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ABSTRACT 
 

This thesis is focused on a study on vibrations of T-shape micro cantilevers produced for Micro 

Electro-Mechanical System (MEMS). The study was realized in a six months project (March 2017 – 

August 2017) at the University of Bristol (United Kingdom), in a collaboration between 

Departments of Mechanical engineering and Electronic engineering. It was completed in the last 

year at the Politecnico of Torino. 

Micro cantilever beams were analyzed in multilayer configurations composed by 2 or 3 layers, 

made by Gallium Nitride, Aluminum Nitride and Silicon substrate. Some micro cantilever beams 

have been analyzed with a Laser Doppler Vibrometer (LDV) in Bristol University to obtain the first 

natural frequency. After checking the coherence of results through a Finite Element Model (FEM), 

the goal of this thesis was to obtain a mathematical model that calculates, as accurately as 

possible with a single formula, the first natural frequency. 

The mathematical model was required by the electronic department of University of Bristol, 

because there was the necessity of a quick formula to obtain the first natural frequency, without 

resorting to prototyes, or slow methods such as FEM. 
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1. MICRO ELECTRO-MECHANICAL SYSTEMS (MEMS)  
 

Micro Electro-Mechanical System (MEMS) are microscopic system, nowadays used in electronic or 

mechanical micro devices. Their nanoscale version is Nano Electro Mechanical System (NEMS). In 

Europe MEMS are also called Micro System Technology (MST).  

 

The first MEMS (Resonant Gate Transistor in figure 1.1) was realized by Harvey C. Nathanson (an 

electrical engineer) in 1965.  

 
Figure 1.1 – Resonant Gate Transistor invented by Harvey C. Nathanson (source: Wikipedia.com) 

 

His first MEMS was used as a turner for microelectronic radios. It was developed by Robert A. 

Wickstrom and William E. Newell in Pittsburgh, PA, and patented as Microelectric Frequency 

Selective Apparatus.  

Nathanson developed a method of batch fabrication where layers of insulators and metal on 

silicon wafers are shaped and undercut using masks and sacrificial layers. This process is the 

principal process in MEMS manufacturing. In 1973 Nathanson developed the use of million of 

microscopically small moving mirrors to create a video display, that now it is possible to observe in 

digital projectors.  

Another pioneer of the MEMS technology was Raymond J. Wilfinger that pantented an 

electromechanical monolithic resonator. 

MEMS are made by components between 1 and 100 micrometers in size, while MEMS devices are 

generally in range from 20 micrometers to millimeter. Instead, MEMS arranged in arrays, could 

reach a dimension of 1000 mm2 such as digital micromirror devices. 
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Figure 1.2 – Evolutions of MEMS technology from 1970 to 2010 (ref. 1.1) 

 

These devices are considered as one of the most rising technology of the XXI century that 

revolutionized the world of electro-mechanical industry (in scheme 1.2 there is an evolution of 

MEMS technology from 1970 to 2010). MEMS are “smart” system that combine electronic, fluidic, 

optical, biological, chemical and mechanical management functions in very small dimensions, 

integrating sensors and actuators technology. They are characterized by a large surface to volume 

ratio. Due to this characteristic, the electromagnetic or fluid dynamic forces produced by the 

ambient require more design considerations than larger scale mechanical devices. 

MEMS technology is different from molecular nanotechnology or molecular electronics, because 

these must consider surface chemistry. 

 

1.1 Materials for MEMS technology [ref. 1.1]   
Generally, silicon is the material used to realize integrated circuits because it is an inexpensive 

high-quality material. Another advantage of silicon is that, it is considered as an almost perfect 

Hookean material. This characteristic guarantees no dissipation of energy during a hysteresis cycle, 

so it can provide a repeatable motion. In this way, it could have very long lifetimes (in a range of 

billions to trillions cycles without breaking). Nowadays polycrystalline silicon is used much in 

modern industry, but it is still relatively expensive. This is an advantage of silicon. 

 
Figure 1.3 – Pure Silicon  
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Polymers are other materials used to produce MEMS because they can be produced in great 

volumes, with a huge variety of characteristics. This characteristic solves the problem occurring in 

silicon. MEMS made by polymers are often used for microfluidic applications, for example to 

realize blood-testing cartbridges. 

 

Metals are also used to realize MEMS. If they are used with some limitations, they can insure a 

high reliability. Silver, chromium, copper, aluminum, titanium, gold, tungsten, platinum and nickel 

are used commonly in MEMS applications. 

 

The last category of materials used to realize MEMS are ceramics. Nitrides of silicon, aluminum, 

titanium, silicon carbide and other ceramics presents important advantage about mechanical 

properties. For example, the AlN is a material used to realize particular types of MEMS. In fact, due 

to its characteristic to crystallize in wurtzite structure, AlN could have piezoelectric and 

pyroelectric properties. For example, it is possible to realize micro-sensors sensitive to shear 

forces.  

Another ceramic material is TiN that presents a high elastic modulus, electrical conductivity, and 

resistence against biocorrosion. These characteristics, especially the last, make TiN available for 

applications in biosensors and biogenic environments. 

 

1.2 Basis manufacturing processes for MEMS [ref. 1.1]   
The basis processes used to realize MEMS in modern industry are “Deposition processes”, 

“Patterning” and “Etching processes”:  

- DEPOSITION PROCESSES: This process deposits thin films of material with thicknesses 

between 1 to 100 micrometers. This process is used also in manufacturing of NEMS. In this 

case, thicknesses consist in deposition films from 1 nanometers to 1 micrometers. The 

Deposition processes are: 

o PHYSICAL VAPOR DEPOSITION (PVD): This technique uses the sputtering process, 

where an Ion beam releases atoms from a target, moving them in space until they 

deposit on a surface that represents the substrate, and the evaporation process 

from a target to substrate using thermal evaporation or electron beam evaporation 

in vacuum condition; 

o CHEMICAL VAPOR DEPOSITION (CVD): This technique consists in a reaction of a gas 

on a substrate to permit the growing of material. There are techniques of PECVD 

(Plasma-enhanced chemical vapor deposition in figure 1.4) and LPCVD (Low 

Pressure chemical vapor deposition in figure 1.5) 

       
Figure 1.4 – Schematic diagram of PECVD system (1.1)                Figure 1.5 – Schematic diagram of PECVD system (1.1) 
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- PATTERNING: It is a process where a pattern is transferred into a material. It groups 

different processes: 

PHOTOLITHOGRAPHY: A patterning process that uses a photosensitive material (a 

material that changes its physical properties when exposed to a radiation). If this 

photosensitive material is selectively exposed to a light, using for example a masked 

surface, it transfers a pattern to underlying surface, defining the desired pattern. A 

scheme of photolithographic elements and photolithographic process is showed in 

figure 1.6:  

 
Figure 1.6 – Scheme of photolithographic process (ref. 1.1) 

 

This is a two-dimensional method to produce MEMS. It could been repeatable 

many times to produce various devices. Photolithography is typically used with 

metals, and for fabrications of transistors on a silicon substrate. 
 

o ELECTRON BEAM LITHOGRAPHY: This technique uses electrons to expose a “resist” 

layer. Scanning a beam of electrons, it is possible to draw shapes on a surface 

covered with a film called “resist”. Due to that, the solubility of the resist changes, 

permitting a selective removal of exposed or non-exposed regions of the resist with 

a solvent. The goal of this technique is to create micro or nano structures in the 

resist film that could be transferred on a substrate material, often by etching. 

The resolution of this technique is 10 nm, but this method to produce pattern is 

very expensive. A scheme of e-beam lithography is showed in figure 1.7: 
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Figure 1.7 – E-beam lithography steps (source: http://nanooptics.uni-graz.at/ol/work/m_ebl.html) 

 

o ION BEAM LITHOGRAPHY: A practice that provides a scanning of a focused beam of 

ions in a pattern across a surface. This method presents a fine resolution, more 

than other patterning method. The process is similar to electron beam lithography, 

but in this case, it uses ions. Ions move in straighter paths than electrons through 

vacuum but also in matter. Therefore a high resolution is guaranteed. 

 

o ION TRACK TECHNOLOGY: A technology that uses the Ion Tracks, that are damages 

created by a swift heavy ions that penetrate in a solid. It is a deep cutting tool, that 

could generate holes with a resolution limit around 8 nm. This technique can realize 

devices with defined inclination angle. 

 

o X-RAY LITHOGRAPHY: Similar to photolithography, where it is possible to selectively 

remove parts of a film. To transfer a pattern from a mask to a substrate, this 

method uses X-rays. Later some chemical treatments engraves produced pattern 

into the material under the photoresist. In figure 1.8 there is a scheme with 6 steps 

to realize a MEMS. The mask is realized with a transparent membrane and a metal 

absorbing pattern and brought to a conductive substrate that is coated by a X-ray 

photoresist material. Later, X-ray radiation affects the resist, and after a developing 

of material, metals are inserted in the mold. After the material is removed and 

metal mold parts are ready to be assembled. 

 
Figure 1.8 – X-ray lithography scheme (ref: 1.1) 
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o DIAMOND PATTERNING: A technique where it is possible to create MEMS made by 

diamond. It is a method that avoids to damage the diamond.  The patterns can be 

formed by selective deposition using a silicon dioxide mask. There is a lithographic 

application of diamond films on a substrate. 

 

- ETCHING PROCESSES: A method that chemically removes layers from a surface. In the first 

steps, the pattern is protected from a masking material that resists etching. In many cases, 

the etching process is used subsequently a photolithography process. For example, the 

etch could make a cavity into a material. The thickness of cavity could be controlled using 

both the etching time and the etch rate. In other cases, etching process is used to remove a 

whole layer of a multilayer without damaging the underlying layers. Furthermore, it is 

possible to realize cavities with oblique sidewalls. The distance of undercutting is called 

bias. If an etchant presents a large bias, it is defined isotropic, because it erodes the 

substrate in all direction on space. In modern industry, anisotropic etches are preferred 

because it is possible to produce controlled patterns. Etching processes include two macro 

technologies that are Wet Etching and Dry Etching: 
 

o WET ETCHING: In this technology a liquid etchants is used. The wafer is completely 

immersed in etchant and, to obtain optimal results, it must be agitated. An example 

of largely used etchant in this process is the hydrofluoric acid (BHF) that is used 

principally to etch silicon dioxide. Instead of submerging the entire wafer, it is 

possible to use the Bernoulli principle, where a gas (nitrogen) is used to protect a 

side of a wafer, while the other side is immersed. A scheme of wafers in etch bath 

and later in rinse bath is showed in figure 1.9: 

 
Figure 1.9 – Wafers in Etch bath (a) and later in Rinse bath (b) (ref: 1.1) 

 

Often, these processes are isotropic, because these etchants are characterized by a 

large bias. This characteristic produces large amount of toxic waste.  

The most important Wet etching processes are isotropic etching, anisotropic 

etching, HF (hydrofluoric) etching and electrochemical etching; 
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o DRY ETCHING: A process often useful for semiconductors that are chemically 

resistant to wet etching. The materials where this process is more used are Silicon 

Carbide and Gallium Nitride. It is a process that removes parts of a material often 

using a bombardment of ions actuated by a plasma made by very reactive gases, 

such as fluorocarbons, oxygen, chlorine, boron trichloride with a mix of non-

reactive gases such as nitrogen, argon or helium. Typically, dry etching processes 

are anisotropic.  

Dry etching is used with photolithographic process to remove some part of a 

semiconductor to form for example contact holes that electrically communicate 

with underlying substrate, and via holes that can guarantee connection in 

conductive layers of a multilayer MEMS.  

The most common Dry Etching processes are Vapor etching, Xenon difluoride, 

Plasma etching and Reactive-ion etching (RIE). The RIE configuration is showed in 

figure 1.10: 

 
Figure 1.10 – Scheme of RIE configuration (ref: 1.1) 

 

After a large number of MEMS are realized on a single silicon wafer, they must be separated. The 

processes that deals with this are “Die Preparation”. In these processes, there are “Wafer 

backgrinding” that reduce the wafer thickness, “wafer dicing” and a dry laser process called 

“stealth dicing”.  

 

The MEMS manufacturing technologies are: 

 

- BULK MICROMACHINING: Realizes structures using a selective etching inside a substrate. 

The substrates often are made by silicon wafers, so it is possible to use a anisotropic wet 

etching process, to form structure with an high precision. After an exposition using a 

photolithography to transfer a pattern from a mask to a surface, the silicon is dissolved 

from wet etchants such as Potassium hydroxide (KOH) or tetramethylammonium 

hydroxide (TMAH) that are alkaline liquid solvents. It is also possible to use wet etchants 

for this technology. But the wet etchant presents some advantages because the silicon has 

a crystal structure, so its atoms are arranged in periodically in planes or lines. This method 

is often used to realize grooves with angled walls or V-shape grooves, due to its precision. 
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Bulk micromachining technique is principally used to create micro pressure sensors. Bulk 

micromachining manufacturing technologies are often inexpensive. 

 

- SURFACE MICROMACHINING: It builds microstructures by deposition of layers on a 

substrate that is structural material, and after etching them by a pattern. It is different 

from bulk micromachining, where a silicon substrate wafer is selectively etched to produce 

structures, while in surface micromachining a material is added to a structure layer, and 

later it is selective removed. The structures are built on a substrate and not inside it as in 

bulk micromachining. Polysilicon is often used as a substrate layers and silicon dioxide is 

used as sacrificial layer that later will be removed to create for example groove in thickness 

direction. This technology has the ability to build electronic and mechanical components 

on the same substrate. The components realized with this technology are smaller if 

compared to bulk micromachining components.  

The difference between surface micromachining and bulk micromachining permits to 

substitute the silicon wafer by a cheaper substrate like glass or plastic. 

“Surface micromachining” permits to realize low-cost micro accelerometers that are often 

used in automotive application, for example in realization of air-bag systems, or it is used 

to realize thin-film transistors on large glass, for example to realize displays. 

 

- HIGH ASPECT RATIO (HAR) SILICON MICROMACHINING: A technology that combines the 

good performance of Bulk micromachining with comb structures and in-plane operations 

of surface micromachining. In HAR silicon micromachining the thickness can be in a range 

from 10 to 100 µm. In HAR silicon micromachining are often used polycrystalline silicon, 

and bonded silicon-on-insulator (SOI) wafers. Typically, HAR silicon micromachining is not 

used to realize integrated circuits. 

 

1.3 Applications of MEMS [ref. 1.1] 
The most important applications of MEMS in modern technology are in physical, chemical, 

biological and medical technology (in figure 1.11) 

  
Figure 1.11 – Physical, chemical and Biological-medical applications, and Unit volumes in function of 

productions of MEMS in modern industry 

 

- ACCELEROMETERS: realized in MEMS both in automotive technology, for example to 

realize air-bag technology, or electronic stability control. Accelerometers are diffused also 
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in consumer electronic, for example there are MEMS in game controllers, cell phones and 

digital cameras. These accelerometers are also used in PC to hide the hard disk head during 

a free-fall. In this way, it is possible to prevent damage and data loss.  

                                   
Figure 1.12 – MEMS accelerometer (Pyroelectro.com)         Figure 1.13 –Scheme of MEMS accelerometer (innomic.com) 

 

- INKJET PRINTERS: Uses piezoelectric or thermal bubble ejection to deposit ink on paper. 

 
Figure 1.14 – Inkjet print-head nozzle (source: canon.com)  

 

- MICROPHONES: All microphones in portable devices, mobile phones are made by MEMS. 

 
Figure 1.15 – A MEMS microphone (ref. 1.1) 

 

- PRESSURE SENSORS: Realized for car tire pressure sensors or blood pressure sensors. 

- DISPLAYS: or digital micromirror device (DMD) or chip in projectors. 

- ULTRASOUND TRASDUCER; 

- INERTIAL MEASUREMENT UNITS (IMUs): Includes accelerometers or MEMS gyroscope to 

control helicopters, planes and drones. These MEMS could balance the flight in roll, pitch 

and yaw. They could be used also for an autopilot of an airplane; 
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- BIO-MEMS: there are biosensors or chemosensor in medical and health devices. Some bio-

MEMS are present in very innovative devices such as MEMS defibrillator (figure 1.16), 

MEMS hearing-aid transducer (figure 1.17) or Sensimed’s Triggerfish™ implantable MEMS 

(figure 1.18). The latter is an implantable MEMS pressure sensor that is used to monitoring 

glaucoma evolution in patients. It is composed by a contact lens with a MEMS pressure 

sensor element, a loop antenna (golden rings) and a small microprocessor. This device 

measures how corneal curvature changes in response to intraocular pressure (IOP). 

 
Figure 1.16 – MEMS defibrillator (source: electroiq.com) 

 

 
Figure 1.17 - MEMS hearing-aid transducer (source: analog.com) 

 

 
Figure 1.18 - Sensimed’s Triggerfish™ implantable MEMS (source: sensimed.com) 
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2. GaN-BASED MICRO CANTILEVER BEAM 

 
The micro cantilevers treated in this thesis will be analyzed in this chapter from a chemical point of 

view, explaining the characteristics of their constitutive materials. The cantilevers will be treated 

in multilayer configuration, in particular in 2-layers and 3-layers. 2-layers configuration presents 

Gallium Nitride and Silicon, while 3-layers configuration presents Gallium Nitride, Aluminum 

Nitride and Silicon. The materials are considered perfectly bounded. 

 

These cantilevers are produced to realize micro sensors, and they are mechanically single 

supported beam structures, often manufactured from silicon. These sensors respond to physical 

changes, due to chemical or biological interactions occurring in their free end. Current cantilever 

sensor systems are realized in MEMS or NEMS. For example, these devices could be used to create 

an electronic nose, for example to mimic a dog nose, to detect the volatile elements and vapors. 

The use of these cantilevers principally refers to biological and chemical field of applications. 

These sensors are highly sensitive, and could detect biomarkers from small sample quantities, 

despite the fabrication techniques affect the sensitivity and create surface stress on sensors.  

In MEMS applications, when these sensors are excited by an external disturbance, the micro 

cantilever of the sensor bends. These bending moments are electronically detected by a change in 

resistance of doped silicon piezoresistor. Alternatively, the bending moments could be detected by 

a laser-detector system. Instead, in NEMS applications, these micro sensors are incorporated into 

lab-on-a-chip devices, and they could be used to monitor minuscule biomolecular interactions, for 

example to aid early diagnosis of diseases. There are also electrical and optofluidic biosensors in 

nanoscale. 

The studies conducted until now, represents nanosensors with either silicon or silicon nitride, and 

not Gallium Nitride (GaN). The idea of incorporating GaN cantilevers at the nano and microscale 

level is a new field of interest that is still being researched.  

2.1 Characteristics of Gallium Nitride 
The recent interest in MEMS realized in GaN on Silicon(111) has been motived by the 

characteristic of silicon, that is less expensive than Silicon Carbide technology, that has a great 

importance in fabrication of III-nitride light emitting devices (LED).  

 
Figure 2.1 – Scheme of Light Emitting Diodes (source: semiconductor-today.com) 
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A scheme of a LED made by GaN is showed in figure 2.1. 

The advantage to use GaN is to integrate it in an established silicon process technology. In this 

way, the characteristics of piezoelectricity and piezoresistivity of III-nitrides could be used in silicon 

MEMS. The problem of fabrication of GaN-based MEMS devices is the etching associated with 

GaN. In fact, it is chemically stable and insoluble in most common etchants at room temperature. 

Anisotropic etching is crucial in fabrications of these MEMS devices. Wet chemical etching of GaN, 

that slowly produces isotropic etch profiles, makes devices undesirable for commercial 

applications. Dry etching is a better alternative because it is an anisotropic process. 

Until now, fabrications of GaN were focused just on GaN grown on sapphire substrates. These 

fabrications use wet photoelectrochemical etching to reduce GaN removing the sacrificial 

interlayers. 

 
Figure 2.2 – Beam of Gallium Nitride (source: Wikipedia.com) 

 

Gallium Nitride (in figure 2.2) is a hard, ceramic, transparent, piezoelectric semiconductor material 

and presents a chemical inertness and large band gap. These characteristics make the GaN perfect 

for harsh environment applications. Due to its piezoelectric property, GaN can be used for 

example in piezoelectric actuation systems. They have a higher efficiency than actuation systems 

that actually work through capacitive, thermal or magnetic characteristics. GaN is capable of 

withstanding high temperatures, and it is an optoelectronic material due to its direct band gap in 

blue region of the visible electromagnetic spectrum. It is also transparent from the visible to the 

mid-infra-red part of the spectrum. In fact, GaN is the basis of most blue light emitting devices 

such as LEDs and lasers. Furthermore, these cantilever systems could also incorporate light 

sources, for example to be useful as light guides along the length of cantilevers.  

In ambient conditions, GaN crystallizes in a hexagonal wurtzite structure showed in figure 2.3: 

 
Figure 2.3 – Hexagonal GaN Wurtzite 
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As regards mechanical characteristics, in comparison to silicon, GaN has a higher elastic modulus. 

Mechanical properties of GaN were taken from a study in [ref. 2.1] where a layer of 1,5 µm of GaN 

was analyzed by an iterative process of experimental and simulation data due to difficulty of its 

analytical calculation. In experiment, the load-displacement was applied on a double-anchored 

cantilever. It was used a double-anchored cantilever, because in a single anchored cantilever, 

when the surface reaches a certain bending angle, the needle selected to apply the load would slip 

off the surface. 

 
Figure 2.4 – Load-displacement experiment [ref. 2.1] 

 

In graph in figure 2.4, each curve represents a different simulation with a different elastic 

modulus. Comparing the theoretical curve with experimental data, the estimated Young’s 

Modulus results approximately 250 GPa as showed in figure 2.4. The fracture of the cantilever 

occurred around 350 MPa as showed in figure 2.5: 

 
Figure 2.5 – Stress-strain curve of experiment [ref. 2.1] 
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GaN-on-silicon microcantilevers in this thesis will be evaluated in dynamic studies, in order to 

determine their first natural frequency. Before the studies in this thesis, different shaped 

cantilevers were designed to obtain resonance frequencies lower than 500 kHz, in order to meet 

the requirements of Bristol based laser Doppler vibrometry systems. These results are a first step 

to produce nanoscale opto-electro-mechanical based sensors system, potentially with integrated 

light sources and detectors. 

As regards density of GaN, the value of 6150 kg/m3 was used. 

 
2.2 Characteristics of Aluminum Nitrade 
The Aluminum Nitride (AlN) crystallizes in wurtzite structures, in hexagonal space. Therefore, its 

principal phase is Wurtzite (w-AlN). In nitrogen atmosphere, AlN presents a melting point and 

sublimation of 2000 °C and it has a Mohs hardness of 9. 

Aluminum Nitride is a ceramic material, it has a large bandgap (6.2 eV), and it has an excellent 

thermal conductivity (180 W/mK), which makes it a substrate with high performances in 

electronics, because it is an electric semiconductor, but an excellent heat conductor. The 

particularity is that when the heat is effectively transported, aluminum nitride is not a good 

electrical conductor. 

The main applications of aluminum nitride are defined in the field of electrical conductivity. 

Experimental studies focused mainly on wurtzite phase, in fact, the high bandgap of AlN, makes it 

as the only direct gap semiconductor containing a significant amount of aluminum from a 

technological point of view. Among semiconductors, AlN possesses the largest energy gap. In 

modern studies the attention is focused on AlxIN1-xN (x=0,83). This material presents the same 

reticular step of GaN. The structure is showed in figure 2.6. In experimental studies on AlN/GaN 

compounds, there is a bending of bandgap comparing with GaN.  

 
Figure 2.6 – Crystal structure of AlN and GaN [ref. 2.2] 

 

Currently, there are many researches on light emitting diodes (LED) that use ultraviolet rays 

through Gallium Nitride. 



17 
 

Using alloys of Gallium/Aluminum Nitride in [ref. 2.2], a wavelength of 210 nm has been obtained, 

in figure 2.7. However, some difficulties must be overcome before these LEDs become commercial 

reality. The applications of UV light sources are showed in figure 2.8: 

 
Figure 2.7 – LED structure of 210 nm wavelength [ref. 2.2] 

 

 
Figure 2.8 – Applications of UV light sources [ref. 2.2] 

 

The crystalline nitride aluminum is used for surface acoustic wave sensors (SAW’s) due to 

piezoelectric properties of AlN. SAW’s are obtained from wafers made by aluminum nitride 

deposited on silicon substrate. Another application that is very close to field of MEMS is the 

realization of RF filter (FBAR), used in mobile telephony. 
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Among the application of AlN there is the optoelectronics. It has been used in optical diffusion, in 

electronic substrates, as a chip carrier where thermal conductivity is indispensable and in the field 

of war. 

As regards mechanical characteristics of AlN, the table 2.9 was taken as reference: 

 

 
Table 2.9 – Properties of AlN (source: goodfellow-ceramics.com) 

 

Aluminum nitride is often modeled by spraying techniques. 

 

 

 

 

As regards the silicon layer, it should have been removed completely after fabrication process. 

Unfortunately, a thin layer (0.5µm) remains in model, that will be considered in mathematical and 

FEM model. As mechanical characteristics the value in table 2.10 were taken: 

 

Density [kg/m3] 2330 

Young’s modulus [GPa] 150 

Poisson’s ratio 0.17 

Table 2.10 – Mechanical characteristics of silicon 
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3. FABRICATION OF GaN-BASED MICRO CANTILEVER BEAM 
 

The process to fabricate micro cantilevers analyzed in this thesis will be treated in this chapter. 

Two cantilevers were produced in Bristol University laboratories, both in a 3-layers configuration 

that contains GaN and AlN on a Silicon substrate. 

To fabricate the cantilevers in 3-layers configuration, could be used the method explained in [ref. 

3.1], and a GPS technique in [ref. 3.2]. The technique to realize T-shape micro cantilevers will be 

explained in the last part of this chapter. 

 

3.1 Fabrication of GaN-on-Silicon substrate [ref. 3.1] 
 

The wafers of silicon were initially cleaned, were dipped in a buffer solution of HF and then 

immersed in de-ionized water. Later they were dried and placed into MBE vacuum system. The 

growth of AlGaN/GaN or GaN thicknesses were measured by a Scanning Transmission Electron 

Microscopy (STEM). The cross section were examined by VG 601 STEM that acquired images and 

three-dimensional data that contains an electron energy loss spectrum in each pixel analyzed. 

Before proceeding to the deposition of nitride layers, a film of 120nm of Ni was deposited by e-

beam photolithography. The pattern was transferred in Ni film using an etching process with a 

solution made by 70% of HNO3 and 30% of H2O at room temperature. The growth of Ni film was 

calculated as 60nm/min. 

To fabricate nitride material it was used the dry etching process, using an etch system that consists 
of STS vacuum load-locked Inductively Coupled Plasma (ICP). To etch nitride film, Cl2 and Ar gases 
are used in a ratio Cl2/Ar of 5/15. The plasma was ignited with a power of 200W, with substrate 
platen powered at 35W. These powers generate a self-bias of 2140V at pressure of 2m Torr. The 
dry etching made by ICP is anisotropic, so that forms a vertical “sidewall” in the nitride. Using 
KOH-based solutions (wet etching), it was difficult to release GaN films on Si. In fact, KOH-based 
solutions do not have etchant effect on GaN, but they are very aggressive on AlN and Si. In fact, 
these solutions are used much in etching fabrication of Si or AlN MEMS, in processes of isotropic 
dry etching. KOH is an anisotropic etchants. After Cl2/Ar wet etching of nitride film, an etchant 
made by CF4 was used in a dry etch of the Si (111) substrate. Later an ICP plasma made by CF4 – O2 
– Ar in a pressure of 5 m Torr, was used to etch some micrometers in Si (111) layer, without 
etching of nitride layer. To undercut the nitride film, a solution of KOH/H2O was used in a 
temperature of 50°C. It gave an insignificant etch in GaN film. Therefore, after 15 min the GaN was 
released from Si substrate. In figure 3.1 there is a freestanding Gan-on-Si cantilever realized in this 
process.  
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Figure 3.1 – Freestanding GaN cantilever on Si (111) [ref. 3.1] 

 

Figure 3.2 shows a bright field image of a cross section of AlGaN/GaN/AlN/Si. This image derives 

from STEM. Red and blue colors represent the AlGaN and GaN layers, while the green color 

represents the energy loss frequency, which denotes the AlGaN/GaN interface. 

 

 
Figure 3.2 – Cross section of AlGaN/GaN/AlN/Si [ref. 3.1] 

 

It is interesting to notice that a same mosaic structure was observed in GaN-on-Si, using an AlN 

layer. It was used an high resolution electron microscopy, that was used to show that inversion 

domains were formed in the AlN layer due to difference in symmetry between the hexagonal 

buffer layer and the cubic substrate. In figure 3.2 there is a diffraction pattern, that shows the 

diffraction characteristics of the silicon substrate, AlN inner layer and GaN outer layer. The bright 
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circular dots represents the silicon planes, while the larger elongated dots represents the planes of 

GaN layer. 

The cross sectional area was determined with Electron Energy Loss Spectrometry (EELS), measured 

in a STEM system.  

The possibility to deposit GaN on Silicon by MBE it is possible using AlN buffer layer, with a 

combination of dry etching and wet etching processes. The AlGaN/GaN layers growth in columnar, 

and presents an hexagonal polytype. The III-nitride cantilevers integrated in Si substrate could be 

used as piezoresistive transducer elements, which could have applications in MEMS devices. 
 
 

3.2 Gallium Nitride on patterned silicon (GPS) technique for GaN-based suspended 

cantilevers [ref. 3.2] 

 

GaN is very resistant from a chemical point of view, therefore, to overcome its inertness it was 

developed GaN patterned on silicon (GPS) technique in [ref. 3.2]. This technique consists in 

undercutting GaN film without using the GaN etching process. This technique has the advantage 

that it could be adapted to the fabrication of AlGaN/GaN High Electron Mobility Transistors 

(HEMT) process. 

The process to produce this suspended GaN-on-Si cantilever is showed in figure 3.3: 

 
Figure 3.3 – Scheme of GPS technique [ref. 3.2] 
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In step (a), a pattern of Silicon (111) was realized by using photolithography and inductively 

plasma ICP RIE. In step (b) GaN layer and AlGaN/GaN layer heterostructures are realized with 

Metal Organic Chemical Vapor Deposition (MOCVD) process. The growth process is realized in a 

way that the single crystal III-nitride layers grows only on silicon ridges and on the bottom of the 

grooves between ridges. During this process (b), a thin nitridation layer grows on the sidewall of 

the silicon ridges. This thin layer could be removed after 30 second of an immersion in KOH or 

TMAH solution. After the growth, the GaN patterns are transferred from silicon substrate to GaN 

films. Therefore, the HEMT process is realized on GaN films. 

In step (c), it was realized an etching in Cl2-based ICP on the top of cantilever, in order to define 

the active region. In step (d), it was used an evaporating Ti/Al/Ni/Au multilayer metals in a 

temperature of 850 °C in N2 ambient for 30 second, in order to create ohmic contacts. In step (e), 

other contacts were formed by e-beam evaporated Ni/Au. In the last step (f), the silicon under the 

cantilever was removed by etching by an anisotropic etchant (25% tetra-methylammonium 

hydroxide (TMAH)) working at a temperature of 80 °C, and an isotropi etchant HNO3/HF/H2O at 

room temperature. These two etchants are used separately. The undercut of an anisotropic 

etchant depends on both the size of GaN structure and the crystalline orientations; therefore, 

there is the necessity to carefully design the GaN structures in order to ensure the release by 

anisotropic etchants. GaN results inert by etchants, but if the undercut time is more than 20 

minutes, the suspended GaN structures could be attacked by TMAH from the backside. Instead, 

the isotropic etchant do not attack GaN structures. To realize these structures with an isotropic 

etchant a photoresist such as AZ4620 could be used to protect the surface from the etching 

process.  

The GPS technique results after all step is represented in figure 3.4. It is showed the suspended 

cantilever in GaN. 

 

 
Figure 3.4 – Suspended GaN cantilever result after GPS technique [ref.3.2] 
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3.3 Fabrication of T-shape GaN-based micro cantilever (3-layers configuration) 

Before the fabrication of T-shape cantilevers in Bristol University laboratories, two cantilever were 

modeled. They are called Cantilever 1 and Cantilever 2 (in figure 3.5). These cantilevers are both in 

T-shape, but they have different dimensions.  

 
Figure 3.5 – Modeled Cantilever 1 and Cantilever 2 

 

The fabrication of the GaN-on-Silicon T-shape cantilevers was carried out using the BOSCH deep 

etching process in order to create a window in the backside of the GaN-on-Silicon chip. This 

process left a residual layer of silicon on the backside of GaN, which will be treated in this thesis.  

To form the cantilevers in the remaining GaN-Silicon structure it as used a Focused Ion Beam 

etching (FIB) process. This process uses ion beam from a Liquid Metal Ion Source (LMIS) that 

contains a reservoir of gallium ions that are emitted from a heated tungsten needle into a large 

electric field (around 108 volts/cm). Electrostatic lenses were used to aid focus adjustment. When 

gallium ions (with a high energy) beat the surface, atoms are sputtered while few nanometers of 

gallium ions are inserted on the surface, making it amorphous. FIB process works in similar way as 

Scanning Electron Microscope (SEM). The difference is that FIB deals with beam of ions while SEM 

emits a beam of electrons. It was also used a layer of AlN because it is required to decrease 

defects density of GaN. 

 

In figure 3.6 there are the steps to realize the Cantilever 1 and Cantilever 2.  
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Figure 3.6 – Fabrication process of the Cantilever 1 and Cantilever 2 

 

The instrument FEI Strata FIB201 was used; in fact, the sample was inserted in its chamber. It was 

fixed with silver paint into a circular stub and it was mounted onto a joystick controlled movable 

stage, which allows movements in the horizontal plane. In the chamber, vacuum was obtained 

(below 2.5x10-5 mbar) before the Gallium ion source with high beam energy of 30 keV was turned 

on. Initially, a current of 1pA was used because fractions of the sputtered atoms were ionized 

since they contained information about the sample. These sputtered atoms and released electrons 

were used to form simultaneous images to find the sample. In the next step, the sample was put 

at a certain height at which the stage can be inclined with no movement of the sample. A current 

of 11.5 nA was used to generate a crack in the membrane as shown in figure 3.6 (a). With same 

process, the material was removed around the cantilever on the either side. Cleaning-Cross 

Section (CCS) etches were used to leave a clean edge around the cantilever (in figure 3.6 (b)). 

Using the CCS etch as shown in figure 3.6 (c), the cantilever was released from the bulk material. 

The Cantilever 2 was realized in the same way, near Cantilever 1 as shown in figure 3.6 (d). 

It is interesting to notice that the two cantilevers appear bent. Bending occurs due to the high 

strain in gallium nitride as a material. Using SEM, images of Cantilever 1 and Cantilever 2 were 

obtained as zoomed images, as figure 3.7 and 3.8 show. 

                    
Figure 3.7 – Cantilever 1      Figure 3.8 – Cantilever 2 
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Both Cantilever 1 and Cantilever 2, realized in the same sample, present the 3-layers 

configuration. The thickness of GaN is 1 µm, the thickness of AlN is 0,2 µm and the thickness of 

Silicon is 0,5 µm. 
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4. EXPERIMENTAL TESTS WITH LASER DOPPLER VIBROMETER (LDV)  

 
LDV technology is the best method, in term of displacement and velocity resolution, to evaluate 

the resonance frequency of an object. The output signal of the LDV is a continuous analog voltage 

that is proportional to velocity of the analyzed object along the direction of the laser beam. 

 
Figure 4.1 – Sensor head of Laser Doppler Vibrometer (source: Polytech.com) 

  

The advantage of LDV technology than other similar instrument like accelerometer is that the LDV 

offer the possibility to reach very small object like MEMS where result impossible to attach 

physical elements such as accelerometer. Therefore, LDV work without contact with test objects. 

Another advantage is that LDV measures the natural frequency of an object without mass loading. 

These advantages make the LDV indispensable for MEMS devices.  

 

The disadvantage of LDV are the high costs of this technology that make it exclusive for some 

particular applications, like MEMS or other applications in micro or nanoscale. 

 

 

4.1 LDV operating principle [ref. 4.1] 
 

The operation of LDV takes place thanks to physical phenomenon of Doppler Effect: “Doppler 

Effect is the change in frequency or wavelength of a wave for an observer who is moving relative to 

the wave source” [ref. 4.1]. This effect takes the name of the Australian physicist Christian 

Doppler, who described the phenomenon in 1842. The Doppler Effect comes because when the 

source of the waves is approaching towards the observer that is stationary, each successive wave 

is emitted from a point closer to the observer than previous wave. Therefore, the observer feels 

the wave with a higher tone than the emitting frequency. The contrary happens when the wave 

emitter is turning away from the observer. In this case, the observer feels a wave with a lower 

frequency. The classical case of Doppler Effect is the pitch of a siren ambulance approaching to an 

observer.  

Generally, a laser Doppler vibrometer measures the difference in term of frequency, between an 

internal reference beam and a test beam. The most used type of LDV is the helium-neon laser, 

although laser diodes, fiber laser and Nd:YAG lasers are also used. 
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Figure 4.2 – Operating scheme of a Laser Doppler vibrometer (source: Wikipedia) 

 

Figure 4.2 shows the operating scheme of LDV. A laser beam, which has a frequency f0, meets the 

Beam Splitter 1 (BS1). The Beam Splitter is an optical device that splits a beam of light in two parts 

that preserve the same frequency. Beam Splitters are usually made by polyester, epoxy, or 

urethane-based adhesives. The BS1 splits the laser beam in a test beam and a reference beam. The 

test beam then pass through a Bragg Cell, which has the function to add a shift frequency “fb”. This 

new frequency “f0 + fb” is directed to target. If the target is vibrating, it adds a Doppler shift “fd” to 

the beam. This frequency is defined by the formula: 

 

𝑓𝑑 = 2 ∙ 𝑣(𝑡) ∙
cos⁡(𝛼)

𝜆
 

Where: 

v(t) = velocity of the target as a function of time; 

α = angle between laser beam and velocity vector; 

λ = wavelength of the laser beam. 

 

The LDV refers to optical laws of interference. When two light beams, with respective intensities 

“I1” and “I2” overlap, the total intensity “Itot” is given by: 

 

𝐼𝑡𝑜𝑡 = 𝐼1 + 𝐼2 + √(𝐼1𝐼2)𝑐𝑜𝑠 [
2𝜋(𝑟1 − 𝑟2)

𝜆
] 

Where: 

r1 – r2 = path length difference between two beams. 

 

The light reflects on the target, and some beam lights with frequency “f0 + fb + fd”, are directed by 

the BS2 and BS3 to the photodetector. 

The reference beam, which has a frequency “f0”, passes through the BS3 and reachs the 

photodetector.  
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The photodetector receive both the reference beam “f0” and reflected beam “f0 + fb + fd”. 

Confronting these two beams, and knowing “f0” and “fb”, it is possible to determine the frequency 

“fd”. In fact, the initial frequency of the laser beam is very high (>1014 Hz), which is higher than the 

response of the photodetector. The measures is possible because the instrument responds to the 

difference of beat frequency between two beams, which is “fb + fd” (typically in tens of MHz 

range).  

The output signal of the photodetector is a standard frequency modulated signal.  It has the Bragg 

frequency “fb” as carrier frequency, and Doppler shift “fd” as modulation frequency. The LDV 

transforms the Doppler frequency into a voltage proportional to velocity. Furthermore, it is 

possible to measure also displacements of the target with the LDV. Therefore, the Doppler 

frequency “fd” is not transformed into a voltage proportional to velocity, but the LDV counts the 

light/dark fringes on the detector. Using mathematical interpolation, the LDV could obtain a 

resolution of 2 nm, while using digital demodulation techniques, the resolution could be around 

pm range. Instead, it is also possible to demodulate the signal obtaining the velocity of the target.  

In fact, displacement demodulation is better for low frequency measurements (in Hz range), while 

velocity demodulation is better for higher frequencies.  

 

4.2 Experimental test on micro cantilever with LDV 
 

The resonance frequencies of both fabricated Cantilever 1 and Cantilever 2 were measured in the 

laboratories of University of Bristol using a Laser Doppler vibrometer. Figure 4.3 shows the scheme 

of the experiment. 

 

 
Figure 4.3 – Scheme of experiment setup 
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A PZT transducer was used to excite the fabricated micro cantilevers by placing the fabricated chip 

that contains Cantilever 1 and Cantilever 2 over it. The PZT transducer is excited by a sinusoidal 

signal and makes the cantilever vibrates.  

Unfortunately, the experiment was conducted just on micro cantilever in 3-layers configurations. 

There are no available results in term of resonance frequencies of a 2-layers configuration. 

Therefore, in this case, “Cantilever 1” and “Cantilever 2” refer to a 3-layers configuration. 

To record the frequencies response, a Graphtec LT-7901 Laser Doppler Vibrometer was used. 

The figure 4.4 shows a photograph of the chip with fabricated cantilevers in zoomed pictures, 

while in figure 4.5 and in figure 4.6 Cantilever 1 and Cantilever 2 are depicted. 

 
Figure 4.4 – Chip with fabricated micro cantilevers   

 

   

                    
Figure 4.5 – Zoomed Cantilever 1             Figure 4.6 – Zoomed Cantilever 2  

 
In order to identify the resonance frequency of the cantilevers, it is necessary to observe the peak 

of LDV response as a function of the excitation frequency. In fact, in figure 4.7 and in figure 4.8 the 

two graphs of Cantilever 1 and Cantilever 2 are reported: 
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Figure 4.7 – LDV response in function of excitation frequency of Cantilever 1 in 3-layers configuration 

 
Figure 4.8 – LDV response in function of excitation frequency of Cantilever 2 in 3-layers configuration 

 

The resonance frequency of Cantilever 1 is 75.3 kHz, while the resonance frequency of Cantilever 2 

is 55.5 kHz.  
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5. MATHEMATICAL MODELING OF THE FIRST NATURAL FREQUENCY 
 

To define a mathematical model for the first natural frequency it is possible to define the way in 

which the micro cantilever beam vibrates. Therefore, two types of mechanical vibrations were 

studied, which depend on the orientation of the micro cantilever beam in the plan. These two 

types of orientation, that will be called “Bending 1” and “Bending 2”, are showed in figure 5.1 and 

in figure 5.2:  

 

 
  

Figure 5.1 – BENDING 1 vibration      Figure 5.2 – BENDING 2 vibration 

 

The determination of mathematical model starts from the two case of micro cantilever beam. In 

the figure 5.1 and in figure 5.2 there are two representation of fictitious forces F. In both cases, 

the force F bends the cantilever, in direction of x-axis in Bending 1, and in direction of y-axis in 

Bending 2. 

Geometrical parameters were defined (“a”, “w”, “b”, “d”, and the thickness “t”), and showed in 

figure 5.1 and figure 5.2. The Cantilever 1 and Cantilever 2 present the follow dimension: 

 

𝐶𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟⁡1 → 𝑎 = 90𝜇𝑚; ⁡⁡⁡⁡𝑤 = 30𝜇𝑚; ⁡⁡⁡⁡⁡𝑏 = 90𝜇𝑚; ⁡⁡⁡⁡⁡𝑑 = 30𝜇𝑚;⁡ 

𝐶𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟⁡2 → 𝑎 = 100𝜇𝑚; ⁡⁡⁡⁡𝑤 = 35𝜇𝑚; ⁡⁡⁡⁡⁡𝑏 = 100𝜇𝑚; ⁡⁡⁡𝑑 = 30𝜇𝑚; 

 

The thickness “t” of Cantilever 1 and Cantilever 2 will be treated as 2-layers and as 3-layers. 

To simplify the mathematical result, the micro cantilever beam were parametrized in three simple 

dimensionless parameter (α, β and γ). The figure 5.3 shows in details the dimensionless 

parameters. 
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Figure 5.3 – the representation of the micro cantilever beam in dimension 

The micro cantilever beam can be model as a generic mass – spring system as in figure 5.4: 

 

Figure 5.4 – Mass – Spring system 

The mass “m” amounts in our micro beam to its mass, while the stiffness “k” represents the 

structural stiffness of the body of the beam. Figure 5.4 shows a free vibration system without 

damping. The damping is negligible and there are not external forces applied to the mass. The 

force applied from the spring to the mass (Fs) is proportional to the amount of the spring is 

stretching or compressing along the “x” axis. The stiffness “k” is the proportionality constant: 

 

𝐹𝑠 = −𝑘𝑥⁡⁡(5.1) 

 
The negative sign indicates that the force is always opposing to motion of the mass.  

During the vibration of this system, the force generated by the mass is proportional to 

acceleration of the mass, as the Newton’s second law says: 

 

∑𝐹 = 𝑚𝑎 = 𝑚𝑥̈ = 𝑚
𝑑2𝑥

𝑑𝑡2
⁡⁡(5.2) 

 

𝛼 =
𝑡

𝑎
 

 
 

𝛽 =
𝑎

𝑤
 

 
 

𝛾 =
𝑏

𝑑
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The sum of all forces on the mass generates the ordinary differential equation: 

𝑚𝑥̈ + 𝑘𝑥 = 0⁡⁡(5.3) 

Assuming that the initiation of vibration starts by stretching or compressing the spring by the 

distance of “A” and later releasing, the solution to the equation (5.3) that describes the motion of 

mass is: 

 

𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑛𝑡)⁡⁡(5.4) 
 

Now it’s possible to determine the equation of 𝑥̈(t) deriving two times x(t): 

 

𝑥̇(𝑡) = −𝐴𝜔𝑛𝑠𝑖𝑛(𝜔𝑛𝑡) 
 

𝑥̈(𝑡) = −𝐴𝜔𝑛
2𝑐𝑜𝑠(𝜔𝑛𝑡)⁡⁡(5.5) 

 

Solving the ordinary differential equation after replacing the equations (5.5) and (5.4) in (5.3), it’ is 

possible to obtain the formula that give the calculation of the first natural frequency:  

 

𝜔𝑛 = √
𝑘

𝑚
⁡⁡(5.6)⁡ 

 

The results of equation (5.6) has the unit of measure of [rad/s]. To obtain the unit of measure of 

[Hz] is just necessary divide the result in [rad/s] by 2π. Knowing the mass and the stiffness of each 

system it is possible to calculate the frequency at which each system vibrates once set in motion 

by an initial disturbance.  

 

Regarding the micro cantilever beam in T-shape, it is necessary to define its mass and stiffness to 

calculate the value of the first natural frequency. 

5.1 Determination of the mass “m” 

To determine the mass of the cantilever beam, it is sufficient to use the simple formula: 

 

𝑚 = 𝜌𝑉⁡⁡(5.7) 
Where: 

ρ = density of material [kg/m3]; 

V = volume of the object [m3]; 

 

The calculation of Bending 1 and Bending 2 will proceed in parallel, while the mass is the same in 

both cases. The mass of the cantilever was calculated keeping in mind that the micro cantilever 

beam is composite by a multi-layer. Contemporary to the study of mathematical model, a model 

on Solidworks® was produced, where it is possible to perform a finite element analysis.  
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Therefore, there is a double-layer case (2-layers) and a triple-layer case (3-layers): 

- 5.1.1 Mass in 2-layers configuration 

This type of cantilever beam is composite by a double layer of different material (GaN + 

Silicon). These two layers are considered overlapped and perfectly bounded.  

 
Figure 5.5 – Representation of cross section of 2-layers micro-cantilever 

 

The thicknesses of GaN and Silicon layers are considered respectively 1,5 µm and 0,5 µm. 

In figure 5.5, there is a representation of cross sectional area of 2-layers model. The 

dimension of thickness of tGaN or tSil is comparable with the width. This is just an 

enlargement of the thickness to show in clear way the two layers. The ratio between 

thickness “t” and width “d” in real cantilever is for example 2µm/30 µm in “Cantilever 1”. 

The calculation for a 2-layers model starts from the simple formula of mass, but using the 

two different value of density: 

 

𝑚2−𝑙 = 𝜌𝐺𝑎𝑁(𝑎𝑑𝑡𝐺𝑎𝑁 + 𝑤𝑏𝑡𝑆𝑖𝑙) + 𝜌𝑆𝑖𝑙(𝑎𝑑𝑡𝑆𝑖𝑙 + 𝑤𝑏𝑡𝑆𝑖𝑙)⁡(5.8) 
 

The process of parametrization of the mass begins reducing the equations until minimum 

number of dimensional parameters was obtained. For example, parametrizing the 

thickness tGaN and tSil: 

 

𝑡𝐺𝑎𝑁
𝑡⁄ = 𝑝𝐺𝑎𝑁⁡⁡(5.9)⁡ 

 

𝑡𝑆𝑖𝑙
𝑡⁄ = 𝑝𝑆𝑖𝑙 = 1 − 𝑝𝐺𝑎𝑁⁡⁡(5.10) 

 

𝑡 = 𝑡𝐺𝑎𝑁 + 𝑡𝑆𝑖𝑙 ⁡⁡(5.11) 
 

Substituting equations (5.9), (5.10) and (5.11) in equation of mass (5.8): 
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𝑚2−𝑙 = 𝜌𝐺𝑎𝑁(𝑎𝑑𝑡𝐺𝑎𝑁 + 𝑤𝑏𝑡𝐺𝑎𝑁) + 𝜌𝑆𝑖𝑙(𝑎𝑑𝑡𝑆𝑖𝑙 + 𝑤𝑏𝑡𝑆𝑖𝑙)

= 𝜌𝐺𝑎𝑁𝑝𝐺𝑎𝑁𝑡(𝑎𝑑 + 𝑤𝑏) + 𝜌𝑆𝑖𝑙𝑝𝑆𝑖𝑙𝑡(𝑎𝑑 + 𝑤𝑏)

= (𝜌𝐺𝑎𝑁𝑝𝐺𝑎𝑁 + 𝜌𝑆𝑖𝑙𝑝𝐺𝑎𝑁)𝑡(𝑎𝑑 + 𝑤𝑏)

= 𝜌∗𝑡(𝑎𝑑 + 𝑤𝑏)⁡⁡(5.12) 

 Where: 

𝜌∗ = 𝜌𝐺𝑎𝑁𝑝𝐺𝑎𝑁 + 𝜌𝑆𝑖𝑙𝑝𝑆𝑖𝑙  
 

With some arithmetic calculation, substituting the dimensionless terms (α, β and γ), the 

final equation of mass was found: 

𝑚2−𝑙 = 𝜌∗
𝛼

𝛽
𝑎2𝑏 (

𝛽

𝛾
+ 1)⁡⁡(5.13) 

 

- 5.1.2 Mass in 3-layers configuration 

This type of cantilever beam is composite by a triple layer of (GaN + AlN + Silicon). These 

three materials are overlapped and perfectly bounded between them as in case of 2-layers. 

In figure 5.6, there is a representation of a cross sectional area of 3-layers model. As in 

previous case of 2-layers model, the dimensions of tGaN, tAlN and tSil are enlargement to 

show better the division of three thicknesses. The ratio between thickness “t” and width 

“d” is for example 1.7µm/30µm on Cantilever 1. 

 
Figure 5.6 – Representation of cross section of 3-layers micro-cantilever 

 

The thicknesses of GaN, AlN and Silicon layers are respectively 1 µm, 0,2 µm and 0,5 µm. 

In this case, there is one more layer; therefore, there is another parameter of thickness: 

 

𝑡𝐺𝑎𝑁
𝑡⁄ = 𝑝𝐺𝑎𝑁⁡⁡(5.14)⁡ 
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𝑡𝐴𝑙𝑁
𝑡⁄ = 𝑝𝐴𝑙𝑁⁡⁡(5.15) 

 

𝑡𝑆𝑖𝑙
𝑡⁄ = 𝑝𝑆𝑖𝑙 = 1 − 𝑝𝐺𝑎𝑁 − 𝑝𝐴𝑙𝑁⁡⁡(5.16)⁡ 

 

𝑡 = 𝑡𝐺𝑎𝑁 + 𝑡𝐴𝑙𝑁 + 𝑡𝑆𝑖𝑙 ⁡⁡(5.17) 
The equation of mass become: 

 

𝑚3−𝑙 = 𝜌𝐺𝑎𝑁(𝑎𝑑𝑡𝐺𝑎𝑁 + 𝑤𝑏𝑡𝐺𝑎𝑁) + 𝜌𝐴𝑙𝑁(𝑎𝑑𝑡𝐴𝑙𝑁 + 𝑤𝑏𝑡𝐴𝑙𝑁)

+ 𝜌𝑆𝑖𝑙(𝑎𝑑𝑡𝑆𝑖𝑙 + 𝑤𝑏𝑡𝑆𝑖𝑙)⁡⁡(5.18) 
 

Where: 

 

𝜌∗ = 𝜌𝐺𝑎𝑁𝑝𝐺𝑎𝑁 + 𝜌𝐴𝑙𝑁𝑝𝐴𝑙𝑁 + 𝜌𝑆𝑖𝑙𝑝𝑆𝑖𝑙  

 

Progressing in the same way as in case of 2-layers, the equation of mass was determined: 

 

𝑚3−𝑙 = 𝜌∗
𝛼

𝛽
𝑎2𝑏 (

𝛽

𝛾
+ 1)⁡⁡(5.19) 

 

The equation of 2-layers and 3-layers are the equal about geometrical parameters. Just the 

term ρ* changes. Summarizing the calculation of mass in following Table 1: 

 

 2-layers 3-layers 

MASS [Kg] 

 

𝑚2−𝑙 = 𝑚3−𝑙 = 𝑚 = 𝜌∗
𝛼

𝛽
𝑎2𝑏 (

𝛽

𝛾
+ 1) 

 

ρ* 𝜌𝐺𝑎𝑁𝑝𝐺𝑎𝑁 + 𝜌𝑆𝑖𝑙𝑝𝑆𝑖𝑙 𝜌𝐺𝑎𝑁𝑝𝐺𝑎𝑁 + 𝜌𝐴𝑙𝑁𝑝𝐴𝑙𝑁 + 𝜌𝑆𝑖𝑙𝑝𝑆𝑖𝑙 

Table 5.7 – Calculation of mass in 2-layers and 3-layers model 

 

Once equations of mass were determined, the stiffness will be the next step to calculate. 
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5.2 Determination of the stiffness “k” 

To determine the Stiffness “k” Castigliano’s second theorem was used. It says: “If the strain energy 

U of a linearly elastic structure can be expressed as a function of generalised force F then the 

partial derivative of the strain energy with respect to generalised force gives the generalised 

displacement δ in the direction of F”: 

𝛿(𝑥) = ⁡
𝜕𝑈

𝜕𝐹
⁡⁡(5.20) 

Where: 

U = Strain Energy; 

F = Load. 

 

In this system, a generic test Force “F” was considered. 

To study the model is necessary to distinguish the two cases of Bending 1 and Bending 2, because 

the different orientation of the force that make to bend the micro beam in different way. For 

simplicity, just the studies of 2-layers model (in figure 5.8) were developed, because studies of 3-

layers model (in figure 5.9) will result the same. This is possible because thickness “t” is 

responsible just of moment of inertia. Then in calculating moment of inertia, the differences 

between 2-layers and 3-layers model will be explained. 

 

- 5.2.1 Stiffness “k” in Bending 1 

 

 

 
Figure 5.8 – Representation of micro cantilever on x-y plane (Bending 1) 
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Figure 5.9 – Representation of micro cantilever in 3 layer model (Bending 1) 

 

In figure 5.8, there is a representation of micro cantilever with a single generic 

concentrated load F in the end. It bends the cantilever in direction of y-axis.  

To start Castigliano’s Theorem is necessary to define the strain energy “U”: 

 

𝑈 =  ∫
𝑀2(𝑥)

2𝐸∗𝐼1
𝑑𝑥 + ∫

𝑀2(𝑥)

2𝐸∗𝐼2
𝑑𝑥

𝑤+𝑎

𝑤

𝑤

0

⁡⁡⁡(5.21) 

 

 

Where: 

M = F·x = Moment; 

E* = Equivalent Young’s Modulus; 

𝐼1 = Moment of Inertia of section 1 

𝐼2 = Moment of Inertia of section 2  

 

 Replacing the Moment in equation (5.21): 

 

𝑈 =  ∫
𝐹2𝑥2

2𝐸∗𝐼1
𝑑𝑥 + ∫

𝐹2𝑥2

2𝐸∗𝐼2
𝑑𝑥⁡⁡(5.22)

𝑤+𝑎

𝑤

𝑤

0

 
 

Solving the integrals: 

 

𝑈 =
𝐹2

6𝐸∗𝐼1
𝑤3 +

𝐹2

6𝐸∗𝐼2
[𝑎3 + 3𝑎2𝑤 + 3𝑤2𝑎]⁡⁡(5.23) 

 
Castigliano’s Method allows to calculate the maximum deflexion 𝛿(𝑥 = 0) at the end of 

cantilever, where the load F is applied: 
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𝛿(𝑥 = 0) =
𝜕𝑈

𝜕𝐹
=

𝐹

3𝐸∗𝐼1
𝑤3 +

𝐹

3𝐸∗𝐼2
[𝑎3 + 3𝑎2𝑤 + 3𝑤2𝑎]

=
𝐹(𝐼2𝑤

3 + 𝐼1𝑎
3 + 3𝐼1𝑎

2𝑤 + 3𝐼1𝑎𝑤
2)

3𝐸∗𝐼1𝐼2
⁡⁡⁡⁡(5.24)⁡⁡ 

 

The stiffness “k” is: 

𝑘 =
𝐹

𝛿
⁡⁡⁡(5.25) 

 

Replacing the equation (5.24) in (5.25): 

 

𝑘 =
𝐹

𝛿
=

3𝐸∗𝐼1𝐼2
(𝐼2𝑤

3 + 𝐼1𝑎
3 + 3𝐼1𝑎

2𝑤 + 3𝐼1𝑎𝑤
2)
⁡⁡(5.26) 

 

The both cross section of the cantilever are rectangular. In the first cross section there is 

the base “d” and the total height “t”, that is the sum of the single thicknesses of all layers. 

In the second one, while the thickness remains the same, the base measures “b”. The 

moments of inertia are different in 2-layers model from 3-layers model.  The both 

moments of inertia I1 and I2, in 2-layers and 3-layers case, could be represented as: 

𝐼1−2𝑙𝑎𝑦𝑒𝑟 =
𝑏(𝑡𝐺𝑎𝑁 + 𝑡𝑆𝑖𝑙)

3

12
=
𝑏𝑡3

12
⁡⁡(5.27) 

 

𝐼1−3𝑙𝑎𝑦𝑒𝑟 =
𝑏(𝑡𝐺𝑎𝑁 + 𝑡𝐴𝑙𝑁 + 𝑡𝑆𝑖𝑙)

3

12
=
𝑏𝑡3

12
⁡⁡(5.28) 

 

𝐼2−2𝑙𝑎𝑦𝑒𝑟 =
𝑑(𝑡𝐺𝑎𝑁 + 𝑡𝑆𝑖𝑙)

3

12
=
𝑑𝑡3

12
⁡⁡(5.29) 

 

𝐼2−3𝑙𝑎𝑦𝑒𝑟 =
𝑑(𝑡𝐺𝑎𝑁 + 𝑡𝐴𝑙𝑁 + 𝑡𝑆𝑖𝑙)

3

12
=
𝑑𝑡3

12
⁡⁡(5.30) 

 

Replacing “I1” (5.27 – 2-layers) or (5.28 – 3-layers) and “I2” (5.29 – 2-layers) or (5.30 – 3-

layers) in equation (5.26), after some arithmetic passages: 

 

𝑘 =
𝐸∗

4⁄ 𝑏𝑑𝑡3

𝑑𝑤3 + 𝑏𝑎3 + 3𝑏𝑎2𝑤 + 3𝑏𝑎𝑤2
⁡⁡(5.31) 
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This is the final equation to calculate the stiffness “k”. It depends only from geometrical 

and material parameters. Introducing dimensionless parameter (α, β and γ), the final 

equation of stiffness “k” is: 

 

𝑘 =
𝐸∗

4⁄ 𝑏𝛼3𝛽3

1 + 𝛾𝛽3 + 3𝛾𝛽2 + 3𝛾𝛽
⁡⁡(5.32) 

 

The stiffness, represented in this way, depends from all dimensionless parameter, except 

“b” and “E*”.  

 

 

- 5.2.2 Stiffness “k” in Bending 2 

 

To obtain the representation in the plan x-z of the micro cantilever, it is necessary to turn 

the cantilever in figure 5.8 around x-axis. In Bending 2, the force “F” is parallel to z-axis, 

while in Bending 1 it was parallel to y-axis. A different distribution of the load, ensure a 

different bending of the cantilever. For sure, the first natural frequency of Bending 2 will be 

higher than first natural frequency in Bending 1, because of the higher moment of inertia. 

In figure 5.10, there is the representation of the micro cantilever in plane x-z: 

 

 
Figure 5.10 – Representation of micro cantilever on x-z plane (Bending 2) 

 

The load is responsible of the bending of the micro cantilever in plan x-z. In fact, 

proceeding in calculation of the stiffness “k” in the same way of previous case (Bending 1), 

the same equation (5.26) was determined: 
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𝑘 =
𝐹

𝛿
=

3𝐸∗𝐼1𝐼2
𝐼2𝑤

3 + 𝐼1𝑎
3 + 3𝐼1𝑎

2𝑤 + 3𝐼1𝑎𝑤
2
⁡⁡(5.26) 

 

In this case, the moments of inertia are: 

 

𝐼1−2𝑙𝑎𝑦𝑒𝑟 =
(𝑡𝐺𝑎𝑁 + 𝑡𝑆𝑖𝑙)𝑏

3

12
=
𝑡𝑏3

12
⁡⁡(5.33) 

 

𝐼1−3𝑙𝑎𝑦𝑒𝑟 =
(𝑡𝐺𝑎𝑁 + 𝑡𝐴𝑙𝑁 + 𝑡𝑆𝑖𝑙)𝑏

3

12
=
𝑡𝑏3

12
⁡⁡(5.34) 

 

𝐼2−2𝑙𝑎𝑦𝑒𝑟 =
(𝑡𝐺𝑎𝑁 + 𝑡𝑆𝑖𝑙)𝑑

3

12
=
𝑡𝑑3

12
⁡⁡(5.35) 

 

𝐼2−3𝑙𝑎𝑦𝑒𝑟 =
(𝑡𝐺𝑎𝑁 + 𝑡𝐴𝑙𝑁 + 𝑡𝑆𝑖𝑙)𝑑

3

12
=
𝑡𝑑3

12
⁡⁡(5.36) 

 

 

Substituting the equations (5.33 – 2-layers) or (5.34 – 3-layers) for “I1” and (5.35 – 2-layers) 

or (5.36 – 3-layers) for “I2” of moment of inertia in equation (5.26): 

𝑘 =
𝐸∗

4⁄ 𝑏3𝑑3𝑡

𝑑3𝑤3 + 𝑏3𝑎3 + 3𝑏3𝑎2𝑤 + 3𝑏3𝑎𝑤2
⁡⁡(5.37) 

 

As in previous case, to obtain a dimensionless equation, it is necessary to reduce the 

equation (5.37) using parameters α, β and γ. The result presents all dimensionless 

parameters, except “E*”, “b” and “t”: 

 

𝑘 =
𝐸∗

4⁄ 𝑏3𝛼3𝛽3

𝑡2(1 + 𝛽3𝛾3 + 3𝛽2𝛾3 + 3𝛽𝛾3)
⁡⁡(5.38) 

 

5.3 Determination of First Natural Frequency “ω1f” 

 

Once the equations of stiffness in Bending 1 and Bending 2 in both cases of 2-layers and 3-layers 

was determined, it is possible to combine the equation of stiffness “k” and mass “m” following the 

(5.6). Therefore, the equation of first natural frequency in each analyzed case was calculated. 

 

𝜔𝑛 = √
𝑘

𝑚
⁡⁡(5.6)⁡ 
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The equations (5.32 – Bending 1) or (5.38 – Bending 2) of stiffness “k” and mass “m” was 

substituted in 5.13 or 5.19 (with appropriate ρ*) in dimensionless parameters. After some 

simplifications, the final equations of first natural frequency in both case of Bending 1 and Bending 

2 were found: 

𝜔1𝑓−𝐵𝑒𝑛𝑑𝑖𝑛𝑔1 =
𝛼𝛽

2𝑎
√

(𝐸
∗

𝜌∗⁄ )

𝛽2 +
1
𝛽2

+ 𝛽(𝛾 + 3) +
1
𝛽
(3𝛾 +

1
𝛾)

+ 3𝛾 + 3
⁡⁡(5.39) 

 

𝜔1𝑓−𝐵𝑒𝑛𝑑𝑖𝑛𝑔2 =
𝑑

2𝑡2
𝛼2𝛽𝛾√

(𝐸
∗

𝜌∗⁄ )

1
𝛽𝛾

+ 𝛽2𝛾2 + 3𝛽𝛾2 + 3𝛾2 +
1
𝛽2

+ 𝛽𝛾3 + 3𝛾3 + 3
𝛾3

𝛽

⁡⁡(5.40) 

 

In the table 5.11 and in table 5.12, there is a scheme of all models: 

2-LAYERS MODEL BENDING 1 BENDING 2 

Figure 

 
 

Stiffness k [N/m] 𝑘 =
𝐸∗

4⁄ 𝑏𝛼3𝛽3

1 + 𝛾𝛽3 + 3𝛾𝛽2 + 3𝛾𝛽
 

 

𝑘 =
𝐸∗

4⁄ 𝑏3𝛼3𝛽3

𝑡2(1 + 𝛽3𝛾3 + 3𝛽2𝛾3 + 3𝛽𝛾3)
 

 

Equivalent density ρ* 
[kg/m3] 

𝜌∗ = 𝜌𝐺𝑎𝑁𝑝𝐺𝑎𝑁 + 𝜌𝑆𝑖𝑙𝑝𝑆𝑖𝑙 𝜌∗ = 𝜌𝐺𝑎𝑁𝑝𝐺𝑎𝑁 + 𝜌𝑆𝑖𝑙𝑝𝑆𝑖𝑙  

Mass m [kg] 
𝑚2−𝑙 = 𝜌∗

𝛼

𝛽
𝑎2𝑏 (

𝛽

𝛾
+ 1) 

 

𝑚2−𝑙 = 𝜌∗
𝛼

𝛽
𝑎2𝑏 (

𝛽

𝛾
+ 1) 

 

First Natural 
Frequency ω1f [rad/s] 

𝜔1𝑓 =
𝛼𝛽

2𝑎
√

(𝐸
∗

𝜌∗⁄ )

𝛽2 +
1
𝛽2

+ 𝛽(𝛾 + 3) +
1
𝛽
(3𝛾 +

1
𝛾
) + 3𝛾 + 3

 

 

𝜔1𝑓 =
𝑑

2𝑡2
𝛼2𝛽𝛾√

(𝐸
∗

𝜌∗⁄ )

1
𝛽𝛾

+ 𝛽2𝛾2 + 3𝛽𝛾2 + 3𝛾2 +
1
𝛽2

+ 𝛽𝛾3 + 3𝛾3 + 3
𝛾3

𝛽

 

 

Table 5.11 – Scheme of 2-layers model in Bending 1 and Bending 2 
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3-LAYERS MODEL BENDING 1 BENDING 2 

Figure 

 
 

Stiffness k [N/m] 𝑘 =
𝐸∗

4⁄ 𝑏𝛼3𝛽3

1 + 𝛾𝛽3 + 3𝛾𝛽2 + 3𝛾𝛽
 

 

𝑘 =
𝐸∗

4⁄ 𝑏3𝛼3𝛽3

𝑡2(1 + 𝛽3𝛾3 + 3𝛽2𝛾3 + 3𝛽𝛾3)
 

 

Equivalent density ρ* 
[kg/m3] 

𝜌∗ = 𝜌𝐺𝑎𝑁𝑝𝐺𝑎𝑁 + 𝜌𝐴𝑙𝑁𝑝𝐴𝑙𝑁 + 𝜌𝑆𝑖𝑙𝑝𝑆𝑖𝑙  𝜌∗ = 𝜌𝐺𝑎𝑁𝑝𝐺𝑎𝑁 + 𝜌𝐴𝑙𝑁𝑝𝐴𝑙𝑁 + 𝜌𝑆𝑖𝑙𝑝𝑆𝑖𝑙  

Mass m [kg] 
𝑚3−𝑙 = 𝜌∗

𝛼

𝛽
𝑎2𝑏 (

𝛽

𝛾
+ 1) 

 

𝑚3−𝑙 = 𝜌∗
𝛼

𝛽
𝑎2𝑏 (

𝛽

𝛾
+ 1) 

 

First Natural Frequency 
ω1f [rad/s] 

𝜔1𝑓 =
𝛼𝛽

2𝑎
√

(𝐸
∗

𝜌∗⁄ )

𝛽2 +
1
𝛽2

+ 𝛽(𝛾 + 3) +
1
𝛽
(3𝛾 +

1
𝛾
) + 3𝛾 + 3

 

 

𝜔1𝑓 =
𝑑

2𝑡2
𝛼2𝛽𝛾√

(𝐸
∗

𝜌∗⁄ )

1
𝛽𝛾

+ 𝛽2𝛾2 + 3𝛽𝛾2 + 3𝛾2 +
1
𝛽2

+ 𝛽𝛾3 + 3𝛾3 + 3
𝛾3

𝛽

 

 

Table 5.12 – Scheme of 3-layers model in Bending 1 and Bending 2 

 

Each formula of first natural frequency can be rearranged in: 

 

𝑎𝜔1𝑓−𝐵𝑒𝑛𝑑𝑖𝑛𝑔1

√
𝐸∗

𝜌∗

=
𝛼𝛽

2 √

1

𝛽2 +
1
𝛽2

+ 𝛽(𝛾 + 3) +
1
𝛽
(3𝛾 +

1
𝛾)

+ 3𝛾 + 3
⁡⁡(5.41) 

 

Plausible ranges of dimensionless parameters of real fabrication of micro cantilever beam are: 

 

0.05 ≤ 𝛼 ≤ 0.1 

4 ≤ 𝛽 ≤ 20 

1 ≤ 𝛾 ≤ 10 

 
Variations of the bending frequency with dimensionless parameters are represented in figure 5.13, 

figure 5.14 and figure 5.15: 
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Figure 5.13 – Variation of first natural frequency in Bending 1, varying α and blocking β and γ 

 

 
Figure 5.14 – Variation of first natural frequency in Bending 1, varying β and blocking α and γ 

 

 
Figure 5.15 – Variation of first natural frequency in Bending 1, varying γ and blocking α and β 
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As regards Bending 2, the rearranged formula is: 

 

2𝑡2𝜔1𝑓−𝐵𝑒𝑛𝑑𝑖𝑛𝑔2

𝑑√
𝐸∗

𝜌∗

= 𝛼2𝛽𝛾
√

1

1
𝛽𝛾

+ 𝛽2𝛾2 + 3𝛽𝛾2 + 3𝛾2 +
1
𝛽2

+ 𝛽𝛾3 + 3𝛾3 + 3
𝛾3

𝛽

⁡⁡(5.42) 

With same defined ranges of dimensionless parameters, doing the same proceeding, the three 

charts in figure 5.16, figure 5.17 and figure 5.18 results: 

 
Figure 5.16 – Variation of first natural frequency in Bending 2, varying α and blocking β and γ 

 
Figure 5.17 – Variation of first natural frequency in Bending 2, varying β and blocking α and γ 

 

 
Figure 5.18 – Variation of first natural frequency in Bending 2, varying γ and blocking α and β 
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5.4 Determination of equivalent Young’s modulus 

The Young’s modulus, known as elastic modulus, is the measure of stiffness of a solid material. It 

defines the relationship between stress (σ) and strain (ε) in a material: 

 

𝐸 =
𝜎

𝜀
=

𝐹 𝐴⁄

∆𝐿 𝐿0⁄
=
𝐹𝐿0
𝐴∆𝐿

 

 

Where: 

σ = Stress; 

ε = Strain; 

 

Applying a load in a solid material, elastic deformation occurs if the material returns to original 

shape after removing the load. If the ratio between load and deformation remains constant, the 

stress-strain curve remain linear.  

Theoretically, a rigid material has and infinite Young’s modulus, but in presence of high Young’s 

modulus, the material could be approximated as rigid. In opposite, in presence of low Young’s 

modulus, the material is defined as soft.  

The Young’s modulus is not always the same in all orientation of the plan of a generic material. 

Many metals, for example, could be defined as isotropic, and their mechanical properties are the 

same in all orientation. Nevertheless, if they have impurities, it could become anisotropic, where 

the mechanical properties, including Young’s Modulus, depend on direction of the force vector. 

The anisotropy can be seen as well in composites materials.  

Until now, the Young’s modulus “E” was used in calculation of stiffness “k” and consequently in 

first natural frequency “ω1f” as “E*”. “E*” represents an equivalent Young’s modulus, because the 

micro cantilever has 2-layers in first case and 3-layers in second case. The materials of micro 

cantilevers are GaN and Silicon in 2-layers case and GaN, AlN and Silicon in 3-layers case. 

The materials are different. For example, in both cases there is Silicon. GaN and especially AlN are 

more rigid than silicon, so they have high Young’s moduli. In table 5.19, there are the Young’s 

Modulus of GaN, AlN and Silicon that will be used in following numerical simulations. 

EGaN 181 GPa 

EAlN 320 GPa 

ESil 150 GPa 
Table 5.19 – Young’s Modulus of GaN, AlN and Silicon 

 

However, the micro cantilevers are multilayer, so it is necessary to define an equivalent Young’s 

modulus that considers the interaction between different materials, and defines a single 

equivalent material that contains the right mix of mechanical properties of all materials.  
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Before analysing the mathematical model to calculate the equivalent Young’s Modulus, it is 

important to consider some simplified hypotheses: 

- Each layer is consider perfect, without impurities and superficial defects. 

- All materials that make up the multilayer are isotropic. 

- The layers are blocked and glued between them. There is not possibility of sliding between 

different layers. 

All this simplified hypotheses imply calculation errors. In fact, especially as regards superficial 

defects, there is the problem in fabrication of GaN-AlN-Silicon micro cantilevers: the substrate 

(originally not provided) of silicon results always with defects due to etching process that do not 

remove it completely. Therefore, the thickness of 0,5 µm is not constant. These problems 

guarantee different value of mass, thickness and equivalent Young’s Modulus of micro cantilevers. 

Therefore, the results of first natural frequency will have inside the cumulate errors of mass, 

thickness and Young’s modulus.  

In this mathematical model, two methods to define the equivalent Young’s Modulus “E*” were 

used. They are an approximate method, and more sophisticated Oberst’s equation.  

- 5.4.1 Approximate method for equivalent Young’s modulus 

The approximate method provides a weighted average of the single Young’s modulus of 

each material of the multilayer on their cross sectional area. This model was called 

“approximated model”, because it is a first calculation to test the model. This method in 

fact do not expect interaction between materials. It is a coarse method to calculate in quick 

way the equivalent Young’s Modulus.  

 

In both case of 2-layers and 3-layers, respectively shown in figure 5.20, and in figure 5.21, 

the calculation of the equivalent Young’s modulus was made on width “d”. Considering the 

calculation on width “b” the result will be the same, because the parameters “b” or “d” will 

be elide. 

In this way, the approximate method gives a weighted average of the single Young’s 

modulus on thicknesses of each material of multilayer. 

As regards the calculation of the 2-layers case: 

 
Figure 5.20 – Section of the beam in width “d” in 2-layers case 
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 𝐸2𝑙𝑎𝑦𝑒𝑟−𝑎𝑝𝑝𝑟𝑜𝑥[𝑑(𝑡𝐺𝑎𝑁 + 𝑡𝑆𝑖𝑙)] = 𝐸𝐺𝑎𝑁𝑑𝑡𝐺𝑎𝑁 + 𝐸𝑠𝑖𝑙𝑑𝑡𝑆𝑖𝑙  

 

𝐸2𝑙𝑎𝑦𝑒𝑟−𝑎𝑝𝑝𝑟𝑜𝑥 =  
𝐸𝐺𝑎𝑁𝑡𝐺𝑎𝑁 + 𝐸𝑠𝑖𝑙𝑡𝑆𝑖𝑙

(𝑡𝐺𝑎𝑁 + 𝑡𝑆𝑖𝑙)
⁡⁡(5.43) 

 
Instead, the calculation of the 3-layers case: 

  
Figure 5.21 – Section of the beam in width “d” in 3-layers case 

𝐸3𝑙𝑎𝑦𝑒𝑟−𝑎𝑝𝑝𝑟𝑜𝑥[𝑑(𝑡𝐺𝑎𝑁 + 𝑡𝐴𝑙𝑁 + 𝑡𝑆𝑖𝑙)]

= 𝐸𝐺𝑎𝑁𝑑𝑡𝐺𝑎𝑁 + 𝐸𝐴𝑙𝑁𝑑𝑡𝐴𝑙𝑁 + 𝐸𝑠𝑖𝑙𝑑𝑡𝑆𝑖𝑙  

 

𝐸3𝑙𝑎𝑦𝑒𝑟−𝑎𝑝𝑝𝑟𝑜𝑥 =  
𝐸𝐺𝑎𝑁𝑡𝐺𝑎𝑁 + 𝐸𝐴𝑙𝑁𝑡𝐴𝑙𝑁 + 𝐸𝑠𝑖𝑙𝑡𝑆𝑖𝑙

(𝑡𝐺𝑎𝑁 + 𝑡𝐴𝑙𝑁 + 𝑡𝑆𝑖𝑙)
⁡⁡(5.44) 

 
The value of “Eapprox” could be replaced in equations (5.39) and (5.40) respectively of first 

natural frequency in Bending 1 and Bending 2: 

  

Before the Oberst’s Equation was treated, it is necessary to introduce the theory of 

viscoelastic materials. 
 

- 5.4.2 Controlling vibration using viscoelastic damping [ref. 5.1]: 

Viscoelastic materials are rubber-like, and possess stiffness and damping characteristics, 

that change strongly with frequency of vibration and temperature. However, these 

materials cannot be used to produce practical structures and machines, because 

sometimes they result too weak. Therefore, these viscoelastic materials should be added 

strategically to the structures to improve their characteristics. 
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The target of damping treatments is to add the viscoelastic material in different way and in 

such locations to guarantee that when the structure vibrates in the modes of interest, 

there is the greatest possible cyclic deformation of the damping material, to dissipate 

vibrational energy during each cycle as possible. This require the knowledge of mechanical 

behaviour of the structures, and the knowledge of the deformations of viscoelastic 

materials occurring during vibration. Therefore, it is necessary to know the complex 

modulus properties of the damping materials. Viscoelastic damping materials could be 

applied in extension, in shear, in extension/flexure and in shear/flexure. 

There are applications in which there is a partial coverage of viscoelastic material on 

structures, but just the case of full coverage of viscoelastic materials was treated. 

 
Figure 5.22 – Viscoelastic damping material (k2) applied in parallel in extension [ref. 5.1] 

 

For example, in deformation in extension (figure 5.22) during vibration, the calculation of 

equivalent stiffness is relatively simple. It results: 
 

𝑘∗ = 𝑘1 + 𝑘2(1 + 𝑖𝜂2) 

 
Where: 

𝑘∗ = 𝑘(1 + 𝑖𝜂) – The complex stiffness of the composite; 

𝑘1 – The initial stiffness of the structure layer; 

𝑘2(1 + 𝑖𝜂2) – The complex stiffness of the parallel viscoelastic layer. 

 

Therefore, the effective stiffness “k” and loss factor “η” of the combined element are: 

 

𝑘 = 𝑘1 + 𝑘2 

 

𝜂 =
𝜂2

1 + 𝑘2 𝑘1⁄
 

However, in this thesis, the simple case of deformation in extension is not treat. There is 

necessity to define a flexural solution.  

There are two method to treat the flexural case: 

 

 5.4.2.1 Free layer treatments 

The simplest flexural damping system is the free layer treatment. It consists to apply 

a thickness of a viscoelastic material on a beam or plate to increase the damping.  

For sure, these treatments requires consistent values of thicknesses, Young’s 

moduli and loss factors, otherwise, the treatments result sometimes inefficient 

from weight point of view.  



50 
 

The flexural rigidity “(EI)*” changes due to new damping material, and it is 

calculated by Oberst’s equation. 

Simple structures, rarely encountered in practice, help to understand basic 

principles. Figure 5.23 shows a simple structure with free layer treatment that, 

according to Oberst, is deformed in flexure only. When the beam is cyclically 

deformed in flexure, the outer surface results stretched and inner surfaces results 

compressed. Each fibre of the viscoelastic material is deformed in extension during 

this deformation of the beam and creates a bending moments, which resists to 

flexural deformation. 

 
Figure 5.23 – Free layer treatment (thickness H2) applied on structure layer (thickness H1) in 

undeformed and deformed configuration [ref. 5.1] 

 

The simplest form of the Oberst’s equation for a 2-layers, composite by a structure 

layer plus a viscoelastic damping material is: 

 

(𝐸𝐼)∗

𝐸1𝐼1
= 1 +

𝐸2
∗

𝐸1
(
𝐻2

𝐻1
)
3

+ 3(1 +
𝐻2

𝐻1
)
2 (𝐸2

∗ 𝐸1⁄ )(𝐻2 𝐻1⁄ )

1 + (𝐸2
∗ 𝐸1⁄ )(𝐻2 𝐻1⁄ )

⁡⁡(5.47) 

 
Where “(EI)*” is the effective complex flexural rigidity of the structure beam plus 

viscoelastic material. “E1” is the Young’s modulus of the structure and “E2*” is the 

complex Young’s modulus of the viscoelastic damping material. H1 and H2, as shown 

in figure 5.23, represent the thickness respectively of the layer structure and the 

viscoelastic layer. 

𝐼1 =
𝑏(𝐻1)

3

12
⁄  represents the moment of inertia of structure layer, where  



51 
 

“b” and “H1” are respectively the width and the thickness of the cross sectional area 

of the structure layer. 

  Another way to write the Oberst’s equation is: 

 

   

(𝐸𝐼)∗

𝐸1𝐼1
= 1 + 𝑒∗ℎ3 + 3(1 + ℎ)2

𝑒∗ℎ

1 + 𝑒∗ℎ
⁡⁡(5.48) 

 
Where: 

ℎ =
𝐻2

𝐻1
⁄ ; 

  𝑒∗ =
𝐸2
∗

𝐸1
⁄ ; 

  𝐼1 =
𝑏𝐻1

3

12
⁄ ; 

 

 5.4.2.2 Constrained layer damping treatments 

A complicated flexural damping treatment is when, another elastic material like a 

metal sheet or plate caps a viscoelastic layer. It is called constrained layer damping 

treatment. In this case, there are at least three materials in multilayer, where the 

inner layer is a viscoelastic material (thickness “H2”), and the two outer layers are, 

the first made by the initial material of structure (thickness “H1”), and the last one 

made by the elastic layer in order to cap the viscoelastic layer (thickness H3). In this 

case it is hard to calculate the effective flexural modulus “(EI)*”, because it depends 

on boundary conditions, modal shape, dimensions and damping material complex 

modulus. 

Figure 5.24 illustrates the deformation of single constrained damping layer pair on a 

simple beam. 

 
Figure 5.24 – Deformation in a constrained layer treatment [ref. 5.1] 
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The Ross-Kerwin-Ungar equation (RKU equations) defines the model of constrained 

layer damping treatments. These equations depends on assumption that flexural 

deformation of the beam during vibration is spatially sinusoidal in shape. The 

original model provides that the RKU equations are only applicable for beams 

having pinned-pinned boundary conditions. Nevertheless, Rao developed exact 

solutions of this equation, using the Euler-Bernoulli beam theory, providing 

correction factors for other boundary conditions. The set of RKU equations for a 

single constrained layer pair damping treatment are usually written in the form (for 

pinned-pinned boundary condition): 

 

(𝐸𝐼)∗ =
𝐸1𝐻1

3

12
+
𝐸2
∗𝐻2

3

12
+
𝐸3𝐻3

3

12
−
𝐸2
∗𝐻2

2

12
(
𝐻31 − 𝐷

1 + 𝑔∗
) + 𝐸1𝐻1𝐷

2

+ 𝐸2
∗𝐻2(𝐻21 − 𝐷)2 + 𝐸3𝐻3(𝐻31 − 𝐷)2

− [0.5𝐸2
∗𝐻2(𝐻21 − 𝐷)

+ 𝐸3𝐻3(𝐻31 − 𝐷)] (
𝐻31 − 𝐷

1 + 𝑔∗
)⁡⁡(5.49) 

With: 

𝐷 =
𝐸2
∗𝐻2(𝐻21 − 0.5𝐻31) + 𝑔∗(𝐸2

∗𝐻2𝐻21 + 𝐸3𝐻3𝐻31)

𝐸1𝐻1 + 0.5𝐸2𝐻2 + 𝑔∗(𝐸1𝐻1 + 𝐸2𝐻2 + 𝐸3𝐻3)
 

 

𝐻21 = 0.5(𝐻1 + 𝐻2) 

𝐻31 = 𝐻2 + 0.5(𝐻1 + 𝐻3) 

 

𝑔∗ =
𝐺2
∗𝜆2

𝐸3𝐻2𝐻3𝜋
2
 

  Where: 

  E1 = Young’s modulus of structure layer; 

  E2* = Young’s modulus of damping layer; 

  E3 = Young’s modulus of elastic layer; 

  G2* = Shear modulus of damping layer. 

  λ = Semi wavelength of vibration in pinned-pinned boundary condition. 

 

Each term of “(EI)*” represents: the first, second and third term represent the 

flexural rigidities of three layers of their own neutral axes; the term “D” defines the 

neutral axis for the composite beam. The parameter “g*” is the “shear parameter” 

and it varies from a low number to a high number if “G2*” is small or large. The 

Young’s Modulus “E2*” is complex as well as “G2*”, while “E3” could be complex if a 

damping material is used as constraining layer. 
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The simplest form of the RKU equation is the “sandwich configuration”. It requires 

that “H1” layer is equal to “H3”, and the “H2” is much lower than outer layers. In this 

case the effect of the inner layer “E2*” is negligible: 

 

(𝐸𝐼)∗ = 2𝐸1𝐼1 + 𝐸1𝐻1(𝐻1 + 𝐻2)
𝑔∗

1 + 2𝑔∗
⁡⁡(5.50) 

 

  In this case, “I1” represents the moment of inertia of the structure layer. 

   

Rao’s studies guarantee the solutions of RKU equations with other boundary 

conditions. In fact, the value of the semi wavelength “λ” used in calculation of “g*”, 

corresponds to the length of pinned-pinned beam of the same thickness which has 

the same resonant frequency as the actual beam. The first frequency of pinned-

pinned beam is given by: 

 

𝜌1𝑏𝐻1𝜔𝑛
2𝜆𝑛

4

𝐸1𝐼1
= 𝜋4 

 
Where: 

𝜌1= Density of the structure layer; 

𝑏 = Width of the beam; 

  𝜔𝑛 = The resonant frequency; 

 

 The nth modal frequency of the beam with other boundary conditions is given by: 

 

𝜌1𝑏𝐻1𝜔𝑛
2𝐿4

𝐸1𝐼1
= 𝜉𝑛

4 

With: 

𝐿 = Length of the beam; 

𝜆𝑛 =
𝜋𝐿

𝜉𝑛
 

Rao’s studies refers just on first and second mode of vibration. Above the third 

mode, the corrections are very small. There is a correction factor for each boundary 

condition. This factor influence just the equation of shear parameter “g*”, because 

it is the only that depends from semi wavelength “λ”. 

The parameter “g*” become for other boundary conditions: 

 

𝑔∗ =
𝐺2
∗𝐿2

𝐸3𝐻2𝐻3𝜉𝑛
2√𝐶𝑛
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  Therefore, the parameter “λn” become with Rao’s correction factor “Cn”: 

   

𝜆𝑛 =
𝜋𝐿

𝜉𝑛√𝐶𝑛
 

The table 5.25 summarises some of these corrections obtained from Rao’s studies 

comparing with RKU equations. 

 

BOUNDARY CONDITIONS CORRECTION FACTOR “Cn” 

 MODE 1 MODE 2+ 

PINNED-PINNED 1.0 1.0 

CLAMPED-CLAMPED 1.4 1.0 

CLAMPED-PINNED 1.0 1.0 

CLAMPED-FREE 0.9 1.0 

FREE-FREE 1.0 1.0 
Table 5.25 – Rao’s correction factor for each boundary condition 

 

Constrained layer treatments are more efficient than free layer treatments, but the third 

layer add weight to the structure. Sometimes if structures are very complicated, they 

require an analysis by finite element (FEM). 

The costs of materials and the costs of working process in free layer treatments result 

often lower than constrained layer damping treatments. 

An important consideration is that when “H3” approaches to zero, the RKU equation is 

reduced to Oberst’s equation. 
 

- 5.4.3 Oberst’s equation for equivalent Young’s modulus 

An interesting way to write the Oberst’s equation showed in [5.4.2.1] in equation (5.48) is: 

 

(𝐸𝐼)∗

𝐸1𝐼1
= [𝐴∗ + 𝐵∗𝑒∗]⁡⁡(5.51) 

Where: 

 

𝐴∗ =
(1 − ℎ2𝑒∗) + [1 + (2ℎ + ℎ2)𝑒∗]3

2(1 + ℎ𝑒∗)3
 

 

𝐵∗ =
(1 + 2ℎ − ℎ2𝑒∗)3 − (1 − ℎ2𝑒∗)3

2(1 + ℎ𝑒∗)3
 

With: 

ℎ =
𝐻2

𝐻1
⁄ ; 

 𝑒∗ =
𝐸2
∗

𝐸1
⁄ ; 

 𝐼1 =
𝑏𝐻1

3

12
⁄ ; 
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The subscripts (1) or (2) represents the reference layers. 

 

In this case, Oberst’s equation shows the way to calculate a 2-layers case of free layer 

damping treatment. In theory, in free layer treatments, there is an application of Oberst’s 

equation to calculate multilayer cases based on the two layers procedure. In particular, in 

3-layers case: 

 

 

(𝐸𝐼)∗

𝐸1𝐼1
= [𝐴1

∗ + 𝑒2
∗𝐵1 + 𝑒3

∗𝐶1]⁡⁡(5.52) 

 Where: 

𝐴1
∗ = 4[𝑚3 + (1 −𝑚)3] 

 

𝐵1 = 4[(𝑚 + ℎ2)3 −𝑚] 

 

𝐶1 = 4[(𝑚 + ℎ2 + ℎ3)
3 − (𝑚 + ℎ2)

3] 
 

𝑚 =
1 − 𝑒2

∗ℎ2
2 − 𝑒3

∗ℎ3(2ℎ2 + ℎ3)

2[1 + 𝑒2
∗ℎ2 + 𝑒3

∗ℎ3]
 

 
 

Where: 

ℎ2 =
𝐻2

𝐻1
⁄ ; 

ℎ3 =
𝐻3

𝐻1
⁄ ; 

 𝑒2
∗ =

𝐸2
∗

𝐸1
⁄ ; 

𝑒3
∗ =

𝐸3
∗

𝐸1
⁄ ; 

𝐼1 =
𝑏𝐻1

3

12
⁄  

 

It is simple to notice, when “e3*” and/or “h3” are zero these equations reduce to Oberst’s 

equation of 2-layers case. This theory can be applied only when two damping layers are 

bounded on structural base beam. To make the theory work, the outer layer must be softer 

than inner damping layer, so that the condition “plane section must remain plane” of free 

layer treatment is not violated. Otherwise, the third layer could be considered as a 

constraining layer, as discussed in paragraph [5.4.2.2]. In this case, the effectiveness of 

third layer is reduced. 

The variation of the real part of “(EI)*”, “e” and “h” provides a useful values of the 

quantities of damping, which could be determined applying a damping layer, where 

complex properties are known. 
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Oberst’s equation in 2-layers and 3-layers of free layer treatments were applied in T-shape 

cantilever treated in this thesis. Therefore, there is necessity to make some considerations: 

 

 Both 3-layers case and 2-layers case do not consider damping materials, therefore, 

null damping on micro cantilever is obtained; 

 Without damping, “e*” become “e”, because just the real part of the “silicon” and 

“AlN” layers were considered, and not the complex Young’s modulus (typical of 

damping materials); 

 In the same way, as regards 2-layers case, the result gives just the real part of “EI*”. 

Therefore, “EI*” become “EI”, as “A*” become “A” and “B*” become “B”. As 

regards 3-layers case, the situation is the same.  

 

As regards 2-layers case, writing again the Oberst’s equation: 

 

(𝐸𝐼)

𝐸𝐺𝑎𝑁𝐼1
= [𝐴 + 𝑒𝐵]⁡⁡(5.53) 

 
Where: 

𝐴 =
(1 − ℎ2𝑒) + [1 + (2ℎ + ℎ2)𝑒]3

2(1 + ℎ𝑒)3
⁡⁡⁡(5.54) 

𝐵 =
(1 + 2ℎ − ℎ2𝑒)3 − (1 − ℎ2𝑒)3

2(1 + ℎ𝑒)3
⁡⁡⁡(5.55) 

With: 

ℎ =
𝑡𝑆𝑖𝑙

𝑡𝐺𝑎𝑁
⁄ ; 

 𝑒 =
𝐸𝑆𝑖𝑙

𝐸𝐺𝑎𝑁
⁄ ; 

 𝐼1 =
𝑏𝑡𝐺𝑎𝑁

3

12
⁄ ; 

  

 As regards 3-layers case, the Oberst’s equation: 

  

(𝐸𝐼)

𝐸𝐺𝑎𝑁𝐼1
= [𝐴1 + 𝑒2𝐵1 + 𝑒3𝐶1]⁡⁡(5.56) 

 

𝐴1 = 4[𝑚3 + (1 −𝑚)3]⁡⁡⁡(5.57) 

𝐵1 = 4[(𝑚 + ℎ2)3 −𝑚]⁡⁡⁡(5.58) 

𝐶1 = 4[(𝑚 + ℎ2 + ℎ3)
3 − (𝑚 + ℎ2)

3]⁡⁡⁡(5.59) 
 

𝑚 =
1 − 𝑒2ℎ2

2 − 𝑒3ℎ3(2ℎ2 + ℎ3)

2[1 + 𝑒2ℎ2 + 𝑒3ℎ3]
⁡⁡⁡(5.60) 
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Where: 

ℎ2 =
𝑡𝐴𝑙𝑁

𝑡𝐺𝑎𝑁
⁄ ; 

ℎ3 =
𝑡𝑆𝑖𝑙

𝑡𝐺𝑎𝑁
⁄ ; 

 𝑒2 =
𝐸𝐴𝑙𝑁

𝐸𝐺𝑎𝑁
⁄ ; 

𝑒3 =
𝐸𝑆𝑖𝑙

𝐸𝐺𝑎𝑁
⁄ ; 

𝐼1 =
𝑏𝑡𝐺𝑎𝑁

3

12
⁄  

 

The micro cantilever has not the same cross sectional area, but it has, as widely explained, 

the T-shape. Therefore, there is necessity, implementing Oberst’s equation, to calculate 

again the stiffness “k” in cases of Bending 1 and Bending 2 and in 2-layers and 3-layers 

cases. Mixing it with mass (that remains the same), the first natural frequency can be 

calculated in these cases: 

 

 5.4.3.1 First natural frequency in Bending 1 in 2-layers configuration implementing 

Oberst’s equation 

As in paragraph [5.2.1], on figure 5.26, the strain energy was calculated: 

 

𝑈 =  ∫
𝑀2(𝑥)

2(𝐸𝐼)1
𝑑𝑥 + ∫

𝑀2(𝑥)

2(𝐸𝐼)2
𝑑𝑥⁡

𝑤+𝑎

𝑤

𝑤

0

⁡(5.61) 

 
Figure 5.26 – Representation of micro cantilever in 2-layers case on x-y plane (Bending 1) 

 

The values of “EI” could be obtained from the Oberst’s equations in (5.53): 

 

(𝐸𝐼)1 = 𝐸𝐺𝑎𝑁𝐼𝐺𝑎𝑁−1[𝐴1 + 𝑒1𝐵1]⁡⁡(5.62) 
(𝐸𝐼)2 = 𝐸𝐺𝑎𝑁𝐼𝐺𝑎𝑁−2[𝐴2 + 𝑒2𝐵2]⁡⁡(5.63) 

 
As defined before, the parameters “A1”, “A2”, “B1”, “B2”, “e1” and “e2” depend on 

thicknesses and Young’s moduli of materials, that don’t change along the x-axis. 

Therefore, A1 = A2 = A and B1 = B2 = B and e1 = e2 = e. 

 

Replacing (5.62) and (5.63) in (5.61) and solving the integrals: 
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𝑈 =
𝐹2

6𝐸𝐺𝑎𝑁𝐼𝐺𝑎𝑁−1[𝐴 + 𝑒𝐵]
𝑤3

+
𝐹2

6𝐸𝐺𝑎𝑁𝐼𝐺𝑎𝑁−2[𝐴 + 𝑒𝐵]
[𝑎3 + 3𝑎2𝑤 + 3𝑤2𝑎]⁡⁡(5.64) 

 

From strain energy “U”, the maximum deflection “δ” (where the load is applied) 

was obtained with the same procedure of paragraph [5.2.1]: 

 

𝛿(𝑥 = 0) =
𝐹[𝐼𝐺𝑎𝑁−2𝑤

3 + 𝐼𝐺𝑎𝑁−1(𝑎
3 + 3𝑎2𝑤 + 3𝑎𝑤2)]

3𝐼𝐺𝑎𝑁−1𝐼𝐺𝑎𝑁−2𝐸𝐺𝑎𝑁[𝐴 + 𝑒𝐵]
⁡⁡(5.65) 

 

  The stiffness results: 

 

𝑘 =
𝐹

𝛿
=

3𝐸𝐺𝑎𝑁[𝐴 + 𝑒𝐵]𝐼𝐺𝑎𝑁−1𝐼𝐺𝑎𝑁−2
𝐼𝐺𝑎𝑁−2𝑤

3 + 𝐼𝐺𝑎𝑁−1𝑎
3 + 3𝐼𝐺𝑎𝑁−1𝑎

2𝑤 + 3𝐼𝐺𝑎𝑁−1𝑎𝑤
2
⁡⁡⁡(5.66)⁡ 

  

  Defining the moment of inertia as: 

 

𝐼𝐺𝑎𝑁−1 =
𝑏(𝑡𝐺𝑎𝑁)

3

12
=
𝑏𝑝𝐺𝑎𝑁

3 𝑡3

12
⁡⁡(5.67) 

 

𝐼𝐺𝑎𝑁−2 =
𝑑(𝑡𝐺𝑎𝑁)

3

12
=
𝑑𝑝𝐺𝑎𝑁

3 𝑡3

12
⁡⁡(5.68) 

 
  Where: 

  𝑡 = 𝑡𝐺𝑎𝑁 + 𝑡𝑆𝑖𝑙  

  𝑝𝐺𝑎𝑁 =
𝑡𝐺𝑎𝑁

𝑡⁄  

 

 

Substituting in equation (5.66) the dimensionless parameters and moments of 

inertia: 

 

𝑘 =

𝐸𝐺𝑎𝑁
4⁄ 𝑝𝐺𝑎𝑁

3 [𝐴 + 𝑒𝐵]𝑏𝛼3𝛽3

1 + 𝛾𝛽3 + 3𝛾𝛽2 + 3𝛾𝛽
⁡⁡(5.69) 

 
The first natural frequency, using the mass of 2-layers model defined in [5.1.1], 

results: 
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𝜔1𝑓−2𝑙𝑎𝑦𝑒𝑟−𝐵𝑒𝑛𝑑𝑖𝑛𝑔1 =
𝛼𝛽

2𝑎
√

𝑝𝐺𝑎𝑁
3 (

𝐸𝐺𝑎𝑁
𝜌∗⁄ ) [𝐴 + 𝑒𝐵]

𝛽2 +
1
𝛽2

+ 𝛽(𝛾 + 3) +
1
𝛽
(3𝛾 +

1
𝛾)

+ 3𝛾 + 3
⁡⁡⁡(5.70) 

Rewriting the first natural frequency in (5.39), defined in paragraph [5.3]: 

𝜔1𝑓−𝐵𝑒𝑛𝑑𝑖𝑛𝑔1 =
𝛼𝛽

2𝑎
√

(𝐸
∗

𝜌∗⁄ )

𝛽2 +
1
𝛽2

+ 𝛽(𝛾 + 3) +
1
𝛽
(3𝛾 +

1
𝛾)

+ 3𝛾 + 3
⁡⁡⁡(5.39) 

 

Comparing the equations (5.70) and (5.39), the value of equivalent Young’s modulus 

“E2layer-Oberst” was determined: 

 

 

𝐸2𝑙𝑎𝑦𝑒𝑟−𝑂𝑏𝑒𝑟𝑠𝑡 = 𝑝𝐺𝑎𝑁
3 𝐸𝐺𝑎𝑁(𝐴 + 𝑒𝐵)⁡⁡(5.71) 

 
  

 5.4.3.2 First natural frequency in Bending 1 in 3-layers configuration implementing 

Oberst’s equation 

In the same way of 2-layers case, the values of “EI” in 3-layers case could be 

obtained from the Oberst’s equation of 3-layers case (in figure 5.27) in equation 

(5.54): 

 
Figure 5.27 – Representation of micro cantilever in 3-layers case on x-y plane (Bending 1) 

 

(𝐸𝐼)1 = 𝐸𝐺𝑎𝑁𝐼𝐺𝑎𝑁−1[𝐴1−1 + 𝑒2𝐵1−1 + 𝑒3𝐶1−1]⁡⁡⁡(5.72) 
(𝐸𝐼)2 = 𝐸𝐺𝑎𝑁𝐼𝐺𝑎𝑁−2[𝐴1−2 + 𝑒2𝐵1−2 + 𝑒3𝐶1−2]⁡⁡⁡(5.73) 

 
As defined before, the parameters “A1-1”, “A1-2”, “B1-1”, “B1-2”, “e2” and “e3” depend 

on thicknesses and Young’s moduli of materials, that don’t change along the x-axis. 

Therefore, A1-1 = A1-2 = A1, B1-1 = B1-2 = B1, C1-1 = C1-2 = C1 defined in equations  

   



60 
 

Substituting the equations (5.66) and (5.67) in the strain energy (that is the same of 

2-layers case) in equation (5.61), and solving in the same way of 2-layers case, the 

equation of first natural frequency was obtained for 3-layers case: 

 

𝜔1𝑓−3𝑙𝑎𝑦𝑒𝑟−𝐵𝑒𝑛𝑑𝑖𝑛𝑔1 =
𝛼𝛽

2𝑎
√

𝑝𝐺𝑎𝑁
3 (

𝐸𝐺𝑎𝑁
𝜌∗⁄ ) [𝐴1 + 𝑒2𝐵1 + 𝑒3𝐶1]

𝛽2 +
1
𝛽2

+ 𝛽(𝛾 + 3) +
1
𝛽
(3𝛾 +

1
𝛾)

+ 3𝛾 + 3
⁡⁡⁡⁡⁡(5.74) 

 

Comparing the equation (5.74) to (5.39), the value of equivalent Young’s modulus  

“E3layer-Oberst” was obtained: 

 

𝐸3𝑙𝑎𝑦𝑒𝑟−𝑂𝑏𝑒𝑟𝑠𝑡 = 𝑝𝐺𝑎𝑁
3 𝐸𝐺𝑎𝑁(𝐴1 + 𝑒2𝐵1 + 𝑒3𝐶1)⁡⁡(5.75) 

 

 

 5.4.3.3 First natural frequencies in Bending 2 implementing Oberst’s equation 

Unfortunately, Oberst’s theory is not valid in case where the load is parallel to 

separation line between two layers of a multilayer, as in the case treated in this 

thesis, in figure 5.28: 

 
Figure 5.28 – Representation of micro cantilever in 2-layers case on x-z plane (Bending 2) 

 

 

Therefore, in case of Bending 2 in 2-layers and in 3-layers the Oberst’s equation 

cannot be used. Just the approximate method can be helpful. 
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6. COMPARISON OF RESULTS OF MATHEMATICAL MODEL, FEM AND 

EXPERIMENTAL TESTS 
 

In this chapter, the results of the mathematical model explained in chapter 5, will be analyzed 

comparing it both with the results obtained by FEM in Solidworks and the results obtained from 

the experimental tests with laser vibrometer in the laboratories of Bristol University.  

The experiments were conducted just on two cantilevers (Cantilever 1 and Cantilever 2) with 

different geometrical dimensions. The inconvenience is that these two cantilevers were made by 

3-layers (GaN + AlN + Silicon). As explained in chapter 4, there are not results available for 2-layers 

model. 

 

6.1 Modeling of the micro cantilever by Finite Element Model (FEM) 

A finite element model (FEM) has been defined to check if the simple mathematical models 

presented in chapter 5 are accurate enough in describing the 2-layers and 3-layers configurations.  

Solidworks® was used to model the micro cantilever realizing an assembly made by two layers and 

three layer. About each modelled layer were included in Solidworks the mechanical 

characteristics, such as Young’s Moduli and Poisson ratios. The layers were perfectly bounded 

each other. Four assembly were realized:  

 

 

- Cantilever 1 in 2-layers model (GaN + Silicon); 

- Cantilever 2 in 2-layers model (GaN + Silicon); 

- Cantilever 1 in 3-layers model (GaN + AlN + Silicon); 

- Cantilever 2 in 3-layers model (GaN + AlN + Silicon). 

 

 

After modelling the assembly, “Solidworks Simulation” was used to obtain the results in term of 

resonance frequencies. The structures are simple; therefore, the maximum number of nodes were 

used to mesh the model, to reach a good precision.  

Each assembly in Solidworks simulation give the first five resonance frequencies. Only two 

frequencies of the micro cantilevers (Bending 1 and Bending 2) were considered. Other three 

deformation of the micro cantilevers give the resonance frequencies of other modes, e.g. torsion.  

Figures 6.1 and 6.2 show 2 assemblies with their deformations. They represent the Cantilever 1 in 

case of Bending 1. In the same way, the other assemblies are realized and analysed in “Solidworks 

Simulation” 
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Figure 6.1 – Cantilever 1 in 2-layers configuration in Bending 1 

 

 

 

 
Figure 6.2 – Cantilever 1 in 3-layers configuration in Bending 1 
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As regards Bending 2, the results obtained in Solidworks are showed in figures 6.3. This is just an 

example of Cantilever 1 in Bending 2. As regards other cases of Bending 2, they however were 

modelled and analysed. 

 

 
Figure 6.3 – Cantilever 1 in 2-layers configuration in Bending 2 
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6.2 Comparison of results between experimental test, FEM and mathematical 

model. 

As explained in chapter 4, in laboratories of University of Bristol the experiment of measurements 

were conducted just on Cantilever 1 and Cantilever 2, both in case of Bending 1. Unfortunately, 

the experiments were not conducted in case of Bending 2, due to unavailability of the micro 

cantilevers. Therefore, the experimental results are not available. In this thesis were treated four 

cases for Bending 1, which include two cases for 2-layers and two cases for 3-layers, and four cases 

for Bending 2 , which include two cases for 2-layers and two cases for 3-layers. Nevertheless, on 

eight total cases, there are only two available experimental results. In table 6.9, there is the 

comparison between the two experimental results and the same results obtained by FEM in 

Solidworks. Since they are acceptable, the mathematical model will be compared to FEM for other 

cases. To calculate the percentage errors, the expression 6.1 was used: 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒⁡𝑒𝑟𝑟𝑜𝑟 = ⁡
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙⁡𝑟𝑒𝑠𝑢𝑙𝑡 − 𝐹𝐸𝑀⁡𝑟𝑒𝑠𝑢𝑙𝑡

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙⁡𝑟𝑒𝑠𝑢𝑙𝑡
⁡𝑥⁡100⁡⁡⁡(6.1) 

 

BENDING 1 

 RESONANCE FREQUENCY [kHz] Percentage error 
[%]  Experimental FEM 

Cantilever 1 75.3 75,638 0.45 

Cantilever 2 55.5 56,584 1,95 

Table 6.9 – Comparison between experimental results and FEM results 

 

 

The percentage errors between experimental results and FEM results are very low. Therefore, 

there is excellent agreement so it is possible to compare the mathematical model and FEM results.  

Obtaining good results in term of mathematical model, the purpose of this thesis will be reached. 

 

Table 6.10, 6.11, 6.12 and 6.13 list the experimental results (where available), FEM results 

(obtained in Solidworks) and mathematical model results (obtained by formulas in chapter 5, in 

table 5.12, substituting the equivalent Young’s moduli with “E* approximate” and “E* Oberst”). 

Finally, percentage errors between FEM and mathematical model are given by: 

 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒⁡𝑒𝑟𝑟𝑜𝑟 = ⁡
𝐹𝐸𝑀⁡𝑟𝑒𝑠𝑢𝑙𝑡𝑠 − 𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙⁡𝑚𝑜𝑑𝑒𝑙⁡𝑟𝑒𝑠𝑢𝑙𝑡𝑠

𝐹𝐸𝑀⁡𝑟𝑒𝑠𝑢𝑙𝑡𝑠
⁡𝑥⁡100⁡⁡(6.2) 
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BENDING 1  -  2-layers 

 

RESONANCE FREQUENCY [kHz] Percentage 
error [%]  

FEM-
E*approx 

 

Percentage 
error [%]  

FEM-
E*Oberst 

 

Experimental 
results 

FEM results 
Mathematical model 

E* 
approximate 

E* Oberst 

Cantilever 1 N/A 83,498 52,388 51,411 37,26 38,43 

Cantilever 2 N/A 62,455 40,053 39,306 35,87 37,07 

Table 6.10 – Results in Bending 1 in 2-layers configuration 

 

 

 

 

BENDING 1  -  3-layers 

 

RESONANCE FREQUENCY [kHz] Percentage 
error [%]  

FEM-
E*approx 

 

Percentage 
error [%]  

FEM-
E*Oberst 

 

Experimental 
results 

FEM results 
Mathematical model 

E* 
approximate 

E* Oberst 

Cantilever 1 75.3 75.638 48,872 46,582 35,39 38,41 

Cantilever 2 55.5 56.584 37,365 35,614 33,97 37,01 

Table 6.11 – Results in Bending 1 in 3-layers configuration 
 

 

 

 

BENDING 2  -  2-layers 

 

RESONANCE FREQUENCY [kHz] Percentage 
error [%]  

FEM-
E*approx 

 

Percentage 
error [%]  

FEM-
E*Oberst 

 

Experimental 
results 

FEM results 
Mathematical model 

E* 
approximate 

E* Oberst 

Cantilever 1 N/A 1157 787,661 - 31,92 - 

Cantilever 2 N/A 871,76 602,243 - 30,92 - 

Table 6.12 – Results in Bending 2 in 2-layers configuration 
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BENDING 2  -  3-layers 

 

RESONANCE FREQUENCY [kHz] Percentage 
error [%]  

FEM-
E*approx 

 

Percentage 
error [%]  

FEM-
E*Oberst 

 

Experimental 
results 

FEM results 
Mathematical model 

E* 
approximate 

E* Oberst 

Cantilever 1 N/A 1270,2 864,471 - 31,94 - 

Cantilever 2 N/A 957,05 660,972 - 30,94 - 

Table 6.13 – Results in Bending 2 in 3-layers configuration 
 

 

The mathematical model have errors between 30% and 35% compared to FEM results. Therefore, 

the mathematical model does not ensure a good correspondence.  

 

There is the necessity to re-define the mathematical model, searching possible errors that could 

solve the problem of the good correspondence between results.  
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7. THE LIMITS OF MATHEMATICAL MODEL 
 

This chapter will re-analyze the mathematical model, searching for possible errors. In first step, 

mathematical model in case of a simple cantilever (with no T-shape) was compared to Euler-

Bernoulli theory, verifying if they correspond in term of results. 

 
7.1 Evidence with Euler – Bernoulli theory 

Euler – Bernoulli (E-B) beam theory for a rectangular cross section was considered. Varying the 

parameter of T-shape beam (α, β and γ), it is possible to obtain a beam with a rectangular cross 

section, the same of Euler – Bernoulli beam theory. Comparing the two results in term of first 

natural frequency, it is possible to verify if mathematical model is correct, and eventually, could be 

determined possible errors. 

There is necessity to define the Euler – Bernoulli beam theory. 

 

- 7.1.1 Euler – Bernoulli beam theory 

Euler – Bernoulli theory found its truth on two important assumption: 

 

o The cross section of the beam do not deform in important manner if a transverse or 

axial load is applied; 

o The cross section of the beam, during deformation, is assumed to remain normal 

and planar to the deformed axis of the beam. 

 

In figure 7.1 there is a generic beam of Euler – Bernoulli theory: 

 
Figure 7.1 – Generic beam for Euler – Bernoulli theory (source: Wikipedia) 
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The equation of Euler – Bernoulli in dynamic case is: 

 

𝜕2

𝜕𝑥2
(𝐸𝐼

𝜕2𝑣

𝜕𝑥2
) = −𝜇

𝜕2𝑣

𝜕𝑡2
+ 𝑞(𝑥)⁡⁡⁡(7.1) 

 Where: 

 v(x) = deflection of the beam in z-axis; 

 E = Young’s modulus of material; 

 I = moment of inertia of section; 

 q = distributed load; 

 

In case the beam is homogeneous, and E and I are independent from x, the beam equation 

of Euler – Bernoulli become: 

 

(𝐸𝐼
𝜕4𝑣

𝜕𝑥4
) = −𝜇

𝜕2𝑣

𝜕𝑡2
+ 𝑞(𝑥)⁡⁡⁡(7.2) 

 

In this thesis, also if cantilevers are not homogenous, because made by composites 

material, the method that permits to determine an equivalent Young’s modulus, make the 

system homogenous, as if it were made from a single equivalent material. Therefore, the 

equation (7.2) can be used.  

The beam could have many configurations, like free-free, cantilever beam ecc. In this 

thesis, cantilever beam were analyzed. Figure 7.2 shows the modes of vibrations of a 

cantilever beam. 

 

 
Figure 7.2 – Modes of resonance vibrations for a cantilever beam (source: Wikipedia) 
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To find the natural frequencies, there is necessity to define the boundary conditions to 

apply in equation (7.2): 

 

𝑣 = 0,
𝑑𝑣

𝑑𝑥
= 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑎𝑡⁡𝑥 = 0⁡⁡⁡(7.3) 

 

𝑑2𝑣

𝑑𝑥2
= 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑑3𝑣

𝑑𝑥3
= 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑎𝑡⁡𝑥 = 𝐿⁡⁡⁡(7.4) 

 
Applying the boundary conditions (in equation 7.3 and 7.4) in Euler – Bernoulli equation, it 

is possible to determine non-trivial solutions solving numerically the nonlinear equation: 

 

 

cosh(𝛽𝑛𝐿) 𝑐𝑜𝑠(𝛽𝑛𝐿) + 1 = 0⁡⁡⁡(7.5) 
 

 

The first solution of equation (7.5), which represents the configuration of first natural 

frequency: 

 

 

𝛽1𝐿

𝜋
= 0.59686⁡⁡⁡(7.6) 

 

 
Therefore, the first natural frequency for a cantilever beam could be determined by 

formula: 

 

 

𝜔1 = 𝛽1
2√

𝐸𝐼

𝜇
⁡⁡⁡(7.7) 
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- 7.1.2 Correspondence between mathematical model, FEM and Euler – Bernoulli beam 

theory 

To make this comparison, just the Cantilever 1 was used in case of Bending 1. 

Assuming the parameters β=1 and γ=1 the Cantilever 1 become a generic beam with a 

rectangular and constant cross sectional area. Furthermore, the beam was considered in a 

2-layers configuration, where both layers are made by the same material (GaN). This new 

beam will be called “Cantilever 1.1” (in figure 7.3 with its geometrical data): 

 

 

 

 

𝐸 = 𝐸𝐺𝑎𝑁 

𝛽 = 1 → 𝑎 = 𝑤 = 90𝜇𝑚 

𝛾 = 1 → 𝑏 = 𝑑 = 30𝜇𝑚 

𝑡1 = 1.5𝜇𝑚⁡⁡⁡𝑡2 = 0.5𝜇𝑚 

𝑡1 + 𝑡2 = 𝑡 = 2𝜇𝑚 

 
 

 

 
Figure 7.3 – Cantilever 1.1 with its geometrical parameters 

 

The formula of mathematical model to calculate the first natural frequency (in equation 

5.39) was: 

 

𝜔1𝑓−𝐵𝑒𝑛𝑑𝑖𝑛𝑔1 =
𝛼𝛽

2𝑎
√

(𝐸
∗

𝜌∗⁄ )

𝛽2 +
1
𝛽2

+ 𝛽(𝛾 + 3) +
1
𝛽
(3𝛾 +

1
𝛾)

+ 3𝛾 + 3
⁡⁡(5.39) 

 

Substituting in this equation the parameters β=1 and γ=1, and substituting to parameter α 

the value α=t/a, the formula in (7.10) was obtained:  

𝜔1𝑓−𝐶𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟⁡1.1 =
1

8

𝑡

𝑎2
√
𝐸

𝜌
⁡⁡⁡(7.8) 
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The results is 26,649 kHz. 

Modeling Cantilever 1.1 in Solidworks, and making dynamical analysis, the value of the first 

resonance frequency is 54,909 kHz. The result is showed in figure 7.4. 

 

 

 
Figure 7.4 – Cantilever 1.1 in 2-layers made by the same material 

 

Applying the final formula (7.7) of Euler-Bernoulli beam theory for a cantilever: 

 

𝜔1𝑓−𝐶𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟⁡1.1⁡𝐸−𝐵 = 𝛽1
2√

𝐸𝐼

𝜇
⁡⁡⁡(7.9) 

Where: 

𝛽12𝑎

𝜋
= 0.59686 → 𝛽1 =

0.59686 ∗ 𝜋

2𝑎
=

𝑍

2𝑎
⁡⁡⁡(7.10); 

 

𝐼 =
𝑑𝑡3

12
⁡⁡⁡(7.11); 

 

𝜇⁡2𝑎 = 𝜌⁡2𝑎⁡𝑡⁡𝑑 → 𝜇 = 𝜌𝑡𝑑⁡⁡⁡(7.12); 
 

𝑍 = 0.59686 ∗ 𝜋 = 1.8751 
 

Substituting the equations (7.10), (7.11) and (7.12), equation (7.9) becomes: 

 

𝜔1𝑓−𝐶𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟⁡1.1⁡𝐸−𝐵 =
𝑍2

8√3

𝑡

𝑎2
√
𝐸

𝜌
⁡⁡⁡(7.13) 
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The result of equation (7.13) is 54,096 kHz. 

Comparing the two equations, (7.8 – Obtained by mathematical model) and (7.13 – 

Obtained by Euler – Bernoulli beam theory), it is possible to notice that the last part of 

equations are the same. Theoretically, they must be equal, but: 

1 ≠
𝑍2

√3
⁡⁡⁡(7.14) 

Table 7.5 lists the results obtained by mathematical model, FEM and Euler – Bernoulli 

beam theory on Cantilever 1.1: 

CANTILEVER 1.1 

 
Mathematical 

model 
FEM 

Euler – Bernoulli 
beam theory 

First Resonance Frequency 26,649 kHz 54,909 kHz 54,096 kHz 

Table 7.5 – Results on Cantilever 1.1 in mathematical model, FEM and Euler – Bernoulli beam theory 

 

As expected, the results of FEM and Euler-Bernoulli are congruent. However, the 

mathematical model differs much from these result, as confirmed by (7.16). 

 

 

The initial formula to calculate the resonance frequency in mathematical model, showed in 

equation 5.6 is: 

𝜔𝑛 = √
𝑘

𝑚
⁡⁡(5.6)⁡ 

The stiffness “k” of this formula was calculated from Castigliano’s Method, which of course is not 

arguable. The possible error could be given by the mass. In fact, in its calculation, the whole mass 

of the micro cantilever beam was considered. The equation (5.6) come from a mass-spring system 

in figure 7.5: 

 
Figure 7.5 – Mass-Spring system 

 

Into mass-spring system, the mass is considered concentrated in one single point in the end of the 

beam, while the mass of spring is considered negligible. 

The micro cantilevers has the mass distributed along the beam, therefore an equivalent mass (to 

be however applied in the end of cantilever) could be calculated to simulate the distributed mass 

of the micro cantilever. 
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- 7.1.3 Calculation of equivalent mass of “Cantilever 1.1” 
The figure 7.6 show a scheme of Cantilever 1.1: 

 
Figure 7.6 – Scheme of Cantilever 1.1 with equivalent mass concentrated in the end, with trend of bending 

moment 

 

The mass along the length L = a+w is negligible (as in case of mass-spring system, where 

the mass of spring is negligible). In the end of the cantilever there is applied an equivalent 

mass "𝑚", which approximates the distributed mass of the real cantilever.  

To calculate the equivalent mass it is possible to match the kinetic energy of the cantilever 

with distributed mass with kinetic energy with concentrated mass.  

The kinetic energy of distributed mass: 

 

𝑇𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 = ∫
1

2
𝜇𝑣̇2(𝑥, 𝑡)𝑑𝑥

𝐿

0

⁡⁡⁡(7.15) 

 

Where: 

𝑣̇(𝑥, 𝑡) = speed of deformation of the beam; 

µ = mass per unit of length; 

 

 The speed of deformation of the beam is defined as: 

  

𝑣(𝑥, 𝑡) = 𝑣0 sin(𝜔𝑡) ∙ 𝜙(𝑥)⁡⁡⁡(7.16) 

𝑣̇(𝑥, 𝑡) = 𝑣0𝜔 cos(𝜔𝑡) ∙ 𝜙(𝑥)⁡⁡⁡(7.17) 
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 Where: 

 Φ(x) = deformation of cantilever; 

   

 Substituting the equation (7.17) in (7.15): 

 

𝑇𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 = ∫
1

2
𝜇𝑣0

2𝜔2 cos2(𝜔𝑡) 𝜙2(𝑥)𝑑𝑥
𝐿

0

=
1

2
𝜇𝑣0

2𝜔2 cos2(𝜔𝑡)∫ 𝜙2(𝑥)𝑑𝑥
𝐿

0

⁡⁡⁡(7.18) 

 

The kinetic energy of concentrated mass: 

𝑇𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑒𝑑 =
1

2
𝑚𝑣̇2(𝐿) =

1

2
𝑚𝑣0

2𝜔2 cos2(𝜔𝑡) ∙ 𝜙2(𝐿)⁡⁡⁡(7.19) 

 

To determine the function of deformation of cantilever, the bending moment “Mf” was 

defined: 

 

𝑀𝑓 = 𝐸𝐼
𝜕2𝜙

𝜕𝑥2
= 𝐸𝐼𝜙′′(𝑥)⁡⁡(7.20) 

 

Assuming that the graph of bending moment is linear, the deformation of cantilever is: 

𝜙′′(𝑥) = 1 −
𝑥

𝐿
⁡⁡⁡(7.21) 

 

Equation (7.21) represents the trend of the graph of bending moment showed in figure 7.6. 

Integrating the equation (7.21) twice: 

 

𝜙′(𝑥) = 𝑥 −
𝑥2

𝐿
+ 𝐶1⁡⁡⁡(7.22) 

𝜙(𝑥) =
𝑥2

2
−
𝑥3

6𝐿
+ 𝐶2⁡⁡⁡(7.23) 

 

To determine the two constant value “C1” and “C2”, boundary conditions were applied: 

 

𝜙′(0) = 0 → 𝐶1 = 0 

𝜙(0) = 0 → 𝐶2 = 0 
 

 Finally the deformation of cantilever is: 
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𝜙(𝑥) =
𝑥2

2
−
𝑥3

6𝐿
⁡⁡⁡(7.24) 

 

Matching the kinetic energy of distributed mass with kinetic energy of concentrated mass, 

and substituting the value of “Φ(x)” of equation (7.24): 

 

𝑇𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 = 𝑇𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑒𝑑  

1

2
𝜇𝑣0

2𝜔2 cos2(𝜔𝑡)∫ 𝜙2(𝑥)𝑑𝑥
𝐿

0

=
1

2
𝑚𝑣0

2𝜔2 cos2(𝜔𝑡) ∙ 𝜙2(𝐿) 

µ∫ 𝜙2(𝑥)𝑑𝑥
𝐿

0

= 𝑚𝜙2(𝐿) 

µ∫ (
𝑥2

2
−
𝑥3

6𝐿
)

2

𝑑𝑥 =
𝐿

0

𝑚
𝐿4

9
 

µ [
𝐿5

20
+

𝐿5

252
−
𝐿5

36
] = 𝑚

𝐿4

9
⁡⁡⁡(7.25) 

 

Isolating the equivalent mass "𝑚" in equation (7.25): 

 

𝑚 =
33

140
µ𝐿⁡⁡⁡(7.26) 

 

Where: 

µ𝐿 = 𝑚𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟⁡1.1 = 𝜌𝐿𝑡𝑑 → µ = 𝜌𝑡𝑑⁡⁡⁡(7.27) 

𝑎 = 𝑤 → 𝐿 = 𝑎 + 𝑤 → 𝐿 = 2𝑎⁡⁡⁡(7.28) 

 

The final equation, substituting before the equation (7.28) in (7.27) and later (7.27) in 

(7.26), become: 

 

𝑚 =
33

70
𝜌𝑡𝑑𝑎⁡⁡⁡(7.29) 

 

 

- 7.1.4 New mathematical model in “Cantilever 1.1” and comparison with FEM results 

To define the new mathematical model on Cantilever 1.1, it is necessary to define the 

stiffness “k1.1”. Equation (5.6) then gives the first natural frequency.  

The stiffness “k1.1” of the Cantilever 1.1 is based on section 5.2.1. The result of stiffness so 

far obtained is: 
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𝑘 =
3𝐸∗𝐼1𝐼2

𝐼2𝑤
3 + 𝐼1𝑎

3 + 3𝐼1𝑎
2𝑤 + 3𝐼1𝑎𝑤

2
⁡⁡(5.26) 

 
In case of Cantilever 1.1, a=w, and I1 = I2 = I because of the cross sectional area do not 

change along x-axis. Therefore, the stiffness of Cantilever 1.1 becomes: 

 

𝑘1.1 =
3𝐸𝐼2

𝐼𝑎3 + 𝐼𝑎3 + 3𝐼𝑎3 + 3𝐼𝑎3
=
3

8

𝐸𝐼

𝑎3
⁡⁡⁡(7.30) 

 

 The first natural frequency is: 

 

𝜔1𝑓−𝐶𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟⁡1.1 = √
𝑘1.1
𝑚

= √
3𝐸

8𝑎3
𝑑𝑡3

12

70

33𝜌𝑡𝑑𝑎
= √

35

528

𝑡

𝑎2
√
𝐸

𝜌
⁡⁡(7.31) 

  
 The result of this equation is 54,889 kHz. 

Table 7.7 reports the comparison between NEW mathematical model, FEM and Euler – 

Bernoulli beam theory. 

 

CANTILEVER 1.1 

 
 NEW 

Mathematical 
model 

FEM 
Euler – Bernoulli 

beam theory 

First Resonance Frequency 54,889 kHz 54,909 kHz 54,096 kHz 

Table 7.7 – Comparison between NEW mathematical model, FEM and Euler – Bernoulli beam theory 
  

 

As shown in table 7.7, the NEW mathematical model give congruent results when 

compared to FEM or Euler – Bernoulli beam theory.  

 

 

The last check to make is to consider a change on Cantilever 1.1. The same geometric 

dimensions were kept, but a sandwich made by two layers of different material was 

considered. For simplicity GaN + Silicon were considered. In figure 7.8 there is the result 

obtained by FEM. This example will be called “Cantilever 1.2” 
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Figure 7.8 – Cantilever 1.2 in two layer made by GaN + Silicon 

 

In this case, in equations of stiffness “k1.2” and equivalent mass "𝑚", it is just necessary to 

introduce the parameter of equivalent density “ρ*” and equivalent Young’s modulus “E*”. 

 About thickness, the cantilever is the same of figure 7.3, where: 

 

𝑡1 = 𝑡𝐺𝑎𝑁 = 1.5𝜇𝑚⁡⁡⁡⁡⁡⁡⁡𝑡2 = 𝑡𝑆𝑖𝑙 = 0.5𝜇𝑚 

𝑡 = 𝑡𝐺𝑎𝑁 + 𝑡𝑆𝑖𝑙 = 2𝜇𝑚 

 

Finally, the equation (7.32) becomes: 

 

𝜔1𝑓−𝐶𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟⁡1.2 = √
𝑘1.2
𝑚

= √
3𝐸∗

8𝑎3
𝑑𝑡3

12

70

33𝜌∗𝑡𝑑𝑎
= √

35

528

𝑡

𝑎2
√
𝐸∗

𝜌∗
⁡(7.32) 

 
 As regards equivalent density, it is possible to use the equation: 

  

𝜌∗ =
𝜌𝐺𝑎𝑁𝑡𝐺𝑎𝑁 + 𝜌𝑆𝑖𝑙𝑡𝑆𝑖𝑙

𝑡
⁡⁡⁡(7.33) 

 

As regards equivalent Young’s modulus, it is possible to use both method of “Approximate 

Young’s modulus” (in paragraph 5.4.1) and “Oberst’s equivalent Young’s modulus” (in 

paragraph 5.4.2.1). The two equations are: 

 

𝐸𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒
∗ =  

𝐸𝐺𝑎𝑁𝑡𝐺𝑎𝑁 + 𝐸𝑠𝑖𝑙𝑡𝑆𝑖𝑙
(𝑡𝐺𝑎𝑁 + 𝑡𝑆𝑖𝑙)

⁡⁡(7.34) 
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𝐸𝑂𝑏𝑒𝑟𝑠𝑡
∗ = 𝑝𝐺𝑎𝑁

3 𝐸𝐺𝑎𝑁(𝐴 + 𝑒𝐵)⁡⁡(7.35) 

 

Where:  

𝐴 =
(1 − ℎ2𝑒) + [1 + (2ℎ + ℎ2)𝑒]3

2(1 + ℎ𝑒)3
 

𝐵 =
(1 + 2ℎ − ℎ2𝑒)3 − (1 − ℎ2𝑒)3

2(1 + ℎ𝑒)3
 

With: 

ℎ =
𝑡𝑆𝑖𝑙

𝑡𝐺𝑎𝑁
⁄ ; 

 𝑒 =
𝐸𝑆𝑖𝑙

𝐸𝐺𝑎𝑁
⁄ ; 

 𝐼1 =
𝑑𝑡𝐺𝑎𝑁

3

12
⁄ ; 

 𝑝𝐺𝑎𝑁 =
𝑡𝐺𝑎𝑁

𝑡⁄  

 

In table 7.9, the comparison of results of NEW mathematical model with FEM and Euler – 

Bernoulli beam theory is presented: 

 

 CANTILEVER 1.2  

 NEW Mathematical model 

FEM 

Euler – Bernoulli beam 
theory 

 
E* 

approximate 
E* Oberst 

E* 
approximate 

E* Oberst 

First Resonance 
Frequency 

58,429 kHz 57,340 kHz 57,247 kHz 57,584 kHz 56,511 kHz 

Percentage Error 
with respect to FEM 

2,06% 0,16% - 0,58% 1,29% 

Table 7.9 – Results in term of first resonance frequency on Cantilever 1.2 

 

Also in this case, the results give an important response. In fact, the mathematical model 

not only is similar to the FEM, but confirms also that the Oberst’s equation to calculate the 

equivalent Young’s modulus is more precise than approximate method. In fact, the 

accuracy of the calculation respect to FEM pass from a percentage error of 2,06% to 0,16%. 

 

7.2 Calculation of the Equivalent mass in T-shape cantilever 

The same procedure has been applied to determine the equivalent mass of the T-shape cantilever. 

The scheme of Cantilever with its bending moment is showed in figure 7.10: 
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Figure 7.10 – Scheme of cantilever in T-shape with equivalent mass concentrated in the end, with trend of 

bending moment 

The kinetic energy of distributed mass is: 

 

𝑇𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 = ∫
1

2
𝜇1𝑣̇

2(𝑥, 𝑡)𝑑𝑥
𝑎

0

+∫
1

2
𝜇2𝑣̇

2(𝑥, 𝑡)𝑑𝑥
𝑎+𝑤

𝑎

⁡⁡⁡(7.36) 

Where: 

v(x,t) = speed of deformation of the beam; 

𝜇1𝑎 = 𝜌𝑎𝑡𝑑 → 𝜇1 = 𝜌𝑡𝑑⁡⁡⁡(7.37) 

𝜇2𝑤 = 𝜌𝑤𝑡𝑏 → 𝜇2 = 𝜌𝑡𝑏⁡⁡(7.38) 

 

The deformation of the beam could be defined as in equation (7.16) and in (7.17). Substituting 

these equations in (7.36): 

 

𝑇𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 = ∫
1

2
𝜇1𝑣0

2𝜔2 cos2(𝜔𝑡)𝜙2(𝑥)𝑑𝑥
𝑎

0

+∫
1

2
𝜇2𝑣0

2𝜔2 cos2(𝜔𝑡)𝜙2(𝑥)𝑑𝑥
𝑎+𝑤

𝑎

=
1

2
𝑣0
2𝜔2 cos2(𝜔𝑡) [∫ 𝜇1𝜙

2(𝑥)𝑑𝑥
𝐿

0

+∫ 𝜇2𝜙
2(𝑥)𝑑𝑥

𝑎+𝑤

𝑎

]⁡⁡⁡(7.39) 

 

The same function calculated from bending moment, in the case of Cantilever 1.1 analysed in 

paragraph [7.1.3] was used. Therefore, the results are in equation (7.24). Substituting it and 

equations of mass per unit of length (7.37 and 7.38) in equation (7.39), and solving the integrals: 
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𝑇𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 =
1

2
𝑣0
2𝜔2 cos2(𝜔𝑡) [𝜇1∫ 𝜙2(𝑥)𝑑𝑥

𝑎

0

+ 𝜇2∫ 𝜙2(𝑥)𝑑𝑥
𝑤

𝑎

] ;

=
1

2
𝑣0
2𝜔2 cos2(𝜔𝑡) [𝜇1∫ (

𝑥2

2
−
𝑥3

6𝐿
)

2

𝑑𝑥
𝑎

0

+ 𝜇2∫ (
𝑥2

2
−
𝑥3

6𝐿
)

2

𝑑𝑥
𝑤

𝑎

] ;

=
1

2
𝑣0
2𝜔2 cos2(𝜔𝑡) {𝜇1 [

𝑎5

20
+

𝑎7

252(𝑎 + 𝑤)2
−

𝑎6

36(𝑎 + 𝑤)
]

+ 𝜇2 [
(𝑎 + 𝑤)2

20
+

(𝑎 + 𝑤)7

252(𝑎 + 𝑤)2
−

(𝑎 + 𝑤)6

36(𝑎 + 𝑤)
−
𝑎5

20
−

𝑎7

252(𝑎 + 𝑤)2

+
𝑎6

36(𝑎 + 𝑤)
]} ;

=
1

2
𝑣0
2𝜔2 cos2(𝜔𝑡) {𝜌𝑡𝑑 [

𝑎5

20
+

𝑎7

252(𝑎 + 𝑤)2
−

𝑎6

36(𝑎 + 𝑤)
]

+ 𝜌𝑡𝑏 [
(𝑎 + 𝑤)2

20
+
(𝑎 + 𝑤)5

252
−
(𝑎 + 𝑤)5

36
−
𝑎5

20
−

𝑎7

252(𝑎 + 𝑤)2

+
𝑎6

36(𝑎 + 𝑤)
]} ;

=
1

2
𝑣0
2𝜔2 cos2(𝜔𝑡) {𝜌𝑡 [(

𝑎5

20
+

𝑎7

252(𝑎 + 𝑤)2
−

𝑎6

36(𝑎 + 𝑤)
) (𝑑 − 𝑏)

+
11

420
𝑏(𝑎 + 𝑤)5]} ;⁡⁡⁡(7.40) 

 

The kinetic energy of the concentrated mass is: 

 

𝑇𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑒𝑑 =
1

2
𝑚𝑣̇2(𝐿) =

1

2
𝑚𝑣0

2𝜔2 cos2(𝜔𝑡) ∙ 𝜙2(𝐿)

=
1

2
𝑚𝑣0

2𝜔2 cos2(𝜔𝑡) ∙ [
(𝑎 + 𝑤)4

9
]⁡⁡⁡(7.41) 

 

Equating “Tdistributed” in equation (7.40) with “Tconcentrated” in (7.41), and isolating the"𝑚": 

𝑇𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 = 𝑇𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑒𝑑  
 

1

2
𝑣0
2𝜔2 cos2(𝜔𝑡) {𝜌𝑡 [(

𝑎5

20
+

𝑎7

252(𝑎 + 𝑤)2
−

𝑎6

36(𝑎 + 𝑤)
) (𝑑 − 𝑏)

+
11

420
𝑏(𝑎 + 𝑤)5]} =

1

2
𝑚𝑣0

2𝜔2 cos2(𝜔𝑡) ∙ [
(𝑎 + 𝑤)4

9
] 
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𝑚 =
9𝜌𝑡

(𝑎 + 𝑤)4
[(
𝑎5

20
+

𝑎7

252(𝑎 + 𝑤)2
−

𝑎6

36(𝑎 + 𝑤)
) (𝑑 − 𝑏)

+
11

420
𝑏(𝑎 + 𝑤)5] (7.42) 

 

7.3 NEW mathematical model in T-shape cantilever  

Once the equation that define the equivalent mass of micro cantilever in T-shape was found, a 

NEW mathematical model to calculate the first natural frequency was defined. Obviously, this 

NEW mathematical model will be valid on both Cantilever 1 and Cantilever 2, and generally in each 

T-shape cantilever. In equation will appear the value of equivalent Young’s modulus “E*” and the 

value of equivalent density “ρ*”. As regards these values, it is possible to use all method treated in 

chapter 5, for example the approximate method or Oberst’s equation to calculate the equivalent 

Young’s modulus.  

The NEW mathematical model rises as in precedent case from the equation (5.6): 

𝜔1𝑓 = √
𝑘

𝑚
⁡⁡⁡(5.6) 

The NEW mathematical model will be applied on Bending 1 and on Bending 2. In both cases, the 

equivalent mass do not change, and its value was represented in equation (7.44). Just the 

parameter of stiffness “k” is different, because it depends from different moments of inertia. 

As regards Bending 1, the value of stiffness “kBending1” is the same calculated in paragraph [5.2.1], 

in equation (5.31): 

𝑘𝐵𝑒𝑛𝑑𝑖𝑛𝑔1 =
𝐸∗

4⁄ 𝑏𝑑𝑡3

𝑑𝑤3 + 𝑏𝑎3 + 3𝑏𝑎2𝑤 + 3𝑏𝑎𝑤2
⁡⁡(5.31) 

 

As regards Bending 2, the value of stiffness “kBending2” is the same calculated in paragraph [5.2.2] in 

equation [5.37]: 

 

𝑘𝐵𝑒𝑛𝑑𝑖𝑛𝑔2 =
𝐸∗

4⁄ 𝑏3𝑑3𝑡

𝑑3𝑤3 + 𝑏3𝑎3 + 3𝑏3𝑎2𝑤 + 3𝑏3𝑎𝑤2
⁡⁡(5.37) 

 

In next chapter, the mathematical model will be tested (comparing it with FEM and experimental 

results) in all combinations of Cantilever 1 and Cantilever 2 as follow: 

- Bending 1 in 2-layers with approximate method and Oberst’s equation to calculate 

equivalent Young’s modulus; 

- Bending 1 in 3-layers with approximate method and Oberst’s equation to calculate 

equivalent Young’s modulus; 

- Bending 2 in 2-layers with approximate method to calculate equivalent Young’s modulus; 

- Bending 2 in 3-layers with approximate method to calculate equivalent Young’s modulus. 
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8. COMPARISON OF RESULTS OF NEW MATHEMATICAL MODEL, FEM 

AND EXPERIMENTAL TESTS 
Table 8.1, 8.2, 8.3 and 8.4 list the results in term of first natural frequency in Bending 1 and 

Bending 2, comparing experimental results, FEM results and NEW mathematical model results. 

There are also percentage error calculated as in paragraph [6.2] in equation (6.2). 

BENDING 1  -  2-layers 

 

RESONANCE FREQUENCY [kHz] Percentage 
error [%]  

FEM-
E*approx 

 

Percentage 
error [%]  

FEM-
E*Oberst 

 

Experimental 
results 

FEM results 
NEW Mathematical model 

E* 
approximate 

E* Oberst 

Cantilever 1 N/A 83,498 84,760 83,180 1,51 0,38 

Cantilever 2 N/A 62,455 63,540 62,356 1,74 0,16 

Table 8.1 – Results in Bending 1 in 2-layers configuration 

 

 

BENDING 1  -  3-layers 

 

RESONANCE FREQUENCY [kHz] Percentage 
error [%]  

FEM-
E*approx 

 

Percentage 
error [%]  

FEM-
E*Oberst 

 

Experimental 
results 

FEM results 
NEW Mathematical model 

E* 
approximate 

E* Oberst 

Cantilever 1 75,3 75,638 79,071 75,367 4,54 0,36 

Cantilever 2 55,5 56,584 59,276 56,499 4,75 0,15 

Table 8.2 – Results in Bending 1 in 3-layers configuration 
 

 

BENDING 2  -  2-layers 

 

RESONANCE FREQUENCY [kHz] Percentage 
error [%]  

FEM-
E*approx 

 

Percentage 
error [%]  

FEM-
E*Oberst 

 

Experimental 
results 

FEM results 
NEW Mathematical model 

E* 
approximate 

E* Oberst 

Cantilever 1 N/A 1157 1274,4 - 10,15 - 

Cantilever 2 N/A 871,76 955,404 - 9,59 - 

Table 8.3 – Results in Bending 2 in 2-layers configuration 
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BENDING 2  -  3-layers 

 

RESONANCE FREQUENCY [kHz] Percentage 
error [%]  

FEM-
E*approx 

 

Percentage 
error [%]  

FEM-
E*Oberst 

 

Experimental 
results 

FEM results 

NEW Mathematical model 

E* 
approximate 

E* Oberst 

Cantilever 1 N/A 1270,2 1398,7 - 10,12 - 

Cantilever 2 N/A 957,05 1048,6 - 9,57 - 

Table 8.4 – Results in Bending 2 in 3-layers configuration 
 

Table 8.5 and 8.6 summarize the calculation of NEW mathematical model in 2-layers and 3-layers 

configurations: 

2-LAYERS MODEL BENDING 1 BENDING 2 

Figure 

 

 

Stiffness k [N/m] 𝑘 =
𝐸∗

4⁄ 𝑏𝛼3𝛽3

1 + 𝛾𝛽3 + 3𝛾𝛽2 + 3𝛾𝛽
 

 

𝑘 =
𝐸∗

4⁄ 𝑏3𝛼3𝛽3

𝑡2(1 + 𝛽3𝛾3 + 3𝛽2𝛾3 + 3𝛽𝛾3)
 

 

Equivalent Young’s 
modulus with 

approximate method 
𝐸𝑎𝑝𝑝𝑟𝑜𝑥 =  

𝐸𝐺𝑎𝑁𝑡𝐺𝑎𝑁 + 𝐸𝑠𝑖𝑙𝑡𝑆𝑖𝑙
(𝑡𝐺𝑎𝑁 + 𝑡𝑆𝑖𝑙)

 

Equivalent Young’s 
modulus with Oberst’s 

equation 
𝐸𝑂𝑏𝑒𝑟𝑠𝑡 = 𝑝𝐺𝑎𝑁

3 𝐸𝐺𝑎𝑁(𝐴 + 𝑒𝐵) - 

Equivalent density ρ* 
[kg/m3] 

𝜌∗ = 𝜌𝐺𝑎𝑁𝑝𝐺𝑎𝑁 + 𝜌𝑆𝑖𝑙𝑝𝑆𝑖𝑙 

Equivalent mass [kg] 
𝑚 =

9𝜌∗𝑡

(𝑎 + 𝑤)4
[(
𝑎5

20
+

𝑎7

252(𝑎 + 𝑤)2
−

𝑎6

36(𝑎 + 𝑤)
) (𝑑 − 𝑏) +

11

420
𝑏(𝑎 + 𝑤)5] 

 

First Natural Frequency 
ω1f [rad/s] 𝜔1𝑓−𝐵𝑒𝑛𝑑𝑖𝑛𝑔1 = √

𝑘

𝑚
 𝜔1𝑓−𝐵𝑒𝑛𝑑𝑖𝑛𝑔2 = √

𝑘

𝑚
 

Table 8.5 – Scheme of calculation of NEW mathematical mode in 2-layers 
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3-LAYERS MODEL BENDING 1 BENDING 2 

Figure 

 
 

Stiffness k [N/m] 𝑘 =
𝐸∗

4⁄ 𝑏𝛼3𝛽3

1 + 𝛾𝛽3 + 3𝛾𝛽2 + 3𝛾𝛽
 

 

𝑘 =
𝐸∗

4⁄ 𝑏3𝛼3𝛽3

𝑡2(1 + 𝛽3𝛾3 + 3𝛽2𝛾3 + 3𝛽𝛾3)
 

 

Equivalent Young’s 
modulus with 
approximate 

method 

𝐸𝑎𝑝𝑝𝑟𝑜𝑥 =  
𝐸𝐺𝑎𝑁𝑡𝐺𝑎𝑁 + 𝐸𝐴𝑙𝑁𝑡𝐴𝑙𝑁 + 𝐸𝑠𝑖𝑙𝑡𝑆𝑖𝑙

(𝑡𝐺𝑎𝑁 + 𝑡𝐴𝑙𝑁 + 𝑡𝑆𝑖𝑙)
 

Equivalent Young’s 
modulus with 

Oberst’s equation 
𝐸𝑂𝑏𝑒𝑟𝑠𝑡 = 𝑝𝐺𝑎𝑁

3 𝐸𝐺𝑎𝑁(𝐴1 + 𝑒2𝐵1 + 𝑒3𝐶1) - 

Equivalent density 
ρ* [kg/m3] 

𝜌∗ = 𝜌𝐺𝑎𝑁𝑝𝐺𝑎𝑁 + 𝜌𝐴𝑙𝑁𝑝𝐴𝑙𝑁 + 𝜌𝑆𝑖𝑙𝑝𝑆𝑖𝑙 

Equivalent mass [kg] 
𝑚 =

9𝜌∗𝑡

(𝑎 + 𝑤)4
[(
𝑎5

20
+

𝑎7

252(𝑎 + 𝑤)2
−

𝑎6

36(𝑎 + 𝑤)
) (𝑑 − 𝑏) +

11

420
𝑏(𝑎 + 𝑤)5] 

 

First Natural 
Frequency ω1f 

[rad/s] 
𝜔1𝑓−𝐵𝑒𝑛𝑑𝑖𝑛𝑔1 = √

𝑘

𝑚
 𝜔1𝑓−𝐵𝑒𝑛𝑑𝑖𝑛𝑔2 = √

𝑘

𝑚
 

Table 8.6 – Scheme of calculation of NEW mathematical model in 3-layers 

 

 

 

 

 



85 
 

9. CONCLUSIONS 
The goal of the thesis was to determine a mathematical model that could calculate the first 

natural frequency without using LDV or FEM. The precision of the results obtained, can be 

considered very satisfactory. Thanks to the mathematical model it is possible to calculate in quick 

way the first natural frequency.  

In Bristol University laboratories, the 2-layers configuration was not produced, however, it is 

evident to notice that the 2-layers configurations presents higher value of first natural frequency 

due to increase of mass of AlN in 3-layers case. AlN was added to decrease defects density of GaN, 

because the two materials presents the same crystalline structure.  

The layers of Silicon originally were not considered, but the fabrication method of the T-shape 

cantilever in chapter 3, leaves a thin layer of Silicon due to imperfection in etching process. 

The results obtained by FEM are very coherent with results of experimental model. Therefore, due 

the absence of experimental results on 2-layers configurations, the results of mathematical model 

were compared to FEM results. 

Before a mathematical model was produced, some hypotheses were made. For example, the 2 or 

3 layers of the cantilevers are perfectly bounded and overlapped, and the separation line between 

layers results always defined without imperfection. Due to fabrication method, the separation line 

could not be without imperfection. That generates the differences in results between LDV 

measures and FEM.  

The first mathematical model considers the whole mass of cantilever applied in the end of it. 

These certainly does not correspond to reality, because mass is distributed along the beam. 

Therefore, a calculation of an equivalent mass, to be integrated in a NEW mathematical model, 

was required to increase the accuracy in calculations. 

The percentage errors of the NEW mathematical model result lower than first mathematical 

model that considers the whole mass of the beam. In fact, as the tables 8.1, 8.2, 8.3 and 8.4 show, 

the percentage errors in 2-layers and 3-layers are respectively 0,38% in Cantilever 1 and 0,16% in 

Cantilever 2 in both case of Bending 1.  

As regards Bending 2, the percentage errors are higher than Bending 1 due to higher value of first 

natural frequency than Bending 1. In fact, the Bending 2 of the micro cantilevers result as an 

unnatural bending that rarely could occurred, and do not respect  

Another important result is realized in calculations of E* in approximate method and Oberst’s 

method. The Oberst’s equation give results visibly more precise than approximate method. 

Unfortunately, this occurs only in Bending 1, while in Bending 2 the Oberst’s method could not be 

applied because the load that bends the beam is parallel with separation line between layers. 

 

The future prospects of this study could be the possibility to integrate in mathematical model that 

the micro cantilever could be inserted in a liquid environment that produces a superficial pressure 

on the cantilevers. Therefore, it is possible to calculate how the first natural frequency varies if the 

cantilevers are immersed in a liquid. This future study is required because these T-shape 

cantilevers are produced for Bio-MEMS applications, also because GaN is very resistant in harsh 

environment. Another possibility for the future could be a change in micro cantilever design, to 

reach a certain first natural frequency, for example in application such as micro-antenna to send 

signals. The mathematical model represents a support for these future prospects, because it is 

applicable very quickly in any T-shape cantilever in single-layer or multi-layers configurations. 
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