
POLITECNICO DI TORINO

Master’s degree in Electronic Engineering

Master’s Degree Thesis

FPGA-Based Framework for Hardware
Acceleration of the HEVC Encoder

Supervisor
Maurizio Martina

Candidate

Biagio Feraco

July 2018

Abstract

HEVC (High Efficiency Video Coding), the most recent standard for video com-
pression, has led to an huge increase of the encoding efficiency with the respect to
the previous standards but, on the other hand, several tasks have became highly time
demanding and power consuming. This thesis proposes a fast, dynamically reconfig-
urable and flexible hardware accelerator for the SATD (Sum of Absolute Transformed
Differences), that is one of the cost functions adopted by HM HEVC reference soft-
ware. The developed hardware block follows all the specification given by HEVC and
can work with every Transform Unit size from 8×8 up to 64×64. The accelerator is
fast thanks to a highly parallelized architecture. It exploits a datapath subdivided into
4 pipeline stages for the time optimization for the different SATD sizes. This architec-
ture was compiled and adapted in order to work on an FPGA system called DE1-SoC
by Intel Altera. On this board is present a Cyclone V, that includes an ARM processor
and the architecture was interfaced with it through its buses. Using the microSD inter-
face it was possible to run a Linux distribution and the usage of the FPGA peripheral
was integrated in the HM reference software. After that two main optimizations were
introduced, the first one was the clock gating, in order to reduce the power consump-
tion, and the other one was the utilization of the DMA inside the HPS, to increase
the throughput of the data from the processor memories to the FPGA. At the end, the
adders present in the datapath were substituted with Error Tolerant Adders, with the
aim of analyzing the effects of approximation on the Rate Distortion.

Contents

List of Figures V

List of Tables VI

1 Introduction 1
1.1 Video Signal Representation . 2
1.2 Video Sequence . 3

2 HEVC 5
2.1 Encoder . 6

2.1.1 Block Partitioning . 6
2.1.2 Intra Prediction . 8
2.1.3 Inter Prediction . 9
2.1.4 Transform . 10
2.1.5 Quantization . 10
2.1.6 Entropy Coding (CABAC) . 11
2.1.7 In-Loop Filters . 11

2.2 HEVC HM Reference Software . 12

3 Methods 13
3.1 Complexity in HEVC . 14
3.2 SATD Accelerator . 15
3.3 Design Flow . 15

4 DE1-Soc and Quartus Prime 17
4.1 Quartus Prime . 18
4.2 Platform Designer . 19
4.3 Linux on the DE1-SoC . 19

5 Architecture Description 21
5.1 Introduction . 21
5.2 Algorithm Description . 22
5.3 Top Level . 23

II

5.3.1 Hard Processor System . 23
5.3.2 Clock Source and PLL . 24
5.3.3 Custom Component . 24

5.4 Architecture Structure . 24
5.5 Datapath . 26

5.5.1 Main Unit . 28
5.5.2 Pipeline Stages and Enable signals 30
5.5.3 Memory System . 30
5.5.4 Memory Implementation . 32

5.6 Control Unit . 34
5.6.1 Control Finite State Machine . 35

5.7 VHDL Implementation . 36
5.7.1 Avalon Memort Mapped Slave Protocol 36
5.7.2 Internal RAM Memory . 37

6 Architecture Validation and Debug 39
6.1 VHDL Testbench . 39

6.1.1 Writer . 40
6.1.2 Control . 41

6.2 Software Test Program . 41
6.3 Timing Measurement . 42

7 Synthesis 45
7.1 Introduction . 45
7.2 Analysis and Synthesis . 45
7.3 TimeQuest Timing Analyzer . 46
7.4 Power Analysis . 47

8 Integration in HM Reference Software 49
8.1 Introduction . 49
8.2 Access to the FPGA . 49
8.3 HM Reference Program . 50
8.4 Timing Measurements . 52

9 Optimizations 55
9.1 Clock Gating . 55
9.2 Direct Memory Access . 56

9.2.1 Linux Kernel Module . 57
9.2.2 Compilation and Utilization . 58
9.2.3 Integration for SATD accelerator . 59
9.2.4 Time Measurements . 59

III

10 Approximation 61
10.1 Adder Selection . 61
10.2 Implementation . 62
10.3 Results . 63

11 Conclusion 67
11.1 Summary . 67
11.2 Results Analysis . 67
11.3 Future Works . 68
11.4 Workflow Definition . 68

A Reports 71
A.1 Resources Usage Summary . 71
A.2 Time Reports . 73

B C Code 75
B.1 Modified SetDistParam Function . 75
B.2 xGetHAD . 77
B.3 Modified xGetHAD Function . 79

Bibliography 83

IV

List of Figures

1.1 GOP Structure . 4

2.1 HEVC encoder block scheme . 7
2.2 CU partitioning modes used for deriving the PUs. 9

4.1 DE1-SoC Overview [1] . 18
4.2 Platform Designer Interconnections Overview 19

5.1 DE1-SoC Clock Distribution . 24
5.2 System Overview . 25
5.3 Top Level Overview . 26
5.4 Datapath Overview . 27
5.5 Main Unit . 28
5.6 HAD Unit . 29
5.7 Relation Between Memory and MUs . 31
5.8 Control Unit Overview . 34
5.9 FSM State Graph . 35

6.1 Testbench block scheme . 40

8.1 Flow chart showing important functions in Intra Prediction 51

9.1 Clock Enable Timing . 56
9.2 Data Route from HPS to FPGA [1] . 58

10.1 The Error-Tolerant Adder type II (ETAII) . 62
10.2 Block diagram of modified ETAII (ETAIIM) [2] 63
10.3 Comparison of the RD-cost . 64

V

List of Tables

5.1 Compatible Block Dimension . 33

6.1 Time Measurements single comparison . 43
6.2 Time Measurements search emulation . 43

8.1 Main functions in Intra Prediction . 50
8.2 Time Measurements single block AI, RA, LD 53

9.1 Experimental Time Measurements for each single block dimensions . . . 60
9.2 Experimental Time Measurements for each block dimensions emulating

a search . 60

10.1 Experimental results for recommended video sequences for All-Intra con-
figuration . 64

10.2 Experimental results for recommended video sequences for Random Ac-
cess configuration . 64

10.3 Experimental results for recommended video sequences for Low Delay
configuration . 65

VI

List of Acronyms

AI All Intra
ALM Adaptive Logic Module
ALUT Adaptive Look-Up Table
AVC Advanced Video Coding
CB Coding Block
CTB Coding Tree Block
CTU Coding Tree Unit
CU Coding Unit
DCT Discrete Cosine Transform
DPB Decoded Picture Buffer
FME Fractional Motion Estimation
GOP Group Of Pictures
HAD (see SATD)
HEVC High Efficiency Video Codec
IME Integer Motion Estimation
LAB Logic Array Block
LDB Low-delay B
LDP Low-delay P
ME Motion Estimation
PB Prediction Block
PE Processing Element
PSNR Peak Signal to Noise Ratio
PU Prediction Unit
QP Quantization Parameter
RA Random Access
SAD Sum of Absolute Differences
SATD Sum of Absolute Transformed Differences
SIMD Single Instruction Multiple Data
SSE Sum of Squared Errors
TB Transform Block
TU Transform Unit

VII

Chapter 1

Introduction

In the last twenty years it has been possible to observe an exponential increase of the
demand for video applications. Those types of applications include several categories
like HDTV television, video conferencing, online video streaming on mobile and other
types of devices, 24 hours video security system and many others. In particular, in the
last years the 4K and in some cases 8K resolution TVs are growing in the market. This
increase of resolution requires a better definition, that means a better quality for the
viewer and this has as effect the need of a larger memory capability in order to sustain
the high-definition standards or the larger bandwidth required for real-time applica-
tion. To fulfill this demand, it was, therefore, required a continuous evolution in video
compression standard, to increase the amount of compression. The video compres-
sion is a process in which the amount of information contained in a video stream is
reduced as much as possible by acting on the internal redundancy. A video stream is
composed by a sequence of images, called pictures or frames, reproduced over time
with a temporal correlation between one frame and another. In video compression
spatial and temporal redundancy reduction is exploited, unlike for image compres-
sions (such as JPEG) in which involves only spatial correlation, because there are not
variation of the image over time. Since a lossless compression does not give any ad-
vantages in terms of information reduction, a lossy compression is mandatory an it
also maintain a very good video quality even if the original video is different to a de-
coded one. Motion compensation is the way in which the redundancy in a video is
removed: in practice when some objects are moving between consecutive frames are
found several techniques are applied in order to remove that redundant information.
In this chapter will outline an initial digest of the video data representation and how
is structured a typical video sequence. Further details can be found in [3].

1

1 – Introduction

1.1 Video Signal Representation

The different representations of video signals standards of nowadays strongly depends
on past history. They have their origin in the history of the development of analog
video signal format, that were different between Europe and United States. Starting
from the black-and-white television, pictures were generated by the excitation of the
phosphor on the television screen using an electron beam and modulating its inten-
sity in order to generate the image. Each second the electron ray was continuously
performing a complete scan all over the screen driven by the video signal. Therefore,
a frame is depicted for each complete scan of the ray, making sure that if the number
of frames for each second is enough to guaranteed no flickering for the human eye.
In color television three kind of phosphors on the screen were introduced: red, green
and blue and those were excited by three electron beams, each of them associated to
a signal. Having a three times higher bandwidth would have led to backward compat-
ibility problems with the black and white televisions. The solution was the creation of
a special composite signal for the color televisions This would have brought to a three
times higher bandwidth and would have created problems in backward compatibility
to the black-and-white television. Therefore, the decision was to create a composite
signal for the color television based on the red, green and blue intensity, well known
as RGB. This signal is composed by three components:

• Luminance (Y), that is exactly the former black-and-white signal compatible
with Black and White televisions decoder,

• Chrominance Cb and Cr that are the Blue-Difference and Red-Difference chroma
components, related to the luminance component.

In Formulas 1.1, 1.2 and 1.3 is explained how to obtain the previous signals, de-
rived from the RGB:

Y = 0.299 ·R +0.587 ·G +0.114 ·B (1.1)

Cb = B −Y (1.2)

Cr = R −Y (1.3)

The color television retrieves from the inverse of these formulas the R, G and B sig-
nals. The Y , Cb and Cr signals were converted in digital format after the digital revolu-
tion. During the seventies a new worldwide sampling standard was introduced by the
International Consultative Committee on Radio (CCIR) and it was called CCIR recom-
mendation 601-2. In this standard all sampling that are multiple of the frequency of
3.725 MHz are admitted. Every picture that composes a video is a rectangular array of
samples, each of those containing the three components that can be sampled with up
to four times the base frequency 3.725 MHz. The sampling rate is is described using

2

1.2 – Video Sequence

three integers that carry the sampling rate for luminance and chrominance compo-
nents. The three components are referred in the digital system as Y, U and V. These
values are normalized once sampled, so that the resulting value for the luminance Ys

must be in the range between 0 and 1 and the ones for the chrominance Cr s and Cbs

in the range of −1/2 and 1/2. Then, according to the formulas 1.4, 1.5 and 1.6 the
normalized values are converted to 8 bits values:

Y = 219 ·Ys +16 (1.4)

U = 224 ·Cbs +128 (1.5)

V = 224 ·Cr s +128 (1.6)

Therefore, the Y component is in the range between 16 and 235 while the U and V
ones between 16 and 240. Other video types uses more than 8 bits per sample, or bit
depth (the most diffused ones between them have 10 bits per pixel).

1.2 Video Sequence

As mentioned before, a video contains a time sequence of frames which are com-
pacted using Motion Compensation, meaning that instead of include all the samples
for the pixels, parts of the frame are searched in previous, subsequent frames and the
distance between the two is computed. This value is called motion vector, and it is the
information that replace the redundant block. This means that some frames have sev-
eral coding blocks that use prediction starting from other frames. A reference frame
for those that use prediction is periodically inside the sequences in order to avoid a
single reference, meaning that the decoding of a sequence does not start always from
the first frame. These frames are called Intra Predictive pictures (I). The I frames make
possible to start to watch a video from a point in the middle of the sequence, skip-
ping all the previous pictures. The first frame is obviously an I type and reducing the
interval between two consecutive I pictures reduce the buffering time but also the
compression rate, resulting in a bigger sequence. The other types of frames used in
motion compensation are Predictive Coded (P) and Bidirectionally Predictive coded
(B) pictures and are used to reduce the temporal redundancy between two frames.
The P pictures are encoded using motion compensation prediction referring to the
previous frames, while the B pictures are similar to the P but take as reference for the
prediction both previous and subsequent frames, and due to this they lead to a better
compression efficiency.

Each interval between two consecutive I frames makes a Group of Pictures (GOP)
that is the smallest unit for a random access. It may contain several P and B frames
and it has to be defined to the encoder, depending on the kind of application. In fact
Tv broadcasting may require random access frames, because the viewer does not tune

3

1 – Introduction

into a program always at its beginning, while for a video conference it is better to have
less I pictures in order to reduce the encoding delay for the real time transmission.

Inside the GOP there are two different sequence order:

• Display Order, that is the chronological order in which the frames are shown on
the display,

• Bitstream Order (or Encoding Order) that is used by the encoder and decoder.

I PICTURE

B PICTURE

P PICTURE

Forward Prediction

Bidirectional Prediction

Display Order
Encoding Order

1 2 3 4 5
1 5 2 3 4

Figure 1.1: A possible structure of a GOP and difference in display and encoding order

Figure 1.1 shows a possible structure of a GOP and the difference between the two
orders. The encoding order is adopted also by the decoder, that needs to analyze the
reference frames first, and then those that are related with.

4

Chapter 2

HEVC

High Efficiency Video Coding (HEVC or H.265) is the video compression standard ap-
proved on 25 January 2013, successor of the H.264/MPEG-4 AVC (Advanced Video
Coding), developed by the Moving Picture Experts Group (MPEG) and the Video Cod-
ing Experts Group (VCEG) from ITU-T, released with the name of ISO/IEC 23008-2
MPEG-H Part 2 and ITU-T H.HEVC Before HEVC the primary video coder was AVC
and, in the last period, mobile devices began to be compatible with high-resolution
video. In addition, new ultra high-definition resolutions (for example 4k or 8k), started
to appear with the necessity of even more memory. Improving the coding efficiency,
therefore, became the main target of HEVC developers. The coding efficiency is one
of the metrics for evaluate the compression capability of a standard based on the di-
mension in bytes of the produced stream while maintaining a certain video quality.
With AVC the coding efficiency was doubled with the respect to MPEG-2 maintaining
the same quality standard, and the same thing happened with HEVC that doubles this
parameter again without affecting the quality. Therefore, the encoder output bit-rate
is reduced by at least 50%, as it is stated in [4]. The Peak Signal to Noise Ratio (PSNR)
is usually associated as parameter that determines the quality of a video. Flexibility is
another goal of H.265, in order to be compatible for all the video applications. HEVC
standard is defined with the only description on how the encoder output bitstream
has be constructed with no specification on the encoder or decoder internal struc-
ture, and this is the reason why still today it is in progress a continuous research to
improve the implementations on both software or hardware, always with the focus
on the improvement for compression efficiency. Of course, the encoding or decoding
time reduction is one of the main goal of this type of researches, along with the focus
on the power consumption. HEVC, compared to AVC, slightly increased the require-
ments for memory capacity, with a doubling of the computational resources as well
as for the eventual hardware implementation. With HEVC it is easy to create parallel
architectures to avoid serialized bottle-neck elements and, therefore, parallelism can
bring to faster encoders, and it is becoming more and more important in hardware
applications of this kind. H.265 is perfectly backward compatible with all the same

5

2 – HEVC

previous AVC applications and resolutions and it gives a particular attention to high
frame rates and high-resolution videos. It is also suitable for 4:2:0, 4:2:2 and 4:4:4 luma
and chroma resolution ratio and for bit depth of 8 up to 16 bit. Resolution ratio and
bit depth are properties of the HEVC profiles: the Main Profile is characterized by a bit
depth of 8 bit and a 4:2:0 format.

2.1 Encoder

In Figure 2.1 is represented the high-level reference diagram of a an HEVC standard
compliant encoder. The video coding layer of HEVC is based on the typical hybrid ap-
proach, meaning that it performs inter-picture, intra-picture prediction and 2D trans-
form coding with some key differences that enhance compression. The encoder, at
every cycle, selects a frame from the input stream and subdivide it into partitions of
blocks. Forn each of those block is then performed a prediction with Intra or Inter
prediction. The first technique is used in I frames and it performs a comparison be-
tween blocks in the same picture and, thus, remove spatial redundancy. The second
technique, instead, compares blocks of samples present in different frames, exploiting
motion compensation and, thus, reduce temporal redundancy as explained in Chap-
ter 1. Both Intra and Inter perform a prediction selecting a frame that has to be com-
pared with a reference one. The results of inter prediction encoder are the motion
vector that are sent to the coding stage, while in intra prediction phase it is generated
an equivalent results called intra prediction data. After these stages, the Predicted
Frame is compared with the original one, and the resulting Prediction Error will be
linearly Transformed, Scaled and Quantized. The final stage is the Entropy Coding,
which performs a compaction of the stream of the data produced, generating the En-
coder output bitstream.

Frames are reconstructed by an internal decoder starting from the resulting co-
efficients and collects them inside the Decoded Picture Buffer. Deblocking and the
SAO filters blocks filter the reconstructed pictures before they are stored into the DPB:
while the Deblocking filter realize an attenuation of the discontinuities at the bound-
aries of the blocks, the SAO filter task is to reduce the artifacts. More informations
about the argument can be found in [5] or [6].

2.1.1 Block Partitioning

The partitioning system that was present in the earlier video standards was badsed on
the subdivision of the frame in macroblocks, each one composed by a 16× 16 luma
samples and the relatives 8×8 samples for chroma. However a maximum dimension
of 16×16 for large resolutions is not efficient in terms of compression rate, because to
assure a minimum quality, details in an high-definition video has to be analyzed with
more accuracy. In addition, the compression efficiency for low resolutions requires

6

2.1 – Encoder

Transform Quantization

Inverse
Quan-

tization

Inverse
Transform

+

+

+

Entropy
Coding

−

+

+

Prediction
Frame

Motion
Vectors

Output
Bit-
stream

Coefficients
Input
Video

Inverse
Scaling

Scaling

Inter
Picture

Estimation

Intra
Picture

Estimation

Deblocking
and SAO

Filters

Coefficients

In
tr

a
P

re
d

ic
ti

o
n

D
at

a

Decoded
Picture
Buffer

Figure 2.1: HEVC encoder block scheme

small blocks of pixels. The solution adopted in HEVC was the creation of a flexible
mechanism for the subdivision of the pictures into variable size sections. The encoder
will, therefore, perform a trade-off between the distortion and the bitrate, considering
the Formula 2.1:

RDC = D +λ ·Q (2.1)

where D is the distortion metric, Q is the resulting rate and λ is the Lagrange Mul-
tiplier [4]. While larger blocks allow to reduce the bit rate, since they contain much
more information, reducing the block dimension increases the quantity of informa-
tion as well as the bit rate. In H.265, each frame is divided into several and disjunct
blocks with different creating a quadtree structure with a recursive subdivision until
the minimum size allowed: this structure is are called Coding Tree Blocks (CTB) and it

7

2 – HEVC

is applied for both luma and chroma samples: in 4:2:0 format, a luma CTB consist in
an area of 2M ×2M luma pixels while the two chroma CTBs corresponds to an area of
2M −1×2M −1 chroma samples, with M that can be 4, 5 or 6, meaning that luma CTB
can consist in an area of 16×16, 32×32 and 64×64 samples. The HEVC basic com-
pression parallel processing unit is the Coding Tree Unit (CTU) that is composed by
the luma CTB and the corresponding chroma components. Introducing larger CTUs
could give good improvements in terms of coding efficiency for high resolutions, but
as a consequence the computational complexity could raise, as well as the encoder
delay.

Following to the quadtree subdivision scheme, a CTU can be split into different
Coding Units (CU) with variable size until the 8× 8 block size. Each CU contains a
luma CB and two chroma CBs. The CU is the processing unit that will decide whether
intra or inter prediction is applied on its CBs. In addition, a CTU can be split into
several Coding Unit (CU) of variable dimension sides, with the smallest dimension of
8×8, that can be further subdivided into Prediction Units (PU) and Transform Units
(TU), which the latter is the base element for the intra-picture prediction mode, which
it is based on square blocks.

The last subdivision can be applied to a 8×8 luma CU, splitting it into four 4×4
TUs. The accepted dimensions are those in the range of 4×4 up to 64×64. In total, they
are: 4×4, 8×8, 16×16, 32×32 and 64×64. On the contrary Inter prediction is based
on PUs. The subdivision into PUs is independent from the TU subdivision. There are
eight different mode to split a CU into PUs since for CUs bigger than 8× 8 it can be
employed asymmetric partitioning modes, as shown in Figure 2.2 and therefore, also
rectangular dimension are employed. The smallest PUs have size 8×4 or 4×8. All the
information about the chosen partitioning are included inside the output bitstream
so that the decoder can divide the frames in the same way.

2.1.2 Intra Prediction

In Intra-picture prediction the decoded samples from the adjacent blocks at the bound-
ary are used as prediction to produce data in order to reduce the spatial redundancy
within the same picture and it is related to I frames. It consists of three steps: reference
sample array construction, sample prediction, and post-processing. Several studies
and research were conducted in order to minimize these steps the computational re-
quirements, specially for the encoder. Intra prediction is performed executing the the
comparison between samples, with a size from 4×4 up to 64×64. The selected TB will
be compared with ones on the boundaries of the neighboring decoded TB, until the
best match is found. At this point the resulting data is generated selecting one of the
33 angular mode provided by this standard plus one for the planar and one for the DC
mode prediction used for smooth image areas.

If no current samples are available because, for example, they are positioned out-
side the picture or they have not yet been decoded, a default value is taken, otherwise

8

2.1 – Encoder

N × (3N/4) N × (N/4) (3N/4) × N (N/4) × N

N × N (N/2) × N N × (N/2) (N/2) × (N/2)

Figure 2.2: CU partitioning modes used for deriving the PUs. The (N /2)× (N /2) mode
and those in the second row can be applied only if the CU size is larger than 8×8 luma
samples

if at least one reference sample is present the others will be substituted with its value.
The current samples can pass through a smoothing filter (not used in case of DC Pre-
diction) to reduce the discontinuities at the boundaries of the block that can poten-
tially lead to a wrong prediction in terms of angular mode. Other discontinuities in the
predicted samples are generated on the boundaries of the TB, and, therefore, it may
be applied a further post-processing smoothing step: for DC mode and horizontal or
vertical mode, the filtered values will substitute the samples at the boundary, then a
block of samples is predicted and finally the best match is found from the result of
the formula 2.1, in with D is the result of a cost function that, in case of HM reference
software, is Sum of the Absolute Transformed Differences, or SATD). A complete de-
scription of the Intra Prediction process can be found in [7].

2.1.3 Inter Prediction

In Inter-picture prediction the decoded samples from different frames are used as pre-
diction to produce data, by employing motion compensation, in order to reduce the
temporal redundancy, and it is referred to the P and B frames. As mentioned in 1.2
for each block, a search from the previously decoded frames is performed. Using a
cost function, in this case Sum of Absolute Differences or SAD) the encoder has to
find the best match, that minimize the Formula 2.1, between two blocks of the same

9

2 – HEVC

dimension. The result is the motion vector composed by values ∆x and ∆y indicat-
ing the horizontal and vertical displacements between the two blocks position. The
reference frames indexes (∆t) together with the motion vectors are, then, provided
to the entropy coding unit. ∆x, ∆y and ∆t are called motion data. As mentioned in
2.1.1, Inter-prediction is based on PBs, and not on TBs as for Intra-prediction. The
difference from a canonical encoder and HEVC is that in the latter there is provided
with two types of inter-picture prediction: the uni-prediction and bi-prediction. In
Bi-prediction the module generates two pairs of motion vector and it computes the
average with the result of a more precise prediction. Moreover, the search for the best
match is performed in two steps. The first one is called IME (Integer Motion Esti-
mation), in which the starting from a current block, it will be compared with several
reference blocks within a range that is by default of ±64 pixels, and, by employing the
sum of squared differences method, the best match will be selected and the motion
vector will be calculated. After this step, the integer samples are interpolated to per-
form the prediction with fractional precision. This step is called FME (Fractional Mo-
tion Estimation). In summary the IME does a coarse search inside the whole search
window, while the FME redefines that performing a fine grain search. In HEVC are
present interpolation filter with a quarter-pixel accuracy motion vectors for luma and
one-eighth-pixel accuracy motion vectors for chroma components.

2.1.4 Transform

This unit realizes a spatial transform on the residual with the aim to compact the dif-
ferences into less low-frequency coefficients so that the quantizer can neglect those
with small amplitude without affecting the video quality and improving the coding ef-
ficiency. This unit realizes a spatial transform on all the TB residual, performing a two-
dimensional Discrete Cosine Transform (DCT) acting firt of all on the block rows with
one-dimensional DCT and then over columns with a second DCT. Only for 4×4 block
size the Discrete Sine Transform (DST) instead of DCT because DST is performed, due
to 1% of improvement in bit-rate reduction fr intra-picture coding with the rect to the
DCT.

2.1.5 Quantization

The quantization phase performs a division of the transformed coefficients by a quan-
tization step (Qstep) and then the result is rounded. Qstep is derived from the input
parameter QP (Quantization Parameter) specified in the configuration file. QP can be
selected in a range from 0 to 51 for an 8-bit sequence. Increasing by 1 the QP, Qstep
grows of 12%. Qstep is equal to 1 when QP is 4. With a low value in QP the video
quality reduces and vice versa.

10

2.1 – Encoder

2.1.6 Entropy Coding (CABAC)

Context-adaptive binary arithmetic coding (CABAC) is a lossless compression tech-
nique, based on entropy encoding, well adopted in HEVC and in the previous H.264
standards. It provides a much better compression than other encoding algorithms
used in video encoding base on entropy.

It is based on arithmetic coding, and:

• It encodes binary symbols, keeping the complexity low and using a probability
model that take into account more frequently used bits of any symbol.

• The probability models are dynamically adapted based on local context, allow-
ing better modeling of probabilities, reducing the more usually correlation in
locally coding modes.

• It employs a multiplication-free range division, based on quantized probability
ranges and probability states.

The steps performed by the CABAC unit are:

• Binarization: a sequence of bins (bin) is assigned for each.

• Context Modeling: Selection of an adaptive binary probability model.

• Binary Arithmetic Coder (BAC): Arithmetic Encoder that performs a compres-
sion of the bins into bits according to the selected probability model.

In the Context Modeling can be selected two modes:

• Regular mode: the Probability Estimator and Assigner select a probability model
for the actual bin.

• Bypass mode: bins are coded with equi-probability, since no context model is
required.

2.1.7 In-Loop Filters

Before saving the decoded pictures inside the Decoder Picture Buffer, those values
will pass through two filters: the Deblocking and SAO filters. The deblocking filter is
applied first and it is used to attenuate discontinuities (or block artifacts) at the PB
and TB boundaries. This filter does not work well on the edges of the picture or inside
the CUs, but only on the boundaries between CUs samples. The Sample Adaptive
Offset (SAO) filter is applied to the output of the deblocking one and has the purpose
of removing the ringing artifacts. It works on entire CTUs and, in order to smooth, it
adds to the samples negative or positive offset provided in a look-up table generated
by the encoder.

11

2 – HEVC

2.2 HEVC HM Reference Software

The HM software provides a reference implementation of both HEVC encoder and de-
coder. It is an open-source code written in C++ and developed by JCT-VC (Joint Col-
laborative Team on Video Coding) from ITU-T. All the simulations of this work were
performed using the HM 16.15 version [8]. JCT-VC provides also several reference test
sequences [9] and Common Test Conditions. Those test conditions are referred to a
list of video sequences for different resolutions and frame rates which are considered
as a reference. In the common test conditions is defined the complete set of encoder
configurations that has to be used in experiments with the HM code. They can be
classified into four types of configurations:

• All Intra (AI): on each frame is performed the Intra-picture prediction, therefore
there is no Motion Estimation usage and every picture is an I type.

• Random Access (RA): it uses a GOP composed by both B and I pictures and I
frames are inserted periodically in the sequence. It is the main configuration for
video broadcasting.

• Low-delay P (LDP): The GOP is composed by type P frame, while only the first
frame is an I type. It is the main configuration for videoconferencing.

• Low-delay B (LDP): The GOP is composed by type B frame, while only the first
frame is an I type. It is the main configuration for videoconferencing.

12

Chapter 3

Methods

In the previous Chapter, it was stated that HEVC is able to increase by a factor of 2 the
compression capability with respect the previous AVC video maintaining the same
video quality, since several new features were introduced: more block sizes, new in-
tra and inter prediction modes, more complex interpolation filters, more efficient in-
loop filters, and other features. On the other hand, the complexity of the encoder
increased as well as the computational cost that raised with a factor between 40% to
70% with the respect to the AVC encoder, as stated in [10]. This is mainly due to the
higher encoder decision space to be explored. Moreover the growth in the memory
access number that is 3.86 times higher with the respect to H.264, as explained in the
[10] analysis, and the increase of the power consumption and temperature in ASIC or
processor encoders were the other important factors. In fact the more the functions
implemented are complex, the higher is the density of transistors need to implement
them. Besides, as said in [11], the encoding time itself is very slow and far from real-
time applications. These reasons led to several researches that have as objective the
reduction of the complexity and the computational effort of the encoder, acting on
the encoding process in order to near the real-time coding especially for high resolu-
tion sequences with an high frame rate, or in order to reduce the power consumption
and temperature of the HEVC hardware. In the solution defined in [10], the author
suggests the design of several low power accelerators that could help to reduce the
computational time of intensive functions and a particular HEVC memory hierarchy.
He also suggests the creation of new software algorithms in order to limit the compu-
tational load, with no several effects on the video quality. In this work is part of the
research for the creation of a fast system for HEVC. This system will be integrated on
an FPGA that has a microprocessor inside that will run the software and activate the
system when required. Therefore this system has to compute the high-latency pro-
cesses using several hardware accelerators.

13

3 – Methods

3.1 Complexity in HEVC

In [11] is present a complete analysis of the HM encoder (in this case study was used
the HM 8.0 version), using AI and RA as common test conditions. In All-Intra configu-
ration a significant amount of time is spent for the rate-distortion optimized quanti-
zation (RDOQ), performed by the TComTrQuant class, transforms contribution is 9%,
while TComPrediction and TComPattern classes for Intra prediction further accounts
for close to 16%. In the random-access configuration it can be noticed that motion
estimation takes a significant portion of encoding time, due to the computation of
sum of absolute differences (SAD), sum of absolute transformed differences (SATD)
and other distortion metrics present in TComRdCost class which their contribute is
about 40% of overall encoding time. Furthermore the TComInterpolationFilter class
accounts for 20% of encoding time. One of the most time consuming metrics is the
SATD, as states in [12]. While the Sum of Absolute Differences (SAD) is the sum of
absolute values that is applied to the residual block (a difference between the origi-
nal block and a reference block) ,Sum of Absolute Transformed Differences (SATD) is
the sum of absolute values of the coefficients obtained when the Hadamard Trans-
form is applied to the residual block. SAD and SATD are different metrics to estimate
the distortion between two video blocks in mode decision stage of video encoders.
SATD achieves better distortion estimation than SAD, but it is more complex. For this
reason, in HEVC reference software [8], SAD is applied in the most frequently exe-
cuted steps in video encoder, e.g. Integer pixel Motion Estimation (IME), while SATD
is applied (when enabled) for intra prediction mode decision and for Fractional pixel
Motion Estimation The SATD based on 8×8 Hadamard Transform contribute is in the
range between 9% and 19% of total execution time of HEVC video encoder. It happens
because the HEVC encoder software computes less 4× 4 Hadamard SATD more of-
ten with 8×8 Hadamard Transform than withwhen considering ultra-high resolution
videos. HM encoding time is very high. It could lead to several hours of computation.
Therefore in order to speed up the process, several improvements either for software
and hardware are essential. The analyzed profiling made by [13] reveals that the the
cost functions, together with the interpolation filter and the quantization contributes
for the 80% on the total encoder time. Those cost functions, that are the main contri-
bution, are the Sum of Absolute Transformed Differences (SATD), the Sum of Absolute
Differences (SAD) and the Sum of Squared Errors (SSE). The SATD metric, compared
with the SAD one, is more computationally complex, and, therefore, the latter is the
most used in the video encoder, especially in Integer pixel Motion Estimation (IME),
while the former is applied in Intra Prediction mode decision and (when it is enabled)
for Fractional pixel Motion Estimation (FME), that are the process inside the encoder
that require an higher accuracy. In fact, as stated in [14] when SATD metric is enabled
in FME, the bit rate is reduced up to 2.2%, with an increase on the video quality of
0.16 dB.

HM reference software uses two main function to calculate the SATD. The first one

14

3.2 – SATD Accelerator

is the 8×8 Hadamard Transform that is applied on all the blocks that are composed
by 8×8 blocks of samples, while the second one is the equivalent for 4×4 blocks.

From the profiling of [12], while the contribution of the 4×4 is up to 2% of total
execution time of HEVC video encoder, the one based on 8×8 Hadamard Transform
contributes in 9% to 19%, due to the fact that the 4×4 valuation is less performed than
the other one, especially in high resolution video. To overcome this, several solution
were adopted in the HM code, as the utilization of SIMD function (SSE for Intel, NEON
for ARM). Starting from the concept of [12], the final decision was to implement an
hardware accelerator for the SATD metric, trying to improve as much as possible the
time performances.

3.2 SATD Accelerator

The SATD accelerator that has to be implemented on the FPGA must be able to per-
form in hardware all the SATD functions types inside the HM reference software. It
has to dispose of the following features:

• Fast in to order to speed-up the encoder execution,

• Dynamically reconfigurable to compute the SATD for all the TU sizes re-using
the same hardware resources, curtailing also the power consumption that must
be taken into account because it could increase a lot due to the high intensive
functions computation.

• Presence of a local on-chip memory buffer in order to reduce the accesses from
the off-chip main memory, and to have a continuous load of data, as mentioned
in [10], or better an internal memory cache to store parts of the pixel blocks to
be analyzed.

One of the most critical constraints during the hardware implementation will be
the requirements on the memory bandwidth and it will be one of the main focus for
this work. The system has to perform the SATD operation when requested, and a Con-
troller must handle the communication as a Master. For the validation this Controller
will be emulated in a VHDL testbench, and later on will be directly the software. It has
to communicate to the SATD accelerator the size of the TUs on which performing the
cost function and sending into its local memory buffer the TUs samples.

3.3 Design Flow

This Chapter concludes the theory part of the thesis. The following Chapter will de-
scribe the creation base architecture for the SATD accelerator starting from the speci-
fications listed in this Chapter. This architecture will be compliant with all the features

15

3 – Methods

explained in 3.2. Chapter 6 will present the validation of the architecture by means of
proper testbenches and software programs. Chapter 7 describes how the synthesis
works on the Altera Quartus software and presents the first results. In chapter 8 will
be described the steps in order to insert the hardware peripheral into the HM refer-
ence software. Chapter 9 describes the introduction of two optimizations for the base
architecture: Clock Gating and DMA Controller. The first one is employed to reduce
the dynamic power, while the second is the usage of a Direct Memory Access, that
is instructed from the processor in order to send the data towards the FPGA on-chip
memories. Chapter 10 presents all the works done to insert approximation inside the
SATD accelerator by using Error Tolerant Adders and discusses the results. Finally,
Chapter 11 will present the conclusive results and the future works.

16

Chapter 4

DE1-Soc and Quartus Prime

The entire project started with the purpose of the final implementation on a FPGA.
The system that was selected was the DE1-SoC Development Kit.

In this system is included an Intel® Altera System-on-Chip (SoC) FPGA, which contains
a dual-core Cortex-A9 embedded cores. The SoC includes two parts: the effective FPGA chip
and the HPS, that includes the processor and the levels of cache, and all the interfaces. In
addition two external DDR RAM memory are present in the system.

The relevant Hardware Contents of the Development Kit are:

• USB to UART (for the command-line interface);

• 1 GB (2x256Mx16) DDR3 SDRAM on HPS;

• Micro SD Card Socket on HPS (to store the Linux OS);

The FPGA chip mounted on the board is a Cyclone V. A simplified block diagram of
Cyclone V SoC is depicted in the Figure 4.1. As said before, Cyclone V SoC architecture
consists of a Hard Processor System (HPS) and FPGA are combined togheter in te same
chip, improving a lot the performances and the time-to-market.

The HPS features:

• a microprocessor unit (MPU),

• 64 kB on-chip RAM (HPS-OCR),

• booting ROM,

• SDRAM controller (SDRAMC),

• DMA controller (DMAC),

• Others HPS peripherals.

To connect HPS and FPGA, three bridges are present:

• HPS master and FPGA slave:

17

4 – DE1-Soc and Quartus Prime

Figure 4.1: DE1-SoC Overview [1]

– HPS-to-FPGA (H2F) bridge, a high-performance bus with data width is config-
urable as 32, 64 or 128 bit.

– Lightweight HPS-to-FPGA (LWH2F) bridge, a 32-bit bus connected to the L3 Slave
Peripheral Switch, with low performances and used mainly for configuratios.

• HPS slave and FPGA master:

– FPGA-to-HPS (F2H) bridge.

4.1 Quartus Prime

In order to work with this type of FPGA Board it is fundamental to work with Quartus Prime,
that is the software provided by Altera that allow users to compile, synthesize and upload your
configuration on the board. Before starting the realization of the architecture, it was necessary
to create the environment for interfacing the FPGA to the ARM core.

18

4.2 – Platform Designer

The Intel Quartus Prime software design flow comprises of the following high-level steps:

• Design creation.

• Apply the constraints.

• Compilation.

• Timing constraint (SDC).

• Configure of the design on the board.

4.2 Platform Designer

Quartus Prime contains several tools, and the most important for this work was Platform De-
signer (previouly known as Qsys). Using this tool is possible to create the exact environment
in which insert the design. By the graphical user interface it is possible to interconnect your
custom design to the bridges and also to add configurable components from the IP libraries
of the software.

Figure 4.2: Platform Designer Interconnections Overview

The creation of a new component is essential in order to generate the interface of the FPGA
design to the HPS. Inside this tool it is possible to select how many type of interfaces you want
and correctly map them on the physical addresses.

4.3 Linux on the DE1-SoC

On the DE1-SoC Computer it can be mounted the Linux Operating System. Programming the
microSD card, the OS will be booted by the ARM Cortex-A9 dual-core present into the chip.

19

4 – DE1-Soc and Quartus Prime

The Linux Distribution used for this project is one provided by Intel Altera on its websites. In
the manual provided [15] by Altera every step is exlained in the details, and it is possible to
set up the microSD in order to have the system ready to use. Any technical content about the
DE1-SoC, Cyclone V and its features, for example related to the IP libraries, was taken from
[16].

20

Chapter 5

Architecture Description

5.1 Introduction

The developed architecture is an hardware peripheral fully compatible with the interfaces to
the ARM processor able to compute the SATD operation on block sizes based on 8×8 block
(listed in 5.1). The circuit contains an interface in order to configure it. The 4x4 block size
SATD is not implemented in the final version because after a test on the timing it has been
proved that it is not convenient to do it in hardware. As explained in [12], SATD is a metric
to estimate distortion between two blocks for mode decision (Rate-Distortion Optimization)
in video encoding. The generic equation for the SATD calculation is given by the following
formula:

S AT D =X
i , j

flflHT (i , j)
flfl (5.1)

In 5.1 HT (i , j) is the (i , j)th coefficient obtained after applying an Hadamard Transform
to the residual block that is the difference between the original block(a block to be encoded)
and a reference block. The reference block can be an intra-predicted block to be evaluated for
intra mode decision or an interpolated block for FME.

In HEVC reference software HM [8], the blocks smaller than 8× 8 samples are evaluated
with 4×4 Hadamard Transform. The 8×8 Hadamard Transform is applied to evaluate blocks
of 8× 8 samples or larger. The 8× 8 Hadamard Transform (HT8×8) of a residual block Y is
defined as:

HT8×8 = H ·Y ·H T (5.2)

In which the 8×8 Hadamard matrix is:

21

5 – Architecture Description

H =

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

/4 (5.3)

One of the techniques that allow to increase the timing performances is to apply paral-
lelization and in order to do so, the block that performs the 8 × 8 Hadamard Transform is
replicated several times. As first attempt a ×8 parallelization was performed, but this type
of implementation was unfeasible on the Cyclone V, because more LABs than those that are
present in the FPGA (32070 LABs) were necessary and, therefore, a ×4 was the final solution.

The basic idea therefore is to have an architecture that takes as input the two CU, extracts
the residual and performs the matrix product with the Hadamard matrix and then computes
the sum of each component of the resulting matrix.

Since the architecture works on different matrix dimensions it takes different clock cycles
to calculate the result, varying from a minimum delay with 8x8 size to a maximum for 64x64
size. Moreover it works with two bridges for the communication of the input data, config-
uration and result, therefore the communication must be signaled with many acknowledge
signals.

5.2 Algorithm Description

The architecture is composed by four main blocks, and each of them can compute the differ-
ences, the Hadamard Transform, the absolute values and the sum of 64 pairs of samples in
parallel. The main inputs are coming from two fluxes of a reference and a current CU, and
they are a sequence of matrices of pixels (with equal dimension for both reference and current
streams) inside a single Coding Unit. The architecture analyzes these matrices as a set of 8×8
elements. For example a 32× 32 matrix is evaluated as a set of 16 elements. Therefore the
8×8 is the base unit. Having as much as possible base unit working in parallel is a solution to
reduce the elaboration of all the base unit that a CU is composed. The resources of the FPGA
limited the parallelism to a degree of four, meaning that at each cycle up to 4 base units from
the reference CU and 4 base units from the current are sent to the core. For example, a single
8×8 base unit must be sent entirely in only one cycle; a 16×16 block, that is composed by 8
base units can be also passed in only one cycle: instead a 64×64 block, that is composed by 64
base units has to be sent in 16 cycles. A 64×16 block, that is composed by 16 base units has to
be sent in 4 cycles as for the 32×12 block that has the same number of base unit. Knowing that,
it is possible to reduce the all possible cases of block 8×8 dimension Each base unit produces
in parallel a result and then an adder tree sums all those values, and these result are further
passed to another adder tree, depending on the type of the block under test. The datapath is
therefore composed by 4 main units (MU) that works in parallel and each of them computes
a 8×8 SATD in one cycle. This type of system requires two matrix of data that are composed

22

5.3 – Top Level

in a way that each MU must be related to an 8× 8 CU in an unequivocal way. The memory
structure requires therefore a reorganization of the block, meaning that in order to parallelize
the computation of a single MU the entire block of pixel must be provided at the input of the
structure at each cycle. With this type of reorganization it is possible to fed the datapath with
four CU for each clock cycle. This means that for a simple 8×8 CU only 1 cycle is needed to
feed one of the four MU, and the same for a 16×16 CU to feed all the 4 MU instead for a 32×32
and 64×64 CUs it takes respectively 4 and 16 cycles to send the block to the datapath. It can be
notice that not all the MUs are always used. In fact in the 8×8 case (and only in that case) three
out of four MU are not used, therefore in that case only one MU is activated and the others do
not work.

5.3 Top Level

In the Figure 5.2 is shown how the architecture is inserted in the structure that Quartus gen-
erates. As said before, this architecture works with two clock domains. The clock speed for
the memories, as said in 5.5.4, is the maximum clock speed that the Altera memory block can
reach, while for the datapath, after several attempts, was set to 66.66 MHz. In Chapter 7 all
the processes handled during the synthesis that brought to this settings will be explained. In
Figure 4.2 is present the elements that are inserted and how they are interconnected:

• The Hard Processor System

• Clock Source

• PLL

• The Custom Component, that contains the architecture.

5.3.1 Hard Processor System

As explained in Chapter 4, inside the Hard Processors System (HPS) is present a MPU, that in-
cludes two ARM Cortex-A9 32-bit processors and two levels of caches. In addition the MPU has
a Micro SD interface with ×4 data lines, that can be used to boot a Linux OS. Therefore, after
the introduction of this component in the Platform Designer environment, the tool generates
the export for the latter connections to the external Double Data Rate 3 RAM memories. The
DDR3 devices connected to the HPS are the exact same model as the ones connected to the
FPGA. The capacity is 1 GB and the data bandwidth is in 32 bit, comprised of two ×16 devices
with a single address/command bus. The signals are connected to the dedicated Hard Mem-
ory Controller for HPS I/O banks and the target speed is 400 MHz. During the configuration of
the HPS component, used bridges and its parallelism were specified. The configuration for the
HPS can be found in [17]. In this case were used two of the three available: the HPS-to-FPGA
AXI Bus and the HPS-to-FPGA Lightweight AXI Bus. The first one is used for the transmission
of the data on the memories on the FPGA and therefore a parallelism of 128 bit (the maximum
parallelism) was selected, while the second one is a low performance Bus and it is used mainly
for configurations, and due to this reason a parallelism of 8 bit has been selected.

23

5 – Architecture Description

5.3.2 Clock Source and PLL

The Figure 5.1 shows the default frequency of all external clocks to the Cyclone V SoC FPGA.
To reduce the jitter, a clock generator is used, providing four clock signals of 50 MHz for the
logic and a clock source of 25 MHz for the HPS clock. In addition to the direct clock source, it
is possible to use the PLL clocks from the datapath as source for the FPGA architecture. In this
case one of the four clock signals has been chosen as clock source.

●✐❣❛❜✐t

❊t❤❡r♥❡t

❚r❛♥s❝❡✐✈❡r

❯❙❇ ❍♦st P❍❨

✷✲♣♦rt ❍✉❜ ❈♦♥tr♦❧❧❡r

✷✺▼❍③

CLOCK_50(50MHz)

CLOCK2_50(50MHz)

CLOCK4_50(50MHz)

CLOCK3_50(50MHz)

HPS_CLK_25(25MHz)

ETEN_CLK_25(25MHz)

USBPHY_CLK_25(25MHz)

USBHUB_CLK_25(25MHz)

CLK0

CLK1

CLK3

CLK5

CLK2

CLK4

CLK6

CLK7

CLK0P

CLK2P

CLK6P

CLK4P

HPS_CLK1

HPS_CLK2

❙✐✺✸✺✵❈ ❆▲❚❊❘❆ ❈②❝❧♦♥❡ ❱ ❙♦❈

Figure 5.1: Block diagram of the clock dis-
tribution on DE1-SoC

[16]In order to improve the perfor-
mances, the usage of a different clock speed
was necessary, and therefore the Phase-
Locked Loop (PLL) from Altera IP library was
inserted in the system. In the case of Intle Al-
tera, the IP library provide a tool in which is
possible to configure: the clock source, the
type of PLL (Integer or Fractional), the num-
ber of output clock to generate and the rela-
tive clocking frequency.

5.3.3 Custom Component

All the previous elements must be intercon-
nected with the interfaces that has to include
the architecture. Another tool from Platform
Designer helps to create all the interfaces,
with the aim to ease the communication be-
tween the blocks. To ease the bus manage-
ment, Intel Altera provides an Avalon Mem-
ory Mapped to AXI interface. The Avalon
MM protocol is much more simpler, and it
can be handled using an FSM. In the Figures 5.10a and 5.10b is shown how the Timing Se-
quence that the custom component must be compliant with. After the creation of the com-
ponent, a new VHDL file is generated, with a precomputed entity that is conformed to the
configuration.

At the end of the configuration and everything is setup, the ❣❡♥❡r❛t❡ command creates
all the files that handles the intercommunication and a final top entity, that must be manually
configured, with the interconnections toward the physical pins of the FPGA.

5.4 Architecture Structure

The architecture is divided into two parts:

• Datapath: it contains the memories to store and, as explained later, it is parallelized
and pipelined in order to increase the performances and satisfy the constaints of the
resources.

24

5.4 – Architecture Structure

system
:u0

clk_clk

m
em

ory_oct_rzqin

m
em

ory_m
em

_cas_n

m
em

ory_m
em

_ck

m
em

ory_m
em

_ck_n

m
em

ory_m
em

_cke

m
em

ory_m
em

_cs_n

m
em

ory_m
em

_odt

m
em

ory_m
em

_ras_n

m
em

ory_m
em

_reset_n

m
em

ory_m
em

_w
e_n

m
em

ory_m
em

_a[14..0]

m
em

ory_m
em

_ba[2..0]

m
em

ory_m
em

_dm
[3..0]

m
em

ory_m
em

_dq[31..0]

m
em

ory_m
em

_dqs[3..0]

m
em

ory_m
em

_dqs_n[3..0]

H
PS_D

D
R

3_AD
D

R
[14..0]

H
PS_D

D
R

3_BA[2..0]
H

PS_D
D

R
3_C

AS_N

H
PS_D

D
R

3_C
KE

H
PS_D

D
R

3_C
K_N

H
PS_D

D
R

3_C
K_P

H
PS_D

D
R

3_C
S_N

H
PS_D

D
R

3_D
M

[3..0]

H
PS_D

D
R

3_D
Q

S_N
[3..0]

H
PS_D

D
R

3_D
Q

S_P[3..0]
H

PS_D
D

R
3_D

Q
[31..0]

H
PS_D

D
R

3_O
D

T
H

PS_D
D

R
3_R

AS_N
H

PS_D
D

R
3_R

ESET_N

H
PS_D

D
R

3_R
ZQ

H
PS_D

D
R

3_W
E_N

system
_pll_0:pll_0

refclk

rst

outclk_0

outclk_1

altera_reset_controller:rst_controller_001

clk

reset_in0

reset_in1
1'h0reset_in10

1'h0
reset_in11

1'h0
reset_in12

1'h0
reset_in13

1'h0
reset_in14

1'h0
reset_in15

1'h0

reset_in2
1'h0

reset_in3
1'h0

reset_in4
1'h0

reset_in5
1'h0

reset_in6
1'h0

reset_in7
1'h0

reset_in8
1'h0

reset_in9
1'h0

reset_req_in0
1'h0

reset_req_in1
1'h0reset_req_in10

1'h0
reset_req_in11

1'h0
reset_req_in12

1'h0
reset_req_in13

1'h0
reset_req_in14

1'h0
reset_req_in15

1'h0

reset_req_in2
1'h0

reset_req_in3
1'h0

reset_req_in4
1'h0

reset_req_in5
1'h0

reset_req_in6
1'h0

reset_req_in7
1'h0

reset_req_in8
1'h0

reset_req_in9
1'h0

reset_out

altera_reset_controller:rst_controller

clk

reset_in0

reset_in1
1'h0reset_in10

1'h0
reset_in11

1'h0
reset_in12

1'h0
reset_in13

1'h0
reset_in14

1'h0
reset_in15

1'h0

reset_in2
1'h0

reset_in3
1'h0

reset_in4
1'h0

reset_in5
1'h0

reset_in6
1'h0

reset_in7
1'h0

reset_in8
1'h0

reset_in9
1'h0

reset_req_in0
1'h0

reset_req_in1
1'h0reset_req_in10

1'h0
reset_req_in11

1'h0
reset_req_in12

1'h0
reset_req_in13

1'h0
reset_req_in14

1'h0
reset_req_in15

1'h0

reset_req_in2
1'h0

reset_req_in3
1'h0

reset_req_in4
1'h0

reset_req_in5
1'h0

reset_req_in6
1'h0

reset_req_in7
1'h0

reset_req_in8
1'h0

reset_req_in9
1'h0

reset_out

had_interface:had_interface_0

clock_0_clk

clock_1_clk

ctrl_address

ctrl_w
rite

cur_w
rite

ref_w
rite

res_read

reset_reset

cur_address[7..0]

cur_w
ritedata[127..0]

ref_address[7..0]

ref_w
ritedata[127..0]

ctrl_w
ritedata[7..0]

ctrl_w
aitrequest

cur_w
aitrequest

ref_w
aitrequest

res_w
aitrequest

res_readdata[31..0]

system
_hps_0:hps_0

h2f_AR
R

EAD
Y

h2f_AW
R

EAD
Y

h2f_BVALID

h2f_R
LAST

h2f_R
VALID

h2f_W
R

EAD
Y

h2f_axi_clk

h2f_lw
_AR

R
EAD

Y

h2f_lw
_AW

R
EAD

Y

h2f_lw
_BVALID

h2f_lw
_R

LAST

h2f_lw
_R

VALID

h2f_lw
_W

R
EAD

Y

h2f_lw
_axi_clk

oct_rzqin

h2f_lw
_BID

[11..0]

h2f_lw
_BR

ESP[1..0]

h2f_lw
_R

ID
[11..0]

h2f_lw
_R

D
ATA[31..0]

h2f_lw
_R

R
ESP[1..0]

h2f_BID
[11..0]

h2f_BR
ESP[1..0]

h2f_R
ID

[11..0]

h2f_R
D

ATA[127..0]

h2f_R
R

ESP[1..0]

h2f_AR
VALID

h2f_AW
VALID

h2f_BR
EAD

Y

h2f_R
R

EAD
Y

h2f_W
LAST

h2f_W
VALID

h2f_lw
_AR

VALID

h2f_lw
_AW

VALID

h2f_lw
_BR

EAD
Y

h2f_lw
_R

R
EAD

Y

h2f_lw
_W

LAST

h2f_lw
_W

VALID

h2f_rst_n

m
em

_cas_n

m
em

_ck

m
em

_ck_n

m
em

_cke

m
em

_cs_n

m
em

_odt

m
em

_ras_n

m
em

_reset_n

m
em

_w
e_n

h2f_lw
_AW

ID
[11..0]

h2f_lw
_AW

AD
D

R
[20..0]

h2f_lw
_AW

LEN
[3..0]

h2f_lw
_AW

SIZE[2..0]

h2f_lw
_AW

BU
R

ST[1..0]

h2f_lw
_AW

LO
C

K[1..0]

h2f_lw
_AW

C
AC

H
E[3..0]

h2f_lw
_AW

PR
O

T[2..0]

h2f_lw
_W

ID
[11..0]

h2f_lw
_W

D
ATA[31..0]

h2f_lw
_W

STR
B[3..0]

h2f_lw
_AR

ID
[11..0]

h2f_lw
_AR

AD
D

R
[20..0]

h2f_lw
_AR

LEN
[3..0]

h2f_lw
_AR

SIZE[2..0]

h2f_lw
_AR

BU
R

ST[1..0]

h2f_lw
_AR

LO
C

K[1..0]

h2f_lw
_AR

C
AC

H
E[3..0]

h2f_lw
_AR

PR
O

T[2..0]

h2f_AW
ID

[11..0]

h2f_AW
AD

D
R

[29..0]

h2f_AW
LEN

[3..0]

h2f_AW
SIZE[2..0]

h2f_AW
BU

R
ST[1..0]

h2f_AW
LO

C
K[1..0]

h2f_AW
C

AC
H

E[3..0]

h2f_AW
PR

O
T[2..0]

h2f_W
ID

[11..0]

h2f_W
D

ATA[127..0]

h2f_W
STR

B[15..0]

h2f_AR
ID

[11..0]

h2f_AR
AD

D
R

[29..0]

h2f_AR
LEN

[3..0]

h2f_AR
SIZE[2..0]

h2f_AR
BU

R
ST[1..0]

h2f_AR
LO

C
K[1..0]

h2f_AR
C

AC
H

E[3..0]

h2f_AR
PR

O
T[2..0]

m
em

_a[14..0]

m
em

_ba[2..0]

m
em

_dm
[3..0]

m
em

_dq[31..0]

m
em

_dqs[3..0]

m
em

_dqs_n[3..0]

system
_m

m
_interconnect_0:m

m
_interconnect_0

had_interface_0_cur_w
aitrequest

had_interface_0_ref_w
aitrequest

had_interface_0_reset_reset_bridge_in_reset_reset

hps_0_h2f_axi_m
aster_arvalid

hps_0_h2f_axi_m
aster_aw

valid

hps_0_h2f_axi_m
aster_bready

hps_0_h2f_axi_m
aster_rready

hps_0_h2f_axi_m
aster_w

last

hps_0_h2f_axi_m
aster_w

valid

pll_0_outclk0_clk

hps_0_h2f_axi_m
aster_aw

id[11..0]

hps_0_h2f_axi_m
aster_aw

addr[29..0]

hps_0_h2f_axi_m
aster_aw

len[3..0]

hps_0_h2f_axi_m
aster_aw

size[2..0]

hps_0_h2f_axi_m
aster_aw

burst[1..0]

hps_0_h2f_axi_m
aster_aw

lock[1..0]

hps_0_h2f_axi_m
aster_aw

cache[3..0]

hps_0_h2f_axi_m
aster_aw

prot[2..0]

hps_0_h2f_axi_m
aster_w

id[11..0]

hps_0_h2f_axi_m
aster_w

data[127..0]

hps_0_h2f_axi_m
aster_w

strb[15..0]

hps_0_h2f_axi_m
aster_arid[11..0]

hps_0_h2f_axi_m
aster_araddr[29..0]

hps_0_h2f_axi_m
aster_arlen[3..0]

hps_0_h2f_axi_m
aster_arsize[2..0]

hps_0_h2f_axi_m
aster_arburst[1..0]

hps_0_h2f_axi_m
aster_arlock[1..0]

hps_0_h2f_axi_m
aster_arcache[3..0]

hps_0_h2f_axi_m
aster_arprot[2..0]

had_interface_0_cur_w
rite

had_interface_0_ref_w
rite

hps_0_h2f_axi_m
aster_arready

hps_0_h2f_axi_m
aster_aw

ready

hps_0_h2f_axi_m
aster_bvalid

hps_0_h2f_axi_m
aster_rlast

hps_0_h2f_axi_m
aster_rvalid

hps_0_h2f_axi_m
aster_w

ready

hps_0_h2f_axi_m
aster_bid[11..0]

hps_0_h2f_axi_m
aster_bresp[1..0]

hps_0_h2f_axi_m
aster_rid[11..0]

hps_0_h2f_axi_m
aster_rdata[127..0]

hps_0_h2f_axi_m
aster_rresp[1..0]

had_interface_0_cur_address[7..0]

had_interface_0_cur_w
ritedata[127..0]

had_interface_0_ref_address[7..0]

had_interface_0_ref_w
ritedata[127..0]

system
_m

m
_interconnect_1:m

m
_interconnect_1

had_interface_0_ctrl_w
aitrequest

had_interface_0_res_w
aitrequest

had_interface_0_reset_reset_bridge_in_reset_reset

hps_0_h2f_lw
_axi_m

aster_arvalid

hps_0_h2f_lw
_axi_m

aster_aw
valid

hps_0_h2f_lw
_axi_m

aster_bready

hps_0_h2f_lw
_axi_m

aster_rready

hps_0_h2f_lw
_axi_m

aster_w
last

hps_0_h2f_lw
_axi_m

aster_w
valid

pll_0_outclk1_clk

hps_0_h2f_lw
_axi_m

aster_aw
id[11..0]

hps_0_h2f_lw
_axi_m

aster_aw
addr[20..0]

hps_0_h2f_lw
_axi_m

aster_aw
len[3..0]

hps_0_h2f_lw
_axi_m

aster_aw
size[2..0]

hps_0_h2f_lw
_axi_m

aster_aw
burst[1..0]

hps_0_h2f_lw
_axi_m

aster_aw
lock[1..0]

hps_0_h2f_lw
_axi_m

aster_aw
cache[3..0]

hps_0_h2f_lw
_axi_m

aster_aw
prot[2..0]

hps_0_h2f_lw
_axi_m

aster_w
id[11..0]

hps_0_h2f_lw
_axi_m

aster_w
data[31..0]

hps_0_h2f_lw
_axi_m

aster_w
strb[3..0]

hps_0_h2f_lw
_axi_m

aster_arid[11..0]

hps_0_h2f_lw
_axi_m

aster_araddr[20..0]

hps_0_h2f_lw
_axi_m

aster_arlen[3..0]

hps_0_h2f_lw
_axi_m

aster_arsize[2..0]

hps_0_h2f_lw
_axi_m

aster_arburst[1..0]

hps_0_h2f_lw
_axi_m

aster_arlock[1..0]

hps_0_h2f_lw
_axi_m

aster_arcache[3..0]

hps_0_h2f_lw
_axi_m

aster_arprot[2..0]

had_interface_0_res_readdata[31..0]

had_interface_0_ctrl_w
rite

had_interface_0_res_read

hps_0_h2f_lw
_axi_m

aster_arready

hps_0_h2f_lw
_axi_m

aster_aw
ready

hps_0_h2f_lw
_axi_m

aster_bvalid

hps_0_h2f_lw
_axi_m

aster_rlast

hps_0_h2f_lw
_axi_m

aster_rvalid

hps_0_h2f_lw
_axi_m

aster_w
ready

hps_0_h2f_lw
_axi_m

aster_bid[11..0]

hps_0_h2f_lw
_axi_m

aster_bresp[1..0]

hps_0_h2f_lw
_axi_m

aster_rid[11..0]

hps_0_h2f_lw
_axi_m

aster_rdata[31..0]

hps_0_h2f_lw
_axi_m

aster_rresp[1..0]

had_interface_0_ctrl_address[0..0]

had_interface_0_ctrl_w
ritedata[7..0]

C
LO

C
K_50

Figure 5.2: System Overview

25

5 – Architecture Description

• Control Unit: it contains the Finite State Machine that manages the pipeline inside the
Datapath, and also controls the interface with the Light Weight Bridge.

❈❖◆❚❘❖▲ ❯◆■❚

❉❆❚❆P❆❚❍

/
✽❝✉r❴❛❞❞r❡ss

/
✶✷✽❝✉r❴✇r✐t❡❴❞❛t❛

❝✉r❴✇r✐t❡

/
✽r❡❢❴❛❞❞r❡ss

/
✶✷✽r❡❢❴✇r✐t❡❴❞❛t❛

r❡❢❴✇r✐t❡

❝tr❧❴r❡❛❞❞❛t❛
/
✸✷

❝tr❧❴✇❛✐tr❡q✉❡st

❝✉r❴✇❛✐tr❡q✉❡st

r❡❢❴✇❛✐tr❡q✉❡st

r❡s❡t
•

❝tr❧❴❛❞❞r❡ss
/
✷

❝tr❧❴✇r✐t❡

❝tr❧❴r❡❛❞

r
❞
❴
❛
❞
❞
r
❡
s
s

r
❞
❴
❡
♥
❛
❜
❧
❡

❙
❊
▲

P
❴
❊
◆

s
②
♥
❝
❴
r
❡
s
❡
t

❙
❆
❚
❉

❝❧♦❝❦❴✶❴❝❧❦

•

❝❧♦❝❦❴✵❴❝❧❦

r❡s❴✇❛✐tr❡q✉❡st

r❡s❴r❡❛❞❞❛t❛r❡s❴r❡❛❞

Figure 5.3: Top Level Overview

5.5 Datapath

Figure 5.4 shows the datapath of the architecture. There are 4 MUs that works in parallel and
each one receives 64 pair of samples (512 from the current CU and 512 from the reference CU)
for a total of 1024 bits. Except from the 8×8 case, there are 4 MUs results for each column o be
summed.

In order to reduce the critical path and therefore raise the clock frequency several pipeline
stages are inserted in the structure. An accumulator is used at the end of the adder tree in
order to calculate the result in the cases of blocks composed by more than 4 8×8 base blocks

26

5.5 – Datapath

CUR SRAM UNIT

REF SRAM UNIT

HAD

HAD

HAD

HAD

SAV

SAV

SAV

SAV

+

+

+

+

/
3

/
16

/
16

/
8

/
128

/
8

/
128

/
2048

/
2048

/
960

/
960

/
960

/
960

/
20

/
20

/
20

/
20

/
22

/
22

D
IF

F
D

IF
F

D
IF

F
D

IF
F

clock0 clock1

cu
r

in
te

rf
ac

e
re

fi
n

te
rf

ac
e

rdaddress

rdenable

P_EN

SATD

SEL
/
2

Figure 5.4: Datapath Overview

27

5 – Architecture Description

because those require more than one cycle to load the entire set of samples from the memory
system. The datapath is pipelined, therefore at each cycle the datapath is fed with a new group
of blocks. For what concerns the 8×8 case, the SATD in available at the output of the structure
before reaching the adder tree end. The 16×16 case enters in the clock tree but it exits before
reaching the accumulator. At the output is present a multiplexer that is used to select the adder
tree exit. The selection signal is controlled by the Control Unit (see 5.6) which manages also
the synchronous resets in order to clear the pipeline stages and the accumulator. The pipeline
stages help to reduce the combinational path, and therefore an increase of the slack. The final
result is then provided at the output of the multiplexer. At the beginning of the datapath the
values are precharged on the first pipeline stage.

5.5.1 Main Unit

In the Figure 5.5 is shown the architecture of each MU in the datapath.

HAD

D
IF

F

SA
V

/
✺✶✷

/
✺✶✷

/
✺✼✻

/
✾✻✵

/
✷✵

Figure 5.5: Main Unit

A Main Unit is a structure able to compute a complete 8× 8 SATD. Thus, it receives 64
samples (512 bits) from the current PU and 64 samples from the reference PU, calculate the
residual making the subtraction between the relatives samples, performs the matrix product
with the Hadamard matrix (that is composed by 1 and -1, therefore it is composed by additions
and subtractions), calculates the absolute value for each sample and all those values are added
together with an adder tree. At the input of the datapath the samples have a parallelism of 8
bits, therefore each adder and register has the minimum size to have a correct result without
overflow. At each stage of the cascade of operators the parallelism increase by one bit with
the exception of the absolute value operator that does not modify the parallelism. After the
initial subtractor there are 6 level of additions and subtractions so that at the input of the
adder tree the parallelism is 15 bits. Then after the absolute value operator, in the adder tree
the parallelism increase to 21 bits. In the further adders the parallelism raise up to the final
accumulator register that has the maximum parallelism of 25 bits.

28

5.5 – Datapath

HAD_b:\datapath_gen:0:HAD_b_inst

A[575..0]

B[959..0]

adder:\sig_gen0:0:add00

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:0:add01

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:0:add02

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:0:add03

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:0:add10

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:0:add11

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:0:add14

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:0:add15

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:0:add20

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:0:add22

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:0:add24

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:0:add26

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:1:add00

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:1:add01

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:1:add02

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:1:add03

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:1:add10

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:1:add11

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:1:add14

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:1:add15

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:1:add20

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:1:add22

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:1:add24

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:1:add26

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:2:add00

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:2:add01

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:2:add02

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:2:add03

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:2:add10

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:2:add11

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:2:add14

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:2:add15

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:2:add20

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:2:add22

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:2:add24

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:2:add26

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:3:add00

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:3:add01

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:3:add02

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:3:add03

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:3:add10

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:3:add11

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:3:add14

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:3:add15

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:3:add20

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:3:add22

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:3:add24

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:3:add26

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:4:add00

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:4:add01

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:4:add02

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:4:add03

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:4:add10

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:4:add11

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:4:add14

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:4:add15

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:4:add20

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:4:add22

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:4:add24

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:4:add26

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:5:add00

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:5:add01

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:5:add02

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:5:add03

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:5:add10

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:5:add11

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:5:add14

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:5:add15

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:5:add20

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:5:add22

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:5:add24

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:5:add26

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:6:add00

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:6:add01

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:6:add02

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:6:add03

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:6:add10

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:6:add11

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:6:add14

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:6:add15

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:6:add20

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:6:add22

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:6:add24

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:6:add26

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:7:add00

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:7:add01

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:7:add02

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:7:add03

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

adder:\sig_gen0:7:add10

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:7:add11

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:7:add14

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:7:add15

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

adder:\sig_gen0:7:add20

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:7:add22

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:7:add24

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen0:7:add26

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

adder:\sig_gen2:0:add30

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:0:add31

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:0:add32

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:0:add33

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:0:add40

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:0:add41

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:0:add44

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:0:add45

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:0:add50

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:0:add52

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:0:add54

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:0:add56

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:1:add30

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:1:add31

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:1:add32

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:1:add33

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:1:add40

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:1:add41

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:1:add44

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:1:add45

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:1:add50

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:1:add52

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:1:add54

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:1:add56

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:2:add30

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:2:add31

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:2:add32

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:2:add33

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:2:add40

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:2:add41

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:2:add44

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:2:add45

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:2:add50

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:2:add52

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:2:add54

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:2:add56

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:3:add30

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:3:add31

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:3:add32

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:3:add33

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:3:add40

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:3:add41

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:3:add44

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:3:add45

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:3:add50

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:3:add52

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:3:add54

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:3:add56

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:4:add30

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:4:add31

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:4:add32

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:4:add33

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:4:add40

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:4:add41

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:4:add44

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:4:add45

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:4:add50

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:4:add52

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:4:add54

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:4:add56

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:5:add30

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:5:add31

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:5:add32

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:5:add33

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:5:add40

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:5:add41

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:5:add44

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:5:add45

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:5:add50

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:5:add52

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:5:add54

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:5:add56

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:6:add30

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:6:add31

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:6:add32

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:6:add33

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:6:add40

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:6:add41

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:6:add44

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:6:add45

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:6:add50

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:6:add52

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:6:add54

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:6:add56

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:7:add30

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:7:add31

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:7:add32

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:7:add33

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

adder:\sig_gen2:7:add40

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:7:add41

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:7:add44

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:7:add45

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

adder:\sig_gen2:7:add50

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:7:add52

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:7:add54

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

adder:\sig_gen2:7:add56

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen0:0:sub04

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:0:sub05

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:0:sub06

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:0:sub07

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:0:sub12

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:0:sub13

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:0:sub16

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:0:sub17

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:0:sub21

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:0:sub23

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:0:sub25

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:0:sub27

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:1:sub04

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:1:sub05

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:1:sub06

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:1:sub07

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:1:sub12

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:1:sub13

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:1:sub16

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:1:sub17

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:1:sub21

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:1:sub23

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:1:sub25

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:1:sub27

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:2:sub04

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:2:sub05

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:2:sub06

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:2:sub07

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:2:sub12

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:2:sub13

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:2:sub16

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:2:sub17

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:2:sub21

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:2:sub23

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:2:sub25

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:2:sub27

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:3:sub04

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:3:sub05

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:3:sub06

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:3:sub07

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:3:sub12

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:3:sub13

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:3:sub16

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:3:sub17

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:3:sub21

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:3:sub23

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:3:sub25

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:3:sub27

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:4:sub04

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:4:sub05

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:4:sub06

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:4:sub07

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:4:sub12

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:4:sub13

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:4:sub16

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:4:sub17

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:4:sub21

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:4:sub23

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:4:sub25

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:4:sub27

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:5:sub04

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:5:sub05

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:5:sub06

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:5:sub07

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:5:sub12

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:5:sub13

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:5:sub16

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:5:sub17

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:5:sub21

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:5:sub23

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:5:sub25

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:5:sub27

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:6:sub04

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:6:sub05

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:6:sub06

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:6:sub07

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:6:sub12

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:6:sub13

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:6:sub16

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:6:sub17

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:6:sub21

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:6:sub23

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:6:sub25

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:6:sub27

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:7:sub04

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:7:sub05

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:7:sub06

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:7:sub07

DATAA[8..0]

DATAB[8..0]

RESULT[9..0]

subtract:\sig_gen0:7:sub12

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:7:sub13

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:7:sub16

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:7:sub17

DATAA[9..0]

DATAB[9..0]

RESULT[10..0]

subtract:\sig_gen0:7:sub21

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:7:sub23

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:7:sub25

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen0:7:sub27

DATAA[10..0]

DATAB[10..0]

RESULT[11..0]

subtract:\sig_gen2:0:sub34

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:0:sub35

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:0:sub36

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:0:sub37

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:0:sub42

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:0:sub43

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:0:sub46

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:0:sub47

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:0:sub51

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:0:sub53

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:0:sub55

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:0:sub57

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:1:sub34

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:1:sub35

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:1:sub36

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:1:sub37

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:1:sub42

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:1:sub43

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:1:sub46

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:1:sub47

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:1:sub51

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:1:sub53

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:1:sub55

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:1:sub57

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:2:sub34

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:2:sub35

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:2:sub36

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:2:sub37

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:2:sub42

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:2:sub43

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:2:sub46

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:2:sub47

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:2:sub51

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:2:sub53

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:2:sub55

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:2:sub57

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:3:sub34

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:3:sub35

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:3:sub36

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:3:sub37

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:3:sub42

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:3:sub43

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:3:sub46

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:3:sub47

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:3:sub51

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:3:sub53

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:3:sub55

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:3:sub57

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:4:sub34

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:4:sub35

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:4:sub36

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:4:sub37

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:4:sub42

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:4:sub43

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:4:sub46

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:4:sub47

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:4:sub51

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:4:sub53

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:4:sub55

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:4:sub57

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:5:sub34

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:5:sub35

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:5:sub36

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:5:sub37

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:5:sub42

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:5:sub43

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:5:sub46

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:5:sub47

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:5:sub51

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:5:sub53

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:5:sub55

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:5:sub57

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:6:sub34

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:6:sub35

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:6:sub36

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:6:sub37

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:6:sub42

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:6:sub43

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:6:sub46

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:6:sub47

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:6:sub51

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:6:sub53

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:6:sub55

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:6:sub57

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:7:sub34

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:7:sub35

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:7:sub36

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:7:sub37

DATAA[11..0]

DATAB[11..0]

RESULT[12..0]

subtract:\sig_gen2:7:sub42

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:7:sub43

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:7:sub46

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:7:sub47

DATAA[12..0]

DATAB[12..0]

RESULT[13..0]

subtract:\sig_gen2:7:sub51

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:7:sub53

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:7:sub55

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

subtract:\sig_gen2:7:sub57

DATAA[13..0]

DATAB[13..0]

RESULT[14..0]

8:0

44:36

26:18

62:54

17:9

53:45

35:27

71:63

305:297

341:333

323:315

359:351

296:288

332:324

314:306

350:342

80:72

116:108

98:90

134:126

89:81

125:117

107:99

143:135

224:216

260:252

242:234

278:270

368:360

404:396

386:378

422:414

377:369

413:405

395:387

431:423

233:225

269:261

251:243

287:279

512:504

548:540

530:522

566:558

521:513

557:549

539:531

575:567

152:144

188:180

170:162

206:198

161:153

197:189

179:171

215:207

440:432

476:468

458:450

494:486

449:441

485:477

467:459

503:495

440:432

476:468

458:450

494:486

449:441

485:477

467:459

503:495

224:216

260:252

242:234

278:270

233:225

269:261

251:243

287:279

8:0

44:36

26:18

62:54

152:144

188:180

170:162

206:198

161:153

197:189

179:171

215:207

17:9

53:45

35:27

71:63

296:288

332:324

314:306

350:342

305:297

341:333

323:315

359:351

512:504

548:540

530:522

566:558

521:513

557:549

539:531

575:567

80:72

116:108

98:90

134:126

89:81

125:117

107:99

143:135

368:360

404:396

386:378

422:414

377:369

413:405

395:387

431:423

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

14
:0

Figure 5.6: HAD Unit

29

5 – Architecture Description

5.5.2 Pipeline Stages and Enable signals

The very first pipeline stage is immediately before the datapath, in order to precharge the val-
ues to be ready for the very first cycle after the start of the calculation. In order to increase
the clock frequency of the datapath the second pipeline stage is inserted in the Main Unit, be-
tween the Hadamard matrix product and the block that computes the absolute value and that
contains the final adder tree. After this block a further pipeline stage is present and the next
one is after the adder tree that computes the addition between the four results coming from
the MUs. The final pipeline stage is after the accumulator. This means that in total there are
4 pipeline stage, but depending on the dimension of the block under test, the clock cycles to
have the result ready are different, and so the enable signals and the MUX must be configured.
Each pipeline register has an enable signal in order to be controlled by the Control Unit (see
5.6). From this Control Unit 3 signals come and reaches the first pipeline stage. These sig-
nals are propagated through the further stages depending on the configuration of the control
register. This three signals can have the following configurations:

• "001", in case of 8×8 TU;

• "010", in case of 16×16 or 32×8 TUs;

• "100", for the other cases.

After the second stage, in which the signals are delayed together with the pipeline stage, at
the input of the Enable of the registers arrives the ❖❘ of those, while the two MSB are delayed
together with the pipe, and so on. In that way the registers are activated independently on
the configuration, and the the other stages are enabled only if the we are in the corresponding
case. Only the MSB arrives at the Enable of the the last pipeline stage. Thanks to this con-
figuration, all the registers sample only when necessary and the commutations in the combi-
national logic cone downstream of these registers are blocked, so that the dynamic power is
highly reduced.

5.5.3 Memory System

As said in 5.2 each MU is univocally associated to one 8× 8 of a 64× 64 PU, in a sense that
receives it always receives data from the same input which contains a 8× 8 reference block
and a 8× 8 current block. The memory at this point must be structured with two memory
bank for each MU and both the memories must contain the maximum amount of data that is
64×64 bytes. The maximum parallelism of the HPS to FPGA bridge is 128 bit, meaning that
128 bit will be the width of the data input for the memories. Therefore each memory bank can
be made up by 16 locations with 128 bits of data each, and in this way each MU is related to
4 banks. Either in the memory that stores the reference block and in the one that stores the
current block are present 16 of this banks, and in this way it is possible to store a complete
64×64 block. In the Figure 5.7 is shown this relation between the RAM banks and the MUs.

The Control Unit generates the Chip Select signals in order to activate only the banks of
RAM that are needed. These enable signals activate the memory bank for the reading process.
This peculiar organization was performed in order to have the memory banks working in par-
allel: in fact they all receive the same address from the Control Unit that select one of the 16

30

5.5 – Datapath

...

...

(a) 8×8 PU

...

...
(b) 16×16 PU

...

...
(c) 32×32 PU

Figure 5.7: Relation Between Memory and MUs

location and, in this way, the memories are able to produce at the output up to 4096 bits for
the reference block and 4096 bits of the current in only one clock cycle. Beside the fact that
there is a reduction of the latency, his type of parallelism has the advantage of reducing logic of
the decoder at the input of the memories, and therefore the area is minimized. Each memory
stores the reference and the current PU, and therefore they can be seen as caches. In fact after
that the reference block is sent, only the current block must be sent each time to calculate the
SATD.

31

5 – Architecture Description

5.5.4 Memory Implementation

Inside the Cyclone V SoC includes several embedded emory blocks, with a flexible design.
Depending on the time of application, the dimensions of the memory block array change.

The Cyclone V devices contain two types of memory blocks:

• 10 Kb M10K blocks-blocks of dedicated memory resources. This praticual type is is deal
for larger memory array block.

• 640 bit memory logic array blocks (MLABs)-enhanced memory blocks that are config-
ured from dual-purpose logic array blocks (LABs).

Intel Altera provides an IP cores to implement the memory modes: the ALTSYNCRAM. The
selection depends on the target device, memory modes, and features of the RAM and ROM.
Using the IP tool it is possible to generate a custom IP RAM with the preferred configuration
depending on the capabilities of the chip. As said before, it is required a dual port SRAM mem-
ory that has 128 bits of data width at the input and 4096 bits at the output, with the possibility
to enabled the desired banks. Unfortunately using this tool it is not possible to create such a
memory, therefore a single 16 locations with 128 bits bank is created and it is used to generate
the desired SRAM structure, that is shown in the Figure 5.11b. The port 1 is dedicated only for
the writing operation while the port 2 only for the reading. As said in 5.5.3, the reference block
is written only once at the beginning of the procedure and then it is only written, while the cur-
rent block is written at each SATD operation. The port 1, as shown in Figure 5.11b, is handled
by the HPS to FPGA bridge and it used to write the samples to be used in the SATD operation.
The port 2 instead is handled by the Control Unit of the architecture. Due to fact that the data-
path works at a different clock frequency with the respect to the one used to write the memory,
for this type of memories need also to be dual clock memories. From the datasheet, the dual
clock SRAM memories can reach up to 150 MHz for both reading and writing routines. Unfor-
tunately this clock speed can be reached only if the memory is used as the standard structure
that the IP tool generates. In this case the memory banks are interfaced with a decoder, that
introduces a combinatorial logic between write and data signals coming from the bridge and
the input of the banks. This additional logic cause a corruption of the data in the memory
because the setup and hold times are not satisfied. In order to overcome this problem, a stage
of pipeline was introduced between the signals coming from the bridge and the input to the
decoder. In this way was possible to reach the above mentioned clock frequency. The memory
system behaves like a FIFO and it is the HPS that is in charge to handle the memory hierarchy
made up by the off-chip DDR3 SDRAM and the internal SRAM system. When there is a new
SATD to be calculated, it must write into the current SRAM memory the new current PU and, if
also the reference PU change, it update it. The combinations of PUs in which the architecture
is used are 18 and they are listed in Table 5.1.

However, some of those cases require the same number of cycles in order to be calculated
(for example 32× 8 and 8× 32 cases can be grouped together with 16× 16) as they need the
same procedure to be calculated), therefore the effective number of cases to be analyzed and
implemented on the peripheral in order to cover all the possibilities was 8.

32

5.5 – Datapath

8×8 32×8 32×24
8×16 32×16 32×32
8×32 16×64 64×32
16×8 24×32 64×48

16×16 48×64 32×64
16×32 64×16 64×64

Table 5.1: List of all the block dimension compatible with the Architecture

33

5 – Architecture Description

5.6 Control Unit

The Control Unit handles the datapath command signals, part of the memory system, the
configuration of the control register and the requests from the user for the result, by managing
the opportune handshake signals. In the Figure 5.8 is shown the block diagram of the Control
Unit.

LUT

NEXT STATE PRESENT STATE

Control Register

❝tr❧❴✇r✐t❡

❝tr❧❴✇r✐t❡❞❛t❛

Counter

+

❙❊▲

P❴❊◆

r❞❡♥❛❜❧❡

s②♥❝❴r❡s❡t

r❡s❴✇❛✐tr❡q✉❡st

❝tr❧❴✇❛✐tr❡q✉❡st

r❞❛❞❞r❡ss

✬✶✬

❝❧♦❝❦❴❝②❝❧❡s

r❡s❴r❡❛❞

Figure 5.8: Control Unit Overview

It has two main interfaces toward the bus and it generates the enables and the addresses
for the memory units, the ❙❊▲ signal for the MUX at the output, a synchronous reset and it
receives from the datapath the result, in order to handle the communication with the result
interface. The SATD architecture must know the dimension of the PUs in order to understand

34

5.6 – Control Unit

how many clock cycles are necessary to calculate the result and to properly select the MUX.
This parameters for every SATD type are hardwired thanks to a Look-Up Table (LUT). This
LUT receives the input from a Control Register, that is programmed using the ❝tr❧ interface,
and depending on its value it returns the number of clock cycles that are needed, the selector
for the multiplexer inside the datapath and the enable signals to manage the pipeline regis-
ters. the Control Unit manages also several handshake signals, that are part of the Avalon MM
protocol. By the fact that the architecture works as a slave, in order to communicate to the
master either that the slave is not ready to be written by the master or that the data produced
by slave is not ready to be read by the master. The generation of all the signals is controlled by
a Finite State Machine (FSM) that it is kept as simple as possible, in order to not complicate
the calculation and to reduce as much as possible the latency for the generation of the result.

5.6.1 Control Finite State Machine

In the Figure 5.9 is shown the State Graph of the FSM.

qrstart qa

qb qc

qd qe

q f

r st = 1

Figure 5.9: FSM State Graph

For the first reset state, the machine switches to the qa that produces the s②♥❝❴r❡s❡t

for the registers in the datapath, and it waits for a request from the r❡s interface for the re-
sult. When it comes, the FSM switches to qb which start producing the enable signals for the
pipeline and the addresses in order to read from the memories (it sends essentially the value
from a counter that counts the number of cycles). At this point, depending on the type of PU,
it passes to either qd or qc and based on the values of clock cycles and provided by the LUT the
qc qd and qe wait until the result is ready, passing to the last state q f . The ❝tr❧❴✇❛✐tr❡q✉❡st
is the handshake signal related to the interface that programs the Control Register and it is

35

5 – Architecture Description

0 only when the architecture is not working. In this way there is not the risk that the Control
Register changes its value during a computation. The r❡s❴✇❛✐tr❡q✉❡st is the handshake sig-
nal that related to the r❡s interface. When the master requests to read the result, it waits until
the it is 0. That means that this value it is always asserted, and only when the FSM reaches the
state in which the data is ready, it set to 0. When the result is produced, the FSM starts again
from the first state, waiting for the next calculation.

5.7 VHDL Implementation

The hardware accelerator was realized in VHDL. All the main dimension and values used into
the architecture were specified in a package of constants. The hierarchy follows the previous
explanation: after the creation of the entity using Platform Designer, it was created the MU
block, the datapath, the Control Unit and then the top entity. The adders inside the datapath
and the subtractor and the block that performs the absolute value was described in behavioral
way letting the synthesis tool to use the IP components, that are well optimized for the FPGA.
Later on the adderes were substituted with the approximated version, described in Chapter
10. The SRAM is an IP of the Altera library used for the synthesis: if it is described in VHDL,
the synthesizer automatically should recognize it as SRAM memory and try to force the usage
of the internal memory blocks. If it is not possible, the synthesizer will try to use the internal
logic to create the memory cells, but this leads to a long time for the compilation, and a not so
optimized result.

5.7.1 Avalon Memort Mapped Slave Protocol

There are two different handshaking protocols for read and write operations. Since the periph-
eral acts as slave, a Master Write corresponds to a Slave Read and a Master Read corresponds
to a Slave Write. The Avalon-MM interface is synchronous. Each Avalon-MM interface is syn-
chronized to an associated clock interface. Signals may be combinational if they are driven
from the outputs of registers that are synchronous to the clock signal. This specification does
not dictate how or when signals transition between clock edges. In Figures 5.10a and 5.10b it
is represented the waveform of the protocol in case of write and read.

❝❧❦

✇r✐t❡

✇❛✐tr❡q✉❡st

❛❞❞r❡ss
❆✵ ❆✶ ❆✷

✇r✐t❡❞❛t❛
❉✵ ❉✶ ❉✷

(a) Example of Write Waveforms

❝❧❦

r❡❛❞

✇❛✐tr❡q✉❡st

r❡❛❞❞❛t❛
❉✵

(b) Example of Read Waveforms

36

5.7 – VHDL Implementation

❞❛t❛

✇r❛❞❞r❡ss

✇r❡♥

✇r❝❧♦❝❦

q

r❞❡♥

r❞❛❞❞r❡ss

r❞❝❧♦❝❦

/
128

/
4

/
128

/
4

P
O

R
T

1 P
O

R
T

2

(a) Logic interface of a single memory
bank as it is provided from the library IP

✇r✐t❡❞❛t❛

✇❛❞❞r❡ss

✇r❡♥❛❜❧❡

❝❧♦❝❦✵

q

r❞❡♥❛❜❧❡

r❞❛❞❞r❡ss

❝❧♦❝❦✶

/
128

/
8

/
2048

/
4

P
O

R
T

1 P
O

R
T

2

(b) Structure of the memory system

5.7.2 Internal RAM Memory

The Intel Altera library offers several IP cores to implement memory modes. Using Quartus it
is possible to generate the desired memory with all the available features. For this project were
used Dual Clock RAM memories in order to manage the communication from the outside with
a different clock speed from the one used internally. Therefore, it was possible to operate on
only one part of the architecture at a time and once the clock frequency of the write port was
fixed, it was not more changed.

In Figures 5.11a is shown the single memory bank generated from the IP library, composed
by 16 location of 128 bit.

In Figure 5.11b is represented, instead, the memory system composed by 16 memory
banks. ✇❛❞❞r❡ss is the write address and it is composed by 8 bit: the 4 LSBs are used fore
address the internal locations of each bank, while the remaining 4 MSB are used to select one
of the 16 memory banks. Therefore at the input of Port1 it is present a decoding logic that has
to be considered for the timing constraints to avoid setup and hold violations and, thus, data
corruption.

37

38

Chapter 6

Architecture Validation and Debug

The validation of the architecture had followed two main stages:

• A testbench

• Software C Program

In addition a Matlab scripts was prepared in order to generate a database that was used
for validate the architecture during the simulation.

The first test checks the correct behavior of the architecture acting on the interfaces. The
simulations were carried out with Mentor Graphics Modelsim. The second test instead strains
the accelerator and emulates a true SATD minimum search (as it is inside the HEVC encoder)
and therefore it tests SATDs of only one type in burst mode. In addition to te second test it was
performed a timing comparison of the SATD computation between the software function and
the FPGA peripheral using the internal timer.

6.1 VHDL Testbench

The Platform Designer generated component is a black box with all the interfaces through the
bridges in its entity. The Avalon interfaces follow simple communication protocols such as a
read and a write signal, write and read data bus and several handshake signals, as shown in
Fig 5.10a and 5.10b.

This component contains the designed architecture that must be tested and in order to
do so it is necessary to provide at the input the data to be stored in the RAM memories and
the trigger the signals that start the computation, and finally check the result. The testbench
was made therefore following the Avalon protocols and, in order to provide consistent data,
it was created a MatLab script that was able to generate a subset of random numbers in a
uniform distribution within the range of 16 to 235 according the YUV format speciïňĄcations.
The same data set of data was provided either to the Testbench code and to a custom C code
that was written taking the functions for the SATD calculation from the HM reference software.
Comparing the two results was the initial step in order to verify the correct functioning of the
structure. The Figure 6.1 shows the structure of the VHDL Testbench. It is composed by three
main parts:

39

6 – Architecture Validation and Debug

• Writer

• Control

• Clock Generation

❉❯❚

❈▲❑✷❈▲❑✶

❲❘■❚❊❘

❝✉r❴❛❞❞r❡ss

❝✉r❴✇r✐t❡

❝✉r❴✇r✐t❡❴❞❛t❛

r❡❢❴❛❞❞r❡ss

r❡❢❴❛❞❞r❡ss

r❡❢❴❛❞❞r❡ss

❈❖◆❚❘❖▲

❝✉r❴✇❛✐tr❡q✉❡st

r❡❢❴✇❛✐tr❡q✉❡st

❝
t
r
❧
❴
❛
❞
❞
r
❡
s
s

❝
t
r
❧
❴
✇
r
✐
t
❡

❝
t
r
❧
❴
✇
r
✐
t
❡
❴
❞
❛
t
❛

❝
t
r
❧
❴
✇
❛
✐
t
r
❡
q
✉
❡
s
t

r
❡
s
❴
r
❡
❛
❞

r
❡
s
❴
✇
❛
✐
t
r
❡
q
✉
❡
s
t

r
❡
s
❴
r
❡
❛
❞
❴
❞
❛
t
❛

Figure 6.1: Testbench block scheme

6.1.1 Writer

The writer process works in the regime of the faster clock (150 MHz) and so it handles the ❈❯❘
and ❘❊❋ interfaces. When it receives from control process the order to write a PU, it starts
writing on the memory units. Depending on the dimension of the PU specified it writes either
64, 256, 1024 or 4096 samples, for each memory, taken from two files generated by MatLab.

40

6.2 – Software Test Program

6.1.2 Control

The control instead works in the regime of the slower clock (66.6 MHz). First of all it programs
the Control register using the ❈❚❘▲ interface, in order to select the size of the PU. After that it
generates the signals in order to instruct the writer. At the end of the write, it starts the request
to receive the result by asserting the r❡s❴r❡❛❞ signal. When the result is ready, the generated
output is then written on a file, and later compared with the output produced by a software
program that uses the same input data. This software program was the starting point for the
next test.

6.2 Software Test Program

When the VHDL simulation started to produce correct results, it was the moment to verify the
behavior with an on-board test. In order to do so it was necessary first of all to compile the
project and to upload the ✳r❜❢ file that is the configuration file for the FPGA. After that in the
previous C code the sending of the data to and from the FPGA was integrated. In Chapter it
will be described how to access to the FPGA from user level. All the cost function used by the
HM reference software are contained in the class ❚❈♦♠❘❞❈♦st, which contains, in addition to
the Sum of the Absolute Transformed Differences (SATD), the Sum of the Absolute Differences
(SAD) and the Sum of the Squared Errors (SSE) metrics. Each time that a new prediction must
start, the function s❡t❉✐stP❛r❛♠ is called. This function sets the dimension of the PU, the
pointers to the reference and current block and other parameters like the bit depth ans so on in
the class ❉✐stP❛r❛♠. In addition to this, it sets the type of function that the function ❉✐st❋✉♥❝

points. The function that computes the SATD is ①●❡t❍❆❉s. As explained in 5.1, depending
on the dimension of the block this function calculates the SATD by evaluating blocks smaller
than 8×8 samples with 4×4 Hadamard Transform and blocks of 8×8 samples or larger with
the 8×8 Hadamard Transform. Knowing that the dimension of the block that the peripheral
can analyze is in the range between 8× 8 and 64× 64, the code was modified in the first ✐❢
sentences, in which was inserted the statement for the usage of the peripheral. Therefore in
the test program was composed by four function:

• s❡t❉✐stP❛r❛♠❙❲ and ①●❡t❍❆❉s❙❲ that respectively set the variables of the parameters
and calculate the SATD as in the HM reference software;

• s❡t❉✐stP❛r❛♠❋P●❆, which first of all sets the variables of the parameters and at the
same time configure the peripheral by sending the corresponding value for the Control
Register. Then the content of the reference block is sent to the FPGA because, as said
before, it is the same for all the comparisons.

• ①●❡t❍❆❉s❋P●❆ in which is present the effective calculation preceded by the sending of
the current block to the FPGA.

Using this functions were created many test program with the aim of verify the correct
functioning of the structure. In the first test program was just inserted a simple call of those
function giving the same inputs as reference and current block. The result was therefore pro-
vided to the standard output. In this way it was possible to check the functionality of the

41

6 – Architecture Validation and Debug

structure in the operative mode and comparing the result with the corrected one produced by
the software functions. Subsequent versions of the program were improved in order to stress
the peripheral. In fact it was created a loop that emulates a search within a frame, as it occurs
in Intra Prediction, using as data input the samples generated using MatLab. In this case the
results of the FPGA calculated values and the Software ones were inserted in an array. At the
end of the computation, a comparison of the two arrays was computed, and flag produced on
the standard output was signaling if the overall computation was correct or not. In the case of
failed computation, the arrays were debugged, analyzing in which cases the FPGA peripheral
was producing an error. For example, it was at this point that the problems related to data cor-
ruption on the memories mentioned 5.5.4 was discovered. In fact running the test program
with the clock of the memories set at 150 MHz was producing a wrong result, while using a
reduced clock frequency, it was perfectly working. The reason was that the memory instanti-
ation was different to the one created by the tool that generates the IP RTL of the RAM blocks.
In fact in order to obtain the desired RAM structure it was necessary to create a memory com-
posed by 16 location of 128 bits, and then instantiate it in a component that is composed by 16
of them, because is the datapath there are 4 MUs and each of them is connected to 4 memory
banks in order to receive a complete 8×8 block. At the input of this component is present a
decoder, and this additional logic causes a corruption of the data in the memory because the
setup and hold times are not satisfied. At this point was included a pipeline stage at the input
of the interfaces of the memories, and after a second test, this bug was solved.

6.3 Timing Measurement

A further modification to the software code was implemented in order to test the perfor-
mances in terms of time of the peripheral, as one of the main focus of this work was the cre-
ation of an hardware accelerator. The C time functions are a group of functions in the standard
library of the C programming language implementing date and time manipulation operations.
They provide support for time acquisition, conversion between date formats, and formatted
output to strings. Those functions are defined in the time.h header file. By the usage of the
function ❝❧♦❝❦❴❣❡tt✐♠❡✭✮ it was possible to make misurations for both the SW and FPGA
function with the aim of making a timing comparison. Two type of test were performed:

• The first one is based on a single block, and each time the data is sent to the FPGA. In
addition the average time is more and more reduced when higher dimension blocks are
taken into account.

• The second one recreates an emulation of a search: software with and within the pe-
ripheral is tested and, in the case of peripheral usage, the current block is sent only
once to the memory, thus further reducing the time Encoder.

It is possible to notice that this solution in this case is far moe better than software one.

42

6.3 – Timing Measurement

Block Dimensions Software Time (ns) FPGA Peripheral Time (ns) ∆T (%)
8×8 19045 6206 -67.4

16×8 39654 11639 -70.0
16×16 79145 21849 -72.39
32×8 79523 22071 -72.24
32×16 158018 42624 -73.0
32×24 228502 61072 -73.2
32×32 316196 83969 -73.4
64×16 316400 83936 -73.5
64×32 632481 167418 -73.5
64×48 914330 241060 -73.6
64×64 1267051 331850 -73.8

Table 6.1: Experimental Time Measurements for each single block dimensions

Block Dimensions Software Time (ns) FPGA Peripheral Time (ns) ∆T (%)
8×8 670097 109534 -83.6

16×8 1338515 200372 -85.0
16×16 2668982 379678 -85.7
32×8 2679274 380912 -85.7
32×16 5340850 740012 -86.1
32×24 8368034 1143228 -86.3
32×32 10676977 1462590 -86.3
64×16 10649720 1460058 -86.3
64×32 21346267 2897915 -86.4
64×48 32018153 4367719 -86.3
64×64 42726355 5766809 -86.5

Table 6.2: Experimental Time Measurements for each block dimensions emulating a
search

43

44

Chapter 7

Synthesis

7.1 Introduction

The base design of the hardware accelerator was synthesized before the insertion of the opti-
mization that will be presented in the Chapter 9 to understand the improvements and even-
tually drawbacks generated by them. The project was synthesized by using the Quartus Prime
software. The overall synthesis is composed by five steps:

• Analysis and Synthesis

• Fitter (Place and Route)

• Assembler

• TimeQuest Timing Analysis

• Power Analysis.

In the synthesis stage of the compilation flow, the Quartus II software performs logic syn-
thesis to optimize design logic and performs technology mapping to implement the design
logic in device resources. After the synthesis stage a single project database that integrates all
your design files in a project is generated. Quartus II Analysis and Synthesis, together with
the Quartus II Fitter, incrementally compiles only the parts of the design that change between
compilations, reducing concretely the compilation time.

7.2 Analysis and Synthesis

In Appendix A.1 is reported the overall resources usage. The number of total Logic utilization
(ALMs) is 14967 (47% of the total ALMs on the device). In a previous attempt it was performed
an ×8 parallelization of the MUs that would have reduce the cycles need to calculate a TU
composed by a number of 8×8 blocks, but this type of implementation needed 34490 ALMs
and, therefore, it was rejected during synthesis, because of the limited number of resources
that is 32070 for this particular chip. It is also reported the number of used PLL, that in this

45

7 – Synthesis

case is 2: one is generating the clock for the memories and the other one the clock for the
internal datapath and control unit.

7.3 TimeQuest Timing Analyzer

The Quartus II TimeQuest timing analyzer allow to analyze the timing characteristics of your
design. In addition, a SDC contraint file can be provided to the tool in order to make a com-
plete time analysis.

In this case it was necessary to specify two false path in the ✳s❞❝ file. In fact the architec-
ture is working with two clock domains, and this influences the Static Time Analysis, resulting
in a wrong result for the Recovery Time.

The TimeQuest Analyzer performs a multi-corner analysis depending on the actual timing
characteristics of the chips that are subject to PVT (Process, Voltage, Temperature) variations:

• Process: after the manufacturing process, not all the chips are equal. For a given FPGA
speed-grade, some chips will be faster, some slower.

• Voltage: higher Vcc increase the speed performances of the chip, while a lower Vcc de-
grades it. In this analysis is considered the minimum supported Vcc operating condi-
tions, which is 1110 mV.

• Temperature: also a lower T increase the speed performances, vice versa for an high
temperature. In this analysis were considered 0 ◦C and 85 ◦C as test conditions for the
temperature.

Therefore four type of report were generated:

• Corner 1: Slow model - 85 ◦C - 1110 mV: the worst case scenario.

• Corner 2: Slow model - 0 ◦C - 1110 mV.

• Corner 3: Fast model - 85 ◦C - 1110 mV.

• Corner 4: Fast model - 0 ◦C - 1110 mV: the best case scenario.

In order to fit all the constraints, it was mandatory to focus on the worst case scenario,
therefore only the Corner 1 was analyzed. In Appendix A.2 is reported the Timing Report Sum-
mary. It can be noticed that the slack related to ❝❧♦❝❦✵ (for the memories) is 0.024 ns, and
therefore there were no margins for improvements. On the contrary the setup related to to
❝❧♦❝❦✵ (for the CU and internal datapath) is 2.060 ns, meaning that the clock frequency could
be slightly increased. However this was limited by the PLL, because generating a frequency
that is not a multiple of the reference (50 MHz) led to a generation of a clock frequency for the
voltage-controlled oscillator (VCO) greater than the allowed threshold.

46

7.4 – Power Analysis

7.4 Power Analysis

The Power Consumption Evaluation is very complex to execute in this type of environment.
In Quartus II is present the PowerPlay tool, which based on the architecture and depending
on the usage of the HPS, realize an estimation of the power consumed. However, this type of
evaluation is not precise, and to be more accurate it need the ✳✈❝❞ file with the estimation
of the inputs, generated from the simulation of the architecture with a testbench, but in this
case the generation of the testbench was not trivial and practically was not the main purpose
for this work, knowing that this is a work-flow for the study of prototypes for future ASICs
realization. Therefore, due to the low confidence of the power analysis, the results for the
power estimation were omitted.

For a real power evaluation the whole board could be monitored by plugging a power
adapter into a current sensor. The current sensor output would then be applied to the on-
board ADC and read by the FPGA. For example, it might be used the Adafruit 1164, equipped
with a TI INA169 current sensor. The sensor board has a bandwidth of 100 kHz, gain of 1 V out
per 1 A input, and with an output noise of about 7×10−5 V. Because the current is measured
for the whole board, separating out the FPGA contribution will require careful calibration.
However, this could be a framework for a future research on this topic.

47

48

Chapter 8

Integration in HM Reference Software

8.1 Introduction

This chapter will describe the steps for the development of a program that can run under Linux
on the DE1-SoC. This passage was essential in order to integrate the usage of the hardware
accelerator inside the HM reference software. The approach used in this case is called cross
compilation, in which the program is written and compiled on a host computer, and then the
resulting executable is transferred onto the Linux file system that is inside the microSD card.

8.2 Access to the FPGA

Programs running on the ARM processor of the Cyclone V SoC device under Linux can ac-
cess hardware devices that are implemented in the FPGA through either the HPS-to-FPGA or
the Lightweight HPS-to-FPGA bridge. These bridges are mapped to regions in the ARM mem-
ory space. When an FPGA-side component (such as an IP core) is connected to one of these
bridges, the component’s memory-mapped registers are available for reading and writing by
the ARM processor within the bridge’s memory region.

When programs are being run under Linux it is not as straightforward to access memory-
mapped I/O devices because Linux uses a virtual-memory system, and therefore application
programs do not have direct access to the processor’s physical address space.

To access physical memory addresses from a program running under Linux, you have to
call the Linux kernel function ♠♠❛♣ and access the system memory device file /dev/mem. The
♠♠❛♣ function, which stands for memory map, maps a file into virtual memory. You could, as
an example, use ♠♠❛♣ to map a text file into memory and access the characters in the text file
by reading the virtual memory address span to which the file has been mapped. The system
memory device file, /dev/mem, is a file that represents the physical memory of the computer
system. An access into this file at some offset is equivalent to accessing physical memory at
the offset address. By using ♠♠❛♣ to map the /dev/mem file into virtual memory, we can map
physical addresses to virtual addresses, allowing programs to access physical addresses. In the
following section, we will examine a sample Linux program that uses ♠♠❛♣ and /dev/mem to
access the Lightweight HPS-to-FPGA (lwhps2fpga) bridge’s memory span and communicate

49

8 – Integration in HM Reference Software

with an IP core on the FPGA. More information are available in [15].

8.3 HM Reference Program

As mentioned in 6.2 the two functions at stake are s❡t❉✐stP❛r❛♠ and ①●❡t❍❆❉s. While the
first one sets the dimension of the PU, the pointers to the reference and current block and
other parameters like the bit depth ans so on in the class ❉✐stP❛r❛♠, the second one, reported
in Appendix B.2, effectively computes the SATD.

The Table 8.1 lists all the function and the relatives source files that are used during the
Intra Prediction. In particular the effective call of the ①●❡t❍❆❉s is performed in the function
❡st■♥tr❛Pr❡❞▲✉♠❛◗❚. In fact after the call of the function ♣r❡❞■♥tr❛▲✉♠❛❆♥❣ in which it is
present the analysis of the 35 modes of the HEVC standard, the SATD is calculated in order to
evaluate the rate-distortion cost among the selected modes. In Figure 8.1 is shown the flow
chart of the Intra Prediction inside HM.

Library TLibCommon TLibEncoder
Source file TComPattern.cpp TComPrediction.cpp

TComRDcost.cpp TEncSearch.cpp
Functions xCompressCu estIntraPredLumaQT

estIntraPredChromaQT xRecurIntraCodingQT
xRecurIntraChromaCodingQT initAdiPattern

predIntraLumaAng xGetHAD
xUpdateCandListx RecurIntraCodingQT

fillReferenceSamples xPredIntraPlanar
xPredIntraAng predIntraGetPredValDC

Table 8.1: Main functions in Intra Prediction

For what concerns the FME, the SATD calculation for the fine-grain search is embedded in
the function ①P❛tt❡r♥❘❡❢✐♥❡♠❡♥t, also part of the TEncSearch class. To integrate the usage
of the FPGA peripheral into HEVC reference software HM 16.15 it was necessary to create a
new class that did not substitute the original one, but instead starts the computation using
the peripheral when is necessary. In fact the peripheral can work only with a bit depth of 8
(while the HM is structured in order to work with higher bit depth). Moreover it can manage
only the blocks with dimension from 8×8 to 64×64.

This class was called ❋P●❆P❛r❛♠ and includes all the configurations and functions for the
usage of the peripheral. ❋P●❆P❛r❛♠ class contains many variables that must be configured the
start and they have to be destroyed at the end of the execution: pointers to the FPGA bridges
in fact are mapped in the constructor and those mappings are removed in the destructor. In
Figure 4.2 is reported in the column Base, the base address on which the peripheral in memory
mapped on the AXI bus. This will be the offset that must be added to the address mapped
on the virtual memory in order to have the reference to send and receive the data from the
user level. As explained in 5.5.3, a frame is composed by an array of pixel. When the Intra-
Prediction is working, to each PU that has to be analyzed are assigned several parameters, in

50

8.3 – HM Reference Program

xCompressCU

xCheckRDCostInter xCheckRDCostIntra

estIntraPredLumaQT calcHAD

initAdiPattern

predIntraLumaAng

xUpdateCandidateList

getIntraDirLumaPredictor

xRecurIntraCodingQT

fillReferenceSamples

xPredIntraPlanar

xPredIntraAng

predIntraGetPredValDC

Figure 8.1: Flow chart showing important functions in Intra Prediction

order to collocate it within the memory. Those parameters are:

• ♣✐❖r❣ and ♣✐❈✉r, that are the pointers to the first pixel in the above-left square of the
reference and current PU,

• ✐❘♦✇s and ✐❈♦❧s, that are the dimensions of the reference and current PU,

• ✐❙tr✐❞❡❈✉r and ✐❙tr✐❞❡❖r❣, that are the stride values (the distance between a pixel
and the one on the next rows and on the same column).

In order to use the peripheral, was necessary to reorder each block in a buffer, in order
to have each 8×8 blocks contiguous in the SRAM memory. Depending on the dimension of
the block, the reordering changes because the positions of the 8×8 blocks in an higher block
change. Therefore each sending of the data is preceded by the reorganization of the block
in a buffer. This block in then sent to the FPGA using ♠❡♠❝♣②✭✮ function and the result is
requested.

In summary the actions performed by the function s❡t❉✐stP❛r❛♠ are:

• Set the variables relates to the dimension of the block, stride value, bit depth and the
type of function (either SAD, SSE, SATD with software function and SATD using the pe-
ripheral),

• Configuration of the Control Register, unless it is not already configured with the actual
value.

• Reorder of the reference block in a buffer.

51

8 – Integration in HM Reference Software

• Move data from the buffer to the Reference Block.

The actions performed by the function ①●❡t❍❆❉s are:

• Set the variables relates to the dimension of the block, bit depth and and also the type
of function,

• Depending on the previously set dimension of the block it activates the peripheral.

• Reorder of the current block in a buffer.

• Move data from the buffer to the Reference Block.

A further version was impemented to validate the functioning of the driver. To do this the
driver is integrated directly in the default version of ①●❡t❍❆❉ function, a comparison between
the result provided by the software version and the one coming from the peripheral is made.
For each wrong result, the program annotes it into a file, specifing the block dimension, the
correct and the wrong resut.

8.4 Timing Measurements

To evaluate the efficiency of the hardware acceleration, a comparison in term of time was
performed. The proposed implementation was tested in the HEVC test model HM 16.17. HM
was configured in All-Intra mode, and run for quantization parameters (QP) 22, 27, 32 and
37 for the sequences of type D (416× 240). For each configuration, the test was performed
three times and the resulting time was the average. Other two timing measurements were
performed for both Random Access and Low Delay, but in those cases only one encoding was
executed due to the extremely long duration of the test. This results for All-Intra configuration
are shown in the Table 8.2, while those for Random Access and Low Delay. are represented in
Tables 8.3a and 8.3b. It can be noticed that the integration of the peripheral driver in the HM
software did not produced the expected results as it was for the previous test. There are many
reasons for this, and the most probable is that the usage of this peripheral inside the software
led to an congestion of the memory instruction, creating a slowdown of the system.

52

8.4 – Timing Measurements

Video Sequences QP Default Encoding Time (s) FPGA Encoding Time ∆T (%)

RaceHorses

22 3041 2895 -4.8
27 2694 2541 -6.5
32 2345 2223 -5.2
37 2062 1933 -6.3

BasketballPass

22 4687 4762 +1.6
27 4090 4190 +2.4
32 3625 3683 +1.6
37 3274 3330 +1.7

BQSquare

22 6826 6920 +1.3
27 5968 6007 +0.6
32 5194 5237 +0.8
37 4600 4653 +1.1

BlowingBubbles

22 5922 5996 +1.2
27 5165 5264 +1.9
32 4450 4510 +1.3
37 3799 3857 +1.5

Average 4233 4250 +0.4

Table 8.2: Time results for recommended video sequences in All Intra

Video Sequences QP ∆T (%)

RaceHorses

22 +1.1
27 +0.6
32 +0.4
37 +1.3

BasketballPass

22 +4.1
27 +3.7
32 +2.9
37 +2.7

BQSquare

22 +5.2
27 +1.6
32 1.0
37 +0.7

BlowingBubbles

22 +1.0
27 +1.0
32 0.0
37 +0.3

Average +1.7

(a) Time results for recommended video
sequences in Random Access

Video Sequences QP ∆T (%)

RaceHorses

22 +0.4
27 +0.1
32 +0.1
37 +0.3

BasketballPass

22 +3.8
27 +2.7
32 +1.6
37 +1.9

BQSquare

22 +3.3
27 +1.3
32 0.0
37 +0.6

BlowingBubbles

22 +1.5
27 -3.0
32 -4.1
37 -1.3

Average +0.5

(b) Time results for recommended video
sequences in Low Delay

53

54

Chapter 9

Optimizations

One of the main target of this work was to explore the potential of this FPGA. At the end of
the final implementation of the architecture and the operative functioning was tested, it was
the time to optimize the work using the additional feature that the system provides. These
optimization are Clock Gating and the usage of the Direct Memory Access. The first one is the
most used technique to reduce the dynamic power consumption while the second one is the
fastest methods in order to reduce the latency when moving data from a part of memory to
another.

9.1 Clock Gating

The architecture is strongly parallelized since it can employ up to 4 MUs that can compute four
8×8 SATD at the same time. These blocks are not always used and moreover in the datapath
is using several pipeline stages among which the first ones have a huge parallelism (the first
pipeline stage consists of two register each of them composed by 2048 bits). Therefore a good
improvement in the dynamic power is to adopt the Clock Gating technique. Every register
does not have to sample its inputs its clock is disables and, thence, the number of commuta-
tions is strongly reduced. Clock gating needs a circuit level modification. In this FPGA Board
by Altera, the insertion of the clock gating is not performed at synthesis time with the usage
of some extra command, but instead the only way to introduce this type of optimization is to
manually insert the clock gating block. The Clock Control Block is an Altera IP and it is called
ALTCLKCTRL. It is a dynamic clock buffer that allows you to enable and disable the clock net-
work and dynamically switch between multiple sources to drive the clock network.
The Clock Control Block are defined as:

• Global Clock Network: a clock can reach all the parts inside the chip.

• Regional Clock Network: a clock can drive a quadrant of the chip.

• External Clock-Out Path: clock path from the output of the PLL to the dedicated pins.

The main idea was therefore to use this IP block with the aim of reduce the dynamic power
consumed. The design must contain an enable condition in order to use and benefit from

55

9 – Optimizations

clock gating, but this type of logic must not consume more power than the one that was saved
with the usage of the clock gating technique. Therefore in this work, a coarse-grain clock gat-
ing was adopted, meaning that the clock coming out of the PLL was gated by the ALTCLKCTRL
block and then distributed toward all the registers. In this way the enable logic can be very
simple, meaning that it can be handled by a simple FSM that has an ON-OFF mechanism. The
FSM has to understand when the clock has to be activated, remembering that in order to re-
duce the latency for the calculation of the result, the value of the first address on the memory
will precharged on the first pipeline register. In Figure 9.1 is shows a functional timing wave-
form example for clock-output enable. Clock enable is synchronous with the falling edge of
the input clock. Knowing this, it is important to activate the register at least one clock cycle be-
fore the start of the evaluation and in that sense, the clock can be activated when the current
block memory is written. As mentioned in the previous chapters, the writing of the memo-
ries anticipates the functioning of the structure, and the last memory that has to be written
between the two is the current block one.

3–6 Chapter 3: Functional Description
Connectivity Restrictions

Clock Control Block (ALTCLKCTRL) IP Core June 2017 Altera Corporation
User Guide

1 Single register is applicable for Cyclone III, Cyclone IV, and Cyclone 10 LP devices
only.

f For more information about clock enable signals in a specific device, refer to the
respective device handbook.

Double Register Clock Enable Circuit
The double register clock enable circuit in Arria V, Arria 10, Cyclone V,
Cyclone 10 GX, Stratix III, and Stratix IV devices helps with asynchronous
enable/disable of the clock network, and avoid metastability issues. If the enable
signal can toggle at any time, it’s possible that if the enable toggles at the same instant
as the falling clock edge, the register can get “stuck” in a state between 0 and 1 for
some time, before resolving. Having two registers on the path acts as a
synchronization chain and reduces the probability of getting stuck in this state.

Figure 3–5 shows the double register clock enable circuit.

f For more information about metastability issues, refer to Managing Metastability with
the Quartus II Software chapter of the Quartus II Handbook.

Clock Enable Timing
Figure 3–6 shows a functional timing waveform example for clock-output enable.
Clock enable is synchronous with the falling edge of the input clock.

Connectivity Restrictions
The following section describes the restrictions associated with the signal sources that
can drive the inclk[] input.

Figure 3–5. Double Register Clock Enable Circuit

Figure 3–6. Clock Enable Timing

inclk

ena

outclk

Figure 9.1: Clock Enable Timing

In fact once the clock enable rises, the clock is activated after an half clock cycle, meaning
that, in order to preserving the precharge of the initial data on the first pipeline register, this
clock enable must be activated earlier. In this case the ❝✉r❴✇r✐t❡ enable is provided to the
FSM in order to signal that the memory is being written and the clock can be enabled. At this
point the clock is enabled until the computation is not finished, but if a new computation is
ready, the clock is left enabled.

As stated in 7.4, due to the low confidence, the power analysis it was omitted.

This version of the hardware accelerator was tested using both the verification C program
used in 6.2, but was also verified on the modified version of HM, that is discussed in (?).

9.2 Direct Memory Access

As explained in Chapter 4, one of the features of the HPS is the DMA controller (DMAC). The
utilization of a DMA can be very efficient if the purpose is to move data from processor mem-
ories and FPGA. In fact in this case the quantity of data that must be sent to the FPGA may vary
from 64 B to 4096 B for each transfer. This depends of course on the dimension of the block
and it must be considered if the main intent is to reduce the throughput of the accelerator.

56

9.2 – Direct Memory Access

9.2.1 Linux Kernel Module

A complete and very detailed work on this type of FPGA was done by the Electronic Technol-
ogy Department of the University of Vigo and it is well explained in [1]. This team exploited the
performances of the HPS-FPGA bridges making a full detailed study on the timing with differ-
ent configurations. These experiments represent the core of HPS-FPGA transfer rate measure-
ments when using the HPS as master to move data and they provide a good overview of the
device behavior. In particular they realized a Kernel Module with the capability of program the
DMA Controller PL330 available on the Hard Processor System. This Loadable Kernel Module
(LKM) moves data between a Linux Application running in User Space and a memory or other
kind of peripheral in the FPGA using the DMA. At the end of this test it was established that for
data sizes bigger than 128 B this method is faster than moving data with the processor using
♠❡♠❝♣②✭✮ function. The module uses the char driver interface to connect application space
and the kernel space. It creates a node in /dev called /dev/dma_pl330 and support for the the
typical file functions is given: ♦♣❡♥✭✮, ❝❧♦s❡✭✮, ✇r✐t❡✭✮ and r❡❛❞✭✮. This way reading or
writing to an FPGA address using the DMA is as easy as reading or writing into a file. The LKM
also exports some variables using sysfs in /sys/dma_pl330/ to control its behavior. Among the
different methods in order to move data from the user level to the FPGA, in Figure 9.2 is shown
the one used adopted in this thesis.

When using ACP data is copied into L2 cache controller in coherent way so it is automat-
ically coherent for the processor. The LKM contains the following variables to control its be-
havior. This variables are exported to the file system using sysfs (in /sys/dma_pl330/). This
variables control the basic behavior of the transfer:

• ✉s❡❴❛❝♣.

• ♣r❡♣❛r❡❴♠✐❝r♦❝♦❞❡❴✐♥❴♦♣❡♥: PL330 DMA Controller executes a microcode defining
the DMA transfer to be done.

• ❞♠❛❴❜✉❢❢❴♣❛❞❞: the physical address for the FPGA.

The char device driver interface functions are:

• ❞❡✈❴♦♣❡♥: called when ♦♣❡♥✭✮ is used. It prepares the DMA write and read microcode if
♣r❡♣❛r❡❴♠✐❝r♦❝♦❞❡❴✐♥❴♦♣❡♥=1. To prepare the write microcode it uses cached buffer
(if ✉s❡❴❛❝♣=1) as source, ❞♠❛❴❜✉❢❢❴♣❛❞❞ as destiny and ❞♠❛❴tr❛♥s❢❡r❴s✐③❡ as trans-
fer size.

• ❞❡✈❴✇r✐t❡: when using ✇r✐t❡✭✮ function the data is copied from the application using
❝♦♣②❴❢r♦♠❴✉s❡r✭✮ function to cached buffer (if ✉s❡❴❛❝♣=1). ❞❡✈❴r❡❛❞: called when
using r❡❛❞✭✮ to read from the FPGA.

• ❞❡✈❴r❡❧❡❛s❡: called when callin the ❝❧♦s❡✭✮ function from the application.

Transfer rates between HPS and FPGA when HPS is the master were measured for different
combinations of values of the following parameters:

57

9 – Optimizations

Figure 9.2: Data Route from HPS to FPGA [1]

• OS or Baremetal: evaluation on the transfer performances using a Linux-based OS for
Intel FPGA devices, and as a Baremetal application running in one of the ARM cores.

• Master starting AXI bus transfers: a comparison of the performances when one of the
ARM cores controls data transfer(♠❡♠❝♣②✭✮), and exploiting the DMA controller

• Data size from 2 B to 2 MB

• FPGA frequency from 50 Hz to 50 MHz.

Tests were repeated 100 times and mean value is given as result.

9.2.2 Compilation and Utilization

The Kernel Module was directly compiled on the board, after few modification on the /textit-
makefile present in the repository of the project, that was compiled using the compiler in Intel
FPGA SoC EDS. When the command insmod is executed to insert the Module into the kernel,
the ❉▼❆❴P▲✸✸✵❴▲❑▼❴✐♥✐t function that is the initialization of the DMA Controller performs:

58

9.2 – Direct Memory Access

• Reservation of the Channel 0 to beused in DMA transaction,

• ioremaps HPS-physical address (is is used to store the DMAC microcode),

• allocates cached buffer using ❦♠❛❧❧♦❝✭✮,

• exports the control variables using sysfs in /sys/dma_pl330/,

• creates the char device driver interface in /dev/dma_pl330/,

• configures ACP and enables PMU to be accessed from user space.

9.2.3 Integration for SATD accelerator

Several modification in the code were necessary for the integration of the Kernel Module in the
peripheral driver. As mentioned before, this module was intended to use for the dispatch of
the data of the block to the FPGA using the DMA controller. Having this type of procedure, can
be useful because it moves away from the processor the workload of accessing the memory.

This type of optimization was tested only in the verification code, in order to compare the
single block test to first of all check the functionality, but also to analyze the timing perfor-
mances. After few modification of the actual code of the module in order to make it com-
patible with the distribution of Linux used in this project (this group used a different version
called Angstrom), the variables mentioned in 9.2.1 were introduced in the code. The ✉s❡❴❛❝♣
was set to 1, in order to maintain the coherency with process. Between the two memory
present in the peripheral, the only one that receives the data using the DMA is the current
block one. The reason is that every time the physical destination address has to change, the
variable in /sys/dma_pl330/, and this can introduce a not negligible overhead. Therefore the
❞♠❛❴❜✉❢❢❴♣❛❞❞ variable was fixed at the beginning and it does not change. The function
✇r✐t❡ triggers the start of the sending of the data to the memory and at the end the result is
retrieved using the Lightweight bus as before.

9.2.4 Time Measurements

After the development of this new type of configuration, the next step was to compare the
performances given by the use of this driver. Analyzing the resuts of the tests in terms of timing
done by [1], the employment of the DMA driver on the AXI bridge was attested to be better
than ♠❡♠❝♣②✭✮ for a workload greater than 256 B, but knowing that the cases are limited, all
the four cases were tested and how was convenient.

Tables 9.1 shows the time comparison between the calculation of a single block performed
by software functions, using the FPGA peripheral with the usage of the DMA and using the
♠❡♠❝♣②✭✮. The same criteria are present in Table 9.2, in which is performed a comparison
between the time results of the emulation of the search for each type of block. It is possible
to notice that the usage of DMAC improves the performances only in the last two (or three)
cases. This contradicts what is stated in [1] because, in theory, it should produce better results
starting from a the 16×16 block. It is also true that the software was not well adopted for this
scope, leading to a not perfect improvement in terms of timing. in addiction the results for

59

9 – Optimizations

the last cases are really impressive, leading to an improvement of the 25% on the FPGA-CPU
computing, and, therefore, of the 89.8% on the software function.

Block Dimensions Software (ns) FPGA CPU (ns) FPGA DMA ∆T (%)
8×8 19045 6206 42467 +584.2

16×8 39654 11639 46522 +299.7
16×16 79145 21849 55996 +156.3
32×8 79523 22071 54902 +148.7
32×16 158018 42624 72661 +70.5
32×24 228502 61072 87254 +42.8
32×32 316196 83969 104442 +24.3
64×16 316400 83936 104216 +24.1
64×32 632481 167418 169497 +1.0
64×48 914330 241060 235248 -2.4
64×64 1267051 331850 300329 -9.5

Table 9.1: Experimental Time Measurements for each single block dimensions

Block Dimensions Software (ns) FPGA CPU (ns) FPGA DMA ∆T (%)
8×8 670097 109534 496945 +353.6

16×8 1338515 200372 626642 +212.7
16×16 2668982 379678 914615 +140.8
32×8 2679274 380912 790370 +107.4
32×16 5340850 740012 1097967 +48.3
32×24 8368034 1143228 1274091 +11.4
32×32 10676977 1462590 1646212 +12.5
64×16 10649720 1460058 1487139 +1.8
64×32 21346267 2897915 2461069 -15.1
64×48 32018153 4367719 3428765 -21.5
64×64 42726355 5766809 4322303 -25.0

Table 9.2: Experimental Time Measurements for each block dimensions emulating a
search

60

Chapter 10

Approximation

A further analysis that was done in this work was to check the effective improvements and the
effects of introducing in the architecture adders that are error tolerant. An error tolerant adder
can introduce a certain quantity of error, depending on his type and implementation, and, if
the task does not requires a perfect result, using this type of adder can give better results first
of all in terms of delay and then of course of power and area. The basic idea of an approxi-
mate adder is to not propagate the carry through the whole Full Adders (like what happens
in a proper Ripple Carry Adder) but instead break the carry chain and therefore create several
segments of adders. In this way the critical path is highly reduced, but also the power con-
sumed, because if with this improvement the delay is over reduced, a further reduction of the
voltage can be applied meaning that there will be a quadratic reduction of the dynamic power.
For what concerns the area, with the respect to a normal Ripple Carry Adder there are no es-
sential changes. If we consider instead a different implementation like a Carry Look-Ahead
adder, where there is a dedicate logic that propagate and generate the carry, it is possible to
have a percentage of area saving due to the removal of the part that propagate the carry from
a segment to another.

For this project the choice of the adder was crucial, because several adders and subtractors
are in cascade in order to produce the result, and high percentage of error at the output of one
adder would be propagated the result at the output would be compromised. As sad before
the SATD are used as a metric in order to have a much more precise comparison between the
reference block and the candidate one, and therefore the an adder that introduces an high
quantity of error cannot be selected. In [18] is present a complete and exhaustive analysis of
the different types and versions of approximate adders and the related characteristics in terms
of delay, power and area.

10.1 Adder Selection

Between the overall solutions analyzed in this paper, the one that introduces the least quantity
of error is the Error Tolerant Adder II (ETAII), that is proposed in [19]. The ETAII is essentially
segmented Carry Select Adder in which every segment receives the carry from the previous
segment but the propagation of the carry is interrupted, resulting in a massive reduction of

61

10 – Approximation

the critical path, that essentially will pass only through the carry generate-propagate block of
one segment. It is shown in Figure 10.1, where n is the adder size, k is the size of the carry and
sum generators. The carry signal from the previous carry generator propagates to the next
sum generator. Therefore, ETAII utilizes more information to predict the carry bit. In addition
to ETAII, several other error tolerant adders (ETAs) have been proposed by the same authors
of [19].

❈❛rr② ●❡♥❡r❛t♦r

❙✉♠ ●❡♥❡r❛t♦r

❈❛rr② ●❡♥❡r❛t♦r

❙✉♠ ●❡♥❡r❛t♦r

❈❛rr② ●❡♥❡r❛t♦r

❙✉♠ ●❡♥❡r❛t♦r

bn−1:n−k an−1:n−k bn−k−1:n−2k an−k−1:n−2k bk−1:0 ak−1:0

sn−1:n−k sn−k−1:n−2k sk−1:0

...

...

...

Figure 10.1: The Error-Tolerant Adder type II (ETAII) [19]: the carry propagates
through the two shaded blocks.[19]

Although ETAII achieves good performances in both power and speed, the degraded ac-
curacy for large input operands may still restrict its use. A modified structure was hence in-
troduced to further improve the accuracy performance of ETAII. In this modified version, that
is called ETAIIM [2], the higher order bits should be more accurate than the lower order bits
as they play a more important role in representing a number. Therefore, for the higher order
bit positions, more input bits should be considered when calculating the carry signals. In this
structure, shown in the Fig 10.2 the first three carry generators are cascaded together to gen-
erate the carry signals for the two highest blocks. In this way, the carry signal for the highest
block is generated by the preceding 12 bits and the carry signal for the second block is gener-
ated by the preceding 8 bits and so on. The rest of the circuit is the same as that of ETAII.

10.2 Implementation

As well explained in the previous chapters, the structure of the architecture the bit-length of
a pixel is 8 but with at each stage of addition/subtraction it increases by 1 bit, and therefore
the dimension of the adders must increase as well. The problem related to this was to create a
generic adder that has the most significant bits in a fixed precision, instead the lower bits that
follows the ETAIIM idea of the segmentation and increase its dimensions coherently. After the
design of this architecture, it was substitute to the adder and subctractors already present in
the design.

62

10.3 – Results

❈❛rr② ●❡♥❡r❛t♦r

❙✉♠ ●❡♥❡r❛t♦r

❈❛rr② ●❡♥❡r❛t♦r

❙✉♠ ●❡♥❡r❛t♦r

❈❛rr② ●❡♥❡r❛t♦r

❙✉♠ ●❡♥❡r❛t♦r

b31 −b28 a31 −a28

b27 −b24 a27 −a24 b23 −b20 a23 −a20 b19 −b16 a19 −a16 b19 −b16 a19 −a16

s27 − s24 s23 − s20 s19 − s16 s3 − s0

...

...

...s31 − s28

❙✉♠ ●❡♥❡r❛t♦r

❈❛rr② ●❡♥❡r❛t♦r

❙✉♠ ●❡♥❡r❛t♦r

co,32

Figure 10.2: Block diagram of modified ETAII (ETAIIM) [2]

10.3 Results

The proposed implementation was tested in the HEVC test model HM 16.17 [8]. HM was con-
figured in All-Intra mode, Random-Access mode and Low Delay B mode, and run for quanti-
zation parameters (QP) 22, 27, 32 and 37. Tables 10.1, 10.2 and 10.3 show the results of these
experiments, in terms of BD −Rate and BD −PSN RY [20] for All-Intra and BD −Rate and
BD −PSN RY UV for the other two configurations, in which the peripheral is compared with
HM. Using the Bjøntegaard metrics, the table shows the average differences in rate-distortion
performance and the resulting bit rate efficiency. From the Table 10.1 it is possible to notice
that in All-Intra mode, the impact of on both Bit rate and Rate Distortion is limited. There-
fore, this type of approximation could be the starting point for a deeper analysis on this case
study. In fact this modification did not carried any improvements for what concerns the time.
After the synthesis the overall slack did not substantially changed, mainly due to the high op-
timization of the IP library for the adders on the FPGA. In general, an approximate adder is
faster than a precise one, therefore, a modification like that could lead to important time im-
provements on an ASIC solution. Instead in Random Access and Low Delay (Table 10.2 and
10.3) the effect of the approximation is much more relevant, meaning that the FME requires
an higher precision in order to perform the fine-grain search. As already stated, this type of
work is considered also a Framework, and one of the purpose of this type of test is to provide a
useful template for the future people that will want to study the real effect on HM of their own
implementation. In Figure 10.3 it is shown the overall differences in between the default and
the approximate solutions in terms of Rate Distortion.

63

10 – Approximation

1,000 2,000 3,000 4,000 5,000
30

35

40

45

bit-rate [Mbps]

P
SN

R
[d

B
]

default

approximate

Figure 10.3: Comparison of the RD-cost

Class Video Sequences BD −Rate(%) BD −PSN RY (dB)

C

RaceHorses +1.1606 -0.0668
PartyScene +0.4041 -0.0292

BasketballDrill +1.8556 -0.0911
BQMall +1.2160 -0.0683

D

RaceHorses +0.9970 -0.0620
BQSquare +0.3770 -0.0299

BlowingBubbles +0.4001 -0.0276
BasketballPass +1.1853 -0.0737
Average +0.9494 -0.0384

Table 10.1: Experimental results for recommended video sequences for All-Intra con-
figuration

Class Video Sequences BD −Rate(%) BD −PSN RY UV (dB)

D

RaceHorses +6.9573 -0.3116
BQSquare +3.2680 -0.1428

BlowingBubbles +5.7415 -0.2079
BasketballPass +4.0849 -0.1904
Average +5.0129 -0.2131

Table 10.2: Experimental results for recommended video sequences for Random Ac-
cess configuration

64

10.3 – Results

Class Video Sequences BD −Rate(%) BD −PSN RY UV (dB)

D

RaceHorses 6.5574 -0.3082
BQSquare 6.9035 -0.2886

BlowingBubbles 5.9241 -0.2182
BasketballPass 4.1454 -0.1885
Average 5.8826 -0.2508

Table 10.3: Experimental results for recommended video sequences for Low Delay
configuration

65

66

Chapter 11

Conclusion

11.1 Summary

The subject of the presented thesis is an hardware accelerator for FPGA that includes its own
on-chip RAM memories able to perform all the SATD cases composed by 8×8 blocks, listed in
Table 5.1, full compatible with the HEVC standard. In addition, a driver for HM reference soft-
ware is implemented and tested. The entire project, including the Clock Gating optimization
and the Approximate solution, is synthetized similarly as the base architecture as explained in
Chapter 7 using the same constraints. The clock frequency related to the memories is kept at
150 MHz, while for the second clock is 66.66 MHz.

11.2 Results Analysis

During this work several tests were performed to evaluate the functioning, quality and the
finally the performances of the peripheral. As it can be notice from the timing test, the results
were quite different. The stand alone tests, in which the peripheral was compared with the
software software computation in terms of times, were more than acceptable, with an average
time reduction of 72.3% for the single block and of 85.8% on the emulation of the search.
On the other hand the test perormed on the modified version of HM reference software did
not reflect the huge improvement seen before. Many reasons could affect the system with
the result of no time improvements. One of the main reason could be the fact that the HM
reference software, as said in [11], employs only one thread on a processor. The copy of the
block from the user level to the FPGA lead to a congestion of the memory instruction that
highly affects the performances. In fact, as stated in [11], the ♠❡♠❝♣② function overall usage
is comparable with the ❚❊♥❝❙❡❛r❝❤ class (that contains the functions for both Inter and Intra
Prediction). To overcome these problems, many solutions can be adopted:

• Embed the usage of the peripheral directly inside the functions that do the Intra Pre-
diction and the FME. In fact, both of them, after the prediction, make a copy of the pre-
dicted block, with additional parts of the original block in the case of Intra Prediction.
Therefore, the solution is to insert the sending of the reference block to the peripheral
inside those function directly, instead of make such a copy.

67

11 – Conclusion

• A dedicated thread to manage the sending of the data.

11.3 Future Works

The presented work is a complete hardware accelerator that contains local on-chip memory
able to perform the SATD cases in the range of 8 × 8 to 64 × 64 described inside the HEVC
standard. The number of pins and the input bandwidth constraints were taken into account
during the design in order to provide an accelerator that is fully compatible with the FPGA
adopted.

The clock gating control selectively switches off the clock signal to unused parts of the
architecture reducing the Dynamic Power. A brief explaination on how the DMA can be use to
send data as fast as possible to and from the FPGA was presented.

The final purpose of this work is not only to be considered as a creation of this type of
architecture but it is also a complete and very helpful framework in order to work with HEVC
using this kind of FPGA, and, in general, for the creation of more complex peripherals that has
to interface with an Operative System. The steps that were needed to produce the ✳r❜❢ file are
identical for mostly of the similar FPGA chip from Altera and the entire project can be easily
readopted to one of those. In fact the Avalon Memory Mapped interfaces that are used in this
project are compatible with all the FPGA of the same family that contains, as the Cyclone V, the
embedded ARM processor. The Intel FPGA are subdivided in four series: while Cyclone and
Arria are essentially designed for prototyping and their performances are in the midrange, the
Stratix series can lead to the considerably best results, because of the high performances.

This project will be upladed on the GitHub platform with the purpose of sharing the re-
alization of this hardware accelerator, giving the possibility to those interested in working on
it, and hopefully improve it. In addition, as said before, this is a complete and complex work-
flow for those type of applications in which the FPGA has to be interfaced with the core. This
thesis, in addition to the official manuals, is a useful reference that could help whoever wants
to implement a kind of peripheral that must be interfaced with a Linux OS powered from the
internal ARM core.

11.4 Workflow Definition

The workflow that was drawn up in order to work with this kind of environment can be sum-
marized in the following steps:

• Definition the the work: in this step the idea of what it has to be implemented must be
defined.

• Generation of the Quartus environment: the system that will contain the design has to
be realized using Quartus and Platform Designer.

• Generation of interal HDL for the Custom Component.

• Testing the component using a testbench that acts on the generated interfaces.

68

11.4 – Workflow Definition

• Synthesis of the final component and test on-board with a C software.

• Integration of the driver in the required application.

69

70

Appendix A

Reports

A.1 Resources Usage Summary

Listing A.1: Resources Usage Summary
✰✲✲✰

❀ ❋✐tt❡r ❘❡s♦✉r❝❡ ❯s❛❣❡ ❙✉♠♠❛r② ❀

✰✲✲✰✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✰✲✲✲✲✲✲✲✰

❀ ❘❡s♦✉r❝❡ ❀ ❯s❛❣❡ ❀ ✪ ❀

✰✲✲✰✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✰✲✲✲✲✲✲✲✰

❀ ▲♦❣✐❝ ✉t✐❧✐③❛t✐♦♥ ❀ ❀ ❀

❀ ✭❆▲▼s ♥❡❡❞❡❞ ✴ t♦t❛❧ ❆▲▼s ♦♥ ❞❡✈✐❝❡✮ ❀ ✶✹✱✾✻✼ ✴ ✸✷✱✵✼✵ ❀ ✹✼ ✪ ❀

❀ ❆▲▼s ♥❡❡❞❡❞ ❬❂❆✲❇✰❈❪ ❀ ✶✹✱✾✻✼ ❀ ❀

❀ ❬❆❪ ❆▲▼s ✉s❡❞ ✐♥ ❢✐♥❛❧ ♣❧❛❝❡♠❡♥t ❬❂❛✰❜✰❝✰❞❪❀ ✶✺✱✻✸✽ ✴ ✸✷✱✵✼✵ ❀ ✹✾ ✪ ❀

❀ ❬❛❪ ❆▲▼s ✉s❡❞ ❢♦r ▲❯❚ ❧♦❣✐❝ ❛♥❞ r❡❣✐st❡rs❀ ✸✱✻✵✷ ❀ ❀

❀ ❬❜❪ ❆▲▼s ✉s❡❞ ❢♦r ▲❯❚ ❧♦❣✐❝ ❀ ✶✶ ✱✵✸✻ ❀ ❀

❀ ❬❝❪ ❆▲▼s ✉s❡❞ ❢♦r r❡❣✐st❡rs ❀ ✶✱✵✵✵ ❀ ❀

❀ ❬❞❪ ❆▲▼s ✉s❡❞ ❢♦r ♠❡♠♦r② ❀ ❀ ❀

❀ ✭✉♣ t♦ ❤❛❧❢ ♦❢ t♦t❛❧ ❆▲▼s✮ ❀ ✵ ❀ ❀

❀ ❬❇❪ ❊st✐♠❛t❡ ♦❢ ❆▲▼s r❡❝♦✈❡r❛❜❧❡ ❀ ❀ ❀

❀ ❜② ❞❡♥s❡ ♣❛❝❦✐♥❣ ❀ ✶✱✵✵✾ ✴ ✸✷✱✵✼✵ ❀ ✸ ✪ ❀

❀ ❬❈❪ ❊st✐♠❛t❡ ♦❢ ❆▲▼s ✉♥❛✈❛✐❧❛❜❧❡ ❬❂❛✰❜✰❝✰❞❪❀ ✸✸✽ ✴ ✸✷✱✵✼✵ ❀ ✶ ✪ ❀

❀ ❬❛❪ ❉✉❡ t♦ ❧♦❝❛t✐♦♥ ❝♦♥str❛✐♥❡❞ ❧♦❣✐❝ ❀ ✵ ❀ ❀

❀ ❬❜❪ ❉✉❡ t♦ ▲❆❇ ✲✇✐❞❡ s✐❣♥❛❧ ❝♦♥❢❧✐❝ts ❀ ✵ ❀ ❀

❀ ❬❝❪ ❉✉❡ t♦ ▲❆❇ ✐♥♣✉t ❧✐♠✐ts ❀ ✸✸✽ ❀ ❀

❀ ❬❞❪ ❉✉❡ t♦ ✈✐rt✉❛❧ ■✴❖s ❀ ✵ ❀ ❀

❀ ❀ ❀ ❀

❀ ❉✐❢❢✐❝✉❧t② ♣❛❝❦✐♥❣ ❞❡s✐❣♥ ❀ ▲♦✇ ❀ ❀

❀ ❀ ❀ ❀

❀ ❚♦t❛❧ ▲❆❇s✿ ♣❛rt✐❛❧❧② ♦r ❝♦♠♣❧❡t❡❧② ✉s❡❞ ❀ ✷✱✸✵✼ ✴ ✸✱✷✵✼ ❀ ✼✷ ✪ ❀

❀ ✲✲ ▲♦❣✐❝ ▲❆❇s ❀ ✷✱✸✵✼ ❀ ❀

❀ ✲✲ ▼❡♠♦r② ▲❆❇s ✭✉♣ t♦ ❤❛❧❢ ♦❢ t♦t❛❧ ▲❆❇s✮ ❀ ✵ ❀ ❀

❀ ❀ ❀ ❀

❀ ❈♦♠❜✐♥❛t✐♦♥❛❧ ❆▲❯❚ ✉s❛❣❡ ❢♦r ❧♦❣✐❝ ❀ ✷✾✱✵✽✽ ❀ ❀

❀ ✲✲ ✼ ✐♥♣✉t ❢✉♥❝t✐♦♥s ❀ ✶✻ ❀ ❀

❀ ✲✲ ✻ ✐♥♣✉t ❢✉♥❝t✐♦♥s ❀ ✶✽✾ ❀ ❀

❀ ✲✲ ✺ ✐♥♣✉t ❢✉♥❝t✐♦♥s ❀ ✷✹✹ ❀ ❀

❀ ✲✲ ✹ ✐♥♣✉t ❢✉♥❝t✐♦♥s ❀ ✷✺✹ ❀ ❀

❀ ✲✲ ❁❂✸ ✐♥♣✉t ❢✉♥❝t✐♦♥s ❀ ✷✽✱✸✽✺ ❀ ❀

❀ ❈♦♠❜✐♥❛t✐♦♥❛❧ ❆▲❯❚ ✉s❛❣❡ ❢♦r r♦✉t❡ ✲t❤r♦✉❣❤s ❀ ✾✼✹ ❀ ❀

❀ ❀ ❀ ❀

❀ ❉❡❞✐❝❛t❡❞ ❧♦❣✐❝ r❡❣✐st❡rs ❀ ✾✱✸✶✺ ❀ ❀

❀ ✲✲ ❇② t②♣❡✿ ❀ ❀ ❀

71

A – Reports

❀ ✲✲ Pr✐♠❛r② ❧♦❣✐❝ r❡❣✐st❡rs ❀ ✾✱✷✵✸ ✴ ✻✹✱✶✹✵ ❀ ✶✹ ✪ ❀

❀ ✲✲ ❙❡❝♦♥❞❛r② ❧♦❣✐❝ r❡❣✐st❡rs ❀ ✶✶✷ ✴ ✻✹ ✱✶✹✵ ❀ ❁ ✶ ✪ ❀

❀ ✲✲ ❇② ❢✉♥❝t✐♦♥✿ ❀ ❀ ❀

❀ ✲✲ ❉❡s✐❣♥ ✐♠♣❧❡♠❡♥t❛t✐♦♥ r❡❣✐st❡rs ❀ ✾✱✷✶✽ ❀ ❀

❀ ✲✲ ❘♦✉t✐♥❣ ♦♣t✐♠✐③❛t✐♦♥ r❡❣✐st❡rs ❀ ✾✼ ❀ ❀

❀ ❀ ❀ ❀

❀ ❱✐rt✉❛❧ ♣✐♥s ❀ ✵ ❀ ❀

❀ ■✴❖ ♣✐♥s ❀ ✼✸ ✴ ✹✺✼ ❀ ✶✻ ✪ ❀

❀ ✲✲ ❈❧♦❝❦ ♣✐♥s ❀ ✶ ✴ ✽ ❀ ✶✸ ✪ ❀

❀ ✲✲ ❉❡❞✐❝❛t❡❞ ✐♥♣✉t ♣✐♥s ❀ ✵ ✴ ✷✶ ❀ ✵ ✪ ❀

❀ ■✴❖ r❡❣✐st❡rs ❀ ✷✷✻ ❀ ❀

❀ ❀ ❀ ❀

❀ ❍❛r❞ ♣r♦❝❡ss♦r s②st❡♠ ♣❡r✐♣❤❡r❛❧ ✉t✐❧✐③❛t✐♦♥ ❀ ❀ ❀

❀ ✲✲ ❇♦♦t ❢r♦♠ ❋P●❆ ❀ ✶ ✴ ✶ ✭ ✶✵✵ ✪ ✮ ❀ ❀

❀ ✲✲ ❈❧♦❝❦ r❡s❡ts ❀ ✶ ✴ ✶ ✭ ✶✵✵ ✪ ✮ ❀ ❀

❀ ✲✲ ❈r♦ss tr✐❣❣❡r ❀ ✵ ✴ ✶ ✭ ✵ ✪ ✮ ❀ ❀

❀ ✲✲ ❙✷❋ ❆❳■ ❀ ✶ ✴ ✶ ✭ ✶✵✵ ✪ ✮ ❀ ❀

❀ ✲✲ ❋✷❙ ❆❳■ ❀ ✶ ✴ ✶ ✭ ✶✵✵ ✪ ✮ ❀ ❀

❀ ✲✲ ❆❳■ ▲✐❣❤t✇❡✐❣❤t ❀ ✶ ✴ ✶ ✭ ✶✵✵ ✪ ✮ ❀ ❀

❀ ✲✲ ❙❉❘❆▼ ❀ ✶ ✴ ✶ ✭ ✶✵✵ ✪ ✮ ❀ ❀

❀ ✲✲ ■♥t❡rr✉♣ts ❀ ✵ ✴ ✶ ✭ ✵ ✪ ✮ ❀ ❀

❀ ✲✲ ❏❚❆● ❀ ✵ ✴ ✶ ✭ ✵ ✪ ✮ ❀ ❀

❀ ✲✲ ▲♦❛♥ ■✴❖ ❀ ✵ ✴ ✶ ✭ ✵ ✪ ✮ ❀ ❀

❀ ✲✲ ▼P❯ ❡✈❡♥t st❛♥❞❜② ❀ ✵ ✴ ✶ ✭ ✵ ✪ ✮ ❀ ❀

❀ ✲✲ ▼P❯ ❣❡♥❡r❛❧ ♣✉r♣♦s❡ ❀ ✵ ✴ ✶ ✭ ✵ ✪ ✮ ❀ ❀

❀ ✲✲ ❙❚▼ ❡✈❡♥t ❀ ✵ ✴ ✶ ✭ ✵ ✪ ✮ ❀ ❀

❀ ✲✲ ❚P■❯ tr❛❝❡ ❀ ✶ ✴ ✶ ✭ ✶✵✵ ✪ ✮ ❀ ❀

❀ ✲✲ ❉▼❆ ❀ ✵ ✴ ✶ ✭ ✵ ✪ ✮ ❀ ❀

❀ ✲✲ ❈❆◆ ❀ ✵ ✴ ✷ ✭ ✵ ✪ ✮ ❀ ❀

❀ ✲✲ ❊▼❆❈ ❀ ✵ ✴ ✷ ✭ ✵ ✪ ✮ ❀ ❀

❀ ✲✲ ■✷❈ ❀ ✵ ✴ ✹ ✭ ✵ ✪ ✮ ❀ ❀

❀ ✲✲ ◆❆◆❉ ❋❧❛s❤ ❀ ✵ ✴ ✶ ✭ ✵ ✪ ✮ ❀ ❀

❀ ✲✲ ◗❙P■ ❀ ✵ ✴ ✶ ✭ ✵ ✪ ✮ ❀ ❀

❀ ✲✲ ❙❉▼▼❈ ❀ ✵ ✴ ✶ ✭ ✵ ✪ ✮ ❀ ❀

❀ ✲✲ ❙P■ ▼❛st❡r ❀ ✵ ✴ ✷ ✭ ✵ ✪ ✮ ❀ ❀

❀ ✲✲ ❙P■ ❙❧❛✈❡ ❀ ✵ ✴ ✷ ✭ ✵ ✪ ✮ ❀ ❀

❀ ✲✲ ❯❆❘❚ ❀ ✵ ✴ ✷ ✭ ✵ ✪ ✮ ❀ ❀

❀ ✲✲ ❯❙❇ ❀ ✵ ✴ ✷ ✭ ✵ ✪ ✮ ❀ ❀

❀ ❀ ❀ ❀

❀ ▼✶✵❑ ❜❧♦❝❦s ❀ ✶✷✽ ✴ ✸✾✼ ❀ ✸✷ ✪ ❀

❀ ❚♦t❛❧ ▼▲❆❇ ♠❡♠♦r② ❜✐ts ❀ ✵ ❀ ❀

❀ ❚♦t❛❧ ❜❧♦❝❦ ♠❡♠♦r② ❜✐ts ❀ ✻✺✱✺✸✻ ✴ ✹✱✵✻✺ ✱✷✽✵ ❀ ✷ ✪ ❀

❀ ❚♦t❛❧ ❜❧♦❝❦ ♠❡♠♦r② ✐♠♣❧❡♠❡♥t❛t✐♦♥ ❜✐ts ❀ ✶✱✸✶✵✱✼✷✵ ✴ ✹ ✱✵✻✺ ✱✷✽✵ ❀ ✸✷ ✪ ❀

❀ ❀ ❀ ❀

❀ ❚♦t❛❧ ❉❙P ❇❧♦❝❦s ❀ ✵ ✴ ✽✼ ❀ ✵ ✪ ❀

❀ ❀ ❀ ❀

❀ ❋r❛❝t✐♦♥❛❧ P▲▲s ❀ ✶ ✴ ✻ ❀ ✶✼ ✪ ❀

❀ ●❧♦❜❛❧ s✐❣♥❛❧s ❀ ✹ ❀ ❀

❀ ✲✲ ●❧♦❜❛❧ ❝❧♦❝❦s ❀ ✹ ✴ ✶✻ ❀ ✷✺ ✪ ❀

❀ ✲✲ ◗✉❛❞r❛♥t ❝❧♦❝❦s ❀ ✵ ✴ ✻✻ ❀ ✵ ✪ ❀

❀ ✲✲ ❍♦r✐③♦♥t❛❧ ♣❡r✐♣❤❡r② ❝❧♦❝❦s ❀ ✵ ✴ ✶✽ ❀ ✵ ✪ ❀

❀ ❙❊❘❉❊❙ ❚r❛♥s♠✐tt❡rs ❀ ✵ ✴ ✶✵✵ ❀ ✵ ✪ ❀

❀ ❙❊❘❉❊❙ ❘❡❝❡✐✈❡rs ❀ ✵ ✴ ✶✵✵ ❀ ✵ ✪ ❀

❀ ❏❚❆●s ❀ ✵ ✴ ✶ ❀ ✵ ✪ ❀

❀ ❆❙▼■ ❜❧♦❝❦s ❀ ✵ ✴ ✶ ❀ ✵ ✪ ❀

❀ ❈❘❈ ❜❧♦❝❦s ❀ ✵ ✴ ✶ ❀ ✵ ✪ ❀

❀ ❘❡♠♦t❡ ✉♣❞❛t❡ ❜❧♦❝❦s ❀ ✵ ✴ ✶ ❀ ✵ ✪ ❀

❀ ❖s❝✐❧❧❛t♦r ❜❧♦❝❦s ❀ ✵ ✴ ✶ ❀ ✵ ✪ ❀

❀ ■♠♣❡❞❛♥❝❡ ❝♦♥tr♦❧ ❜❧♦❝❦s ❀ ✶ ✴ ✹ ❀ ✷✺ ✪ ❀

❀ ❍❛r❞ ▼❡♠♦r② ❈♦♥tr♦❧❧❡rs ❀ ✶ ✴ ✷ ❀ ✺✵ ✪ ❀

❀ ❆✈❡r❛❣❡ ✐♥t❡r❝♦♥♥❡❝t ✉s❛❣❡ ✭t♦t❛❧✴❍✴❱✮ ❀ ✶✾✳✸✪ ✴ ✶✽✳✸✪ ✴ ✷✷✳✸✪ ❀ ❀

❀ P❡❛❦ ✐♥t❡r❝♦♥♥❡❝t ✉s❛❣❡ ✭t♦t❛❧✴❍✴❱✮ ❀ ✹✺✳✾✪ ✴ ✹✻✳✽✪ ✴ ✺✺✳✶✪ ❀ ❀

❀ ▼❛①✐♠✉♠ ❢❛♥ ✲♦✉t ❀ ✽✻✾✵ ❀ ❀

72

A.2 – Time Reports

❀ ❍✐❣❤❡st ♥♦♥ ✲❣❧♦❜❛❧ ❢❛♥ ✲♦✉t ❀ ✹✵✾✻ ❀ ❀

❀ ❚♦t❛❧ ❢❛♥ ✲♦✉t ❀ ✶✹✵✾✷✽ ❀ ❀

❀ ❆✈❡r❛❣❡ ❢❛♥ ✲♦✉t ❀ ✸✳✺✵ ❀ ❀

✰✲✲✰✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✰✲✲✲✲✲✲✲✰

A.2 Time Reports

Listing A.2: Timing Report
✰✲✲✲✰

❀ ❙❧♦✇ ✶✶✵✵♠❱ ✽✺❈ ▼♦❞❡❧ ❋♠❛① ❙✉♠♠❛r② ❀

✰✲✲✲✰

❀ ❋♠❛① ❀ ❘❡str✐❝t❡❞ ❋♠❛① ❀ ❈❧♦❝❦ ◆❛♠❡ ❀

✰✲✲✲✰

❀ ✻✽✳✹✼ ▼❍③ ❀ ✻✽✳✹✼ ▼❍③ ❀ ✳✳✳⑤ ❣❡♥❡r❛❧ ❬✶❪✳ ❣♣❧❧⑦P▲▲❴❖❯❚P❯❚❴❈❖❯◆❚❊❘⑤❞✐✈❝❧❦ ❀

❀ ✶✺✵✳✺✻ ▼❍③ ❀ ✶✺✵✳✺✻ ▼❍③ ❀ ✳✳✳⑤ ❣❡♥❡r❛❧ ❬✵❪✳ ❣♣❧❧⑦P▲▲❴❖❯❚P❯❚❴❈❖❯◆❚❊❘⑤❞✐✈❝❧❦ ❀

❀ ✶✶✽✹✳✽✸ ▼❍③ ❀ ✼✶✼✳✸✻ ▼❍③ ❀ ✳✳✳⑤ ❛❢✐❴❝❧❦❴✇r✐t❡❴❝❧❦ ❀

✲✲✰

✰✲✲✲✰

❀ ❙❧♦✇ ✶✶✵✵♠❱ ✽✺❈ ▼♦❞❡❧ ❙❡t✉♣ ❙✉♠♠❛r② ❀

✰✲✲✲✰✲✲✲✲✲✲✲✰✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✰

❀ ❈❧♦❝❦ ❀ ❙❧❛❝❦ ❀ ❊♥❞ P♦✐♥t ❚◆❙ ❀

✰✲✲✲✰✲✲✲✲✲✲✲✰✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✰

❀ ✉✵⑤✳✳✳⑤ ❣❡♥❡r❛❧ ❬✵❪✳ ❣♣❧❧⑦P▲▲❴❖❯❚P❯❚❴❈❖❯◆❚❊❘⑤❞✐✈❝❧❦ ❀ ✵✳✵✷✹ ❀ ✵✳✵✵✵ ❀

❀ s②st❡♠✿✉✵ ⑤✳✳✳⑤ ❤♣s❴s❞r❛♠❴♣❧❧✿♣❧❧⑤❛❢✐❴❝❧❦❴✇r✐t❡❴❝❧❦ ❀ ✶✳✼✸✵ ❀ ✵✳✵✵✵ ❀

❀ ✉✵⑤✳✳✳⑤ ❣❡♥❡r❛❧ ❬✶❪✳ ❣♣❧❧⑦P▲▲❴❖❯❚P❯❚❴❈❖❯◆❚❊❘⑤❞✐✈❝❧❦ ❀ ✷✳✵✻✵ ❀ ✵✳✵✵✵ ❀

✰✲✲✲✰✲✲✲✲✲✲✲✰✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✰

✰✲✲✲✰

❀ ❙❧♦✇ ✶✶✵✵♠❱ ✽✺❈ ▼♦❞❡❧ ❍♦❧❞ ❙✉♠♠❛r② ❀

✰✲✲✲✰✲✲✲✲✲✲✲✰✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✰

❀ ❈❧♦❝❦ ❀ ❙❧❛❝❦ ❀ ❊♥❞ P♦✐♥t ❚◆❙ ❀

✰✲✲✲✰✲✲✲✲✲✲✲✰✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✰

❀ s②st❡♠✿✉✵ ⑤✳✳✳⑤ ❤♣s❴s❞r❛♠❴♣❧❧✿♣❧❧⑤❛❢✐❴❝❧❦❴✇r✐t❡❴❝❧❦ ❀ ✵✳✶✹✸ ❀ ✵✳✵✵✵ ❀

❀ ✉✵⑤✳✳✳⑤ ❣❡♥❡r❛❧ ❬✶❪✳ ❣♣❧❧⑦P▲▲❴❖❯❚P❯❚❴❈❖❯◆❚❊❘⑤❞✐✈❝❧❦ ❀ ✵✳✷✷✸ ❀ ✵✳✵✵✵ ❀

❀ ✉✵⑤✳✳✳⑤ ❣❡♥❡r❛❧ ❬✵❪✳ ❣♣❧❧⑦P▲▲❴❖❯❚P❯❚❴❈❖❯◆❚❊❘⑤❞✐✈❝❧❦ ❀ ✵✳✷✷✼ ❀ ✵✳✵✵✵ ❀

✰✲✲✲✰✲✲✲✲✲✲✲✰✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✰

✰✲✲✲✰

❀ ❙❧♦✇ ✶✶✵✵♠❱ ✽✺❈ ▼♦❞❡❧ ❘❡❝♦✈❡r② ❙✉♠♠❛r② ❀

✰✲✲✲✰✲✲✲✲✲✲✲✰✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✰

❀ ❈❧♦❝❦ ❀ ❙❧❛❝❦ ❀ ❊♥❞ P♦✐♥t ❚◆❙ ❀

✰✲✲✲✰✲✲✲✲✲✲✲✰✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✰

❀ ✉✵⑤✳✳✳⑤ ❣❡♥❡r❛❧ ❬✵❪✳ ❣♣❧❧⑦P▲▲❴❖❯❚P❯❚❴❈❖❯◆❚❊❘⑤❞✐✈❝❧❦ ❀ ✷✳✼✻✼ ❀ ✵✳✵✵✵ ❀

❀ s②st❡♠✿✉✵ ⑤✳✳✳⑤ ❤♣s❴s❞r❛♠❴♣❧❧✿♣❧❧⑤❛❢✐❴❝❧❦❴✇r✐t❡❴❝❧❦ ❀ ✸✳✸✼✺ ❀ ✵✳✵✵✵ ❀

❀ ✉✵⑤✳✳✳⑤ ❣❡♥❡r❛❧ ❬✶❪✳ ❣♣❧❧⑦P▲▲❴❖❯❚P❯❚❴❈❖❯◆❚❊❘⑤❞✐✈❝❧❦ ❀ ✾✳✶✻✶ ❀ ✵✳✵✵✵ ❀

✰✲✲✲✰✲✲✲✲✲✲✲✰✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✰

✰✲✲✲✰

❀ ❙❧♦✇ ✶✶✵✵♠❱ ✽✺❈ ▼♦❞❡❧ ❘❡♠♦✈❛❧ ❙✉♠♠❛r② ❀

✰✲✲✲✰✲✲✲✲✲✲✲✰✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✰

❀ ❈❧♦❝❦ ❀ ❙❧❛❝❦ ❀ ❊♥❞ P♦✐♥t ❚◆❙ ❀

✰✲✲✲✰✲✲✲✲✲✲✲✰✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✰

❀ s②st❡♠✿✉✵ ⑤✳✳✳⑤ ❤♣s❴s❞r❛♠❴♣❧❧✿♣❧❧⑤❛❢✐❴❝❧❦❴✇r✐t❡❴❝❧❦ ❀ ✵✳✹✼✵ ❀ ✵✳✵✵✵ ❀

❀ ✉✵⑤✳✳✳⑤ ❣❡♥❡r❛❧ ❬✵❪✳ ❣♣❧❧⑦P▲▲❴❖❯❚P❯❚❴❈❖❯◆❚❊❘⑤❞✐✈❝❧❦ ❀ ✶✳✵✾✻ ❀ ✵✳✵✵✵ ❀

73

A – Reports

❀ ✉✵⑤✳✳✳⑤ ❣❡♥❡r❛❧ ❬✶❪✳ ❣♣❧❧⑦P▲▲❴❖❯❚P❯❚❴❈❖❯◆❚❊❘⑤❞✐✈❝❧❦ ❀ ✹✳✵✵✵ ❀ ✵✳✵✵✵ ❀

✰✲✲✲✰✲✲✲✲✲✲✲✰✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✰

✰✲✲✲✰

❀ ❙❧♦✇ ✶✶✵✵♠❱ ✽✺❈ ▼♦❞❡❧ ▼✐♥✐♠✉♠ P✉❧s❡ ❲✐❞t❤ ❙✉♠♠❛r② ❀

✰✲✲✲✰✲✲✲✲✲✲✲✰✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✰

❀ ❈❧♦❝❦ ❀ ❙❧❛❝❦ ❀ ❊♥❞ P♦✐♥t ❚◆❙ ❀

✰✲✲✲✰✲✲✲✲✲✲✲✰✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✰

❀ s②st❡♠✿✉✵ ⑤✳✳✳⑤ ♣❧❧❴✇r✐t❡❴❝❧❦❴❞q❴✇r✐t❡❴❝❧❦ ❀ ✵✳✻✵✽ ❀ ✵✳✵✵✵ ❀

❀ s②st❡♠✿✉✵ ⑤✳✳✳⑤ ❤♣s❴s❞r❛♠❴♣❧❧✿♣❧❧⑤❛❢✐❴❝❧❦❴✇r✐t❡❴❝❧❦ ❀ ✵✳✻✷✸ ❀ ✵✳✵✵✵ ❀

❀ ✉✵⑤✳✳✳⑤ ❣❡♥❡r❛❧ ❬✵❪✳ ❣♣❧❧⑦❋❘❆❈❚■❖◆❆▲❴P▲▲⑤✈❝♦♣❤ ❬✵❪ ❀ ✶✳✻✻✻ ❀ ✵✳✵✵✵ ❀

❀ ✉✵⑤✳✳✳⑤ ❣❡♥❡r❛❧ ❬✵❪✳ ❣♣❧❧⑦P▲▲❴❖❯❚P❯❚❴❈❖❯◆❚❊❘⑤❞✐✈❝❧❦ ❀ ✷✳✵✾✶ ❀ ✵✳✵✵✵ ❀

❀ ✉✵⑤✳✳✳⑤ ❣❡♥❡r❛❧ ❬✶❪✳ ❣♣❧❧⑦P▲▲❴❖❯❚P❯❚❴❈❖❯◆❚❊❘⑤❞✐✈❝❧❦ ❀ ✼✳✶✶✶ ❀ ✵✳✵✵✵ ❀

❀ ❈▲❖❈❑❴✺✵ ❀ ✾✳✻✼✵ ❀ ✵✳✵✵✵ ❀

✰✲✲✲✰✲✲✲✲✲✲✲✰✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✰

74

Appendix B

C Code

B.1 Modified SetDistParam Function

Listing B.1: ❙❡t❉✐stP❛r❛♠ function
❱♦✐❞ ❚❈♦♠❘❞❈♦st ✿✿ s❡t❉✐stP❛r❛♠✭ ❉✐stP❛r❛♠✫ r❝❉P ✱ ■♥t ❜✐t❉❡♣t❤ ✱ ❝♦♥st P❡❧✯ ♣✶✱ ❭❭

■♥t ✐❙tr✐❞❡✶ ✱ ❝♦♥st P❡❧✯ ♣✷✱ ■♥t ✐❙tr✐❞❡✷ ✱ ❭❭

■♥t ✐❲✐❞t❤ ✱ ■♥t ✐❍❡✐❣❤t ✱ ❋P●❆P❛r❛♠✯ r❝❋P ✱ ❭❭

❇♦♦❧ ❜❍❛❞❛♠❛r❞ ✮

④

r❝❉P✳♣❖r❣ ❂ ♣✶❀

r❝❉P✳♣❈✉r ❂ ♣✷❀

r❝❉P✳✐❙tr✐❞❡❖r❣ ❂ ✐❙tr✐❞❡✶❀

r❝❉P✳✐❙tr✐❞❡❈✉r ❂ ✐❙tr✐❞❡✷❀

r❝❉P✳✐❈♦❧s ❂ ✐❲✐❞t❤❀

r❝❉P✳✐❘♦✇s ❂ ✐❍❡✐❣❤t❀

r❝❉P✳✐❙t❡♣ ❂ ✶❀

r❝❉P✳✐❙✉❜❙❤✐❢t ❂ ✵❀

r❝❉P✳❜✐t❉❡♣t❤ ❂ ❜✐t❉❡♣t❤❀

r❝❉P✳❉✐st❋✉♥❝ ❂ ♠❴❛❢♣❉✐st♦rt❋✉♥❝❬ ✭ ❜❍❛❞❛♠❛r❞ ❄ ❉❋❴❍❆❉❙ ✿ ❉❋❴❙❆❉❙ ✮ ✰ ❭❭

❣❴❛✉❝❈♦♥✈❡rt❚♦❇✐t❬ ✐❲✐❞t❤ ❪ ✰ ✶ ❪❀

r❝❉P✳♠❴♠❛①✐♠✉♠❉✐st♦rt✐♦♥❋♦r❊❛r❧②❊①✐t ❂ st❞✿✿ ♥✉♠❡r✐❝❴❧✐♠✐ts ❁❉✐st♦rt✐♦♥ ❃✿✿♠❛①✭✮❀

r❝❉P✳✉s❡❋P●❆ ❂ ❢❛❧s❡❀

✐❢ ✭ ✭❜✐t❉❡♣t❤ ❂❂ ✽✮ ✫✫ ✭❜❍❛❞❛♠❛r❞ ✦❂ ✵✮ ✫✫ ✭✭ ✭✭ ✐❍❡✐❣❤t ✪ ✽✮ ❂❂ ✵ ✮ ✫✫ ❭❭

✭✭ ✐❲✐❞t❤ ✪ ✽✮ ❂❂ ✵ ✮✮ ✫✫ ✭✭ ✐❍❡✐❣❤t ❁ ✻✺✮ ✫✫ ✭✐❲✐❞t❤ ❁ ✻✺✮✮✮ ✮ ④

r❝❉P✳✉s❡❋P●❆ ❂ tr✉❡❀

❱♦✐❞ ✯❤✷♣❴❧✇❴❜❛s❡❴❝tr❧❴❛❞❞r ❂ r❝❋P ✲❃♠❴❤✷♣❴❧✇❴❜❛s❡❴❝tr❧❴❛❞❞r❀

❯■◆❚❴❙❖❈✯ ♦♥❴❝❤✐♣❴❘❆▼❴❛❞❞r❴❘❊❋ ❂ r❝❋P ✲❃♠❴♦♥❴❝❤✐♣❴❘❆▼❴❛❞❞r❴❘❊❋❀

■♥t tr❛♥s❢❡r❴s✐③❡ ❂ ✐❍❡✐❣❤t ✯✐❲✐❞t❤❀

✴✴ ❈♦♥❢✐❣✉r❛t✐♦♥ ♦❢ t❤❡ ❋P●❆ ♣❡r✐♣❤❡r❛❧

✴✴ ✲ ✵①✵✵ ✲✲✲❃ ✽①✽

✴✴ ✲ ✵①✵✶ ✲✲✲❃ ✶✻①✶✻ ♦r ✸✷①✽

✴✴ ✲ ✵①✵✷ ✲✲✲❃ ✸✷①✸✷ ♦r ✻✹①✶✻

✴✴ ✲ ✵①✵✸ ✲✲✲❃ ✻✹①✻✹

✴✴ ✲ ✵①✵✹ ✲✲✲❃ ✶✻①✽

✴✴ ✲ ✵①✵✺ ✲✲✲❃ ✸✷①✶✻

✴✴ ✲ ✵①✵✻ ✲✲✲❃ ✸✷①✷✹

✴✴ ✲ ✵①✵✼ ✲✲✲❃ ✻✹①✸✷

✴✴ ✲ ✵①✵✽ ✲✲✲❃ ✻✹①✹✽

75

B – C Code

s✇✐t❝❤ ✭✐❲✐❞t❤✮ ④

❝❛s❡ ✽✿

s✇✐t❝❤ ✭✐❍❡✐❣❤t✮ ④

❝❛s❡ ✽✿

✯✭✭ ✉✐♥t✽❴t ✯✮ ❤✷♣❴❧✇❴❜❛s❡❴❝tr❧❴❛❞❞r ✮❂✵①✵✵❀

❜r❡❛❦❀

❝❛s❡ ✶✻✿

✯✭✭ ✉✐♥t✽❴t ✯✮ ❤✷♣❴❧✇❴❜❛s❡❴❝tr❧❴❛❞❞r ✮❂✵①✵✹❀

❜r❡❛❦❀

❝❛s❡ ✸✷✿

✯✭✭ ✉✐♥t✽❴t ✯✮ ❤✷♣❴❧✇❴❜❛s❡❴❝tr❧❴❛❞❞r ✮❂✵①✵✶❀

❜r❡❛❦❀

⑥

❜r❡❛❦❀

❝❛s❡ ✶✻✿

s✇✐t❝❤ ✭✐❍❡✐❣❤t✮ ④

❝❛s❡ ✽✿

✯✭✭ ✉✐♥t✽❴t ✯✮ ❤✷♣❴❧✇❴❜❛s❡❴❝tr❧❴❛❞❞r ✮❂✵①✵✹❀

❜r❡❛❦❀

❝❛s❡ ✶✻✿

✯✭✭ ✉✐♥t✽❴t ✯✮ ❤✷♣❴❧✇❴❜❛s❡❴❝tr❧❴❛❞❞r ✮❂✵①✵✶❀

❜r❡❛❦❀

❝❛s❡ ✸✷✿

✯✭✭ ✉✐♥t✽❴t ✯✮ ❤✷♣❴❧✇❴❜❛s❡❴❝tr❧❴❛❞❞r ✮❂✵①✵✺❀

❜r❡❛❦❀

❝❛s❡ ✻✹✿

✯✭✭ ✉✐♥t✽❴t ✯✮ ❤✷♣❴❧✇❴❜❛s❡❴❝tr❧❴❛❞❞r ✮❂✵①✵✷❀

❜r❡❛❦❀

⑥

❜r❡❛❦❀

❝❛s❡ ✸✷✿

s✇✐t❝❤ ✭✐❍❡✐❣❤t✮ ④

❝❛s❡ ✽✿

✯✭✭ ✉✐♥t✽❴t ✯✮ ❤✷♣❴❧✇❴❜❛s❡❴❝tr❧❴❛❞❞r ✮❂✵①✵✶❀

❜r❡❛❦❀

❝❛s❡ ✶✻✿

✯✭✭ ✉✐♥t✽❴t ✯✮ ❤✷♣❴❧✇❴❜❛s❡❴❝tr❧❴❛❞❞r ✮❂✵①✵✺❀

❜r❡❛❦❀

❝❛s❡ ✷✹✿

✯✭✭ ✉✐♥t✽❴t ✯✮ ❤✷♣❴❧✇❴❜❛s❡❴❝tr❧❴❛❞❞r ✮❂✵①✵✻❀

❜r❡❛❦❀

❝❛s❡ ✸✷✿

✯✭✭ ✉✐♥t✽❴t ✯✮ ❤✷♣❴❧✇❴❜❛s❡❴❝tr❧❴❛❞❞r ✮❂✵①✵✷❀

❜r❡❛❦❀

❝❛s❡ ✻✹✿

✯✭✭ ✉✐♥t✽❴t ✯✮ ❤✷♣❴❧✇❴❜❛s❡❴❝tr❧❴❛❞❞r ✮❂✵①✵✼❀

❜r❡❛❦❀

⑥

❜r❡❛❦❀

❝❛s❡ ✻✹✿

s✇✐t❝❤ ✭✐❍❡✐❣❤t✮ ④

❝❛s❡ ✶✻✿

✯✭✭ ✉✐♥t✽❴t ✯✮ ❤✷♣❴❧✇❴❜❛s❡❴❝tr❧❴❛❞❞r ✮❂✵①✵✷❀

❜r❡❛❦❀

❝❛s❡ ✸✷✿

✯✭✭ ✉✐♥t✽❴t ✯✮ ❤✷♣❴❧✇❴❜❛s❡❴❝tr❧❴❛❞❞r ✮❂✵①✵✼❀

❜r❡❛❦❀

❝❛s❡ ✹✽✿

✯✭✭ ✉✐♥t✽❴t ✯✮ ❤✷♣❴❧✇❴❜❛s❡❴❝tr❧❴❛❞❞r ✮❂✵①✵✽❀

❜r❡❛❦❀

❝❛s❡ ✻✹✿

76

B.2 – xGetHAD

✯✭✭ ✉✐♥t✽❴t ✯✮ ❤✷♣❴❧✇❴❜❛s❡❴❝tr❧❴❛❞❞r ✮❂✵①✵✸❀

❜r❡❛❦❀

❜r❡❛❦❀

⑥

❜r❡❛❦❀

❞❡❢❛✉❧t✿

✯✭✭ ✉✐♥t✽❴t ✯✮ ❤✷♣❴❧✇❴❜❛s❡❴❝tr❧❴❛❞❞r ✮❂✵①✵✵❀

❜r❡❛❦❀

⑥

❝❤❛r ❜✉❢❢❡r❬tr❛♥s❢❡r❴s✐③❡ ❪❀

✴✴ ❘❡✲❖r❞❡r✐♥❣ ♦❢ t❤❡ ❇❧♦❝❦

✐♥t ①✱ ②✱ ✐✱ ❥✱ ❦✱ ❤✱ ✈✱ ♥❀

✐♥t ✐❖❢❢s❡t❖r❣ ❂ ✐❙tr✐❞❡✶ ❁❁✸❀

✐❂✵❀

❥❂✵❀

❤❂✵❀

✈❂✵❀

♥❂✵❀

✴✴ ✲✲✲✲✲✲✲✲✲✲✲✲

❢♦r ✭ ②❂✵❀ ②❁✐❍❡✐❣❤t❀ ②✰❂✽ ✮ ④

❢♦r ✭ ①❂✵❀ ①❁✐❲✐❞t❤❀ ①✰❂✽ ✮ ④

✈❂①✰❤❀

❢♦r ✭ ❦❂✵❀ ❦❁✽❀ ❦✰✰ ✮ ④

♥ ❂ ✈ ✰ ❥❀

❜✉❢❢❡r❬✐❪ ❂ ♣✶❬♥❪❀

❜✉❢❢❡r❬✐✰✶❪ ❂ ♣✶❬♥✰✶❪❀

❜✉❢❢❡r❬✐✰✷❪ ❂ ♣✶❬♥✰✷❪❀

❜✉❢❢❡r❬✐✰✸❪ ❂ ♣✶❬♥✰✸❪❀

❜✉❢❢❡r❬✐✰✹❪ ❂ ♣✶❬♥✰✹❪❀

❜✉❢❢❡r❬✐✰✺❪ ❂ ♣✶❬♥✰✺❪❀

❜✉❢❢❡r❬✐✰✻❪ ❂ ♣✶❬♥✰✻❪❀

❜✉❢❢❡r❬✐✰✼❪ ❂ ♣✶❬♥✰✼❪❀

✐ ✰❂ ✽❀

❥ ✰❂ ✐❙tr✐❞❡✶❀

⑥

❥❂✵❀

⑥

❤ ✰❂ ✐❖❢❢s❡t❖r❣❀

⑥

✴✴ ✲✲✲✲✲✲✲✲✲

✴✴ ❙❡♥❞✐♥❣ t♦ t❤❡ ❋P●❆

♠❡♠❝♣② ✭✭✈♦✐❞✯✮ ♦♥❴❝❤✐♣❴❘❆▼❴❛❞❞r❴❘❊❋ ✱ ✫❜✉❢❢❡r ✱ tr❛♥s❢❡r❴s✐③❡ ✮❀

r❝❉P✳♠❴❋P●❆P❛r❛♠ ❂ r❝❋P❀

⑥

⑥

B.2 xGetHAD

Listing B.2: ①●❡t❍❆❉ function
❉✐st♦rt✐♦♥ ❚❈♦♠❘❞❈♦st ✿✿ ①●❡t❍❆❉s✭ ❉✐stP❛r❛♠✯ ♣❝❉tP❛r❛♠ ✮

④

✐❢ ✭ ♣❝❉tP❛r❛♠ ✲❃❜❆♣♣❧②❲❡✐❣❤t ✮

77

B – C Code

④

r❡t✉r♥ ❚❈♦♠❘❞❈♦st❲❡✐❣❤tPr❡❞✐❝t✐♦♥ ✿✿ ①●❡t❍❆❉s✇✭ ♣❝❉tP❛r❛♠ ✮❀

⑥

❝♦♥st P❡❧✯ ♣✐❖r❣ ❂ ♣❝❉tP❛r❛♠ ✲❃♣❖r❣❀

❝♦♥st P❡❧✯ ♣✐❈✉r ❂ ♣❝❉tP❛r❛♠ ✲❃♣❈✉r❀

❝♦♥st ■♥t ✐❘♦✇s ❂ ♣❝❉tP❛r❛♠ ✲❃✐❘♦✇s❀

❝♦♥st ■♥t ✐❈♦❧s ❂ ♣❝❉tP❛r❛♠ ✲❃✐❈♦❧s❀

❝♦♥st ■♥t ✐❙tr✐❞❡❈✉r ❂ ♣❝❉tP❛r❛♠ ✲❃✐❙tr✐❞❡❈✉r❀

❝♦♥st ■♥t ✐❙tr✐❞❡❖r❣ ❂ ♣❝❉tP❛r❛♠ ✲❃✐❙tr✐❞❡❖r❣❀

❝♦♥st ■♥t ✐❙t❡♣ ❂ ♣❝❉tP❛r❛♠ ✲❃✐❙t❡♣❀

■♥t ①✱ ②❀

❉✐st♦rt✐♦♥ ✉✐❙✉♠ ❂ ✵❀

✐❢✭ ✭ ✐❘♦✇s ✪ ✽ ❂❂ ✵✮ ✫✫ ✭✐❈♦❧s ✪ ✽ ❂❂ ✵✮ ✮

④

■♥t ✐❖❢❢s❡t❖r❣ ❂ ✐❙tr✐❞❡❖r❣ ❁❁✸❀

■♥t ✐❖❢❢s❡t❈✉r ❂ ✐❙tr✐❞❡❈✉r ❁❁✸❀

❢♦r ✭ ②❂✵❀ ②❁✐❘♦✇s❀ ②✰❂ ✽ ✮

④

❢♦r ✭ ①❂✵❀ ①❁✐❈♦❧s❀ ①✰❂ ✽ ✮

④

✉✐❙✉♠ ✰❂ ①❈❛❧❝❍❆❉s✽①✽✭ ✫♣✐❖r❣❬①❪✱ ✫♣✐❈✉r❬①✯✐❙t❡♣❪✱ ❭❭

✐❙tr✐❞❡❖r❣ ✱ ✐❙tr✐❞❡❈✉r ✱ ✐❙t❡♣ ✮❀

⑥

♣✐❖r❣ ✰❂ ✐❖❢❢s❡t❖r❣❀

♣✐❈✉r ✰❂ ✐❖❢❢s❡t❈✉r❀

⑥

⑥

❡❧s❡ ✐❢✭ ✭ ✐❘♦✇s ✪ ✹ ❂❂ ✵✮ ✫✫ ✭✐❈♦❧s ✪ ✹ ❂❂ ✵✮ ✮

④

■♥t ✐❖❢❢s❡t❖r❣ ❂ ✐❙tr✐❞❡❖r❣ ❁❁✷❀

■♥t ✐❖❢❢s❡t❈✉r ❂ ✐❙tr✐❞❡❈✉r ❁❁✷❀

❢♦r ✭ ②❂✵❀ ②❁✐❘♦✇s❀ ②✰❂ ✹ ✮

④

❢♦r ✭ ①❂✵❀ ①❁✐❈♦❧s❀ ①✰❂ ✹ ✮

④

✉✐❙✉♠ ✰❂ ①❈❛❧❝❍❆❉s✹①✹✭ ✫♣✐❖r❣❬①❪✱ ✫♣✐❈✉r❬①✯✐❙t❡♣❪✱ ❭❭

✐❙tr✐❞❡❖r❣ ✱ ✐❙tr✐❞❡❈✉r ✱ ✐❙t❡♣ ✮❀

⑥

♣✐❖r❣ ✰❂ ✐❖❢❢s❡t❖r❣❀

♣✐❈✉r ✰❂ ✐❖❢❢s❡t❈✉r❀

⑥

⑥

❡❧s❡ ✐❢✭ ✭ ✐❘♦✇s ✪ ✷ ❂❂ ✵✮ ✫✫ ✭✐❈♦❧s ✪ ✷ ❂❂ ✵✮ ✮

④

■♥t ✐❖❢❢s❡t❖r❣ ❂ ✐❙tr✐❞❡❖r❣ ❁❁✶❀

■♥t ✐❖❢❢s❡t❈✉r ❂ ✐❙tr✐❞❡❈✉r ❁❁✶❀

❢♦r ✭ ②❂✵❀ ②❁✐❘♦✇s❀ ②✰❂✷ ✮

④

❢♦r ✭ ①❂✵❀ ①❁✐❈♦❧s❀ ①✰❂✷ ✮

④

✉✐❙✉♠ ✰❂ ①❈❛❧❝❍❆❉s✷①✷✭ ✫♣✐❖r❣❬①❪✱ ✫♣✐❈✉r❬①✯✐❙t❡♣❪✱ ❭❭

✐❙tr✐❞❡❖r❣ ✱ ✐❙tr✐❞❡❈✉r ✱ ✐❙t❡♣ ✮❀

⑥

♣✐❖r❣ ✰❂ ✐❖❢❢s❡t❖r❣❀

♣✐❈✉r ✰❂ ✐❖❢❢s❡t❈✉r❀

⑥

⑥

❡❧s❡

④

❛ss❡rt✭❢❛❧s❡✮❀

⑥

r❡t✉r♥ ✭ ✉✐❙✉♠ ❃❃ ❉❴P❴❆✭♣❝❉tP❛r❛♠ ✲❃❜✐t❉❡♣t❤ ✲✽✮ ✮❀

⑥

78

B.3 – Modified xGetHAD Function

B.3 Modified xGetHAD Function

Listing B.3: ①●❡t❍❆❉ modified function
❉✐st♦rt✐♦♥ ❚❈♦♠❘❞❈♦st ✿✿ ①●❡t❍❆❉s✭ ❉✐stP❛r❛♠✯ ♣❝❉tP❛r❛♠ ✮

④

✐❢ ✭ ♣❝❉tP❛r❛♠ ✲❃❜❆♣♣❧②❲❡✐❣❤t ✮

④

r❡t✉r♥ ❚❈♦♠❘❞❈♦st❲❡✐❣❤tPr❡❞✐❝t✐♦♥ ✿✿ ①●❡t❍❆❉s✇✭ ♣❝❉tP❛r❛♠ ✮❀

⑥

❝♦♥st P❡❧✯ ♣✐❖r❣ ❂ ♣❝❉tP❛r❛♠ ✲❃♣❖r❣❀

❝♦♥st P❡❧✯ ♣✐❈✉r ❂ ♣❝❉tP❛r❛♠ ✲❃♣❈✉r❀

❝♦♥st ■♥t ✐❘♦✇s ❂ ♣❝❉tP❛r❛♠ ✲❃✐❘♦✇s❀

❝♦♥st ■♥t ✐❈♦❧s ❂ ♣❝❉tP❛r❛♠ ✲❃✐❈♦❧s❀

❝♦♥st ■♥t ✐❙tr✐❞❡❈✉r ❂ ♣❝❉tP❛r❛♠ ✲❃✐❙tr✐❞❡❈✉r❀

❝♦♥st ■♥t ✐❙tr✐❞❡❖r❣ ❂ ♣❝❉tP❛r❛♠ ✲❃✐❙tr✐❞❡❖r❣❀

❝♦♥st ■♥t ✐❙t❡♣ ❂ ♣❝❉tP❛r❛♠ ✲❃✐❙t❡♣❀

❝♦♥st ❇♦♦❧ ✉s❡❋P●❆ ❂ ♣❝❉tP❛r❛♠ ✲❃✉s❡❋P●❆❀

■♥t ①✱ ②❀

❉✐st♦rt✐♦♥ ✉✐❙✉♠ ❂ ✵❀

✐❢ ✭✉s❡❋P●❆✮ ④

❝♦♥st ❋P●❆P❛r❛♠✯ ♣❝❋P●❆P❛r❛♠ ❂ ♣❝❉tP❛r❛♠ ✲❃♠❴❋P●❆P❛r❛♠❀

✴✴❝♦♥st ■♥t tr❛♥s❢❡r❴s✐③❡ ❂ ♣❝❋P●❆P❛r❛♠ ✲❃♠❴tr❛♥s❢❡r❴s✐③❡❀

❝♦♥st ■♥t tr❛♥s❢❡r❴s✐③❡ ❂ ✐❘♦✇s ✯ ✐❈♦❧s❀

❝♦♥st ❱♦✐❞✯ ♦♥❴❝❤✐♣❴❘❆▼❴❛❞❞r❴❈❯❘ ❂

♣❝❋P●❆P❛r❛♠ ✲❃♠❴♦♥❴❝❤✐♣❴❘❆▼❴❛❞❞r❴❈❯❘❀

❝♦♥st ❱♦✐❞✯ ❤✷♣❴❧✇❴❜❛s❡❴r❡s❴❛❞❞r ❂

♣❝❋P●❆P❛r❛♠ ✲❃♠❴❤✷♣❴❧✇❴❜❛s❡❴r❡s❴❛❞❞r❀

❝❤❛r ❜✉❢❢❡r❬tr❛♥s❢❡r❴s✐③❡ ❪❀

✴✴❘❡✲❖r❞❡r ♦❢ t❤❡ ❇❧♦❝❦

✐♥t ❛✱ ❜✱ ✐✱ ❥✱ ❦✱ ❤✱ ✈✱ ♥❀

✐♥t ✐❖❢❢s❡t❈✉r ❂ ✐❙tr✐❞❡❈✉r ❁❁✸❀

✐❂✵❀

❥❂✵❀

❤❂✵❀

✈❂✵❀

❢♦r ✭ ❜❂✵❀ ❜❁✐❘♦✇s❀ ❜✰❂✽ ✮④

❢♦r ✭ ❛❂✵❀ ❛❁✐❈♦❧s❀ ❛✰❂✽ ✮ ④

✈❂❛✰❤❀

❢♦r ✭ ❦❂✵❀ ❦❁✽❀ ❦✰✰ ✮ ④

♥ ❂ ✈ ✰ ❥❀

❜✉❢❢❡r❬✐❪ ❂ ♣✐❈✉r❬♥❪❀

❜✉❢❢❡r❬✐✰✶❪ ❂ ♣✐❈✉r❬♥✰✶❪❀

❜✉❢❢❡r❬✐✰✷❪ ❂ ♣✐❈✉r❬♥✰✷❪❀

❜✉❢❢❡r❬✐✰✸❪ ❂ ♣✐❈✉r❬♥✰✸❪❀

❜✉❢❢❡r❬✐✰✹❪ ❂ ♣✐❈✉r❬♥✰✹❪❀

❜✉❢❢❡r❬✐✰✺❪ ❂ ♣✐❈✉r❬♥✰✺❪❀

❜✉❢❢❡r❬✐✰✻❪ ❂ ♣✐❈✉r❬♥✰✻❪❀

❜✉❢❢❡r❬✐✰✼❪ ❂ ♣✐❈✉r❬♥✰✼❪❀

✐ ✰❂ ✽❀

❥ ✰❂ ✐❙tr✐❞❡❈✉r❀

⑥

❥❂✵❀

⑥

79

B – C Code

❤ ✰❂ ✐❖❢❢s❡t❈✉r❀

⑥

✴✴ ✲✲✲✲✲✲✲✲✲

✴✴ ❙❡♥❞ ❉❛t❛ ♦❢ ❈✉rr❡♥t ❇❧♦❝❦ t♦ ❋P●❆

♠❡♠❝♣② ✭✭✈♦✐❞✯✮ ♦♥❴❝❤✐♣❴❘❆▼❴❛❞❞r❴❈❯❘ ✱ ✫❜✉❢❢❡r ✱ tr❛♥s❢❡r❴s✐③❡ ✮❀

✴✴ ❘❡tr✐❡✈❡ t❤❡ ❘❡s✉❧t

✉✐❙✉♠ ❂ ✭❉✐st♦rt✐♦♥ ✮✭✯✭✭ ✉✐♥t✸✷❴t ✯✮ ❤✷♣❴❧✇❴❜❛s❡❴r❡s❴❛❞❞r ✮✮❀

⑥

❡❧s❡ ④

✐❢✭ ✭ ✐❘♦✇s ✪ ✽ ❂❂ ✵✮ ✫✫ ✭✐❈♦❧s ✪ ✽ ❂❂ ✵✮ ✮

④

■♥t ✐❖❢❢s❡t❖r❣ ❂ ✐❙tr✐❞❡❖r❣ ❁❁✸❀

■♥t ✐❖❢❢s❡t❈✉r ❂ ✐❙tr✐❞❡❈✉r ❁❁✸❀

❢♦r ✭ ②❂✵❀ ②❁✐❘♦✇s❀ ②✰❂ ✽ ✮

④

❢♦r ✭ ①❂✵❀ ①❁✐❈♦❧s❀ ①✰❂ ✽ ✮

④

✉✐❙✉♠ ✰❂ ①❈❛❧❝❍❆❉s✽①✽✭ ✫♣✐❖r❣❬①❪✱ ✫♣✐❈✉r❬①✯✐❙t❡♣❪✱ ❭❭

✐❙tr✐❞❡❖r❣ ✱ ✐❙tr✐❞❡❈✉r ✱ ✐❙t❡♣ ✮❀

⑥

♣✐❖r❣ ✰❂ ✐❖❢❢s❡t❖r❣❀

♣✐❈✉r ✰❂ ✐❖❢❢s❡t❈✉r❀

⑥

⑥

❡❧s❡ ✐❢✭ ✭ ✐❘♦✇s ✪ ✹ ❂❂ ✵✮ ✫✫ ✭✐❈♦❧s ✪ ✹ ❂❂ ✵✮ ✮

④

■♥t ✐❖❢❢s❡t❖r❣ ❂ ✐❙tr✐❞❡❖r❣ ❁❁✷❀

■♥t ✐❖❢❢s❡t❈✉r ❂ ✐❙tr✐❞❡❈✉r ❁❁✷❀

❢♦r ✭ ②❂✵❀ ②❁✐❘♦✇s❀ ②✰❂ ✹ ✮

④

❢♦r ✭ ①❂✵❀ ①❁✐❈♦❧s❀ ①✰❂ ✹ ✮

④

✉✐❙✉♠ ✰❂ ①❈❛❧❝❍❆❉s✹①✹✭ ✫♣✐❖r❣❬①❪✱ ✫♣✐❈✉r❬①✯✐❙t❡♣❪✱ ❭❭

✐❙tr✐❞❡❖r❣ ✱ ✐❙tr✐❞❡❈✉r ✱ ✐❙t❡♣ ✮❀

⑥

♣✐❖r❣ ✰❂ ✐❖❢❢s❡t❖r❣❀

♣✐❈✉r ✰❂ ✐❖❢❢s❡t❈✉r❀

⑥

⑥

❡❧s❡ ✐❢✭ ✭ ✐❘♦✇s ✪ ✷ ❂❂ ✵✮ ✫✫ ✭✐❈♦❧s ✪ ✷ ❂❂ ✵✮ ✮

④

■♥t ✐❖❢❢s❡t❖r❣ ❂ ✐❙tr✐❞❡❖r❣ ❁❁✶❀

■♥t ✐❖❢❢s❡t❈✉r ❂ ✐❙tr✐❞❡❈✉r ❁❁✶❀

❢♦r ✭ ②❂✵❀ ②❁✐❘♦✇s❀ ②✰❂✷ ✮

④

❢♦r ✭ ①❂✵❀ ①❁✐❈♦❧s❀ ①✰❂✷ ✮

④

✉✐❙✉♠ ✰❂ ①❈❛❧❝❍❆❉s✷①✷✭ ✫♣✐❖r❣❬①❪✱ ✫♣✐❈✉r❬①✯✐❙t❡♣❪✱ ❭❭

✐❙tr✐❞❡❖r❣ ✱ ✐❙tr✐❞❡❈✉r ✱ ✐❙t❡♣ ✮❀

⑥

♣✐❖r❣ ✰❂ ✐❖❢❢s❡t❖r❣❀

♣✐❈✉r ✰❂ ✐❖❢❢s❡t❈✉r❀

⑥

⑥

❡❧s❡

④

❛ss❡rt✭❢❛❧s❡✮❀

⑥

80

B.3 – Modified xGetHAD Function

⑥

r❡t✉r♥ ✭ ✉✐❙✉♠ ❃❃ ❉❴P❴❆✭♣❝❉tP❛r❛♠ ✲❃❜✐t❉❡♣t❤ ✲✽✮ ✮❀

81

82

Bibliography

[1] R. F. M. Jose Farina Rodriguez, Juan Jose Rodriguez Andina, “Uvigo DTE FPSoC,” https:
//github.com/UviDTE-FPSoC, 2017.

[2] M. Weber, M. Putic, H. Zhang, J. Lach, and J. Huang, “Balancing adder for error toler-
ant applications,” in 2013 IEEE International Symposium on Circuits and Systems (IS-
CAS2013), May 2013, pp. 3038–3041.

[3] K. Sayood, Introduction to Data Compression, Fourth Edition, 4th ed. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2012.

[4] J. R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand, “Comparison of the
Coding Efficiency of Video Coding Standards - Including High Efficiency Video Coding
(HEVC),” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12,
pp. 1669–1684, Dec 2012.

[5] V. Sze, M. Budagavi, and G. J. Sullivan, High Efficiency Video Coding (HEVC): Algorithms
and Architectures. Springer Publishing Company, Incorporated, 2014.

[6] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the High Efficiency Video
Coding (HEVC) Standard,” IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 22, no. 12, pp. 1649–1668, Dec 2012.

[7] J. Lainema, F. Bossen, W. J. Han, J. Min, and K. Ugur, “Intra Coding of the HEVC Standard,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1792–
1801, Dec 2012.

[8] J. C. T. on Video Coding (JCT-VC), “HEVC Test Model (HM) Version 16.15.” http://hevc.
hhi.fraunhofer.de/.

[9] Joint Collaborative Team on Video Coding (JCT-VC), “HEVC Test Model (HM) Version
16.15,” ftp://ftp.tnt.uni-hannover.de/testsequences/.

[10] M. Shafique and J. Henkel, “Low power design of the next-generation high efficiency
video coding,” in 2014 19th Asia and South Pacific Design Automation Conference (ASP-
DAC), Jan 2014, pp. 274–281.

[11] F. Bossen, B. Bross, K. Suhring, and D. Flynn, “Hevc complexity and implementation anal-
ysis,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp.
1685–1696, Dec 2012.

[12] E. Silveira, C. Diniz, M. B. Fonseca, and E. Costa, “SATD hardware architecture based on
8×8 Hadamard Transform for HEVC encoder,” in 2015 IEEE International Conference on
Electronics, Circuits, and Systems (ICECS), Dec 2015, pp. 576–579.

[13] F. Saab, I. H. Elhajj, A. Kayssi, and A. Chehab, “Profiling of HEVC encoder,” Electronics
Letters, vol. 50, no. 15, pp. 1061–1063, July 2014.

83

Bibliography

[14] G. Correa, P. Assuncao, L. Agostini, and L. A. da Silva Cruz, “Performance and Computa-
tional Complexity Assessment of High-Efficiency Video Encoders,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1899–1909, Dec 2012.

[15] Intel Altera, “Using Linux on the DE1-SoC,” https://people.ece.cornell.edu/land/
courses/ece5760/DE1_SOC/DE1-SoC-UP-Linux/Linux.pdf.

[16] Intel FPGA, “Documentation: Manuals,” https://www.altera.com/support/literature/
lit-manual.html.

[17] Altera Wiki, “Intro to Altera SoC Devices for HW Developers Workshop - Configure the
HPS — Altera Wiki,” http://www.alterawiki.com/wiki/Intro_to_Altera_SoC_Devices_for_
HW_Developers_Workshop_-_Configure_the_HPS, 2014, Accessed 1-December-2015.

[18] H. Jiang, J. Han, and F. Lombardi, “A Comparative Review and Evaluation of Approxi-
mate Adders,” in Proceedings of the 25th Edition on Great Lakes Symposium on VLSI, ser.
GLSVLSI ’15. New York, NY, USA: ACM, 2015, pp. 343–348.

[19] N. Zhu, W. L. Goh, and K. S. Yeo, “An enhanced low-power high-speed Adder For Error-
Tolerant application,” in Proceedings of the 2009 12th International Symposium on Inte-
grated Circuits, Dec 2009, pp. 69–72.

[20] G. Bjontegaard, “Calculation of average PSNR differences between RD-Curves,” 01 2001.

84

		Politecnico di Torino
	2018-07-16T07:35:23+0000
	Politecnico di Torino
	Maurizio Martina
	S

