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Abstract

We study tree automaton here, and mainly on in�nite trees. In the
�rst part of thesis,we will introduce how there is a generalization
from words to trees and what is the de�nition of in�nite tree. Then
we introduce the tree automata working on �nite and in�nite trees.
Büchi automata and Muller automata classically corresponds to
the acceptance mode of in�nite trees. We will introduce them and
their recognizability and later the theoretical importance will be
introduced together. Next a game used to simulate the possible runs
of a tree automaton will be introduced, which can prove Rabin's
complementation theorem. In the next part, we shall study the trees
from the topological aspects. Subsequently, the relations between
logics and tree automata will be showed. Last but not least, the
practical uses of the tree automaton will be showed.

4



1 Introduction

In this thesis, trees de�ned here serve as functions who map from
words to sets of labels. So before we introduce the in�nite trees and their
automata, we need to have a general mind of how words are de�ned.

1.1 Finite and in�nite words

At the very �rst, we need to de�ne the words and review 4 basic
operations of the sets.

A �nite sequence of elements of a set A, which can also be called
alphabet here, is called a �nite word on A. For example, if A is fa0;a1; :::;
ang, a0a1 for sequence (a0; a1) and a0a1:::an for sequence (a0; a1; :::; an)
are both �nite words on A. Additionally, it owns the empty word, called
neutral element, denoted by " for the empty sequence.

4 basic operations on the sets are as following:

(1) the set union [:

X [Y = fuju2X or u2Y g

(2) the set concatenation product �:

X �Y = fxy jx2X and y 2Y g

(3) the star �:

X�= fx1:::xnjn> 0 and x1; :::; xn2Xg

which means �nite iteration.

(4) the omega !:

X!= fx0x1::: j for all i> 0; xi2 (X exclusivewith f1g or f"g )g

where X,Y is a set.
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Suppose we have two words here, x=a0a1:::ap and y=b0b1:::bq, then
the word xy = a0a1:::apb0b1bq. We can see the operation here is associ-
ative. Based on the set theory, we denote by A+ the set of nonempty
words, which is called the free semigroup on A since its operation is
associative and A� the set of empty or nonempty words, which is called
the free monoid on A since it has not only the associative operation but
also a neutral element. We can see that A�=A+[f1g and A+=AA� .

Similarly, we call an in�nite sequence of elements of A the in�nite
word on A, which we denote by the following:

u= a0a1:::an:::

where u is an in�nite word and ai is a letter. We denote the set of in�nite
words on A by A!.

And we let

A1=A�[A!

which is an overall set.

The elements of a subset of A� sometimes can't be compared for an
order, then the subset is said to be pre�x-free. For example, if A=fa; bg,
the set fanbjn> 0g is pre�x-free. On the other hand, a subset of A� is
called pre�x-closed if it contains the pre�xes of all of its elements. In
particular, if X is a subset of A+ or of A!, the set Pref(X), which stands
for all pre�xes of the elements of X, is pre�x-closed.

Another important concept is for the de�nition of rational sets of
words. The operations [; �;� and + introduced above are all rational
operations. We de�ne that the sets are rational sets if they are closed
under �nite union, �nite product and �nite Kleene star operations. We
can immediately see that all �nite subsets of A� are rational sets. If u
is a �nite word, the singleton fug apparently belongs to the class of
rational sets. Furthermore, if u= a1:::an; fug= fa1g:::fang.

Let's extend to the de�nition of !-rational sets. Just adding one
property, we de�ne that the sets are !-rational if they are closed under
�nite union, �nite product, the star and the ! operations. We can derive
a theorem:
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Theorem 1. A subset of A! is !-rational if and only if it is a �nite
union of sets of the form XY ! where X and Y are rational subsets of A�.

Proof. We denote by R the class of w-rational subsets of A!.

From the de�nition of !-rational sets and rational subsets, it's
apparent that it's as the form XY !.

For the converse direction, we can �rst see what properties a
rational subset X of A1 has. Then we construct a class of subsets who
has these properties and if it also satis�es the de�nition of the class
of !-rational subsets of A1. Then the theorem proved.

X has the following properties:

i. X \A� is a rational subset of A�.

ii. X \A!2R and when X �A!, X 2R.

Let Q be the class of subsets of A1 satisfying the properties above
and we now check if Q has the essential properties of the class of !-
rational subsets.

a) If u2A, fug2Q and ?2Q.

b) If X 2Q andY 2Q, X [Y 2Q. Q is closed under �nite union.

c) If X 2 Q and Y 2 Q, X � Y 2 Q. Actually, we can prove it in
this way. Since X �A� and Y �A1, X �Y \A�=X � (Y \A�) is
rational for the �rst property of Q and X �Y \A!=X � (Y \A!)2
R for the second property of Q. Q is closed under �nite product.

d) If X 2Q, so does X�. Q is closed under the Kleene star opera-
tion.

e) If X 2Q, so does X!. Q is closed under omega operation. �
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1.2 Finite and in�nite trees

According to the related notions above, we can introduce �nite
and in�nite trees now. Since we mainly focus on in�nite trees and the
corresponding automata here, the de�nitions will be speci�c, which are
of valued trees here. They correspond to a relation over !-words or
just !-relation and tree automata can be applied to the relation. They
are so expressive that they can encode an arbitrary set of words, any
nondeterministic system or a strategy in an in�nite game.

Suppose that the two alphabets D and A are both non empty. The
elements of D and the elements of A are respectively called directions
and labels. Then we say a tree like this is a D-tree on A. It's de�ned as
a map t:P ¡!A where P is a nonempty subset of D� and it is pre�x-
closed. The set of all D-trees on the alphabet A is denoted by T (D;A).
The set P then is known as the tree's domain, denoted by Dom(t). Each
element of P is a node of the tree. If x 2 P is a node of t, then each
node, who forms like xi for i2D, is called a child of x.

Additionally, if the domain of a tree is a �nite set, the tree is also
said to be �nite. And among the elements of domain, some have the
max length. The length of these elements is called the height of a �nite
tree. For example,

Figure 1.

which is a �nite tree and its domain. As is shown, it's a very simple
binary tree. A=fa;bg andD here as a set of directions, whose values are
0 and 1. P = f"; 0; 1; 10; 11g is a subset of D� and is apparently closed
by pre�x as de�ned above.

We can easily imagine that whenD contains only one symbol, a tree
will become a subset of A� closed by pre�x, just like a word! Specifying
a tree t and a corresponding word u 2D�, symbol tu is denoted as the
tree de�ned by tu(x)= t(ux).
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Let's de�ne the leaves of the tree now. As is known, we call the
node who has no child nodes a leaf node. In a formal way, suppose an
element x 2 P , if xD \ P =?, x is a leaf of the tree t. We denote by
Fr(t) the set of the leaves of t:

Fr(t)= fx2P j xD\P =?g

which is called the frontier of t. The outer frontier of t is equivalent
to the set PD ¡ P , denoted by Fr+(t). For instance, corresponding to
the �gure above, the outer frontier is the set f00; 01; 100; 101; 110; 111g,
which is like a shell of the domain. Regarding the domain, it's de�ned
that Dom+(t)=Dom(t)[Fr+(t).

Regard to the �nite tree, a path � via the tree t is actually a chain
from the root to one of the leaves. Extended to the scope of D1, we
say that � through t is a maximal chain,which is de�ned as a chian in
a poset to which no element can be added without losing the property
of being totally ordered, for the pre�x order in Dom(t). As we choose
one direction on every node, a path has a form exactly like the sequence
of pre�xes of a �nite or in�nite word in D1. According to our binary-
relationed de�nition on tree, we denote by t j� the restriction of t to �
and t j � is a word on the alphabet A. For example, if � is a sequence
("; 1; 10) of the domain in the �gure above, t j �= aab, of which b here
is the left one.

Using the de�nitions mentioned until now, if we just consider the
in�nite trees, the domain will be in�nitely large. The generalization from
�nite words to �nite trees will also apply: when we let the cardinality
of tree be 1 or just choose a path in the tree, it will become an path or
word on the alphabet A.

The tree on which we've applied the examples until now is a very
simple �nite and full binary tree. In theory, D can be very large,which
means there can be many directions on each node, and the tree can be
multiply splitting. But considering those situations will not be helpful
for our topic, so we limit the scope of discussion to the full binary trees
for simplicity. Formally, D= f0; 1g and each node of the tree has no or
two child nodes. We denote by TA the set of �nite trees on alphabet A
and by TA

! the set of in�nite trees. Let TA
1=TA[ TA! be the overall set

instead of T (D;A).
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The basic di�erence between words and trees is the cardinality.
Card(t) equals to an integer greater than 1. Therefore, the operations
between the trees will be a little bit di�erent from the ones between
words. But as we'll see, the essence is somehow similar and those of trees
are more general.

Let's de�ne the concatenation product of trees now. We let S�TA
be a set of �nite trees, T � TA

1 be a set of �nite or in�nite ones and
c 2 A. And the concatenation product can be written as S �c T . We
can obtain the set of products like this: replace in the tree s 2 S with
each appearance of c on Fr(t) by a tree from T (various branches of
trees of T may replace for various presences of c). We can recall that
if there are a set of �nite words and a set �nite or in�nite words, the
concatenation product is just the set that contains all the possible words
whose left factor is the one in the �rst set and right factor is the one in
the second set. For the trees, the situation is a little bit more complex,
but we can consider it in this way: the only place we can concatenate a
tree into another tree is to �nd the suitable leaves. As is the same with
the relations between words, the ones between trees are associative.
Formally, it means that, if S andT �TA are sets of �nite trees, U �TA1
is a set of �nite or in�nite trees and c; d 2 A. Then the equation
(S �cT ) �dU =S �c (T �dU) holds.

In exactly the same way, for the star operation of a set, a tree need
to be de�ned with a de�nite symbol c2A. And we denote by T n;c the
set de�ned by the methods induction:

T 0;c= fcg ; and T n;c=T �cT n¡1;c[T n¡1;c

for T �TA and an integer n> 0. Correspondingly, we set

T �;c=
[
n>0

T n;c

where we can see c is always the rightmost factor of the elements.

According to the de�nition of the rational set in the set theory
(closed under union, concatenation product and star operations), we can
de�ne if a set of trees T �TA is rational. We say if there is a �nite set of
C containing A, then the the set T � TA is considered to be retional so
that a �nite number of combinations can be made. From �nite subsets of
TC, the set T can be taken by �nite unions, concatenations �c and stars
�; c for c2C.
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Now let's consider in a more speci�c way on the concatenation
product between trees, where instead of a single symbol, a tuple c =
(c1; :::; cm) is used and each element in the tuple corresponds to a
tree in the tree set. For instance, for T ; T1; :::; Tm � TA, we denote by
T �c (T1; :::; Tm) and ci corresponds to Ti.

Now let's de�ne the in�nite product. Let c = (c1; :::; cm) and let
T1; :::; Tm � TA. For the set of in�nite trees t, (T1; :::Tm)!;c is denoted.
Considering in�nite sequences (t0; t1; :::) of trees for every of sequence
like this t02fc1; :::; cmg and for n>0, the relation holds tn+12 tn �c (T1; :::;
Tm). So for every ti, there is a extension on one of the leaves of it as the
next tree. Therefore, there will be a extension of all trees in a common
format and we can denote it by t.

Next we can de�ne the !-rationality of a set. The set T � TA
! of

in�nite trees is de�ned as !-rational if there exists a �nite set C=fc1; :::;
cmg and several sets T0;T1; :::;Tm�TA[C, which are all rational, such that

T =T0 �c (T1; :::; Tm)!;c

For the simplicity of notaion, here we denote t �c (t1; :::; tm) instead of
ft0g �c (ft1g; :::; ftmg). We apply a similar denotion to it when ti's are
in�nite trees with a rule such that the �rst occurences of the ci are used
for replacement instead of frontier occerences of the ci.

Recall that for in�nite words, a subset of A! of in�nite words is !-
rational if and only if it is a �nite union of sets of the form X �Y ! where
X and Y are rational subsets of A�. We can �nd that the de�nition of
!-rationality for in�nite trees generalizes from the one for in�nite words.
An additional de�nition of set C is for �nding the appropriate node to
concatenate the tree in the set.
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2 Tree Automata

From the section, let's begin to introduce the tree automata, which
will be the main topic of the thesis. In this section, we de�ne the auto-
mata working on �nite and in�nite trees, of which two important forms
named Büchi automata and Muller automata, which has more power,
will be the main focus.

But before all of these, let's recall what the automaton generally is.
Automata are automatic machines or machines or control mechanisms
designed to automatically follow predetermined operational sequences
or respond to predetermined instructions.

Conventional automata are based on the operations on words,
where there can only be one state before or after the corresponding
state transfer. As an extension of the conventional ones, tree automata
are based on the operaions on words, where allow multiple, or we say
a set of, states before or after the state transfer. And this is the essen-
tial di�erence between conventional automata and tree automata. We
can see that tree automata are suitable for the operations on trees.

For automata, the notion of recognizabilty and deterministic or
non-deterministic ones are very important. These properties directly
point out the power of an automaton. However, these properties of
tree automata are quite di�erent with the ones of word automata. Tree
automata are thought to have several strong points respect to word
automata:

1. Tree automata suits for modeling non-determinism more.

2. There is a closer connection between logical theories and tree
automata. The Rabin's theorem states that we can reduce the
problems in logic to the correspongding problems in tree auto-
mata.

We'll discuss it in next sections.

2.1 Automata on �nite trees

A more general tree automaton on the alphabet A can be de�ned as
a tuple (Q;D;E; I ; F ), where D is a �nite set of all possible directions.
But as we presented above, we use a speci�c D = f0; 1g for simplicity
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and all tree automata including in�nite tree automata will always use
the speci�c D.

A tree automaton on the alphabet A can be de�ned as a tuple
(Q;A;E; I ;F ), where Q is a �nite set of states, E�Q�A�Q�Q is a
set of edges of tree automaton, I �Q is a set of initial states and F �Q
is a set of �nal states. E here is like a set of transition rules, but as we
mentioned above, here all trees are restricted as full binary trees, so
there are exactly two next states transtioned from one state (top-down)
or one from two (bottom-up).

With an automaton A on the tree t, we can have a run. In a formal
way, the run is de�ned as a map r: Dom+!Q with r(")2 I such that
(r(x); t(x); r(x0); r(x1)) 2 E for all x 2 Dom(t). We say that the run
is successful if r(!) 2 F for all ! on the outer frontier Fr+(t) of t. We
can see here the use of outer frontier. Meeting the leaves of a tree, the
automaton needs to verify whether there are next states.

A simple example will be very helpful. Using a tree like the one
mentioned in the �rst section, the tree and its domain are like this:

Figure 2. A tree t and its domain

A= fa; bg, Dom(t)=f"; 0; 1; 10; 11g, Fr+(t)=f00; 01; 100; 101; 110; 111g
and let Q= f1; 2g, I = f1g, F = f2g and

E= f(1; a; 1; 1); (1; b; 2; 2)g

Thus, r(") = 1 2 I, r(0) = 1, r(1) = 1, r(10) = 1 and r(11) = 1. For
r(!)2F , r(00)= r(01)=1and r(100)= r(101)= r(110)= r(111)=2. We
can get a successful run on t:
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Figure 3. A run on T

The �nite tree set of automatic recognition is formed by every tree,
so the operation on A is achieved successfully. If the set T � TA can
be recognized by an existed tree automaton A, then T is de�ned as
recognizable. Therefore if T = ftg, A recognizes T .

As we can imagine, a tree has two ways to go: downwards and
upwards. For the top-down direction, we say that a tree automaton
A= (Q; E; I ; F ) is top-down deterministic if Card(I) = 1 and with an
edge (p;a; q; r)2E, at most one pair (q; r)2Q�Q corresponds for each
pair (p; a)2Q�A.

Correspondingly, we say that a tree automaton A=(Q;E; I ; F ) is
bottom-up deterministic if Card(F )=1 and with a edge (p; a; q; r)2E,
at most one state p2Q corresponds for each triple (a; q; r)2A�Q�Q.
And we say that a bottom-up tree automaton is complete if with an
edge (p; a; q; r) 2E, exactly one and not zero state p 2 Q corresponds
for each triple (a; q; r)2A�Q�Q.

With the de�nition of complete bottom-up deterministic tree auto-
mata, we can have the following statement.

Proposition 2. The family of recognizable sets of trees is closed under
complement.

And we have the following Kleene's theorem for �nite trees.
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Theorem 3. A set T �TA is recognizable if and only if it is rational.

Now let's turn to the introduction of automata on in�nite trees.

2.2 Automata on in�nite trees

Now we come to the discussion of automata on in�nite trees. Lit-
erally, they are state machines that deal with in�nite tree structures.
It's interesting that they can not only be viewed as an extension of
�nite tree automata but also as an extension of conventional Büchi and
Muller automata on words. Actually, for the reason of modeling, trees
are better than words to model nondeterminism, so unless we point
out in particular, automata we mention below are all thought as non-
deterministic tree automata. Another advantage of focusing on non-
deterministic automata is succinctness since it can be imagined that
describing tree automata is already space-consuming.

Although we'll mainly focus on two tree automaton models, Büchi
and Muller, it's quite convenient to list most of formal de�nitions, based
on the same alphabet A, of famous automata here. We'll sometimes need
to use them in our discussion:

i. Büchi tree automaton: (Q;E; I ;F ); F �Q is the set of accepting
states.

ii. Muller tree automaton: (Q;E; I ;F);F �2Q is a family of sets of
states which contains some �nal states.

iii. Rabin tree automaton: (Q;E;I ;R);R isa list ofpairs of state sets:
h(E1; F1); :::; (Ek; Fk)i, there exists a i such that it contains �nite
states from Ei and in�nite states from Fi.

iv. Streett tree automaton: (Q; E; I ; 
); 
 is a list of pairs of
states:h(E1;F1); :::; (Ek;Fk)i, there exists a i such that it contains
in�nite states from Ei and �nite states from Fi.

v. parity tree automaton: (Q;E;I ;c); c named priority, is a mapping
Q!N that assigns a natural number to every state. It satis�es
that max (Inf(c(p))) is even.
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Actually, we can see that these automata only di�er according
to their acceptance conditions and other letters have almost the same
meanings: Q contains all possible states, E stands for the set of trans-
itions and I or i is the set or just one initial state.

2.2.1 Büchi tree automata

Let's recall that the traditional Büchi automaton accepts an in�nite
input sequence, and if the automaton runs, it always visits at least one
�nal state (at least). It is named after the Swiss mathematician Julius
Richard Büchi, who discovered this kind of automaton in 1962. It's
formally de�ned as a 5-tuple A=(Q;A;E; I ; F ), where E�Q�A�Q.
But Büchi tree automata were formally de�ned by Rabin, who originally
named them special automata.

A Büchi tree automaton has a slightly di�erent de�nition: A=(Q;
A; E; i; F ), in which E � Q �A� Q � Q as set of edges and i 2 Q as
the initial state. The Büchi tree automaton is usually introduced �rst
because it's the simplest recognizing mode for in�nite trees but it has
weaker power than other recognizing modes, for example, the Muller
tree automaton.

The run of a Büchi tree automaton A on a tree t (D= f0; 1g) is a
map r: f0; 1g�! Q with r(") = i such that (r(x); t(x); r(x0); r(x1))2E
for all x2f0; 1g�. We say that such a run will be successful if any �nal
state will occur on all paths in�nitely often, such that:

Inf(r j�)\F =/ ?

where � stands for any path in the tree t. If there is a successful run
of A on an in�nite tree t, then we say the automaton A recognizes the
tree t. And the set of all in�nite trees recognized by A is just equivalent
to the set recognized by A. Regard to Büchi tree automaton, if a set T
of in�nite trees is recognized by a Büchi automaton, it is called Büchi
recognizable.

With a Büchi recognizable set, we have the following statement.

Theorem 4. A set T �TAw is Büchi recognizable if and only if it is !-
rational.
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The class of Büchi recognizable trees has its own closure proper-
ties: closure under �nite union and projection. The proof can make us
understand it better. But we will just point out the main thinking here
because the thesis is mainly for introduction.

Proof. First we prove the property of closure under �nite union. Sup-
pose here is two sets of in�nite trees: TA and TB and we need to prove
that TA [ TB can also be recognized by some Büchi automaton. We
can prove it by the method of construction. Suppose the states of two
automata A = (QA; A; EA; iA; FA) and B = (QA; B; EB ; iB ; FB)
are disjoint, which means QA \ QB = ?, then we can construct an
automaton C = (QA [ QB ; A [ B; EA [ EB ; fiA; iBg; FA [ FB)
recognizing TA [ TB. For satisfying the formal description of Büchi
automaton, we use a new initial state i and a special alphabet {c},
where fig=Qi andEi=f(i; c; iA; iB)g. Then we get a �nal construction
C=(QA[QB ; A[B [fcg; EA[EB [Ei; i; FA[FB). Proved. �

Before we prove the closure under projection, let's �rst introduce
the concept of projection. In set theory, a projection is de�ned as a map-
ping of a set into a subset, which has the property of idempotence. And
the restriction to a subspace of a projection is also called a projection.
In our speci�c circumstance, we de�ne a projection as a map ':A!B
where A andB are two alphabets of the tree. A map from T (D;A) into
T (D;B), de�ned by t!'� t, where � is called the circle funtion de�ned
as the function composition, is also called a projection.

Proof. Now we can prove it. Suppose here is a Büchi recoginzable tree
set TA, we need to prove that TB, which is outputed by the projection
of TA, is also Büchi recognizable. By the de�nition, we get

TB='(TA)= f'(t) jt2TAg

As we can see, the alphabet B is a subset of A and the statement is
quite obviously true. Let A=(QA; A;EA; iA; FA) and we can construct
a B=(QB ; B;EB ; iB ; FB), where QB is a subset of QA, A is a subset of
B, iB='(iA), FB is a subset of FA, and

EB= f(q;'(a); q 0; q 00)g
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where a is a letter in A and ' is the corresponding letter in B and the
edges from q to q 0 or q 00 always has the corresponding edges in EA. Then
the construction is completed and the statement is proved. �

But as we said, Büchi tree automata isn't so powerful that the Büchi
recognizable set of trees isn't closed under complementation. While
Muller tree automata have this property, we'll discuss it later.

Let's recall that we de�ne the !-rationality of the set of in�nite
trees above. Now we have the �rst important theorem for our in�nite
tree automata:

Theorem 5. A set T � TA! is Büchi recognizable if and only if it is !-
rational.

Proof. The Theorem need to be proved from two directions. Let's recall
that when T is !-rational, it must have the form T =T0 �c (T1; :::; Tm)!;c.
We can use a similar method of construction to build a Büchi automaton
recognizing it. Then any !-rational set is Büchi recognizable.

From the converse direction, we suppose that we have a Büchi auto-
maton A=(Q;A;E; i;F ) and if each set recognized by it has the format
shown above, the theorem will be proved. Let F =fq1; :::qmg and Tqi be
the set of all �nite trees on A[Q, where the frontier nodes have values in
F and other nodes in A. Here we can see the frontier nodes are valued by
�nal states and we want to make every Tqi recognizable according to the
de�nition, so the run r which starts at qi on the tree need to be such that:
r(x)= t(x), where x2Fr(t). Supposing a run r on tree t starting at node
p, it passes in�nitely often in F . We can see every t belongs to such a set:

Tp �q (Tq1; :::; Tqm)!;q

where q=(q1; :::qm). For every starting node, the format is valid. Then
we �nish the proof. �

Now we �nish the introduction to Büchi tree automaton tempor-
arily. We'll continually refer to it when we compare it with other tree
automata.
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2.2.2 Muller tree automata

Now we introduce a more powerful tree automaton, Muller tree
automaton. Its de�nition is more general. Actually every kind of auto-
maton di�ers it from others by its acceptance condition. There are other
kinds of tree automata (for example, Rabin tree automaton, Streett
tree automaton), but we focus on non-deterministic Muller tree auto-
maton in the thesis becauses it's either more general than or equivalent
to other kinds of automaton. It's named after David E. Muller, an
American mathematician and computer scientist, who invented it in
1963. With the Muller tree automaton, we can de�ne the regularity of a
tree language. We say that a tree language is regular if any Muller tree
automaton accept it.

A Muller tree automaton on the alphabet A is de�ned as A=(Q;A;
E; i;F). It has a very similat format with a Büchi tree automaton except
that there is no longer a set of �nal states F , but F , which moreover
stands for a set of sets of Q. We call F a family of subsets of Q and it
de�nes the acceptance condition. We say that a run of A on a tree t is
successful if for every path � of r, F contains such a set of states which
appears in�nitely often in it. It can be described in the following formal
way:

Inf(r j�)2F

From the de�nition, we see that the family of Büchi tree automata,
either deterministic or non-deterministic, is a special case of the family of
Muller tree automata. The relationship of these two kinds of automata
can be shown by a �gure like this:

Figure 4.
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where D means deterministic, B means Büchi, M means Muller and TA
means tree automaton.

An example can show clearly that Büchi tree automata have less
expressive power than Muller tree automaton.

Suppose T be the set of in�nite trees on a alphabet A= fa; bg and
there's a �nite number of the letter a along any path. First we can see
that it is recognizable by a Muller tree automaton, or to say, Muller-
recognizable. For transitions, we say that there are two states 1 and 2
and the edges like (p; x; q; q). When x = a, it results q = 1, otherwise
q = 2. We suppose a quite speci�c family F here, which is just the
singleton f2g.

So if we show that the set T can't be recognized by a Büchi auto-
maton, we say that Büchi tree automaton are less powerful than Muller
tree automaton. We use A to symbol a Büchi tree automaton which
accepts every tree in T and n to symbol the amount of states of the
automaton A. For the proof, all individuals in the complement of T also
need to be accepted by A. For i> 0, consider the set Ui=

S
k=0
i¡1 (1+0)k,

which is shown as the �gure below, and let the equation holds ti(x)=a,
where ti(x) is an in�nite tree, for x2Ui and ti(x)= b otherwise.

Figure 5. The set Ui=
S

k=0

i¡1
(1+0)k

Here tn2T holds. Hence, there exists a run r of A being successful.
As below, We can use the methods of induction on the number of states
to prove that there exists a path in tn with three nodes n< v <w such
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that r(u) = r(w) 2 F and tn(v) = a in an n-state automaton accepting
all trees of T .

Figure 6. A path in tn

When n= 2, it's de�nitely true in this case. Here A = (fi; f g; E;
i; ff g) , so there are only two possibilities: the run for r(")= i and the
run for r(x)= f .

Next, let's consider when n is a bigger number. Assume that the
property holds true when there are (n ¡ 1) states. According to the
de�nition of Ui, it's clear to �nd a path passing in�nitely often through
F . The path 1� satis�es the condition. Thus, there exists an u21� so that
r(u)2F holds. We see that the relation between tn and tn¡1 is like this:
(tn)u0 = tn¡1. So the run ru0, which is also a tree, is of the automaton
like (Q;r(u0); F ) on tn¡1 and it is successful. If here we replace this run
directly with r(u), then the claim will have already been proved.

On the other hand, r(u0) is still a run on the automaton with n¡1
states. It is successful and accepts all trees of T . Then it continues to
the loop following by induction. So we see that ru is a part which can
be pruned. By deleting ru from r, we set it be r1 and r1(u)= c. And by
deleting ru0 from ru, we get r2 and we get r3 as the rest part ru0. Then
we can get the overall r= r1 � r2 � r3 and in a similar way for su, we set
tn= s1 � s2 � s3. We �nd out that s1 � s2! has an in�nite number of symbols
a and it also has a successful run, which is the tree r1 � r2!. Then the
assertion is proved.

So it is obvious that the properties which Büchi tree automata have
are also owned by Muller tree automata. It's the properties of closure
under union, intersection and projection. They are all owned by Muller
tree automata.
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We can prove it easily. Suppose T and T
0
are recognizable and

nondeterministic, then T [ T
0
is obviously recognizable. And it's the

same for closure under intersection. As for closure under projection,
using two alphabets A and B, we consider a function f :A!B and their
corresponding Muller antomaton A and B. Say that A recognizes T , it's
quite straightforward to see that B recognizes f(T ).

Besides these properties, the class of Muller recognizable sets of
trees has an important property of closure under complementation. But
its proof is the most di�cult problem for nondeterministic automata.
The proof will be given in the next section when we give an introduction
on a particular game on trees.

But before introducing the games played on trees, let's introduce
the Rabin chain tree automaton, which has an equivalent expressive
power with the Muller tree automaton. But we need to introduce it
because chain automata are of special signi�cance in the games we'll
introduce in the next section. The games we specify here are in�nite
two-person games. Generally speaking, the game strategies must be
funtions of past states, but both sides have strategies are just based on
the current states for chain automata.

A Rabin chain tree automaton is de�ned of the form A=(Q; q0;E;
S) where S is a strictly increasing sequence E1�F1�E2�F2� :::�En�
Fn of subsets of states of Q. Alternatively, the Rabin chain condition
can be formulated by a parity condition. We say that a subset Xof Q
satis�es the parity condition c:Q!N if and only if min fc(q)jq2Xg is
odd.If there is an integer k for each path � such that:

Inf(r j�)\Ek=? and Inf(r j�)\Fk=/ ?

Then the run is successful.

Recall the accepting condition of Rabin automata mentioned above.

Formally, let the Muller tree automaton A = (Q; E; i; F) and its
memory extension is the Rabin chain tree automaton B= (S; F ; j ; S).
S is the set

S= f(u; v)juv 2Perm(Q)g
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where Perm(Q) refers to the set of permutations of elements of Q. The
action of permutating is like: if we have a set fa; b; cg, we'll have 6
permutations listed: (a; b; c); (a; c; b); (b; a; c); (b; c; a); (c; a; b); (c; b; a).

The initial state j has a quite di�erent de�nitions with traditional
ones. It can be any element of S as long as it has the form xi. The set
F here is the set of transitions, which is the set of all:

((u; v); a; (x; yq); (z; tr))

such that uv = xqy = zrt and (p; a; q; r) 2E. The set F is de�ned as
above since we need to track every running path in the last order of each
state in the memory extension.

Actually, for the autamata on words, we have the similar de�nitions
and results above. So for the similarity, with a proof, we can state similar
propostions.

Proposition 6. The automaton A and its memory extension B are
equivalent. Consequently, any Muller tree automaton is equivalent to a
Rabin chain tree automaton.

Proposition 7. Let X� (f0;1g�A)! be a recognizable set of words on
the alphabet f0; 1g�A. Then, the set T (X) is Muller recognizable.

If X is recognizable by a Büchi deterministic automaton, then T is
Büchi recognizable.

Here, T (X) is the set of all trees t 2 TA
!, where (�; tj�) 2 X for all

� 2f0; 1g!.

2.2.3 Rabin basis theorem

Let's recall that for �nite trees, we say a set T is recognizable if
and only if it is rational. What's the circumstance when it extends to
the set of in�nite trees? We now introduce a very important theorem,
named Rabin basis theorem, which is:

Theorem 8. Any non-empty Muller recognizable set of in�nite trees
contains a rational tree.
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If a tree is �nite generated in the following sense, it is called a regular
tree: There is a deterministic �nite automaton equipped with output
which tells for any given input ! 2f0; 1g� which label is at node !.

According to what we've introduced until now, we know that here
non-empty Muller recognizable set of in�nite trees can be replaced by
any equivalent set, such as non-empty parity recognizable set.

Before we prove the theorem, we introduce a lemma which shows
that the problem can be reduced to the one with �input-free� tree auto-
mata. It'll be helpful to prove the �nal theorem.

Lemma 9. For any Muller tree automaton A=(Q;A;E; i;F), one can
build an input-free tree automaton A0

=(Q
0
; E

0
; i
0
;F 0

) with a function f:
Q
0!A such that r

0
is a successful run of A0

if and only if r= f � r0 is a
successful run of A.

In particular, the set recognized by A contains a rational tree if and
only if the set recognized by A0

does.

We can build Q
0
= Q � A; E

0
= f((q; a); (q; a0); (q 00; a00))j (q; a;

q 0; q 00) 2 Eg, then the function f satis�es the property of projection
f(q; a)= a.

With the lemma, we start to prove the Rabin basis theorem.

Proof. Let's recall that we say a set is Muller recognizable if it can be
recognized by a Muller automaton. And we say that an in�nite tree t is
recognized by the Muller automaton A if there exists a successful run of
A on t. So the problem of proving Rabin basis theorem can be converted
into the problem of proving that the Muller automaton has a rational
successful run of it.

Let's introduce a concept called �live�. We call a state q2Q is �live�
if q =/ i and if there are transitions (q; a; q 0; q 00) with q 0 =/ q or q 00 =/ q.
We can see that it has exactly the literal meaning. A state is live if it
doesn't always stay there and doesn't move.

And we've also introduced �input-free� tree automata above and
get the lemma. So let's mix the concepts together and do the proof by
means of induction.
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First, if there are no live states in the automaton, all runs will be
rational since all of the states from the root will be stock-still.

Next, suppose that some live states are not used in the successful
run. We then ignore these states and only consider the automaton
without these states.

Then, suppose that there is a node u in r such that the state q=r(u)
is live but that there is a live state q 0 that appears after the node u.
In this situation we can construct an antomaton A1 by replacing all
transitions from state q by the unique transition (q; q; q). So in the scope
of A1, q isn't live anymore and according to the �rst point we just got,
we know that A1 has a rational successful run r1. In the other situation
we construct an automatonA2 by choosing q as initial state and deleting
q 0 from A. And according to the induction hypothesis, A2 has a rational
successful run r2. Concatenating the successful runs of A1 and A2, we
can see that A has a rational successful run r1 �q r2.

Last, suppose that all live states appear in r beyond any given node.
Let's choose an arbitrary live state q. We can see that: 1) Each path in
r passes by q. 2) There is a �nite run s of A such that

i. s starts at q.

ii. s ends with q.

iii. each path in s passes through all live states.

It states that A has a rational successful run r �q s!;q.

According to all statements above, the induction hypothesis is
proved and the proof completes. �

With the theorem, we get a statement.

Corollary 10. The emptiness problem for Muller tree automata is
decidable.

The emptiness problem is the problem of deciding whether the lan-
guage recognized by a given automaton is empty.

We can also prove the theorem with the methods of gaming. We'll
introduce it in the next section.
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3 Games on tree automata

In this section, we'll introduce a game played on trees as a measure
of our simulation of automata. We'll use the game to prove the prop-
erty of closure under complementation we mentioned above. But before
we focus the game on tree automata, we'll brie�y introduce games on
in�nite words, as a mathematical technique, to eliminate the confusion,
for which you may ask why the automaton is related to games.

Games here are abstract two-player games in which each player
chooses a symbol from an alphabet in turn. So there will be a �xed set
of plays which makes the �rst-moving player win. And correspondingly,
the second-moving player wins on the complement of this set.

So, what will be the choices of players when they played on trees?

3.1 Automaton and path�nder

Unlike games on words, every transition of a tree will lead to mul-
tiple nodes(we say 2 here). Then the moves of both sides won't seem to
be so �symmetric�, but there's never true fairness in a game. Here we call
the �rst-moving player Automaton, who chooses transitions from the set
E, which is the transition set of a Muller automaton A= (Q; q0; E;F)
on the alphabet A. We call the second-moving player Path�nder, who
chooses direction from the set f0; 1g. We call the game an in�nite two-
person game GA;t. In particular, such a game played on graphs is called
a parity game. The winning set of a parity game is usually de�ned by a
Rabin chain condition or a parity condition. The parity game has several
useful properties.

From the start, it means that Automaton �rst chooses a transition
from the root and Path�nder secondly chooses a path to follow and
Automaton again chooses a transition from this node and so on. This
will result in a chosen state sequence (q0; q1; :::). The winning condition
is that if this sequence satis�es the Muller acceptance condition de�ned
by F . If yes, Automaton wins. Otherwise, Path�nder wins.

A simple graph example may show it clearly:
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Figure 7. Play of the game

We can see that Automaton has winning strategy in GA;t , t 2
L(A). Contrarily, Path�nder has winning strategy in GA;t, t2/ L(A).

The game played here can be thought as a graph whose vetrices
are the game positions. We can de�ne the game positions formally:
For the total set of vetrices, V = V1 [ V2. V1 stands for the postions of
Automaton V1=f(!; q)j!2f0;1g�; q2Qg and V2 stands for the positions
of Path�nder V2= f(!; e)j! 2f0; 1g�; e2Eg.

The game GA;t is de�ned as an abstract game on Q [E, so it's a
rational game. And from a known theorem, we know that one of the two
players has a rational winning strategy in a rational game. And again
from the de�nition we call such a game is determined.

From the results above, we can get the following proposition �rst,
which is the basis of our proof for closure under complementation later.

Proposition 11. The automaton A accepts the tree t if and only if
Automaton wins the game GA;t. It does not accept t if and only if
Path�nder wins the game GA;t.

If A is moreover a Rabin chain tree automaton, the winning
strategies can be chosen to be memoryless, which depends only on the
last vertex of the path.
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Proof. Let's recall the de�nition of a succesful run r of an automaton.
A accepts t if and only if there is a successful run r of A on t, which
means for every path � of r the set of states that occur in�nitely often
is in F for Muller automata. So let's consider from both directions.

If A accepts t, it means that there is a successful run. Hence the
path choosed belongs to X, which is the set of winning paths. So Auto-
maton wins the game.

From the other direction, if Automaton wins the game, he must
have a winning strategy, which is a function f :f0;1g��Q!E. We could
construct a run r based on a path of A. We let a word ! 2 f0; 1g� and
r(")= q0. Then let r(!0)= q 0, r(!1)= q 00 and the funtion f(!;r(!))=(q;
t(!); q 0; q 00). So r is a successful run of A on t and A accepts t.

And we know the game GA;t is determined, so the �rst statement
proved.

For the second statement, we've mentioned that the game GA;t is
called a parity game. By a known theorem, it's stated that one of the
players has a memoryless winning strategy from each vertex in a parity
game. Then the whole theorem is proved. �

This proposition also have the equivalent form like this:

Proposition 12. Let A=(Q; q0;F) be an input-free Muller automaton.
Then Automaton wins the game G(A) if and only if A has at least one
successful run.

3.2 Rabin's tree theorem

Now let's introduce the main theorem, named Rabin's tree theorem,
for which we states out many preliminary points in this section.

Theorem 13. The family of Muller recognizable sets of trees is closed
under complement.

Proof. According to Propostion 6, the class of Muller tree automaton
has exactly the same expressive power with the class of Rabin chain
tree automaton. So proving the theorem equals to proving that the
complementation of the set of trees t2TA!, under the condition of being
accepted by A, is still recognizable.
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And by Proposition 11, we know that if the tree t is not accepted
by a Rabin chain tree automaton A, Path�nder has a winning strategy
which is memoryless.

Let the Rabin chain tree automaton forms like A = (Q; q0; E; S)
over an alphabet A. We can observe that Path�nder's strategy is a
funtion f : f0; 1g��E(his game positions)!f0; 1g(directions). We can
decompose the funtion f into a family of local instructions I:E!f0;1g.
Then the Path�nder's winning strategy can be coded by an I-labelled
tree s: f0; 1g� ! I . And we let the A � I-labelled tree (s; t) with
(s; t)(!)= (s(!); t(!)), where ! 2f0; 1g�.

Let Z be the set of in�nite words on I � E � f0; 1g formed of all
(x; y; �) such that

i. If the instruction sequence x is applied to the transmission
sequence y, the result will be in the path �.

ii. The corresponding states' sequence isn't successful.

We can see that Z is therefore recognizable and according to Pro-
position 7, the set Y =fs2TI�E! j for all�2f0;1g!; (s(�); �)2Zg is also
recognizable. And the set of trees X which are not accepted by A is
projected from Y . For the property of closure under projection, owned
by recognizable sets, X is also recognizable. The proof is concluded. �

3.3 Still Rabin's basis theorem

We've introduced Rabin's basis theorem in the previous section.
Now we can prove it in another way through the methods of gaming.
We state the theorem again: There exists a rational tree for any non-
empty Muller recognizable in�nite tree set.

According to proposition 6, the class of Muller tree automaton has
an exactly the same expressive power with the class of Rabin chain tree
automaton. So we just consider the �Rabin chain� recognizable set T of
in�nite trees, which is the same as considering Muller recognizable ones.
The automaton is as the form A=(Q; q0; E;S) on the alphabet A. We
can construct an input-free automan from it: A0=(Q�A;fq0�Ag;E 0;
S 0), who has some successful run r 0 if and only if T 0=/ ?.
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We now consider the game G(A0). Since A0 has a Rabin chain
condition, G(A0) is a parity game. In a partiy game, there must be a
memoryless winning strategy from each vertex for one of two players.
So we can say that if T =/ ?, the player Automaton has a memoryless
winning strategy and it means that there's a successful run for him and
thus T has a rational tree. The theorem is proved.
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4 Topology

In this section, we introduce the in�nite trees from a topological
perspective. From the previous sections, it's concluded that for Büchi,
Muller and those equivalent tree automata, the emptiness problem is
decidable. Hence, we can decide whether a given recognized language is
empty. After knowing that, we may want more to know how complicated
a given language is. That's what the topology of in�nite trees can tell us.
And a theory, which studies how complex a set is, is called descriptive
set theory.

4.1 The de�nition of topology of in�nite trees

Since the topology theory is a very big issue, we just concentrate
on the related concepts to our automaton theory on in�nite trees. We
assume that the readers have associative knowledge such as Borel hier-
archy and Wadge hierarchy, but introducing some terminology we need
is necessary.

4.1.1 Prelinimary knowledge

Countable sets A set is said to to be countable if there exists an
injective map from E into N.

General topology A topology on a set E is a set T of subsets of
E satisfying the following conditions:

1) ? andE are inT ,

2) T is closed under arbitrary union: if (Xi)i2I is a family of
elements of T , then

S
i2IXi2T ,

3) F is closed under �nite intersection: if (Xi)16i6n is a �nite
sequence of elements of T then

T
16i6nXi2T .

The elements of T are called open sets and the complement of an open
set is called a closed set.

Topological space A set E together with a topology on E.

Discrete topology Given two topology T1 and T2, we say that
T2 is stonger than T1 if T1 � T2. And the discrete topology de�ned by
T =P(E) is the strongest topology.
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Metric and metric spaces A metric d on a set E is a map:
E!R+ satisfying the following conditions, for every x; y; z 2E:

1) d(x; y)= 0 if and only if x= y,

2) d(x; y)= d(x; y),

3) d(x; z)6 d(x; y)+ d(y; z)

A metic space is a set E together with a metric d on E. The topology
de�ned by d is obtained by taking as a basis the open "-balls de�ned for
x2E and "> 0 by

B(x; ")= fy 2E jd(x; y)<"g

Cantor space A Cantor space is a topological space with the essen-
tial features that it is non-empty, totally disconnected, compact, perfect
and metrizable. The Cantor space is Cantor set itself, for example, the
set 2!.

Polish spaces A Polish space is a completely metrizable space
which admits a countable basis of open sets.

Borel sets The class of Borel sets is a minimal class of sets con-
taining open sets, which has properties of closure under countable union
and complementation. From the class of Borel sets, we can construct a
hierarchy, named the Borel hieratchy.

4.1.2 The space of in�nite trees

For a �nite alphabet A, the set TA
! of in�nite trees is de�ned as a

topological space of in�nite trees. There are several choices for us to
de�ne the topology of in�nite trees here because the topology and tree
structures have their own de�nition and we need to mix them up.

For example, we can de�ne it from the aspect of tree's funtion, the
intuitive aspect of topological distance or we can just de�ne the topology
as the whole set.

So we make a compromise here.

Any tree can be thought of as a function fromD� to A by appending
additional elements to the label set. The functions' set from D� to A is
said to be the topological space of product topology, and A is considered
to be a discrete topological space. The set of tree, T (D;A) is a subset
of and is closed under this space.
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We have a concept of open topology. The set has a form like
S �cT (D;A), in which S is a set consisting of �nite trees.

Now we can de�ne the Borel hierarchy of subsets of topological
space �!. It's de�ned as follows:

�1
0 is denoted as the class of open sets of trees and �1

0 is denoted as
the class of closed sets.

For a non-empty countable ordinal �, ��
0 is denoted as the class of

countable unions of subsets of �! in
S

<��
0 and ��

0 is denoted as the
class of countable intersections of subsets of �! in

T
<��

0 .

4.2 Suslin sets

As we've introduced the topology of in�nite trees, we can see that
due to the complexity of tree structure, more complex topological classes
are needed. In descriptive set theory, the Suslin sets are the sets of
images of trees under certain projection.

Suslin was a Russian mathmatician. He made a major contribution
to descriptive set theory and analytic set theory in his lifetime. Suslin
called the projections of Borel sets analytic and that there are actu-
ally analytic sets which are not Borel measurable. He and his students
established most of the basic properties of analytic sets. Due to his con-
tribution, analytic sets are sometimes called Suslin sets. Based on these,
beyond Borel hierarchy, another hierarchy named projective hierarchy
was constructed.

The classes of Suslin sets are formed by continuous Borel sets, and
the classes of Suslin sets contain strictly Borel sets. The classes of Suslin
sets �n

1, �n
1 and �n

1 , for integers n > 1, of the projective hierarchy are
obtained from the Borel hierarchy by successive applications of opera-
tions of projection, complementation and �n

1 is de�ned as

�n
1 =�n

1 \�n
1:

The �rst level of the projective hierarchy is constructed by the class of
Suslin sets �1

1 and the class of co-Suslin sets �1
1 (the complements of �1

1).
We can see that the class of Suslin sets �1

1 are obtained by projection of
Borel sets. The class of Borel subsets of �! is then strictly included in �1

1.
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Regard to the link between the class of Borel and Suslin sets, the
following proposition holds true.

Proposition 14. Let X �A! be a Borel subset. Then the set

T = ft2TA! j for all� 2f0; 1g�; tj� 2Xg

is in the class �1
1 of co-Suslin sets.

Proof. We see that here we want to prove the set T is in the class �1
1 of

co-Suslin sets. It means that we want to prove the set T� is in the class
�1
1 of Suslin sets. And we call that a subset of TA

! is A-Suslin if there
are a projection of closed subsets in TA

!�A! to it.

So we can try to construct a set of pairs (t; x) 2 T! � A! which
allows the projection of closed subsets in this problem. Let the set V =
U \X�. Here X� is a closed set and can exclude the trees included in T
and with the intersection operation, if we construct a U which is closed
and is the set of the speci�c form of pairs. We'll prove the theorem.

Let U = f(t; x) 2 T ! �A! j there exists � 2 f0; 1g�; tj� = xg. U can
be seperated as the intersection of many open sets. Un is denoted as the
set of pairs (t; x) satisfying the following property: there exists a word
a1a2:::an 2 f0; 1g� such that t(")t(a1)t(a2):::t(an) is a pre�x of x. Then
U =

T
n>1Un. According to the de�nitions above, the sets Un are in the

class �1
0 of open sets. Thus, the set U is in the class �2

0 of sets. Now
we know that U is the desired set. The proposition is proved. �

4.3 Topological complexity of recognizable sets of
trees

Topological complexity of the recognizable tree language is seen as
evidence of its structural complexity, which also increases the computa-
tional complexity of veri�cation problems associated with automata as
non-empty problems. In fact, the topological aspect can be regarded as
the embryonic form of in�nite computational complexity theory.

Let's explore the topological complexity of Büchi recognizable sets
and Muller recognizable sets.

Proposition 15. Any Büchi recognizable set of trees is Suslin.
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Proof. Use A as a Büchi tree automaton recognizing a set T. The set
of pairs (r; t) where r is a successful run of A on the tree t is a Borel
set, of which is the class �2. Thus T is Suslin. �

Proposition 16. A Muller recognizable set of trees belongs to the class
�2
1.

Proof. Use A be a Muller tree automaton recognizing a set T. By
de�nition above, a tree t is in T if there is a successful run r of A on t.
By propostion 14, it is enough to prove that the set of successful runs
of A is in �1

1. In addition, since the map (r; t) 7! t is continuous and
�n+1
1 is de�ned as the class formed by the continuous images of �n

1-sets,
we know that the set T belongs to the class �2

1.

Since the class of recognizable sets is closed under complement, we
also know that T 2�2

1. Hence, T 2�2
1 =�2

1\�2
1. �

Comparing these two statements, we have a result showing that
the class of Muller recognizable sets of trees has a higher topological
complexity than that the class of Büchi recognizable sets has. On the
other hand, we must observe that since Muller tree automaton has the
most expressive power as we've already presented, we may not recognize
the sets of topological complexity higher than �2

1.

4.4 Wadge hierarchy of tree languages

At last, a brief mention to Wadge hierarchy seems to be necessary.

In general, the Wadge hierarchy is thought as the re�nement of
the Borel and projective hierarchy. It can give the deepest insight
into the topological complexity of languages. Although the hierarchy is
already determined for the circumstance of !-regular languages, higher
topological complexity of tree languages causes the adaption of Wadge
hierarchy on regular tree languages more di�cult.

As for the latest progress, the problem of determining the Wadge
hierarchy of tree languages accepted by deterministic Muller or Rabin
tree automata have already been solved by Murlak. But the case of non-
deterministic Muller tree or Rabin tree automata, on which we mainly
focus through the introduction, is still unsolved. Besides it, actually
many problems remain open about the regular languages of in�nite trees
due to their complexity.
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We mentioned that all kinds of automata we introduced here are
nondeterministic, but the case of them are still not determined. So it's
enough to stop here.
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5 Monadic second order logic of two suc-
cessors

Automaton theory is so useful because the automaton is a very good
tool for reducing some complex problems to problems for corresponding
automaton. We mentioned that there's a close connection between logics
and automata, especially tree automata. So tree automata are useful to
solve the important problems of logics in history. Here we introduce the
expressive power of them and the reduction.

5.1 Introduction to monadic second-order logic

For the logical theory, we have basic logical symbols: the logical
connectives ^(and), _(or), :(not), !(implication), $(biconditional),
the quati�ers 9(there exists), 8(for all), the equality =, an in�nite set
of variables and parenthesis and other punctuation symbols(for unique
readability).

Other than these logical symbols, we have a set L of nonlogical
symbols: relation symbols, also called predicate symbol,(such as <;>),
funtion symbols and constant symbols(such as 0; 1).

With these symbols, �rst-order logic has its own formation rules,
de�ning the terms and formulas. Terms can be any variable or a funtion
of n arguments. Formulas are expressions of �nite applications of the
following rules:

i. If R is a relation symbol, R(t1; :::; tn) is a formula, where ti is a
term.

ii. t1= t2 is a formula, where t1 and t2 are terms.

iii. If blc is a binary logical connective, '1 blc'2 is a formula, where
'1 and '2 are formulas.

iv. :' is a formula, where ' is a formula.

v. 8x' and 9x' are formulas, where x is a variable and ' is a
formula.
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First-order logic covers relation and quantification. It is the
standard for the formalization of mathmatics into axioms and is studied
in the foundations of mathmatics. It's very important but it is unable
to do something.

First-order logic can quantify all individuals of its domain, but it is
unable to quantify the relations of its individuals. Besides it, �rst-order
logic has no strength to uniquely describe a structure with an in�nite
domain. That's why we need a stronger logic as second-order logic.

Second-order logic extends �rst-order logic by allowing quan-
ti�cation over relations, which are called second-order variables, of
individuals in its domain. But whole second-order logic has so wide
a range for discussion. So we limit ourselves on monadic second-order
logic, which exactly satis�es our requirement. It's expressive enough and
simple. With this, many properties will be shown in a quite natural way.

Monadic second-order logic(MSO) is a fragment of second-order
logic whose second-order relations is limited to monadic relations(rela-
tions only have exactly one argument). Since monadic relations have
same expressive as sets, we can say that MSO quanti�es over sets. MSO
plays an important role in automaton theory and also in computer sci-
ence.

The fundamental relationship between MSO and automata was dis-
covered independently by Büchi, Elgot and Trakhtenbrot when the logic
was proved to be decidable over the class of �nite linear orders and over
(!; <), called weaker MSO(WMSO). It's also proved that the formula
can be transformed into automata and vice versa. Moving away from
linear orders, McNaughton generalized the transformation that there
is a e�ective transformation from monadic second-order logic of tree
structures into �nite automata on trees. Based on these connection,
Rabin proved that the monadic second-order of the full binary tree(also
called the the second-order monadic theory of two successors), denoted
by S2S, is decidable. This celebrated theorem, obtained using the notion
of tree automata, is often referred to as �the mother of all decidability
results�. Since then, many problems in the �eld of formal veri�cation of
programs can be reduced to the logics.

However, Rabin's proof seems too di�cult for many to understand.
Hence, a continual re�nement of proof is made by scholars. Here the
heart of our introduction is the nondeterminism of Muller tree auto-
maton.
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5.2 S2S

We denote the second-order monadic theory of two successors by
S2S.

For the de�nition of syntax, we let symbols x; y; ::: be its indi-
vidual variables and symbols X; Y ; ::: be its set variables(relation
symbols). There is another composition of syntax, called terms. They
are composed of the constant " and the individual variables applying
two symbols s0 and s1, which are unary functions.

For the de�nition of semantics, the formulas on trees are interpreted
by considering a tree as a model

(Dom(t); "; s0; s1; <; (a)a2A)

where s0 and s1 are two successor functions from Dom(t) to Dom+(t).
They are de�ned by equations s0(x) = x0 and s1(x) = x1. The order <
is chosen as a pre�x relation on f0; 1g�. The unary relation a is the set
of x2Dom(t) such that t(x) = a. Here the order < and the constant "
are un�xed and they should be de�ned in terms of s0 and s1.

If ' is an S2S-formula, we say that a tree t satis�es the formula '
if ' is true of t.

The set of trees satisfying the formula ' is denoted by M('). We
also set

M�(')=M(')\TA ;M!(')=M(')\TA!

A set T of �nite (in�nite) trees is de�nable in S2S if there is a formula
'2S2S such that T =M�(') (T =M!(')).

An example may be helpful for understanding the logical formula '.

Example 17.

i. x6 y (node x is a pre�x of node y): 8X:((y 2X ^8z(z02X)
z 2X)^8z:(z12X) z 2X)))x2X)

ii. Chain(X) (X is linearly order by 6): 8x:8y:((x2X ^ y 2X))
((x6 y)_ (y6x)))
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iii. Path(X) (X is a path): Chain(X) ^ :9Y ((X � Y ) ^ (X =/ Y ) ^
Chain(Y )), where X �Y is equivalent to 8z:(z2X) z2Y ) and
X =Y is equivalent to X �Y ^Y �X.

iv. Inf(X) (X is in�nite): 9Y :(Y =/ ?^82Y :9y 02Y :9x02X:(y<y 0^
y <x0))

Theorem 18. A set of in�nite trees is de�nable in S2S if and only if
it is Muller recognizable. More precisely, for every formula '(X1;X2; :::;
Xn) 2 S2S, one can construct e�ectively a Muller tree automaton A
which accepts t if and only if t satis�es '.

Proof. The proof of this theorem contains two parts: conversion from
in�nite trees to formulas and from formulas to in�nite trees.

Given a Muller tree automaton, we can build an equivalent S2S-
formula:

We use C� = (Cq)q2E to encode the run of tree.

� ',9C�:(Part^ Init^Trans^Accept)

� Part,8x:
W

q2Q Stateq(x)

� Stateq(x),Cq(x)^
V

q 02Snfqg:Cq 0(x)

� Init, Stateq0(")

� Trans, 8x:
W

(q;A;q00;q10)2M
¡
Stateq(x) ^

¡V
V 2A V (x) ^V

V 2/A:V (x)
�
^ Stateq00(x0)^ Stateq10(x1)

�
� InfOccq(P ),9Q:(Q�P ^Q�Rq^ Inf(Q))

� Inf(P ),9P 0:(P 0=/ ? ^ 8x0 2 P 0:9y 2 P :9y 0 2 P 0:(x0<
y ^ y < y 0))

� Muller(P ) ,
W

F2F
¡V

q2F InfOccq(P ) ^
V

q2/F :
InfOccq(P )

�
� Accept,8P :(Path(P ))Muller(P ))
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Thus we �nish the encoding and get a formula from Muller tree auto-
maton.

From the other direction, given an S2S-formula, we can construct
an equivalent Muller tree automaton.

First, we rewrite the S2S formula as a general form. We have only
the following type of equation:

x= "; x= y0; x= y1; x2Y ; x= y

Then we can inductively transform S2S formulas into Muller tree
automata A=(Q;E; I ;F) on the alphabet A:

i. x2Y :

� Q= fq0; q1g

� I = fq0g

� E = f(q0; A; q0; q1)jx2/ Ag [ f(q0; A; q1; q0)jx2/ Ag [ f(q0;
A; q1; q1)jx2A; Y 2Ag[f(q1; A; q1; q1)jx2/ Ag

� F = fq1g

ii. x= y0:

� Q= fq0; q1; q2g

� I = fq0g

� E = f(q0; A; q0; q2)jfx; yg \ A = ?g [ f(q0; A; q2; q0)jfx;
yg \A=?g [ f(q0; A; q1; q2)jx 2/ A; y 2Ag [ f(q1; A; q2;
q2)jx2A; y 2/ Ag [ f(q2; A; q1; q2)jx2/ A; y 2Ag [ f(q2; A;
q2; q2)jfx; yg\A=?g

� F = fq2g

iii. And others so on.
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Thus we build the formula from a Muller tree automaton.

The theorem is proved. �

Consequently, the connection between automaton and logic make
the proof of next theorem of the decidability of satis�ability for S2S,
called Rabin Tree Theorem.

Theorem 19. (Rabin's Tree Theorem) The theory S2S is decidable.

We mentioned that WMSO is a weaker MSO which is over �nite
orders. Here WS2S is a weaker S2S, in which the set variables range only
over �nite sets of positions. And we need to keep in mind that not every
S2S formula can be translated in WS2S, unlike the property of S1S.

Theorem 20. A set of in�nite trees is Büchi recognizable if and only
if it can be de�ned by a formula

9X1:::9Xn'(X1; :::; Xn)

where '(X1; :::Xn) is a WS2S-formula.

A set T of in�nite trees is de�nable in WS2S if and only if T and
its complement TA

! are Büchi recognizable.

Similarly, we can get a consequent theorem showing the decidability
of satis�ability for WS2S.

Theorem 21. The theory WS2S is decidable.

We can get a corollary showing the connection between S2S and
WS2S.

Corollary 22. WS2S is strictly weaker than S2S.

Up to now, we have seen the decidability of S2S and we've got a
positive result. What about monadic second-order theory of more than
2 successors? Are they also decidable? The answers are always yes.

Theorem 23. The theory SnS is decidable.

42



6 Practical uses of tree automata

Basically, automata are used to specify and verify properties of
structures. They have various applications in software veri�cation,
model checking, language processing, complexity theory and decidability
theory. As we've seen the importance of tree automata in complexity
theory and decidability theory, let's explore the practical uses of them.

The realistic application of tree automata on other �elds has two
preconditions which we've proved:

1. The regular tree languages have strong closure properties.

2. The emptiness problem is decidable for tree automata.

On the basis of that, the family of tree automata becomes a more
and more interesting topic because of their strong expressive power.
There are many very complex problems in various �eld in reality and
especially with recent explosing increasement of information amount
through the Internet, the need for manipulating them more e�ectively
becomes urgent. So we need such an expressive power for helping us
solving problems. Actually, tree automata have been designed for a long
time since the last century.

Let's see the various �elds that tree automata can apply on.

6.1 Applications on XML

The most intuitive application of tree automata is that on pro-
cessing of XML since XML documents can be naturally viewed as trees.

The Extensible Markup Language (XML) nowadoys become the
mostly used format for structured or semi-structured documents. Based
on SGML (ISO 8879), XML is designed for meeting the challenges and
increasing needs of largescale electronic publications and data exchange
on the Web.

The XML data is the semi-structured data, of which queries and
views are based on regular path expressions. In general, XML applica-
tions in tree automata have the following applications as:

i. a basic for pattern languages and pattern test
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ii. a method of processing queries and schema languages

iii. an algorithm toolbox

where tree automata are quite useful for abstraction.

Let's introduce each of them.

6.1.1 A basic for pattern languages and pattern test

One reason of the popularity of XML is that there are many schema
languages, including DTD, XML schema, DSD and RELAX, which can
be used to de�ne "types" (or "patterns") that describe the constraints of
data structures and to improve security of data processing and exchange.

Nevertheless, the main use of processing technology of XML is usu-
ally limited to checking data in �les, but not programs. In a common
way, the XML handler reads the XML �les �rst, then makes a check
with the validating parser to match it with the given type. The program
then uses a general tree operation Library (such as DOM) or a dedicated
XML language, such as XSLT or XML-QL. Because these tools do not
establish a system connection between the program and the document
type it runs, they do not provide the documents generated by the com-
pile time guarantee program to always conform to the expected type.

A regular expression type is proposed as the basis for static-typed
XML �les. Regular expression types capture and summarize the regular
expression symbols, such as (�; ?; j) etc., of common schema languages
in XML, and support the natural semantic concepts of subtypes.

Example 24. Regard to types of regular expressions, the following
example will be intuitive:

type Addrbook = addrbook[Person*]
type Person = person[Name,Email*,Tel?]
type Name = name[String]
type Email = email[String]
type Tel = tel[String]

corresponding to the following set of DTD declarations:

44



<!ELEMENT addrbook person*>
<!ELEMENT person (name,email*,tel?)>
<!ELEMENT name #PCDATA>
<!ELEMENT email #PCDATA>
<!ELEMENT tel #PCDATA>

The type constructor of the form label [:::] uses the tag label (that is,
the XML structure of the form) to classify tree nodes. Therefore, names,
e-mail and phone types are all strings with appropriate identi�cation
tags. Type may also involve regular expression operators � (none or
repetition) and ? (optional event) and j (alternation). Therefore, the
type Addrbook describes a tag AddrBook with zero or multiple duplicate
Person type subtrees. Similarly, the type Person describes a person
label, whose contents are name subtree, zero or more Email subtrees and
an optional Tel subtree.

After �lling in the type Addrbook, the XML document will be like
following:

<addrbook>
<person><name>Micheal Huang</name>

<email>micheal@usapr</email>
<email>micheal@gmail</email>

<person><name>Jemein Cat</name>
<email>jemein@usapr</email>
<tel>987-654-321</tel></person>

</addrbook>

Subtypes are de�ned in regular expressions in semantic expressions.
Typically, one type represents a set of documents; one subtype is just
contained between sets represented by two types. For example, think of
again the de�nition of type Person:

type Person = person[Name,Email*,Tel?]

and the following variant:

type Person2 = person[(Name | Email | Tel)*]
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The elements of type Person can have a name, zero or more e-mail and
zero or one Tels in order, and the type Person2 allows any number of
such nodes in any order. Therefore, Person2 strictly describes more doc-
uments, which means that Person subtypes from Person2. This subtype
may be very useful in programming. For example, suppose we initially
had a type value of Person. The inclusion above will allow us to process
this value by using code that does not care about sortings between e-
mail and telephone nodes. (for example, if we want to display subnodes
in a linear format, this may happen, and we naturally use the branch of
each label to write a single loop on the subnode sequence.)

Basically, regular expression types correspond to tree automata in
an exact way, a �nite state machine model for accepting trees. It is
easy to construct a tree automaton from a given type. Tree automata
only accept a set of trees represented by that type. Therefore, the sub-
type problem can be reduced to the inclusion problem between known
decidable tree automata. Unfortunately, in the worst case, the time
complexity of solving the problem is in exponential.

In order to deal with this high complexity, several e�cient
algorithms have been developed that they are expected to encounter
by many when it's needed to programme with regular expression types.
Instead of testing the tree automata included in the classic algorithm,
which worked before transforming their input automata into other fully
independent automata to test their properties (expensive), Aiken and
Murphy's algorithm may be a good choice as a starting point. Like
the standard subtype algorithms of other types of systems, the algorithm
operates up and down, that is, for a given pair of types, the match
of the topmost type constructor are checked, continuing to the sub-
component of the type and repeating the same check recursively . The
main advantage of this top-down algorithm is that it can implement
many simple optimizations. In particular, the re�exivity T<:T can be
used to determine subtype relationships by looking only at a portion
of the entire input type expression.

6.1.2 A method of processing queries and schema languages

XPath is a simple language for browsing the XML trees and
returning a set of answer nodes. XPath expressions are ubiquitous in
XML applications. They are used for XQuery binding variables, de�ning
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keys in the XML mode, referencing elements in the external elements
in XLink and XPointer, as mathematical expressions in XSLT and con-
tent based packet routing. Examples of containment problems for XPath
expressions appear in every application and other applications. For
example, the reasoning of the keyword described by the XPath expres-
sion can be reduced to include and the algorithm contained can be
used to optimize the XPath expression.

The containment problem deals with simple XPath fragments, that
consist of:

� node tests

� child axes (/)

� Descendant axes(//)

� Wildcards (*)

� Predicates ([:::])

And this class of queries is called XP{[] , * , //}.

The high complexity of containment creates a new challenge: �nd
practical algorithms for checking containment. Two goals may be tar-
geted: (i) to �nd an e�ecient, sound algorithm, and show that it is
complete in partiular cases of practical interest; and (ii) to �nd a sound
and complete algorithm and show that it is e�ecient in partiuclar cases
of practical interest.

Up to now, we may have introduced several basic types of tree
automata. But actually many researches try to re�ne the basic ones
and let them apply in various �elds. Here an extended type, called the
alternating tree automata, for the problem runs in exponential time in
general, but runs in PTIME in some special cases of pratial interest,
including when the number of //'s in p is restricted.

Every expression in XPf[];�;//g can be translated into a tree pattern
of arity one with the same semantics, and, conversely, each pattern of
arity one can be translated into an XPf[];�;//g expression. Figure 2(b)
illustrates a pattern in P f[];�;//g , with arity one, which is equivalent to
the XPf[];�;//g expression a[a]//�[b]//c. The containment problems for
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XPf[];�;//g and P f[];�;//g are thus equivalent. While not present in XPath,
patterns of higher arity are of great interest to us beause they capture
multiple variable bindings, which occur for example in the FOR clauses
of XQuery.

Figure 8. pattern p and an embedding from p to t

Many XML appliations could take bene�ts from a practical decision pro-
cedure for containment of such expressions. The tree automata can be
quite useful to show that this fragment of XPath has an uncontrollable
containment problem in general.

6.1.3 An algorithm toolbox

How to e�ectively evaluate a large number of XPath sets in an XML
stream is a fundamental problem in data �ow applications.

YFilter builds a XPath based NFA automata. All automata are
combined into a automaton. If the automaton reaches a speci�c data
driven termination state, the data stream satis�es the query corres-
ponding to the termination state. YFilter can reduce di�erent query
processing. Repeated computation in X e�ectively handles XPath that
does not contain f[]g, but it needs to save intermediate state computa-
tion to handle XPath queries that support f[]g.

Xtrie is an extension of the query processing based on NFA auto-
mata. When each element event is accepted, the NFA automatically
�nds the related transformation, but XTrie selects the related processor

48



after receiving the sequence of element events in response. An XPath
processor that responds to a series of elements is much less than a XPath
processor that responds to a single element. In this way, Xtrie reduces
the number of query processors that may accept the possible response to
the element input sequence, thereby improving the runtime processing
e�ciency.

The above methods are essentially the ones of the nondeterministic
processors. That is to say, in the running process, there are many active
states inside the processors, and the execution e�ciency decreases with
the increase of XPath. The existing query processing for another type
of XML data stream is based on the determination of the automaton to
be constructed.

Dan Suciu �rst constructs a XPath based NFA automaton, and then
determines on the NFA automata. Therefore, the system will always
have only one running state at any operation time. The processing e�-
ciency of the system is independent of the number of XPath processings.
However, relative to the number of queries at index level, this method
may lead to extended spatial complexity. Additionally, the entire query
processor has limited expressive power and does not support the f[]g
operator in XPath.

XPush solves the problem of expressiveness of NFA automata. This
extension mainly utilizes AFA automata that support the AND/OR
relationship between expression paths. The AFA automaton uses
extended states to save the execution of di�erent paths. XPush actu-
ators It is also based on deterministic automata, which improves the
query e�ciency of the system, but it also faces the problem of determ-
ining the space cost at the exponent level.

A machine named XEBT based on tree automata is proposed to
solve this problem. Unlike traditional methods, XEBT has the following
features: �rst, it is based on a tree automata with strong expressive
ability, which can support Xpath f[]g without requiring additional states
or intermediate results. Secondly, XEBT supports many optimization
strategies, including the automatic establishment of the XPath tree
based on DTD, and some limited additional space costs, determining
the concurrency status that reduces runtime and combining the bottom-
up and top-down assessments. Experimental results show that XEBT
supports complex Xpath, which is superior to previous work in terms
of e�ciency and spatial cost.
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Figure 9. The tree automaton and the running stack of it on XML data stream

6.2 Concurrent program veri�cation

Temporal logic is a modal logic suitable for describing time series
events, and has been used as a powerful tool for specifying and veri-
fying concurrent programs. One of the most important developments
in this �eld is the discovery of algorithms for validating the temporal
logic characteristics of �nite state programs. This derives its importance
from the fact that many synchronous and communication protocols can
be modeled as �nite state programs. A �nite state program can be
modeled by a transformation system in which each state has a bounded
description, so that a �xed number of Boolean atomic propositions can
be expressed. This means that �nite state programs can be regarded as
Kripke structures of �nite propositions, whose properties can be spe-
ci�ed by propositional temporal logic. Therefore, in order to verify the
correctness of the expected behavior of the program, only the program
modeled as a �nite Kripke structure is a model of the propositional logic
formula for the speci�ed behavior. Therefore, the name model checks
the validation method derived from this viewpoint.

There are two types of temporal logic: linear and branching. In
linear temporal logic, every moment has the only possible future, and
in the branch of temporal logic, each moment can be divided into sev-
eral possible future. For these two temporal logic, we have developed a
close and e�ective connection with the automaton theory on the in�nite
structure. The basic idea is to associate each temporal logic formula
with a �nite automaton, which accepts all the formulas of the formula.
For linear temporal logic, the structure is in�nite word, while for branch
temporal logic, the structure is in�nite tree. This makes it possible to
reduce the time logic decision problem (for example, satis�ability) of the
known automata theory (for example, non emptiness), thus producing
a clean and asymptotically optimal algorithm.
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Initially, non deterministic automata are used in document trans-
lation from temporal logic formulas to automata. These translations
have two shortcomings. First of all, translation itself is not trivial; in
fact, translation requires a series of special intermediate expressions to
simplify translation. Secondly, for linear and branching temporal logic,
there is exponential explosion between formulas and automata. This
indicates that any algorithm that uses these translations as a step will
become an algorithm with complexity of exponential time. Therefore,
the automaton theory does not seem to be applicable to branch time
model checking. In many cases, it can be done in linear runtime.

Recently many researches have shown some extended forms of non-
deterministic autamata have better performance on NLP, such as altern-
ating tree automata mentioned above, weighted tree automata and so
on.

6.3 Applications on NLP

Linguistics and automaton theory are closely integrated. Long ago,
Markov predicted the vowels and consonant sequences in Pushkin's
novels with �nite state process. Shannon expanded the idea and used
Markov process to predict the alphabetic order of English words.
Although many theorems of the �nite state acceptor (FSA) and the �nite
state transducer (FST) were proved in 1950s, Chomsky thought the
device was too simple to fully describe the natural language. Chomsky
uses context free grammar (CFG), and then introduces a more powerful
translation grammar (TG). When trying to formalize TG, automata
theorists like Rounds and Thatcher introduced the theory of tree trans-
ducers. Computational linguistics has also begun to study carefully.
Woods uses augmented transformation network (ATN) to perform auto-
matic natural language analysis.

In the �nal paragraph of his 1973 tree automata survey, Thatcher
wrote:

�The number one priority in the area [of tree automata] is a careful
assessment of the signi�cant problems concerning natural language and
programming language semantics and translation. If such problems can
be found and formulated, I am convinced that the approach informally
surveyed here can provide a unifying framework within which to study
them.�
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At this point, however, the mainstream work of automata theory,
linguistics and computational linguistics can be divided into two parts.
Automata theorists pursue some theoretical driven generalizations,
while linguists take another way to avoid formalism. Computational
linguistics focuses on the extension of CFG, many of which are Turing-
equivalent. In 1970s, speech recognition researchers reused the FSA to
capture the natural language syntax, this time using the conversion
weight that could be trained on a machine readable text corpus. These
formal devices have relevant algorithms that are e�ective enough for
the actual computer at the time, and they are very successful in distin-
guishing right voice transcriptional and incorrect speech transcription.
In 1990s, the combination of the �nite state string and the large-scale
training corpus became the main paradigm for speech and text pro-
cessing; the universal software toolkit for weighted �nite state acceptor
and transducer (WFSA and WFST) was developed to support a wide
and various applications.

In the new century, computational linguists rearoused the interest
in tree automata, especially for automatic language translation, in which
the conversion was very sensitive to the grammatical structure. The
generic tree automaton toolkit has also been developed to support the
survey.

6.4 Synthesizing reactive programs

The synthesis of reaction systems is a typical problem in com-
puter science. It comes from a problem raised by Church in 1957, which
occurs when synthesizing a standard integrated digital circuit written
in arithmetic limited logic. This problem was �rst solved by Büchi and
Landweber in 1969.

In 70s, Rabin saw an elegant automaton theory in the in�nite tree.
This theory has now been fully studied and developed into a beautiful
theory, which has become a reasonable result of automata theory.

With the connection between time logic automata and word, tree
automaton theory gives the most elegant solution to the church problem:
using the singular tree automata of this structure, the speci�cation is
compiled into an in�nite word automaton system on the deterministic
parity automata for the input generation output strategy so that the
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tree is in the tree. All paths are accepted by standard automata, and
�nally check the emptiness of tree automata.

In recent years, comprehensive problems have attracted wide atten-
tion from theoretical and practical circles. The theoretical approach
includes the extension of the branch time speci�cation, the very
important issues in the synthesis of distributed systems, and the syn-
thesis of incomplete information when the environment and systems
may not have perfect information about each other's state.

In all these problems, the synthesis focuses on the design conversion
system. In other words, the �nal output conversion system meets the
speci�cation of the synthesis algorithm. Although the transformation
system is bene�cial to de�ne the semantics of the system, the system is
seldom designed by describing the transformation system. The design
of the system is advanced and concise.

For any traditional speci�cation and a set of Boolean variables,
B, we can build a tree automata to accurately accept the tree coding
classes that meet all programs that are canonical in B. By checking the
emptiness of tree automata, we can synthesize programs that conform
to speci�cations, especially those that meet the speci�cations.

Let us �x input and output arities NI ; NO 2N for the rest of this
section. Suppose that Aspec is a non-deterministic Büchi automaton. It
accepts (f0;1gNI ;NO)! which doer not conform to the speci�cation of the
sequence set. We also �x the set of Boolean variables B.

Then consider collecting all the trees corresponding to the program
on the variable B, where input and output elements NI and NO. We
can know that this is a set of rule trees. We assume that Apgm is a tree
automata, which only accepts these trees.

We will now construct a bidirectional alternating Büchi automaton
that accepts trees corresponding to programs that do not conform to
the speci�cation. Intuitively, the automaton A will guess the speci�c
operation of the program by non-deterministically selecting the input
sequence, simulating the programs on these inputs and checking whether
there is an operation of the speci�cation automaton Aspec that is being
executed. If there is such an input sequence, the program will generate
an appropriate response sequence and be accepted by Aspec, and the
program tree will be accepted.
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A bidirectional alternative of tree automaton will have two tuples
as states. The �rst one is a tuple of the form hs; q; i; m; ti where s is
the current state of the program simulation (ie, an estimate of variable
B) and q is the current state of the canonical automata Aspec while
observing the input and Output sequence simulation, i is the last input
received by the program, m is the mode for m2fin; outg, the next I/O
operation that the logger must perform is input or output. Whenever
the speci�cation state is updated, the last bit t2 f0; 1g will be toggled
to 1 and then set to 0 again.

The second state is the form of hs; vi, where s is the current state
of the program simulation, and the v is a boolean value; these states are
used to encode boolean expressions (in if statements and while state-
ments and on the right side of the condition), and to check whether the
expression calculates the value v in the pre-state of the program.

Intuitively, automata traverses the program tree, explaining each
statement and calculating the current state of variables in s. In this
process, it may have to move up and down on the tree, because the while
loop needs to traverse the same statement block many times. When
it meets the output statement, it updates the speci�cation automaton
state and outputs the evaluation on the i. When it meets the input
statement, it stores it in the corresponding variables in s and updates
the component i.

6.5 Automating data completion

Many application domains use table rows and columns to store
data. For instance, R data-boxes, relational databases and Excel spread-
sheets treat all the fundamental data as two-dimensioned tables of cells.
For such case, it is common to use some of the values stored in some cells
to populate the values of other cells. As examples, think of the following
ordinary data to accomplish this task:

� Data imputation: In statistical meaning, imputation means
replacing lost data with substitute values. Because missing values
can hinder data analysis tasks, users often need to �ll in the
table with missing values for other related items. For example,
data imputation often occurs in such as R and other statistical
computing frameworks.
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� Spreadsheet calculation: In real life, there are many applica-
tions using the formats like spreadsheets. Then users need to cal-
culate cells' values based on the other cells' values. For example, a
general target is to calculate the values in newly created columns
where these values will be dependent on the values in the pre-
vious columns.

� Virtual columns in databases: In many cases of relational
databases, users need to create views where they are for storing
the results of some intermediate database queries. In such cases,
we usually need to add a virtual column whose values are
dependent on the existing entries' values in the view.

Figure 10. A data completion task in StackOverFlow

Suppose we give here a domain speci�c language(DSL) formatted
by the following syntax G=(T ;N ;P ;S), where T stands for a �nite set
of terminals (i.e. constants and variables), N stands for a non terminal
symbol, P stands for a set of forms to F (e1; :::; en), in which the built-
in function ("component") is a built-in function ("component"). For
simplifying the representation, we assume that in each production the
used components are of �rst order; if they are of higher order, let's
combine the methods we propose with the enumerated search.

Let's show here the working principle of the universal version of
the space-learning algorithm. For each input and output example �!o,
where � is an estimated value and o is the output value, we construct a
�nite tree automaton(FTA) A= (Q; F ; Qf ;�) that exactly represents
the assembly that is consistent with the example. Here, FTA's letter F
consists of built-in components provided by DSL. To construct the state
Q of the FTA, let us assume that each non-terminal symbol n2N has a
pre-de�ned overall fv1; :::; vkg that it can use. Then we introduce a state
for each n2N and vi2Un; let's call all non-terminal state sets in N as
QN. We also construct a set of states QT by introducing a state qt for
each terminal t2T . Then, the state set in the FTA is given by QN [QT .
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Next, we use the production P in grammar to construct transform-
ation rules �. To de�ne transformation, let's de�ne a function DOM
(s), which gives every symbol s the domain of s:

DOM(s)=

8>>>>><>>>>>:
s; if s is constant
�(s); if s is variable
Us; if s is non terminal; andUs is its corresponding universe

Now, consider that generating n!F (s1; :::;sk) forms in the syntax where
n is non-terminal and each si is a terminal or non-terminal. For each
vi2dom(si), if there is v=[[F (v1; :::; vk)]] , we add a transition F (qs1

v1; :::;
qsk
vk)! qn

v. Additionally, for each variable x we add a transition x! qx.
Finally, the �nal state Qf is a singleton containing the state qS

o , where
S is the start symbol of the grammar and o is the output in the example.

Figure 11. The overview of data completion approach

In view of the general method of building tree automaton for the
problem of data completion, the principle of learning algorithm is to
construct FTA for each independent example and then intersect them.
The �nal FTA represents the version space of all programs that are
consistent with the example. Then we can see how much tree automata
are helpful here.
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7 Conclusion

In the thesis, an overview of trees and tree automata is presented.
We introduce the main theory progress of automata on the structure
of in�nite trees, which has a very strong expressive power. The basic
forms of in�nite tree automata are introduced and we discuss about their
closure property, regularity and decidability. Among the contributions,
Rabin's several theorems are the most beginning of in�nite trees and
lead to all the re�nements and applications afterwards. We also mention
the game theory in which a gaming strategy can help us re�ne the
di�cult proofs and make them more understandable. After deciding
the emptiness problem of in�nite tree automata, the introduction to
the topological complexity of in�nite tree automata lead us to the hier-
archical view of them. One important property of in�nite tree automata
is that they have close relations to logical theory. Many problems are
quite di�cult to solve in logics, but we may �nd reducible ways to solve
them in automaton theory. Last, we've introduced the applications of
tree automata on many practical uses in recent tens of years. As we can
see, unlike �nite tree automata, automata on in�nite trees still remain
more in the theory, but the use of them will emerge more and more.
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