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Abstract 

Does a fluid have memory? Is it possible to interrogate it about the information it is 

carrying while it flows?  

These questions come observing the Nature and the ability of many natural systems 

to store information. This capability is common for many materials solid or semi-solid. 

An example can be found into the geology field where, through the study of subsoil’s 

stratigraphy, surfaces that move relatively in relation to each another are 

investigated. The information in this case is in the mineral that is at the interface 

between the two surfaces. Under the friction’s effect, that produces energy in the 

form of heat, the structure of the mineral change. The solid material behaves like an 

extremely high-density fluid under the effect of tectonic movements, deforming itself 

to create undulating layers that give the idea that the rock has been bent. When 

something happens, it is recorded into the material itself. In nature there are also 

situations where fluids "survive" in a state where the transformations take a long 

time to end. It happens in many biological systems as the human cardiovascular 

system that can be considered a great micro-fluidic one. These are just examples, but 

the list can be longer. The idea is simple: an open system that is able to interact with 

the environment that surrounds itself, is even able to receive an information during 

this interaction under different forms; energy or matter.  Under these considerations 

this research has been developed. The aim of the study, indeed, was to investigate 
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the fluid systems in order to understand, under defined conditions, its capability to 

store information on time when it flows in a channel (and also the limits of this 

capability). 

Since a fluid is moving means that it has the energy to do it. It follows that the fluid 

system during the flow modifies its internal energy generating a variation of Entropy 

of the system, in a purely thermodynamic meaning. It is common to study fluidic 

systems by a mechanical point of view, while in this research the idea is to approach 

the study from another point of view, applying an energetic analysis 

(thermodynamic) focusing on the entropy itself. 

 The own definition of entropy is not totally univocal, but can be explained as the 

level of disorder of a system and especially describes its evolution under the effect of 

the external environment. From this interpretation, the concept of entropy was taken 

up by Claude Shannon in 1948 [1] when he applied the concept in the field of 

information theory, in order to describe the level of complexity of a signal in data 

communication system: the thermodynamic of the information. Even a fluid, from a 

certain point of view, is a way to bring the information. The nature uses it to transport 

nutrients to cells (biology) and in the same systems to transport “information”. In 

more complex biological systems like human body, in case of inflammations, the 

blood is on charge to communicate the situation with the central nervous system. For 

these reasons, a parallelism with a fluid that flows in a micro-fluidic channel will be 

proposed in this study, considering the transmitter the inlet of the channel and the 

receiver the outlet of the channel. The fluid that flows in the channel has been 

considered as a carrier and, consequently, as a reservoir of information related to the 

environment. In the event of presence of obstacles in the channel, the fluid adapts 

itself to the geometry during motion, so the particles change their trajectories. This 

variation can be casual (i.e. in presence of turbulence) or, under specific constraints 

and boundary conditions, not. This behaviour influences the internal energy of the 

system and consequently the entropy. It follows that entropy could have all the 
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characteristics to be a descriptor of the state of a system when its configuration 

changes.  

Therefore, another aim of the study is to find a relation between the interaction of 

the fluid and the shape of the obstacles present into the channel through the 

Shannon entropy parameter. To achieve this goal, a Computational Fluid Dynamic 

(CFD) simulation using the software ANSYS FLUENT® v.15.0 was made, where a 2D 

rectangular channel in presence of obstacles was simulated. In particular, the 

obstacles have been considered in different shapes, geometries and number in order 

to evaluate their different impact on the fluid. This analysis was carried out 

considering initially all the elements of the grid in which the channel was divided and, 

subsequently, only 50% of the same. 

This study can be considered as good starting point to suggest the deepening of this 

analysis to geometrically describe a channel at the level of presence of obstacles 

within it. In fact, analysing the parameters linked to entropy, seems to be possible to 

discriminate their geometry and distribution. Moreover, the analysis of the Shannon 

entropy considering only 50% of the elements of the grid has provided excellent 

results. In fact, a very low error rate was obtained compared to the calculation with 

100% of the points confirming the validity and solidity of the method. 
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Chapter 1 

Introduction  

During the last years, the study presence of obstacles in a channel or in a vessel has 

attracted many scientific researchers because of its different applications. As a 

matter of fact, this situation can be attributes to different and generics scenarios. 

Obstacles can be seen in different way depending on the field of investigation. For 

example, in the field of medicine plaques can be seen as obstacles in the blood 

vessels. Instead, in biology field, this role can be played by the cells that in a 

bioreactor are used to promote their growth and/or differentiation. In microfluidic 

field, micro- and nano-reactors can be necessary to operate a fluid mixing and the 

presence and the amount of the obstacles influence the fluid mixing that, in general, 

must be monitored.  

So, in literature it is common to find several studies that investigate the presence of 

obstacles in different situations. This phenomenon has particular relevance to 

numerous practical engineering applications, due to the associated influence of the 

pressure loss, heat and mass transfer. 

In 2015 Chatti et al. [2] studied the effect of presence of obstacles in a porous channel 

from the point of view of the heat transfer, in order to see how these particles could 

influence the fluid and so the heat transmission. Others similar studies, that were 

focused on the heat transfer rate in presence of obstacle, were carried out by Gareh 
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(2014) [3], Bilen and Yapici (2001) [4], Y. Wang and K. Vafai (1999) [5] and Hosseini et 

al. (2008) [6]. 

Another study about the effect of obstacles in a porous medium has been 

investigated in 2014 by S.J. Cox [7]. He analysed how much obstacles induced a 

bubble division in the flow of a foam, uncovering that the position and the size of the 

obstacles had a bearing in the bubble division. Sure enough, they could produce 

either only lower changes or significant number of division events and so the foams 

were highly poly-dispersed. 

The presence of obstacles is also investigated for the acoustic oscillations of a gas in 

a channel. In his paper, in 2011, Khasanov [8], discussed about the reliance of the 

self-oscillation frequencies on the size of the obstacle. He focused his attention to 

demonstrate the dependences of the frequencies of eigenoscillations on the obstacle 

lengths and locations along the channel. 

Moreover, in literature there are different fluid dynamic studies in which is treated 

the phenomenon of the obstacle presence, and many of them are focused in 

particular for biomedical micro-devices.  

Merdasi et al. (2017) [9] carried out a numerical simulation of a falling droplet subject 

to gravitational force in a channel with embedded rectangular obstacles. Their aim 

was to combine effect of the obstacles and fluid parameters to control deformation 

rate of a falling droplet. 

Instead, Yojina et al. in 2010 [10] investigated the flow pattern phenomena and the 

flow field around one and two square obstacles inside a two-dimensional channel for 

a range of Reynolds (Re) numbers. Their idea was born thanks to the interest for 

chemical mixing fluidic devices, especially to improving the efficacy of the mixing, 

hypothesizing that it could be possible through the presence of obstacles along the 

channel.  
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 A biomedical study was carried out by Bulusu and Plesniak in 2015 [11] with the aim 

to introduce an autonomous method for the identification of hemodynamic 

secondary flows. They presented an algorithmic approach using the tenets of the 

classical theory of communication, Shannon entropy and signal uncertainty, that 

permit to avoid the human dependence in the research of secondary flows. This 

“spiral blood flow structures” are ubiquitous in the cardiovascular systems. The 

authors investigated a stent implantation because, in case of breakdown, it concerns 

the progression of several cardiovascular diseases due to the alteration of stress 

distributions near the wall. The observation was made possible using the Shannon 

entropy-based wavelet transform method for spiral blood flow structures. 

Resuming, there are a lot of fields in which the importance of obstacles presence in 

a channel is studied and, in all of these field, the presence on them plays relevant and 

different roles.  

There is also another key concept that must be underlined and explained for this 

research: the possible influence that an object may have in terms of “induced” 

information or that can reside in an entity (i.e. an obstacle is an entity) when it is 

undergo a transformation. The idea is that there are several cases in which an open 

system is able to accept information from the environment that surround it, cause of 

their interaction. One of the most important hypotheses for this study is related to 

the fact that a system always evolves in different ways according to the boundary 

conditions. Moreover, each evolving system possesses a certain digital imprint that 

characterizes it from all the others. Learning how to read this imprint allows to get to 

the complete knowledge of the system. 

An example of the ability of a material to store information from the surrounding 

environment can be found in the field of geology. As a matter of fact, geologists are 

able to observe surfaces that move relatively to each other. In these cases, the 

information is located in the mineral that is at the interface between the two 

surfaces. Under the effect of friction that generates energy in the form of heat, it 
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changes the structure of the mineral. When something happens, in a certain way it is 

recorded into the material itself. 

A question arises from these considerations: can a fluid be investigated starting from 

the information it is carrying while it flows? In this way we are assuming valid the 

concept that a generic fluid (as it happens for many other materials) has the capacity 

to absorb (or store) information and then maintain it over time. How long is the 

capacity to maintain the information is linked to the nature of the fluid itself. 

However, it must be remembered that fluids undergo very rapid transformations and 

the information can be lost in such a short period of time that a large part of this, if 

not all, is lost during motion. On the other hand, in nature there are also situations 

where fluids "survive" in a state where the transformations take a long time to end. 

It happens in many biological systems as the human cardiovascular system that can 

be considered a great micro-fluidic one. So, a fluid, from a certain point of view, is a 

way to bring the information. The nature uses it to transport nutrients to cells 

(biology) and in the same systems to transport “information” in more complex system 

like human body, in case of inflammations, for example. 

Therefore, the two starting points for this study were the relevance of obstacles in a 

channel, and the possibility that a fluid can carry and keep information during its 

motion.  

There are different ways to investigate these situations and, how seen in Bulusu and 

Plesniak study [11], one of this is the approach employing the entropy theories.  

When a fluid is in motion with respect to a system, it means that it has energy to do 

it. It also signifies that a fluid system in the act of moving modifies its internal energy, 

lost during motion, also generating a variation of the entropy of the system, in a 

purely thermodynamic sense (Chapter 2). As a matter of fact, entropy has all the 

characteristics to be a descriptor of the state of a system when it modifies its 

configuration. The definition of entropy is not totally univocal, but can be explained 
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as the level of disorder of a system and above all it describes an evolution of the 

latter, which is transformed under the effect of the external environment that 

surrounds it. From this interpretation, the concept of entropy was taken up by 

Shannon [1] in 1948. He applied the concept in the field of information theory, in 

order to describe the level of complexity of a signal in data communication system: 

the thermodynamic of the information.  

In this study the system was analysed in order to try to extrapolate information about 

its transformation, passing from the calculation of entropy, but not in the 

thermodynamic sense, rather from an informative point of view through the concept 

of entropy of Shannon (better explained in the next chapters).  

Information entropy was already used in the past to describe different problems, e.g. 

a state of disorder in a system and to quantify flow complexity and so also fluid 

mixing. The first was analysed by Brandani et al. in 2013 [12] through the Shannon 

and conditional entropy. Instead, in a previous work, in 2006, Camesasca et al. [13] 

quantified fluid mixing with the Shannon entropy. In 2017, Pozo et al. [14] applied 

the study of information entropy introducing an index of flow complexity coined 

interlacing complexity index (ICI), valid for a single-phase flow in an open system with 

inlet and outlet regions, involving finite times. In bioengineering field, in 2008, Rocha 

et al. [15] carried out a research to investigate if the Shannon entropy (SE) was able 

to determine bone remodelling evolution and maturation events during regeneration 

of bone defects (usually analysed by a human). The SE can be an objective methods 

of image texture analysis, to describe the structural changes of new-formed bone, 

based on the tissue organization or disorganization. It could permit to reduce the bias 

of the observer in determining the quality of the newly formed tissue. 

 

For what has been said previously, the investigation of obstacles presence and the 

use of Shannon entropy analysis would seem to be two fields of considerable interest. 

For this reason, in this study they have been connected to each other.  
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The present work represents a two-dimensional Computational Fluid Dynamic (CFD) 

numerical investigation of the motion of a fluid in a rectangular channel, it 

reproduces a microfluidic channel, containing one or more obstacles of different sizes 

and shapes and placed in different positions. Another aim of the study is to find a 

relation between the interaction of the fluid and the shape of the obstacles. The 

information carrying by a fluid can be seen in different shapes. For example, it can be 

seen in the way of variation of energy or variations in terms of second order dynamic 

fluid characteristics as a change of velocity or trajectory. The SE has been applied in 

order to understand if it is a good descriptor to check the obstacles presence, simply 

analysing the velocity field in the channel.  

The possibility to investigate the internal geometry of a channel without invasive 

techniques, indeed, could be certainly very interesting in a variety of fields. This 

method could be useful for both a priori and a posteriori analysis. 

In the chapter 2 firstly, by a historical point of view, the concepts of entropy and 

information are presented, in order to offer e general overview of the theory. In 

secundis the definition and the derivation of Shannon entropy is introduced. Then, it 

is show the relationship between Shannon’s theory and entropy in thermodynamics, 

and are pointed out the differences and the similarities.  

Later, the applications of Shannon entropy are shown evaluating the fields of use. 

In the chapter 3, the first part exposed the different steps to create the 2D model for 

the Computational Fluid Dynamics (CFD) simulation. The different obstacles 

configuration in the channel are presented. Instead, the second part consist of an 

exposition of numerical (used by ANSYS FLUENT®) and analytical solution employed 

in the model to resolve the equations that govern the fluid dynamics. The third part 

concerns the explanation of the method used in this work. The principal means was 

the creation of a binary velocity matrix with which the Shannon entropy was 

calculated.  
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The Chapter 4 is a presentation of the results obtained after the post-processing of 

the numerical outcomes obtained by ANSYS FLUENT®. In the first part the Shannon 

entropy trends in the different configurations analysed will be show. In this situation, 

the whole grid elements of the channel have been considered.  Instead, in the second 

part, will be present the results obtained by a valuation of Shannon entropy in the 

50% of the grid in order to evaluate if the reduction of the number of elements 

involves a modification in the information studied through the SE. 

Finally, in chapter 5 are reported all the conclusions and all the considerations 

observable from the results obtained with simulation. In particular, the positive and 

critical aspects of the analysis are considered and are also analysed future 

expectations. 

 

 

 



  

 

 

Chapter 2 

<<We known the past but cannot control it. We control 

the future but cannot know it.>>  

Claude Shannon  

Entropy and theory of information 

entropy  

 

How introduced in chapter 1, the concept of information is not univocal. Before 

defining the difference and the relationship between entropy and information, it is 

necessary to resume what “information” is. The word "information" is commonly 

used, so it is often thought that it means something as “knowledge”, “data” etc. The 

information represents how confident we are of the probability that something will 

occur. In other words, information is measured based on the number of resources 

needed to describe a probable event. Higher is the probability of success of the event, 

less information needs to be forwarded. The information entropy is defined as the 

means with which is possible to distinguish and choose from different information, it 
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is the average information quantity generated by a stochastic source of data (i.e. not 

a deterministic process). 

The amount of information necessary to describe a system is closely related to its 

complexity. There is a strong connection between the amount of information and 

disorder. Considering the algorithmic complexity as a measure of information, more 

disordered messages are characterised by more information. The relationship 

between entropy and disorder is mainly due to Boltzmann [16], even if he did not use 

the word “disorder”. He defined that entropy is as large as the number of microscopic 

configurations that a system can assume is higher. To better explain this concept, 

consider the example depicted in figure 2.1. 

 

Figure 2.1: Representation of the degree of disorder of a general system: (a, c, d) 
disordered and (b) crystalline, ordered [17]. 

The (a), (c) and (d) configurations represented a state with a high disorder while (b) 

is the ordered state. It follows that the first three are associated to a higher value of 
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entropy due to the large number of configurations that the system can assume 

compared to the remaining condition.  

How is it possible to quantify the average information obtained from knowing an 

initial message? What are the methods can be used? The answer follows into the next 

chapters. 

2.1 Shannon Entropy  

Claude Shannon [1] in 1948 published an article that is considered as a fundamental 

contribution for the information definition through the theory of information. For the 

formulation of his theory, Shannon was inspired by Boltzmann, by the formulation of 

entropy (S). 

 𝑆 =  k log 𝑊 (2.1) 

where k is the so called “Boltzmann constant” equal to 1.38054*10-23 J/K.   

Shannon observes that a message sent through any type of “channel” is deformed 

(i.e. a channel is the way with which the message is transmitted or, from another 

point of view, it is possible to know an event) and therefore some of the information 

is lost during transmission. He analogized this loss of information with entropy, the 

well-known function that expresses the degradation of energy that occurs in every 

transformation of mechanical work into heat. 

For Shannon, the starting point was the possibility of misunderstanding and 

interference during the transmission of a message in a channel, and he asserted that 

the major role is assumed by the information uncertainly. To make an example and 

to better explain this concept, you can imagine that tomorrow the sky will be above 

our head. This is a certain event and it does not surprise us. However, the opposite 

would surprise us a lot, so a highly unlikely event has a high information value. 
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In his research, he defined a communication system composed by five principal 

elements (Figure 2.2):  

1. The information source: it is responsible for producing the message. 

2. The transmitter: it transforms the message suitable for transmission over the 

channel. 

1.  The channel: it is used to transmit the signal from transmitter to receiver. 

2. The receiver: it operates a reconstruction of the output message starting from 

the signal. 

3. The destination: the thing for whom the message is intended.   

 

 

Figure 2.2: Schematic diagram of a general communication system [18] 

 

In his theory, Shannon defined how the information is transferred and therefore the 

elements necessary for the process. He quantified the minimum number of resources 

needed to transmit information and named it as “entropy”. It is defined in terms of 

concept of information entropy and now more commonly known as “Shannon 

entropy”. In reality, the idea to employ the noun entropy was not a his one. Myron 

T. Tribus, an American engineer who became interested in the thermodynamics of 

information theory, at that time was trying to explain the connection between 

entropy defined by Claude Shannon and the entropy defined by Rudolf Clausius. In 
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1961 Tribus met Shannon at MIT (Massachusetts Institute of Technology - Boston) 

and asked him the reasons for the name “entropy”. In 1971 he claimed that Shannon 

answered his question thus: 

“My greatest concern was what to call it. I thought of calling it ‘information’, but the 

word was overly used, so I decided to call it ‘uncertainty’. When I discussed it with 

John von Neumann, he had a better idea. Von Neumann told me, ‘You should call it 

entropy, for two reasons. In the first place your uncertainty function has been used 

in statistical mechanics under that name. In the second place, and more importantly, 

no one knows what entropy really is, so in a debate you will always have the 

advantage.” (Tribus and McIrving 1971) [19] 

For Shannon, the message is selected from a set of possible messages. When one of 

these is chosen from the set, the information is produced. How said above, there is a 

minimum number of resources needed to correctly identify the message. In 

particular, it has to be major or equal to his entropy and a priori knowledge of the 

data set is fundamental. To better explain this concept, we referred to an example 

mentioned by Lesne in an article published in 2014. “A classic example is the 

quantification of the information needed to communicate a play by Shakespeare, 

whether the receiver knows in advance that he will receive one of the plays by 

Shakespeare (and then transmitting only the few first words is sufficient), or not (and 

then the whole text of the play has to be transmitted)” [20]. 

It is quite common to recognize the Shannon concept of entropy as “binary entropy” 

because, as minimum units of information, the bits (binary information units) are 

used. For their definition they can be assume only two values: 0 or 1. In fact, in 

information theory, two symbols are necessary and sufficient for an alphabet to 

encode information.   

To better explain the concept of entropy, the variables of interest for the study 

defined in the Shannon theory are presented below.  
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Supposing to have a set of possible states whose probabilities of occurrence are  

X = {xi}i=1
n . The information associated with the i-th event is quantified by: 

 
Ip(xi) =  − logb P(xi) (2.2) 

Where P(xi) represents the probability of occurrence of the i-th value of x. Shannon 

introduced the quantity Ip(xi) as a measure of the information brought by the 

observation of x, knowing the probability distribution P(xi). The aim is to find a 

measure that defines which event will be selected and how much uncertainty affects 

the result. This measure is now call S and have the following form: 

  

S(X) = K ∑ P(xi) ∙ Ip(xi) = −K ∑ P(xi) ∙  logb P(xi)

ii

 
(2.3) 

where K is a positive constant and just depends to a choice of a logarithmic base (b), 

it corresponds to the choice of a unit for measuring information. It is possible to 

choose different values for b and this choice reflect to the values of K. How said 

above, the units chosen are bits, so base 2 is used.  

Later in this study the Shannon entropy (SE) will have the following expression: 

 
SE(X) = − ∑ P(xi) ∙  log2 P(xi)

i

 (2.4) 

In this definition, the convention that 0 ∙ log2 0 = 0 is used, easily justified by 

continuity since x ∙ log x → 0 when x → 0. 

Information (Eq. 2.2) is strictly related with probability. In fact, it is meaningful only if 

the message is pull out from a set of messages that could have been issue a priori. 

The receiver assigns to each message a probability before transmission. How 

explained by Roger Balian in 2004 [21], Ip(xi) represent so “the surprise in observing 

x, given prior knowledge on the source summarized in P(xi)”. At this point, it is 
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understandable that the SE symbolize the average missing information, namely, the 

average information need to point out the outcome when the receiver knows the 

probability distribution. 

For the reasons discussed above, is possible to give another interpretation of the 

entropy concept, that is, as negative information. Concerning this topic, there were 

different opinions that were often debated in the past, especially for the concept of 

negative entropy, discussed i.e. by Léon Brillouin [22]  . This consideration derived 

from the different ideas between Shannon and N.Wiener [23]. In fact, the latter, 

attributed to entropy the concept of disorganization while the information 

symbolized organization. For Shannon disorganized messages represented more 

information. For Wiener, entropy and information were opposite. The term 

“entropy” has been used in several scientific contexts. Often it is based on the 

concept of entropy proposed by thermodynamics, resulting equivalent to “disorder” 

(used in this way also by Norbert Wiener, the father of cybernetics mentioned 

before), sometimes, instead, understood as a measure of information complexity 

(according to information theory and so by Shannon).  

It is clear there are different points of view: entropy can be seen as negative, but 

another way is to consider the information as negative or rather, differences in 

entropy correspond to differences in information of opposite sign. 

On the other hand, it is clear how the SE is the amount of average information 

obtained after reading the message. So, it simultaneously goes to measure the 

degree of uncertainty before to read the message. It follows that the greater is the 

entropy, the higher the degree of unpredictability of a system, the greater the 

"disorder" in which it is (reasonable because the disorder has many more 

configurations of the few states that we call "ordered", therefore it is much more 

unpredictable). Consequently, it is more correct to say that differences in entropy 

correspond to differences in mean information of opposite sign. The latter 

corresponds to a change in what we know, on average, before and after the 
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measurement. 

 

2.2 Thermodynamic entropy and Shannon entropy 

Everybody meets the term “entropy” for the first time approaching the second 

principle of thermodynamics. This principle is very generalizable, there are several 

statements of this principle and so, by extension, it has been used in different 

scientific contexts. The first field in which it born was the classic thermodynamic and 

the definition was made by R. E. Clausius in 1864. Entropy is an extensive quantity 

associated with a system in equilibrium. It is a quantity suitable for measuring 

molecular disorder. When the molecules are in a disordered system, it is more 

difficult to predict their position: the entropy will then be greater. For example, 

consider a gaseous state and a solid state. The entropy of the latter will certainly be 

lower because the particles cannot move from their equilibrium position but can only 

oscillate [24]. 

 Considering two vessels, A and B, separed by a wall, caracterised by two entropy, 

respectively equal to S1 and S2. In the vessel A it is enclosed a gas while the other is 

empty (Fig. 2.3a).  In this situation the entropys are constant and the state of A is 

ordered. When a hole is opened in the separation wall (Fig. 2.3b) , the gas 

spontaneously expands into the container B. This is an irreversible transformation 

and entropy increases by a quantity equal to: 

 
𝑆2 −  𝑆1 = R ∙ ln 2  

Where R in the gas constant. In this situation the order of gas has decreased. It is also 

possible to say that the disorder has increased because the molecules try to occupy 

all the volume available in B (consequentially the entropy increases).  
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Figure 2.3: Two vessels, (A) with a gas, (B) empty. a) vessels separated by a wall, b) 
gas moving into B thanks to the opening of a gap in the wall. 

 

Another field in which the entropy is applied is the statistical mechanics. It is the 

application of probability theory to the thermodynamic behaviour of systems 

composed of a large number of particles. The macro-state is the thermodynamic 

state of the system defined by values of different quantity as temperature, pressure 

etc. It is determined by the properties and by the motion of its microscopic 

components, as molecules, atoms and electrons. On the other hand, the microstates 

represent dynamic states that can be defined also knowing velocities and positions 

of all the system molecules. Statistical mechanics is able to connect the properties of 

the individual atoms and molecules to the macroscopic properties of the system it 

composes in order to make it unnecessary to consider the motion individually of each 

particle. At each state of macroscopic equilibrium, in fact, corresponds many possible 

states of microscopic equilibrium or molecular configurations. 
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Entropy is related to the total number of possible microscopic states of the system, 

namely the thermodynamic probability p, from the  Boltzmann relation [16] 

 S = k ln 𝑝 (2.5) 

Where k is the Boltzmann constant (1.38054*10-23 J/K) and p is the multiplicity of the 

possible configurations with which the particles of the system are distributed in the 

particular division (microstate) that corresponds to the state of the system 

(macrostate). From a microscopic point of view, the system entropy increases with 

the randomness and the indeterminacy of the position of molecules (molecular 

probability). It quantifies the probability that the particles are in one particular 

distribution among the many possible dynamic states in which they are they can be 

found. When an isolated system evolves spontaneously towards states of greater 

entropy, it is inclined to bring itself into the state that has a greater thermodynamic 

probability. The most probable macrostate is the one to which the greatest number 

of microstates is associated it is called “equilibrium state”.  

It follows that entropy is a measure of molecular disorder and this one growths for 

every time that a transformation occurs.  

Statistical entropy is reduced to Boltzmann entropy when all the accessible 

microstates of the system are equally probable. S is itself a thermodynamic property. 

Therefore, it acts as a link between the microscopic and the macroscopic world. 

A generalization of Boltzmann entropy for all systems was made by Gibbs in 1902 

because Boltzmann's entropy is considerable only if the systems are in global 

thermodynamic equilibrium, for an isolated system. Both entropy mentioned are a 

measure for microstates of a system, but the Gibbs entropy (Eq. 2.6) does not require 

that the system is in a single and well-defined microstate and exchanges energy with 

its surroundings.  

https://en.wikipedia.org/wiki/Ludwig_Boltzmann
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For a system that is with probability pi in a microstate, and being kb the Boltzmann 

constant, the Gibbs entropy is define as: 

 
SG = −kB ∑ pi ln pi

i

 (2.6) 

Remembering the formulation of SE (Eq. 2.4), is possible to see that the Shannon, 

Gibbs and Boltzmann definition of entropy have close resemblance. Despite the 

foregoing, there are several differences. The first is the field of application. Shannon 

entropy, indeed, is used in information theory while Gibbs and Boltzmann entropy 

are used in statistical thermodynamics. Another difference consists in the role 

assumed by entropy: Gibbs entropy is the amount of chaos in a thermodynamically 

system, Shannon entropy is used within information theory that communicates the 

number of bits required to determine the outcome of a random process. 

 

2.2.1 Maxwell’s demon paradox 

It is now undeniable, at this step, that thermodynamics and information entropy are 

deeply related. The second law of thermodynamics affirms that any system, left to 

itself, switches spontaneously from order to disorder (because the latter is more 

probable), unless energy is supplied from outside. In 1871, the physicist J. C. Maxwell 

presented publicly in the book “Theory of heat” [25] a mental experiment that 

seemed to refuse the second principle. The main idea of Maxwell’s paradox is to have 

a creature capable of controlling a trapdoor that divides two containers that include 

the same gas at the same temperature (Figure 2.4). Within them there are faster and 

slower molecules. Whenever a high-speed molecule goes to the wall, the demon 

opens the trapdoor. After a certain period, all the fastest molecules are in one of the 

two containers and the slower ones in the other. Temperature is related with 

velocity, more the molecules are fast, higher will be the temperature. Then, the 
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creature will be able to confine the hottest gas on one side and the coldest gas on 

the other, without converting a certain amount of work into heat. 

 

Figure 2.4: representation of the Maxwell paradox (Franco Maria Boschetto 
http://www.fmboschetto.it/tde3/termod7.htm) [26]. 

 

This “experiment” was in contrast with the second principle of thermodynamics that, 

in one formulation, affirms that it is impossible to transfer heat without converting a 

work into heat at the same time, how explained previously.  

Many scientists tried to solve this problem. A solution of the Maxwell’s demon 

paradox was suggested by Leo Szilard in 1929 [27] that formalized for the first time 

the relationship between information and entropy. Analysing the problem, he 

underlined that to measure the speed of the molecules Maxwell's demon would need 

to have some facility. Moreover, the acquisition of this information would require a 

waste of energy. 

http://www.fmboschetto.it/tde3/termod7.htm
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In 1961, Rolf Landauer [28] contradicted Szilard's idea because said that, if the 

measurement processes are reversible, they do not need to increase entropy. 

His solution to Maxwell's paradox lies in the connection between thermodynamic 

entropy and information entropy. The Maxwell’s creature in fact, to decide whether 

to pass a molecule, had to have information on the state of the molecule. Deleting 

information caused dissipated energy. Moreover, this information could not be kept 

indefinitely by the demon. 

In addition to the Landauer’s solution, Bennet, in 1982, showed that the demon, 

sooner or later, would have to erase information due to limited memory space. This 

action would have led to an increase in entropy and represented a 

thermodynamically irreversible phenomenon. 

 

2.3 Application of information entropy 

It is now evident that information entropy involves in different areas of research and 

that the concept of entropy could be extended to areas of application quite far from 

physics, first among everything the theory of information. 

Recall that it equalized the degree of ignorance to disorder, considering the message 

as quantity of information which allows the receiver to move to a state of order or 

less uncertainty.  

Therefore, the SE is employed in the theory of information to describe the level of 

complexity of a signal: higher is the Shannon Entropy, higher is the level of complexity 

necessary to recognize an information from another one when it is transmitted. In 

other words, the SE can be employed in order to understand how the signal is easy 
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to forecast when, passing through an environment, it “leaves” information and 

interact with the environment. 

The information entropy concept is used in different sectors: obviously in computer 

science, but also in biology, statistics, psychology and economics, to mention a few.  

For this study, the fluids field was analysed, especially in terms of flow complexity 

and flow mixing but even to try to find a correlation with the fluid interactions with 

the environment (e.g. a fluid flowing in a channel). For the first, an interesting study 

has been carried out by Pozo et al. in 2017 [14] introducing an index (ICI, “interlacing 

complexity index”) based on Shannon’s mutual information (MI). Their aim was to 

investigate the flow complexity for open systems with inlet and outlet regions of 

arbitrary shape and topology. They have shown that the ICI provides a sensitive 

complexity measure underlining that the more complex the flow, the larger the 

information loss in the propagation from inlet to outlet.  

The flow mixing, on the other hand, is commonly studied due to its relevance in many 

sectors, in both macroscale (e.g. mixing of gases in an engine) and micro scale (as 

microreactors and micromixers). To take into account the degree of mixing of some 

substances or fluids many approach are used. Camesasca et al. in 2006 [29] analysed 

this aspect precisely through the use of Shannon entropy. It assumed the maximum 

value (SE = 1) when the mixing was perfect, namely in any region the concentration 

of a component was equal to its concentration in the whole system. The minimum 

value (SE = 0) represented a state of perfect order, no loss of information and 

therefore no mixing between the species. 

These examples of study confirm that information entropy is suitable to be use in 

numerous fields of study. For this reason, the new approach proposed in the present 

study (which will be explained in more detail in the next chapters) arises from the 

possibility that, within certain limits, the SE can be able to describe the nature of the 

environment with which a fluid has interacted only analysing the inputs and outputs 
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of a channel. Considering the presence of some obstacles with different geometries 

in the channel, a question has been raised: analysing a laminar flow interacting with 

the obstacles, can the analysis of SE describe the nature of these obstacles? 

This represents the scope of use of Shannon entropy theory in this research. 

Afterwards, when the study results will be discussed, the answer to this question will 

be provided.  



  

 

Chapter 3 

Materials and methods  

3.1 Channel geometry 

Starting from the idea to investigate the possibility to apply the Shannon Entropy 

analysis on the study of the fluid flow, and in particular on its interaction with the 

obstacles present, it was necessary to create the channel geometry. Moreover, the 

impossibility to solve the Navier-Stokes (NS) equations in presence of obstacles, the 

choice felt to describe the physic of the fluid employing a computational solver as 

FLUENT. The method required to create the model in ANSYS Workbench.  

 

3.1.1 2D channel without obstacles 

Considering the fact that this study based on Shannon Entropy was never proposed 

in literature, in order to verify the potential of the method, a simply first 2D 

configuration was explored.  
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The starting point was the study of a 2D parallels-plates channel without obstacles 

and it has been shaped as a rectangular channel with height 2h equal to 3 mm and 

length L* of 80 mm (Fig 3.1). The choice of this channel geometry derived by two 

aspects: 

1. The field of application. The main ones are the microfluidic field. The channel 

constructed wanted to represent an ideal conduct of a microfluidic device. 

2. Due to the low Reynolds numbers (Re) that characterize the fluid flows. In 

fact, with these values of Re the it flows at laminar conditions: the viscous 

effects are dominant on the inertial ones.  

Figure 3.1: model of 2D channel without obstacles 
 

The fluid flows from left to right. On the left there is the inlet of the channel while on 

the right there is the outlet.  

Considering a fluid flowing in a channel/pipe, it is said to be one-, two-, or three-

dimensional if the flow velocity changes in one, two or three dimensions respectively. 

However, if the velocity variation in certain direction is small relative to the variation 

in other directions, it can be neglected. In a circular pipe the development of the 

velocity profile is 2D at the entrance region, V=V(r,z), and became 1D downstream 

when the velocity profile fully develops and remain unchanged in the flow direction, 

V=V(r).  
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Figure 3.2: the developing velocity profile of a fluid entering a pipe. [30] 

 

The analysis was carried out in the fully developed region in order to evaluate the 

velocity change when the geometry of the channel is modified, e.g. by the presence 

of an obstacle. This aspect will be discussed better in the next paragraph. The 

developing velocity profile of a fluid entering a channel can be evaluated with the 

relation (3.1) that takes into the account the value of the Reynolds number (Re) and 

the geometry of the pipe/channel. In particular the entrance length (Hydrodynamic 

entrance region in Figure 3.2) is define by: 

   Ld = 0.05 ∙ Re ∙ Dp (3.1) 

If the channel has a rectangular shape, Dp in (3.1) should be substituted using the 

concept of hydraulic diameter (3.2). 

   
Dp =

4 ∙ A

S
 

(3.2) 

Where A represents the cross section of the pipe, S is the perimeter of the wet part 

of the channel. This verification is fundamental in order to confirm the condition of 

developed flow and to understand at which distance from the inlet the analytical 

solution (with a parabolic profile at laminar conditions) “exists”. In fact, the 
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differential equations of continuity and of Navier-Stokes (N-S) can be solved by 

introducing simplifications. By means of the latter, is possible to obtain differential 

forms which can lead to approximate solutions. So, it is possible to divide the N-S 

equation to a linear differential equation. Therefore, in this way, the fully developed 

region can be described in terms of analytical representation.  

To describe the laminar conditions, the physic of fluid mechanics employs no-

dimensional parameter: the Reynolds number (Re). It is used to describe the 

transition from the laminar to the turbulent flow. It measures the ratio between the 

inertial effects and the viscous ones and it is described by the following formula: 

 
Re =  

ρ u̅x D 

μ
=

inertial force

viscous force
 (3.3) 

In this study, even the variability of the Re number was analysed. In fact, different 

values of Reynolds number have been considered. This variation is reflected in the Ld 

value. Seeing as how was necessary to compare different results changing the 

dynamic condition, it was necessary to verify, before the calculations, that the flow 

was completely developed independently from the increasing of the Re number.  

To be sure that the flow is fully developed for every Reynolds number considered, 

the first 30 mm of the channel were never considered for the numerical and analytical 

solution of the velocity field. In this way, the real length of the channel is L1=50mm. 

 

3.1.2 2D channel with obstacles 

Starting from the geometry depicted in figure 3.1, each small modification of the 

domain represents an “obstacle” in the solution of the N-S equations employed to 

describe the fluid flows. Obstacles were considered with different shapes and 

dimensions. 
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First of all, they were modelled using two different shapes: rectangular and semi-

circular. The reason of this choice originated from the possible applications of the 

study. The idea was to trace back the profile of the obstacle to an elementary shape 

that could better approximate the possible shapes of obstacles in real cases.   

Moreover, three different dimensions of the obstacles have been considered: 

• ℎ1 =
ℎ𝑐ℎ𝑎𝑛𝑛𝑒𝑙

10
 ,  

• ℎ1 =
ℎ𝑐ℎ𝑎𝑛𝑛𝑒𝑙

6
,  

• ℎ1 =
ℎ𝑐ℎ𝑎𝑛𝑛𝑒𝑙

2
.  

Other two parameters considered were the number of obstacles in the channel and 

their position, in the following configurations: 

• One obstacle 

• Two consecutive obstacles 

• Two alternated obstacles 

• One obstacle 5 times wider than the single one for the rectangular shape. In 

the semi-circular case, one obstacle 9, 7, 5 times wider than the single one 

respectively for ℎ1 =
ℎ𝑐ℎ𝑎𝑛𝑛𝑒𝑙

10
 , ℎ1 =

ℎ𝑐ℎ𝑎𝑛𝑛𝑒𝑙

6
, ℎ1 =

ℎ𝑐ℎ𝑎𝑛𝑛𝑒𝑙

2
. 

• Two symmetrical obstacles. 

The different configurations were investigated for two Reynolds numbers: Re=1 and 

Re=50. Figure 3.3 shows the rectangular configurations that have been considered in 

the study. The same happened with the other shape investigated. 

For rectangular obstacles their width L1 was 0.5mm.  
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Figure 3.3: Rectangular obstacle: a) 1 obstacle, b) 2 alternate obstacles, c) 2 
alternate opposite obstacles, d) 2 consecutive obstacles, e) 2 symmetrical obstacles, 

f) 1 extended obstacle. 
 

For the semi-circular obstacles, given the nature of their geometry, was not possible 

to set a priori a width of the obstacles. In fact, if this were so, they would not be semi-

circular but elliptical. For this reason, in order to make a comparison with the 

rectangular cases, the choice of the height of the obstacles was kept unchanged. In 

the case of semi-circular obstacles, the height is therefore equal to the radius of the 
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obstacle. This dimension is also reflected in their width: the latter then becomes 

twice the radius (Fig. 3.4a) 

 

Figure 3.4: a) example of semi-circular obstacle, b) example of a semi-circular 
obstacle five times wider than the single obstacle 

 
 

In the case of obstacle larger than the single one, for the semi-circular cases, because 

of the geometry of the obstacle, were not possible to consider the width equal to 2R. 

The construction of the obstacle changed depending on its height. The idea behind it 

was to investigate the differences between the cases d. and f. in figure 3.3. Then, the 

aim was to understand if, with the same width occupied in r-direction by the 

obstacles in both cases, there were differences between one single obstacle or two 

different obstacles. For this reason, the width L1 in figure 3.4b was choose equal to 

the width in case of two consecutive obstacles. Then, for the semi-circular obstacles, 

the width was imposed equal to 9R, 7R, 5R respectively for ℎ1 =
ℎ𝑐ℎ𝑎𝑛𝑛𝑒𝑙

10
 , ℎ1 =

ℎ𝑐ℎ𝑎𝑛𝑛𝑒𝑙

6
, ℎ1 =

ℎ𝑐ℎ𝑎𝑛𝑛𝑒𝑙

2
. 

Even modifying the shape of the obstacles, position and configuration was 

maintained the same studied with the rectangular ones. 
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Investigating the case of two symmetrical obstacles, in order compare the results 

obtained with other configurations, the shape itself were modified too. In particular, 

the area occupied by the obstacles at the constriction level has been created 

preserving the total opening of the channel. In this way, in the symmetrical case, the 

single obstacle had a height equal to the half of the single obstacle. In figure 3.5 was 

depicted with a numerical example the construction of the symmetrical obstacles.  

 

Figure 3.5: example of geometry construction of the case with two symmetrical 
obstacles. 

 

On this way it was possible to compare the results obtained. 

In order to carry out the analysis object of the study, to analyse the numerical results 

that will be discuss in the next paragraph, was necessary to divide the channels in 

three different sections to evaluate the areas in the proximity of the obstacles. 

Channels, as show in Figure 3.6, were considered divided in section 1 pre-obstacle, 

section 2 with obstacle and section 3 post-obstacle. Comparing the three sections, for 

example for the case with rectangular obstacles, on average, the first and the last 

section contain approximately 900 elements while the second between 15 and 75 

elements. This large difference could be relevant in the numerical results. For this 

reason, the areas with the obstacle were never considered for the study due to the 

limit number of values that characterise this region. 
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Figure 3.6: Partition of area in the channel: A) pre-obstacle, B) with obstacle, C) 
post-obstacle  

B region was excluded because the numerical computation carried out to evaluate 

the Shannon Entropy was impossible without introducing a bias (if an error occurs, 

i.e. if SE values were equal to 0, given the few values in this section information would 

be assumed as undisturbed when maybe in reality it was not like that). Intuitively the 

B region is a filter through the fluid passes changing its dynamic. 

 

3.2 Computational mesh  

Each configuration was discretized with a grid, generated with ANSYS MESHING 

v.15.0. It was represented by quadrilateral elements in the whole domain. In order 

to obtain grid independent results, a mesh sensitivity study was carried out 

computing the maximum velocity at the centre of the channel for grids with higher 

and lower number of divisions. Secondly, the percentage difference between 

maximum analytical velocity (𝑉𝑚𝑎𝑥
𝑎𝑛𝑎) and maximum numerical velocity (𝑉𝑚𝑎𝑥

𝑛𝑢𝑚) for 

each mesh size has been considered (Eq. 3.3).  

 % error =  |Vmax
ana − Vmax

num |  · 100 (3.3) 
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An error lower than 1% was considered and referred to the grid to employ obtaining 

a mesh independent model.  

The grid dimension chosen consists of 24000 elements and 24831 nodes; the number 

of divisions was set up to 800x30 (channels had length and height of 80 and 30 mm 

respectively). For this grid the percentage error that comes from (3.3) was equal to 

0,2%. A detail of the mesh (for the inlet section) is shown in Figure 3.7. 

 

Figure 3.7: particular of the mesh grid 

 

3.3 Numerical and analytical model 

The fluid dynamics can be described through two principal equations: the 

conservation laws, in terms of mass, momentum and energy conservation, and with 

the continuity equation. 

For incompressible flow with constant viscosity, the conservation of momentum can 

be expressed by the Navier-Stokes equations as follow: 
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ρ

∂u̅

∂t
+ ρu̅ · ∇u̅ = −∇p + μ∇2u̅ + ρg̅ (3.4) 

where 

ρ = density; 

µ = dynamic viscosity; 

𝑢̅ = velocity; 

p = pressure; 

𝑔̅ = gravity constant; 

For incompressible flow without chemical reactions, the conservation of mass can be 

written as, in vector form: 

 ∇ · u̅ = 0 (3.5) 

These two equations are the starting point to describe the dynamic of all fluids and 

they are able to describe every characteristic of the fluid. The main problem to solve 

the Navier-Stokes equations is the non-linearity of the convective terms (𝑢 · ∇)𝑢 that 

make it impossible to determine analytical solutions.  

For some cases, non-linear terms can be neglected, making possible to obtain the 

exact analytical solutions. In order to obtain it for the case analysed in this study, is 

possible to reduce the NS equations to a linear differential equation in the case of 

fully developed flow.  

 

3.3.1 Analytical solution   

For each case investigated is possible to solve the flow field numerically with ANSYS 

FLUENT®. For a channel without obstacle, is also possible to obtain the analytical 
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solution of the velocity in a fully developed region, starting from the NS equations 

and solving them for a simplified phenomenon. Since the aim of the study was to 

carry out a re-construction of the characteristic of the environment where the fluid 

flows, when was possible, a comparison between the numerical solution and the 

analytical solution has been made. The latter was calculated for each case without 

obstacles, that is for Re=1 and Re=50, because in presence of obstacles was not 

possible to determine an analytical solution as discussed above.  

First of all, was considered the solution for a two-dimensional flow between parallel 

plates [31]. Considering the distance between the plates equal to 2z0 (as shown in 

Figure 3.8), assuming that the velocity profile has a zero value in y and z direction, 

fluid develops only in the x direction (i.e. this is the condition for the fully developed 

flow).  For this reason, only the equation relative to the x component of the 

momentum is considered, since the others have null terms. It can be written in the 

following form: 

 
1

μ

∂p

∂x
=

∂

∂z
(

∂ux

∂z
) (3.6) 

Operating an integration and applying the following boundary conditions 

 {
ux = 0, z = −z0

ux = 0, z = z0
 (3.7) 

with the suitable substitutions, it is possible to obtain the parabolic velocity profile 

for two parallels plates: 

 ux = −
1

2μ
 
∂p

∂x
 (z0

2 − z2) (3.8) 

Where 

 

 

𝑢̅𝑥 =
2

3
𝑢𝑚𝑎𝑥 = −

1

2μ
 
𝜕𝑝

𝜕𝑥
 𝑧0

2 

 

(3.9) 
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Re =  

ρ u̅x 2z0 

μ
 (3.10) 

 ∂p

∂x
=  −

u̅x 3 μ

z0
2  (3.11) 

 

Figure 3.8: two-dimensional motion between parallel plates [32] 

 

3.4 Boundary conditions for CFD simulations 

To solve the velocity field in ANSYS FLUENT was necessary define boundary 

conditions to start the simulations. At the inlet of the channel, the velocity of the fluid 

was imposed. It was obtained by the relation (3.12) through the Re number, where D 

is the height of the channel (3 [mm]), µ the viscosity and ρ the density of the fluid 

considered. For this study has been chosen to work in laminar conditions and with 

very low numbers of Reynolds, in fact simulations were carried out considering Re=1 

and Re=50. 

 
Re =  

ρ u̅x D 

μ
 (3.12) 
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Inlet axial velocity was set to 3,30E-04 [
𝑚

𝑠
]and 1,67E-02 [

𝑚

𝑠
]respectively for Re=1 and 

Re=50. 

For the simulations, water liquid has been chosen as the fluid of interest for the study. 

It is characterised by density ρ = 998,2  [
𝐾𝑔

𝑚3] and viscosity µ = 10-3 [
𝐾𝑔

𝑚 𝑠
]. Moreover, 

flow was supposed unsteady and laminar. No slip conditions at the walls has been 

set.   

For the solution methods, second order pressure discretization and second order 

upwind momentum discretization scheme were applied. The residual criterion to 

ensure the convergence of the numerical method was set to 10-6. 

 

In table 3.1 are summarised all the parameters that have been considered for the 

simulations; Re is the Reynolds number, ux 

 Case 

analysed 

Obstacle 
shape 

Re ux [m/s] 
Ana. 

solution 
Num. 

solution 

𝒉𝒄𝒉

𝒉𝒐𝒃
 

1. no obstacle  1 3,30E-04 ✓ ✓  

2. 1 obstacle rectangular 1 3,30E-04  ✓ 10, 6, 2 

3. 2 consecutive rectangular 1 3,30E-04  ✓ 10, 6, 2 

4. 2 symmetrical rectangular 1 3,30E-04  ✓ 10, 6, 2 

5. 2 alternated rectangular 1 3,30E-04  ✓ 10, 6, 2 

6. 
2 alternated 

opposite 
rectangular 1 3,30E-04  ✓ 10, 6, 2 

7. 1 extended rectangular 1 3,30E-04  ✓ 10, 6, 2 



Materials and methods  53 

8. no obstacle  50 1,67E-02 ✓ ✓  

9. 1 obstacle rectangular 50 1,67E-02  ✓ 10, 6, 2 

10. 2 consecutive rectangular 50 1,67E-02  ✓ 10, 6, 2 

11. 2 symmetrical rectangular 50 1,67E-02  ✓ 10, 6, 2 

12. 2 alternated rectangular 50 1,67E-02  ✓ 10, 6, 2 

13. 
2 alternated 

opposite 
rectangular 50 1,67E-02  ✓ 10, 6, 2 

14. 1 extended rectangular 50 1,67E-02  ✓ 10, 6, 2 

15. no obstacle  1 3,30E-04 ✓ ✓  

16. 1 obstacle semi-circular 1 3,30E-04  ✓ 10, 6, 2 

17. 2 consecutive semi-circular 1 3,30E-04  ✓ 10, 6, 2 

18. 2 symmetrical semi-circular 1 3,30E-04  ✓ 10, 6, 2 

19. 2 alternated semi-circular 1 3,30E-04  ✓ 10, 6, 2 

20. 
2 alternated 

opposite 
semi-circular 1 3,30E-04  ✓ 10, 6, 2 

21. 1 extended semi-circular 1 3,30E-04  ✓ 10, 6, 2 

22. no obstacle  50 1,67E-02 ✓ ✓  
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23. 1 obstacle semi-circular 50 1,67E-02  ✓ 10, 6, 2 

24. 2 consecutive semi-circular 50 1,67E-02  ✓ 10, 6, 2 

25. 2 symmetrical semi-circular 50 1,67E-02  ✓ 10, 6, 2 

26. 2 alternated semi-circular 50 1,67E-02  ✓ 10, 6, 2 

27. 
2 alternated 

opposite 
semi-circular 50 1,67E-02  ✓ 10, 6, 2 

28. 1 extended semi-circular 50 1,67E-02  ✓ 10, 6, 2 

Table 3.1: parameters evaluated in the study 

 

 

3.5 Methods for analysis  

When in a channel the fluid meets an obstacle, the fluid particles change their 

trajectories because the fluid try to adapt itself to the new geometry. This variation 

depends by different factors (e.g. fluid velocity, viscosity etc.) including the dimension 

of the obstacles. If a fluid is influenced by the environment, the question that could 

be considered the starting point of this study was: may the variation of the flow 

become source of information of the entire system? May the fluid be analysed as 

source of information? 

How said in chapter 1, only few and recent studies posed this question, sometime in 

different way [13] [14]. 
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In particular in these pages the idea was to correlate the dimension of the obstacles 

with the fluid motion in order to understand at which conditions the presence of the 

obstacle influences the behaviour of the fluid.  

To achieve this goal, the approach was to extract information about the 

transformation of the system analysing a quantity wide employed in thermodynamic 

to describe every kind of phenomena and its evolution in time. This quantity is the 

well-known terms called entropy, but not in the thermodynamic sense, rather in an 

informative sense by the concept of Shannon entropy (SE). 

 

3.5.1 Evaluation of Shannon Entropy  

As mentioned in chapter 2, a fluid that flows in a channel brings information; it is a 

carrier (e.g. the blood in our body carries information and nutrients). So, if a fluid can 

be considered as a reservoir of information and if this information can be analysed to 

take out useful info, the challenge is to understand in which way it is possible to 

exploit this “thermodynamic” resource. The aim of the study is to deepen about the 

exploitation of this fluid intrinsic information, carrying out a re-construction of the 

characteristic of the environment itself where the fluid flows.  

The SE was taken up by Claude Shannon in 1948 [1] when he applied the concept to 

information theory, in order to describe the level of complexity of a signal in the field 

of data communication system (see chapter 2). 

For this reason, a parallelism with a fluid that flows in a channel will be proposed in 

this study, considering as a transmitter the inlet of the channel and as a receiver the 

outlet, while fluid is the information transmitted.  A schematic representation is 

shown in figure 3.9. 
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Figure 3.9: parallelism between a communication system applied and a fluid that 
flows in a channel. 

 

When SE is employed in the information theory, it describes the level of complexity 

of a signal: higher is the Shannon Entropy, higher is the level of complexity necessary 

to recognize an information from another one when it is transmitted. In other words, 

the SE can be employed in order to understand how the signal is easy to forecast 

when, passing through an environment, it “leaves” information and interact with the 

environment. To better understand the meaning of SE, it is necessary to remember 

the main idea of this theory. A message with a low value of probability carried more 

information, vice versa, if the probability is higher it has less information and 

consequently its entropy is lower.  

Considering a coin throw in which the probability that the result is heads or tails is 

the same, the entropy value (that have a range of 0 ÷ 1) is equal to 0.5 because the 

two events have the same probability equal to 1/2. This situation is affected by 
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uncertainty.  Instead, if it is known that the coin is altered and there are two heads, 

the entropy is equal to 0 due to fact that the results will be always heads, so the 

outcome can be predicted perfectly.  

The idea is linked to the fact that if the fluid flowing in a channel, meeting structures 

such as obstacles, it adapts itself to geometry during motion, so the particles change 

their trajectories. From a thermodynamic point of view, this behaviour can only 

influence the internal energy of the system and consequently entropy. It can be 

expected an increase in entropy when in the interaction zone the fluid runs into 

obstacles because the motion of the system change and became more unpredictable, 

more disordered. As a matter of fact, entropy would seem to have all the 

characteristics to be a descriptor of the state of a system when it modifies its 

configuration. 

Coming back to the Shannon Entropy [1], by definition its formulation is represented 

by equation 3.13. 

 
S(X) =  − P(xi) log2 P(xi) (3.13) 

Where, X is a discrete random variable with possible values {x1, …, xn} while P(xi) is a 

probability distribution of X, it represents the probability that the xi event occurs. The 

increase of entropy corresponds theoretically to an increase in information loss. This 

aspect will be discussed in detail in the following paragraphs. 

 

3.5.2 Binary matrix of velocity 

Depending on the field of application P(xi) can take into account different variables. 

To analyse the fluid field there are several fluid dynamic parameters on which it is 

possible to focus attention as velocity, density, pressure etc that can be evaluated 

with different tools. In this study, in order to calculate the information underlying the 
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application of Shannon entropy calculation, it was decided to operate on the velocity 

vector.  

From literature there are not many studies on this matter. However, Pozo et al. [14] 

analysed flow complexity in open system, therefore studied more complex 

phenomena and with a greater amount of data, but going to study at a level 

information the variation of the streamlines in a channel.  

In fact, usually, to describe a flow field and therefore how the fluid flow effectively, 

is necessary to visualize it graphically. There are different ways to achieve the aim, 

the main means that are generally used are: streamlines, pathlines and streaklines 

[33]. 

• Streamlines: family of curves that are tangent to the flow velocity vector or 

the flow direction at every point in the flow field instantaneously. 

• Pathlines: trajectories that individual fluid particles follow. Fluid particles are 

marked with a dye and then observed as they move. 

• Streaklines: locus of positions of the fluid particles marked that at some 

earlier instant passed through a fixed point of space.  

In this study the starting point, to employ the SE according with the intentions of the 

study, was to consider a channel in which the fluid flows at laminar conditions, as 

already discuss in chapter 3. By reference to figure 3.10, only sections “pre-obstacle” 

and “post-obstacle” have been considered for the numerical results because the 

width of the obstacle is very small compared to the others. In fact, obviously, where 

the obstacle is present there are not values of velocity calculated. In order to avoid 

the occurrence of errors due to lack of speed values where the obstacle is present, 

this region has been neglected in this study (section “B” in the figure 3.10).  

http://context.reverso.net/traduzione/inglese-italiano/achieve+the+aim
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Figure 3.10: Partition of area in the channel: A) pre-obstacle, B) with obstacle, C) 
post-obstacle 

Knowing that without obstacles the streamlines must follow a linear path, this 

scheme has been used as starting point: any obstacle is able to modify the “message” 

in input. The message used as reference was built using a binary matrix of velocity 

where all elements were equal to 1 to describe parallel streamlines. As mentioned 

above, the streamlines connect all the points having the same velocity and in 

channels with smooth walls at laminar conditions all the particles follow paths 

parallel to the walls. This scenario corresponds to the case of channel without 

obstacles in its whole domain (figure 3.11).  

 

Figure 3.11: representation of contours and streamlines for a channel without 
obstacles in the whole domain. 
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If a changing of the channel geometry occurs, even though maintaining laminar 

conditions, a fluid follows different paths and the streamlines leave their parallelism. 

But if the streamlines undergo a variation, even the content of the matrix must show 

a change, its elements will be not all equal to 1.  

To perform the analysis of the SE, once to have reach the convergence of the 

numerical simulation, position coordinates and velocities were exported from 

FLUENT along the whole channel. Figure 3.12 shown a schematization of the channel 

with the reference coordinate system considered.  

 

Figure 3.12: reference system  
 
 

Therefore, a binary velocity matrix alongside the x coordinate (axis of the channel) 

has been constructed. Considering the matrix row by row, in each cell of the row the 

difference between the ratio of velocity of a x component and its previous value was 

computed, and the ratio of the analytical velocity in the same positions was 

evaluated. Namely: 

 

𝐵𝑖,𝑗−1
𝑥 =  [

𝑏1,1 ⋯ 𝑏1,𝑗−1

⋮ ⋱ ⋮
𝑏𝑖,1 ⋯ 𝑏𝑖,𝑗−1

]     (3.14) 

 

in which the value of the binary elements of the matrix was calculated as follows: 
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 𝑏𝑖,𝑗−1 = {
1,

𝑢𝑖,𝑘
𝑥

𝑢𝑖,𝑘−1
𝑥 ≤ 𝑐𝑜𝑛𝑠𝑡

0, 𝑜𝑛 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠

 (3.15) 

The const. value comes from analytical solution, discussed in a previous paragraph 

(equation 3.8), comparing the velocities values at the same coordinates:  

 𝑢𝑥
𝑛𝑢𝑚.

𝑢𝑥−1
𝑛𝑢𝑚. −

𝑢𝑥
𝑎𝑛𝑎.

𝑢𝑥−1
𝑎𝑛𝑎. = 𝑐𝑜𝑛𝑠𝑡 (3.16) 

Where 𝑢𝑥
𝑛𝑢𝑚. and 𝑢𝑥

𝑎𝑛𝑎. are respectively the numerical and analytical velocity values, 

while 𝑢𝑥−1
𝑛𝑢𝑚. and 𝑢𝑥−1

𝑎𝑛𝑎. are the same variables but in the previous x position. All values 

discussed above are calculated in the case without obstacles.  

Considering the case without obstacle as a reference of undisturbed situation, if in 

the simulation the velocity changed faster than the case without an obstacle or if the 

velocity change did not follow a linear behaviour due to the presence of obstacles, 

the behaviour of the fluid was different than the case without obstacle and so it was 

necessary to consider the phenomenon: we were in one of the "other cases" of the 

relation 3.15. In these cases, indeed, the fluid flowed with the influence of the 

obstacles and so it adapted itself to the new geometry causing a variation in its 

motion: its velocity varied. 

Therefore, the matrix thus constructed included only values equal to 1 or 0. The sum 

of ones, from the binary matrix just obtained, was computed for each row (equation 

3.18). The matrix dimension depends by the number of cells considered. For the case 

analysed, the sections “pre-obstacle” and “post-obstacle” (figure 3.10) never had the 

same number of cells due to the different dimensions of the obstacles.  The maximum 

value of sum represented the sum “undisturbed”, namely the sum that would be in 

the case without an obstacle. In this case, indeed, because the matrix contained only 

“1” value since the velocity never changed in the whole domain, the sum could only 
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take the maximum value. It depended by the number of cells in the case under 

examination.   

The ratio between the above-mentioned parameters, identify the probability present 

in the definition of the Shannon entropy (equation 3.17) because: 

 𝑆 =  −𝑝𝑖  log2 𝑝𝑖 (3.17) 

 
𝑝𝑖 =  

𝑠𝑢𝑚 𝑜𝑓 𝑜𝑛𝑒𝑠

𝑠𝑢𝑚 𝑚𝑎𝑥
  (3.18) 

The result of the binary matrix construction was a vector of SE values (between 0 and 

1) equal to the number of rows of the mesh. The choice to carry out the study under 

binary conditions was arbitrary. In the next future is not excluded the possibility to 

employ others numerical codes in function of the dynamic conditions.  

The outcomes of the analysis, for each case analysed discussed at the beginning of 

this chapter, were two different binary matrices referring to the “pre-obstacle” and 

“post-obstacle” sections.  

So, when the fluid flowed in a channel in absence of obstacles, the calculus brought 

to obtain a matrix when all values were equal to 1. When the behaviour of the fluid 

was far from this condition, the binary matrix changed and even the SE assumed 

different values. 

Remembering what was said about the streamlines, the configuration in which 

streamlines were parallel lines represented the lowest level of SE or the most 

coherent condition in which the fluid flowed without losing information. With a SE=0 

the information was transmitted without interferences and the inlet information is 

formally equal to the outlet. When a modification occurred and, for example, an 

obstacle generated an interference, the SE assumed a value that was expected to be 

≠ 0 with a maximum of 1 (equation 3.19). The fluid dynamics result to be different 

from the analytical solution of Poiseuille’s flow. Always referring to the interpretation 
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of the SE as a measure of the complexity of an information, higher was its value, 

higher was the complexity of the fluid movement and the inertia effects were much 

more influent on the fluid behaviour. 

 
S =  −pi  log2 pi = {

0, no information lost
1, information lost

 (3.19) 

An important step was to understand what SE meant and how could be employed to 

this problem of fluid-mechanic.  

 

3.6 Average entropy and centre of distribution 

An example of a graphical representation of the SE vector is shown below: 

 

Figure 3.13: example of SE trend. 
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In order to investigate the distribution of SE in the channel, other two parameters 

have been calculated from the SE vector: 

1. Average SE  

2. Centre of distribution of SE 

The first was calculated on the x axis by the following formula:  

 Average SE =  
∑ Mi ∙  SEi 

31
i=1

∑ Mi 
31
i=1

 (3.20) 

Where 𝑀𝑖  represents the mass that in this case it has been assumed equal to 1. The 

number of SE values resulting from the numerical simulation was 31. This value 

derived by the number of cells in the mesh size. The average SE represented the 

distribution of the SE values respect to the minimum and the maximum value that 

the SE could be assumed, 0 or 1.  

Instead, the centre of distribution y′ was calculated on the y axis by the following 

formula: 

 
y′ ∙ (∑ SEi

16

i=1

) = ( ∑ SEi

31

i=16

) ∙ (3 − y′) (3.21) 

Mainly: 

 
Centre of distribution =  

3 ∙ ∑ SEi
31
i=16

∑ SEi
31
i=1

 (3.22) 

Remembering that the channel was high 3 mm, 𝑆𝐸1 ÷ 𝑆𝐸16 represent the values of 

SE in the inferior half of the channel, from 0 to 1.5 mm, whereas 𝑆𝐸16 ÷ 𝑆𝐸31 the 

superior half, from 1.5 to 3 mm (Figure 3.13). This parameter was investigated to 

analyse where the SE is more influent in the y coordinate. In other words, the aim of 
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studying these two parameters was to investigate the distribution of SE in both x and 

y coordinate in order to characterise spatially the value of SE.  

An example of representation of the average SE and the centre of distribution is 

shown in the following figure. In Appendix A will be show all the results about this 

analysis. 

  

 

Figure 3.14: example of average Shannon entropy and centre of distribution



  

 
 

 

Chapter 4 

Results  

How explained in chapter 3, the numerical cases analysed were a lot, for this reason 

was necessary to identify which were more significant in order to underline the 

information given by the Shannon entropy analysis. For the analysis of results, an 

obstacle/s height of  h1 =  
hch

6
 has been considered and the cases that has been 

chosen were the following: 

 

 

Figure 4.1: Rectangular obstacle: a) 1 obstacle, b) 2 alternate obstacles, c) 2 
alternate opposite obstacles, d) 2 symmetrical obstacles. Semicircular obstacle: e) 1 
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obstacle, f) 2 alternate obstacles, g) 2 alternate opposite obstacles, h) 2 symmetrical 
obstacle. 

These choices have been done essentially for two aspects. The first is because better 

represent the situation in a hypothetic real case, namely those that could potentially 

be found within a real channel. The second is since presented mainly the differences 

between the different configurations in order to make a comparison in shape, 

dimension and multiplicity.    

For the case d. and h. in figure 4.1 is necessary to remember that the area occupied 

by the obstacles at the constriction level has been created preserving the total 

opening of the channel. In this way, in the symmetrical case, the single obstacle had 

a height equal to the half of the single obstacle. This aspect shows the first critical 

issues in the study. Indeed, was necessary to decided how to operate in order to make 

a comparison between different configurations. The problem was that, in the realty, 

for any value of radius, the area of the rectangular obstacle cannot never be equal to 

the area of the semicircular obstacle. For example (figure 4.2), consider the 

rectangular configurations and suppose to fix the height of the obstacle equal to 1 

[mm] and the width to 0.5 [mm]. If you wanted to reproduce the same situation but 

considering a semicircular obstacle, keeping the height equal to 1 [mm] unchanged, 

you would of course have a width of 2 [mm]. Indeed, the latter corresponds to twice 

the radius, i.e. the diameter. The two areas are different, in particular for the area of 

the rectangular configuration is equal to 0.5 [mm2] while or the semicircular obstacles 

is equal to 1.57 [mm2].  
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Figure 4.2: example of different areas for rectangular and semicircular obstacle. 

 

Due to the impossibility of having equal areas, the choice fell on maintaining 

unchanged the height of the obstacle in the two different configurations. The height 

of the rectangular obstacle corresponded to the radius of the semicircular obstacle.  

Make a comparation between obstacles with two different shapes can be useful for 

characterise the response of Shannon entropy (SE) curve, since it was expected to 

present two different trends. On the other hand, if we want to evaluate the variation 

of the latter, we must however consider that the different geometries taken into 

account already imply a greater intrinsic variability in the curves due to the different 

shape of the obstacles.  

It can probably be more useful to compare configurations that have the same 

obstacles shape, for example the cases a. and d. (figure 4.1) in which the fluid flows 



Results  69 

in the same section. Considering the same obstacles shape, at the same number of 

Reynolds (Re) and area occupied, it can lead to a variation of the SE and therefore 

one could blindly understand the geometry that characterizes the channel. It could 

consequently be useful to understand if inside the geometry changes (e.g. inside a 

scaffold for cell growth).  

For the analysis of the results, the Re number was important. In this study were taken 

into account two different values: Re=1 and Re=50. It is now necessary to summarise 

what the no-dimensional Re number means. It is used to describe the transition from 

the laminar to the turbulent flow. It measures a ratio between the inertial effects and 

the viscous ones. 

 
Re =  

ρ · u̅ · D 

μ
 (4.1) 

Where: 

ρ = density of the fluid. 

u̅ = average velocity.  

D = characteristic length, in this case is the height of the channel.  

µ = dynamic viscosity of the fluid.  

It is well known that at low Re numbers the fluid flow is laminar. At this condition, 

the viscous effects are dominant on the inertial ones. From another point of view, 

while is flowing, the fluid maintains a certain level of coherence and particles follow 

precise paths. For example, at Poiseuille conditions, in a pipe such as that one 

presented in figure 4.3a, the particles that are carried by the fluid follow a linear path, 

and the information is transmitted from the inlet section to the outlet one following 

the scheme depicted. On the other hand, in panel b of the same figure, the particles 

path in presence of a turbulent flow is shown to highlight the difference with respect 

to the case of laminar flow. 
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Figure 4.3: (a) laminar flow, the particles follow a specific path; (b) turbulent flow, 
the particles follow casual paths. For the first case, in each section is possible to be 

sure from where a particle is coming. 

 

The equation 4.1 tells that when Re is higher than pre-determined value the inertial 

effects are dominant. At these conditions the fluid moves in a stochastic way passing 

from a foreseeable flow to a casual one. No forecast can be done.  

The viscous effects tend “to make us forget” the external influences on the fluid; i.e. 

the flow is influenced by the porous medium at different levels from the interface till 

the deeper regions far from the free fluid flow. From another point of view, the 

viscosity tends to uniform the behaviour of the flow reducing the discrepancy 

between the free flow and the one at the porous medium level.  

Viscosity can be considered as a way with which a fluid dissipates its energy, losing 

the information obtained during the interaction with the environment. The inertial 

effects, on the other side, make more “efficient” the propagation of the 

perturbations, playing an opposite role if compared with the viscous ones. 

From this interpretation came the idea that a fluid can be considered as a reserve of 

information and consequently the idea of applying information theory to describe 

the nature of the environment in which the fluid flows, analysing the "information 

carried" in different sections of the conduit (chapter 2). 
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For all the reasons described above it is now clear the great dependence of SE to the 

Re number. a modification of the latter, and therefore of viscosity, can probably lead 

to variations in the SE. Given its importance, for the purpose of the study it is 

necessary to investigate what happens by changing the number of Re. For this reason, 

this aspect will be mentioned later as future development. 

All the numerical analyses were carried out in order to understand if the aim 

predetermined at the beginning of the study could be reached. In fact, in this chapter 

will be present the results obtained from the simulation and the post processing of 

the data.  

It will be explained if the SE analysis is able to provide a reconstruction of the internal 

geometry of the channel by discriminating the different configurations listed at the 

beginning of the paragraph and diversifying the presence of obstacles in disposition, 

geometry, size and multiplicity. To achieve this purpose, several evaluations have 

been made and several SE analyses have been conducted in parallel, all of which will 

be shown and explained in the following paragraphs. 

 

4.1 Obstacles rectangular VS semi-circular  

The first comparison was made between the cases with rectangular and semicircular 

obstacles in the same configurations, in order to determine if the SE can be 

discriminating in the case of different obstacle geometries. For this analysis the 

following cases have been chosen, both at Re=1 and at Re=50 and for a height of 

channel equal to h1 =
hch

6
: 

➢ One obstacle.  
➢ Two symmetrical obstacles. 

➢ Two alternated opposite obstacles.  
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Figure 4.4: Comparison between obstacles rectangular and semicircular. a) one 
obstacle, b) 2 symmetrical obstacles, 3) 2 alternated opposite obstacles. 

 

For all these cases the SE curve has been obtained and plotted in the “pre” and “post” 

sections (as discussed in chapter 3): 

 

Figure 4.5: Different sections of the channel. 
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Figure 4.6: SE trend for one obstacle rectangular and semicircular at Re=1 and 
Re=50. 

In figure 4.6 is possible to see how, at Re=1, the curves appear more similar in trend 

and values assumed. Instead, at Re=50 the SE trends are different. In particular, in 

the “pre” section of a rectangular obstacle, the SE seems to discriminate between the 

two geometries. Looking the plot is also possible to see that the SE assumes a value 

not null in correspondence of the obstacle height (0.5 [mm]). 
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In case of two symmetrical obstacles (figure 4.4b) it was expected to find this 

symmetry in the curve of the SE. If so, it would be able to give a large amount of 

information about their disposition. The following figure shows the SE result for two 

symmetrical obstacles, rectangular and semicircular, always for Re=1 and Re=50. 

 

Figure 4.7: SE trend for 2 symmetrical obstacles rectangular and semicircular at 
Re=1 and Re=50. 

 



Results  75 

The symmetry of the obstacles to different Re numbers is evident in both geometries 

but, particularly in the rectangular-shaped obstacles in which symmetry is perfect. 

Another feature to underline is the difference in the trend of the curves for the two 

different geometries. In fact, both at Re=1 and at Re=50, we can notice how the SE 

curves differ considerably from each other. This is a very positive aspect because, if 

we knew the type of SE response to a certain geometry, we could know (without 

having knowledge of the internal geometry of the channel) what kind of obstacles 

are present within it. 

It is possible to notice that in this case, the value of SE for semi-circular obstacles is 

greater than the SE of rectangular obstacles. For the case with two symmetrical 

obstacles at Re=50, in “pre” section, semi-circular configuration is well represented 

by the trend of the SE. in fact, near the walls of the canal, it is possible to notice how 

it approximates the shape of the obstacle encountered by the flow in its path. 
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Figure 4.8: SE trend for 2 alternate opposite obstacles rectangular and semicircular 
at Re=1 and Re=50. 

 

In the case of alternated obstacles, the SE curves in the rectangular and semicircular 

case are very similar, both as a trend and as assumed values. In one case (figure 4.8, 

“pre-Re=50”) they coincide almost perfectly. In this case, therefore, the SE seems to 

be not very able to discriminate between two different geometries. Compared to the 
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case with two symmetrical obstacles, it is also possible to highlight the difference in 

similarity. In this situation in fact, there is no evidence of the disposition of the 

obstacles, except for “pre-Re=50” in which can be seen that the first obstacle that the 

fluid meets is in the superior wall of the channel.  

 

 4.2 Different number of point for the SE definition 

For the calculation of SE, the previous analyses were conducted considering a number 

of points equal to the number of elements of the grid. In this analysis it was chosen 

to consider only the 50% of points considered in the previous investigation. Also for 

this investigation, the SE has always been calculated in the two sections "pre" and 

"post" obstacle (figure 4.5), with a height of obstacles h1 =
hch

6
 and it was carried out 

for the configurations shown in figure 4.10. 

This evaluation has been conducted to understand if it was possible, for application 

purposes, to reduce the number of sections analysed: in order to verify if less 

information about the velocity of the fluid in the channel would be sufficient. The 

50% of the points to analyse have been chosen in three different ways. 

Primarily, both velocity values in the “pre” and “post” obstacle, at Re=1 and Re=50, 

were considered choosing alternate elements of the grid (green and sky-blue 

elements in figure 4.9a, white were excluded from the calculation).  

In order to select the set of elements other two tests have been executed: the first 

test took into account all the elements that had been neglected in the previous ones, 

therefore the white columns were considered instead of the green and blue ones 

(figure 4.9a). Whereas, in the second trial, the average value of SE between two 

consecutive columns has been taken into account (red dots in figure 4.9b). If the 

columns in “pre” and/or “post” obstacle were of odds numbers, then it was chosen 
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not to consider the first column (inlet of the channel) in the case of the “pre” obstacle 

section and/or the last column (outlet of the channel) in the case of odd “post” 

obstacle section. The reason of this choice was related to the fact that points farer 

from the obstacle had less influenced by the latter ones.  

 

Figure 4.9: Grid elements chosen for the analysis with the 50% of point of SE. a) 
elements chosen for the first and second method, b) mean value of SE in two 

adjacent columns. 

 

 

Figure 4.10: Comparison between obstacles rectangular and semicircular. a) one 
obstacle, b) 2 symmetrical obstacles, 3) 2 alternated obstacles. 

 

The reason why it was chosen to carry out these two other tests was due to the need 

to verify if the choice of the elements, part of the 50% considered, could be decisive 
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in the production of the result. Subsequently, the three methods described above 

will be compared so as to highlight any differences.  

As presented at the start of this chapter the idea behind this analysis was to reduce 

the number of points evaluating the SE in order to understand if there was a 

minimum number of points to analyse to carry out the study. Decreasing the number 

of points, indeed, it is possible to expect an influence on the SE trend such that it is 

necessary to consider a minimum number of points to analyse. 

There are therefore two key ideas: the first is that it should not be possible to 

extrapolate information in a section too poor of points; the second is that a certain 

number of sections are sufficient to carry out the analysis. The latter factor can be of 

great interest because it would allow to be able to consider only certain coordinates 

and not the whole domain, therefore it represents a lower cost and a lower need of 

resources. The problem was that decreasing the number of points automatically 

increases the uncertainty of the measure. The purpose is precisely to quantify this 

uncertainty so as to know the minimum number of resources needed. 

The results obtained with the analysis of the SE considering the 50% of the points are 

shown below. They are compared to the SE calculated on the entire grid or 

considering 100% of the points. What was expected was to find the same trend of 

the SE, probably with slightly different values, which therefore were not too 

discrepant from the results shown in paragraph 4.1.  

In the following figures will be present the results obtained by the comparison of the 

SE trends considering both 100% and 50% of points. For the latter, first of all, were 

considered the values relating to the first method described (green and sky-blue 

elements in figure 4.9a has been selected). Then were evaluated also the other two 

methods described.  
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Figure 4.11: Comparison between SE calculated in the whole grid and SE calculated 
considering the 50% of points for one rectangular obstacle in “pre” and “post” 

section at Re=1. 

 

Among all the configurations examined, the configuration with one rectangular 

obstacle at Re=1 is one in which the values of SE considering the 50% of the points 

deviate more from those calculated on the entire grid. However, it is noted that both 

the “pre” and “post” trends that the values assumed are very similar (identical 

situation even in the semicircular case, figure 4.12). 
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Figure 4.12: Comparison between SE calculated in the whole grid and SE calculated 
considering the 50% of points for one semicircular obstacle in “pre” and “post” 

section at Re=1. 

It is also possible to see that the average entropy increases when the 50% of points 

is considered. It was an expected result because, considering half of the points, the 

uncertainty of the measure increases, less information is present and therefore 

entropy will be greater, according to the concept of information entropy (Chapter 2). 

This result is positive because the differences between the two cases analysed for the 

“pre” and “post” section were very small.  

For every configuration, a quantification of error between each method has been 

made in order to define the maximum that can occur. Considering the next equations, 

the quantification of error was computed as follows: 

 Errpre% = mean(|SE 100%_pre − SE 50%_pre|) ∙ 100 (4.2) 

 
Errpost% = mean(|SE 100%_post − SE 50%_post|) ∙ 100 (4.3) 
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Considering the one rectangular obstacle at Re=1 configuration, for the “pre” section 

it was obtained an error equal to Errpre% = 3.9% while, for the “post” section, it was 

equal to Errpost% = 4.6%.  

Afterwards, the values assumed by the SE were compared considering the whole 

domain, 50% of the points (described above) and 50% of the points considering the 

opposite columns of the grid ("50% of points-opposite", white elements in figure 

4.9a). 

 

Figure 4.13: Comparison between SE calculated in the whole grid, SE calculated 
considering the 50% of points (green and sky-blue) and the opposite 50% of points 
(white elements) for one rectangular obstacle in “pre” and “post” section at Re=1. 

 

This comparison shows that between the two different SE calculations considering 

50% of the points there is not a substantial difference. The SE, as in the previous 

situation, maintains its trend and the values differ little from each other. This 

difference will be quantified as follows to assess whether it can be considered 

acceptable or not. Taking into the account the same definition of error for “pre” and 
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“post” sections explained in equation 4.2 and 4.3 the results show that between the 

two different methods to calculate the 50% of point there are errors equal to 

Errpre%,1=1% and Errpost%,1=0.97% respectively for “pre” and “post” sections. Instead, 

considering as touchstone the SE value for the 100% of points, the error between this 

value and the latter 50% method explained is equal to Errpre%,2=3.37% for the “pre” 

section and Errpost%,2=4.15% for the “post”.  

Compared to the previous case the error values are slightly lower. The difference 

between the two errors is however so low that it is possible to neglect it and to 

suppose that, for this moment, the choice of the elements of the domination does 

not infect the measure too significantly. In this study, an in-depth analysis of the error 

between the different methodologies was not made. Surely this is an aspect that 

should be analysed because it could be significant for the results, will therefore be 

proposed as a future development. 

 

Figure 4.14: Comparison between SE calculated in the whole grid, considering the 
50% of points (green and sky-blue), considering the opposite 50% of points (white 

elements) and averaging between two adjacent columns for one rectangular 
obstacle in “pre” and “post” section at Re=1. 
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This analysis puts in evidence that the SE trends are more similar in all the cases. On 

the other hand, there is always a little difference between the different cases. How 

done above, now will be presented the values of errors calculated between each 

method used.  

Errpre%,1=4.86% and Errpost%,1=5.6% represents “pre” and “post” errors between the 

50% of points calculated through the mean value between two adjacent columns and 

the SE calculated in the whole domain (100% of points). The error between the last 

method and the 50% of points calculated using green and sky-blue elements is 

Errpre%,2=1.28% and Errpost%,2=1.12% while compared to 50% calculated by selecting 

the white elements there is a Errpre%,2=1.74% and Errpost%,2=1.45% respectively for 

“pre” and “post” sections.  

Considering the following notation referred to the method employed: 

• method 1  SE calculated in all the domain, for 100% of the grid elements; 

• method 2  SE calculated for the 50% of the grid elements considering green 

and sky-blue elements in figure 4.15a; 

• method 3  SE calculated for the 50% of the grid elements considering white 

elements in figure 4.15a; 

• method 4  SE calculated for the 50% of the grid elements considering the 

SE average value of two adjacent columns (red dots in figure 4.15b); 

 

Figure 4.15: Grid elements chosen for the analysis with the 50% of point of SE. a) 
elements chosen for the first and second method, b) mean value of SE in two 

adjacent columns. 
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table 4.1 resume all the SE errors derived by the comparisons mentioned above for a 

channel with one rectangular obstacle, when it is characterised by a height of h1 =

 
hch

6
 and Re=1: 

 

Configuration Methods 
% Error - 

Pre obstacle 
% Error - Post 

obstacle 

1 rectangular at Re=1 
 

 

1 vs 2 3.93 % 4.6 % 

1 vs 3 3.37 % 4.15 % 

1 vs 4 4.86 % 5.6 % 

2 vs 3 1.03% 0.97 % 

2 vs 4 1.28 % 1.12 % 

3 vs 4 1.74 % 1.45 % 

Table 4.1: Results of % error between the different methods used for a channel with 
one rectangular obstacle at a Re=1. 

 

Since for the other case analysed the values of SE obtained with all methods listed 

above were much more similar to each other, only the graph with the overlapped SE 

will be shown.  

In order to evaluate the differences, also the semicircular shape for one obstacle at 

Re=1 has been considered.  
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Figure 4.16: Comparison between SE calculated in the whole grid, considering the 
50% of points (green and sky-blue), considering the opposite 50% of points (white 

elements) and averaging between two adjacent columns for one semicircular 
obstacle in “pre” and “post” section at Re=1. 

 

Also for this configuration is possible to see that there are not great differences 

between the methods but, however very small, it presents the maximum error in the 

post obstacle section between the 50% of points calculated through the mean value 

between two adjacent columns and the SE calculated in the whole domain (100% of 

points). 
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Configurations Methods 
% Error - 

Pre 
obstacle 

% Error - 
Post obstacle 

1 semicircular at Re=1 
 

 

1 vs 2 3.22 % 4.48 % 

1 vs 3 3.41 % 3.89 % 

1 vs 4 4.43 % 5.58 % 

2 vs 3 1.08 % 0.93 % 

2 vs 4 1.41 % 1.25 % 

3 vs 4 1.16 %  1.68 % 

Table 4.2: Results of % error between the different methods used for a channel with 
one semicircular obstacle at a Re=1. 

 

Below is presented the result obtained for a channel with two symmetrical and 

rectangular obstacles at Re = 50 for the sections "pre" and "post" obstacles.  

Since considering the SE in the entire channel it provided indications on the symmetry 

that characterizes this configuration, it was expected that even considering the 50% 

of the elements of the grid this peculiarity was highlighted. 
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Figure 4.17: A comparison between SE calculated in the whole grid: 1. considering 
the 50% of points (green and sky-blue); 2. considering the opposite 50% of points 

(white elements) and 3. averaging between two adjacent columns for two 
rectangular symmetrical obstacles in “pre” and “post” section at Re=50. 

 

First of all, the results shown that the starting idea about the conservation of 

symmetry was correct. In this situation, indeed, it can be considered “co-variant” and 

for each method listed above, the symmetry is maintained. 

Numerically, calculating errors through equation 4.2 and 4.3, all the percentage 

errors are less than 1%. In particular, the maximum error is equal to 0.57% and 

derived by the SE calculated on 100% of the grid and the SE at 50% of the points 

calculated as the average of the adjacent cells. The minimum error, on the other 

hand, is equal to 0.19% and occurs between the last quoted method and the 50% SE 

considering the white elements of figure 4.15. Table 4.3 resume all the SE errors 

derived by the comparisons of methods in the configuration explained above, with 

obstacles characterised by a height of h1 =  
hch

6
 and at Re=50. From this value is 

possible to see how also the error values reflect the symmetrical geometry because, 
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how seen in figure 4.17, all methods curves are almost coincident and so the errors 

are very small. 

Configuration Methods 
% Error - 

Pre 
obstacle 

% Error - 
Post 

obstacle 

2 symm. Rect. at Re=50 
 

 

1 vs 2 0.28 % 0.29 % 

1 vs 3 0.48 % 0.38 % 

1 vs 4 0.25 % 0.56 % 

2 vs 3 0.57 % 0.37 % 

2 vs 4 0.31 % 0.55 % 

3 vs 4 0.38 % 0.19 % 

Table 4.3: Results of % error between the different methods used for a channel with 
two symmetrical and rectangular obstacle at Re=50. 

 

The same case but with the semicircular obstacles was studied. How described in 

paragraph 4.1 in this situation the obstacles symmetry was not so evident. Compared 

to the case with a single obstacle, certainly the arrangement of the two obstacles is 

intuitive, but it is not like as in the rectangular case. Also in this case, therefore, a 

certain similarity was expected even if the SE was calculated considering 50% of the 

points. However, at the same time, it was expected that there would be some greater 

discrepancies whereas not all the elements of the grid appeared in the calculus. 

These hypotheses have been confirmed by the graph in figure 4.18. It shows the trend 

of the SE for all four methods described. A certain difference between the curves is 

visible, although the shape of the curve is always the same and the values do not 

differ too much from one another.  

About the value of the errors that occur between the different methods, it follows 

that the maximum error is equal to 4.22% and it corresponds to the difference 
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between the method 1 and 4. The minor error is instead between method 3 and 4 

and is equal to 0.7%. Table 4.4 resume all the error values for this configuration. 

 

 

Figure 4.18: Comparison between SE calculated in the whole grid, considering the 
50% of points (green and sky-blue), considering the opposite 50% of points (white 

elements) and averaging between two adjacent columns for two semicircular 
symmetrical obstacles in “pre” and “post” section at Re=50. 
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Configuration Methods 
% Error - 

Pre 
obstacle 

% Error - 
Post obstacle 

2 symm. Semi. at Re=50 
 

 

1 vs 2 3.87 3.3 

1 vs 3 3.79 3.2 

1 vs 4 4.22 4 

2 vs 3 0.74 0.8 

2 vs 4 0.8 0.89 

3 vs 4 0.7 0.83 

Table 4.4: Results of % error between the different methods used for a channel with 
two symmetrical and semicircular obstacle at Re=50. 

 

The last case for which the SE has been evaluated considering only 50% of the points, 

is the point c of figure 4.10: a channel where two obstacles semicircular are 

alternated. They are in the upper and lower wall but shifted to each other (figure 

4.19).  

The maximum percentage error is 1.36% and is referred to the difference between 

the SE in all domain and the SE at 50% including white elements in the “post” 

obstacles section. Instead, the minimum value is 0.31% and was found between the 

4th method (considering the average value between two columns) and the 3rd (white 

elements in figure 4.15). 

 

 

 

 



Results  92 

Configuration  Methods 
% Error - 

Pre 
obstacle 

% Error - 
Post obstacle 

2 altern. Semi. at Re=50 
 

 

1 vs 2 1.21 0.97 

1 vs 3 1.27 1.36 

1 vs 4 1.2 1.14 

2 vs 3 0.56 0.55 

2 vs 4 0.45 0.33 

3 vs 4 0.43 0.31 

Table 4.5: Results of % error between the different methods used for a channel with 
two alternated and semicircular obstacle at Re=50. 

 

 

Figure 4.19: Comparison between SE calculated in the whole grid, considering the 
50% of points (green and sky-blue), considering the opposite 50% of points (white 

elements) and averaging between two adjacent columns for two semicircular 
alternated obstacles in “pre” and “post” section at Re=50. 
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Considering all the errors values tables, in the following figure are graphed the errors 

curve with respect to all the obstacles configurations explained above. In the ordinate 

axis there is the percentage error value. On the abscissas, instead, are indicated the 

configurations taken into account for this part of the study. 

The different curves show the value of the error among the different methods 

analysed with reference to the notation previously introduced: 

• method 1  SE calculated in all the domain, for 100% of the grid elements; 

• method 2  SE calculated for the 50% of the grid elements considering green 

and sky-blue elements in figure 15; 

• method 3  SE calculated for the 50% of the grid elements considering white 

elements in figure 4.15a; 

• method 4  SE calculated for the 50% of the grid elements considering the 

SE average value of two adjacent columns (red dots in figure 4.15b); 

  

 

Figure 4.20: errors values between the different methods with respect to the 
geometrical configuration.  
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In the graph it is possible to see that in the “pre” and “post” section the trends of the 

curves are very similar. Furthermore, there is the confirm that in the configuration 

with two rectangular symmetrical obstacles at Re=50 the symmetry of entropy is 

maintained and it is very strong with all the methods used. It is co-variant: 

independent of the geometry of points that are analysed. In the other configurations 

there is an increase of Shannon entropy variation to confirm what had been observed 

previously. The graphs show a discrepancy based on obstacle configurations. It is 

always possible to notice a greater error in the case of comparison between the first 

method (100% of the grid points) with respect to all the other methods (except for 

the symmetrical case described above), with errors ranging from 4% to 5.6%.  

However, keep in mind that there are still very low percentage changes. This 

therefore assumes that the method is very solid, at least in the analysed 2D cases. 

In conclusion, analysing only the half of SE values, has been demonstrated that the 

SE maintain its trend in all the examinations. The average entropy almost always 

increases but probably in a not too significant way since, was first established, errors 

were constantly < 6%. 
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Chapter 5 

Discussion and conclusions  

The principal aim of this study was to investigate the behaviour of a fluid that flows 

in a 2D channel in presence of obstacle/s characterised by different shapes, height, 

multiplicity and dispositions. This analysis was carried out not mainly by a mechanical 

point of view, common way to study fluidic systems, but applying an energetical 

analysis (thermodynamic) focusing on the entropy itself. Moreover, the latter was 

not studied in a “traditional” way, but employing the Claude Shannon Information 

Theory, using a different concept of entropy and in order to examine fluid capability 

to store information. 

So, in accord with the method presented before, some interesting considerations 

about the results obtained and computing simulations done came out. 

First of all, this study can be considered as good starting point to suggest the 

deepening of this analysis to geometrically describe a conduit at the level of presence 

of obstacles within it. In fact, analysing the parameters linked to entropy, seems to 

be possible to discriminate their geometry and distribution. The study also highlights 

what was intuitively mechanical: some configurations regulate the flow and therefore 

reduce the loss of information compared to standard configurations (i.e. one 

rectangular and semicircular obstacle). 

Through the representation of the Shannon entropy it was possible to notice how 

this physical concept is able to discriminate the arrangement of the obstacles and 
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their shape thanks to the different types of trends that characterize the different 

cases. 

Realistically, it can be said that the reduction of the points of the domain (and 

therefore of the sections analysed) does not affect the calculation of the SE. This 

result is very good because it allows a lower expenditure of resources for the 

calculation but above all requires less information when checking the values of the 

SE. It is a result that bodes well for using the SE method in these conditions, for 

example to reconstruct the geometry of a scaffold in the bioreactor field or for the 

fluid mixing in the microfluidic field. In this last domain, being able to know the best 

arrangement of obstacles for the specific case, make possible to create a priori a 

channel that allows for example to have maximum mixing.  

The present analysis seems to be sensitive to a range of microfluidic Re suggesting 

therefore its use in this field, but in the next future will be necessary to investigate 

this important parameter to evaluate the sensitivity of the method. One of the 

possible applications are certainly microfluidics but also in the field of bioreactors for 

cells and tissues, therefore for the creation of scaffolds as a culture medium for cell 

expansion and differentiation. 

On the other hand, with the analyses carried out up to now, it is not possible to affirm 

that the Shannon entropy is able to perfectly describe the internal geometry of a 

channel in which a fluid flows. But we must remember that it is a preliminary study, 

one of the first carried out in this sector, and more efforts it required. The question 

we asked ourselves during the study, found out an answer only partially. From the 

results obtained, can be deduced that the goal has not been achieved yet but the 

excellent potential of the method has been. 

For the microfluidics field of application, the analysis of the Shannon entropy can be 

used in two different situations: a priori and a posteriori.  
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For the first, supposing to evaluate the degree of mixing between two different 

substances, and that for the required field of use, the mixing between the two should 

be maximum. The question that ascends is how to design the channel this result. 

Parallelism with Shannon entropy arises spontaneously because a maximum mixing 

results in a very high value of SE (ideally maximum). This situation corresponds to a 

total loss of information, the system is disordered, that is, the two substances have 

completely mixed together and it is not possible to distinguish one from the other. 

Being able to know the behaviour of Shannon entropy, and therefore the 

representation of its curves in the presence of obstacles, we could look for a curve 

that has suitable mixing properties and we could have a feedback on how the 

obstacles affect the SE. What could be obtained therefore is how to optimize the 

geometry. Supposing that it is necessary to make a choice about how many obstacles 

to insert within the channel. For example, 3 obstacles inside instead of 6 could be 

result more convenient to have. The last situation may have a more stable condition 

because the fluid does not have enough time to detect the presence of other 

obstacles and therefore could flow "as if they were not there". So, analysing the SE 

trends, theoretically, it should be possible to understand what configurations is 

better for the aim.  

In a posteriori situation, instead, the Shannon entropy could be used to understand 

if the mixing between two fluids has happened or not. In fact, if mixing is reached at 

right conditions, represented by a certain curve, geometrically analysing the conduit 

through the SE, it would be possible to search if the trend is actually the desired one 

and if the mixing has been done correctly. 

The possibility of investigating the phenomenon within the channel, but only in some 

points, could be very useful. The idea would be based on the following question: "can 

the mechanical characteristics provide suggestions on what is happening inside the 

channel, but not a priori (in the design phase) but in a posteriori study?". 
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The Shannon entropy can be also employed for “real time” analysis. Supposing to 

know how the fluid should behave inside a channel, but observing that this does not 

actually happen. The idea would be to evaluate what really is happening through 

precise measurements of the SE, for example with the insertion of a tracer with 

different viscosity. Evaluating its behaviour at the inlet and outlet of the channel 

would then be possible to reconstruct the internal geometry of the same. 

Also for the bioreactors field mentioned above some possible application can be 

imagined: to both a priori and a posteriori analysis. For the former, in the design 

phase, the SE could be used to define the geometry of a channel (in this case a 

scaffold) that allows to promote cell growth. Assuming that a channel with 

rectangular obstacles is more favourable because it has a lower SE, less information 

loss, and therefore for example less energy dissipation phenomena or turbulent 

phenomena, certainly in the design phase we would try to reproduce this situation. 

An example of a posteriori analysis could be the monitoring of the growth cells in a 

pre-existing scaffold. In fact, knowing the trend of SE in that situation, checking any 

changes in the progress of the SE, it would be possible to trace a possible change in 

the internal geometry due to cellular growth/differentiation. 

At the end, the method described in the present study, theoretically turns out to be 

an excellent starting point to actually create a method that allows to discriminate 

configurations, shapes and multiplicity of obstacles present within a channel. A future 

prospect is certainly to find a relationship that can make this type of study more 

applicative. Surely, because the SE has the potential to achieve the goal but not in 

this range, it is necessary to carry out a study of the study through 3D analysis. In this 

way it is possible to reconstruct the internal geometry of the channel thanks to a 

greater number of points starting from methods that refer to the geometrical 

information (i.e. maximum likelihood). 



Discussion and conclusions  99 

Surely it is necessary to carry out a more in-depth analysis of the minimum number 

of points necessary to have discrimination and the determination of the technique 

with which to operate. It was also important to carry out a farther analysis of the 

error between the different methods explained in order to understand if it can be 

relevant for the SE calculus. Even a more detailed evaluation of the suitable Re range 

will surely bring benefits to work. In fact, different Reynolds numbers should be 

considered, and in particular it would be appropriate to determine if there is a 

minimum amount of energy to be lost to describe the geometry, as it could happen 

that from a certain value of Re onwards the loss is so high that detect differences 

between the different configurations (unreadable). 

A step forward through a 3D analysis will be mandatory to verify the goodness of the 

application of the SE theory here presented. Moreover “fishing” from the statistical 

mechanics and information geometry will be possible to build out a strong 

relationship, coupling theory from thermodynamics like SE with the capability of 

matter to interact with the environment (i.e. fluid in channels). 
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Appendix A 

In chapter 3, in the paragraph “3.6 Average entropy and centre of distribution”, the 

method by which the two parameters "centre of distribution" and "average entropy" 

were calculated has been described. In particular, the average Shannon entropy was 

calculated as: 

Average SE =  
∑ Mi ∙  SEi 

31
i=1

∑ Mi 
31
i=1

 

while the centre of distribution as: 

y′ ∙ (∑ SEi

16

i=1

) = ( ∑ SEi

31

i=16

) ∙ (3 − y′) 

Centre of distribution =  
3 ∙ ∑ SEi

31
i=16

∑ SEi
31
i=1

 

where the y axis represents the variations in the height of the channel. 

The aim of studying these two parameters was to investigate the distribution of SE in 

both x and y coordinate in order to characterise spatially the value of SE. The initial 

idea was to evaluate how they varied with respect to the shape, position, size and 
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multiplicity of obstacles, i.e. if they could be useful parameters for the discrimination 

of the internal geometry of the channel. 

This analysis was carried out for all the configurations and all the heights of the 

obstacles presented in table 3.1. For the final study, however, we focused on other 

aspects, so these results are not analysed in detail in this work. The graphs obtained 

for the configurations examined in detail in the previous chapters (figure 4.1) are 

presented below. 

 

 

Average SE and centre of distribution for one obstacle, rectangular and semicircular, 
at Re=1 and Re=50. The figure shown similar values for all cases in pre and post 

sections, except for the case of rectangular obstacles at Re=50 in according with the 
SE trend for this configuration. 
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Average SE and centre of distribution for two symmetrical obstacles, rectangular 
and semicircular, at Re=1 and Re=50. All values underline the symmetry of the 
obstacles, especially for the rectangular cases. Moreover, the closed values are 

grouped based on the shape of the obstacle. 

 

 

Average SE and centre of distribution for two alternated obstacles, rectangular and 
semicircular, at Re=1 and Re=50. The closed values are grouped based on the Re 

values. 



Appendix A  107 

 

Average SE and centre of distribution for two alternated opposite obstacles, 
rectangular and semicircular, at Re=1 and Re=50. In the pre section the closed 

values are grouped based on the Re values. In the post sections instead the values 
are more similar and, except for the rectangular case at Re=1, they are collocated in 

the half of the channel. 
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