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Abstract

Differential equations derived from the chemical kinetics of combustion mechanism are
often complex and must be solved numerically. As the number of reactions involved in-
creases, the computation time can increase dramatically. Thus, efficient algorithms that
account for the structure of the differential equations to be solved are required.

The purpose of this work is to explore a particular implementation of an implicit dif-
ferentiation scheme that uses a third order root-finding algorithm to reduce the number of
iterations performed at each time-step of the solution and the conditions under which this
may lead to reduced computation times.

The Backward differentiation formula of the second order, BDF2, is coded with the
commercial software Matlab to solve a simplified reaction mechanism for hydrogen oxi-
dation. The algorithm is implemented with two different iteration functions. First, the
widely known Newton’s algorithm, which is of second order convergence, is used to ad-
vance the solution at every time-step. Then the Chebyshev iteration function, which is
obtained by systematically increasing the order of convergence of Newton’s iteration func-
tion by Schröder’s process of the first kind, is introduced and the outcomes are compared.
The effect of the step-size on the number of iterations performed by the two algorithms is
compared.

While Newton’s iteration function requires the computation of the Jacobian of the sys-
tem of differential equations to be solved, the third order iteration function additionally
requires the computations of the Hessian. Therefore, some techniques are introduced to
speed up the computation of the Hessian, such as sparse storage and an inexact analytical
form. It is found that under specific conditions for the time-step this can significantly
reduce the overall execution time of the algorithm. It remains to be explored wether the
application of this solutions to a complex combustion mechanism would prove beneficial,
in terms of computation time, with respect to Newton’s iteration function, as it is expected
that this reduction would be even greater as the size of the problem increases. Further elab-
oration of this work may thus prove of interest in the development of software specifically
designed to simulate the chemical kinetics of complex combustion mechanisms.



Contents

1 Introduction 2
1.1 Stiff ordinary differential equations . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Implicit methods for stiff equations . . . . . . . . . . . . . . . . . . . . . . 3

2 The BDF2 algorithm 11
2.1 Increasing the order of convergence . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Increasing the size of the problem . . . . . . . . . . . . . . . . . . . . . . . 12

3 Physical modelling 19
3.1 Thermodynamical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 The rate equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 The Initial Value Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 A model for Hydrogen Combustion 25
4.1 Simulation using Matlab solver . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Comparison between the iteration functions . . . . . . . . . . . . . . . . . 28

5 Using an inexact Hessian 31
5.1 Freezing the temperature terms . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Freezing the full Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Freezing the temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Sparse Storage 36
6.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Conclusions 38

A Matlab code 39

Bibliography 57

1



Chapter 1

Introduction

1.1 Stiff ordinary differential equations
The concentration of chemical species in a combustion process is described by a set of
coupled differential equations:

ẏ = f(y),

where y denotes the vector of chemical composition and f(y) denotes the inter-related
reaction rates.

Realistic combustion mechanisms includes a great number of elementary reaction pro-
cesses involving different chemical species, such as molecules, atoms, radicals or ions. An
analytical solution for these problems may be practically unattainable or even inexistent[16];
therefore, a numerical solution is required to compute the evolution of the chemical com-
positions with respect to time. These profiles are useful in many applications, particularly
for validating the mechanism by comparison with experimental data.

With regard to their numerical modelling and solution, these problems have some par-
ticular aspects that have to be accounted for. For example, because of the nature of
combustion phenomena, the concentration of the species over time often shows steep vari-
ations. The numerical solution of these equations requires the use of very small timesteps.
This however can be strongly computationally burdening, and it can be so unnecessarily
due to the fact that such a small stepsize is actually needed in a restricted range of the
solution, where rapid changes happen.

A more rigorous definition of stiffness in ODEs can be found in various sources in
literature. For example,[13] proposes the following definition, based on the observation
that stiffness occurs when there is a wide range of time scales in the solution.

A set of equations of the form
ẏ = J · y (1.1)

where J is the Jacobian matrix, is stiff if

(i) ℜ(λj) < 0, for j = 1, ..., N, and

(ii) max(ℜ(λj))
min(ℜ(λj))

>> 1. (1.2)
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1 – Introduction

If stiff systems are treated with an explicit numerical method, the timestep has to be
very small in order for the solution to be stable. Thus, implicit numerical methods are
often used to treat these problems, since they usually are more numerically stable at larger
timesteps[12]. Despite involving some iteration method to compute the solution at every
step, this usually results in less computations.

The simplest explicit numerical scheme is the Forward Euler method, taking the form:

yn+1 = yn + hf(tn, yn). (1.3)

A simple example case can show the previously mentioned limitations of explicit meth-
ods, when solving stiff equations.

Consider the scalar initial value problem

dy

dt
= a(1− y)e− b

y+1 ,

y(0) = 0. (1.4)

with parameters a = 1, b = 2.
Figure 1.1 compares the numerical solution computed using the Forward Euler method,

at various stepsizes, with the solution obtained using an accurate solver, based on the
Rosenbrock method[7].

For the largest stepsize value, the method fails to converge as the solution is unbounded.
For the second largest stepsize, the solution stays bounded but fails to converge rapidly.
Only the smallest stepsizes achieve acceptable accuracy of the solution.

An implicit method would achieve better accuracy for larger stepsize values. Common
examples of such a method are those belonging to the family of Backward Differentiation
Formulas, which is the object of the next section.

1.2 Implicit methods for stiff equations
Backward Differentiation Formulas are linear multistep methods[13], of the form:

yn+k = hβkfn+k −
k−1∑
j=0

αjyn+j ,

with α0 /= 0 and βk /= 0. (1.5)

The number of steps k considered for the computation of each step n, is also the order
of convergence of the method.

The simplest of the method is that having first order, the Backward Euler method, with
α0 = −1 and β1 = 1:

yn+1 = yn + hf(tn+1, yn+1). (1.6)

The implicitness of this method comes from the fact that the computation of f(tn+1, yn+1)
requires the solution of the algebraic equation

yn+1 − hf(tn+1, yn+1) = yn, (1.7)
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1 – Introduction

Figure 1.1: Solution with forward Euler Method, for various stepsize values.
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1 – Introduction

for every timestep n. This can be done by applying a root-finding algorithm, such as
Newton’s method, to the function

F (yn+1) = yn+1 − hf(tn+1, yn+1)− yn. (1.8)

The iterative execution of the algorithm means that implicit methods require more
computation effort compared to explicit methods. However, for stiff equations, the larger
stepsize requirement of the former still makes them more advantageous.

To find the solution, for any timestep, by Newton’s method, requires an initial guess.
Then, for each iteration, the difference between the next tentative value of the solution
and the current one, is given by the iteration function:

∆y = yn+1
l+1 − yn+1

l = −
(

∂F (yn+1
l )

∂y

)−1

F (yn+1
l ), (1.9)

where subscript l indicates the current iteration. The algorithm is repeated until this
difference becomes smaller than a set tolerance.

Figure 1.2 compares the solution obtained with this method with the previously dis-
cussed Forward Euler method, for a relatively large stepsize. It is evident that, while the
explicit method fails to converge in a reasonable time, the implicit one does, even if it does
so more slowly.

The issue of the computational cost of implicit methods has to be addressed. The
number of iterations required to solve for each step n, depends on the goodness of the first
guess, which is always required to execute the root-finding algorithm, and the algorithm
itself.

Thus, the rate of convergence of the algorithm itself is fundamental in determining
the computational time required to solve the initial value problem. Several methods have
been developed to systematically increase the order Newton’s iteration function, which is
a second order method.

For example, using Schröder’s process of the first kind, as discussed in [6], one could
build the third order iteration function

∆y = yn+1
k+1 − yn+1

k = − F (yn+1
k )

F (1)(yn+1
k )

− 1
2

F (2)(yn+1
k )

F (1)(yn+1
k )

(
F (yn+1

k )
F (1)(yn+1

k )

)2

, (1.10)

where F (1) and F (2) indicate the first and second derivatives of F . This method is also
known as the third order Chebyshev method.

This algorithm requires more computational effort for each iteration, due to the ad-
ditional terms in the iteration function, but also requires less iterations to estimate the
solution at each timestep.

It is important to note that, by setting a reasonably small tolerance for the root-finding
algorithm, the solution is largely unaffected by the order of the algorithm itself, as shown
in figure 1.3.

The advantage of using a higher order iteration function lies in the reduced number
of iterations required to evaluate the solution at each timestep. Despite the added com-
putational complexity at each iterations, this in general leads to an overall reduction in
computational effort.
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1 – Introduction

Figure 1.2: Solution with Forward Euler Method and Backward Euler method
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Figure 1.3: Solution with Forward Euler method, comparison between Newton algorithm
(2nd order) and Chebyshev (3rd order).
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1 – Introduction

Figure 1.4 compares the number of iterations, performed at every timestep, when ap-
plying the two mentioned algorithms, based on Newton’s method (of second order) and
Chebyshev method (of third order), to solve the example initial value problem 1.4.

Figure 1.4: Number of iterations for each timestep, comparison between Newton
algorithm (2nd order) and Chebyshev (3rd order).

The root-finding algorithm stops its execution when the difference between two suc-
cessive tentative values falls below a certain tolerance, which is usually set in terms of
the stepsize. Therefore, the number of iterations performed for every timestep is also
dependant on the choice of such tolerance, as shown by figure 1.5.

If the tolerance value for the root-finding algorithm is set relatively to the stepsize, then
the number of iterations is also affected by this parameter. This means that decreasing
the stepsize would decrease the tolerance, thus requiring more a more accurate solution to
satisfy the requirement.

However, reducing the stepsize also reduces the variation of the actual solution y(tn)
for any timestep n. Since the initial guess of the algorithm, used to calculate the solution
yn+1 is in general depending on the value of the solution at the previous timestep yn, as
the difference between the solution at two successive timestep reduces, the inital guess gets
closer to the final approximation. Thus, as figure 1.6 shows, the number of iterations for
each timestep is generally reduced by reducing the timestep, despite the more stringent
absolute tolerance enforced.
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1 – Introduction

Figure 1.5: Number of iterations for each timestep, with Chebyshev (3rd order)
algorithm, for various relative tolerance values. Absolute tolerance is the product of the

relative tolerance and stepsize.
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Figure 1.6: Number of iterations for each timestep, with Chebyshev (3rd order)
algorithm, for various stepsize values. Absolute tolerance is the product of the relative

tolerance and stepsize.
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Chapter 2

The BDF2 algorithm

2.1 Increasing the order of convergence
In the previous section, Backward Differentiation Formulas were introduced, taking the
form in (1.5), and the BDF formula of order 1 was used to solve a sample initial value
problem. In most applications, the rate of convergence of the solution obtained by solving
with this scheme may not yield satisfactory results.

It is useful to recall that the order of accuracy of a method expresses the rate of con-
vergence of the solution. A method is p-th order accurate if the global truncation error is
proportional to the p-th power of the stepsize [13]. Thus, we can obtain a more accurate
solution, at the same stepsize, by using a higher order method.

The second-order Backward Differentiation Formula (BDF2 ) is:

yn+2 − 4
3yn+1 + 1

3yn = 2
3hfn+2. (2.1)

It should be noted that this method is a 2-step method, meaning that in order to compute
one step, two previous steps need to be known. When the method is started, only one
step is known, that is the initial condition; thus, one more step is required or the method
cannot be applied. One way to solve the issue is to start the method with bootstrapping.

1. Define a mid-step value y
1
2

2. Evaluate one step of a first order method, such as BDF1, with half the stepsize used
in the main solution, to evaluate y

1
2

y
1
2 = y0 + h

2 f
1
2 (2.2)

3. Evaluate one step the second order method (BDF2), with half the stepsize used in
the main solution, to evaluate y1

y1 − 4
5y

1
2 + 1

3y0 = 2
3hf1 (2.3)

4. Solve the equation with the second order method (BDF2), as in (2.1)
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2 – The BDF2 algorithm

This method can be applied to the sample IVP problem in (2.4). As figure 2.1 shows,
the solution obtained with BDF2 is more accurate for the same stepsize; moreover, it
converges to the exact solution faster as the stepsize reduces. Indeed, the truncation error
of BDF2 is proportional to h2, while for BDF1 it is proportional to h.

Figure 2.1: Comparison between the solution obtained with BDF1 and BDF2, for
different stepsize. It can be observed as the solution obtained with BDF2 is more

accurate.

2.2 Increasing the size of the problem

Until now, the solution of a scalar problem was analysed; nonetheless, all of the previous
discussions can be extended to the solution of a system of ordinary differential equation.

Combustion processes involve a variety of species whose concentration and rate of reac-
tion change in time, continuously interacting with one another, and the description of the
combustion process will therefore involve one differential equation for each species. The
number of chemical species involved, and therefore the number of differential equations
that compose the initial value problem, can be very high.

12



2 – The BDF2 algorithm

Consider the initial value problem

dy1

dt
= a11(1− y1)(1− y2) e

− E1
y1+1 ,

dy2

dt
= a21(1− y2) e

− E2
y1+1 − a22 y1 y2 e

− E3
y1+1 ,

y(0) = 0. (2.4)

with parameters a11 = a21 = a22 = 1, E1 = E2 = E3 = 2.
To solve this set of ordinary differential equations, the same previously discussed schemes

can be applied. BDF2 for example simply takes the form

yn+2 − 4
3yn+1 + 1

3yn = 2
3hfn+2. (2.5)

Just as previously discussed, an iteration algorithm is needed to evaluate each step, as the
method is implicit. A system generalisation of Newton’s or Chebyshev iteration function
are needed, to evaluate the root of the function:

F(yn+2) = yn+2 − 4
3yn+1 + 1

2yn − 2
3hfn+2. (2.6)

Newton’s iteration function requires to solve the system:

J∆x = −F, (2.7)

at each iteration. Then, the approximate solution is incremented as:

yn+2
k+1 = yn+2

k + ∆x, (2.8)

and the iteration is repeated until the set tolerance is reached. Here, F = F(yn+2), and
J = J(F) is the Jacobian of F evaluated in yn+2. Given that F is a vector, whose size is
equal the size of the IVP, its Jacobian J is a square matrix.

The computational cost of the solving each step thus scales with the square of the size
of the IVP.

For the system version of the algorithm, we may choose a more refined criterion for
the termination of the iteration. As discussed in [11], if the assumption that the initial
guess x0 is sufficiently close to the root, the relative nonlinear residual of the system,
∥F(x)∥/∥F(x0)∥, is strictly related to the size of the error. We may thus impose the
relative nonlinear residual to be within a certain tolerance in order to stop the iteration.
Moreover, the stopping criteria are generally specified in terms of an absolute and relative
tolerance[12]. A relative tolerance correctly relates the tolerance to the size of the solution,
where a purely absolute tolerance may be overly permissive or restrictive. However, relative
tolerance obviously becomes meaningless whenever the solution has any roots. Thus, the
criterion for the termination of the iteration will allow to specify both an absolute and a
relative tolerance, τa and τr.

∥F(x)∥ ≤ τr∥F(x0)∥+ τa
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2 – The BDF2 algorithm

Algorithm 1 Algorithm for Newton’s iteration function in system version
1: Compute F(y∗)
2: Evaluate r0 = ∥F(y∗)∥
3: while ∥F(y∗)∥ ≤ τr r0 + τa do
4: Compute J(y∗)
5: Solve J∆ = −F
6: y∗ = y∗ + ∆
7: Compute F(y∗)
8: end while
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2 – The BDF2 algorithm

The main integrator algorithm will therefore be able to call an algorithm for advancing
the solution at each consecutive timestep. Using Newton’s iteration function, the algorithm
will be in the form of 1.

Chebyshev iteration function requires to solve two systems in order to obtain the incre-
ment:

Jw = −F,

J∆x = −F− 1
2wTHw. (2.9)

Where H is the Hessian of F evaluated in yn+2. Since H is a third order tensor, the
computational cost of the solving each step thus scales with the square of the size of the
IVP.

The computational cost of evaluating the Hessian for every iteration for every step may
be prohibitive in practice. However, in some cases this can be avoided, as is the focus of
this thesis.

The algorithm for advancing the solution using Chebyshev iteration function will be in
the form of 2.

Algorithm 2 Algorithm for Chebyshev iteration function in system version
1: Compute F(y∗)
2: Evaluate r0 = ∥F(y∗)∥
3: while ∥F(y∗)∥ ≤ τr r0 + τa do
4: Compute J(y∗)
5: Compute H(y∗)
6: Solve Jw = −F
7: Solve J∆ = −F− 1

2wTHw
8: y∗ = y∗ + ∆
9: Compute F(y∗)

10: end while

Algorithms 1 and 2 evaluate the Jacobian and the Hessian of the system inside the
iteration loop only. For the combustion mechanism that will be analysed in this work, this
is not practical, and it is best to compute F(y∗), J and H at the same time, by a function
created for this purpose. The algorithms that were implemented is therefore modified in
the form shown in 3 and 4.

Algorithm 3 Modified algortihm for Newton’s iteration function
1: Compute F(y∗) and J(y∗)
2: Evaluate r0 = ∥F(y∗)∥
3: while ∥F(y∗)∥ ≤ τr r0 + τa do
4: Solve J∆ = −F
5: y∗ = y∗ + ∆
6: Compute F(y∗) and J(y∗)
7: end while

15



2 – The BDF2 algorithm

Algorithm 4 Modified algorithm for Chebyshev iteration function
1: Compute F(y∗), J(y∗) and H(y∗)
2: Evaluate r0 = ∥F(y∗)∥
3: while ∥F(y∗)∥ ≤ τr r0 + τa do
4: Solve Jw = −F
5: Solve J∆ = −F− 1

2wTHw
6: y∗ = y∗ + ∆
7: Compute F(y∗), J(y∗) and H(y∗)
8: end while

16



2 – The BDF2 algorithm

The sample problem 2.4 was solved using these algorithms. The solution obtained for a
stepsize of 2 is shown in figure 2.2, compared to the one obtained using Matlab’s solver.

Figure 2.2: Solution of the sample IVP 2.4 with the BDF2 algorithm, compared to
Matlab’s Rosenbrock solver.

The number of iterations performed with both iteration functions, for different stepsize
values, are compared in figure 2.3. It can be observed once again as the number of itera-
tion performed increases for the steps where the solution changes more rapidly, and that
Chebyshev’s iteration function generally requires a lower number of iterations. Moreover,
it can be seen how the reduced number of iteration becomes increasingly beneficial as the
stepsize decreases.

17



2 – The BDF2 algorithm

Figure 2.3: Comparison between the number of iterations performed with Newton and
Chebyshev iteration function, for different stepsize values. The tolerance parameters are

τr = 1× 10−7 and τa = 1× 10−8.

18



Chapter 3

Physical modelling

3.1 Thermodynamical aspects
We now consider the energy conservation equation. For isobaric (constant pressure) pro-
cesses, it is best to employ the enthalpy equation, that is given by[17]:

ρ
Dh

Dt
= Dp

Dt
−∇ · q + Πν : ∇u,

where ρ, u, h, p, q and Πν denote the density, velocity, enthalpy, pressure, heat flux and
viscous stress tensor, respectively.

With the previous assumptions, the total enthalpy of the system is conserved.

ρ
Dh

Dt
= 0.

Equivalently, in terms of the individual enthalpies of the species, we may write

∂

∂t

(
ρ
∑

i

yihi(T )
)

= 0.

For convenience, we can define the total enthalpy of the system as

H0 =
∑

i

yihi(T ). (3.1)

As previously discussed, this quantity is constant in time.
Since only gaseous-phase phenomena is considered in this thesis, the ideal gas law may

be applied to rewrite the density, if needed, by

p = ρR0T
∑

i

yi

wi
,

Here, R0 is the universal gas constant, wi is the molecular weight of each species, and T is
the system’s temperature.
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3 – Physical modelling

We then obtained an equation relating the species’ mass fractions and the system’s
temperature. This equation has to be satisfied at all times in order to respect the thermo-
dynamical constraint that the total enthalpy of the system is conserved.∑

i

yihi(T ) = 0.

This equation will be appended to a system of ordinary equations corresponding to the
rate equations of the chemical species of the considered reaction mechanism. Therefore,
we may want to express this relationship as a differential equation as well.

Differentiating with respect to time:

∂

∂t

(∑
i

yihi(T )
)

= 0

∑
i

(dyi

dt
hi(T ) + yi

∂hi

∂t

)
= 0

∑
i

(dyi

dt
hi(T ) + yi

∂hi

∂T

∂T

∂t

)
= 0

∑
i

fi hi(T ) + dT

dt

∑
i

yi cpi = 0.

Thus, introducing an average heat capacity for the whole system: cp =
∑

i yi cpi, we get an
equation for the rate of change of temperature:

fT = −
∑

i fi hi(T )
cp

.

This equation will be needed to impose a thermodynamical constraint to the simulation of
the combustion mechanism. As it will be discussed in the following sections, the simulation
of a reaction mechanism involves the integration of several rate equations, one for each of
the chemical species, plus an equation for the rate of change of temperature[15].

This equation is derived from the thermodynamical constraint imposed to the process.
In this example, 3.1 simply derives from the conservation of total energy applied to an
isobaric process.

3.2 The rate equations
We now want to express the rate equations describing the chemical kinetics of a combustion
process. A chemical reaction is a process that leads to the transformation of some chemical
species in others[4]. This process happens at a characteristic reaction rate, which is related
to the rate at which the concentration of the species involved change in time.

The reaction rate is proportional to the concentration of the species involved, elevated
to their respective partial reaction orders, through a reaction constant.

Also, for a generic non-equilibrium reaction, where reactants and products continuously
interact with each other, two reaction rates have to be considered. Usually, the reaction
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3 – Physical modelling

rate related to the transformation of the reactants into products is called the forward
reaction rate, while the converse is called the backward reaction rate.

The reaction rate is dependent on the molar concentration of the species involved, by
the equation:

ωf = kf

Np∏
i=1

[Yi]xi ,

ωb = kb

N∏
i=Np+1

[Yi]xi .

Here, kf and kb are rate coeeficients, [Yi] is the molar concentration of specie i, and the
subscripts i = 1 . . . Np indicate the reactants, while i = Np + 1 . . . N indicate the prod-
ucts. Moreover, for elementary reactions, the exponents ai are equal to the stoichiometric
coefficient νi.

The reaction rate constant depends on various factors that affect the reaction, the most
prominent of which is temperature. In particular, this dependance is often described in
textbook chemistry by the Arrhenius equation:

k(T ) = AT ne
E

RT

where the reaction rate constants are a function of an activation energy, E, temperature,
and a pre-exponential factor A.

In general, we may be interested in solving a system of numerous elementary reactions.
Considering a system of I elementary reactions involving K different chemical species,
these take the form

K∑
k=1

ν ′
kiYk −−→←−−

K∑
k=1

ν ′′
kiYk

where ν ′
ki is the stoichiometric coefficient of chemical specie Yk in reaction i where the

specie is a reactant, while ν ′′
ki is the stoichiometric coefficient of Yk as a product[10].

Then, the rate of change of a species concentration is obtained from all the reaction
rates involving specie k:

ω̇k = d[Yk]
dt

=
I∑

i=1
νkiωi,

where
νki = ν ′′

ki − ν ′
ki.

Here, the reaction rate of reaction i, ωi, is given by the difference of the forward and
backward reaction rates:

ωi = kfi

K∏
k=1

[Yk]ν′
ki − kbi

K∏
k=1

[Yi]ν
′′
ki .

In this discussion, [Yk] indicates the concentration of specie k in terms of its molarity.
We are interested in solving for the mole fraction yk:

[Yk] = ρ
yi

wi
,
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3 – Physical modelling

where ρ is the system’s density and wk is the molar mass of specie k. Substituting

dyk

dt
= wk

ρ

I∑
i=1

νkiωi

Where the expression for the systems density can be obtained from the ideal gas law in
equation 3.1.

3.3 The Initial Value Problem
Coupling the equations for the concentration of the species with the thermodynamical
constraint obtained, we get a set of N + 1 equations:

fi = dyi

dt
= wi

ρ

L∑
l=1

νilωil,

fT = −
∑

i fi hi(T )
cp

.

where I is the number of chemical species involved. This set of ordinary differential equa-
tions, together with a set of initial conditions for the species’ concentration and temper-
ature, forms the initial value problem to be solved. To solve this IVP with a numerical
integrator, the integration algorithm must be able to call a function that computes this set
of equations f for a given set of values of the integration variables y. First, the reaction
rates of all the reactions of the mechanism have to be computed, as described in the pre-
vious subsections. These will be a function of the concentration of the reactants of that
reaction and the reaction rate constant. Thus, each ωl contains temperature dependent
terms and others that depend on the species’ concentrations:

ωl = Pl(y)El(T ).

Then, in order to evaluate the rate equation for each specie i, fi, the reaction rates that
contribute to the production or consumption of that specie are summed or subtracted.
Finally, the temperature equation is evaluated, as this is a function of all the fis. Code A.1
shows an implementation of this function in Matlab.

In order to apply the numerical methods described in the previous chapter, the Ja-
cobian matrix and the Hessian tensor of the system may have to be computed several
times for each timestep, in order to apply the root-finding algorithm. This may be highly
challenging computationally. The purpose of this thesis is to investigate wether the exact
Hessian may be substituted with the computation of an inexact Hessian to reduce the
overall computational cost. On one hand, introducing an error in the computation of the
Hessian is expected to increase the number of iteration steps performed by the root finding
algorithm at each timestep. On the other hand, using some inexact Hessian may reduce
the computational cost of every evaluation significantly. If the error that is consequently
introduced is not too large, the overall computational cost of the root-finding algorithm
may be reduced.
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3 – Physical modelling

In a general application, these derivative terms can be computed by a numerical approx-
imation or directly from their analytical expression. In case it is available, the analytical
expression generally allows for faster computation; therefore, in this work, the Jacobian
entries are computed as follows:

Jij = ∂fi

∂yj
= wi

ρ

L∑
l=1

∂ωil

∂yj

1 ≤ i ≤ N,

1 ≤ j ≤ N

= ∂fi

∂T
= wi

ρ

L∑
l=1

∂ωil

∂T
+ wi

R0w̃

p

L∑
l=1

ωil

1 ≤ i ≤ N,

j = N

= ∂fT

∂yj
= −

N∑
i=1

∂fi

∂yj
hi

c̃p
= −

N∑
i=1

Jijhi

c̃p
1 ≤ j ≤ N

= ∂fT

∂yT
= −

N∑
i=1

(Fi cpi + Ji N+1hi)

c̃p
(3.2)

For the computations of the Jacobian entries, the derivative of the system’s density
with respect to the individual chemical species concentrations is supposed to be constant.
As derived in the previous section, equation 3.1 the system’s density is a function of the
mean molecular weight w̃:

ρ = p

R0T 1
w̃

= p

R0T
∑

i
yi

wi

,

and the mean molecular weight itself is a function of each of the specie’s mole fraction.
However, while these may change dramatically in the combustion process, the former re-
mains almost constant in time. Thus, the system’s density can be considered to be a
function of temperature only. This assumption is particularly accurate for constant pres-
sure environments; however, because it strongly simplifies the analytical computation of
the Jacobian, it is commonly extended to other conditions[14].
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The hessian entries are computed as follows:

Hijk = ∂2fi

∂yj∂yk
= wi

ρ

L∑
l=1

∂2ωil

∂yj∂yk

1 ≤ i ≤ N,

1 ≤ j ≤ N,

1 ≤ k ≤ N

= ∂2fi

∂yj∂T
= wi

ρ

L∑
l=1

∂2ωil

∂yj∂T
+ wi

R0w̃

p

L∑
l=1

∂ωil

∂yj

1 ≤ i ≤ N,

1 ≤ j ≤ N,

= ∂2fi

∂yj∂T
= ∂2fi

∂T∂yj

1 ≤ i ≤ N,

1 ≤ j ≤ N,

= ∂2fi

∂T 2 = wi

ρ

L∑
l=1

∂2ωil

∂T 2 + 2 wi
R0w̃

p

L∑
l=1

∂ωil

∂T
1 ≤ i ≤ N,

= ∂2fT

∂yj∂yk
= −

N∑
i=1

∂Jij

∂yk
hi

c̃p
= −

N∑
i=1

Hijkhi

c̃p

1 ≤ j ≤ N,

1 ≤ k ≤ N

= ∂2fT

∂yj∂T
= −

∑N
i=1 (HijN+1 hi + Jij cpi)

c̃p
1 ≤ j ≤ N,

= ∂2fT

∂T∂yj
= ∂2fT

∂yj∂T
1 ≤ j ≤ N,

= ∂2fT

∂T 2 = −
∑N

i=1 (2JiN+1 cpi + HiN+1N+1 hi)
c̃p

(3.3)

In order to solve the IVP by the BDF2 algorithms presented in chapter 2, the integration
algorithm must be able to call a function that computes the Jacobian and Hessian of the
system of ODEs, for a given set of values of the integration variables y. For this work, a fully
analytical computation of J and H was implemented. Code A.2 shows an implementation
in Matlab of a function that evaluates them, together with the functions f .
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Chapter 4

A model for Hydrogen
Combustion

In order to demonstrate the application of the possibilities discussed in the previous chap-
ter, a simplistic combustion model is introduced in this chapter. The reaction mechanism
is based on the H2 / O2 reaction mechanism developed by [5]. It is a detailed mechanism
where the oxydation of hydrogen is broken down in 19 elementary reaction involving 10
chemical species, including termolecular reactions.

H2 / O2 chain reactions

H + O2 −−→←−− O + OH (4.1)
O + H2 −−→←−− H + OH (4.2)
OH + H2 −−→←−− H + H2O (4.3)
O + H2O −−→←−− OH + OH (4.4)

H2 / O2 dissociation/recombination

H2 + M −−→←−− H + H + M (4.5)
O + O + M −−→←−− O2 + M (4.6)
O + H + M −−→←−− OH + M (4.7)
O + OH + M −−→←−− H2O + M (4.8)

Formation and consumption of HO2

H + O2 + M −−→←−− HO2 + M (4.9)
H + O2 −−→←−− HO2 (4.10)
HO2 + H −−→←−− H2 + O2 (4.11)
HO2 + H −−→←−− OH + OH (4.12)
HO2 + O −−→←−− OH + O2 (4.13)
HO2 + OH −−→←−− H2O + O2 (4.14)

25



4 – A model for Hydrogen Combustion

Formation and consumption of H2O2

HO2 + HO2 −−→←−− H2O2 + O2 (4.15)
H2O2 + M −−→←−− OH + OH + M (4.16)
H2O2 + H −−→←−− H2O + OH (4.17)
H2O2 + H −−→←−− H2 + HO2 (4.18)
H2O2 + O −−→←−− OH + HO2 (4.19)
H2O2 + OH −−→←−− H2O + HO2 (4.20)

Each of the chemical specie is characterised by its own molecular weight, specific heat
cp and enthalpy h. Given that the process only involves gaseous phase elements, these two
are simple functions of temperature. For simplicity, the temperature dependence of the
specific heat was ignored. Enthalpy was simply evaluated as

hi(T ) = ∆f h0
i +

∫ T

298K
cpidT,

where ∆f h0 is the standard enthalpy of formation.
The data for the chemical species is reported in table 4.1.
A more detailed modelling would involve the temperature dependance of the specific

heat. The most commonly used technique for computer simulation is to refer to a for-
mulation of the thermodynamic properties properties of each species, both cp and h, by
polynomials that allow their direct calculation for any temperature[8][3]. These polynomi-
als are formulated with a number of coefficients, for several temperature ranges.

Specie wi

( g
mol
)

cp

(
cal

mol K

)
∆f h0

(
kcal
mol

)
H 1.008 4.97 52.10
H2 2.016 6.89 0.00
O 15.999 5.24 59.55
O2 31.998 7.02 0.00
OH 17.007 7.14 9.40
H2O 18.015 8.03 -57.80
N2 28.014 6.96 0.00
HO2 33.006 8.34 3.00
H2O2 34.014 10.13 -32.48
Ar 39.948 4.97 0.00

Table 4.1: Chemical species data

Given that the main focus of this work is computational efficiency, rather than modelling
accuracy, the mechanism was modified to introduce several simplifications, in order to
reduce the complexity of the code. In the three body reactions, the effective concentration
of the third body is simply evaluated the sum of the concentrations of all the other species,
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ignoring collision efficiencies. For some of the reactions, the reaction rate is also dependant
on pressure. In this model, this is considered by using the Troe formulation. For the
purpose of this thesis, the pressure dependance of the rate coefficients is also not taken
into account, ignoring the Troe parametrisation of the original mechanism.

The rate coefficients are evaluated with the Arrhenius extended equation:

k = AT n exp(−Ea/RT ).

The parameters, obtained from [5], are reported in table 4.2

Forward Backward

Reaction A n Ea A n Ea

1 1.915E+14 0.00 1.644E+04 5.481E+11 0.39 -2.930E+02
2 5.080E+04 2.67 6.292E+03 2.667E+04 2.65 4.880E+03
3 2.160E+08 1.51 3.430E+03 2.298E+09 1.40 1.832E+04
4 2.970E+06 2.02 1.340E+04 1.465E+05 2.11 -2.904E+03
5 4.577E+19 -1.40 1.044E+05 1.146E+20 -1.68 8.200E+02
6 4.515E+17 -0.64 1.189E+05 6.165E+15 -0.50 0.000E+00
7 9.880E+17 -0.74 1.021E+05 4.714E+18 -1.00 0.000E+00
8 1.912E+23 -1.83 1.185E+05 4.500E+22 -2.00 0.000E+00
9 1.475E+12 0.60 0.000E+00 3.090E+12 0.53 4.887E+04
10 1.660E+13 0.00 8.230E+02 3.164E+12 0.35 5.551E+04
11 7.079E+13 0.00 2.950E+02 2.027E+10 0.72 3.684E+04
12 3.250E+13 0.00 0.000E+00 3.252E+12 0.33 5.328E+04
13 2.890E+13 0.00 -4.970E+02 5.861E+13 0.24 6.908E+04
14 4.634E+16 -0.35 5.067E+04 4.200E+14 0.00 1.198E+04
15 2.951E+14 0.00 4.843E+04 3.656E+08 1.14 -2.584E+03
16 2.410E+13 0.00 3.970E+03 1.269E+08 1.31 7.141E+04
17 6.025E+13 0.00 7.950E+03 6.025E+13 0.00 7.950E+03
18 9.550E+06 2.00 3.970E+03 8.660E+03 2.68 1.856E+04
19 1.000E+12 0.00 0.000E+00 1.838E+10 0.59 3.089E+04

Table 4.2: Reaction rate data

4.1 Simulation using Matlab solver
In order to set a reference for the simulation of the kinetic mechanism, the Matlab ode
solver was used. The main issue is to construct a set of functions corresponding to the
kinetic system, describing the rate of change of concentration of all the chemical species,
completed with an equation for the rate of change of temperature.
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The rate of change of temperature is given by the constraints imposed to the process. In
this example, and adiabatic, constant pressure combustion process was considered. There-
fore, as discussed in section 3, the total enhalpy of the system must remain constant.

The system is therefore composed of 10 equations of the form:

fi = dyi

dt
= wi

ρ

∑
l

νilω̇il,

and one of the form:
fT = −

∑
i fi hi(T )

cp
.

The solution of the IVP requires 11 initial conditions, that is the initial concentration
of the chemical species and the initial temperature. The initial composition of the mixture
was set to be 50% hydrogen and 50% air, while the initial temperature was set to 1200 K.
Table 4.3 shows the exact set of initial conditions.

Specie y0

H 0
H2 0.5
O 0
O2 0.39
OH 0

Specie y0

H2O 0
N2 0.105
HO2 0
H2O2 0
Ar 0.005

Table 4.3: Initial concentrations for the chemical species. The initial temperature was set
to 1200 K

4.2 Comparison between the iteration functions
The BDF2 algorithm described in chapter 2 can now be used to solve the system. Fig-
ure 4.2 compares the number of iterations performed using Newton and Chebyshev itera-
tion function, for different stepsize. It can be observed that there a few occurrences where
Chebyshev’s IF requires more iterations than Newton’s. This may be due to the assump-
tions made for computing the entries of the Hessian, where the density is considered to be
constant with respect to the specie’s concentration. Nontheless, it generally requires less
iterations overall.
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Figure 4.1: The solution of the proposed problem.
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Figure 4.2: Number of iterations performed with Newton and Chebyshev iteration
function.
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Chapter 5

Using an inexact Hessian

In the previous section, the effect of using a higher rate of convergence iteration function for
the solution of a combustion mechanism was presented. As expected, the implementation
of a third-order method lead to a reduced number of iterations with respect to a second-
order method. However, the total running time may not decrease; in fact, because the
third-order method also requires the computations of the Hessian of the system of ODEs,
the running time for this specific problem is more than doubled.

Therefore, the evaluation of rigorously exact Hessian matrix is too expensive for the
method to be efficient with Chebyshev’s iteration function. However, a full exact Hessian
may not be required to reduce the number of iterations. For example, since the system’s
temperature doesn’t change by a great extent during the iteration, some entries may be
computed only once for every timestep.

5.1 Freezing the temperature terms
As shown in chapter 3, the chemical kinetics of the reaction mechanism is described by
a set of coupled ODEs describing the rate of change of the chemical species concentra-
tion plus one describing the rate of change of temperature. This last equation is usually
derived from physical constraint imposed on the system, for example the conservation of
energy; therefore, it depends on the thermodynamical properties of all the chemical species
involved. For this reason, a relatively large computational effort is required to compute its
derivatives is required. In particular, equations 3.3 shows how the Hessian entries relative
to the temperature equation can be complex even for a simple mechanism where isobaric
conditions were imposed.

Given that the temperature equation depends on all of the chemical species’ enthalpies,
its value is only relatively affected by a change in one of the species’ concentration. More-
over, as previously mentioned, the temperature does not vary much during the course of
each iteration. Consequently, the enthalpy of each specie doesn’t change significantly.

As a result, the Hessian entries relative to this equation do not vary significantly during
the course of an iteration. A way to speed up the algorithm is to freeze these entries,
computing them only once at the beginning of each iteration. The algorithm for the
iteration is therefore modified as in 5.
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When applied to the combustion mechanism considered in this work, this algorithm
requires exactly the same number of iterations for a wide range of stepsize and tolerance
values, thus proving that the Hessian entries related to the temperature equation do not
change significantly in an iteration.

Algorithm 5 Modified algorithm for Chebyshev iteration function, freezing the tempera-
ture terms of the Hessian. N is the number of chemical species.

1: Compute F(y∗), J(y∗) and Hijk(y∗), for 1 ≤ i ≤ N + 1
2: Evaluate r0 = ∥F(y∗)∥
3: while ∥F(y∗)∥ ≤ τr r0 + τa do
4: Solve Jw = −F
5: Solve J∆ = −F− 1

2wTHw
6: y∗ = y∗ + ∆
7: Compute F(y∗), J(y∗) and Hijk(y∗), for 1 ≤ i ≤ N
8: end while

5.2 Freezing the full Hessian
We saw how freezing the temperature terms of the Hessian for every timestep doesn’t affect
significantly the number of iterations, thus allowing a small decrease in computation time.

Indeed, we may push this even further and freeze the full Hessian for every timestep.
While it is true that the concentration of the chemical species can change steeply at some
point of the integration, the Hessian terms depend on derivatives of the second order of
several reaction rates, with respect to two reactants. Thus, steep changes in the Hessian
terms from one iteration to the other are unlikely to happen.

Freezing the full Hessian at every timestep allow to fully take its out of the iteration
loop, as shown in algorithm 6. Provided that this does not increase significantly the number
of iterations performed, this produces an obvious improvement of the computation time.

As figure 5.1 shows, this algorithm once again does not increase the number of iterations
performed with respect to the exact algorithm where the Hessian is re-evaluated for every
iteration. Thus, a strong reduction in computation time is obtained.

Algorithm 6 Modified algorithm for Chebyshev iteration function, freezing the full Hes-
sian.

1: Compute F(y∗), J(y∗) and H(y∗)
2: Evaluate r0 = ∥F(y∗)∥
3: while ∥F(y∗)∥ ≤ τr r0 + τa do
4: Solve Jw = −F
5: Solve J∆ = −F− 1

2wTHw
6: y∗ = y∗ + ∆
7: Compute F(y∗) and J(y∗).
8: end while
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Figure 5.1: Number of iterations performed with the exact Hessian reevaluated at every
iteration and with an frozen Hessian, computed only once per timestep at the beginning

of the iteration.
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5.3 Freezing the temperature
Until now, we tried to avoid recomputing some or all the terms of the Hessian during
the course of an iteration, performing the computation at the beginning of the iteration
only. An even stronger assumption may be made if we look closely at how the temperature
changes from one iteration to the next. Even for small timesteps, this changes are relatively
small, due to the fact that the temperature profile, as can be seen in figure 4.2, is quite
smooth after the ignition delay.

For this reason, although we certainly cannot assume that the effect of temperature on
the Hessian terms is negligible, we may suppose that the error that is introduced does not
have a big impact on the iteration method.

If we introduce this assumption, many entries of the Hessian may be left null.

Hijk = 0 for i = N ∨ j = N ∨ k = N.

These terms, whose analytical expression is reported in table 3.3, are quite expensive to
compute. However, if implementing this solution for the integration of the combustion
mechanism analysed in this work, the number of iterations performed by the iteration
function is almost unchanged, as figure 5.2 shows.

Overall, the amount of computations saved produces a strong reduction in computation
time, because the number of iterations performed remains almost the same. It remains to
investigate for which combustion mechanisms this remains true.

Finally, another effect of not computing many entries is that the Hessian tensor has far
less non zero elements. In other words, the tensor will be sparser. As discussed in the next
chapter, the sparsity of the tensor can be taken advantage of, if specific storage structures
and algorithms are implemented, to reduce memory requirements and computation times.
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Figure 5.2: Number of iterations performed with the exact Hessian reevaluated at every
iteration and with an incomplete Hessian, freezing the temperature at every timestep and

computed only once per timestep.
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Chapter 6

Sparse Storage

In the previous sections, a requirement for storing large amounts of data in matrix and
tensor structures for the application of implicit methods for the numerical integration of
ODEs emerged. These structures contain the derivatives of the functions to integrate with
respect to each of the integration variables; for the applications discussed in this work,
these are the species concentrations and the system’s temperature. As the complexity of
the combustion mechanism increases, so does the size of the IVP and therefore the size of
these data structures.

However, not all of the entries of these structures, that is the Jacobian and the Hessian
of the system, are relevant. In particular, the terms relative to derivatives of the rate
of change of the species concentration may often be null. Consider the expression for
the reaction rates 3.2. Considering elementary reactions, no more than three different
reactants and three different products are usually involved[14]. Thus, the stoichiometric
coefficients νki are mostly null, and the more the null elements, the more loosely coupled
the system of equations is. Therefore, these Jacobian and Hessian of the chemical kinetics
of a combustion mechanism are typically sparse.

A sparse structure is a structure where many or most of the elements are null; its sparsity
is related to how loosely coupled the system of equations is. By contrast, a structure where
most of the elements are not null is called dense. The sparsity of these structures may be
taken advantage of to reduce both the computer memory required for their storage and
the computation time required for some operations[9].

If we consider a matrix M ∈ Rm×n, storing it as a dense matrix requires a storage space
proportional to mn, while storing it as a sparse tensor requires a space proportional to the
number of non zero elements. Moreover, any operation performed on a sparse matrix stored
as a dense structure means that a lot of time is wasted on unnecessary operations, such as
zero-adds; in general, the computational complexity of basic operations is proportional to
mn[9], while a specific algorithms designed for sparse structures generally require a reduced
computational complexity, proportional to the number of nonzeros in the best cases.

The same considerations can be applied to tensors: for example, a dense third order
tensor T ∈ Rm×n×p requires a storage space proportional to mnp. If we consider com-
plex reaction mechanism, where hundreds of elementary reactions can be involved, it is
evident that the amount of memory required may become extremely burdening for many
workstations. For these reasons, it may be convenient to resort to sparse store storage for

36



6 – Sparse Storage

the Jacobian and Hessian of the system for the application of Newton’s or Chebyshev’s
iteration method.

6.1 Implementation
In order to take advantage of the sparsity of the Jacobian and Hessian of the system, the
computation of their entries must be performed with specifically designed algorithms, since
direct access to a sparse structure entries by their indexes is computationally inefficient,
because of the way they are stored.

Several methods exist to implement sparse tensor storage. The software used for this
work, the MATLAB Tensor Toolbox [2], resorts to a coordinate storage format. Given
a tensor with nnz nonzeros, the nonzero values stored in an array of length nnz, and
the corresponding indexes in the rows of a matrix. Entries with duplicate subscripts are
summed when the tensor is assembled.

Preallocating an empty sparse structure and then modifying its entries by direct in-
dexing would be extremely costly. The Jacobian and Hessian entries therefore have to be
computed with loops that create new entries. Therefore, a specific algorithm has to be
implemented.

The Jacobian and Hessian entries are created in coordinate format as shown in the
appendix A.4.

Then, the iteration function was applied using the ttv function of the MATLAB Tensor
Toolbox, that implements tensor n-mode multiplication for sparse tensors[1]. Formally, the
n-mode product of a tensor T ∈ RI1×I2×···×In times a vector v ∈ RIn is a tensor of size
I1 × · · · × In−1 × In+1 × · · · × IN , whose entries are given by:

(T×̄nv)i1...in−1in+1...iN
=

In∑
in=1

Ti1...iN
vin .

Thus the product wTHw corresponds to:

(T×̄2w) ×̄3w.

The algorithm thus implemented may reduce the computation time of the integration,
provided that the Hessian and Jacobian are sparse enough. For the combustion mechanism
examined in this work, sparse storage did not produce significant improvements in terms
of execution time, although it allows to reduce the memory storage requirement.

However, the sparsity of these structures scales as the size of the problem increases. It
is expected that, for large reaction mechanisms with thousands of reaction equations, the
benefits of using algorithms specifically designed for sparse structures may become sensible.
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Chapter 7

Conclusions

Several issues regarding the numerical integration of the rate equations of a combustion
mechanism were presented, and a stiff integrator, based on the implicit integration scheme
BDF2 was introduced using Newton’s iteration method, which requires the computation
of the Jacobian matrix of the system of differential equations.

Then, an iteration method with a higher rate of convergence was introduced, and the
resulting number of iterations were compared. As expected, while this method produces
less iterations, the necessity to evaluate the Hessian as well as the Jacobian of the system
of ODEs causes the total computation time to increase. Moreover, Chebyshev’s iteration
function requires to solve twice as many linear system solutions with respect to Newton’s it-
eration function. Therefore, the former is only advantageous if the high rate of convergence
can be exploited.

Several simplifications in the algorithm were therefore introduced. First, the computa-
tion of the Hessian was taken out of the iteration loop, and it is observed that this does
not affect the convergence of the method significantly. Then, the temperature derivatives
of the Hessian, that are computationally costly to compute, were excluded and once again
the convergence of the method is practically unchanged.

Finally, sparse storage for the Jacobian and the Hessian was introduced, but the sparsity
of the structures for the combustion mechanism examined in this work is not sufficient to
compensate for the increase linear solutions.

A more sophisticated iteration function may be needed to exploit the higher convergence
rate. Even then, the benefits may become evident only for particular conditions; for
example, large time steps would produce the largest difference in the number of iterations
performed between the two iteration functions.

Further development of this work would include an implementation of the techniques
presented here to a large scale reaction mechanism, were it is expected that the reduction
of number of iterations given by Chebyshev’s iteration function becomes far larger and the
sparsity of the Jacobian and Hessian far more prominent.
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Appendix A

Matlab code

In this thesis, techniques for the integration of coupled systems of ODEs, specifically for the
solution of the rate equations of the chemical species involved in a combustion mechanism,
were described. To solve the IVP, formed by the rate equations, the temperature equation
and a set of initial conditions, any numerical integrator requires a function evaluating the
ODEs for a given set of values of the integration variables y and time. The code A.1 is a
function that does this. As described in chapter 3, first it evaluates the reaction rates of
all the reactions of the mechanism; then, the rate equations for each specie are evaluated
by summing the reaction rates that contribute to the consumption or production of that
specie. Finally, the temperature equation is evaluated.

Listing A.1: The function evaluating the ODEs for the species concentration for the
hydrogen combustion mechanism.

1 function F = odefun(t, y, reaction, specie)
2 % Evaluates f (the system of equations to be integrated), for a
3 % given y (values of the integration variables).
4
5 %% Set thermodynamics constants, initial concentrations and temperature and

evaluate enthalpies
6 p = 1e5; %Pa
7 Rgas = 8.3144598; % Js / K mol
8 nspecies = size(specie,2)−1;
9 nT = nspecies+1;

10 T = y(end);
11 y = y(1:end−1);
12
13 h = zeros(nspecies,1);
14 for i=1:nspecies
15 h(i) = enth(specie(i), T);
16 end
17
18 meanwght = 0;
19 for i=1:nspecies
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20 meanwght = meanwght + y(i)/specie(i).w;
21 end
22
23 y = [y; specie(end).w*meanwght];
24
25 rho = p/(Rgas*T*meanwght)*1e−6; % g/cm3
26
27 % Evaluate reaction rates
28 nreactions = size(reaction,2);
29 omega = zeros(nreactions,1);
30 for i = 1:nreactions
31 cprod(1:3) = 1;
32 for ir = 1:reaction(i).nreact
33 isa = reaction(i).reactants(ir);
34 cprod(ir) = y(isa) * rho/specie(isa).w; %(mol/cm3)^2 or (mol/cm3)^3
35 end
36 c = reaction(i).A * T^reaction(i).n * exp(−reaction(i).Ta/T);
37 omega(i) = c * cprod(1) * cprod(2) * cprod(3); %(mol/cm3)
38 end
39
40 % Sum reaction rates
41 Fs = zeros(nT,1);
42 for i = 1:nreactions
43 for ir=1:reaction(i).nreact
44 isa = reaction(i).reactants(ir);
45 if isa ~= 11
46 Fs(isa) = Fs(isa) − omega(i);
47 end
48 end
49 for ir=1:reaction(i).nprod
50 isa = reaction(i).products(ir);
51 if isa ~= 11
52 Fs(isa) = Fs(isa) + omega(i);
53 end
54 end
55 end
56
57 % Evaluate rate equations and temperature equation
58 F = zeros(nT,1);
59 meancp = 0;
60 for i=1:nspecies
61 meancp = meancp + y(i) * specie(i).cp;
62 F(i) = Fs(i) * specie(i).w / rho;
63 F(end) = F(end) − F(i)*h(i);
64 end
65 F(end) = F(end) / meancp;
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66
67 end
68
69 function enth = enth(specie, T) % Js/kg
70 % evaluate enthalpy of a specie as a function of temperature
71 enth = specie.hf + (specie.cp)*(T−298);
72 end

The code A.2 is the BDF2 algorithm used to integrate the rate equations for the com-
bustion mechanism presented in chapter 4. It requires several inputs:

• ...

Listing A.2: The BDF2 algorithm used to integrate the rate equations of the combustion
mechanism for Hydrogen.

1 function [t, y] = BDF2(odefun, reaction, specie, order, y0, nsteps, tol,
tend)

2 %% [t, y] = BDF2(odefun, reaction, specie, order, y0, nsteps, tol, tend)
3 % *odefun* is a function returning f (the system of equatins to be

integrated),
4 % Jf (the Jacobian of the system) and Hf (the Hessian of the system),
5 % for a given set of values of the integration variables. If order is set

to 2
6 % (Newton's IF), Hf is not required.
7 %
8 % *reaction* is a structure containing information about the
9 % reactants, the products and the Arrhenius equation parameters for the

10 % reactions of the mechanism
11 %
12 % *specie* is a structure containing information thermochemical data of the
13 % species involved in the mechanism, as well as initial concentrations
14 % *y0* is the initial condition
15 %
16 % *nsteps* is the number of steps
17 % *tol = [tr, ta]* , where *tr* and *ta* are the relative and absolute

error
18 % tolerances
19 % *tend* is the simulation end time
20
21 %% Set end time, inital conditions, number of time steps, tolerance
22 if order ~= 2 && order ~= 3
23 error('Order must be either 2 or 3')
24 end
25
26 systemDimension = size(y0,2);
27
28 y=zeros(systemDimension,nsteps);
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29 y(:,1) = y0;
30 h = tend/nsteps;
31 t = 0:h:tend;
32
33 tr = tol(1);
34 ta = tol(2); %tolerance for convergence
35 imax = 100; %number of maximum iterations
36
37 %% Bootstrapping
38 % BWD1 atep to evaluate intermediate−step temporary value
39 Y = y(:,1); %first guess
40
41 % Evaluate F(Y)
42 [f, Jf, Hf] = odefun(Y, reaction, specie);
43 F = Y − y(:,1) − h/2 * f;
44 r0 = norm(F);
45
46 for k=1:imax
47 % Evaluate the Jacobian J(Y)
48 J = eye(systemDimension) − h/2 * Jf;
49 H = −h/2*Hf;
50
51 % Advance Y
52 w = linsolve(J,−F);
53 wHw = zeros(systemDimension,1);
54 for hi = 1:systemDimension
55 for hj = 1:systemDimension
56 for hk = 1:systemDimension
57 wHw(hi,1) = wHw(hi,1) + H(hi,hj,hk)*w(hj)*w(hk);
58 end
59 end
60 end
61 D = linsolve(J, −F−1/2*wHw);
62 Y = Y+D;
63
64 % Re−evaluate F(Y) for tolerance criterion check and possible next
65 % iteration
66 [f, Jf, Hf] = odefun(Y, reaction, specie);
67 F = Y − y(:,1) − h/2 * f;
68 % Tolerance check
69 if norm(F) < tr*r0 + ta
70 iterations(2) = k;
71 break
72 end
73 if k==imax
74 warning('maximum number of iterations reached')
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75 end
76 end
77
78 ytemp = Y; % intermediate−step value, y^(1/2)
79
80 % BDF2 step to evaluate first step of the solution
81 % Evaluate F(Y)
82 [f, Jf, Hf] = odefun(Y, reaction, specie);
83 F = Y − 4/3*ytemp + 1/3*y(:,1) − 2/3*h/2 * f;
84 r0 = norm(F);
85
86 for k=1:imax
87 % Evaluate the Jacobian J(Y)
88 J = eye(systemDimension) −2/3*h/2 * Jf;
89 H = −2/3*h/2*Hf;
90
91 % Advance Y
92 w = linsolve(J,−F);
93 wHw = zeros(systemDimension,1);
94 for hi = 1:systemDimension
95 for hj = 1:systemDimension
96 for hk = 1:systemDimension
97 wHw(hi,1) = wHw(hi,1) + H(hi,hj,hk)*w(hj)*w(hk);
98 end
99 end

100 end
101 D = linsolve(J, −F−1/2*wHw);
102 Y = Y+D;
103
104 % Re−evaluate F(Y) for tolerance criterion check and possible next
105 % iteration
106 [f, Jf, Hf] = odefun(Y, reaction, specie);
107 F = Y − 4/3*ytemp + 1/3*y(:,1) − 2/3*h/2 * f;
108 % Tolerance check
109 if norm(F) < tr*r0 + ta
110 iterations(2) = k;
111 break
112 end
113 if k==imax
114 warning('maximum number of iterations reached')
115 end
116 end
117 y(:,2) = Y;
118
119 %% Main run with BDF2
120 for n=1:(nsteps−1)
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121 % Evaluate F(Y)
122 [f, Jf, Hf] = odefun(Y, reaction, specie);
123 F = Y − 4/3*y(:,n+1) + 1/3*y(:,n) − 2/3*h * f;
124 r0 = norm(F);
125
126 for k=1:imax
127 % Evaluate the Jacobian J(Y)
128 J = eye(systemDimension) − 2/3*h*Jf;
129 H = −2/3*h*Hf;
130
131 % Advance Y
132 w = linsolve(J,−F);
133 if order == 3
134 wHw = zeros(systemDimension,1);
135 for hi = 1:systemDimension
136 for hj = 1:systemDimension
137 for hk = 1:systemDimension
138 wHw(hi,1) = wHw(hi,1) + H(hi,hj,hk)*w(hj)*w(hk);
139 end
140 end
141 end
142 end
143 D = linsolve(J, −F−1/2*wHw);
144 Y = Y+D;
145
146 % Re−evaluate F(Y) for tolerance criterion check and possible next
147 % iteration
148 [f, Jf, Hf] = odefun(Y, reaction, specie);
149 F = Y − 4/3*y(:,n+1) + 1/3*y(:,n) − 2/3*h * f;
150 % Tolerance check
151 if norm(F) < tr*r0 + ta
152 iterations(n+2) = k;
153 break
154 end
155 if k==imax
156 warning('maximum number of iterations reached')
157 end
158 end
159 y(:,n+2) = Y;
160 end
161
162 end

Code A.1 was used for integrating using the library Matlab integrators. The BDF2
algorithm developed in this work also requires the Jacobian and Hessian of the system,
depending on the iteration function used. Codes A.3 and A.4 show the functions that do
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this, in dense and sparse format.

Listing A.3: Function evaluating the ODEs, as well as the Jacobian and Hessian.
1 function [F,J,H] = F_cheb(y, reaction, specie)
2 % Evaluates f (the system of equations to be integrated),
3 % J (the Jacobian of the system) and H (the Hessian of the system), for a
4 % given y (values of the integration variables).
5
6 %% Set thermodynamics constants, initial concentrations and temperature and

evaluate enthalpies
7 p = 1e5; %Pa
8 Rgas = 8.3144598; % Js / K mol
9 nspecies = size(specie,2)−1;

10 nT = nspecies+1;
11 T = y(end);
12 y = y(1:end−1);
13
14 h = zeros(nspecies,1);
15 for i=1:nspecies
16 h(i) = enth(specie(i), T);
17 end
18
19 meanwght = 0;
20 for i=1:nspecies
21 meanwght = meanwght + y(i)/specie(i).w;
22 end
23
24 y = [y; specie(end).w*meanwght];
25
26 rho = p/(Rgas*T*meanwght)*1e−6; % g/cm3
27
28 %% Evaluate reaction rates and their derivatives
29 nreactions = size(reaction,2);
30 omega = zeros(nreactions,1);
31 omegad = zeros(nreactions,3);
32 omegadd = zeros(nreactions,3,3);
33 for i = 1:nreactions
34 cprod(1:3) = 1;
35 coeff(1:3) = 1;
36 for ir = 1:reaction(i).nreact
37 isa = reaction(i).reactants(ir);
38 cprod(ir) = y(isa) * rho/specie(isa).w; %(mol/cm3)^2 or (mol/cm3)^3
39 coeff(ir) = rho/specie(isa).w;
40 end
41 c = reaction(i).A * T^reaction(i).n * exp(−reaction(i).Ta/T);
42 cd = ( reaction(i).n + reaction(i).Ta/T ) / T;
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43 omega(i) = c * cprod(1) * cprod(2) * cprod(3); %(mol/cm3)
44 omegad(i,1) = c * coeff(1) * cprod(2) * cprod(3);
45 omegad(i,2) = c * cprod(1) * coeff(2) * cprod(3);
46 omegad(i,3) = omega(i) * ( cd − reaction(i).nreact / T );
47 omegadd(i,1,1) = 0;
48 omegadd(i,1,2) = c * coeff(1) * coeff(2) * cprod(3);
49 omegadd(i,1,3) = omegad(i,1) * ( cd − reaction(i).nreact / T );
50 omegadd(i,2,1) = omegadd(i,1,2);
51 omegadd(i,2,2) = 0;
52 omegadd(i,2,3) = omegad(i,2) * ( cd − reaction(i).nreact / T );
53 omegadd(i,3,1) = omegadd(i,1,3);
54 omegadd(i,3,2) = omegadd(i,2,3);
55 omegadd(i,3,3) = omegad(i,3) * ( cd − reaction(i).nreact / T ) + omega(

i) * ( reaction(i).nreact / T^2 );
56 end
57
58 %% Sum reaction rates and their derivatives
59 Fs = zeros(nT,1);
60 Js = zeros(nT,nT);
61 Hs = zeros(nT,nT,nT);
62 for i = 1:nreactions
63 for ir=1:reaction(i).nreact
64 isa = reaction(i).reactants(ir);
65 if isa ~= 11
66 Fs(isa) = Fs(isa) − omega(i);
67 isb = reaction(i).reactants(1);
68 if isb ~= 11
69 Js(isa,isb) = Js(isa,isb) − omegad(i,1);
70 isc = reaction(i).reactants(1);
71 if isc ~= 11
72 Hs(isa,isb,isc) = Hs(isa,isb,isc) − omegadd(i,1,1);
73 end
74 isc = reaction(i).reactants(2);
75 if isc ~= 11
76 Hs(isa,isb,isc) = Hs(isa,isb,isc) − omegadd(i,1,2);
77 end
78 Hs(isa,isb,end) = Hs(isa,isb,end) − omegadd(i,1,3);
79 end
80 isb = reaction(i).reactants(2);
81 if isb ~= 11
82 Js(isa,isb) = Js(isa,isb) − omegad(i,2);
83 isc = reaction(i).reactants(1);
84 if isc ~= 11
85 Hs(isa,isb,isc) = Hs(isa,isb,isc) − omegadd(i,2,1);
86 end
87 isc = reaction(i).reactants(2);
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88 if isc ~= 11
89 Hs(isa,isb,isc) = Hs(isa,isb,isc) − omegadd(i,2,2);
90 end
91 Hs(isa,isb,end) = Hs(isa,isb,end) − omegadd(i,2,3);
92 end
93 Js(isa,end) = Js(isa,end) − omegad(i,3); %dFsi/dT
94 isc = reaction(i).reactants(1);
95 if isc ~= 11
96 Hs(isa,end,isc) = Hs(isa,end,isc) − omegadd(i,3,1);
97 end
98 isc = reaction(i).reactants(2);
99 if isc ~= 11

100 Hs(isa,end,isc) = Hs(isa,end,isc) − omegadd(i,3,2);
101 end
102 Hs(isa,end,end) = Hs(isa,end,end) − omegadd(i,3,3);
103 end
104 end
105 for ir=1:reaction(i).nprod
106 isa = reaction(i).products(ir);
107 if isa ~= 11
108 Fs(isa) = Fs(isa) + omega(i);
109 isb = reaction(i).reactants(1);
110 if isb ~= 11
111 Js(isa,isb) = Js(isa,isb) + omegad(i,1);
112 isc = reaction(i).reactants(1);
113 if isc ~= 11
114 Hs(isa,isb,isc) = Hs(isa,isb,isc) + omegadd(i,1,1);
115 end
116 isc = reaction(i).reactants(2);
117 if isc ~= 11
118 Hs(isa,isb,isc) = Hs(isa,isb,isc) + omegadd(i,1,2);
119 end
120 Hs(isa,isb,end) = Hs(isa,isb,end) + omegadd(i,1,3);
121 end
122 isb = reaction(i).reactants(2);
123 if isb ~= 11
124 Js(isa,isb) = Js(isa,isb) + omegad(i,2);
125 isc = reaction(i).reactants(1);
126 if isc ~= 11
127 Hs(isa,isb,isc) = Hs(isa,isb,isc) + omegadd(i,2,1);
128 end
129 isc = reaction(i).reactants(2);
130 if isc ~= 11
131 Hs(isa,isb,isc) = Hs(isa,isb,isc) + omegadd(i,2,2);
132 end
133 Hs(isa,isb,end) = Hs(isa,isb,end) + omegadd(i,2,3);
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134 end
135 Js(isa,end) = Js(isa,end) + omegad(i,3); %dFsi/dT
136 isc = reaction(i).reactants(1);
137 if isc ~= 11
138 Hs(isa,end,isc) = Hs(isa,end,isc) + omegadd(i,3,1);
139 end
140 isc = reaction(i).reactants(2);
141 if isc ~= 11
142 Hs(isa,end,isc) = Hs(isa,end,isc) + omegadd(i,3,2);
143 end
144 Hs(isa,end,end) = Hs(isa,end,end) + omegadd(i,3,3);
145 end
146 end
147 end
148
149 %% Evaluate rate equations, temperature equation and their derivatives
150 rhod = Rgas*meanwght/p;
151 F = zeros(nT,1);
152 J = zeros(nT,nT);
153 H = zeros(nT,nT,nT);
154 meancp = 0;
155 for i=1:nspecies
156 meancp = meancp + y(i) * specie(i).cp;
157 % Fi, FT
158 F(i) = Fs(i) * specie(i).w / rho;
159 F(end) = F(end) − F(i)*h(i);
160 % Jij
161 for j = 1:nspecies
162 J(i,j) = Js(i,j) * specie(i).w / rho;
163 % Hijk
164 for k = 1:nspecies
165 H(i,j,k) = specie(i).w / rho * Hs(i,j,k);
166 end
167 % HijT, HiTj
168 H(i,j,end) = specie(i).w / rho * Hs(i,j,end) + specie(i).w * rhod *

Js(i,j);
169 H(i,end,j) = H(i,j,end);
170 end
171 % JiT, JTT, HiTT
172 J(i,end) = Js(i,end) * specie(i).w / rho + specie(i).w * rhod * Fs(i);
173 J(end,end) = J(end,end) − ( F(i) * specie(i).cp + J(i,end) * h(i) );
174 H(i,end,end) = specie(i).w / rho * Hs(i,end,end) + 2 * specie(i).w *

rhod * Js(i,end);
175 end
176 % FT, JTT
177 F(end) = F(end) / meancp;
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178 J(end,end) = J(end,end) / meancp;
179
180 for j = 1:nspecies
181 % JTj, HTjT, HTTj
182 for i = 1:nspecies
183 J(end,j) = J(end,j) − J(i,j) * h(i);
184 H(end,j,end) = H(end,j,end) − H(i,j,end) * h(i) − J(i,j) * specie(i

).cp;
185 end
186 J(end,j) = J(end,j)/meancp;
187 H(end,j,end) = H(end,j,end) / meancp;
188 H(end,end,j) = H(end,j,end);
189 % HTjk
190 for k = 1:nspecies
191 for i = 1:nspecies
192 H(end,j,k) = H(end,j,k) − H(i,j,k) * h(i);
193 end
194 H(end,j,k) = H(end,j,k) / meancp;
195 end
196 end
197
198 for i = 1:nspecies
199 H(end,end,end) = H(end,end,end) − H(i,end,end) * h(i) − 2 * J(i,end) *

specie(i).cp;
200 end
201 H(end,end,end) = H(end,end,end) / meancp;
202
203 end
204
205 function enth = enth(specie, T) % J/kg
206 % evaluate enthalpy of a specie as a function of temperature
207 enth = specie.hf + (specie.cp)*(T−298);
208 end

Listing A.4: Function evaluating the ODEs, as well as the Jacobian and Hessian, in
sparse format.

1 function [F,J,H] = F_cheb(y, reaction, specie)
2 % Evaluates f (the system of equations to be integrated),
3 % J (the Jacobian of the system) and H (the Hessian of the system), for a
4 % given y (values of the integration variables). J and H are stored in
5 % sparse format
6
7 %% Set thermodynamics constants, initial concentrations and temperature and

evaluate enthalpies
8 p = 1e5; %Pa
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9 Rgas = 8.3144598; % J / K mol
10 nspecies = size(specie,2)−1;
11 nT = nspecies+1;
12 T = y(end);
13 y = y(1:end−1);
14
15 h = zeros(nspecies,1);
16 for i=1:nspecies
17 h(i) = enth(specie(i), T);
18 end
19
20 meanwght = 0;
21 for i=1:nspecies
22 meanwght = meanwght + y(i)/specie(i).w;
23 end
24
25 y = [y; specie(end).w*meanwght];
26
27 rho = p/(Rgas*T*meanwght)*1e−6; % g/cm3
28
29 %% Evaluate reaction rates and their derivatives
30 nreactions = size(reaction,2);
31 omega = zeros(nreactions,1);
32 omegad = zeros(nreactions,3);
33 omegadd = zeros(nreactions,3,3);
34 for i = 1:nreactions
35 cprod(1:3) = 1;
36 coeff(1:3) = 1;
37 for ir = 1:reaction(i).nreact
38 isa = reaction(i).reactants(ir);
39 cprod(ir) = y(isa) * rho/specie(isa).w; %(mol/cm3)^2 or (mol/cm3)^3
40 coeff(ir) = rho/specie(isa).w;
41 end
42 c = reaction(i).A * T^reaction(i).n * exp(−reaction(i).Ta/T);
43 cd = ( reaction(i).n + reaction(i).Ta/T ) / T;
44 omega(i) = c * cprod(1) * cprod(2) * cprod(3); %(mol/cm3)
45 omegad(i,1) = c * coeff(1) * cprod(2) * cprod(3);
46 omegad(i,2) = c * cprod(1) * coeff(2) * cprod(3);
47 omegad(i,3) = omega(i) * ( cd − reaction(i).nreact / T );
48 omegadd(i,1,1) = 0;
49 omegadd(i,1,2) = c * coeff(1) * coeff(2) * cprod(3);
50 omegadd(i,1,3) = omegad(i,1) * ( cd − reaction(i).nreact / T );
51 omegadd(i,2,1) = omegadd(i,1,2);
52 omegadd(i,2,2) = 0;
53 omegadd(i,2,3) = omegad(i,2) * ( cd − reaction(i).nreact / T );
54 omegadd(i,3,1) = omegadd(i,1,3);
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55 omegadd(i,3,2) = omegadd(i,2,3);
56 omegadd(i,3,3) = omegad(i,3) * ( cd − reaction(i).nreact / T ) + ...
57 + omega(i) * ( reaction(i).nreact / T^2 );
58 end
59
60 %% Sum reaction rates and their derivatives
61 F = zeros(nT,1);
62 Jspos = zeros(80,2);
63 Jsval = zeros(80,1);
64 Hspos = zeros(400,3);
65 Hsval = zeros(400,1);
66 posJ = 1;
67 posH = 1;
68
69 for i = 1:nreactions
70 for ir=1:reaction(i).nreact
71 isa = reaction(i).reactants(ir);
72 if isa ~= 11
73 F(isa) = F(isa) − omega(i);
74 isb = reaction(i).reactants(1);
75 if isb ~= 11
76 Jspos(posJ,:) = [isa isb];
77 Jsval(posJ) = − omegad(i,1);
78 posJ = posJ+1;
79 isc = reaction(i).reactants(1);
80 if isc ~= 11
81 Hspos(posH,:) = [isa isb isc];
82 Hsval(posH) = − omegadd(i,1,1);
83 posH = posH+1;
84 end
85 isc = reaction(i).reactants(2);
86 if isc ~= 11
87 Hspos(posH,:) = [isa isb isc];
88 Hsval(posH) = − omegadd(i,1,2);
89 posH = posH+1;
90 end
91 Hspos(posH,:) = [isa isb nT];
92 Hsval(posH) = − omegadd(i,1,3);
93 posH = posH+1;
94 end
95 isb = reaction(i).reactants(2);
96 if isb ~= 11
97 Jspos(posJ,:) = [isa isb];
98 Jsval(posJ) = − omegad(i,2);
99 posJ = posJ+1;

100 isc = reaction(i).reactants(1);
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101 if isc ~= 11
102 Hspos(posH,:) = [isa isb isc];
103 Hsval(posH) = − omegadd(i,2,1);
104 posH = posH+1;
105 end
106 isc = reaction(i).reactants(2);
107 if isc ~= 11
108 Hspos(posH,:) = [isa isb isc];
109 Hsval(posH) = − omegadd(i,2,2);
110 posH = posH+1;
111 end
112 Hspos(posH,:) = [isa isb nT];
113 Hsval(posH) = − omegadd(i,2,3);
114 posH = posH+1;
115 end
116 Jspos(posJ,:) = [isa nT];
117 Jsval(posJ) = − omegad(i,3);
118 posJ = posJ+1; %dFi/dT
119 isc = reaction(i).reactants(1);
120 if isc ~= 11
121 Hspos(posH,:) = [isa nT isc];
122 Hsval(posH) = − omegadd(i,3,1);
123 posH = posH+1;
124 end
125 isc = reaction(i).reactants(2);
126 if isc ~= 11
127 Hspos(posH,:) = [isa nT isc];
128 Hsval(posH) = − omegadd(i,3,2);
129 posH = posH+1;
130 end
131 Hspos(posH,:) = [isa nT nT];
132 Hsval(posH) = − omegadd(i,3,3);
133 posH = posH+1;
134 end
135 end
136 for ir=1:reaction(i).nprod
137 isa = reaction(i).products(ir);
138 if isa ~= 11
139 F(isa) = F(isa) + omega(i);
140 isb = reaction(i).reactants(1);
141 if isb ~= 11
142 Jspos(posJ,:) = [isa isb];
143 Jsval(posJ) = omegad(i,1);
144 posJ = posJ+1;
145 isc = reaction(i).reactants(1);
146 if isc ~= 11
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147 Hspos(posH,:) = [isa isb isc];
148 Hsval(posH) = + omegadd(i,1,1);
149 posH = posH+1;
150 end
151 isc = reaction(i).reactants(2);
152 if isc ~= 11
153 Hspos(posH,:) = [isa isb isc];
154 Hsval(posH) = + omegadd(i,1,2);
155 posH = posH+1;
156 end
157 Hspos(posH,:) = [isa isb nT];
158 Hsval(posH) = + omegadd(i,1,3);
159 posH = posH+1;
160 end
161 isb = reaction(i).reactants(2);
162 if isb ~= 11
163 Jspos(posJ,:) = [isa isb];
164 Jsval(posJ) = omegad(i,2);
165 posJ = posJ+1;
166 isc = reaction(i).reactants(1);
167 if isc ~= 11
168 Hspos(posH,:) = [isa isb isc];
169 Hsval(posH) = + omegadd(i,2,1);
170 posH = posH+1;
171 end
172 isc = reaction(i).reactants(2);
173 if isc ~= 11
174 Hspos(posH,:) = [isa isb isc];
175 Hsval(posH) = + omegadd(i,2,2);
176 posH = posH+1;
177 end
178 Hspos(posH,:) = [isa isb nT];
179 Hsval(posH) = + omegadd(i,2,3);
180 posH = posH+1;
181 end
182 Jspos(posJ,:) = [isa nT];
183 Jsval(posJ) = omegad(i,3);
184 posJ = posJ+1;
185 isc = reaction(i).reactants(1);
186 if isc ~= 11
187 Hspos(posH,:) = [isa nT isc];
188 Hsval(posH) = + omegadd(i,3,1);
189 posH = posH+1;
190 end
191 isc = reaction(i).reactants(2);
192 if isc ~= 11
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193 Hspos(posH,:) = [isa nT isc];
194 Hsval(posH) = + omegadd(i,3,2);
195 posH = posH+1;
196 end
197 Hspos(posH,:) = [isa nT nT];
198 Hsval(posH) = + omegadd(i,3,3);
199 posH = posH+1;
200 end
201 end
202 end
203
204 Jspos(~any(Jsval,2),:) = [];
205 Jsval(~any(Jsval,2)) = []; %cuts off zeros
206 Hspos(~any(Hsval,2),:) = [];
207 Hsval(~any(Hsval,2)) = [];
208
209 [Jspos, Jsval] = compress(Jspos, Jsval);
210 [Hspos, Hsval] = compress(Hspos, Hsval);
211
212 %% Evaluate rate equations, temperature equation and their derivatives
213 posH = 1;
214 posJ = 1;
215 Jpos = zeros(120,2);
216 Jval = zeros(120,1);
217 Hpos = zeros(700,3);
218 Hval = zeros(700,1);
219
220 rhod = Rgas*meanwght/p;
221 meancp = 0; summ = 0;
222 for i=1:nspecies
223 meancp = meancp + y(i) * specie(i).cp;
224 end
225
226 for i=1:nspecies
227 %JiT
228 Jpos(posJ,:) = [i nT];
229 Jval(posJ) = F(i) * specie(i).w * rhod;
230 posJ = posJ + 1;
231 % Fi
232 F(i) = F(i) * specie(i).w/rho;
233 % FT
234 summ = summ + F(i) * h(i);
235 % JTT
236 Jpos(posJ,:) = [nT nT];
237 Jval(posJ) = F(i) * (−specie(i).cp/meancp);
238 posJ = posJ + 1;
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239 end
240 F(end) = − summ/meancp;
241
242 for n = 1:length(Jsval)
243 i = Jspos(n,1);
244 j = Jspos(n,2);
245 % J_ij, J_iT
246 Jpos(posJ,:) = [i j];
247 Jval(posJ) = Jsval(n) * specie(i).w / rho;
248 % J_Tj, J_TT
249 Jpos(posJ+1,:) = [nT j];
250 Jval(posJ+1) = Jval(posJ) * (−h(i)/meancp);
251 posJ = posJ + 2;
252 % H_ijT, H_iTj
253 Hpos(posH,:) = [i j nT];
254 Hval(posH) = Jsval(n) * specie(i).w * rhod;
255 Hpos(posH+1,:) = [i nT j];
256 Hval(posH+1) = Hval(posH);
257 posH = posH + 2;
258 % H_TjT, H_TTj, H_TTT
259 Hpos(posH,:) = [nT j nT];
260 Hval(posH) = Jval(posJ−2) * (−specie(i).cp) / meancp;
261 if j == nT
262 Hval(posH) = Hval(posH) * 2;
263 end
264 posH = posH + 1;
265 end
266
267 for n = 1:length(Hsval)
268 i = Hspos(n,1);
269 j = Hspos(n,2);
270 k = Hspos(n,3);
271 % H_ijk, H_ijT, H_iTj
272 Hpos(posH,:) = [i j k];
273 Hval(posH) = Hsval(n) * specie(i).w / rho;
274 % H_Tjk
275 Hpos(posH+1,:) = [nT j k];
276 Hval(posH+1) = Hval(posH) * (−h(i) / meancp);
277 posH = posH + 2;
278 end
279
280 Jpos(~any(Jval,2),:) = [];
281 Jval(~any(Jval,2)) = []; %cuts off zeros
282 Hpos(~any(Hval,2),:) = [];
283 Hval(~any(Hval,2)) = []; %cuts off zeros
284
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285 J = sparse(Jpos(:,1), Jpos(:,2), Jval, nT, nT);
286 H = sptensor(Hpos, Hval, [nT nT nT]);
287 end
288
289 function enth = enth(specie, T) % J/kg
290 % evaluate enthalpy of a specie as a function of temperature
291 enth = specie.hf + (specie.cp)*(T−298);
292 end
293
294 function [X, Y] = compress(pos, val)
295 % compress sparse triplet by summing terms with equal index
296 [X,~,loc] = unique(pos,'rows');
297 Y = accumarray(loc, val,[size(X,1) 1]);
298 end
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