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Abstract
The present study intends to investigate and analyze the main issues affecting a conjugate
gradient optimisation method (CGM) for parameter heat flux estimating applied to some
experimental tests carried out on single- and multi-injector combustion chambers at the
Institute of Propulsion of Flight (LFA) at the Technische Universität München (TUM).
Each optimisation steps implemented in a Matlab code by Perakis et al. have been ex-
plained in detail. Hence, the code has been modified with the purpose to make it faster
and more accurate and than it has been tested with a numerical function simulating heat
flux rising along combustion chamber. An analysis of the nozzle boundary condition has
been performed to estimate errors that occurr by assuming it adiabatic. Finally, same
modifications have been applied to five element combustion chamber with particular at-
tention to the interpolation of the heat flux along combustion chamber.
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Chapter 1

Introduction

In the last years, the Institute of Flight Propulsion (LTF) of the Technical University
of Munich (TUM) approached the study and the development of several combustion
chambers (single- and multi-injector configuration) for rocket engine applications. Their
main purposes are to investigate the combustion of different propellants (oxygen/methane,
GO2/GCH4) from those usually used in the aerospace environment as well as to test dif-
ferent injection systems and new techniques for heat flux estimation. Since heat transfer
problems are addressed in a large number engineering fields, the realisation and improve-
ment of trustworthy tools for heat flux estimation appear to be some of the most important
purposes in the field of research and for this reason it will be the main theme of this the-
sis. A detailed and accurate valuation of heat flux helps for optimizing the development
of state-of-the-art combustion chambers. Thanks to several experiments it is possible to
provide further information in this context and solid ground for future research. More
specifically, a correct heat flux estimation is important for understanding the temperature
distribution and thermal loads that arise in a combustion chamber. This goal is usually
done, as in most of the modern thermodynamic problems, with CFD tools which solve
direct problems, but often the differences between computed and measured temperatures
testify a lack of information about the boundary conditions of the direct problem, hence,
an inverse problem is necessary to be solved in order to replace the missing of the inputs,
as well as to reconstruct them and to minimize the deviation between computational and
experimental data [18]. It is important now to understand the differences between this
two concepts, while a direct problem can be explained as the determination of the effects
from the causes, an inverse problem is quite the opposite. Figure 1.1 shows that in a direct
problem experimental tests and computational simulations move on in parallel and in the
end the results are compared. If there is no matching of these results, assuming that both
the experiment and the direct computational tool has been perfectly performed, it means

1



Chapter 1. Introduction

Figure 1.1: Differences between Direct and Inverse Problems

that some information used to solve the direct problem are not correct. Hence the problem
becomes inverse because it is necessary to fill this gap of information.
In particular, this thesis deals with an Heat Transfer Conduction Problem (HTCP) in
which some boundary conditions, i.e. heat flux on some boundaries (causes), are unknown.
Hence an inverse problem must be solved to reconstruct them in detail. All methods used
for this purpose involve the use of thermocouples measurements, i.e. it is necessary to
know the temperature (effects) in some points of the domain. Therefore they depend
extremely on the accuracy and precision of the instruments used in the experiment. This
work is exactly intended to show how an inverse method works to reconstruct the heat
flux along combustion chamber walls and how experimental data can affect its solution, as
well as if it reppresents a trustworthy tool for heat flux estimation. The applied method
has been implemented in Matlab environment and has experimental data from two test
carried out on two different type of combustion chambers developed in TUM’s laboratories
as inputs.

2



Chapter 1. Introduction

1.1 Fundamentals of Rocket Propulsion
In order to give a complete picture of the problem this small section introduces the basic
principles of rocket propulsion.
Rockets propulsion systems belong to a class of engines called non-airbreathing in which
the combustion of propellants provides both the energy and the mass flow to create thrust.
They can be classified into different categories, for example on the basis of energy source:

• chemical combustion;

• solar radiation;

• nuclear reaction;

or by the method of producing thrust:

• by thermodynamic expansion (nozzle is required);

• by magnetic and/or electric fields;

This thesis is interested in chemical rocket propulsion since it is used in the most of
mission characterized by low-medium specific impulse (Is). The energy released in this
propulsion from the high-pressure combustion reaction of propellant chemicals permits to
reach very high temperatures (up to 4100oC) and high velocities (up to 4300 m/sec) [22].
Considering that these gas temperatures are usually well above the melting point of the
materials in which combustion chambers are built, it is necessary to cool or insulate all the
surfaces that are exposed to the hot gases. However, since both single- and multi-injector
combustion chambers do not have particular coatings and since only the five-element has
a cooling system which has not been activated during the testing, the testing time of the
experiments has been kept less than four seconds. A typical pressure-fed liquid propellant
rocket engine system together with its thrust chamber is schematically shown in Fig. 1.2.
The combustion chambers addressed in this thesis are gaseous bipropellant consisting of
a gaseous oxidizer and a gaseous fuel. Inside the thrust chamber, the propellants react
turning into hot gases, which subsequently are accelerated and ejected at a high velocity
through a nozzle. In order to compare two or more combustion chambers, basic definitions
and relations of propulsion, the exhaust velocity, and the efficiencies of converting the
energy as well as other basic parameters are introduced.

3



Chapter 1. Introduction

(a) (b)

Figure 1.2: Schematic Flow Diagram of a Liquid Propellant Rocket Engine (a) and of a
Thrust Chamber (b)[22]

1.1.1 Definitions
The total impulse It is defined as the thrust force F integrated over the burning time t.

It =
Ú t

0
F dt (1.1)

It is related to the total energy released by all the propellant after the reaction. The
specific impulse Is is the total impulse per unit weight of propellant. A higher value
means better performance.

Is =
s t

0 F dt

g0
s
ṁ dt

(1.2)

Another parameter that describes the performances of an engine system is the hot gas
velocity on the nozzle exit-cross section. However, due to viscosity and to a non-uniform
combustion this velocity is not uniform over the entire exit cross-section and it is difficult to
estimate it accurately. For this reason in literature a uniform axial velocity c is introduced
as the average equivalent velocity at which propellant is ejected from the vehicle.

c = Isg0 = F/ṁ (1.3)

4



Chapter 1. Introduction

The impulse-to-weight ratio of a complete propulsion system is defined as the total impulse
It divided by the initial vehicle weight w0 and give an idea of the efficient design. It can
be expressed as:

It
w0

= Is
mf/mp + 1 (1.4)

where mf is the mass of the vehicle when all the useful propellant mass mp has been
consumed and ejected.

1.1.2 Thrust
The thrust is the force produced by a rocket propulsion system acting upon a vehicle and
is generated in consequence of the ejection of matter (reacted propellants) at high velocity.

F = dm

dt
v2 (1.5)

This force represents the total propulsion force under the condition of adapted nozzle. The
external pressure (local atmosphere), in fact, influences the thrust (Fig. ??). The size of
the arrows indicates the relative magnitude of the pressure forces. The axial thrust can
be determined by integrating all the pressures acting on areas and by projecting them on
a plane normal to the nozzle axis. For a steadily operating rocket propulsion system, it
can be expressed as

F = ṁv2 + (p2 − p3)A2 (1.6)

where the first term is the momentum thrust generated by the product of the propellant
mass flow rate and its exhaust velocity relative to the vehicle and the second term repre-
sents the pressure thrust consisting of the product of the cross-sectional area at the nozzle
exit A2 and the difference between the exhaust gas pressure at the exit and the ambient
fluid pressure.

1.1.3 Exhaust Velocity
For constant propellant mass flow, the effective exhaust velocity can be modified to

c = v2 + (p2 − p3)A2/ṁ (1.7)

When p2 is equal to p3, the effective exhaust velocity c is equal to the average actual
exhaust velocity of the propellant gases v2 and the thrust can be rewritten as

5



Chapter 1. Introduction

F = ṁc (1.8)

The characteristic velocity has been used frequently in the rocket propulsion literature in
order to compare the relative performance of different chemical rocket propulsion system
designs and propellants. It relates to the efficiency of the combustion and is independent
of nozzle characteristics.

c∗ = p1At/ṁ (1.9)

1.1.4 Energy and Efficiencies
Efficiencies permit an understanding how energy is distribuited in a rocket system. Those
presented in this subsection are satisfactory in evaluating energy losses. Generally, two
types of energy conversion processes occur in any propulsion system:

• the generation of energy (conversion of stored energy into available energy);

• the conversion to the form in which a reaction thrust can be obtained

The kinetic energy of ejected matter is the final product used for propulsion. The power
of the jet Pjet is the time rate of expenditure of this energy, and for a constant gas ejection
velocity v2 this is a function of Is and F .

Pjet = 1
2Fv2 (1.10)

For chemical rockets the energy is created by combustion and the maximum energy avail-
able per unit mass of chemical propellants is the heat of the combustion reaction QR; the
power unleashed by combustion is

Pchem = ṁQRJ (1.11)

where J is a conversion constant which depends on the units used. A large portion of the
energy of the exhaust gases is unavailable for conversion into kinetic energy and leaves the
nozzle as residual enthalpy, in this way only a portion of this power is transmitted to the
vehicle at any one time. This power is defined in terms of the thrust of the propulsion
system F and the vehicle velocity u:

Pvehicle = Fu (1.12)

6
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The propulsive efficiency determines how much of the total power produced by combustion
has been converted in kinetic energy by the exhaust and is useful for propelling a vehicle

ηP = vehicle power

vehicle power + residual kinetic jet power
= (1.13)

= Fu

Fu+ 1
2(ẇ/g0)(c− u)2 = 2u/c

1 + (u/c)2

where F is the thrust, u the absolute vehicle velocity, c the effective rocket exhaust velocity
with respect to the vehicle, ẇ the propellant weight flow rate, and ηp the propulsive
efficiency. The propulsive efficiency is a maximum when the forward vehicle velocity is
exactly equal to the exhaust velocity.

1.2 Inverse Method
The aerospace environment has played a significant role in developing new tools concerning
the resolution of inverse problems. The impossibility to make direct measurements of heat
flux, for example, at lower surface of a space shuttle or all over combustion chamber walls,
has always pushed toward new effective solutions. This thesis deals with an Inverse Heat
Transfer Problems (IHTP). As will be better discussed in chapter 3, there are many differ-
ent kinds of inverse problems, for example, for estimation of thermophysical properties of
materials, or initial condition, or source terms or even geometric characteristics of a heated
body [16], they, hence, depend on what type of information is missing, the treated one
concerns the heat flux estimation. In a classical Direct Heat Conduction Problem (DHCP)
the causes (boundary heat fluxes) are well known and the effects (temperature field in the
body) are simply determined. The IHTP, instead, aims to estimate the unknown heat
flux on some boundaries from the knowledge of temperature in the domain. An advantage
of IHTP is that it enables a much closer collaboration between experimental and theo-
retical researchers, in order to obtain the maximum of information regarding the physical
problem under study. These kinds of problem can be one-, two- or three-dimensional,
linear or nonlinear, but the most important aspect is that, by not fulfilling all Hadamard
conditions, they belong to a class called ill-posed, which determines the impossibility to
find only and only one solution. The definition of a well-posed problem was originally
introduced by Hadamard, in order to illustrate the points on which it is based on, the
universal formulation of an inverse problem is assumed [17]:

Y = A(P ) ∈ P , Y ∈ Y (1.14)
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Chapter 1. Introduction

where P is the unknown of interest (heat flux), that has to be estimated and Y (temper-
ature) is the observed output. It is considered that the operator A : P → A is known,
that AP ⊂ Y and P and Y are metric spaces.
A problem can be accepted to be well-posed if its solution satisfy the following three
conditions:

• The solution of equation (1.14) must exist for any Y ∈ Y ;

• The solution of equation (1.14) must be unique;

• The solution of equation (1.14) must be stable under small changes to the input data
(stability condition)

If only one of the conditions required for well-posedness is not satisfied, the problem would
be unsolvable or the results obtained from such a solution would be meaningless. Due to
this, the resolution of an inverse problem passes through a reformulation of the same as
the approximate well-posed problem. The IHCP are ill-posed problems since conditions
(2) and (3) are not fulfilled and thus finding a solution requires special techniques to be
used. In this sense, A. N. Tikhonov’s regularization procedure first and Alifanov’s iterative
regularization technique and Beck’s function estimation approach than have contributed
to develop extremely effective algorithms for resolving IHTP [16]. In all these cases the
solution is found only if some information about physics of the problem are acquired
and, hence, as said previously, considering the investigation on the heat flux in an heat
conduction problem, it is reflected in the knowledge of temperature inside the structure
of combustion chamber in some points over time, leading in this way to the importance of
using thermocouples in the experiments. Furthermore, since an inverse method involves
a large number of iterations and variables, it requires an huge computational cost, but
the availability of high speed and capacity computers made successful solutions of IHCT
being now reacheble.

1.3 Why Oxygen/Methane Combustion
The use of hydrocarbons as fuels, especially for the propellant combination oxygen/methane,
for rocket engines has been the subject of studies in Europe lately with the goal of em-
ploying it in future lounchers [7]. Since is a field of research unexplored, a significant
knowledge gap for these propellant combinations and a lack of test data of methane com-
bustion tests at engine operating conditions exist. Nowadays, liquid propellant rocket
engine for aerospace missions, like orbit transfers or space exploration, are principally
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Chapter 1. Introduction

based on cryogenic propellants like liquid oxygen/liquid hydrogen (LOX/LH2), unsym-
metrical dimethyl-hydrazine/nitrogen tetroxide (UDMH/NTO) and LOX/kerosene [14].
Main features of these propellants are summarised in table 1.1.

Table 1.1: Most propallants used in in early 2000s

Combination Pros Cons
LOX/LH2 highest specific im-

pulse
low density and low
boiling point

UDMH/NTO hypergolic and sotar-
ble

toxic, great pollution
and low performances

LOX/kerosene low cost, low pollu-
tion and high perfor-
mances

not usable in cooling
system

Because of the low temperatures of cryogenic propellants (LOx/LH2), they are difficult
to store over long periods of time and less desirable for use. Furthermore, this combina-
tion has a very low density and, therefore, requires a storage volume many times greater
than other fuels. Despite these drawbacks, the high efficiency of liquid oxygen/liquid
hydrogen makes these problems worth since the specific impulse is about 30% − 40%
higher than most other rocket fuels [2]. The strengths of UDMH/NTO propellants are
based on their hypergolic and storable nature, but being toxic and causing great pollution
make it unemployable in modern engines. However, LOX/kerosene seems to be a good
compromise between its low costs, low pollution and high performance and although has
some disadvantages in comparison to oxygen/methane combination it is still used in liquid
rockets engines. Nevertheless, the idea of using hydrocarbon as a propellant, in particular,
methane, is spreading especially for its [21]:

• reducing operational costs;

• low pollution;

• ease in handling;

• high thermal conductivity;

• and specific heat and low viscosity

Comparing methane and kerosene performances, it turns out that one of the most impor-
tant limitation of the second one is its widely coking temperature (590 K) which unlike
those of methane (970 K), makes it inoperable in cooling system [14]. Furthermore, re-
cent research has shown that methane, compared to other hydrocarbons, exhibits both
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an higher specific impulse and an improved heat transfer performance thanks to its high
thermal conductivity, specific heat and low viscosity, as well as no risks for human health
[7]. Since future missions to Mars would likely use methane fuel because it could be man-
ufactured partly from Martian in-situ resources, and since this propellant has no flight
history and very limited ground-test history [2], it will be subject to research in the next
years at the Institute for Flight Propulsion (LTF) at the Technical University of Munich.

1.4 Scope of this thesis
In the present work, main issues affecting Inverse Heat Transfer Problems (IHTP) have
been analyzed by applying an iterative technique based on Conjugate Gradient Method
(CGM) in order to estimate heat flux passing through the hot gas walls of an oxy-
gen/methane single and multi-injector combustion chamber. The experimental set up
will be discussed in detail in chapter 2.
An optimization process is carried out on Roq̇FITT code (Rocket q̇ Flux Inverse Ther-
mal Tool), with a view to reducing computational costs and oscillations of the solutions
obtained. The code has been developed in Matlab environment by Perakis et al. specif-
ically for single- and five-element combustion chambers. It implements the CGM, which
is a direct descendant of the resolution proposed by Tikhonov, and like most methods for
solving the inverse problem, it is based on the minimization of the ordinary least squares
norm between measured and estimated temperature. Whereas the first are acquired by
thermocouples spaced along the combustion chamber walls, the latter comes from the res-
olution of a three-dimensional direct transient heat conduction problem in which some
of the boundary conditions are the unknown investigated heat fluxes. The experimental
data investigated come from several tests carried out in TUM’s laboratories on MoRaP
(Mobile Raketen Prüfstand) and BKM chambers, respectively single and multi-coaxial
shear injector chambers. In particular, this work is focused on the analysis of two tests
that have been returning big oscillations in space and time, but since codes appear to
respect roughly the expected results, the optimization process that has been applied and
that will be reported in chapter 4, was aimed at improving the quality of the solution
by reviewing the iterative procedure for updating the heat flux and by implementing the
Newton-Raphson method (NRM). Results from modified codes have been compared with
the original code, and subsequently, a numerical experiment has been performed to val-
idate these modifications and generally to investigate the behavior of the CGM under
specific inputs such as the way of smoothing thermocouple measurements or time step
used for computing. Due to ill-posedness, in fact, taking into account that small changes
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in temperature result in great changes of heat flux, the solution is particularly affected by
thermocouples measurements, hence the acquisition system must be accurate and precise
to ensure stability and to avoid oscillations. At this purpose, the concept of Sensitivity
Matrix will be explained to show most important characteristics of CGM that prove also
its weakness. Since an inverse method involves using a direct solver, in order to simplify
the computation, an adiabatic boundary condition on the face plate between chamber
and nozzle has been assumed in most of simulations. This assumption is far from the
reality, hence a more accurate analysis has been necessary. Finally, since the Matlab code
applied to multi-element is equal to the single-element one, it involves a larger number of
thermocouple measurements, hence it is much more sensitive to the errors coming from
data acquisition and/or interpolation methods. Therefore a study on the interpolation of
the heat flux along the combustion chamber walls is necessary to contain them after that
same modification mentioned earlier has been introduced.
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Chapter 2

Single and Multi Element Hardware
Description

The two tests investigated (data_02−05−17_16−57_0, Data_CCC2D−20−26−25−01)
in this thesis has been conducted at two high pressure combustion test facilities of TUM-
LFA, single-element and five-element combustion chambers, respectively. In this chapter a
brief description of both hardware and measurement equipment is provided in accordance
to [21] and [19].

2.1 Single-Element Combustion Chamber
The heat-sink chamber (MoRaP) is a modular single-element capacitive cooled combus-
tion chamber with a square cross section. Its simplicity, low structural costs, ease to
manufacture as well as high accessibility for measurement installation made it extremely
effective for assisting LFA researches. The mobile facility is supported by two tanks (fuel
and oxidizer), a pilot ignition system, a purge system and a control/data acquisition sys-
tem (DAQ). While its modular layout allows more than one configuration, giving the
possibility to choose the best one depending on the experiment conducted, its simple
rectangular geometry makes boundary conditions to be straightforwardly modeled. Fur-
thermore, MoRaP, despite its essential set-up and minimal instrumentations, provides for
experimental data very similar to those of more complex combustion chambers. Gen-
erally, the combustion temperature reached inside the chamber cannot exceed a certain
value otherwise a reduction of the nozzle throat is caused, for this reason, the pressure, the
mixture ratio and the burning times must be contained. In fact, it has been designed for
testing time up to 4 s at chamber pressure up to 20 bar as well as mixture ratio up to 3. 4,
in this way no special internal coatings or cooling systems are necessary. As can be seen
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in Fig. 2.1(a) the MoRap is composed of three different segments, the first two measure
174 mm and 145 mm and form the real zone where combustion develops, the third is the
nozzle segment, it differs from the others for its rectangular throat cross section 4. 8 mm
x 12 mm, the whole inner chamber dimensions are summarised in table 2.1. The external
structure measures 50 mm in height and 85 mm in width.

Table 2.1: Combustion chamber dimensions

Chamber length [mm] 290
Chamber width [mm] 12
Chamber height [mm] 12
Throat height [mm] 4. 8
Throat width [mm] 12

Contraction ratio [-] 2.5

On the basis of its several advantages, the material selected for construction of both
combustion chambers is oxygen-free copper (Cu−HCP ):

• good electrical and thermal conductivity;

• excellent corrosion resistance and formability;

• good weld ability and recyclable;

Its material properties are shown in table 2.2.

Table 2.2: Material properties

Thermal conductivity λ 385 [W/mK]
Density ρ 8940 [Kg/m3]

Specific heat capacity cp 393 [J/KgK]

As reported in [21] more then one injector configuration is possible, but for the test
considered, a single shear coaxial injector element is integrated as shown in Fig. 2.1(b), it
consists of:

• an inner channel with 4 mm diameter, from which gaseous oxygen at 278 K and at
velocities of about 122 m/s is expelled;

• a 0. 5 mm anular gap from which gaseous methane at 269 K and at velocities of
about 122 m/s enters the combustion chamber [9]
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In order to simplify the analysis, the GO2 post has been flush mounted with respect to the
injection faceplate (no recess). Furthermore, to ensure homogeneous injection conditions
in terms of temperature and pressure, MoRaP provides for two porous plates placed in
the oxidizer and fuel manifolds.
Nondimensional numbers such as the velocity ratio V R and the momentum flux ratio J
can be introduced to characterize injection conditions:

V R = vGCH4

vGOX

; J = (ρv2)GCH4

(ρv2)GOX

(2.1)

The values of these quantities range from 0. 89 to 1. 1 and from 0. 38 to 0. 62, respectively,
and are based on propellant temperatures and pressure at injection conditions.

(a) Single Element Components

(b) Injection System

Figure 2.1: MoRaP Combustion Chamber
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(a) Pressure Transducers Positions

(b) Thermocouple Position along the Chamber Axis (c) Thermocouple po-
sitions in the chamber
walls

Figure 2.2: Measurement Systems

Reference System

As said in the previous chapter the conjugate gradient method requires that throughout the
optimization process several direct problems must be solved. To do this a Finite Difference
Method (FDM) has been adopted and thus it is necessary to introduce the reference system
on which the discretization has been based. Figure 2.3 shows that its origin is set on the
left down corner at nozzle entry cross-section, the x axis extends in latitude and y axis in
longitude. Form now on all sensor positions refer to this reference system. Moreover, figure
2.3 faithfully reports also how the combustion chamber has been modeled for resolution
of the direct problem. Note that the domain has been extremely simplified, in fact, while
the whole injector system together with all its particular components has been replaced
with a simple copper block, both nozzle and all drill holes (the ones for the temperature
sensors, those for the pressure transducers as well as the openings for the torch-igniter) have
been excluded from modeling. This simplification is supported by the fact that the error
resulting from excluding the mentioned parts mostly affects the small-scale temperature
results in the far-field which have only very little influence on the heat flux values in the

15



Chapter 2. Single and Multi Element Hardware Description

region of interest as well as by the fact that the holes have a volume fraction of less than
4. 907% of the total control volume [17].
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Block

Figure 2.3: Modelled Combustion Chamber

2.1.1 Sensors
This section describes the two measurement systems used during the test. In particular,
since the CGM requires only transient temperature measurements for IHCP resolution,
the temperature acquisition system has been described in more detail than the pressure
one. Hence a particular attention has been paid to thermocouples features as well as to
their arrangement.

2.1.1.1 Pressure Transducers

Since the knowledge of pressure is generally essential for better understanding a combustion
process as well as for other types of analysis, equally spaced pressure transducers (WIKA
A10, Fig. 2.2(a)) on the side wall provide for a well-resolved measurement of the wall
pressure distribution p(x) along the chamber axis (PC0. . .PC8). These sensors are
individually calibrated and operated at a data acquisition rate of 100 Hz.

2.1.1.2 Thermocouples

The temperature acquisition system hardware includes the use of following thermocouples
provided by Electronic Sensor company:

• type T thermocouples with 0. 5 mm diameter located in the chamber walls at 1-, 2-,
and 3-millimeter distance to the hot wall;
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• two coaxial Type T thermocouples (Medtherm) flush mounted with the hot wall;

• Type K surface thermocouples attached to the external surface

Type T thermocouples at 1 mm from hot gas wall are the only ones used in this particular
test investigated, their main features are provided in the following table

Table 2.3: Type T thermocouples features

Material Cu/CuNi
Class 2

Temperature Range [oC] −40 to 350
Standard deviation [oC] ± 1

All sensors are mounted with a regular path of 17 mm in the upper surface of the first
and second segments, along the center plane of the combustion chamber. Their location
is given table 2.4 and can be appreciated in figure 2.2(b) and 2.2(c).

Table 2.4: Thermocouples positions

Thermocouples Names x [m] y [m] z [m]
TCLU01 0.0425 0.032 0.289
TCLU11 0.0425 0.032 0.272
TCLU21 0.0425 0.032 0.255
TCLU31 0.0425 0.032 0.238
TCLU41 0.0425 0.032 0.221
TCLU51 0.0425 0.032 0.204
TCLU61 0.0425 0.032 0.187
TCLU71 0.0425 0.032 0.170
TCLU81 0.0425 0.032 0.153
TCSU01 0.0425 0.032 0.136
TCSU11 0.0425 0.032 0.119
TCSU21 0.0425 0.032 0.102
TCSU31 0.0425 0.032 0.085
TCSU41 0.0425 0.032 0.068
TCSU51 0.0425 0.032 0.051
TCSU61 0.0425 0.032 0.034
TCSU71 0.0425 0.032 0.017

In accordance to [18] the nomenclature shown in table 2.5 is used in RoqFITT code to
identify each thermocouple position.
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Table 2.5: Thermocouples nomenclature

T Thermocouple
C Chamber not water cooled
L/S First segment (long) otherwise S second segment (short)
U/D Upper side otherwise down side

First digit Axial position, the first segment goes from 0 to 8, the second from 0 to 7
Second digit Distance from the hot gas side (1, 2 or 3 mm)

From figure 2.2(c) one can note that each thermocouple is inserted in precisely manufac-
tured cylindrical holes and furthermore, in order to ensure better contact, they are kept
in position by a spring loaded system as well as their tip is polished to match the flat
surface of the chamber. The spring loading of all thermocouples provides a constant force
of about 2 N , this should guarantee a continuous contact between the thermocouples tip
and the base of the hole, leaving their position unaltered. In reality, as will be better seen
in chapter 5, despite these precautions aim to prevent the chance of potential loss of con-
tact as the material undergoes expansion and contraction due to changes in temperature
or vibrations during the hot run, it is possible that their position changes slightly.

2.2 Multi-Element Combustion Chamber
The Roq̇FITT code has also been developed to solve the heat flux transfer problem inside
the BKM chamber (Fig. 2.4). This chamber represents an evolution of the previous
one, its structure made slightly more complex by the presence of five injectors enables to
examine heat transfer problems closer to those of the most sophisticated modern propulsion
systems. The material used as said previously is oxygen-free copper. Its rectangular
geometry, also in this case, allows to simply model the boundary conditions. The reference
system is the same one adopted for the single-element, its origin is set on the left down
corner at nozzle entry cross-section, the x axis extends in latitude and y axis in longitude.
Hence, also in this case, all thermocouples positions refer to it. The modeling of the entire
chamber is similar to that carried out on single-element, i.e. the same parts have been
excluded making discretization less complex. The BKM chamber has a rectangular cross-
section with dimensions 48 mm x 12 mm, a length of 277 mm and a contraction ratio of
2. 5 ensuring in this way a Mach number of approximately 0. 24, typical for rocket engine
applications. The shape of the nozzle is a truncated trapezoidal prism with a rectangular
throat section of 4. 8 mm x 48 mm [19].
The injector system, visible from the figure 2.4 in the right, is made up of five identical
coaxial injector elements placed next to each other along a line. The thermocouples are
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Figure 2.4: Multi-Element Combustion Chamber and Thermocouples Arrangement in a Plane

numbered from 1 to 5 starting from the left and going to the right. The distance between
the centers of injectors circle cross-section is 6 mm and the injector-wall distance is 3 mm.
Like in the single-element also this chamber is equipped with two porous plates, placed in
the oxidizer and fuel manifolds respectively, to ensure homogeneous injection conditions.
The entire instrumentation used for temperature and pressure acquisition is the same
one discussed previously, however, the arrangement of both thermocouples and pressure
transducers changes. Also in this case, only type T thermocouples positioned at 1 mm

away from the hot gas wall with an axial resolution of 17 mm. From the chamber cross-
section (Fig. 2.4) it is possible to appreciate the maximum number of thermocouple (7)
that can be installed in each plane, while those directly placed on the injector are marked
with an index C, the others mounted between two elements are identified with index L
or R depending on whether they are left or right of vertical symmetry axis. Hence, the
names and positions of the 7 thermocouples in a plane given in accordance to the reference
system are shown in table 2.6).

Table 2.6: Thermocouples position

Thermocouple name 1C 2C 3L 3C 3R 4C 5C
x Position [mm] 32. 0 41. 0 45. 5 50. 0 54. 5 59. 0 68. 0

The total number of thermocouples used in the investigated test is 66 and they are exclu-
sively arranged along the combustion chamber upper wall, figure 2.5 shows their positions.
The use of such a large number of sensors is necessary for the calculation process, since
the presence of 5 injectors develops a more complex heat transfer compared to the single
injector chamber.

19



Chapter 2. Single and Multi Element Hardware Description

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

x [m]

0

0.05

0.1

0.15

0.2

0.25

0.3

z
 [

m
]

Block Plane

Nozzle Plane

Figure 2.5: Thermocouples Positions above the Upper Hot Gas Wall

Unlike the single element, the experimental data acquisition system requires that both
the thermocouples and the pressure transducers are connected to a PCI eXstensions for
Instrumentation or PXI, that is an electronic modular platform used as a basis for building
electronic test equipment as well as automation systems. In particular, of 15 available
modules (M1, M2,..., M15), only 4 have been used for the acquisition (M5, M6, M8 and
M9) of the temperature with a scan rate set at 90 Hz.

2.3 Experimental Inputs and Outpus
This section provides a picture of inputs and outputs of the two tests investigated. Table
2.7 shows some tests features such as the acquisition and evaluation time as well as the
mixture ratio. Some of these parameters (e.g. those for time management) can be set
and controlled by a code written in LabVIEW environment, others (e.g. mixture ratio)
instead can be set manually by MoRaP facility, better explanations are provided in [12].
Since both single- and five-element outputs are similar, the considerations that can be
made for one also apply to the other, hence, the following figures 2.6 and 2.7 show just
classical single-element thermocouple/pressure transducer outputs. The evaluation phase
of the unsteady heat-transfer starts at a chamber pressure of 90% of its stationary value,
shown as tstart and finishes at the end of the stationary combustion, shown as tend. For
both combustion chambers, the wall temperature increases over time and the slopes of the
wall temperatures as well as heat flux profiles vary with the time of firing. Hence, the
heat flux changes accordingly and the local wall heat flux results need to be considered
along with the corresponding local wall temperatures. Towards the end of the firing time
a quasi-stationary combustion is reached then evaluating the heat flux at teval yield to
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Table 2.7: Ignition condition

Chamber Single-Element Multi-Elements
Data data_02 − 05 − 17_16 − 57_0 Data_CCC2D − 20 − 26 − 25 − 01

Acquisition time 18.5939 35.0777 [s]
Start ingnition 5.3165 21.4556 [s]
End ignition 8.3548 25.4778 [s]
Burning time 3.0383 4.0222 [s]

Evaluation time 7.3421 25.286 [s]
Mixture ratio 2.9822 2.6213 [−]

O2 Mass flow rate 0.0463 0.1772 [Kg/s]
CH4 Mass flow rate 0.0155 0.0677 [Kg/s]

Cooling system - off [−]

better results and for this reason, it is chosen as reference for the current study. Note that
generally the burning time never exceeds 4 s and that the temperature reached do not
overcome 440 K in single-element and 573 K in five-element chamber remaining always
far from oxygen-free copper melting point (1356 K). Figure 2.6 not only shows that,
once ignition starts, in each transducer position pressure rises rapidly and then remain
at a constant value until shut down, but also that pressure drops slightly along chamber
axis. Figure 2.7, instead, shows that starting from ignition in each thermocouple position
temperature rises and then once chamber is shut down it decreases slowly. Additionally, an
increase in temperature readings is detected by moving along chamber axis, this is due to
the fact that chemical reaction of propellants is complete towards the nozzle entry section.
In the same figure, from the zoomed plot it is possible to appreciate also the causes of one
of the most important problems affecting a CGM, i.e. oscillations in temperature readings
with a magnitude equal to thermocouples standard deviation can lead to uncertainty in
the solution, i.e. heat flux oscillations too. This aspect will be further explored in chapter
5.
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Figure 2.6: Transient Pressure Measurements
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Figure 2.7: Transient Temperature Measurements
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Chapter 3

Inverse Method

This chapter aims to explain in detail how an inverse method works as well as to provide
additional informations about each step that characterizes it. In particular, as said in
chapter 1, since an inverse method can be used for different types of estimations, among
all available methods listed in [16], the Conjugate Gradient Method (CGM) is the opti-
mization technique chosen and implemented in RoqFITT code for estimating the heat flux
along combustion chamber internal walls. It is an iterative method for solving linear and
non-linear inverse problems. In figure 3.3 there is a clear scheme explaining the steps in
which this method is divided:

• The Direct Problem;

• The Inverse Problem;

• The Iterative Procedure;

• The Stopping Criterion;

In order to find a solution for the Inverse Heat Conduction Problem (IHCP), the CGM
carries out an iterative optimization to the unknown boundary conditions. More specifi-
cally, the heat flux resulting from the combustion and passing through the surface of the
hot-gas-wall is the only one boundary condition optimized iteratively. The all other bound-
ary conditions remain unaltered throughout the whole process as well as thermophysical
properties of the material. The problem is discretized in the spatial and time domain. The
time domain is divided into I discrete steps. Each timestep consists in several iterations in
which the heat flux is updated till the matching of measured and computed temperature is
satisfied. While the former comes from thermocouple readings, the latter comes from the
solution of a direct problem in which the optimized heat flux is set as the missing boundary
condition. A peculiarity of this method is that instead of computing the heat flux for every
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node of the hot wall boundary, the heat flux is discretized in just N parameters. Hence
the inverse problem estimates just N unknown parameters, because they are, then, inter-
polated at all other points in order to be used as input for direct problem. Whenever the
convergence is reached, the optimization process switches to another time step. Whether
in the iterations and time steps the first guess for the estimated heat flux is based on the
previous solution, allowing in this way a faster convergence of the optimization procedure.
The figure 3.3 gives an idea of how the separate time steps are linked together. At the
beginning of the process this method, like most inverse methods, requires two informa-
tions: an initial guess for heat flux and the initial medium temperature for solving the first
direct problem. The robustness of this method allows to set any initial heat flux value, in
fact, the convergence is reached in any case, but obviously, a better initial guess leads to
faster convergence. The initial temperature is, instead, taken from thermocouple readings.
At this point the first direct problem is solved and once the temperature field is known,
it is compared with measured temperature in thermocouple positions, if the convergence
is reached another time step is switched and the heat flux from the previous solution is
set as the initial guess, otherwise an iterative procedure starts to update the heat flux on
boundary wall. Figure 3.4 shows in detail how this iterative procedure works. First of
all, a variable, k, counts the number of performed iterations, it is reset to 1 whenever a
time step is switched, the N parameters are collected in a vector P k and applied to the
direct problem, the stopping criterion that will be discussed below determines if a new
update is necessary, if that’s the case the actual iterative procedure starts by computing
sequentially the Gradient Direction (GD), the Conjugation Coefficient (CC), the Direction
of Descent (DD) and the Step Size (SS). Hence as will be seen below, by combining them
a new estimate of heat flux is available P k+1 and set as boundary condition for another
direct problem, from which new temperatures will be available. These temperatures will
be again compared with measured ones, and the procedure follows the same path. The
whole procedure just introduced will be discussed in detail below.

3.1 The Direct Problem
As, said before the process of the estimation of the N parameters heat flux passes through
the resolution of a heat conduction direct problem, whose main objective is to compute
the transient temperature field T (x, y, z ,t) into a solid when all characteristics(i.e.,
boundary conditions BC, initial condition, thermophysical properties of the medium and
energy generation term) are specified. Once the N parameters heat flux are updated by
the iterative process, they are interpolated and applied as the inner boundary condition to
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the direct conduction problem. As said before the computed temperatures Tcalc ≡ T have
to match the measured temperatures Tmeas ≡ Y in each thermocouples positions (xmeas,
ymeas, zmeas) at all times ti, i = 1, 2, . . . I and if this matching is not satisfied, a new
iteration starts. At this point, it is important to introduce the mathematical formulation
for a three-dimensional conduction problem in a Cartesian reference system, known as the
Heat Diffusion Equation (HDE), on which the direct solver is based.

∂

∂x

A
λ
∂T

∂x

B
+ ∂

∂y

A
λ
∂T

∂y

B
+ ∂

∂z

A
λ
∂T

∂z

B
+ q̇ = ρcp

∂T

∂t
(3.1)

In this particular examined case, some semplifications can be applied. The thermal con-
ductivity λ is assumed constant and no source therms q̇ are present, in this way the heat
diffusion equation is reduced to:

∇2T = 1
α

∂T

∂t
(3.2)

where α = k/ρcp is the thermal diffusivity. This partial differential equation (PDE) (3.2)
has been solved in RoqFiTT code by using a Finite Difference Method (FDM) forward in
time central in space. More details will be provided below. The domain concerning this
equation has been introduced in chapter 2 (fig. 2.3), it is extremely simplified to save high
computational costs and to make discretization more immediate.

3.1.1 Boundary Conditions
This small section wants to explain the boundary conditions necessary to close the problem
and to justify convective coefficients used in both direct solvers:

• Natural convection on outer walls;

• Forced convection on inner walls;

• Forced convection on cooling channel walls;

• Adiabatic block and nozzle planes

3.1.1.1 Natural Convection on Outer Walls

The outer wall of the chamber is subjected to natural convection, since it is in contact with
quiet atmosphere. The following proposed study has been conducted in [18] for evaluating
convection coefficient h∞. First, the Garshof number has been evaluated, for a typical
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wall temperature range of 300 ÷ 600 K, by considering a temperature of the air at 20oC
and a typical length equal to 50 mm as the outer vertical MoRaP wall:

Gr = (Twall − T∞)gL3

T∞ν2 = 130205 ÷ 5450000 (3.3)

Than, the Rayleigh number has been calculated, by assuming a Prandtl number equal to
0.7:

Ra = Gr · Pr = 91143 ÷ 3815000 (3.4)

Since the Rayleigh number Ra is less than 109, the flow appear to be laminar and hence
the calculation of Nusselt number is performed with following formula:

Nu = 0. 68 +
è
1 + (2 · Pr)− 9

16
é− 4

9 ·Ra
1
4 = 13. 97 ÷ 34. 85 (3.5)

which leads to:

Nu = h · L
λ

→ h∞ = 7. 2 ÷ 18 W

m2 K
(3.6)

The analysis is quite similar for five-element since the geometry varies slightly, hence,
the convection coefficient has been chosen equal to 10 W

m2 K
in both codes and it is kept

constant throughout the optimization process.

3.1.1.2 Forced Convection on Inner Walls

This boundary condition, as said before, is the only one unknown that has to be estimated.
The conjugate gradient method doesn’t need any previous estimation in terms of convec-
tion coefficients, since it returns, at the end of each iteration, the N parameters heat flux
values investigated. However, a small description of the aerodynamics and thermodynam-
ics in accordance to [18] is given just to understand the physic of the problem. Inside
the combustion chambers, where oxidizer and methane burn together, the heat transfer
on the wall occurs via forced convection. Considering that the combustion may be incom-
plete, the mixture can be either in gas state or in liquid state, and the heat transfer is
hard to describe. In general, the most important factors influencing the heat transfer in
a combustion chamber are the chamber pressure, the geometry factors (injectors, igniter
and chamber walls shape), type and speed of chemical reactions, turbulence and radiation.
Cinjarew formula shows how each factor affects the convection coefficient, i.e. the heat
transfer:
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h = 0. 0198 λgas(ṁcp)0.82

d1. 82

3
Taw
Tw

40.35
(3.7)

where λgas is the heat conduction coefficient of the gas close the wall, cp is the specific
heat capacity of gas mixture, ṁ is the mass flow rate, d is the radius of the chamber, Tw
is the wall temperature and Taw is the recovery temperature of the hot gas side. From the
formula (3.7), it is clear that the heat convection coefficient increase after the combustion
has developed, i.e. after small distance from the injectors. For a combustion chamber with
a constant radius, when the combustion can be considered complete, the heat transfer
coefficient is constant along the length in first approximation. The examined chambers
have square or rectangular cross-sections, thus, a relatively constant heat flux is expected
after the point of optimal mixture is achieved (logarithmic trend).

3.1.1.3 Forced Convection on Cooling Channels Walls

The five-element combustion chamber also provides for the use of water cooling channels,
hence, there is another forced convection that takes place into the analysis. In the present
work, neither for single-element nor for five-element chamber analysis, the cooling system
has been used, but a brief description of the physic of the problem is given in accordance
to [18]. Also in this case the mechanism of heat transfer between copper wall and liquid
medium absorbing the heat is described by several semi-empirical formulas. In this case,
the convection coefficient is a function of medium (water/chopper walls) temperatures,
as well as water mass flow and channels dimensions. The empyrical Gnielski (3.8) and
Dittus-Bölter (3.9) relationships express well these dependences:

Nu =
ξ
8(Re− 1000)Pr

1 + 12. 7
ñ

ξ
8(Pr 2

3 − 1)
(3.8)

where ξ = (0. 79 · ln(Re) − 1. 64)−2 is the loss therm according to Petukhov.

Nu = 0. 0223 Pr 1
3 Re

4
5 (3.9)

The convection coefficient hwater can be estimated by knowing the Reynolds and Prandtl
numbers of the water flowing in the channels. The more conservative formula (3.9) has
been chosen for the purposes of these simulations, since it returns a smaller value of the
convection coefficient and hence a less efficient cooling of the material:

hcooling = 20000 [W/m2K] (3.10)
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3.1.1.4 Adiabatic Walls

As mentioned previously, these boundary conditions are the result of the discretization.
The only two boundary walls that have been assumed adiabatic in each direct problem
are the copper block faceplate in contact with the atmosphere and the plane separating
the actual chamber structure and nozzle block (fig. 2.3).

3.1.2 Finite Difference Method for 3D Problems
Below it is presented how heat diffusion equation has been discretized for several partic-
ular nodes. In a finite difference method the partial derivatives presents in a differential
equation are approximated through differences of the variable’s value in specific points.
This expedient brings to define a large but finite algebraic system of equations that re-
places the differential heat diffusion equation and that can be performed on a computer.
Each finite-difference equations have been developed by using the energy balance method,
i.e. by applying the conservation of energy to a control volume about the nodal region [5].
Since the actual direction of heat flux (into or out of the node) is unknown, it is suitable
to formulate the energy balance by assuming that all the heat flux is into the node. Take
as an example the discretization carried out on a generic internal node (3.1), the heat
diffusion equation becomes the following algebric expression:

T k+1
m,n,p(1 + 2Foz + 4Fox) − FoxT

k+1
m−1,n,p − FoxT

k+1
m,n+1,p − FoxT

k+1
m+1,n,p− (3.11)

−FoxT k+1
m,n−1,p − FozT

k+1
m,n,p+1 − FozT

k+1
m,n,p−1 = T km,n,p

Figure 3.1: Discretization for an Internal Node [18]
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Furier numbers appearing in the equation (3.11) are different according to cartesian direc-
tion considered:

Fox = Foy = λ∆t
ρcp∆x2 , Foz = λ∆t

ρcp∆z2 (3.12)

Note that the Fourier number is the same for x and y direction since the discretization
has been caried out with same spacial step (dx = dy). The other algebric equations as
product of discretization are presented below in figure 3.2, they refers to specific nodes.
Note that Biot numbers appear whenever an equation is related to a boundary node:

Bix = Biy = h∆x
λ

, Biz = h∆z
λ

(3.13)
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Figure 3.2: Discretization for Particular Nodes [18]

3.2 The Inverse Problem
The update of theN parameters heat flux starts when the difference between the computed
temperatures Tcalc ≡ T , evaluated exactly at theM thermocouple positions (xmeas, ymeas, zmeas),
and the measured temperatures Tmeas ≡ Y can reach local minima. Hence to reduce this
difference a minimization of the ordinary least squares norm, the residual functional, is
performed:

S(P ) =
IØ
i=1

[Yi − Ti(P )]2 = [Y − T (P )]T [Y − T (P )] (3.14)

where:
S is the sum of squares error;
P = [P1, P2 . . . , PN ] is the vector of unknown parameters;
T (P ) are the estimated temperatures at the thermocouples positions at time ti;
Y are the measured temperature by thermocouples at time ti;
N is the total number of unknown parameters;
I is the total number of measurements;
k is the number of the iteration.
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In those particular cases where the M sensors located at xmeas, ymeas, zmeas acquire at
high frequency, the measured temperatures can be approximated as continuous and the
residual functional (3.14) can be modified in the following way:

S(P ) =
Ú tf

t=0
[Y (t) − T (xmeas, ymeas, zmeas, t; P )]2dt (3.15)

3.3 The Iterative Procedure
Whenever the discrepancy principle, which will be discussed in section 3.4 indicates that
another iteration is necessary, the actual updating process starts (fig.3.4). To minimize
the least squares given by equation (3.15), the N parameters P are varied in the following
way:

P k+1 = P k − βk dk (3.16)

where k + 1 is the next iteration, βk is the step width and dk is the direction of descent
and both are computed by using the Sensitivity Matrix (SM).

3.3.1 The Sensitivity Concept
The Sensitivity Concept is introduced in order to measure the sensitivity of the estimated
temperature T with regard to changes in the parameter Pj with j = 1, 2, . . . , N . This step
is accomplished by varying one by one all N parameters and by computing the variation of
temperature dT that they cause in each thermocouple position. The results are expressed
in a compact form, i.e. the Sensitivity/Jacobian Matrix, J(P ):

J(P ) =



∂T1
∂P1

∂T1
∂P2

∂T1
∂P3

. . . ∂T1
∂PN

∂T2
∂P1

∂T2
∂P2

∂T2
∂P3

. . . ∂T2
∂PN

. . . .

. . . .

. . . .
∂TM
∂P1

∂TM
∂P2

∂TM
∂P3

. . . ∂TM
∂PN



(3.17)
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where M is the number of sensors and N is the number of unknown parameters. The ele-
ments of the sensitivity matrix given by equation (4.15) are called Sensitivity Coefficients:

Jij = ∂Ti
∂Pj

(3.18)

These coefficients Jij are thus defined as the first derivative of the estimated temperature
at ith thermocouple position with respect to the unknown parameter Pj.

Note that if the sensitivity coefficients Jij are small, it means that large changes in Pj

yield small changes in Ti, hence the estimation of the parameters Pj is extremely difficult
because same values for temperatures would be obtained with a wild range of values
of Pj. Whenever the sensitivity coefficients are small, the problem does not satisfy the
Identifiability Condition:

|JTJ | Ó= 0 (3.19)

and it appear to be ill-conditioned. The expression above was introduced in one of the
first developed inverse methods, the Levenberg-Marquardt Method (LMM), in which the
iterative procedures could be performed only if the matrix JTJ was non-singular. The
non-singularity comes if any column of J(P ) can be expressed as a linear combination of
the other columns. Hence, it is better to have linearly-independent sensitivity coefficients
Jij with large magnitudes, in this way, the inverse problem is not very sensitive to mea-
surement errors and accurate estimate of the parameters can be obtained. While the LMM
bypassed the ill-conditioning by introducing the terms µk and Ωk to damp oscillations and
instability, the CGM overcomes the need of a non-singularity matrix by the direction of
descent dk and search step size βk. However, the uncertainties in solutions remain since
these terms depend on magnitude values of sensitivity coefficients.
In literature, there are many different expedients to determine the values of J(P ), but since
the inverse problem considered is non-linear a Finite Difference Approximation (FDA) is
required. More specifically, a forward finite difference approach of first order has been
selected, thus the sensitivity coefficient with respect to parameter Pj is approximated by

Jij ∼=
Ti(P1, P2,. . . , Pj + εPj, PN) − Ti(P1, P2,. . . , Pj, PN)

εPj
(3.20)

where ε can be set equal to 10−5 or to 10−6. It is noteworthy that the computation
of J(P ) needs N + 1 solutions of the direct problem and thus it is consequently very
time-consuming. Hence, as it will be seen in chapter 5 it is not advisable to perform this
calculation more than one time.
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3.3.2 The Direction of Descent
The direction of descent is a vector that search the direction to move the equation (3.15)
toward a local minimum. It is a linear combination of the gradient direction, ∇S(P k),
and the direction of descent of the previous iteration, dk−1:

dk = ∇S(P k) + γk · dk−1 (3.21)

The strength of this link is expressed by the conjugation coeffcient γk whose value, hence,
indicates the influence of the descent direction from previous iteration. For γ = 0, the
conjugate gradient method is identical to the steepest descent method. Several different
expression for computing the conjugation coefficient are available in litterature, the most
frequently used are the Polak-Ribiere expression [20] [3]:

γk =

qN
j=1

;è
∇S(P k)

é
j

è
∇S(P k) − ∇S(P k−1)

é
j

<
qN
j=1

è
∇S(P k−1)

é2
j

for k = 1, 2,. . . (3.22)

with γ0 = 0 for k = 0, and the Fletcher-Reeves expression [13] [3]:

γk =
qN
j=1

è
∇S(P k)

é2
jqN

j=1

è
∇S(P k−1)

é2
j

(3.23)

Both formulations guarantee that the angle between the direction of descent and the
negative gradient direction is less than 90o, in this way, the function S(P ) is certainly
minimized [11].
Once the sensitivity matrix J(P ) is computed, the gradient direction, which is a differenti-
ation of the equation (3.14) with respect to the unknown parameters P , can be calculated
as:

∇S(P k) = −2(Jk)T · [Y − T (P k)] (3.24)

3.3.3 The Step Size
The search stepsize βk gives the magnitude of change of the heat flux at parameter points
and it is determined by minimizing the function S(P k+1) with respect to βk:

βk = [Jkdk]T [Tc(P k) − Tmeas]
[Jkdk]T [Jkdk]

(3.25)
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Since the members of J(P ) are of very small order of magnitude, in accordance to [17]
the expression above yields very large values for the step size and, consequently, huge
parameter oscillations can be observed together with no convergence of the optimization
or a very slow one. In order to prevent these oscillations and to stabilize the optimization
in the beginning, when residual functional value is large, the overall variation of the heat
βkdk is limited to a certain interval.

3.4 The Stopping Criterion
Since the minimization of the residual functional, theoretically, can be carried forward
indefinitely, a stopping criterion is necessary to exit from the iterative procedure and
move on the next time step. Hence, after computing the sensitivity matrix J , the gradient
direction∇S(P k), the conjugation coefficient γk and the search step size βk, the updating
process given by equation (3.16) is performed until a stopping criterion based on the
Discrepancy Principle is satisfied:

S(P k+1) < ε =
IØ
i=0

σ2
i + ψ (3.26)

In the expression above σi is the standard deviation of the measurement error at time ti
and ψ is an additional term due to numeric and discretization errors. It is precisely for
these errors that the theoretic absolute convergence (S = 0) cannot be reached and the
stopping criterion is necessary. Note this approach based on the discrepancy principle,
requires the a priori knowledge of the standard deviation of the measurement errors.
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Figure 3.3: Transient Optimisation Procedure
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Figure 3.4: Steps of the Parameter Update
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Chapter 4

Roq̇FITT Code and its Modifications

This chapter is divided into two parts: in the first one it is explained how Roq̇FITT
(Rocket q̇ Flux Inverse Thermal Tool developed by Perakis [8] at the TUM) works in
detail by exploring most important functions with particular attention to their inputs and
outputs, in the second one, instead, the modifications made to the code will be presented
together with their results.

As said in Section 1.4, the Roq̇FITT code has been developed in Matlab environment
for solving the heat transfer problem exclusively for single- and five-element combustion
chambers. Therefore, since both Matlab codes are twins code, the one solving MoRaP
will be taken as a reference and the possible differences with BKM code (mainly due to
geometric reasons) will be specially highlighted.

4.1 RoqFITT Code

4.1.1 Loading Experimental Data and User Inputs
The inverse method solver consists in a main, MainInverseSingleElement, in which every
single function is recalled. The first part is devoted to loading data and user inputs as
well as folder arrangements. The user can set the following variables:

• TestInfo is used to load the experimental data file coming from the DAQ acquisition
system;

• create_sensitivity provides for computing a new sensitivity matrix or for loading an
old one (Optimization.Sens_matrix_file), since the number of thermocouples used
in each experiment is certainly variable;
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• interp_method establishes how to interpolate in each plane the heat flux parameters
on the whole upper wall (where all thermocouples are located), i.e. the heat flux can
assume a parabolic or a constant shape from a corner to another corner.

• Thermocouples.delete allows the user to exclude from simulation those thermocouples
found to be defective during the experiment;

• Thermocouples.smooth is used to smooth the thermocouples measurements, it will be
seen in Chapter 5 what are the consequences if no smooth is applied on thermocouples
readings;

• SolutionSettings.N_iterations is used to set the maximum number of iteration in a
single time step for the simulation;

• TimeSettings structure manages the whole computational time in accordance with
the experimental time acquisition, user can establish the starting_time and end-
ing_time of the simulation as well as can set the computational time step in Time-
Settings.dt_user ;

• MaterialProperties structure allows to set the thermal conductivity, density, and
specific heat capacity of the medium (in this case oxygen-free copper);

• Geometry structure let user set all combustion chamber dimensions;

• BoundaryCondions structure allows user to set the convection heat transfer coeffi-
cient h∞, discussed in Section 3.1.1.1, and outside temperature value T∞ as well as
to indicate to the code the distance from hot gas side of the thermocouples used in
the experiment (use_1mm, use_2mm or use_3mm);

• Results folder is created in order to save all variables and plots at the end of simu-
lation;

4.1.2 Initializations
This part of the code precedes the updating process and it is necessary to initialize all
variables that will be used in the simulation. The following paragraphs introduce the
functions recalled in the main essential to set up the whole analysis.

Definition and Discretization of the Domain

The first function recalled is:
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buildGeometry

The main purpose of this function is to discretize the entire domain by computing the
spatial steps (Geometry.dx and Geometry.dz) so as to ensure the presence of nodes on
all boundaries including the corners. Recalling figure 2.3, it is clear that the combustion
chamber schematization used for the computation is much simpler than the reality. All
numbers of nodes involved in the resolution of the direct problem are listed in table 4.1.

Table 4.1: Variables counting nodes

Variables Description
Geometry.Nx and Ge-
ometry.Ny

number of nodes in x and y direction

Geometry.Nx_in and
Geometry.Ny_in

number of nodes in hot side, x and y direction

Geometry.Nxy number of nodes in each plane
Geometry.Nz number of nodes in z direction (combustion chamber)
Geometry.N_block number of node in z direction (heat sink)
Geometry.n number of nodes along the hot gas wall perimeter

Themperature Readings Modification and Time Management

The following function:

modifyThermocoupleMeasurements

first, aims to fit together thermocouples acquisition times and computational time vector
chosen by the user, then it selects from loaded data only the thermocouples used in the
test and loads all their positions. The whole experiment acquisition time is initialized as
a vector variable time_MORAP and it is representative of all thermocouples readings.
By using the previous user settings (TimeSettings.dt_user, TimeSettings.starting_time
and TimeSettings.ending_time) a computational time vector for the simulation, TimeSet-
tings.time, is created. Figure 4.1 shows that the whole time domain is divided into N-1
segments, i.e. in N time steps, one can note that just the first segment coincides with a
time step while all the others are enclosed between two time-steps, i.e. blue and red for
start and end respectively.
Subsequently, the function identifies the thermocouples collected in the cell arrays data.AI
and interpolates their readings on the computational time. After the matching has been
completed, if Thermocouples.smooth marks 1 all temperatures are smoothed in time using
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Figure 4.1: Time Discretization

a moving average on 3 points. Hence, the used thermocouples are grouped under the vector
variable Thermocouples.Names as well as their readings under Thermocouples.Tmeasured.
Finally, recalling the nomenclature introduced in table 2.5, the function calculates their
position and put it into Thermocouples.Locations.

Define Optimization Paramters Points

defineParameterPoints

This function defines the numbers, Parameters.N and the positions, Parameters.Locations,
of the parameters points, i.e. the points in which the heat flux is updated throughout the
process. In all simulations carried out in this thesis, their number has been set equal to the
number of thermocouples (N = M). Hence, their positions are essentially the projection
of thermocouples locations on the hot gas wall (Fig. 4.2). Anyway, the user is allowed to
enter more parameters by adding manually their positions.

40



Chapter 4. Roq̇FITT Code and its Modifications

Figure 4.2: Thermocouples and Parameters Positions on z − y Plane in Single-Element

Temperature Initialization

initializeTemperature

Throughout the optimization process, the code uses a variable Temperature.allNodes for
saving computed temperatures in each node at the end of each segment. In order to solve
the direct problem at the first iteration of the first time segment, it is necessary to provide
the initial condition. In this regards, this function assign to those nodes located in the
same plane of a thermocouple the measured temperature by that thermocouple before
the ignition, otherwise, instead, to the all others node allocate a temperature value equal
to the average between all thermocouples measurements before the ignition (Tempera-
ture.initialT, Fig. 4.3).
Figure 4.4 helps to understand how all nodes are scanned: once the last node in the plane
is reached, the plane is switched, and the scanning is repeated in the same way.
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Figure 4.3: Initial Temperature condition Assigned to all Nodes

Figure 4.4: Example of How the Code Scanns the Domain

Stopping Criterion Initialization

With following function:

defineStoppingCriterion

in accordance with literature, the threshold value ε present in the discrepancy principle,
introduced in Section 3.4, is set equal to 0.3, i.e. equal to the type T thermocouples
standard deviation.
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Heat Flux First Estimation and Initialization

initializeHeatFlux

The heat flux is, here, initialized for all hot gas wall nodes at the first iteration of each
segment, it has a linear profile along z axis with the highest guess value (q0 ) in corre-
spondence of the nozzle. Heat flux is assumed to be constant for all nodes belonging to
the same x-y plane, that explains the presence of several flat parts. The first guess is
absolutely arbitrary (Fig. 4.5), from this point of view code shows a robustness, since it
is capable of achieving the convergence with any first assigned value.
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Figure 4.5: Example of Heat Flux First Guess

Linear System Assembling

After that some variables, necessary for computing the updating process are initialized
under the structure Optimization, the following function:

buildGeometryMatrix

is recalled in the main to implement the discretization of the heat diffusion equation (3.2).
Remember that the forward in time central in space finite difference scheme has been
performed by applying the energy balance method to each nodes obtaining in this way the
following linear system:

MMT s = T s−1 + CC (4.1)
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Where T s is the vector of the unknown nodal temperatures at time ts, T s−1 is the vector
of known nodal temperatures coming from solution at previous time step ts−1, MM is
the matrix of coefficients and CC is the vector of known terms. Because of discretization
it is clear that the MM matrix is a sparse diagonal matrix with seven non-zero diagonals
(Fig. 4.6(a), the elements of its diagonal are the nodes to which the heat diffusion equa-
tion is applied, the other non-zero elements are the adjacent nodes involved in the same
equation). It is obtained as a combination of the connectivity matrix, LinearSystem.S, and
the boundary conditions vectors, LinearSystem.CC_in, LinearSystem.CC_out_x, Linear
System.CC_out_z, LinearSystem.CC_out_nozzle in this way:

MM = S + (CC_out_x · Fox ·Bi_out_x+ CC_out_z · Foz ·Bi_out_z)
CC = diag(CC_out_x ·Fox ·Bi_out_x ·T_inf +CC_out_z ·Foz ·Bi_out_z ·T_inf)

To save mamory, the connectivity matrix S is built with spdiags Matlab command having
as iput the BB matrix of coefficients coming from the discretization and a d_vec vector
difining their position in the matrix.

BB(Geometry.N + Geometry.N_block · Geometry.Nxy, 7)
d_vec = [-Geometry.Nxy, -Geometry.Ny, -1, 0, 1, Geometry.Ny, Geometry.Nxy]

S = spdiags(BB, d_vec, N+N_block · Nxy, N+N_block · Nxy)

To understand how these variables are built, the following example consider a generic node
(i = 17271, j = 2, where i goes from 1 to Nxy, and j from 1 to Nz), second plane from
the nozzle) located at the corner outside middle plane (Fig. 4.6(b)). The discretized heat
diffusion equation related to this particular node is

T k+1
n · (1 + 4 · FoxBix + 2 · Foz + 4 · Fox) − 2 · Fox · T k+1

n−1 − 2 · Fox · T k+1
n−Ny

(4.2)

−Foz · T k+1
n+Nxy

− Foz · T k+1
n−Nxy

= T kn + 4 · FoxBixT∞

which brings to define a BB matrix and a CC_out_x boundary condition vector:

BB(17271 −Nxy; 1) = −Foz
BB(17271 −Ny, 2) = −2 · Fox
BB(17271 − 1, 3) = −2 · Fox

BB(17271, 4) = 1 + 4 · Fox + 2 · Foz
BB(17271 +Nxy; 7) = −Foz
CC_out_x(17271, 1) = 4 · Fox
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(a) (b)

Figure 4.6: Example of How the MM Matrix is Filled (a), Reference Node for the Example
Above (b)

Cholescky Factorization and Conjugate Gradient Method for Solving Linear
Systems Once the linear system (4.1) is defined, to solve it, first a Cholesky factorization
and then a Conjugate Gradient Squared Method (CGSM) is performed reducing in this
way both computational cost and occupied memory. In order to give further information
about how these expedients work, the following linear system recalling the equation (4.1)
is considerd:

A T s = T s−1 + b (4.3)

Since the two equations (4.1) and (4.3) are identical, each term has the same meaning
already explained in previous paragraph: A is the matrix of coefficients, i.e. the MM

matrix used in the code, depending both on the discretization of the equation and boundary
conditions and, b is the same vector CC discussed before depending on the boundary
conditions. It is clear that the matrix of coefficients is an N x N matrix with N number of
nodes in which the domain is discretized. A linear system can be solved in many different
methods, they are classified as direct or iterative methods. When dealing with sparse
matrices of coefficient the former compared to the latter imply high computational cost,
hence, for this reason, the CSGM, which presents an iterative approach, has been chosen
to solve the linear system (4.1). A brief description of this method is given in accordance
with [10] considering the following linear system:

Ax = b (4.4)
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The algorithm of resolution, already implemented in Matlab with cgs command, can be
divided in the following steps:

Table 4.2: CGSM algorithm

Steps Calculations
1 With a first approximation x0 calculate the residual r0 = b−Ax0

with p0 = r0
2 For j = 0, 1, ..., until convergence perform:

3 αj = rj ·rj

Apj ·pj

4 xj+1 = xj + αjpj

5 rj+1 = rj − αjApj

6 βj = rj+1·rj+1
rj ·rj

7 pj+1 = rj+1 + βjpj

Before performing it, to improve the CGSM, the code uses a preconditioning on the matrix
of coefficient. It consists in a transformation of the original linear system into an other one
which accepts the same solution but it is easier to solve by an iterative method. Hence,
the first step in preconditioning is to find a preconditioning non-singular matrix M which
is more or less equal to A and enables to express the system (4.4) as:

M−1Ax = M−1b (4.5)

In order to ensure symmetry and positive definiteness of A, the preconditioner M is split
using the Cholesky factorization (CF):

M−1 = LLT (4.6)

with L non-singular matrix. Hence the system (4.4) can be rewritten as:

Ax = b ⇔ LT ALL−1x = LT b (4.7)

The Cholesky factorization is performed in Matlab with ichol command. In this way the
CGSM is modified with following algoritm:
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Table 4.3: CGSM algorithm with Cholesky factorization

Steps Calculations
1 With a first approximation x0 calculate the residual r0 = b−Ax0;

q0 = L−1r0; p0 = L−T q0
2 For j = 0, 1, ..., until convergence perform:

3 αj = qj ·qj

Apj ·pj

4 xj+1 = xj + αjpj

5 qj+1 = qj − αjL
−1Apj

6 βj = qj+1·qj+1
qj ·qj

7 pj+1 = L−T qj+1 + βjpj

Create Sensitivity Matrix

createSensitivityMatrix

is the last function to be recalled in the main before the inverse loop starts, it is necessary
to compute the sensitivity matrix involved in the optimization process if it is not directly
loaded. The method used for this scope has already been described in Section 3.3, however,
it has to be mentioned that this computation is completed outside the loop, hence, this
matrix does not vary step by step or segment by segment. As already mentioned the
sensitivity coefficients Ji,j are obtained by solving N + 1 times the heat conduction direct
problem. The computational time vector considered for this purpose is:

time_sensi = [0 : dt_sensi : 1]

with dt_sensi = dt_user but it can be modified by user. The initial temperature or initial
condition is the same for each problem and is set equal to the temperature distribution
computed in the function inizializeTemperature. The first direct problem is solved by
setting in all N parameters points a constant heat flux equal to q_level = 5 MW , the
other N remaining direct problems are solved by varying the heat flux parameters one
by one by an amount equal to q_epsilon = 10−5. Once N + 1 different temperature
distributions are computed, the sensitivity coefficient Ji,j is obtained by subtracting the
temperature at i-th parameter point, result of the problem in which the j-th parameter
heat flux has been varied, to the temperature at the same location resulting from the
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direct problem in which the heat flux has been set constant, i.e. the first direct problem.
In this way, the whole sensitivity matrix is obtained.

4.1.3 Inverse Loop Start
From now the real updating process starts. The code scrolls each segment one at the time
and whenever, after several iterations in which the heat flux parameters have been updated,
the convergence is reached, the variable SolutionSettings.complete(segment) switches from
false to true, the segment is switched too and the variable counting the iterations is restored
to one. Recalling the scheme used in figure 4.1, figure 4.7 helps to understand when the
code performs the direct problem and when the updating process. Note that while the
direct problem is solved in each time step the updating procedure is solved at the end of
each time segment keeping the heat flux parameters P k

seg (with k referring to iterations
and seg to segments) constant all over the time segment.

Figure 4.7: Optimization Process on Segments

At the beginning of each time segment the heat flux (HF ) that has to be applied as
boundary condition to the direct problem is initialized by combining the converged solution
found in the previous time segment and the heat flux estimated at the ongoing iteration:

HF k
seg = (1 − par2) · HF k

seg + par2 · HF
optIter(seg−1)
seg−1 (4.8)

In the above equation par2 is set in the code equal to 0. 9 and optIterseg−1 is the converged
iteration of the previous time segment. At the beginning of each iteration, instead, the heat
flux is initialized by combining the heat flux of previous iteration and heat flux estimated
at the ongoing iteration:
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HF k
seg = (1 − par1) · HF k

seg + par1 · HF k
seg−1 (4.9)

with par1 set in the code equal to 0. 25. These expedients are introduced to assist conver-
gence and to avoid oscillations. After solving the linear system and computing the square
difference between measured and computed temperatures at thermocouples positions with
the latter coming from the function calcTemperatureAtThermocoupleFromDistribution, the
code performs the calculation of the residual functional (Optimization.ResidualFun) as in-
tegral of the square sum over time and checks continuously if the discrepancy principle
is satisfied. If the Optimization.ResidualFun is greater than SolutionSettings.epsilon, the
heat flux parameters have to be updated. Hence, once Optimization.DescentDirection
and Optimization.beta (step size) are available all new heat flux parameters are computed
following each step discussed in chapter 3. If Optimization.ResidualFun decrease continu-
ously, it means that the solution is continuously improved otherwise the code recognizes
if this variable fluctuates around a value and stops the updating process and switches the
segment. For the way code works, the heat flux parameters can be also negative, but since
it cannot be physical, anytime a negative heat flux is found, it is set equal to zero. The
last function of optimization loop:

transformHeatFlux

is one of the most important functions that user can find in this code. It has the purpose
of interpolating the updated heat flux parameters all over the walls of the combustion
chamber and make it usable for the direct problem:

P k
seg → HF k

seg (4.10)

It is a crucial step since the inverse problem solution, as it will be seen in chapter 6, depends
directly upon the type of interpolation carried out. In this regards, figures 4.8 and 4.9 help
to understand how the interpolation is carried out after that the parameters heat flux are
estimated. In this example, 3 generic planes j = 10, 11 and 12, are considered (they are not
related with any real planes coming from the discretization). The estimated parameters
points belong to the two planes j = 10 and j = 12. With regards to single-element, since
only one thermocouples is located in planes and therefore only one parameter point, it
is simply assigned to all nodes belonging to the same plane of a parameters point the
same heat flux estimated in that parameter point and subsequently a cubic interpolation
between the planes is carried out 4.8(b). Instead, with regards to five-elements, since the
presence of five injectors makes the heat flux evolution more complex along x and since
more than one thermocouple is located in a plane, therefore more than one parameter
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point (max 7 Fig. 2.5), to provide a more faithful reproduction of the heat flux along x,
in those planes where the parameter points are less than 7 more points to be interpolated
are added by avaraging the estimated heat flux parameters. In this regards figure 4.10
helps to understand this procedure, the points A, B, D and E lying not directly over an
injector are obtained by averaging the parameters points 3L and 3R, instead for those
points lying directly on an injector it has been taken the value if the parameter point 3C.
Then a cubic interpolation is performed along x and subsequently along z. An example
of the result of this approach is given in figure 4.9, one can note that nodes belonging to
upper and lower hot gas wall have the same heat flux.

(a) Schematization of 3 Generic Planes
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Figure 4.8: Example of Heat Flux Interpolation on Internal Nodes for Single-Element
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(a) Schematization of 3 Generic Planes
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Figure 4.9: Example of Heat Flux Interpolation on Internal Nodes for Five-Element

4.1.4 Code Outputs
In this section, the most important outputs, referring to the two investigated tests, released
by the code are presented. The evaluation time has been set equal to t = 7. 341 s and
t = 23. 398 s for single- and five-element respectively.
For logical reasons figure 4.11 shows the matching between measured and computed tem-
peratures in just few thermocouples positions, but it is clear that this kind of plot exists
for each thermocouple used in the test. This is one of the most important output because
it allows you to check if the code has reached the convergence in a correct manner.
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Figure 4.10: Example of How New Points are added for Interpolation

Figure 4.12 explains the evolution of heat flux over time for all distances from injector
plate. One can note that in both chambers the heat flux reaches an almost stationary
value after about 1. 5 s.
From figure 4.13 is possible to appreciate the heat flux in middle point along the chambers.
One can note the big oscillations in space mentioned in chapter 1, which can reach up to
2 MW and 6 MW in magnitude, in single- and five-element respectively. These oscillations
could be related to the presence of the injectors and therefore in this sense, they could
be allowed except they arise also far from the copper block and they remain also after
the shutdown of the injectors (over 0. 5 s from ignition) and do not disappear. While
in the first case this value can be more or less accepted, but still investigated in chapter
5, in the second one the suspicion that these oscillations are produced by the code has
encouraged a study, conducted in chapter 6, on how the heat flux can be interpolated
from parameters points to hot gas wall points. Figure 4.14 demonstrates what already
anticipated in Section 4.1.3, i.e. the interpolation of the heat flux along x ensures a
constant trend in single-element and an oscillating evolution in five-element.
Figure 4.15 shows the evolution of computed temperature along x on the upper hot gas wall
at evaluation time. One can note that while in the single-element the temperature exhibits
a parabolic trend from a corner to another one, in the five-element they reveal an oscillating
trend. These oscillations, however, are consistent with the measured temperatures by
thermocouples at 1 mm from the hot gas wall (Fig. 4.15(b)).
Figures from 4.16 to 4.18 show the evolution of computed temperatures along z at 1 mm
from the hot gas wall directly on the injectors (Fig. 4.16, 4.18 and 4.19(a)) and between
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Figure 4.11: Calculated and Measured Temperatures Match in Thermocouples Positions Over
Time

two injectors in the case of multi-elements (Fig. 4.17 and 4.19(b)).
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Figure 4.12: Heat Flux Over Time in Middle Point at All Distances from the Injector Plate

4.2 Code Modifications
This section presents the modifications made on the code solving the heat transfer problem
on MoRaP. These modifications have been done to improve its performances in terms of
computational time and quality of the solution. Since the code developed for MoRaP is
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Figure 4.13: Heat Flux Over z in Middle Point for Several Times

quite similar to the one developed for BKM combustion chamber, the same modifications
have been applied also to the latter.
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Figure 4.14: Heat Flux Over x on the Upper Hot Gas Wall at Evaluation Time for Different
Planes

4.2.1 Modifications of Time Segments
From Section 4.1.3, in particular, from figure 4.7 it is clear that the direct problem is
solved in each time steps, unlike the inverse problem which is solved at the end of each
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Figure 4.15: Computed Temperature Along x on the Upper Hot Gas Wall at Evaluation
Time for Different Planes

time segment. The first important modification applied to the code is clear from figure
4.20.
One can note that now the updating process is performed in each time step as the direct
problem. In this way, the computational time is significantly reduced but the obtained
results with this new time handling do not show a significant deviation from previous ones,
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Figure 4.16: Computed Temperature Along z at 1 mm from the Hot Gas Wall in
Single-Element
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Figure 4.17: Computed Temperature Along z at 1 mm from the Hot Gas Wall at Evaluation
Time in Five-Elements, 3 R

as will be clear from Section 4.3. In some tests carried out in [10], by choosing a time-step
equal to 0. 02, i.e. equal to the sampling interval of the thermocouples, one simulation
may cost half the time with respect to the old code. This is because in each iteration only
one direct problem is solved instead of two. Furthermore, it has to be noted that if the
temperature is calculated in two time steps instead of one, smaller discretization errors
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Figure 4.18: Computed Temperature Along z at 1 mm from the Hot Gas Wall at Evaluation
Time in Five-Elements

are made, hence from this point of view, the previous time handling was more accurate,
but the study on the errors conducted in [10] has proved that these sources of error can
be negligible.
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Figure 4.19: Computed Temperature Along z at 1 mm from the Hot Gas Wall at Evaluation
Time in Five-Elements

4.2.2 Newton Rapshon Method
The resolution of an inverse problem in a time step implies the resolution of a non-linear
system. As mentioned before, the computational temperatures T s in thermocouples posi-
tions at time ts depend on the values of the optimized heat flux parameters:
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Figure 4.20: New Optimization Process on Time Segments

T s = F (P s−1) (4.11)

where P s−1 is the vector of heat flux parameters which have to be applied as boundary
conditions on the initial condition temperature T s−1 all over the time segment s − 1 to
obtain T s. Hence, the time segment s starts in ts−1 and finishes in ts (Fig. 4.21).

Figure 4.21: Example of Connection Between Computed Temperature and Applied Heat Flux
Parameters in a Segment

Since the inverse problem aims to close the gap between computed and measured temper-
atures (Y ), the non-linear system to be solved is:

F (P s−1) = T s(P s−1) − Y s = 0 (4.12)

This system can be solved using the Newton Rapshon Method (NRM) [15] by linearizing
the equations starting from an initial guess and then updating the parameters until the
norm of the vector F (P ) is smaller than a threshold value, i.e. the value defined by
stopping criteria in Section 3.4. Hence, referring to a solution of the inverse problem for
a single time-step, the system (4.12) becomes:
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F (P k) + JJ
k · (P k+1 − P k) = 0 (4.13)

where k counts the iterations and JJ is the Jacobi Matrix (JM), which conceptually is
similar to the sensitiviti satrix JS mentioned in Section 3.3, but their differences will be
clear in Section 4.2.3 (from this moment the nomenclature adopted above will be used just
to identify each matrix since the two terms are general synonyms). Hence, to obtain the
heat flux parameters for the k + 1 iteration the linear system that has to be solved is:

JJ
k · (P k+1) = −F k(P k) + JJ

k · (P k) (4.14)

where the second term on the right represents the increased heat flux in each iteration.

4.2.3 Analysis and Differences Between Jacobi Matrix
and Sensitivity Matrix

In this study, some insights have been conducted on sensitivity matrix. First of all, figure
4.22 shows how a sensitivity matrix appears by computing it with the method introduced
in Section 3.3, i.e. how the elements of a row of the sensitivity matrix evolve in time for
this particular problem. The plot explains how much a raising in a point of the domain
can affect the variation of temperature in another point. In particular, in the figure is
plotted how all heat flux parameters affect the temperature raising in the parameter point
1. Higher values mean that that particular heat flux parameter has a higher influence.
Hence because the parameter points 2 and 3 are physically near the parameter point
1, only the variation of the heat flux in those points produces a significant variation in
temperature in the parameter point 1.
On the basis of these considerations, attempts have been made to discover if the sensitivity
in thermocouples positions would have been different by computing the sensitivity matrix
on the same time domain but with converged heat flux parameters. The method used for
computing this new sensitivity matrix is the same discussed previously but few differences
have to be highlighted: considering still a generic time segment s in figure 4.21, the first
direct problem is solved step by step from the time step t1 to ts+1 by imposing T1 as the
initial condition and by applying now the converged parameters heat flux for each time step
and not a constant heat flux. The others N direct problems are solved on the same time
domain (t1-ts+1), by perturbating one by one the heat flux parameters. The temperature
obtained in this way is the result of this perturbation during the whole time domain and
not only the result of a perturbation in a single time step. Figure 4.23 shows the result of
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Figure 4.22: Sensitivity Coefficients

this study. The evolution of two diagonal elements of the two sensitivity matrices discussed
before, i.e. the one computed using converged heat fluxes and the one using constant heat
fluxes, explains that the sensitivity coefficients present no significant differences in trend
in the whole time domain, except the one computed using real converged heat fluxes has
smaller values than the other one. Hence this small difference in values suggests that
computing just one time the sensitivity matrix is more than enough for the resolution of
the problem.
The Jacobi Matrix JJ unlike the sensitivity matrix JS is calculated in a single time-step
but it is still a M x N (no of thermocouples x no of parameters) square matrix, because
the number of parameters points is equal to the number of thermocouples (N = M):
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(4.15)
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Figure 4.23: Sensitivity Matrices Elements Comparison

The method used for computing it is the same described in Section 3.3 and is presented
by the equation (4.16), i.e. a forward finite difference approach of first order in which
the temperatures Ti are the computational temperatures calculated at i-th thermocouple
position and the parameters Pj are the heat flux parameters at j-th parameter point.
But now there is a substantial difference, in fact, unlike the sensitivity matrix, in this
case, the temperatures Ti are the temperatures at time ts resulting from applying the heat
flux parameters P as boundary conditions from time ts−1 to time ts. Hence, since this
matrix depends on P k (k is the iteration), each Jacobi matrix should be calculated at
each iteration.

JsJij

∼=
T si (P s

1 , P
s
2 ,. . . , P

s
j + εP s

j , P
s
N) − T si (P s

1 , P
s
2 ,. . . , P

s
j , P

s
N)

εP s
j

(4.16)

However, for this particular heat transfer problem, it has been noted that also if Jacobi
matrix is computed with converged heat flux parameters, it appears to be almost constant
not only if the heat flux parameters vary in a single time step but also for different time
segments. The result is that since this kind of calculation implies high computational cost,
it can be calculated just one time, outside the optimization loop, by applying a constant
heat flux.
In this regards figure 4.24 shows that computing the Jacobi matrix in each time-step with
the real starting condition of temperatures for each time-step and real converged heat flux
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Figure 4.24: Comparison of sensitivity and Jacobi matrix All Over the Time Domain

parameters or computing the sensitivity matrix just one time outside the loop using a
constant set of heat flux parameters and as the initial condition the temperatures taken
from thermocouples measurement before the ignition do not imply substantial differences.
Hence the Jacobi matrix can be calculated just one time, outside the loop and can be used
to solve the inverse problem in all time steps.
Therefore, these studies suggest that the Jacobi matrix is almost independent on heat
fluxes and time step and it can be calculated only one time out of the cycle and that the
sensitivity matrix is almost independent on heat flux, but it is dependent on the time step
used for calculation.
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4.3 Comparison of Results
The following part presents the results of modifications made to the code. In particular two
modified codes have been tested and compared to the Original Code (OC): one denoted
as Modified Code (MC) to which has been modified only the time management keep-
ing the iterative procedure unchanged and one, the Modified Code with Newton Rapshon
(MCNR), to which in addition to the modifications on time management the Newton-
Rapshon method for updating the heat flux parameters has been implemented. The in-
vestigated tests have been already introduced in Section 2.3: data_02−05−17_16−57_0
for single-element and Data_CCC2D − 20 − 26 − 25 − 01 for five-element. Obviously,
the modifications made had as the main objective the disposal of the oscillations both in
time and space or at least their limitation. As said in Section 4.1.4 the evaluation time
has been set equal to t = 341 s and t = 23. 398 s for single- and five-element respectively.
The plot in figure 4.25, already seen in Section 4.1.4, shows the measured and computed
temperatures over time, one can note that in single-element contrary to five-element the
matching is quite perfect. In particular, in figure 4.25(b) there are the thermocouples
positions which have been exhibit a relevant deviation between measured and computed
temperatures. One can note that both in Modified Code and Modified Code with Newton-
Rapshon this deviation show up at 0. 5 s from ignition time and that it rises up to about
7oC and 10oC respectively at the end of simulation, however, there is to say that neither
the Original Code has an absolute convergence.
Figure 4.26 explains the heat flux evolution over time in the middle point at z = 170 mm,
the modifications have introduced some little oscillations in time, this is probably due to
the fact that the direct problem is solved at each time step, so more discretization errors
could be present. However, the heat flux appears to be the same for all codes.
Figure 4.27 shows, instead, the heat flux evolution at middle points over z at evaluation
time. The Modified Codes have returned for all times the same heat flux evolution over z of
Original Code. Therefore it is noticeable that despite these modifications, the oscillations
still remain.
Figure 4.28 shows the heat flux profile along x at evaluation time and at several distances
from injector plate, one can note that, generally, in each plane where thermocouples are
located the heat flux profile is roughly the same, however, at z = 170 mm the MC appears
to return a more damped heat flux profile and between x = 30 mm and x = 40 mm

both Modified Codes return an heat flux slightly higher. This is confirmed also by the
mismatching of temperatures. However, more of these variations in profiles along x have
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Figure 4.25: Comparison of Computed and Measured Temperature for the Three Different
Codes

been found in other planes but for their small amplitude, they have been classified as
non-relevant.
Ss far as the oscillations, even if no significant improvements have been observed, the
computational time has been drastically reduced (table 4.4). In particular with regards to
single-element, the computational time has been reduced by about 46% and 76% for MC
and MCNR respectively. As concern the five-element, instead, the improvement has been
approximately around 26% and 49%.
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Figure 4.26: Heat Flux Over Time at Middle Point z = 170 mm

Table 4.4: Elapsed computational time [h]
Intel Core i5-7200U CPU @2.50GHz

Original Code Modified Code Modified Code with Newton Rapshon
Single-Element 2.44859 1.33237 0.59218
Five-Element 16.889 10.88 8.67
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Figure 4.27: Heat Flux Over z at Middle Point at Evaluation Time

This improvement is confirmed also by figure 4.29 in which the iterations necessary to
convergence are plotted. In particular, one can note that these iterations progressively
decrease passing from Modified Code to Modified Code with Newton-Rapshon.
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Figure 4.28: Heat Flux Over x in Five-Element Combustion Chamber at Evaluation Time for
Several Planes
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Figure 4.29: Iteration necessary to convergence for each time-step
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Validation of Roq̇FITT

Although the modifications made have been improved the performances of the code in
term of computational time, the oscillations in space still affect the solution in both cases,
whether it is the single- or five-element. Hence, it is not possible now to say with certainty
that these oscillations are the product of the inverse code or are due to experimental data.
For this reason, a validation of the inverse code has been conducted by performing several
numerical experiments. The uncertainty is due to the fact that the boundary condition
heat flux on the hot gas wall is unknown, so it is difficult to establish if an inverse transient
heat method reproduces with precision the real heat flux. The following table explains
well the passages made to carry out the numerical experiments.

Table 5.1: Numerical experiment

Passages Instructions
1 Assign a known boundary condition on the hot gas wall for each timestep
2 Assign a starting condition temperature for the all domain
3 Solve the direct problem with assigned boundary condition for each time

step
4 Once the temperature evolution in space and in time is available from

the resolution of the direct problem, estimate the temperatures in ther-
mocouples position and assume them as measured temperatures by ther-
mocouples

5 Perform the inverse code
6 Compare the heat flux boundary conditions evaluated by inverse code

with the boundary condition assigned to solve the direct problem

The numerical heat flux set as the boundary condition on the hot gas wall is shown in figure
5.1. In the reality when a combustion chamber is ignited in the first time instants (about
0. 5 s) there is always an oscillation in heat flux caused by the igniter that progressively
vanishes as the temperatures increase. The fact that these oscillations still remain in the
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solution provided by the inverse code has encouraged to insert in the numerical experiment
a big oscillation over z which appears and disappears gradually. The goal was to verify if
the code can follow this changes in heat flux as well as to ensure that it does not introduce
any numerical meaningless heat flux, i.e. relevant numerical errors.
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Figure 5.1: Numerical Heat Flux Evolution Along z for several time steps

The computational time domain of the direct problem goes from 2. 5 s to 7 s. The heat
flux evolution along z has been obtained from the sum of a linear function and a sinusoidal
function. It presents a big oscillation which rises gradually after 1 s from the start and
vanishes completely at 6 s, over the last 1 s the heat flux returns linear. Furthermore, it
is possible to appreciate the sudden change in shape along z when the oscillation reaches
the maximum amplitude, this not smoothed effect has been intentionally inserted to verify
if these spatial rapid changes are detected by the code and/or amplyfied. By performing
the direct problem with this heat flux applied on the hot gas wall, the temperatures are
computed in thermocouples positions and set as measured themperatures (Fig. 5.3). Once
the temperatures in thermocouples positions have been available, random errors have been
added under the assumption that they present a Gaussian distribution. The following
study supports this hypothesis. The thermocouples, like all sensors, present precision
errors, by analyzing the evolution of their readings before the ignition (Fig. 5.2(a)) it has
been noted that it exhibits a distribution close to the normal distribution (Fig. 5.2(b)).
To verify this assumption, the two quantities, Skewness (S) and Kurtosis (K), have been
calculated for several sets of readings.
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Figure 5.2: Precision Errors in Thermocouples Readings Before the Ignition

In accordance to [6] the Skewness value identifies if the data distribution is symmetric or
skewed to one side. If the value is positive, it means that the distribution is skewed right,
otherwise, with a negative value, it is skewed left. If S = 0, the data are perfectly symmet-
ric. Instead, the Kurtosis describes how tall and sharp the central peak of the distribution
is. As [6] refers in his article "higher kurtosis means more of the variance is the result of
infrequent extreme deviations, as opposed to frequent modestly sized deviations.". If its
value is exactly 3 the distribution is called mesokurtic.
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For a set of N measurements the Skewness formula is:

S = (1/N)qN
i=1(x3

i − x̄3)
σ3 (5.1)

where σ is the standard deviation.

σ =

öõõô(1/N)
NØ
i=1

(x2
i − x̄2) (5.2)

The Kurtosis is:

S = (1/N)qN
i=1(x4

i − x̄4)
σ4 (5.3)

The Skewness and Kurtosis of a normal distribution are 0 and 3 respectively. Hence these
values are taken as reference and compared with the values estimated from the data. The
results of this analysis are shown in table 5.2. The Skewness and Kurtosis of the set of
measurements are very close to the values of the normal distribution and for this reason, it
has been possible to approximate the distribution of the errors as the normal distribution.

Table 5.2: Skewnwss and Kurtosis comparison

Data Gaussian Distribution
Skewness -0.1423 0
Kurtosis 3.1950 3

Therefore, this expedient has been done by using the Matlab command normrnd. The
standard deviation inserted as input has been calculated (σ = 0. 08) considering again the
set of data before the ignition (Fig. 5.2(a)), but to emphasize any possible oscillation in
solution, it has been set equal to 0. 15 in all simulations.
Once the temperatures coming from direct problem have been available, three inverse
codes have been performed, the goal was to discover what kind of effects in solution could
be introduced by the oscillations in temperatures readings with different magnitude:

• Not smoothed, the numerical temperatures have not been smoothed;

• Smoothed on 3 point, the numerical temperatures have been smoothed in time using
a moving average on 3 points;

• Smoothed on 10 point, the numerical temperatures have been smoothed in time using
a moving average on 10 points;
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Figure 5.3: Normal Distribution Errors Added to Numerical Temperatures in Thermocouples
Position

Furthermore, one can note that these errors are denoted as precision errors and that no
accuracy errors have been considered in this analysis. The results are presented below.
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Figure 5.4: Heat Flux Evolution Along z at Different Time for the Three Different
Simulations

Figure 5.4 compare the solutions provided by the three different simulations with original
known heat flux set as the boundary condition to the direct problem. The first thing that
becomes clear is that all three codes reproduce extremely well the original heat flux. In
the first time segments (t = 3. 02 s) when the heat flux is small in magnitude, one can
appreciate that all three simulations fail to estimate the right heat flux, this is probably
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due to the fact that the magnitude of the heat flux is comparable with the magnitude
of numerical errors (about 104 W/m2). The flat in heat flux lying at the end of the
combustion chamber is due to the fact that the code assigns a constant heat flux between
the last thermocouple and the end of the combustion chamber. Looking at the solution for
t = 4. 46 s it is possible to note that the code recognizes the sudden change in value of the
heat flux along z, this big oscillation do not introduce any kind of problem for the code.
Instead, the figure representing the heat flux at t = 5. 1 s demonstrates that the code
also recognizes when this oscillation drops gradually. Finally the plot at t = 6. 5 s shows
that, the whole time the heat flux remains constantly linear in space, the simulations do
not introduce any kind of significant errors. Apart from the big oscillation intentionally
introduced and well detected by the inverse code, the small oscillations appearing along
z and over time are caused by the different choices about the smoothing. However, these
oscillations are not so relevant compared to the big one, but one can note that the Not
smoothed solution, compared to the other two, generally exhibits more oscillating parts.
This result is confirmed by analyizing their magnitude through the Root Mean Square
Error (RMSE) calculated along z for all time steps (Fig. 5.6). Generally, one can note
that, by smoothing in time using a moving average on 10 points, the errors made in each
time step are lower in amplitude than in the other cases.
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Figure 5.5: Heat Flux Evolution Over time at Different z for the Three Different Simulations

Figure 5.5 shows the attitude of the codes to reproduce the heat flux over time. One can
note that, since the solutions of the inverse method are very sensitive to the measurement
errors of the sensors, the most oscillating solution is provided by the code performed by
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not smoothing the thermocouples measurements. Hence, from this study some important
conclusions can be highlighted:

• The code detects well any kind of heat flux oscillation which gradually appears and
disappears;

• The code can reproduce well the heat flux also if it presents sudden changes both in
time and in space;

• Smoothing the thermocouples measurements is essential to reduce the small oscilla-
tions introduced by the oscillations in temperature readings;
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Figure 5.6: Root Mean Square Error Calculated Along z for Different Time Steps

Therefore, if the problem of these oscillations does not lay in the way code works, there
is something else that should cause them. The suspicion that, during the hot run, the
thermocouples could move from their original position has led to the idea that by varying
slightly their location into the code (Thermocouples.Locations) the oscillations could be
mitigated. Since it is not sure if during the hot run a thermocouple is moving away from
the hot gas wall or closer to it, the idea was to relocate the thermocouples on the basis
of the magnitude of the heat flux in that position. The coordinate y has been the only
one to be modified, the others (x and z) have been left unchanged. The criterion used to
move them was: looking at the heat flux over z, whenever a big oscillation is detected if
its overshoot appears to be anomalous it can mean that that thermocouple is recording a
temperature value too high for that position, hence it has to be moved closer to the hot
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Table 5.3: Thermocouples coordinates and movements [mm]

Original Test Test 1 Test 2
Thermocouples y z ynew Movement ynew Movement

TCLU71 32 170 32 0 32.5 +0.5
TCLU81 32 153 31.5 -0.5 31.3 -0.7
TCSU11 32 119 32.5 +0.5 32.5 +0.5
TCSU11 32 51 32.5 +0.5 32.7 +0.7

gas side. Figure 5.7 and table 5.3 show exactly how the thermocouples have been moved.
The Original Test is the test of Section 4.1.4.
From table 5.3 it is clear that the number of thermocouples moved in Test 1 is 3, while 4
are the thermocouples moved in Test 2.
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Figure 5.7: Thermocouples Arrangement After Their Movement

The result of these movements is presented in figure 5.8. Immediately, it is clear that
the new thermocouples arrangement has produced the desired effect. In fact, it is pos-
sible to appreciate that, by moving the thermocouples away from the hot gas wall (z =
119 and 51 mm in Test 1 and z = 170, 119 and 51 mm in Test 2), the estimated heat
flux on the hot gas wall appears to be higher than the ones estimated in the Original
Test. This is due to the fact that in that positions the thermocouples were recording
temperatures which are too lower compared to the normal trends. Instead, by moving the
thermocouples closer to the hot gas wall (z = 153 mm in both tests) the opposite effect
is produced, i.e. the estimated heat flux appears to be lower and the peak is reduced.
Since it is impossible to judge the magnitude of thermocouples movements, it is not sure
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that it is the right way to get rid of the oscillations over in space. Anyway, it is clear
that the vibrations appearing during the hot run can seriously cause the movements of
the thermocouples from their original position, and since the code is really sensitive to the
smallest variations of temperatures, this phenomenon can be a real problem which calls
into question the effectiveness of an inverse method.
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Figure 5.8: Heat Flux Evolution Over z at Evaluation Time

5.1 Effect of the Different Nozzle Boundary
Conditions

This small section is dedicated to analyzing the effects on the solutions carried out by the
code caused by different boundary conditions on nozzle plane. Until now all performed
simulations have been characterized by the assumption of an adiabatic nozzle plane, i.e. no
heat flux has been assumed to flow from the combustion chamber to nozzle block or vice-
versa. The boundary condition used in the following simulations is a Neumann boundary
condition, the heat flux flowing through the wall is a priori set. Looking at the table 5.4
the simulations have been conducted, first, by applying a constant heat flux, but then a
more realistic behavior of the heat flux has been set. Recalling the heat diffusion equation
(3.2), the Neumann boundary condition can be expressed as:

∂T (x, t)
∂n

= f(x, t) ∀x ∈ ∂Ω (5.4)
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where n denotes the normal to the boundary ∂Ω (Nozzle plane), f is a known scalar
function and Ω ⊂ R3.

Hence a total of 5 simulations have been carried out as you can see from table 5.4, in the
first 4 different constant heat fluxes have been set on nozzle boundary, the last simulation
instead provide for a more realistic heat flux boundary condition, i.e. it is considered that
this heat flux must change in space and in time. All these boundary conditions are visible
in figure 5.9.

Table 5.4: Nozzle heat flux boundary condition MW/m2

Tests Boundary Conditions
Original Test 0

Constant
1 0. 3
2 0. 6
3 0. 8
4 1
5 f(x, t) Variable

Figure 5.9: Heat Flux Boundary Condition on Nozzle Plane for the Different Tests

The results of the simulations are presented below from figure 5.11 to figure 5.12.
Figure 5.10 shows the evolution of the heat flux over time for the upper middle point for
the different tests. Figure 5.11 shows the heat flux trend over z in the upper middle points
at t = 8. 3215 s. Finally, figure 5.12 shows the evolution of the computed temperature over
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Figure 5.10: Estimated Heat Flux Over Time for the Upper Middle Point at z = 0. 289 m
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Figure 5.11: Estimated Heat Flux Over z in the Upper Middle Points at t = 8. 3215 s

z at the time step t = 8. 3215. The first thing that becomes clear from these figures is that
assuming an adiabatic boundary condition on nozzle plane ensures an error in heat flux
and temperature estimation only restricted to the boundary zone, i.e. near the nozzle. In
fact, from injector to approximately z = 0. 25 m the heat flux evolution of all tests (1 to
5) is perfectly equal to the estimated heat flux coming from the Original Test, while from
z = 0. 25 m to the end of combustion chamber the heat flux starts to take different values.
In particular, one can note that while assuming an adiabatic boundary condition leads to
overestimate the heat flux, setting a constant heat flux of 1 MW/m2 causes the opposite

81



Chapter 5. Validation of Roq̇FITT

0 0.05 0.1 0.15 0.2 0.25 0.3

Axial length [m]

300

320

340

360

380

400

420

440

460

480

500

H
e

a
t 

F
lu

x
 [

M
W

/m
2
]

0.27 0.275 0.28 0.285 0.29

Axial length [m]

460

470

480

490

500

H
e

a
t 

F
lu

x
 [

M
W

/m
2
]

0

0.3

0.6

0.8

1

f(x, t)

Heat Flux Boundary Condition [MW/m
2
]

Figure 5.12: Computed Temperature Over z in Middle Point at t = 8. 3215 s

effect, i.e. leads to underestimate the heat flux. Instead, assuming a logarithmic evolution
in space with the peak in the center and a progressive raising in time of the heat flux
ensures that neither an overestimation nor an underestimation of the heat flux is made.
One can note also that assuming a constant heat flux boundary condition of 0. 6 MW/m2

can produce the same results of the more real variable boundary condition. Looking at
temperatures evolution is instead clear that higher heat flux in value comes from nozzle
plane higher temperature is reached on the boundary. The reason for which a high heat
flux boundary condition in value causes a lower heat flux on the hot gas wall is due to
the fact that since the code has to match the measured and computed temperatures in
thermocouples positions, by introducing more heat flux in the domain from the nozzle, a
lower heat flux in value has to come from nozzle to allow the matching of the temperatures
in thermocouples positions. In the case of constant heat flux of 1 MW/m2, the error in heat
flux estimation made by this overestimating analysis reaches values up to 12% compared
with the case in which the heat flux is set variable. Instead, if the boundary condition is
assumed adiabatic the error reach values up to 10%.

82



Chapter 6

Heat Flux Interpolation in
Five-Elements Combustion Chamber

Section 4.1.4 has returned that the problem of the oscillations in space mainly affects
the inverse method applied to the five-element combustion chamber. Figure 6.1 testify
that these oscillations can reach up to an amplitude of 10 MW/m2. However, Chapter 5
has proved that the Roq̇FITT code works well even when the heat flux which has to be
estimated can present an anomalous behavior. Therefore, since the most relevant difference
between single- and five-element is the geometry (the presence of five injectors instead of
one), possible errors in heat flux estimation can be attributed to the approach used to
interpolate the estimated heat flux parameters all over the boundary hot gas wall. The
approach used into the code to execute this step has been already introduced in Section
4.1.3.
Taking these previous ideas as the starting point, several attempts have been made to get
rid of these oscillations or at least to mitigate them. These approaches are all listed below:

• Matlab Tools for interpolation: the first idea was to avoid adding more points in
parameters planes for improving the interpolation and to interpolate directly the
parameters values all over the hot gas wall by using different Matlab tools for two
dimensions interpolation such as scatteredInterpolant and griddata;

• the second approach employed consists in a different expedient of adding more points
in parameters planes for improving the quality of the interpolation. This different
approach has been devised to mitigate the oscillations over z and at the same time
to preserve the original shape of the heat flux along x. Each further point has
been obtained by averaging not only the estimated heat flux parameters lying in the
same parameters plane, but by involving into the same average also the heat flux
parameters located along the combustion chamber;
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Figure 6.1: Example of Heat Flux Oscillations on the Upper Hot Gas Wall in Five-Element
Combustion Chamber

• Inverse Distance Weighting Interpolation Method (IDWM) is the last approach to
be implemented to improve the solutions of the inverse code.

The user can choose among all approaches listed above by simply switching some variables
into the new Matlab function, Parameters_Interpolation. The following sections go into
detail of each of these approaches.

6.1 Matlab Tools for Interpolation
The first idea was simply to interpolate directly the 66 estimated heat flux parameters all
over the hot gas wall by the 2D Matlab interpolation tools scatteredInterpolant or griddata.
Figure 6.3 shows the results obtained by using the first one Matlab command. The direct
interpolation of the heat flux parameters all over the upper hot gas wall returned a good
resolution of the heat flux but it raised a big issue: since the heat flux parameters points
were not located all over the upper hot gas wall, the points in which the heat flux had to
be estimated were outside the interpolation domain, hence it was impossible to determine
the heat flux in that points. Figure 6.2 helps to understand the reason for this lack of
information. Over the upper hot gas wall, according to the parameters points arrangement,
it is possible to distinguish between:

• Interpolation Domain and;

• Extrapolation Domain

84



Chapter 6. Heat Flux Interpolation in Five-Elements Combustion Chamber

0.025
0.03

0.035
0.04

0.045
0.05

0.055
0.06

0.065
0.07

0.075

x [m]

0.3

0.25

0.2

0.15

0.1

0.05

0  z [m]

-1

-0.5

0

0.5

1

Interpolation Domain
Extrapolation Domain

Figure 6.2: Interpolation and Extrapolation Domains on the Upper Hot Gas Wall

The first domain is represented by the entire physical upper hot gas wall enclosed between
the furthest parameters points, the second one, instead, lay between the furthest param-
eters points and the edges of the upper hot gas wall. For this reason, the problem passed
from being an interpolation problem to an extrapolation one.
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Figure 6.3: Example of Heat Flux Parameters Interpolation on the Upper Hot Gas Wall

At this point the extrapolation of the heat flux was conducted by using the griddata Matlab
command. An example of how the heat flux would presents on the upper hot gas wall as
a result of the extrapolation is shown in figure 6.4. It is immediately clear that also this
expedient presented some issues: since the extrapolation domain is too much wider than
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the interpolation domain, the heat flux, product of the extrapolation, appeared too high
or too low in values on the outer edges. In addition to these peaks clearly not physical,
the reason for which also this approach was abandoned is that looking at the trend of the
heat flux inside the interpolation domain it also appeared to be poor of information, i.e.
the linear interpolation between the points did not reproduce faithfully a real heat flux
trend.
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Figure 6.4: Example of Heat Flux Parameters Extrapolation on the Upper Hot Gas Wall

In order to extend the interpolation domain all over the upper hot gas wall and hence
to overcome the issues mentioned previously, the next step was to add more parameters
points. The code, in fact, provides for adding more parameters points without any lim-
itation. Figure 6.5 plots the new parameters arrangement obtained by implementing a
new function into the code Modifie_Parameters_Points. With a total number of 185
parameters points instead of 66, it was possible to let the interpolation domain coincide
with the upper hot gas wall and to use again the interpolation tool scatteredInterpolant
to implement a cubic interpolation all over the upper hot gas wall. In this way, the shape
of the heat flux was well preserved. Figure 6.6 shows how the new heat flux interpolation
appeared at a generic time segment, not only the oscillations still persisted but in most
of the parameters points the code did not return any value except 0. This result can be
explained by looking at the new Jacobi matrix JJ which had to be computed since the
number of parameters points changed with respect to the previous simulations.
Figure ?? compares the Jacobi coefficients J1,j and J67,j with j = 1, ,2 3. . . , 66. As already
explained in previous Chapters, a Jacobi or sensitivity coefficient, for example J1,j, gives
the information about how much the temperature raises in the j-th parameter point as
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New Parameters Points Arrangement

a consequence of a variation of the heat flux in 1-st parameter point, hence following
the same reasoning the Jacobi coefficient J67,j defines the effect on the j-th parameter
point in terms of variation of temperature caused by the variation of the heat flux in the
first parameter point added manually, i.e. the 67-th parameter point. Remember that in
all simulation carried out till now the number of parameters points was set equal to the
number of thermocouples (N = 66). Therefore, it is noticeable that since the magnitude
of the all new Jacobi coefficients is zero the code do not recognize the presence of any new
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parameters point, i.e. the variation of the heat flux in that points do not influence the
temperature field at all. Therefore, since adding new parameters points did not contribute
to the heat flux estimation, this approach had to be abandoned.
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Figure 6.7: Jacobi Coefficients J1,j and J67,j with j = 1, 2, 3. . . , 66 belonging to the new
Jacobi Matrix JJ

6.2 A Different Way of Computing New Heat
Flux Values for Interpolation

In Section 4.1.3 it has been explained in detail the method used by the code to improve the
interpolation of the heat flux parameters. The presence in most planes of few parameters
points necessitated adding more heat flux points and the result is a more precise interpo-
lation of the heat flux. The same criteria were adopted in this approach but now the new
heat flux points were obtained not only on the basis of the information coming from the
parameters lying on the same plane but also involving the heat flux parameters located
along the combustion chamber. Figure 6.7 explains through the use of arrows which are
the parameters points involved in the averages.
The number of heat flux points added in each plane depends on the number of parameters
points lying in the same plane (table 6.1). Hence since the total number of heat flux points
in each plane was set equal to 11, the number of points added was the 11’s complement.
The results obtained with this method are presented below. Figures 6.8 and 6.9 show the
heat flux evolution along z in middle point of horizontal side and the heat flux evolution
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(a) (b)

(c) (d)

Figure 6.8: New Points Added for Interpolation, the Heads of the Arrows Indicate the Points
Involved in the Average

Table 6.1: Number of points added in planes

N o of parameters points N o of points added
3 8
4 7
6 5
7 4

along x for several planes both at evaluation time t = 23. 398 s. In particular, figure
6.8 testify that by using this new interpolation the oscillations along z appear damped in
small size, i.e. the highest oscillation located between z = 0. 15 m and z = 0. 2 m from
injector plate is reduced from 10 MW/m2 to 9 MW/m2. Looking at figure 6.9, instead, it
is clear that by involving in the average also the parameters points along z, the heat flux
product of this average appears clearly too damped. By using the original interpolation,
the evolution along x testified the presence of five injectors, now the heat flux appears
flat in many points and do not allow us to identify the presence of injectors, for example,
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at z = 255 m from injector plate, the five oscillations have been replaced by just one big
oscillation with two flats..
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Figure 6.9: Heat Flux Evolution Along z in Middle Point of Horizontal Side at Evaluation
Time
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Figure 6.10: Heat Flux Evolution Along x for Different Planes at Evaluation Time
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6.3 Inverse Distance Weighted Interpolation
Even if the previous interpolation did not return any significant improvement of the so-
lution, the fact that the heat flux appeared damped in more points suggested finding a
more natty method for interpolating the heat flux taking into account also the information
provided by the other planes. Figure 6.10 helps to understand how the final approach has
been conceived:

• in each of those places where the heat flux parameters stand, further heat flux
points were added following the same procedure used in the original code and a
cubic interpolation along x was performed (blue points in figure 6.10);

• to estimate the heat flux between each parameters plane (grey points in figure 6.10)
an Inverse Distance Weighted Interpolation Method (IDW) was performed along z
in one dimension
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Figure 6.11: Heat Flux Points Product of The Interpolation: Blue Points Indicate the Heat
Flux Values Obtained With a Cubic Interpolation Along x, Grey Points Indicate Those

Obtained From Inverse Distance Weighted Interpolation

The Inverse Distance Weighted Interpolation is a deterministic interpolation technique
mainly used in the geo-statistical analysis for creating surfaces of maps from measured
points, it is based on either the extent of similarity or the degree of smoothing [1]. These
techniques can be divided into two categories:

• Global techniques use the entire data-set to calculate the new values;
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• Local techniques calculate the new values by using only the measured points lying in
a delimited area, which is smaller than the study area

In accordance with [1] an IDW is essentially based on the idea that "things that are close
to one another are more alike than those that are farther apart". Each value that has to be
predicted is obtained by using the measured values surrounding the prediction location,
the measured values that are closest to prediction location have more influence on the
predicted value than those farther away. The magnitude of this influence diminishes with
the distance.
In accordance with [4] let us assume the following general model for interpolation of Heat
flux values (hf):

hfx,z = f(x,z) (6.1)

It is recalled that the heat flux is estimated only on the upper hot gas wall where the
thermocouples lay, that’s way hf is a function of x and z. The generic equation for IDW
interpolations is:

hfx,z =
qn
i=1 hfi wiqn
i=1 wi

(6.2)

hfx,z is the heat flux point to be estimated, hfi are the known heat flux values belonging
to the interpolation domain, wi are the weights which define the relative importance
of individual heat flux values in the interpolation procedure. In this particular case as
mentioned previously the weights are inversely proportional to the distance:

wi = d−βx,z,i (6.3)

dx,z,i is the distance between hfx,z and hfi, and β is an exponent that can be set by the
user and defines the rate at which the weigths decrease with distance. If β is equal to 0
there is no decrease with distance, while higher values of β lead to a rapidly decrease of
weights for distant points. When β is equal to 2 the method is called Inverse Distance
Squared Weighted Interpolation (IDSW). The equation (6.2) becomes:

hfx,z =
qn
i=1 hfi d

−β
x,z,iqn

i=1 d
−β
x,z,i

(6.4)

The following part explain in detail how this method was implemented into the code. It
must be kept in mind that this method was applied only for estimating the heat flux
points (grey points in figure 6.10) between the parameter planes and was performed only
along the z direction by defining a local one dimension influence domain and hence a local
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maximum radius of influence (r). The exponent β has been set equal to 2. Figures 6.11
and 6.12 help to understand how the influence domains was defined for each node, it shows
the influence domain of the two nodes:

• Node (1,2) located at x = 0. 074 m and z = 0. 0043 m;

• Node (1,11) located at x = 0. 074 m and z = 0. 0425 m

It is clear that the maximum radius r vary point-to-point and can be set by the user. In
this simulation it has been set equal to 0. 0468 m for external points and equal to 0. 017 m
for internal points.
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Figure 6.12: Definition of Influence Domain for the Node (1,2) Lying on The Upper Hot Gas
Wall

Once that the 66 heat flux parameters are available from the updating process the function
Parameters_Interpolation arranges them in a Nz x Nx matrix (Parameters.plane_x_z)
which simulate the whole upper hot gas wall (Fig. 6.10). Hence further points are added in
each parameters plane to improve the cubic interpolation along x. Once the interpolation
along x is complete in all the 17 parameters planes the IDW interpolation starts. The code
scrolls the points from the nozzle to the block, when a node is selected the code calculates
the 4 distances d1,. . . , d4 and proceeds with the interpolation. These distances indicate
how far apart the considered node is from the 4 closest parameters planes. The results are
shown in the figures 6.14, 6.13 and 6.15.
Firstly, the Code has shown some difficulty in reaching the convergence in the first time
segments, more than once the threshold value of 100 iterations was reached (Fig. 6.15). In-
stead, Figure 6.13 shows the evolution of the estimated heat flux along z for middle points
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Figure 6.13: Definition of Influence Domain for the Node (1,11) Lying on The Upper Hot Gas
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Figure 6.14: Heat Flux Evolution along z in Middle Points at Evaluation Time, Comparison
Between Original Code and Modified Code with IDW

of the horizontal side at evaluation time t = 23. 398 s, unfortunately the method applied
did not mitigate the oscillation along z, on the contrary in some points the heat flux ap-
pears higher (z = 0 m) or lower (z = 0. 21 m) than the heat flux estimated in the original
code. Some peaks were damped but the trend appears chopped up (z = 0. 12, 0. 2, 0. 25 m).
Instead, figure 6.14 shows the heat flux evolution along x for several parameters plane. In
most planes, the heat flux is alike to the original heat flux, but in some cases (z = 204 m)
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the heat flux seems to not recognizes the presence of the five elements.
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Figure 6.15: Heat Flux Evolution along x for Different Parameters Planes At Evaluation
Time, Comparison Between Original Code and Modified Code with IDW
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Figure 6.16: Iterations Necessary for Convergence

The application of the three methods described above did not produce any acceptable
results. However, one thing is certain, the solution of the inverse code is very sensitive
to the approach used to transfer the information to all hot gas walls. The problem of
interpolation affects both the convergence and the shape of the heat flux.
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Conclusion

The modifications applied to the Roq̇FITT code (new time handling and Newton Rap-
shon method) have produced great results in terms of computational time-saving. With
the new time segment handling the code performs only one direct problem for each iter-
ation instead of two. By using an Intel Core i5-7200U CPU 2.50GHz the computational
time has been reduced up to 76% in single-element and up to 49% in five-element. The
Newton Rapshon method implemented into the code uses the Jacobi Matrix instead of
the Sensitivity Matrix. The difference between these two matrices is slight, the first is
calculated in one time-step equal to the computational dt, the second goes from zero to a
generic value chosen by the user depending on the phenomenon characteristic time. The
constancy of the Jacobi Matrix over time allows the code to calculate it only one time
outside the optimization loop. If the Jacobi Matrix was not constant it would have been
computed at each iteration and the computation would not be certainly feasible in terms
of time.
However, with these modifications no significant improvements have been detected with
regards to mitigation of the oscillations. Both in single- and five-element the heat flux
over time as well as over z has been almost the same of those obtained by the original code.

Therefore, the validation of the code has proved to be necessary to verify its ability to
detect any progressive changes of the heat flux over time in conjunction with its sudden
variations over z. The modified code returned absolutely good results in terms of conver-
gence despite the test was conducted by overestimating the normal random errors (the
standard deviation was set equal to 0. 15 K) added into the numerical thermocouples
measurements. However, smoothing thermocouples measurements over time by including
into the average more than three points allows reducing precisions errors, but even if the
code is really sensitive to the smallest variations in temperature measurements, precision
errors do not affect much the ability of the code of tracking the oscillation over z (it is
well detected and it is not amplified nor dampened). Greats variations in the results
were obtained, instead, by changing the thermocouples positions. The possibility that,
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during the hot run, vibrations can move the thermocouples from their original location is
testified by the last test carried out in the Validation Code Chapter. The code appears
very sensitive to the variations of thermocouples locations even if these are less then 1 mm.

Assuming an adiabatic boundary condition on nozzle plane implies errors in heat flux esti-
mation up to 10% in respect of assuming a more real heat flux distribution raising both in
space and in time. However, the errors are exclusively contained in the area surrounding
the nozzle.

The main goal of this thesis was to mitigate the oscillations appearing in the five-element
solutions. The heat flux shape as well as the convergence of the code are very sensitive
to the method used for interpolating the heat flux from parameter points to the hot gas
wall points. One of the most important findings in this study has been that even if the
Roq̇FITT code provided for adding more parameter points into the calculation, the sen-
sitivity problem returned that a raising in temperature in these points did not cause any
variation in heat flux. This aspect of the problem leads to the impossibility to increase the
density of parameter points and consequently to make the interpolation esier and more
accurate. The problem in this case is overdefined, the number of parameters points are
more than the number of thermocouples. Adding more parameters points implies adding
more thermocouples. The Inverse Distance Weighted Interpolation method tried to com-
bine the information coming both from parameters points along x and from parameters
points along z, i.e. belonging to other planes but with the same (x,y) coordinates. Altough
this method is more esteemed than the others it has not returned any good results.

The present study has revealed that an inverse method is a trustworthy tool for heat flux
estimation as long as the thermocouples measurements are precise and accurate. The
quality of the solution depends on the number of thermocouples used into the experiment.
It is advisable the use of more thermocouples in such a way to cover the entire boundary
domain and make the interpolation easier witouth any doubt on the heat flux shape.
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