portugal, Spain and Turkey, have been hit by a severe fire season. In this
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1 – Introduction

particular scenario, it becomes crucial defining some strategies, exploiting all the
possible technologies developed in the last years, in order to prevent these events
from happening or, at least, to build tools and knowledge to reduce the damages
produced by them. Nowadays, there are powerful instruments that must be put
together so that it will be possible to handle emergency situations in a better way.
Data are one of those instruments. Sensors, data stations and IoT technologies have
made available a huge quantity of information in any format and of every nature.
This important amount of structured and unstructured data, if handled wisely, hides
knowledge. During the last years, satellites have been collecting enormous quantities
of data for different purposes, starting from the American missions called Landsat,
to the new European programme called Copernicus. The latter is introducing hour
by hour, day by day, fresh information about lands, seas, air quality, climate analysis
and so on. This is possible thanks to the missions launched a couple of years ago,
which will be functioning for the next years, collecting more and more information
about our Planet. Being able to collect this information and to properly work on
it, thus, becomes critical. The goal of this project was tracing a path among the
variety of services providing the information mentioned above; and defining a way
through all the possible formats available, to put in order the provided information
and to properly manipulate those formats so that it was possible to define a model
for detecting burnt areas, thus area hit by fires. The state of art in this field is
based on a manual annotation for each single event, slowing down significantly the
mapping process and, sometimes, the capability of quick intervention during natural
catastrophes. Even though there were a lot of steps to achieve interesting results, it
is possible to define a few major steps, which will be illustrated in more details in
the next chapters.
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Chapter 2

State of the art and General Overview

This chapter describes some works that have been done in a field of application
similar to the one of this project. It is also shown a high level description of the
context of the thesis, in terms of the services used and currently available and,
additionally, the tools exploited to achieve results.

2.1 Related Works
Burnt area detection systems exploiting machine learning techniques have not been
widely covered in past researches. As things stands at the moment, very basic fire
annotations are refined manually in order to get polygons surronding burnt areas
in a more precise way. Some solutions have been developed during the last years,
such as the one presented in [33]. Its main goal is mapping burnt areas over tropical
forests of South America and South-East Asia. There are existing satellite-based
techniques that map active hotspot fires by analysing the temperature of the given
hotspot and compare it with the temperature of the surrounding areas. If this
difference is greater than a given threshold, the analysed area is considered as an
on-going fire.

2.2 Collecting burnt areas information
This section covers the main methods and data sources that have been exploited in
order to retrieve all the information related to specific geographic areas affected by
fires. There are several softwares and services that provide graphic or application
programming interfaces that let the user properly interact with this good amount
of data.
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2 – State of the art and General Overview

2.2.1 Data origin - Copernicus and Sentinel Satellites

The entire work is based on the data collected by Sentinel satellites [4] . These
satellites have been specifically developed to support the Copernicus programme.
In detail, Copernicus is a european programme, whose goal is understanding the
environment we live in, in order to manage its resources in a sustainable manner and
to provide precious information for emergencies. Its services provide near real-time
data at a global level, thanks to the already mentioned satellites and in-situ ground
stations. As things stand at the moment, there are six different Sentinel missions [5].
Some of them have been launched and are performing different kind of analyses, for
different purposes; while some others will be launched soon. The Sentinel-1 family
is composed of two polar-orbiting satellites, whose acquisitions are based on a C-
band synthetic aperture radar imaging, in order to retrieve images regardless of
weather conditions. The Sentinel-2 family, as the first one, relies on two polar-
orbiting satellites, but its goal is monitoring land surface conditions and changes to
vegetation. Its satellites have a single payload: the multi-spectral instrument, which
provides thirteen different spectral bands for each single acquisition. The Sentinel-3
mission goal is measuring sea surface topography, sea and land surface temperatures,
land surface and ocean color, in order to support ocean forecasting systems and
monitoring changes in both climate and environment. It has several payloads, in
order to measure all those different parameters. Sentinel-4 intent is the continuous
monitoring of the atmospheric composition. Its main objective is analysing air
quality exploiting an ultraviolet visible near-infrared spectrometer and an infrared
sounder. Sentinel-5 mission will be launched in 2021 timeframe. It will also deal
with atmospheric composition, by accurately measuring its main constituents such
as ozone, dioxide, methane, nitrogen and so on. Recently, there has been the launch
of the Sentinel-5 precursor mission, that’s why it is known as Sentinel-5 P. It is
providing new data and measures until Sentinel-5 mission will be operative. The
last mission, Sentinel-6, will be launched in 2020. It will provide high accuracy
altimetry for measuring global surface height. It is a cooperative mission, devoloped
in partnership between Europe and U.S. .

2.2.2 EFFIS

EFFIS [7] stands for "European Forest Fire Information System". Its main goal is
supporting all the services in charge of protecting forests against fires in european
countries. It also provides the European Commission services and the European
Parliament with up-to-date and reliable information regarding wildland fires in Eu-
rope. It has been supported, for more than a decade, by a network of experts from
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2 – State of the art and General Overview

forty european, middle east and north-african countries. From 2015 it is a part
of the Copernicus programme and, specifically, it is one of the components of the
Emergency Management Services. EFFIS provides different services in order to be
up-to-date with active fire events. It also makes available historical information
about fires that took place in the past. It is possible to check current or past fires by
exploiting interactive maps. This important amount of data is accessible and avail-
able directly from website, through interactive services or by querying the system
through several application programming interfaces.

Active Fires

Active fire detection is provided by the NASA FIRMS (Fire Information for Resource
Management System). It is based on an algorithm which looks for the so-called
thermal anomalies. In detail, the system compares the temperature of a potential
fire with the temperature of the surrounding areas. If the subtraction leads to a
value greater than a given threshold, the under-control area is labeled as active fire.
MODIS is a sensor, on board of TERRA and ACQUA satellites, which labels burnt
areas exploiting a similar mechanism as well as VIIRS. But, while the former has a
spatial resolution of 1 kilometer, the latter has an even better spatial resolution of
375 meters, which allows detecting smaller fires and can help delineating perimeters
of on-going large fires. As mentioned before, active fires are displayed on an interac-
tive map and their information is updated six times per day and made available in
EFFIS within two-three hours of the acquisition of the MODIS/VIIRS images. In
order to minimize false alarms and display only wildfires, an additional filtering is
applied to all the hotspots detected by FIRMS. This algorithm is based on a series
of attributes like the extent of land cover categories surrounding the affected area,
the distance to urban areas and artifical surfaces and the confidence level of the
hotspot. In addition to these sources, further information is collected through the
news coming from appropriate RSS feeds published by various forest fires sites.

Rapid Damage Assessment

Rapid Damage Assessment, also known as RDA, is a module, part of the EFFIS
system, initially implemented in 2003, whose goal is mapping burnt areas analysing
MODIS daily images at 250 meters spatial resolution. These images are usually
processed a few hours after the acquisition. The RDA provides the daily update
of the perimeters of burnt areas for fires of about 30 ha or larger, twice a day.
Since 2016, the module also maps images acquired from the VIIRS sensor. Burnt
areas whose extension is smaller than MODIS maximum spatial resolution will not
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2 – State of the art and General Overview

be mapped. It is worth noticing the metodologies used in order to map these ar-
eas. Modis imagery is mapped exploiting the identification of the active large fires;
the expansion of the burnt areas is computed, starting from these coordinates, on
the basis of region-growing algorithms, but the final refinement of the perimeter is
achieved through manual analysis of the images. VIIRS images are mapped exploit-
ing algorithms that derive polygons starting from the active fires detected by the
sensors.

2.2.3 Utilities and Softwares
QGIS and Shapefile

Dealing with geographic information, means exploiting the right instruments and
softwares. A very important data format, specifically meant to store geospatial
information, is shapefile. Specifically, a shapefile is a vector data format widely
used in geographic information system softwares. It is extremely common, whenever
working with geometric information, especially related to geographic areas, to use
a shapefile format to collect and represent it correctly. It is composed of several
different files, some mandatory and some optional. The entry point is represented
by the .shp file, which automatically points to all the other files that make up
the whole shapefile. The .shx mandatory file contains all the geometry features
indexes, which are exploited in order to seek quickly polygon information throughout
the entire file; while the .dbf file contains a database-like format filled with the
attributes related to each single shape stored in the shapefile. There are many
applications that can be used in order to work with this specific data format, the
one used in this work is QGIS [20], because of its easy-to-use and versatile nature,
made possible by its straight-forward interface and the additional plugins provided
by its community. This software allows to manipulate shapefiles and retrieve all
the information needed for every purpose. For instance, it will be possible to list
and show all the areas affected by a fire event. These areas may have additional
attributes, such as the longitude-latitude coordinates, the affected country, the soil
composition of the hotspot and so on.

PostgreSQL and PostGIS

PostgreSQL is an open source object-relational database management system. It is
a popular solution, whenever dealing with databases and information persistency.
There are different softwares that may be used whenever working with it. For in-
stance, pgAdmin, which is an open source administration and development platform
for PostgreSQL. Postgres functions can be significantly extended by using additional
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softwares such as PostGIS [15]. PostGIS is a spatial database extender, so it is a
ready-to-use solution for working with spatial information, since it adds support for
geographic objects allowing location queries to be run in SQL.

Blob and Azure Blob storage

Blob [1] stands for binary large object. So it may refer to images, audios, application
programs and more. Azure Blob storage is Microsoft’s object storage solution for
the cloud. It represents a very flexible solution, whenever there’s the need to store a
good amount of files. This flexibility comes from the different possibilities provided
by this service: in terms of accessibility, since the storage can be accessed anywhere
in the world using http or https protocols and in different manners, exploiting the
azure storage rest api, azure powershell, azure cli or azure storage library, such the
one implemented in python; in terms of software structure, since the entire files
organization relies on different blob types, which can be used for specific operations,
such as storing images, appending logging content and so on. All this information is
available through containers, which are accessible through the basic storage account.

2.3 Image Processing

This section is about image manipulation through softwares, exploiting acquired
knowledge concerning images representation and relationship between different color
models. It is fundamental to understand how two dimensional information is put
together, in order to be able to get the best features out of it.

2.3.1 Color models

A color model is an abstract mathematical model describing the way each color
information can be represented as a tuples of numbers, typically as three or four
values. For instance, RGB represents a color model made of three elements: the red,
green and blue one. Though RGB represents a valid and widely used color model,
also proved by the good amount of color spaces based on it, some other models have
been developed during the past years, in order to provide a better flexibility and
to extend the limits provided by the RGB representation. Among these additional
representations, there are the HSV, HSL and the CMYK color models.
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2 – State of the art and General Overview

RGB

As mentioned above, RGB stands for red, green and blue. Specifically, it is an
additive color model where each single component, thus the red, green and blue
one, is added together in different ways in order to reproduce an array of colors. So,
the three light beams are added together, wavelength for wavelength, to make the
final color’s spectrum. Zero intensity for each component gives the darkest color,
while full intensity gives the white one. If the intensities of each single component
are different, the final result is a colorized hue, while, if the intensities are the same
final outcome is a particular shade of gray, depending on the starting intensity.
When one of the components has the strongest intensity, the final color is one close
to the primary strongest component; when two components have the same strongest
intensity, the color is a hue of a secondary color. The great limit represented by
this model is that it does not separate the luma, which is the image intensity from
chroma, thus the color information. It is worth noticing that the rgb model and, in
general, every color model, does not define the concept of color in an absolute sense,
since it does not express the chromaticity of every component. In order to get the
perceived color, a mapping function between the color model and the color space
must be provided.

HSV

HSV stands for Hue, Saturation, Value. It is a color model, which can be easily
infered from the RGB model, using a specific mathematical formula. Its great
difference is represented by the splitting of the chroma component and the luma
one, which allows to overcome the great limit represented by the RGB model. It is
more intuitive and represents how people experience color, since each shade can be
obtained working specifically on the hue, saturation and value elements separately.
It can be represented as a cylinder where the hue value is placed on an imaginary
surface, which is representing all its different values, moving from 0°to 359°. The
saturation component is represented as the distance from the center of the cylinder
to its outer boundary. Given a fixed hue , its saturation value can be modified by
moving along the radius. The value, which represents the brightness, is represented
as the height of the cylinder; its modulus increases by moving from the bottom to
the top of the cylinder.

Hue is the pure representation of colors, excluding all the different variances
determined by saturation and brightness. Saturation represents the quantity of gray
contained in the color, while brightness or value is the perception of light intensity.
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2 – State of the art and General Overview

Figure 2.1: HSV cylinder model

2.3.2 Utilities and Softwares

When it comes to image processing, there is a great amount of softwares and tools
that can be used in order to process and manipulate images.

OpenCV

OpenCV [13] stands for Open Source Computer Vision Library. It is an open source
machine learning and computer vision software library. It was built in order to pro-
vide a common infrastructure for computer vision applications. As things currently
stand, the current library has more than 2500 optimized algorithms, which include
a set of both classic and state-of-the-art computer vision and machine learning al-
gorithms. All these functionalities can be used for different purposes, such as face
detection and recognition, object identification, human action classification, cam-
era movement tracking, object tracking, object 3D model extraction, finding similar
images from an image database, red eyes removing and so on. Along with these
advanced functionalities, the basic ones provide image manipulation such as load-
ing, saving images, color model transformations such as RGB, HSV and grayscale.
OpenCV is widely supported and relies on C++, Python, Java and MATLAB in-
terfaces.

Pillow

Pillow [14] is a fork of the PIL project. It stands for Python imaging library and,
as it can be guessed from the name, it deals with images and image processing. It
contains basic image processing functionalities, such as point operations, filtering
with set of built-in convolution kernels and color space conversions. It also supports
image resizing, rotation and arbitrary affine transforms.
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2 – State of the art and General Overview

2.4 Autonomous Burnt Area Detection
This section covers the basic concept of machine learning, thus, its meaning, goals
and the algorithms currently used. There is a special mention to the neural net-
works and a particular version called convolutional neural networks. The final part
covers the current frameworks and softwares widely used in order to work with this
particular and very popular topic.

2.4.1 Machine Learning
Machine learning is a special branch of artificial intelligence. It is based on the
assumption that computers can learn from data, examples, in the same way hu-
mans can learn everyday from experience. Nowadays technology is deeply involved
in machine learning, because of its proven effectiveness and the exciting and huge
improvements made in the last few years in this field. There are two main reasons
why machine learning has seen a huge acceleration during these years: the great
improvement of hardware performances, which allows working, training and testing
models on the basis of an unprecedented speed and the high data availability, which
allows using a lot of training samples, creating more and more refined models, ca-
pable of getting precise results. There are different techniques and algorithms that
can be exploited in order to achieve any result. But, before going deeper in this par-
ticular section, it is important to define three differente categories of training, thus,
three ways to make a model learn from data, as it is well explained in [34]. The first
one, very commonly used, is supervised learning. It is based on the assumption that
each single data used for training is labeled, thus, in other words, it is associated
with the so called ground-truth output. This is a very important property, since
it allows understanding, at every training step, how well the model has performed
in terms of the given data prediction and update subsequently its parameters, in a
way that tries to minimize a given loss function, which is the mathematical function
that tries to define the relationship between the predicted value and the ground
truth outcome. There are many algorithms exploited in this field, such as decision
trees, support vector machines, Bayes classifier and so on. Reinforcement learning
is based on the developing of a system, called agent, which is able to improve its
performances by means of interactions with the enviroment. The environment pro-
duces a reward signal, based on a reward function, which measures how well the
action has been performed. The goal is maximizing the reward produced, increasing
the quality of actions. The last kind of learning is called unsupervised learning;
contrary to supervised learning, this particular mode does not provide any ground
truth label nor reward functions, so there is not any additional information about
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input data. Thus, its goal is extracting meaningful information without any guid-
ance provided by an already known output. A common unsupervised technique is
the so-called clustering: its goal is organizing data into subgroups, called cluster
so that the elements of a single group are similar to each other and different from
elements belonging to other clusters, given a set of features.

Classification vs Regression

Given a set if training dots, and a target variable, called class label, a given machine
learning model acts as a classifier if, given a specific input and a mapping function f,
it produces an output which is contained in a discrete set of labels. For instance, if a
mail classifier should predict whether an input email is either a spam mail or not, it
would be a binary classifier, so a model with two possible outcomes. More generally,
if a classifier should predict among many labels, thus greater than two, it would be
called multilabel classifier. It makes sense to use accuracy as a metric of how well
a classifier performs, since it analyses how many predictions are right out of all the
predictions made. Regression, on the other hand, predits a continuous outcome.
Predicting a house selling price, given a specific model, may be considered as a
regression problem. A very common metric used in this field is RMSE, also known
as root mean squared error, which measures the standard deviation of the predictions
from the ground truth. These examples are inherent to supervised problems, whose
goal is defining a trained model, over labeled data, that will then be applied to not
seen data, with an unknown label.

2.4.2 Neural Networks

Neural networks are based on the fact that human brain computes in an entire
different way from digital computers. It has the ability to organize its structural
constituents, knows as neurons, in a way that allows to reach astonishing perfor-
mances. As explained in [31], a neural network models the way brain produces a
particular task. It is made of different layers, structured as a series of fundamen-
tal units called neurons. Neurons are massively interconnected among each other.
Knowledge is acquired from input data, through a learning process and it is stored
in specific parameters which are called weights, specific for each single neuron. A
neuron is an information-processing unit. It is characterised by a set of synapses or
connecting links, each of which is associated to a weight or strength. For instance,
an input signal xi related to synapse i connected to neuron k is multiplied by the
synaptic weight wki. A neuron is also defined by an adder, whose goal is adding
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all weighted inputs for the given unit. An activation function, for limiting the am-
plitude of the output of a neuron. The neuronal model also includes an additional
element, called bias, which has the effect of increasing or lowering the net input of
the activation, depending on whether is positive or negative, respectively. A neuron
may be mathematically described exploiting this pair of equations:

uk =
mØ
i=1

xiwki

and
yk = φ(bk + µk)

As it is showed, the bias has the effect of applying an affine transformation to
the output uk. Depending on its sign, either positive or negative, it changes the
relationship between the induced local field, thus vk = µk + bk and uk. What it
is worth noticing is the different active functions that may be exploited whenever
building a neural model. Among these functions there is the threshold function,
whose outcome is 1 if the induced local field is equal or greater than zero, or zero
if it is lower than zero. The sigmoid function, which will be mentioned again later,
has an s-shaped graph and it’s the most common form of activation function used in
the construction of artificial neural networks. An example of the sigmoid function
is the logistic function, defined by

1
1 + eαv

Figure 2.2: Logistic function

2.4.3 Convolutional Neural Networks
Convolutional neural networks, described in [2], briefly known as CNNs, are a par-
ticular category of neural networks widely used in image recognition tasks. They

12
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are very similar to the original ones and are made up of neurons that have learn-
able weights and biases. The main difference with the classic approach is that cnn
assume that the inputs are solely images. They can recognize visual patterns with
extreme variability (such as handwritten characters) directly from images with min-
imal preprocessing. This allows encoding certain properties into the architecture
which make the forward function more efficient to implement and vastly reduce the
amount of parameters in the network. The great limit represented by neural net-
works, whenever dealing with images, is scalability. Supposing an input image of
32∗32∗3 elements and supposing fully connected layers, the first set of neurons will
have a total number of weights of 32 ∗ 32 ∗ 3 = 3072 each, which is still manageable,
but as data input dimension grows, the total number of weights tends to increase
excessively, not allowing to work with high dimensional scenarios. Each single layer
in a CNN is arranged in three dimensions which are width, height and depth. Given
this structure, each single neuron in a layer is not connected to the whole input vol-
ume, but just a portion of it, which is called reference field. Every layer transforms
the input volume in an output volume of neuron activations. There are different
layers that make up an entire convolutional neural network.

Convolutional layer

A convolutional layer is composed of a set of learnable filters. Each single filter, or
kernel, is of small spatial dimensions, typically 3, 5 or 7 each axis, but its depth must
be equal to the depth of the input volume. During this operation, each filter is slided
across the input volume and, for each position, a dot operation is performed among
every component of the filter and the corresponding elements of the input volume.
The output produced by each filter is a two-dimensional activation map that shows
the response of that filter at every spatial position. Intuitively, the network learns
filters that are able to activate when a specific edge or color is determined at first
layer, or some other structures are determined at deeper layers. Each single filter
produces an output layer of depth equal to one, all the layers, equal to the number
of filters, are stacked together in order to produce the output volume. The stride of
a filter expresses the number of pixels the filter is moved after every convolutional
operation. Usually stride is equal to one and a padding of zeros around the input
volume is applied, in order to mantain the same spatial dimensions in output. So,
the main parameters that can be tweaked are respectively the depth of the output
volume, thus the number of learnable filters used in the convolutional layer, the
stride of the sliding window and the padding. There is a very simple mathematical
formula which allows computing the spatial dimension of the output volume, given
the input volume size W , the receptive field size (the spatial dimension of the filter)
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of the convolutional layer neurons F , the stride with which they are applied S and
the amount of zero padding used on the border P . Here, it is shown the final formula:

W − F + 2P
S

+ 1

For instance, the convolution of a 7x7 input volume with a 3x3 filter with stride 1
and padding 0 would lead to a 5x5 output. It is not mandatory to keep the same
dimension of the input volume, it really depends on the kind of application the neural
network is meant for. What is immediately clear looking at the formula, is that not
all the strides can be used. For example, given an input dimension of W = 10 and
a filter dimension of F = 3 with a padding P = 0, it would be impossible to use
a stride of S = 2, since this would lead to 4.5 as the final result, not an integer
number.

Max pooling layer

It is very common to place a pooling layer among convolutional operations in order
to reduce the overall spatial size of the volume, so that it reduces the amount
of parameters and also controls overfitting. The most common pooling operation is
based on a filter of 2x2 dimension with a stride equal to 2. For each single portion of
the referenced volume, the max value is computed among all the elements contained
in the matrix. This leads to the discard of 75% of the total activations. So, given an
input volume ofW1 ∗H1 ∗D1, it produces a volume of size of W2 ∗H2 ∗D2, given two
hyperparameters, thus the spatial extent F and the stride S, whereW2 = (W1−F )

S
+1,

H2 = (H1−F )
S

+1 and D2 = D1. Though spatial dimensions reduction is fundamental,
in order to apply convolution on a coarse element and extract more complex features,
pooling is not the only strategy which can be applied in order to achieve it. There
are some situations where it is more desirable to exploit basic convolutional layers
whose filters size and stride is specifically determined in order to obtain half of the
input in each dimension, as it is showed in [2]

Fully connected layer

A fully connected layer presents neurons whose connections are related to all the
activations of the previous layer.

Case studies

There have been several evolutions in the convolutional networks architectures:
starting from LeNet, in 1990s, developed by Yann LeCun, that was used to read
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zip codes, digits... AlexNet, ZF Net, GoogLeNet, VGGNet and the current state-
of-the-art: ResNet or residual network, developed by Kaiming He.

2.4.4 Image Segmentation
It is very important to extract useful information from a given image, thus, being
able to split each picture in its basic components. As analysed in [38], it is a
widely used technology in medical image processing, face recognition pedestrian
detection and so on. As things stand, there are several techniques that may be
exploited in order to achieve this result. Among these different algorithms there are:
region-based segmentation, clustering techniques (such as k-means), edge detection
segmentation and CNN with supervised learning. As explained in [38], regional
growth segmentation is a region-based technique and it is based on looking for
pixels with similar properties to form a region. After selecting a seed pixel, a given
pixel is included in the region if its difference with the seed pixel is lower than a
given threshold, thus the importance of choosing the right threshold value. Edge
detection, on the other hand, is based on derivative operation, such as sobel and
laplace, which looks for discontinuities in the source image. Segmentation based on
clustering, such as k-means, relies on determing groups of pixels with similarities.
The clustering operation is applied in the feature space, then result is mapped back
to the original image obtaining final segmentation. In the last years, there has been
a great improvement in image segmentation based on convolutional neural networks

2.4.5 Unet
As mentioned above, convolutional neural networks are widely used in image clas-
sification tasks. However, there are many applications where not only would it be
important to output a classification label, but also to localize the position of the
classified information. In other terms, the what and the where. As explained in [35],
in biomedical images tasks it is very important to predict results in a pixelwise man-
ner, thus a label for each single pixel. As previously showed, convolutional neural
networks are a succession of different layers, whose outcome is a predicted result.
There is the need to apply a further transformation in order to achieve a higher res-
olution result. This one is obtained using a specific architecture, named u-net. The
’u’ reflects the particular shape that its inner logic creates. Common convolutional
neural networks show a contraction path which, given a source image, applies several
transformations, made especially of convolutional and pooling layers, which leads to
a final labeled result. The u-net architecture, besides this particular path, adds an
expanding path, made of several upsampling operations, whose goal is obtaining a
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final labeled mask. The idea showed in [35] can be split in two parts, the first one,
the contraction path, is made of pairs of two convolutions interposed with a max
pooling layer, for a total of four. After it, there’s the second part, which upsamples
the obtained result until obtaining the final outcome. What is worth noticing is
the concatenation among each level of the contraction path with the corresponding
level of the upsampling part. This allows to combine the high resolution features
determined at each step of the first part with the upsampled level of the second
part. This helps localization. The contraction path, as it goes deeper, increases
the number of features and, complementarily, reduces the spatial size, which is then
increased in the upsampling path together with a reduction in depth size.

2.4.6 Data augmentation

[35] shows not only how to classify images in a pixelwise manner, but also a very
innovative technique called data augmentation. In the last years, as showed in
the ImageNet competitions, neural networks have been trained on giant amount of
data, millions of images, which allow to achieve astonishing results in terms of all
the images tasks explained above. This is possible thanks to the great hardware
performances achieved and the important data sources developed during the last
decade. However, not all the application fields may rely on a important amount of
information to start with. For instance, biomedical images. This is the reason why
data augmentation has been introduced. Data augmentation is based on applying
different transformations to some specific input images, in order to get a wide range
of input elements, increasing significantly the amount of present data and achieving
great performances. Though it may look like this could lead to an overfitting model,
it was actually proven in [36] and [30] that, quite the opposite, it avoids overfitting,
even reducing it. Augmentation in data-space [37] is a techinque which is based on
creating plausible transformations of existing samples that preserve label integrity.
Typically, it may require an additional manual analysis in order to verify that the
image-label correspondance is still valid. Even though affine transformations, thus
transformations, rotations and skewing are commonly applied, exploiting a fixed
displacement for each single pixel, elastic distortions are becoming more and more
popular.

2.4.7 Utilities and Softwares

There are some tools that, as things stand, are widely used in neural networks
applications.
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Tensorflow and Keras

Tensorflow [29], is an open source software library explicitely built for high perfor-
mance numerical computation. It can be run across a variety of platforms, thus
CPUs, GPUs and TPUs leading to great speed. What it is immediately obvious is
that this library, even though very effective and powerful, is really difficult to use.
This is the reason why there is a very powerful framework, built not only on top of
Tensorflow, but also on other backends such as Theano and CNTK. It is well known
and widely used, it is called Keras [11] . It was built in order to go from idea to
a working result with the least possible delay. It supports both convolutional and
recurrent networks and it can run either on cpu or gpu, allowing low training time.
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Chapter 3

Burnt Area detection - a high level
perspective

Figure 3.1: Diagram of all the operations

This chapter delineates, in a high level description, the main steps that made
up this project, in a chronological order: starting from the retrieving of historical
information about burnt areas; the exploitation of this information for acquiring
satellite images, the storage of multimedia information and the following image
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processing algorithm. The last step is about the implementation of the machine
learning algorithm, in order to create the burnt area detection tool.

3.1 Metadata Retrieving
In order to deeply understand fires and burnt area phenomena, it is crucial to re-
trieve as many data as possible. In this particular field of research, thus, it is of
highest priority to collect satellite images showing the areas of interest in specific
cropped pictures. As explained in the previous chapter, the Copernicus Programme
makes available a remarkable dataset, collected through its missions and, particu-
larly, Sentinel satellites. Though, before being able to take possession of the mul-
timedia information, there is a previous step, which involves metadata retrieving.
Obviously, before querying any service providing those images, it is fundamental
to know where to look for the information and its quality. Generally, the overall
quality of data represents an essential aspect, since the subsequent quality is highly
related to the ability of storing very good images, collected from trustable sources.
This is, in general, the basis of machine learning and data science. If a certain
phenomena has to be analysed, in order to understand it completely and infer the
most important characteristics, the collected amount of data it is based on must
be of the highest quality possible and, whenever data are available, of relevant size.
While the former can be usually achieved exploring all different possibilities and
sources until finding a good quality which is suitable for the studied problem, the
latter not always can be achieved, since data availabilty is strongly related to the
field of analysis and there are specific situations where data shortage is an issue to
deal with. For example, medical imaging cannot always rely on huge datasets, so
some other techniques must be exploited to achieve a specific result. As it is re-
ported in the previous chapter, this problem can be, at least partially, solved using
data augmentation techniques, in order to increase significantly the cardinality of
the training set and reduce overfitting.
Metadata are data about data, in other terms, they may be considered, in this spe-
cific work, as a list of key-value elements describing the information of interest. In
this field of analysis, metadata represent additional information about a certain fire
event. It may be reported as simple text containing different kind of information
which can be either useful or not, depending on the specific application. For ex-
ample, while it is fundamental to know exactly where a specific fire has happened
and, hopefully, the period of time the burnt area has expanded; it may not be so
important to know, for instance, the kind of vegetation destroyed, or the amount of
carbon dioxide produced by the event. This actually depends on the particular kind
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of research. So, as an example, if working with air quality issues, it may be worth
noticing the impact that fires have on the air and the kind of substances produced
by combustion; while, if working with image classification, it is crucial to know the
exact position and possibly the surrounding polygon coordinates associated with
the burnt area. The metadata information collected for this work is mainly related
to European fires, starting from the first of January 2015. Metadata may be ac-
quired from different sources or exploiting just a single one. The former approach
determines a subsequent data integration operation. Unfortunately, it is rare that
different sources bring data in the exact same format or the exact same content. So,
the first thing to do is analysing carefully how the information is structured for each
single source and find the best way to merge different sources in order to get the best
overall information possible. Furthermore, a cleaning operation may be needed, if
duplicates occur. Being able to acquire information coming from different sources
may help in getting a more precise information, since it also allows to check if the
metadata collected are correct. The latter approach, differently, is easier, since data
integration step is skipped, but the drawback is not having the possibility to dou-
ble check the information acquired. After this first operation, it may be necessary
an additional filtering step whose goal is reducing the metadata attributes. As ex-
plained before, not all the information may be useful for the specific analysis, thus,
filtering out these elements reduces the size of remaining data and concentrate the
useful information. As soon as data information and data cleaning has been done,
it is sufficient to store the collected information in order to approach the following
step, which is the one related to data collection, thus multimedia information about
burnt areas.

3.2 Image Retrieving
As soon as metadata information has been retrieved, it can be exploited in order to
query some services and find the correct crop of a specific area representing the burnt
spot. First operation is referring to the right service. Though it may look like a very
easy task, it will be shown later how this has been pretty challenging, since there are
different websites, frameworks and scripts that may or not do the job. Generally, it
is pretty common to deal with different possibilities that may bring the information
in different formats. The service hosted by the Copernicus Programme: Copernicus
Open Access Hub, provides a way to get those kind of information but, as it will
be shown later, it has not been considered as the main solution, since there are
some drawbacks which would have slowed down significantly the convergence to the
solution. In this particular section the main issues may be related to the presence or
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not of the specific queried information, the size of each single information, in terms
of downloading time and storage management, the quality of the retrieved image
in terms of cloud coverage, area resolution and the ability to either see or not the
burnt spots.
As well explained, images acquisition is based on Sentinel 2 imagery as the main
source, thus MSI payload. These images are acquired using several bands, so another
issue is determing whether these additional bands are either useful or not for the
aim of this work. Then, dealing with burnt areas means being able to discriminate,
at least visually, what are the exact boundaries of the hotspot. This means being
able to understand, for each image, what is burnt and what is not. In order to
have a global vision of this problem, it may then be useful not only to collect the
image containing the burnt spot, but also its corresponding version before the fire
event and a wide surrounding area which clearly delineates the differences among
burnt and unburnt areas. This is very important so that an immediate comparison
can be done, allowing to easily understand where the hotspots are located. The
biggest drawback of this approach is that it increases significantly the amount of
information to download and, subsequently, the amount of images that has to be
stored. Nevertheless this may be a very good solution, especially if the given manual
annotation doesn not fit properly the burnt spot. In any case, it seems obvious that
the possible drawbacks and issues are specifically related to the adopted solution,
so there may be cases where the amount of data to download does not represent a
big issue. As soon as images are retrieved, they will be stored in a suitable storage
solution. This is fundamental when working with very big information. Not only
finding the right solution for storing information represents a crucial aspect for data
management, but also how this information is stored, thus how images are organized
and what are the names assigned to each single file, in order to easily acquire the
information during the following steps and being able to compare on-the-fly the
various contents.

3.3 Image Processing and burnt area detection by means
of image comparison

Once images have been retrieved, a further step is studying carefully the information
available. The following machine learning analysis relies on a supervised learning
approach. As explained in the previous chapter, supervised learning is based on
already known labels; this is fundamental so that the entire model may learn from
the ground truth information how well it performed during prediction and what is
the error entity. In this particular topic, what it is fundamental is retrieving the
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burnt area mask for each single fire, in terms of a binary image where the white
area represents the hotspot and the black area, complementarily, the unburnt spots.
Thus, having a precise idea of the available information represents a key step, since it
lets to deeply understand the problem and to acquire, during the process, some extra
aspects which have not been analysed before and which may reveal really helpful.
The first immediate approach is visual. It is fundamental to understand, at least
at a first level, what are the intrinsic characteristics of the burnt area. Typically,
they will appear clearly different from the previous situation, and this may come in
handy whenever defining distinctively the boundaries of the area of interest. But,
even though it may seem visually obvious and immediately recognisable, it is a very
slow approach, since it would need a lot of effort in terms of analysing manually
each single image and defining the right position of each hotspot. Nevertheless, this
is a very common approach, since it lets define accurately the assigned label for
each single pixel and the extent of the area; but this usually means having very few
images, or many people working on the same task. Since this is not the case, a very
intuitive approach to get this process done faster is applying some kind of algorithm
which is capable of comparing two images, the one before the fire took place and the
one after the fire event, in order to retrieve differences, which, hopefully, represent
exactly the area of interest. This, though, doesn’t exclude a final manual approach
whose goal is refining the autonomous mask extraction, as it will be covered later.

3.4 Machine Learning for burnt area detection
As soon as burnt areas imagery and corresponding labels, represented as binary
masks with the same spatial size, are retrieved, the final step has to be implemented.
There are a lot of machine learning algorithms, and each of them performs better
in specific situations, so it is important to pick the right one, in order to achieve
good results. In this particular situation, since image analysis is the cornerstone of
the entire work, neural networks represent a good choice, especially convolutional
neural networks, widely used in image analysis. As explained before, the long series
of layers implemented in a convolution neural network allow to extract features
and information at various levels of depth, letting grow the amount of knowledge
on each specific image. Supposing that the specific CNN is trained over a good
amount of different images, applying also some proper transformations, it will apply
segmentation step over each single test image in order to obtain, as output, a binary
mask roughly representing the boundaries of the burnt area. In other terms this
means that, after sending as input a burnt area image to the network, this applies
several convolutional operations and max pooling layers which properly transform
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it, in order to obtain a high depth volume, containing high resolution features. Each
single training image, feeding the cnn, determine a prediction (regression in a zero-
one range) whose values are compared with the mask related to the input, exploiting
a specific loss function, as explained later and determing a consequent update of the
neural network parameters. This update is based on the application of a gradient
over the loss function, determing the direction to follow in terms of weights update.
In order to avoid overshoot, so missing the point which minimizes the loss function, a
learning rate parameter is used as a multiplier to limit the absolute value of weights
update. In formulas:

L(w;x; y) = f(y, pred(x,w)),∇wf(y, pred(x,w))

where L represents the loss function, dependent from the inputs x and the weights
w. ∇ the gradient operator.
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Chapter 4

Burnt Area detection - a low level
perspective

This chapter addresses the burnt area detection issue, analysing it in depth. The
steps described in the previous chapter are covered in detail, showing the tools
and the implementation decision that were taken during the whole process. The
used algorithms are described step by step by means of the techniques and libraries
exploited to achieve the result.

4.1 Metadata Retrieving
Effis, as explained in 2.2.2, is a key system whenever dealing with burnt areas and
on-going fires. It provides several information that I managed to collect exploiting
a specific REST interface, which, at the moment, can be found at: [8]. The first
choice of the project was determing which of the exposed application programming
interfaces was the one that had to be used. Since the main goal was retrieving
an historical view of burnt areas, the most natural option was represented by the
endpoint that allowed to retrieve information about past years. Data could be
retrieved by means of a http get at the specified rest interface. This rest endpoint
offered a series of get parameters, in order to filter out the given result. The most
interesting, for the purpose of my project, was firedate__gt; it could be used to
specify a starting date so that all the results would have been inherent to a fire date
greater than the one established. The reason of this choice was related to the fact
that the Sentinel Mission 2, which I used as the main source for satellite imagery,
was started in 2015, so this limited the research in the last three years (2015-2018).
In fact, I used 2015-01-01 as get parameter for limiting the working spectrum. The
Effis service provided requested data in a Json format, whose structure was based on
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a lot of different keys. The entire json parsing and manipulation was accomplished
using the org.json library. Though it is not the best option as a library, if talking
about performances, it is very easy to use and a valid solution for a once-only
operation, just like the one implemented for data retrieving. Here, it is shown a
basic structure of the json representing a specific burnt area, which is quite rich in
terms of additional information, for different purposes:

1 {
2 "count": 19235,
3 "next": "http://effis.jrc.ec.europa.eu/rest/2/

burntareas/historical /?limit=1&offset=1",
4 "previous": null,
5 "results": [
6 {
7 "objectid": 58980,
8 "firedate": "2017-09-01",
9 "area_ha": 116,

10 "place_name": "SelishtÃ«",
11 "province": "Dibres",
12 "lastupdate": "2017-09-07",
13 "yearid": "2017_190290",
14 "id_source": 190290,
15 "yearseason": 2017,
16 "fireid": 35262,
17 "flag": "",
18 "shape": {
19 "type": "Polygon",
20 "coordinates":
21 [
22 [
23 [ 20.309307919, 41.589256176 ],
24 [ 20.309259531, 41.589313967 ],
25 [ 20.30920728, 41.589371086 ],
26 ...
27 ]
28 ]
29 },
30 "countryfullname": "Albania",
31 "lastfiredate": "2017-09-02",
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32 "lastfiretime": "11:34:00",
33 "country": "AL"
34 }
35 ]
36 }

As it is shown in the listing, a single burnt area is made up of several key-value
pairs. The code above refers to a get query, sent to the Effis Service, specifying a
parameter limit = 1, in order to reduce the returned elements to just one single
hotspot. Among all these elements it is worth noticing the results object array,
which reports a json object, showing some data related to the area of interest. The
firedate key refers to the date the fire event was originated, while, complementarily,
lastfiredate and lastfiretime should refer to the last date and the last time of on-
going fire respectively. Geographic information are reported as country, which refers
to the country code, AL in the example; countryfullname, place name and province.
The most important information that can be acquired referring to the json document
is the shape object and, specifically, the coordinates array, which reports the list
of pair longitude, latitude for each single vertex of the polygon surrounding the
area of interest. Those coordinates were reported in the widely used EPSG 4326
coordinate system. It is important to highlight that the polygon is retrieved as a
result of a manual annotation, thus it is not guaranteed that it respects perfectly
the shape of the burnt area. My goal was retrieving just the information useful for
the particular purpose of my analysis. There are two important questions to answer
in order to locate the hotspot: the where and the when. Where represents the
place, but, instead of retrieving either the country or the city of interest, the most
important information was represented by the polygon coordinates. It is obvious
that the former is superfluous when you can obtain the latter. Besides the where,
there’s the when; it was crucial to retrieve the temporal range of the fire event in
order to determine not only when the fire event happened, but when it was finished
too. I also decided to collect the extension of the burnt area, which is reported
by the area ha attribute, so, as it can be noticed from the parameter name, the
used unit of measure is hectares. All these operations have been accomplished
exploiting the JAX-RS framework and the Jersey restful api implementation. The
following operation was represented by the storage solution. As explained in 2.2.3,
the solution adopted relied on the open-source dbms: PostgreSQL. The metadata
information were organized exploiting a single table, reporting for each single row
the information related to a single burnt area. So, besides the auto-increment id,
the other information were the firedate, lastupdate, area ha and coordinates. An
extract of the table is showed below:
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Id FireDate Coords AreaHA Bbox LastUpdate
1 2017-01-02 0103000... 274 null 2017-01-03
2 2017-01-13 0103000... 24 null 2017-01-14
... ... ... ... ... ...

Table 4.1: Retrieved metadata example before ST_Extent

The result table represents the information of each burnt area in each single
row. As it is immediately noticeable, there are six columns in total, one of them
is represented as null. The reason why, at first, this information was equal to null,
was related to the fact that the bounding box column could not be retrieved from
the information provided by the json file. It was fundamental not only to collect
information related to the burnt area perimeter, but also retrieving the smallest rect-
angular bounding box, immediately obtainable from the coordinates of the polygon.
I managed to achieve this particular task exploiting the function given by the Post-
GIS extension: ST_Extent. ST_Extent takes as input the list of coordinates of the
polygon and gives, as output, a bounding box reporting two points, the lower left
and the upper right point of the surrounding rectangular area; each of this point is
reported in a longitude, latitude order. As soon as the sql query was done, this was
the output table:

Id FireDate Coords AreaHA Bbox LastUpdate
1 2017-01-02 0103000... 274 BOX(18.76 43.86, 18.79, 43.87) 2017-01-03
2 2017-01-13 0103000... 24 BOX(15.47 42.10, 15.48 42.11) 2017-01-14
... ... ... ... ... ...

Table 4.2: Retrieved metadata example after ST_Extent

The Bbox column is reported with coordinates that present only two decimals
point for representability reasons. There are two pair of points, where the former
represents the lower left point of the bounding box, the latter the upper right.
Looking at the first row, this means that the burnt area can be found within a
bounding box described by a left longitude of 18.7°, a lower latitude of 43.86°, a
right longitude of 18.79°and an upper latitude of 43.87°.
The metadata table presented above, considering the applied get parameter, filtering
results starting from 01-01-2015, is composed of 21889 different burnt areas. These
data are mainly related to Southern Europe, Turkey and North Africa, since the
Mediterranean Region represents one of the most affected areas in the world.
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4.2 Satellite imagery retrieving
Before enunciating in details how I managed to implement the retrieving of images, it
is worth showing an overview of the methods that, as things stand at the moment,
are exploitable in order to retrieve satellite imagery and, additionally, metadata
information.

4.2.1 An overview of satellite data
In-depth overview of Sentinel Missions

As mentioned in the first chapter, the first two Sentinel Missions, were launched
respectively in April 2014 and June 2015. Both of these missions rely on two orbiting
satellites, but with different purposes and on-board instruments. Sentinel-1 mission
is provided with a SAR (Syntethic Aperture Radar) instrument, which is capable,
working in a C-band spectrum range, to acquire data over day and night, on every
site, independently from clouds and weather conditions. Sentinel-1A and Sentinel-
1B are the names assigned to the two satellites working on this mission, which
share the same orbital plane. The capability of acquiring continuously landmasses
and ocean information gives access to data of the same site on a bi-weekly basis
for the entire world. Sentinel-1 satellites work on four different acquisition modes:
stripmap, which provides coverage based on a 5mx5m resolution over a swath of
80 km; interferometric wide swath mode, which is used on landmasses, based on
a 5mx20m geometric resolution over a swath of 250km; extra wide swath which is
based on the previous technique, but relies on a wider swath of 400 km at 20mx40m
spatial resolution; while the last one is the Wave technique, especially used for ocean
analysis, it is based on the acquisition of a series of 20kmx20km at 5mx5m resolution
vignettes, at two different incidence angles so that each vignette is separated by 100
km and two following vignettes with the same incidence angle of 200 km. Sentinel 2,
on the other side, is supplied with a MSI(Multispectral Instrument) payload, which
samples 13 spectral bands: four at 10 metres, six bands at 20 metres and three bands
at 60 metres spatial resolution. The elementary level of Sentinel2-MSI products are
granules of a fixed size, whose dimension depends on the particular level analysed,
from 25kmx23km to 100kmx100km.

Sentinel Products

As already mentioned, Sentinel data are provided as products. Those can be consid-
ered as compressed data, holding various information and organized into different
possible levels. For what concerns Sentinel-1 mission, there are four different levels,
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each of them available for each acquisition mode. Level-0 are the basic products,
which consist of compressed and unfocused SAR raw data. This represents the basis
from which all the other products are built. Level-1 products are then obtained from
raw data by applying a series of algorithms, obtaining two possible product classes:
Single Look Complex (SLC) and Ground Range Detected (GRD) [28]. Sentinel level
3 products, known as OCN, contain information about ocean analysis, such as ocean
wind field, ocean swell spectra, surface radial velocity. Sentinel-2 mission, on the
other hand, has five different levels of products, but neither Level-0, nor Level-1A
and Level-1B are public formats. The two levels made available are the Level-1C,
which provides a orthorectified Top-Of-Atmosphere reflectance and Level-2A which
containts Bottom-Of-Atmosphere reflectance and a classification map. The latter
can be obtained from the former by the user itself with proper softwares, like SNAP.
Sentinel products are organized into a SAFE format specification, specifically a
variation of the Standard Archive Format for Europe. It wraps several elements
which are explained in more details right below. Sentinel 1 product is composed
of different elements, such as a manifest.safe, which is an xml document containg
the mandatory metadata common to all SENTINEL-1 products; the Annotation
folder contains information related to the measurements, their characteristics and
how they are generated. The binary data are contained in the Measurement folder;
these information are the instrument data for level-0 products, processed images
for level-1 and derived data for level-2. A comprehensive review of product formats
can be found at: [16], [17], [18]. The focus of this analysis must be on Sentinel-2
data formats and data naming specifications. Sentinel-2 products are organized in a
different way from the previous mission products. There’s, of course, a manifest.safe
file, which, as in the previous case, contains all the metadata information; a gran-
ule folder, which contains one or more granule subfolders, each one corresponding
to a tile composing the level 2A user product. Images are compressed in jpeg2000
format and saved in different files for each different band in different resolutions.
thus images are organized into three folders containing respectively images at 10, 20
and 60 metres resolution. Datastrip folder contains the list of folder, each one cor-
responding to the datastrips making up the Level-2A user product. Data structure
is defined in detail in: [19].

Copernicus Open Access Hub

Copernicus Open Access Hub, which was known in the past as Sentinel Scientific
Data Hub represents the official, free and most important information aggregator
for, as things stand at the moment, Sentinel-1, Sentinel-2 and Sentinel-3 products;
as reported on the website, Sentinel-5P products will be made available soon. It
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offers several ways to properly interact with data. The availabilty of the products,
of any level, is generally close to the time of the acquisition, even though it depends
on the specific area. In real time context, the online availability of product is no
later than 100 minutes after data sensing, while in near real-time (nrt), the online
availability of product is between 100 minutes and 3 hours after data sensing. One
way to access information is: Open Hub; it is the access point for all the Sentinel
Missions, providing access to the graphical user interface. This hub, also known as
data hub, is a java web based system which was designed for handling and delivering
all kind of products supplied by various Sentinel missions. As mentioned above, it
is based on a trivial gui, which includes a search box properly defined in order to
filter out results and look for the products of interest. The search box presents a lot
of different options available, such as sort by, which is based on three parameters:
sensing date, ingestion date and cloud coverage. It is worth noticing the difference
between the two date parameters: the former represents the time of acquisition of
a given product, whose content depends on the kind of Sentinel mission, while the
latter represents the time when the product has been made available in the hub.
It is possible to define a time range for both sensing and ingestion period, but the
most interesting part is represented by the choice among three different Sentinel
Missions: 1, 2, 3. So, for each diffent mission, it may be specified the satellite
platform, the product type used, the polarisation and the sensor mode, thus the
different modes of acquisition exploited by the system (the latter is specifically for
Sentinel 1 satellites). Besides these filters, it is possible to create specific text queries,
which enhance the possibilities given by the search box; it is, for instance, possible
to define a polygon, looking for all the tiles that either intersect or contain the given
polygon. The access point for the API service, available at: [3] provides a lot of
extra possibilities in order to retrieve products from client applications and external
scripts. It actually exposes two different api access points: the Open Data Protocol
and the Open Search services. Both of them represent technologies build on top of
the REST technology. The open data protocol allows to easily retrieve information
from the data hub. Starting from the base url, it is possible to navigate through
all the resource provided by the service, such as the Products one. Querying at
Products, means retrieving a list of fixed entries, representing some of the available
products, each of them reporting the name, the UUID and the download URI. It
is obviously possible to achieve further customization by using several parameters,
such as format, in order to personalize the response retrieved from the service,
filter, orderby and so on. OpenSearch can be considered as the complementary
service of Odata, it can be queried using several parameters, such as Polygon, in
order to specify specific boundaries of a given hotspot, exploiting the same keywords
used in the data hub system. So, there are many ways to access data provided by
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the official aggregator, it is quite easy to get information, which is continuously
updated with a very low delay, unfortunately, the main drawback is represented by
products manipulation, which is not easy, in terms of bands processing, merging and
eventually, for the purposes of this project, band cropping. There is a know tool:
Snap, which allows products manipulation but, it is based on a manual analysis of
all the products, this is the reason why a python library called Snappy may come
in handy in this particular situation.

Sentinel Sat

Sentinel Sat [27] is a python library which provides several apis in order to easily ac-
cess and interact with Copernicus Open Access Hub. It gives the user the possibility
to either use the interfaces to interact with the Open Data Protocol or the Open
Search one. At first, it was developed in order to give an easy-to-use tool to access
metadata of every queried Sentinel-1, Sentinel-2, Sentinel-3 product; but, as things
stand at the moment, it also provides some methods to directly download products,
specifying different query parameters. Supposing that the user is interested in all
the products related to a specific area, defined by some polygon coordinates and at
a specific time range, it is possible to query the service, specifying those parameters,
in order to retrieve all the metadata related to the specified filters. This library rep-
resents a very powerful way to bypass the direct usage of data hub api, giving full
access to all the features provided by the original service. For instance, the query()
method of the SentinelAPI class allows to specificy not only some fixed parameters,
but all the keyword parameters decided by the user, in order to face possible evolu-
tions of the referenced service. The query_raw, as explained in the documentation,
allows to do a full-text query on the OpenSearch API using the format specified in
the Copernicus Open Access Hub.

Google Earth Engine

Google Earth Engine [9] is a planetary-scale platform for Earth science data and
analysis, powered by Google’s cloud infrastructure. Its dataset is of great importance
and its information comes from different sources. Specifically, the satellites the im-
agery is taken from are Sentinel missions, 1 and 2, Landsat, Modis, High-Resolution
Imagery, Defense Meteorological Satellite Program’s Operational Linescan System.
Landsat is a long lasting joint program of the USGS and NASA, which has been
observing the Earth continuously from 1972 through the present day. Today Land-
sat satellites make acquisitions at 30-meter resolution about once every two weeks,
including multispectral and thermal data. Earth Engine makes this data available
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as level-0 products, thus raw form, as TOA-corrected reflectance, and as computed
products such as EVI and NDVI vegetation indices. The high-resolution imagery
are brought by the US National Agriculture Imagery Program at one-meter reso-
lution. This imagery covers almost the entire US, starting from 2003. Old images
were retrieved using RGB channels, newer images are provided using a near infrared
band. So, Google has been capable to build a vast dataset of information, which
can be properly queried for different purposes. Besides imagery, it is also possible
to exploit data related to geophysical, climate, weather and demographic topics [6].
The service is free of charge for private users and research projects, while a pricing
policy may be applied for commercial purposes, but typically Google provides paid
commercial licenses for appropriate use cases. There are several ways to interact
with the data. Google provides a graphic user interface, available at [10] and an
online integrated code editor, with a full documentation, in order to work with data
of interests. The idea delivered by Google is exploiting its astonishing resources not
only to properly get in touch with all these data, but also being able to properly
process the information acquired applying custom algorithms developed by the user,
letting the developer publish results on any web portal. Exploiting the online IDE it
is possible to see immediate results, by applying the apis provided by Google under
the javascript class ee. The functions at disposal provides the user with very power-
ful instruments, that let not only to retrieve the data of interest, but also properly
manipulating the information, the bands and ease the usage of machine learning
algorithms. All these apis are also available for Python, in a wrapper library. The
biggest drawback of the service provided by Google is related to the need to use
their services; this means that, whenever exporting data, there’s no way to save
them locally, but it is just possible to export information to Google Drive or to
Google Cloud Storage. Obviously, the free amount of storage is very limited, so this
may represent an important obstacle in using this kind of service.

Sentinel Hub

Sentinel Hub [25] is an additional service which handles satellite imagery. The
most interesting thing represented by this service is that, as reported on its docu-
mentation, it makes satellite data, from all the available sources, easily accessible
for browsing and analysing, exploiting different possibilities, without worrying about
synchronization, storage, processing, de-compressing algorithms, metadata or sensor
bands. It provides many features, such as global coverage, multi-temporal process-
ing, custom scripting, access of imagery at any scale and preconfigured eo prod-
ucts. Just like previous services, SentinelHub relies on many data sources, such as
Sentinel-2, even though the available products are restricted to L1C, and to L2A just
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for a limited area over Europe starting from March 2017. Sentinel-1 and Sentinel-3
products are also available. Landsat, Triple-CubeSata, designed and manufactured
by Planet Labs inc., Envisat Meris, Digital Elevation Model, which is a 3d repre-
sentation of a terrain’s surface created from terrain elevation data, Modis sensor,
which is hosted on Amazon Web Service and Commercial Data. Data are usually
available as soon as ESA uploads products to the official hub, taking into account
the time needed to download the new information and to process the data. Sen-
tinel Hub delivers different services in order to properly interact with its processed
information. One of those services is called: Playground, which is an interactive
online tool giving the possibility to discover and explore Sentinel-2 imagery; the
user may look for scenes, band combinations and it allows to apply additional image
effects. EO Browser, on the other hand, combines a complete archive of Sentinel-1,
Sentinel-2, Sentinel-3, ESA’s archive of Landsat 5, 7 and 8, coverage of Landsat
8, Envisat Meris, Prova-V and MODIS products, allowing to look for specific time
range, cloud coverage and sources; exploring the map and downloading the images
of interest. The images can be prepared and visualized exploiting different repre-
sentations, which are based on different merging of the provided bands; for instance
images may be visualized exploiting the TRUE COLOR visualization, by means
of B4 B3 and B2 bands, NDVI based on combination of bands (B3-B8)/(B3+B8).
Sentinel hub also offers a python api [26], which provides several interfaces to de-
liver some of the functionalities provided by the original service. The access point is
provided by an OGC API exploiting either WMS, WMTS, WFS or WCS standards.
WMS (Web Map Service) conforms to the WMS standard, so it provides a base url
and several filter parameters in order to get the queried results. It provides either
access to the 13 unprocessed bands or to processed products such as true color im-
agery, NDWI index and so on. Standard WMS URL parameters are service, version,
request, time, bbox. WCS, WMTS and WFS offer similar capabilities, even though
each of them present some peculiarities [12]. Sentinel Hub offers a trial period of 30
days, where the user can access all the features provided by the service, then there’s
the possibility to get different subscription plans with different features provided.
In the last period Sentinel Hub started offering its products on the Amazon Web
Service, which provides better performances than the original hub of the Copernicus
Programme.

Additional Services

There are several additional services which provide access to satellite imagery com-
ing from various sources. For example: [24], which presents an almost cloudless
view of the entire world, combining pixels acquired during an important time range.
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Another service is: s2.boku.eodc.eu [21], provided by EODC. EODC is the Earth
Observation data provider and distributor, specialized in data procurement, man-
agement and efficient processing. It acquires data from ESA’s data hubs and make
information available on the EODC archive. It currently delivers only Sentinel
products, specifically Sentinel-1, Sentinel-2 and Sentinel-3 missions. It is based on a
collaborative IT infrastructure for archiving, processing and distributing EO data.
It can be queried exploiting a REST interface, whose reference may be found at: [22].
The main resources exposed by the service are product, which represents the Sen-
tinel product, granule, representing the elementary tile of each single product; also
in this case it is possible to specify several parameters in order to retrieve the de-
sired results, image, on the other hand, allows to retrieve a jpeg2000 file, related
to the specific filters specified, such as a date range, a given resolution, a given
band. There’s a R api which wraps the mentioned interfaces in order to properly
interact with the service from a client application: [23]. Unfortunately, the service
is not free, each granule costs one credit and the number of free credits, after reg-
istering, is equal to three. Each time a new granule is needed for user purposes, it
must be bought from the service in order to be able to proceed with further analysis.

Copernicus Open Access Hub (Science Hub)

• resource link https://scihub.copernicus.eu/

• sources Sentinel 1 (Level0, Level1, Level2), Sentinel2(L1C, L2A) and Sentinel3
(Level1, Level2), Sentinel 5P will soon be available

• data availability 1hr, 3hr up to 1 day

• pros Free

• cons Products Management and Post processing

• GUI OpenHUB

• Pricing Free

Sentinel Sat

• resource link https://pypi.org/project/sentinelsat/

• sources Copernicus Sources

• data availability Copernicus Availability
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• pros Easy access to Copernicus services

• cons Products Management and Post processing

• GUI None

• Pricing Free

Earth Engine

• resource link https://earthengine.google.com/

• sources Landsat, Sentinel, MODIS, NAIP...

• data availability N.A.

• pros Powerful instruments, Google cloud platform

• cons Locked in Google Services

• GUI Explorer

• Pricing Free for research, education, and nonprofit use

Sentinel Hub

• resource link https://www.sentinel-hub.com/

• sources Sentinel-2, Sentinel-3, Sentinel-1, Landsat, Planet Labs, Envisat Meris,
DEM, Modis, Commercial Data

• data availability As soon as available on Copernicus Open Access Hub ->Time
Downloading + Time Processing

• pros Easy to use, no products processing

• cons Limitations, Pricing

• GUI Playground and EO Browser

• Pricing (30 days trial) from 0 to 550 euros per month (free research licenses)

Sentinel Hub Py

• resource link https://sentinelhub-py.readthedocs.io/en/latest/

• sources Same sources of Sentinel HUN
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• data availability As soon as available on Copernicus Open Access Hub ->Time
Downloading + Time Processing

• pros Wrapper library to Sentinel Hub API

• cons Limitations (Limited amount of request per minute), Pricing

• GUI None

• Pricing Sentinel-Hub pricing

4.2.2 Satellite imagery retrieving - How
The idea behind images retrieving was the following: if a given area was hit by a
fire event, the burnt land determined by it may be defined comparing the given area
before the fire event and the same area after the fire event, close to the date of the end
of fire. So, this may be resumed saying that there was a before and after period of
interest that had to be analysed for each single fire event, so a before and after image.
In order to retrieve the images whose metadata were collected in the previous step
(see 4.1), I decided to use Sentinel Hub and, specifically, the Sentinel Hub python
library previously mentioned. The reason of this choice is related to a very simple
consideration: handling source products takes a long time, because of their size,
which is usually equal to hundred of megabytes up to some gigabytes and because of
post processing: as mentioned before each product is made of several bands, so there
is a first need to merge those bands in order to get the desired result and applying a
crop operation so that the desired area of interest can be taken into account. Even
though it is technically possible to work directly with low level products, it is also
advantageous to work with Sentinel Hub service, since products have already been
processed and imagery can be directly accessed. All the imagery retrieved relies
on the Sentinel 2 L1C products. As saw before, Sentinel Hub python library offers
the possibility to work with different interfaces provived by the OGC. The one I
decided to use is the Web Map Service. Before being able to properly download
imagery from the Sentinel Hub service, it was crucial to retrieve the metadata saved
in the previous step in the Postgresql database. Metadata retrieving was possible by
means of psycopg2: a specific python library which allows to interact with Postgresql
database. Among the standards provided by OGC and supported by the service,
the one I decided to exploit was Web Map Service, because of the parameters and
the functionalities it provides. The key metadata retrieved were the firedate, the
lastupdate and the bounding box for each single fire event. Now, as mentioned
previously, the bounding box was obtained starting from a Polygon geometry by
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means of the PostGIS function ST_Extent; this functions returns two points: a
lower left and an upper right point, as a longitude, latitude pair each. Since the
wms calls imposed that the bounding box was expressed as an upper left point and
a lower right point in a latitude, longitude order; I had to properly modify the
previous expression. The fire geometry expressed the where, while the two dates
the when. The imagery retrieving was made of two subsequent operations expressed
as two wms requests. Since requests were a lot and the entire process would have
taken a long time, I decided to implement a concurrent software where three threads
were committed to querying the Sentinel Hub service, getting better performances.
The first attempt was retrieving the image representing the specific area before the
fire took place, while the second one, complementarily aimed to obtain the area
after the fire event. Obviously the mentioned operations had to be done in a time
range constraint, in order to make sure that the images were as faithful as possible
to the situations described. So, concerning the first retrieving, the image search
started from the firedate minus one day going backwards, until a result was found.
What it’s clear is that it was important to set a limit, in order to avoid to look
for the image too far in the past. This means that, if no images were found for
the set time range, that specific event would have been skipped, going immediately
to the next one. For a single wms calls there were some parameters specified such
as: layer, which was used to specifiy the output bands of the image; the bounding
box, specifying the upper left and lower right corner of the retrieved rectangular
geometry. What it is worth noticing is that I did not use the closest bounding box
to the polygon coordinates, but a wider one, which could include some unburnt
areas, since I thought that would have been necessary for the following operations
in terms of clear distinction between the hotspot and the surrounding areas. Besides
the bounding box I used the width and height parameters in order to specify the
exact dimensions of each output and make sure that it was the same for all the
retrieved images. There actually were two possibilities: defining the height and/or
width or the spatial resolution, in terms of meters per pixel. The former represented
the final choice since it allowed to define a fixed dimension, that I set at 5000x5000
pixels. Finally, the last parameter specified was the cloud coverage, going from 0
to 1, in order to define the percentage of clouds of the queried tile. It is important
to highlight that the cloud coverage was referred to the entire tile containing the
queried polygon, instead of the solely area of interest. As soon as the first image
was retrieved, the process was re-applied for the following one, this time looking for
a result containing the burnt area. In order to maximize the probability of a good
confirmation, the time range was set at 15 days, just like the previous example.
Again, the parameters used were the same, except for the days of analysis, which
were related to the days after the fire event. Supposing a successful outcome, the
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following operation was determing if those images could be good candidates for
further operations. Unfortunately, not all the images could be considered valid,
since some of them could contain a very high cloud coverage percentage or some
bad light conditions. Since looking at each single image, using a manual approach,
would have taken too much time and effort, I managed to implement an empiric
solution, based on image sizes. Supposing that two images were too different in
terms of size, it could mean that at least one of them lacked in terms of content, so
this would have led to a bad comparison between the two, as well as images whose
size was under a certain threshold, probably meaning some clouds or white areas.
In the following page it is shown four examples of satellite images showing clouds:
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(a) Madera, Portogallo (b) Menaceur, Algeria

(c) Belmonte Calabro, Italia (d) Tunisia

Figure 4.1: Cloudy Areas
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As it may be clear, images reported in 4.1 are compromised in terms of visibility
over the ground area, so they were not really useful.
All the images acquired were then stored in the Azure Blob Storage application.
The naming was related to the coordinates of the bounding box used to query the
service, plus a “before” or an “after” keyword to either refer to the image before the
fire event or the one after it. In order to avoid any name collision between different
fire events, a timestamp was appended at the end of every name.

4.2.3 Satellite imagery processing
As soon as all the images were properly collected and stored in the Azure Blob
Storage, the following step was represented by the creation of a specific annotation
for each single datum. The so-called annotation had to be created so that the burnt
area could be properly highlighted over the unburnt one. Even though a manual
definition of the polygon coordinates was available, I preferred not to use it because,
after conducting some experiments, it showed that it did not describe accurately the
boundaries of burnt areas. There could be several reasons for this kind of behaviour.
An explanation may be found in the stretching of the image, applied to get squared
images of 5000x5000 pixels, which could determine a translation of the hotspot in
respect of the annotation provided. Another reason may be found in the linear
conversion between pixel and corresponding geographic coordinates, which did not
take into account the shape of the Earth, resulting in a not so accurate result. In
order to overcome the described issues, it became necessary to find another solution,
which could define a proper mask for the burnt area, without using the manual
annotation as the main information. This meant that I was forced to implement
some kind of comparison between two images, representing the same area, in the
before and after fire event conditions, so that the differences and then, hopefully,
only the burnt spots could emerge. In the experiments chapter it will be described
in details the steps I took to get to the final result, also explaining the good things
about the automatic approach implemented and the possible drawbacks of it. The
basic idea of all the approaches was working with image processing algorithm in
order to figure out some possible features and characteristics that could let the
burnt area stand out. As shown in the first chapter there are many color models
and, in general, many ways to represent color information, as well as many ways
to apply transformations over that information in order to exalt or repress some
aspect of it. All these operations were conducted exploiting the numpy and opencv
libraries, plus a visual approach, during the tuning of the algorithm, to determine
empirically if the considered choices could be either evaluated as correct or not. The
algorithm goal was, thus, having as input a sequence of pair of images, representing
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the before and after area of interest, retrieving the binary mask representing the
hotspot under analysis. In general, a binary mask is an image reporting white areas
and black areas, where the white spots represent the positive elements, while the
black spots represent the negative ones. For the purpose of this research, the positive
event was considered related to the burnt area, which was then represented as white
in the final binary mask, while the negative event, complementarily, was considered
to be the unburnt sposts, represented in black. The final approach, which gave the
best results in term of the hotspot identification, consisted of transforming the rgb
model of the input images into the hsv one, before applying any other step in the
algorithm.

(a) Vagos, Portugal - after fire event (b) Vagos, Portugal - before fire event

The images above represent one of those ”tough” cases, since there are different
lights conditions which, at least visually, may disturb the correct identification of the
burnt area. But, taking a look at the absolute values of both rgb and hsv models, it
is self-evident how the latter behaves better in terms of distinguish the hotspot from
the surrounding, even though the colors may look different all over the image. The
explanation is an immediate consequence of what was explained in the first chapter,
in the hsv and rgb models section. The hsv model splits the chroma component from
the luma one and the former is represented by the hue value. This means that, even
though two colors may look completely different, it is mainly related to a different
”quantity of light” of the same hue component, which results, at least apparently, in
two different colors. While the rgb model, which represents in its information both
luma and chroma, merged together, cannot define a proper way to represent these
information separetely, resulting in the impossibility of determing any relationship
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between the rgb color of the same pixel of the first image and the rgb color of the
same pixel of the second image. Tables 4.3 and 4.4 represent the rgb and hsv values
for both before and after image for a pixel outside of the burnt area and a pixel
inside of the burnt area:

Image Pixel Coordinates RGB HSV
Before (920, 3204) (22, 34, 44) (209,47,18)
After (920, 3204) (43, 55, 64) (206, 33, 25)

Table 4.3: Example of RGB and HSV values for a pixel outside of the burnt area

As it is immediately noticeable, the r, g, b components don’t have a visible
relationship between the two pixels, so this means that it would be very difficult to
extract any kind of information to confirm the integrity of the ground and, thus, the
absence of a burnt area. What it is, on the other side, pretty evident, is that the hue
component of the two pixels is pretty similar, just three points of difference. This
means that, even though, apparently, the two colors are way different, it is actually
confirmed that their hue component difference is within a small threshold which
may be exploitable for further analysis. If two pictures of the same area are taken
with different light conditions, the hue component of corresponding pixels will be
pretty similar, while the saturation and the value component will tend to diverge,
because of a different light contribution. Here below (4.4) are reported the different
values of two corresponding pixels related to the burnt area. Obviously, the pixel of
the before image does not contain any ”burnt” information while, the pixel of the
second image, is referring to a specific point in the hotspot.

Image Pixel Coordinates RGB HSV
Before (2732, 3496) (41 62 63) (183 35 25)
After (2732, 3496) (36 40 53) (226 32 21)

Table 4.4: Example of RGB and HSV values for a pixel inside of the burnt area

The r, g, b components, still, do not show any human readable information, it
is just a series of values with no evident meaning. Again, what it is worth noticing
is the hue component of the two images. 226 is the value related to the after image,
while 183 is the one corresponding to the before image. Their difference is pretty
considerable, and this represents the hint that it is the kind of information useful
for defining the boundaries of the area of interest. This information was the one
exploited in the binary mask creator algorithm. Taking a before and an after image
as input, the hue values of both could lead to a mask representing the burnt area
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pretty consistently in all the fire event pairs. Here below it is reported a more
evident example of a burnt area:

(a) Danisment, Turkey - after fire event (b) Danisment, Turkey - before fire event

The burnt area stands out, more evidently than in the previous case. This is due
to better light conditions, thus, probably, the two images were taken in the same
period of the day. 4.5 reports the results for a pixel outside of the burnt area and a
pixel within it:

Image Pixel Coordinates RGB HSV
Before (304, 1760) (106 83 78) (11 26 42)
After (304, 1760) (123 95 87) (13 29 48)

Table 4.5: Example of RGB and HSV values for a pixel outside of the burnt area

In this example, it’s immediately clear that the color shades tend to be more
uniform between the two images. This perceptual aspect reflects on the information
reported in the table. The h, s, v values are pretty similar: the hue component is
almost the same, as the saturation and value elements. What it is worth noticing is
that the r, g, b components look different. This is due to the nature of the rgb model,
in fact, taking a look at a color visualizer, the rgb tuple (106, 83, 78) corresponds
to: , while (123, 95, 87) corresponds to: . So, though those pixels are pretty
similar in terms of shades, still, their rgb model doesn’t reflect this information.
This aspect strengthens the idea that rgb doesn’t suit this kind of analysis, while
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Image Pixel Coordinates RGB HSV
Before (2088, 3632) (91, 75, 75) (0, 18, 36)
After (2088, 3632) (64, 58, 65) (291, 11, 25)

Table 4.6: Example of RGB and HSV values for a pixel outside of the burnt area

hsv tends to reflect what it is visible more easily. Looking at a pixel of the burnt
area 4.6 show the advantages provided by HSV.

Omitting the rgb analysis, which would lead to the same considerations, again,
the hue difference between the before and after values is important. The hue dif-
ference value, measured between 0 and 359 degrees, is determined as the smallest
difference between the two points on the circumference, as it will be shown later; so,
in this case, it is equal to 69 degrees. This difference is also clear looking at the im-
age, the before hsv value corresponds to: , while the after hsv value corresponds
to: . Looking at these examples, it is clear that the hsv approach represents a
valid solution which is the one implemented in the algorithm. Here, it is shown the
high level workflow of the algorithm exploited in order to create the binary mask
creator:

Retrieve
images

Converto
to Hue

Compute
Hue

difference

Compute
min_th,
max_th

Create
Mask

Clean
Mask

In details, the steps taken in order to implement this process were, at first,
retrieving the images, for each single fire event, in order, from the Azure Blob Storage
service. So, exploiting the psycopg2 library, after collecting metadata information
containing the coordinates of the polygon, file name after, file name before, the pair
of images were retrieved. These images were internally represented as rgb model, so
there was the need to convert them to HSV, by means of the open cv library and,
subsequentely, isolate the h channel from the other two. Unfortunately, the open cv
library, as written in the documentation, divides by two the original hue values, in
order to fit them in 8 bits. This could represent a loss in terms of information, this is
the reason why I applied a further operation, after conversion, in order to represent
hue with its original values, exploting a wider 16 bits representation. After doing
this conversion, the two arrays determined were subtracted, so that the final array
would have contained only the hue differences for each single pixel. Since all images
were different, there was the need to determine a threshold value, on the base of
that applying a filtering operation. Finding a threshold meant determing the hue
differences composing the burnt area. The only way to know, a-priori, where to look
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for that values, was exploiting the manual annotation provided by the Effis service.
Even though, as explained previously, the annotation didn’t match properly the
hotspot area for the images acquired from the Sentinel Hub service, nevertheless it
surrounded a great portion of the burnt spots, making it a good starting point for
analysing the hue values of interest. Again, this was a method to get faster results,
without worrying too much about manual cleaning of images, thus, it was absolutely
admitted some noise due to a not-very-precise threshold acquisition, since a further
cleaning step was then applied. So, in order to get a better chance to look in the
right burnt area, instead of analysing the entire portion of image surrounded by the
polygon annotation, just a smaller bounding box within it was used. This meant
isolating the portion of the numpy array, representing the hue differences, taking
a rectangular inner portion, related to the burnt area. The approach I decided to
use is pretty conservative, supposing to define two thresholds instead of a single
one. The first threshold is the min_th, thus the minimum threshold, which was
determined computing the average hue value of the burnt area divided by two,
while the maximum threshold, max_th, was determined adding to the maximum
value the difference between the maximum value and the average value, divided by
four. These formulas were used in order to preserve as much information as possible,
relying on further cleaning operations for eliminating general noise. As soon as the
minimum and maximum threshold were determined, the next step was represented
by retrieving the binary mask. This step was composed of two inner steps, the first
one determing the binary mask out of the minimum threshold while, the second
one, complementarily, the binary mask out of the maximum threshold. Figure 4.4
reports the obtained results.

As it is immediately noticeable, the maximum threshold mask is white, this
means that all the hue difference values are below the maximum threshold. So,in this
case, the logical and bit a bit between the two images can be considered redundant,
since the final mask will be equal to the input minimum threshold mask. Those
masks correspond to the areas showed in 4.5.

The resulting mask is still noisy, this is absolutely normal, since no further op-
erations were applied. This additional operations will be showed right below and
they are part of the following steps, in order to obtain the final cleaned mask. In
fact, after obtaining the result above as a consequence of the logical ‘and bit a bit’
operation of the two threshold outputs described above, the following operations
applied were erosion and dilation. Erosions and dilations represent two of the most
used morphological image processing techniques, they rely on a small matrix called
kernel, also known as structuring element, which is applied iteratively all over the
mask, by sliding it at every step of a given stride. The kernel, whose dimension can
change significantly, depending on the size of the input image, is filled with values
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4 – Burnt Area detection - a low level perspective

(a) Contrada Acquavite, Sicily(TP). Min
threshold mask

(b) Contrada Acquavite, Sicily(TP. Max
threshold mask

Figure 4.4: Thresholding

(a) Contrada Acquavite, Sicily(TP) - after
fire event

(b) Contrada Acquavite, Sicily(TP) - be-
fore fire event

Figure 4.5: True color images

equal to one, in this example; at every step the matrix is slided, for each single value
of the input image as a moving window. For what concerns the former: if the matrix

46
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is completely contained within the covered area of the input image, thus, if the input
image contains one all over the checked area (if it fits the covered area), the value
in the center is mantained to one, otherwise it is turned to zero. In practice, this
mechanism will eliminate small noise all over the image, even though this process
depends on the size of the kernel, the bigger the sliding window, the more of the
image will be eliminated. At the same time it will soften borders, reducing size of
bigger spots within the image. This process allows to get a cleaner overall output,
but it woul not be so useful without the corresponding dilation process. Dilation
behaves in a complementary way. Again, given a kernel of a specific size, it is slided
through the entire input image; if the kernel hits the image, thus, if at least one
element covered is equal to one, the value at the center is set to one, otherwise it is
mantained to zero. In other terms, this means that all the borders, reduced by the
erosion operation, will be almost restored to the previous state while, and this is the
key point, the eliminated noise won’t be back, since its corresponding area values
were set to zero. Summarising, the consecutive application of this two operations,
results in a cleaner image whose borders are still pretty similar to the input image.
Obviously, the final results are strictly related to what parameters have been chosen
both in erosion and dilation. Here it is presented a small example:

erosion 
1 1 1 1
0 1 1 1
0 1 1 1
1 1 1 1


1 1 1
1 1 1
1 1 1

 =


0 0 0 0
0 0 1 0
0 0 1 0
0 0 0 0

 (4.1)

dilation 
0 0 0 0
0 0 1 0
0 0 1 0
0 0 0 0


1 1 1
1 1 1
1 1 1

 =


0 1 1 1
0 1 1 1
0 1 1 1
0 1 1 1

 (4.2)

For what concerns satelllite imagery analyis, referring to the image previously
showed, here is the mask after applying erosion and dilation, specifically in the
following order: 20x20 erosion followed by a 5x5 dilation, after some experiments:
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Figure 4.6: Contrada Acquavite, Sicily(TP) - after erosion and dilation

It is definetely cleaner than the previous example; some borders have been eroded
and there is still some noise, but this was partially removed using a further technique,
this time relying on the findContours function provided by the opencv library. As it
may be understood from the name this function goal is retrieving all the borders of all
the shapes within an image. The basic idea was simple: whenever there’s additional
noise, its boundaries are typically small, so finding the length of all contours and
not drawing the smaller ones was the key to apply an additional noise reduction.
But, what I wanted to do, was preserving inner borders, so shapes within shapes,
representing inner unburnt spots or streets, in order to have an higher accuracy
and accomplishing this task the main key was splitting borders in two categories:
external and internal borders. There was a parameter, which could be specified in the
findContours function in order to filter out the kind of contours to be retrieved; so the
first retrieving was related to outer contours, by means of the RETR_EXTERNAL
flag. This contours were then filtered exploiting the inner area contained within
them, the contours containg small areas were filtered out, while the others were
kept. Starting from this list, it was possible to draw as white all the areas within
those contours, keeping black the background. Then, the following operation, was
retrieving the inner contours, by means of the RETR_CCOMP flag and create
a negative mask, thus a mask where inner areas, the ones contained by the inner
contours, were totally black, while the external were white. Then, the last operation
was applying a logical bit a bit between the two masks in order to obtain the final
one 4.7.
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Figure 4.7: Contrada Acquavite, Sicily(TP) - after findContours()

In figure: 4.9 as as summary, it is presented the before, after, mask before
findContours operation and the final mask of another fire:

(a) Poggioreale (TP) - after fire (b) Poggioreale (TP) - before fire
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(a) Poggioreale, Sicily(TP) - after erosion
and dilation

(b) Poggioreale, Sicily(TP) - after findCon-
tours()

Figure 4.9: Masking images process

The last image shows the final mask, it still has some noise all around, which
can be easily remove by exploiting a cleaning operation.

4.2.4 Dataset creation
In order to feed the machine learning model, it was crucial to define a way to store
the amount of information retrieved, in terms of both images and masks in a format
which was suitable for the specific purpose. There were a number of alternatives,
such as exploiting a remote database and cloud storage, or save all the images locally
and then apply a specific algorithm in order to feed the neural network. However this
solution were expensive for different reasons, such as download speed, the need of
an internet connection, or a huge amount of storage available for all the images and
the corresponding masks. This is the reason why the chosen option was building a
portable database, in a binary format, holding all the images and the corresponding
masks, following a specific order of bytes. This allowed not only to have a easy to use
solution, but also a very compact one, in terms of memory footprint, which contained
everything needed in just one place. The algorithm is based on the fetching of the
images representing the burnt areas and the corresponding masks. A single image
is saved as a sequence of rgb values, storing for each of these elements one single
byte. So, supposing to save only the rgb values and the corresponding element of
the binary mask, this meant storing four bytes for each single pixel of the image. It
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is useful to remember that red green and blue were coded in true color 24 bits, thus
8 bits for each single channel; this means no loss of information after saving. There
were different approaches for this problem, since I exploited different techinques for
images analysis. The first idea was the so-called windowed approach: it was based
on splitting the source image, with the native resolution cropped to 4960x4960 pixels
in sub-images of different dimensions. Specifically, these windows were chosen for
experiments purposes, and the different dimensions were actually used in order to
do further analysis, as it will be explained in the next chapter. Since the number
of images was important and looping through a numpy array of 4960x4960 was
computationally intense, I decided to exploit a multithreaded approach, where each
single thread was involved in the computation of a single sub window. Each result
was then properly embedded in a message sent to a queue emptied by a consumer
thread, saving each single message, appending its content to the binary file. This
approach determined that each single window was saved one after another. This is
a simple schema representing the windowed approach:

Figure 4.10: Windowed dataset creator schema

The other approach was saving the entire source image, without applying any
windowing. Unfortunately, for the following step, a size of 5000x5000 pixel was
too big and that would have taken too much time in order to converge, besides
the computationally intensive tasks it would have determined. So, this was the
reason why, before saving the images and the corresponding masks, a resize down
to 496*496 pixels was necessary. So, this time, the multithreaded approach was not
applied to each subwindow of the original tile, but, instead, to a single image, which
was then embedded in a single message and sent to the consumer. Obviously, the
final dataset obtained with the latter approach was definetely smaller than the ones
obtained with the windowing approach.

4.2.5 Convolutional Neural Networks - Unet
As mentioned in the first chapter, convolutional neural networks often represent a
valid option when dealing with input data as images. This was one of the reasons why
it looked like a good option to start with. As explained, convolutional networks are
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able not only to find recurrent patterns in the input data, but also infer many features
at deeper levels of the chain. Plus, it was necessary, looking at the application field,
to apply a segmentation over the image in order to find, if present, the boundaries
of the burnt areas, exploiting a supervised learning approach, thanks to the binary
masks computed in the previous chapter. The specific network exploited was the
unet, a specific cnn highly exploited in the last years for segmentation purposes.
The main goal was achieving a pixelwise classification, by means of a network which
was able to output, for each single pixel, a value referring either to a burnt or an
unburnt spot. So, in other terms, the final output segmentation had to be in a
binary mode, thus, white areas for burnt areas and black areas for the unburnt one.
Here, before explaining its inner layers and the overall architecture, it is presented
the unet model:

Figure 4.11: Unet for biomedical segmentation, [35]

This model was specifically used for biomedical segmentation [35]. Even though
it was a different analysis from mine, the basic idea could be considered similar.
There was the need not only for a mere classification, but also a localization of pixels
in the image. Not only the model showed behaved brilliantly in the following tests,
but it could be able to achieve those results with a very small training set, thanks to
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data augmentation through elastic distortion. The network is made of several layers,
as explained before the left part of it represents the contraction path, the one whose
goal is reducing the overall spatial resolution of the input image and, at the same
time, increase the number of features extracted by the model. Complementarily,
the expansion path, will increase the spatial dimensions and reducing the depth
of the computed volumes in order to retrieve the final output image. erring to the
example, which is pretty similar to what I used for my field of analysis, it is composed
of a recurent structure which can be resumed with two consecutive convolutional
operations, followed by a max pooling layers. The pattern is increasing the number
of features at each step of the network, while the max pooling layer halves the
spatial dimensions. Starting from the first layer, the system will be able to detect
smaller features of the input image, such as small shapes, corners; while the deeper
the network goes, the more features it will be able to extract, looking at bigger
portions of the image. The expansion path, complementarily, doubles up the spatial
dimension at every up-convolution and the following convolutions will progressively
reduce the number of filters, until obtaining a proper depth. The last operation,
which outputs the result, computes a sigmoid function, which constraints each pixel
value in a continuos range from 0 to 1. Thus, the model, applies a regression which
is then converted into a classification by means of a threshold applied at 0.5. The
more an output value is closer to one, the more chances that pixel is related to a
burnt pixel and vice-versa. The networks I managed to create for the purposes of my
research followed the basic structure presented in this paper, although it presents
some minor changes in order to avoid dimensionality reduction, due to the absence
of any padding strategy in the work above and some changes to the layers, so that
the model could work with different inputs, as it will be explained in details in the
experiments chapter.
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Chapter 5

Experiments

The experiments showed in this chapter are related to two main parts of the project:
image processing and machine learning. For the former it is reported the different
operations applied on the images until achieving a satisfying result in terms of the
obtained binary mask. The latter shows the different steps that were taken in order
to create the final machine learning model, capable of detecting burnt areas without
the presence of a ’before” version of the image containing the burnt area.

5.1 Image Processing
The image processing step, as deeply explained in the previous chapter, was intended
as a way to determine the burnt area, in order to define a precise annotation for its
boundaries. So, many experiments were carried out trying to figure out a way to
achieve this important goal. The inputs were, at this point, represented by a pair
of images for each single fire event. This pair of images represented a before and
an after version of the area of interest. Here below there’s another example of a
before/after event:

The burnt area is located in the center of the left image, in the darker area. At
a first glance its shades are made of gray and brown. The first approach was pretty
straightforward: supposing that two images were the same, except for the burnt
area, a mere difference between the two would have created a final mask where
the unchanged color components would have been equal or close to zero, while the
hotspot area, since different, would have showed different shades. This problem
was faced using two different approaches: the first one was working with grayscale
images, since this would have facilitated the difference process, having to deal with
just one single channel per image. So, the first operation was converting before and
after images into grayscale.
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(a) Oliveira do Hospital, Portugal - after
fire event

(b) Oliveira do Hospital, Portugal - before
fire event

(a) Oliveira do Hospital, Portugal.
Grayscale - after fire event

(b) Oliveira do Hospital, Portugal.
Grayscale - before fire event

The two images look very similar, much more than the previous case. The main
issue is that, working with grayscale, the chrominance information was lost, while
the luminance component was the one kept. This meant that, trying to identify the
area of interest with the grayscale approach would not have been very useful, since
the elimination of the color component would have flattened the image information,
losing the ”burnt” spot. It is pretty clear that the areas related to the fire event are
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really close in terms of grayscale levels. In fact, this is confirmed by analysing the
histograms of the same cropped region of both images:

(a) Oliveira do Hospital, Portugal. His-
togram grayscale after event aoi

(b) Oliveira do Hospital, Portugal. Histog-
aram grayscale before event aoi

The two figures cleary show what it was mentioned before. The chroma infor-
mation was lost due to the conversion process and the luminance information is not
enough in order to distinguish the two areas, whose histogram is really close; thus,
the difference between the two images would have been a shades of gray really close
to 0 level, thus zero. The situation is pretty similar for the entire images:

(a) Oliveira do Hospital, Portugal. His-
togram grayscale after event aoi

(b) Oliveira do Hospital, Portugal. Histog-
aram grayscale before event

The components are contained within a very narrow range, the same range that
contains the components of the area of interest. This means that the useful in-
formation was lost during the conversion process. It is also pretty obvious that
the difference between the two gray images would have resulted in an almost-black
output mask, not showing the desired hotspot. Here, it is shown the difference:
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Figure 5.5: Oliveira do Hospital, Portugal. Histogram difference

Summarising, this first algorithm was not useful for the preset goal. That’s why
the following operation was trying to apply a different approach, trying to convert
images into a different color model, which could split the chrominance from the
luminance, allowing to analyse images from different perspectives. The picked model
was HSV. The first operation was splitting each image into the three components:
hue, saturation and value. Then, applying a separate analysis for each different
channel.
hue

(a) Oliveira do Hospital, Portugal. Hue
component. After event.

(b) Oliveira do Hospital, Portugal. Hue
component. Before event.
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saturation

(a) Oliveira do Hospital, Portugal. Satura-
tion component. After event.

(b) Oliveira do Hospital, Portugal. Satu-
ration component. Before event.

value

(a) Oliveira do Hospital, Portugal. Value
component. After event.

(b) Oliveira do Hospital, Portugal. Value
component. Before event.

It is pretty clear that the saturation channel and the value channel do not bring
any additional information to the analysis, since those images look pretty similar
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in both versions. What, instead, shows additional information is the hue channel.
Specifically, the after version shows a clear spot, that is represented with a different
shade from all the other colors surrounding it. That area corresponds to the hotspot,
or the so called area of interest. Thus, it was interesting going deeper in order to
figure out if it could represent a possible solution to this problem. The following
step was applying the difference between the two hue channels of both after and
before images and look at the outcome:

Figure 5.9: Oliveira do Hospital, Portugal. Hue difference mask

The result above shows the difference between the two hue outcomes, applying
a mask which turned on the pixels whose hue values were above a certain threshold
and turned off, complementarily, the pixel whose hue values were below the given
threshold, properly computed as described in the previous chapter. This result
was also achieved rescaling the hue values to 0-360 range, from the 0-180 provided
by opencv. One more thing, which has to be highlighted, is that the absolute
difference between two hue points was considered as the smallest difference on the
circumference, so the smallest gap, between the two determined. As mentioned in
the previous chapter, the mask had to undergo further cleaning operations in order
to obtain the final result, applying, in the order, dilation and erosions plus the find
contours operation.

Although the process determins a faster approach for manual annotation, it
requires, most of the times, an additional cleaning operation to get the best outcome
possible. This is the reason why, for the purposes of the analysis, I decided to get the
final annotation of two hundred different burnt areas, instead of working on all the
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Figure 5.10: Oliveira do Hospital, Portugal. Final mask

acquired images. Obviously, being able to rely on a bigger dataset means having a
more comprehensive vision of various burnt areas all over the world, but this is easily
fixable with further manual work. 5.11 represents a subset of annotated images:

Figure 5.11: Mosaic of burnt areas
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5.2 Machine Learning
This part relies on all the techniques exploited and the various experiments whose
goal was finding the most suitable solution in order to determine the boundaries of
the burnt area. The first problem was represented by the choice of the algorithm to
use to classify the various images of the dataset. Despite the possibility to apply dif-
ferent tests and techniques in order to figure out what machine learning algorithm
to pick, I choosed immediately the neural networks solution. The reason of this
choice was mainly related to literature experiments. It was showed during the last
years that CNNs represent the state-of-art when working with image classification.
The starting conditions, for image classification, was composed of two sets of im-
ages: satellite imagery reporting burnt areas and their corresponding annotations,
thus, binary masks, which for the sake of this analysis, could be considered as the
ground-truth. The first decision was how treating each single image, because of
its size. As mentioned in the previous chapter, each single burnt area was stored
as 5000x5000 pixels image. Thus, it would have been pretty difficult, in terms of
computation to handle such a big file, in terms of dataset size and machine learning
computations. Thus, the final decision was applying two different approaches: a
windowed approach and a resized approach. The former was based on the splitting
of each single input image into several tiles, whose number was influenced by the
size of each single sub-window while the latter was based on a initial rescaling oper-
ation of the image, without any cropping operation. For the former, the windowed
approach, I decided to exploit three different window sizes, in order to compare the
performances of the model applied on vignettes of different dimensions. This sizes
were respectively: 124, 248 and 496 pixels. Here below, it is showed the workflow
for those three sizes:

5000x5000
image

Resize
4960x4960px

Apply
window
of either

124, 248 or
496 pixel

Mutithr.
approach for
each tile or
sub-image

Binary
dataset
creation

It is obvious that, supposing to have 200 images for the dataset of all three
windowing approaches, the number of sub-tiles, obtained as output, was different,
depending on the particular window size.

Overall dataset dimension tends to be pretty important if working with a win-
dowed approach, especially with the smallest one. The parallel approach was, in-
stead of splitting each single image into sub-tiles, working on each different tile as-is,
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Window Size (pixel) Tiles per Image Total no. tiles
124 1600 320000
248 400 80000
496 100 20000

Table 5.1: Dataset for each window size

resizing the original image and work on that without doing any cropping operation.
Here it is presented the workflow for this particular operation:

5000x5000
image

Resize
496x496px

Multithr.
approach for
each image

Binary
dataset
creation

What is is worth noticing is that the output of both approaches was a binary
file, where each image and the corresponding binary mask were encoded in a specific
format: for every pixel of the true color image, representing the burnt area, its red,
green and blue values were encoded in 1 byte, plus 1 byte for the corresponding pixel
mask, for a total of 4 bytes for each single pixel. Thus, again, supposing a dataset
of 200 images, the size for each output dataset is reported below:

Algorithm Size per tile (KB) Size dataset (GB)
Windowed 124 px ≈ 60 ≈ 18.32
Windowed 248 px ≈ 240 ≈ 18.32
Windowed 496 px ≈ 961 ≈ 18.32
Resized 496 px ≈ 961 ≈ 0.18

Table 5.2: Size for different algorithms

Obviously, the smaller the window, the smaller each tile size, but, what it’s clear,
is that the overall dataset size did not change for all different windowed approaches.
The resized algorithm, on the other hand, lead to a definetely smaller dataset because
of a 10 times reduction operation.

5.2.1 Resized Algorithm
The resized algorithm, as explained previously, took as input a 5000x5000 pixels
image and produced, as output, its transformation obtaining a definetely smaller
496x496 pixels image, without any windowing whatsoever. The reason why it was
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necessary to implement such an important resizing, is because of the memory foot-
print produced by the model during the training process, which is very important
because of the many layers the CNN was composed of.

Resized Algorithm - Training

Architecture

Operating System CPU Ram GPUs
Linux Ubuntu Intel Core i9-7940x @ 3.10GHz 126GB NvidiaGeForce 1080 TI x 4

Table 5.3: Hardware resources

As explained in the previous chapters, the architecture used for this work was
a modified version of the unet showed previously. It is composed of two paths:
a contraction path and an expansion one. Each single level is composed of two
convolutional operations, which, in the contraction path, followed by a max pooling
layer resizing the spatial dimensions to half of the input volume. The expansion
path progressively increases the size of the spatial dimensions, reducing the depth
of the volume, until obtaining a regression mask of a depth equal to 1 whose spatial
size is equal to the input volume.
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Architecture

Layer Input Volume Output Volume
Conv. Layer_1 496x496x3 496x496x32
Conv. Layer_2 496x496x32 496x496x64

Max Pool. Layer_1 496x496x64 248x248x64
Conv. Layer_3 248x248x64 248x248x64
Conv.Layer_4 248x248x128 248x248x128

Max Pool. Layer_2 248x248x128 124x124x128
Conv.Layer_5 124x124x128 124x124x128
Conv.Layer_6 124x124x128 124x124x256

Max Pool. Layer_3 124x124x256 62x62x256
Conv.Layer_7 62x62x256 62x62x256
Conv.Layer_8 62x62x512 62x62x512

Max Pool. Layer_4 62x62x512 31x31x512
Conv.Layer_9 31x31x512 31x31x512
Conv.Layer_10 31x31x512 31x31x1024

Table 5.4: Contraction Path

Layer Input Volume Output Volume
Up_1 31x31x1024 62x62x1024

Conv. Layer_11 62x62x1024 62x62x512
Conv. Layer_12 62x62x512 62x62x512

Up_2 62x62x512 124x124x512
Conv.Layer_13 124x124x512 124x124x256
Conv.Layer_14 124x124x256 124x124x256

Up_3 124x124x256 248x248x256
Conv.Layer_15 248x248x256 248x248x128
Conv.Layer_16 248x248x128 248x248x128

Up_4 248x248x128 496x496x128
Conv.Layer_17 496x496x128 496x496x64
Conv.Layer_18 496x496x64 496x496x1

Table 5.5: Expansion Path

Up is defined as a layer which combines three following operations, in the or-
der: upsampling which doubles up the spatial dimension of the input volume, a
convolution and a concatenation between the obtained result of the output and the
corresponding volume of the contraction path. The output of the entire model is a
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mask containing a regression, between 0 and 1, for each single pixel. The closer the
outcome, defined by a sigmoid function, is to 1, the more likely the pixel belongs to
a burnt spot, otherwise, complementarily, it will be related to an unburnt area.

Data augmentation

Data augmentation, as explained in the previous chapters, is a particular technique
whose goal is applying specific transformations to the input images in order to
increase significantly the dataset. There are two main goals for this technique: the
first one is avoiding overfitting offering a variety of images as input to the learning
model, the other one is increasing the input dataset so that there are more images
to learn from. The dataset size chosen for the experiments was not that big because
of two reasons: the former one was avoiding a manual approach for the annotations
which would have been excessively time consuming, the latter was related to the
time it would have taken for the model to be trained. The last issue was especially
important if working with a windowed approach since the size of the original image,
thus, before applying a splitting into subtiles, was equal to 4960*4960 pixels, with
no further resizing.The time taken by the model to be trained on that huge amount
of pixels was very important, thus, relying on a wider dataset would have taken
too long for all the experiments to be successfully done. So, by chosing a smaller
dataset, I was able to compare different techniques during the training process. Data
augmentation was based on a series of transformations illustrated below:

Transformation Value
shear range 0.5

rotation range 50
zoom range 0.2

width shift range 0.2

Table 5.6: Augmentation algorithm transformations

The algorithm acquired information from the given dataset and continuously
applied random transformations over each single batch. This meant having the
possibility to extent significantly the feeding information, letting the network learn
on a wide variety of shapes, very important when dealing with burnt areas, which
are segments of ground that do not belong to any specific shape or color. Figure
5.12 and 5.13 show the examples of some images transformations:
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(a) Not augmented (b) Not augmented mask

(c) Augmented (d) Augmented mask

Figure 5.12: Augmentation example
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(a) Not augmented (b) Not augmented mask

(c) Augmented (d) Augmented mask

Figure 5.13: Augmentation example
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Above are showed two possible transformations applied over the original image
and its corresponding mask; what it is worth noticing is that those transformations
are the same for the image and its corresponding mask, so that the burnt area will
still correspond to the white parts of the mask and vice-versa.

5.2.2 Training with data augmentation

Training set Validation set Batch size
1600 200 5

Table 5.7: Training Parameters

No. steps per epoch No. validation steps No. epochs
320 40 13

Table 5.8: Training Parameters

Loss Function Mean Squared Error qn
i=1

(xi−x̂i)2

n

Optimizer Adam with learning rate: 0.00001

The training set size of 1600 was obtained by applying augmentation to the start-
ing training set of 40 elements. Since the number of steps per epoch was set equal
to 320, with a batch size of 5, the number of samples seen by the network at every
epoch is equal, clearly, to the training test size. This means that each single image
of the training set was brought to the network with 40 different transformations
since:

sampletransformations = (nostepsepoch ∗ batchsize)/(notaugmenteddataset)

The number of augmented validation images was then set to 200, by feeding the
network with forty different distortion for each single image from the five of the
original validation set. This allowed to kept the same ratio between training and
validation set, as the one presented before the augmentation process.
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Set Best Mse
Training 0.036
Validation 0.076

Table 5.9: MSE comparison
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Detection Results

Burnt Area Detection Ground Truth
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Burnt area Precision recall F1 score
1 0.96 0.81 0.87
2 0.91 0.88 0.89
3 0.75 0.84 0.79
4 0.71 0.79 0.75
5 0.84 0.96 0.89

Table 5.10: DICE coefficient comparison
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5.2.3 Training with no data augmentation

Training set Validation set Batch size
40 5 5

Table 5.11: Training Parameters

No. steps per epoch No. validation steps No. epochs
8 1 13

Table 5.12: Training Parameters

Loss Function Mean Squared Error

Optimizer Adam with learning rate: 0.00001

In this experiment it was used the same dataset as before, but with no data
augmentation. This meant that the dataset size was restricted to the original number
of elements, thus 50: 40 images for the training set, 5 images for the validation set
and the remaining 5 images for the test set. The number of steps per epoch was
obtained by dividing the original dataset for the batch size, equal to five. The same
step was applied for the validation set as well.
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Clearly, the results obtained are worse then the previous case. The interesting
thing is that the dataset was the same, except for the augmentation process. This
seems to give value to the previous technique, which clearly shows better results
in terms of mean squared error. The model was not sufficiently aware of a general
context, in order to infer some features which could allow a better result on the
validation set.

Set Best Mse
Training 0.1404
Validation 0.1500

Table 5.13: MSE comparison
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Prediction Results

Burnt Area Detection Ground Truth
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Burnt area Precision recall F1 score
1 0.33 0.97 0.49
2 0.70 0.98 0.81
3 0.20 0.97 0.33
4 0.16 0.99 0.26
5 0.40 0.99 0.57

Table 5.14: DICE coefficient comparison
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5.2.4 Traning with data augmentation - Bigger dataset

Training set Validation set Batch size
7000 800 5

Table 5.15: Training Parameters

No. steps per epoch No. validation steps No. epochs
1400 160 9

Table 5.16: Training Parameters

Loss Function Mean Squared Error

Optimizer Adam with learning rate: 0.00001

The training set size of 7000 was obtained by applying augmentation to the
starting training set of 175 elements. Since the number of steps per epoch was set
equal to 1400, with a batch size of 5, the number of samples seen by the network at
every epoch is equal, clearly, to the training test size. This means that each single
image of the training set was brought to the network with 40 different transforma-
tions how already explained for the other data augmentation experiment. The same
considerations were applied for the validation set, 20 images augmented forty times
each, in order to obtain 800 images as augmented validation set.
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Set Best Mse
Training 0.025
Validation 0.074

Table 5.17: MSE comparison
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Prediction Results

Burnt Area Detection Ground Truth
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Burnt area Precision recall F1 score
1 0.94 0.98 0.96
2 0.86 0.97 0.91
3 0.73 0.97 0.83
4 0.83 0.91 0.87
5 0.87 0.91 0.89

Table 5.18: DICE coefficient comparison
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5.2.5 Training - windowed approach

Training 124px window

Training set Validation set Batch size
64000 8000 5

Table 5.19: Training Parameters

No. steps per epoch No. validation steps No. epochs
12800 1600 6

Table 5.20: Training Parameters
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Set Best Mse
Training 0.03807
Validation 0.1453

Table 5.21: MSE comparison

Training 248px window

Training set Validation set Batch size
16000 2000 5

Table 5.22: Training Parameters

No. steps per epoch No. validation steps No. epochs
3200 400 14

Table 5.23: Training Parameters
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Set Best Mse
Training 0.03800
Validation 0.1248

Table 5.24: MSE comparison
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Training 496px window

Training set Validation set Batch size
4000 500 5

Table 5.25: Training Parameters

No. steps per epoch No. validation steps No. epochs
800 100 29

Table 5.26: Training Parameters
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M
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Set Best Mse
Training 0.02143
Validation 0.08785

Table 5.27: MSE comparison

All those three techniques were applied on the same dataset, whose sub-tiles were
supplied in the same order, with no shuffle operation. There are two main things to
highlight: the number of epochs for each different training was strictly related to the
size of the window, the smaller the window, the smaller the number of epochs. This
was determined, as already explained, by an increase of the frequency of weights
updates, that lead to a faster convergence of the model. The best mse was given
by the bigger window. I assumed that it was determined by the fact that this size
provided a wider context than the other two solution, which overcame the fact that
a wider window tended to have lower performances in terms of localization, due to
a deeper model and a higher number of pooling operations.
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Chapter 6

Further Developments

6.1 Image Retrieving
There are two main developments in this section. The first one would be using other
services for satellite imagery retrieving, which may provide some additional quality in
respect of the used solution. The ideal approach woul be using the Copernicus Open
Access Hub, exploiting its important resources, obtaining the information right from
the root source. As I mentioned in the previous chapters, there are some drawbacks
related to this solution but, having the possibility to work with the original source,
would allow to manipulate at the best resolution possible the maps information and,
at the same time, it may make possible exploiting the manual annotation provided
by the Effis source. Being able to rely on these annotations, would mean eliminating
the manual cleaning of the binary masks provided the semi-autonomous approach
already explained; thus, it would lead to a bigger dataset, not having to obtain the
before version of the image, since no comparison would be necessary. The more
images obtained, the better the training process, thus, it may lead to a better MSE
over the validation images. The other development would be exploiting all the bands
provided by the SAR instrument, on board of the Sentinel2 mission. Being able to
use bands from b01 to b12 plus the b8a, could determine the inference of additional
features, besides the red blue and green channels already collected. An additional
development would be not only using the data provided by the Sentinel2 mission,
but also those provided by the Landsat and Sentinel1 missions.

6.2 Machine Learning
It would be interesting developing the model obtained by exploiting new data and
binary masks. At the same time, there would be the need to enhance the machine
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learning architecture by introducing several models so that it woul be possible to get
overall better performances. My concerns are about the difficulty to determine the
boundaries of all burnt areas around the globe. The problem is mainly represented
by the variety of shapes and colors that burnt areas present. I think that a possible
solution would be defining a clustering algorithm, capable of splitting input images
into different categories, based on vegetation and, thus, color values. All those
categories would be assigned to different classifiers able to recognize the burnt areas
boundaries in some different environments. So, hotspots in a green area would be
assigned to a specifiec classifier while those developed in barren grounds would be
assigned to some other. Here, it is shown a possible schema:

6.3 Further studies

It would be important to exploit different machine learning techniques, besides the
one used in this project. A final comparison would highlight the pros and cons of each
technique, having, eventually, some images comparison. The different approaches
showed in the previous chapter were based on an hold out approach, because of the
time it would have taken to implement a cross-validation approach for each single
experiment. A further step in this direction would be useful.
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6.4 Final Considerations
Satellites data represent a huge possibility for data analysis and prediction. There’s
still a general lack of knowledge in this particular field, due to the youth of this tech-
nology. The effort made by Europe and Esa delivered some important programmes,
which allow mapping almost every aspect of our planet. This project showed a basic
technique in burnt areas mapping, but, though it was based on some limits and
constraints, it showed its effectiveness, which can be further developed taking into
account all the different parts and layers that compose this tool.
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