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Abstract 
 

 

 

Space X has proved that space exploration does not belong only to the 

government anymore, but that private companies can also play an important role 

in it; this means that, in a future not so far from today, the number of launches will 

increase exponentially: each company will have its own mission, be it for scientific 

experiments, Earth observation or interplanetary expeditions. However, they will 

also need to find the cheapest way to achieve their goals and this study offers a 

realistic starting point: a long-term orbiting reusable platform. By revisiting a yet 

outdated NASA project, we developed an optimisation of a transfer between a 

feasible future space station and one of these platforms, considering a low thrust 

propulsion. In order to find a solution to reduce time and costs, we analysed how 

to take advantage of the 𝑗2 orbit perturbation due to the asphericity of Earth. The 

results of this work offer an accurate overview of the transfer and the values of time 

and costs for different feasible scenarios. 
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Chapter 1: 

 

The Project 
 

 

 

 

In this first chapter we would like to present the idea of our study, explaining 

the reason for it and the interest that a space company may have in it. However, to 

better understand it, it could be useful, as well as interesting, to first take a look at 

the history behind. In fact, the idea of this work is to reinvent a yet outdated and 

interesting old project colliding with the exponential technological progresses 

achieved throughout these years: it is a reconsideration of an old NASA’s purpose, 

unfortunately abandoned too soon, during the path towards the realisation of the 

International Space Station (ISS). 

In these first paragraphs, we will take an imaginary walk through the story that lead 

to the ISS focusing, however, on the period of an intermediate evolution of it named 

“Space Station Freedom”. The following paragraphs will give, in the end, a brief 

overview of the study itself, presenting its goals and the default scenario we 

considered. 
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1.1 The Historical Background 
 

 
 

1.1.1 The Origin of the Space Race 
 

 

Already hundred years before the conquest of the Moon by Apollo 

expeditions, scientists were thinking of and even promising the audience a future 

with outposts both on the Moon and orbiting the Earth. In the following years, these 

“outposts” slowly evolved into orbital platforms that could have been the base for 

future missions to Moon and Mars. 

 

During the last years of the 1860s, the writer Edward Everett Hale captivated the 

mind of the readers with the chance of living outside the Earth through his science 

fiction story, The Brick Moon [2], and its sequel Life in the Brick Moon [3]. Hale tells 

the story of a 200-foot diameter brick sphere designed to orbit the Earth, wherein 

characters could not only live, but also communicate with the Earth below. 

People started naming these outposts “space stations” only several years later, when 

German rocket precursor Hermann Oberth, in 1923, conceived a platform launched 

by massive rockets from Earth and orbiting it, that would had been the starting point 

for future missions [4]. His idea was shared by Austrian Herman Noordung who, in 

1929, envisioned a multiple modules outpost with each modulus serving its own 
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unique function[5]. Moreover, both in USA and Germany there were scientists, like 

Robert Goddard, and societies, like the “Verein für Raumschiffahrt” (Society for 

Space Travel), who were also thinking and starting to develop those “massive 

rockets” conceived by Oberth. Among the members of the VfR, German Army hired 

the scientist Wernher von Braun, with the goal of developing liquid rockets for the 

military.   

With the copious financial mean of the Reich before and during World War II, von 

Braun was able to finally develop a perfectly functioning rocket, the V-2. It is possible 

to imagine how important this achievement had been for the evolution of the space 

field, as well as for the War itself. Moreover, with the arrival of the Cold War, USA – 

where Von Braun moved after the end of the War - and USSR started evolving Von 

Braun’s creature. 

Through collaborations with Collier’s Magazine and Walt, von Braun brought his 

vision of a wheel-shaped space station to the public: 
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“Within the next 10 or 15 years, the Earth will have a new companion in the skies, a man-

made satellite that could be either the greatest force of peace ever devised, or one of 

the most terrible weapons of war – depending on who makes control of it. Inhabited 

by humans, and visible from the ground as a fast-moving star, it will sweep around the 

earth at an incredible rate of speed in the dark void beyond the atmosphere which is 

known as “space”. […] The speed at which the 250-foot-wide “wheel”-shaped satellite 

will move will be almost […] 20 times the speed of sound. However, this terrific velocity 

will not be apparent to its occupants. To them, the space station will appear to be a 

perfectly steady platform. From this platform, a trip to the moon itself will be just a step, 

as scientists reckon distance in space”. 

(WERNHER VON BRAUN, Crossing the last frontier, Collier’s Magazine 22 March 
1952) 
 

 

Figure 1: Von Braun's article, Collier's Magazine 22 March 1952 
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If we take a moment to think about what the ISS is today, it is easy to understand 

the genius of this man, who was able to plan something fulfilled only 40 years later, 

in 1998 with the launch of Zarya. 

Von Braun’s idea had such a great resonance in the scientific and space community 

that the National Aeronautic and Space Administration (NASA) was created to 

manage all the following spaceflight programs, with the collective goal of getting 

an astronaut in space before the USSR. NASA was also thinking about a future space 

station, able to help reaching this goal but, after the success of Vostok I mission, 

which brought Yuri Gagarin as first into space, NASA had to change its plan and 

aim at something more than simply taking a man in space: let him walk on the 

Moon.  

Throughout the ‘60s, NASA focused on Moon landing, but the space station was 

never truly off the drawing board.  

 

 

  



Filippo Grisot – Master Thesis 

 

Chapter 1 – The Project 

6 
 

1.1.2 The Space Shuttle and Skylab 
 

 

Few months before the Apollo 11’s launch, NASA proposed a 100-man space station 

called “Space Base” (Figure 2). It was conceived as an international facility for 

researches, applications and industry-sponsored microgravity experiments. 

Moreover, it could serve as support for other space operations such as servicing 

unmanned satellite to ferry astronauts to the Moon.  

 

 

Figure 2: NASA's Space Base [a] 

 

Even though it was scheduled to be completed by 1975, NASA soon realised that 

the cost of both building and supplying Space Base would exceed the construction 

cost of the station itself. Therefore, NASA had to plan a cheaper way to achieve the 
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construction of a space station without changing the concept of it. The main idea 

was to use a reusable vehicle able to support multiple missions, in order to have a 

long-term profit from it. This was the birth of the Space Shuttle program [7].  

However, since this argument diverts from our study, we will steer our attention to 

the path towards the ISS. The step that followed “Space Base” was the launch of a 

short-term space station named “Skylab”[9] (Figure 3). 

From its launch on May 14, 1973, until its disposal on July 11, 1979, the Skylab 

program represented a key proof that humans could live and work in outer space 

for long periods of time. According to the original plan, the station was supposed 

to remain in space for more than 15 years, even after the last Skylab mission, 

becoming not only the greatest solar observatory of its time, but also a laboratory 

for microgravity and medical experiments, an Earth-observing facility as well as a 

home for the resident crew. Unfortunately, an intense solar activity forced Skylab to 

re-enter and disintegrate in Earth's atmosphere much sooner than expected.  

Three were the Skylab manned missions, with a crew of three astronauts each. Pete 

Conrad, Paul Weitz and Joe Kerwin constituted the first crew, which spent 28 days 

in orbit. The second crew - Alan Bean, Jack Lousma and Owen Garriott - spent 59 

days whereas the third - Jerry Carr, Bill Pogue and Edward Gibson - spent 84 days. 

This final record was broken only a couple of decades later with the Shuttle-Mir 

program.  

 



Filippo Grisot – Master Thesis 

 

Chapter 1 – The Project 

8 
 

 

 

Figure 3: The structure of Skylab [b] 

 

 

After the short success of Skylab NASA realised that it would have been impossible 

to economically support a simultaneous building of a reusable space shuttle and of 

a long-term space station. Therefore, the American space agency was forced to 

make a choice. And it opted for the shuttle. 
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1.1.3 A World for… Freedom 
 

 

After the huge success of the Space Shuttle, NASA started a campaign with the goal 

of building alliances with international partners, to reduce the costs for the 

construction of the space station. In 1973, the United States and Europe entered 

into a partnership wherein the European Space Agency (ESA) had the task to 

develop mini laboratory modules called Spacelabs. Two years later, Japan and 

Europe signed on to contribute modules while Canada agreed to supply a 

manipulator arm. Everything seemed to go exactly the way it was supposed to, but 

soon new problems surfaced.  

Due to an increasing cost – the original estimation was around a third of the 

effective predicted cost - as well as the Challenger disaster, the original design of a 

dual keel arrangement with a central truss had to be abandoned and replaced by a 

single truss design to guarantee more safety. The project was officially finalized in 

1987 and American president Reagan gave it the name “Freedom” (Figure 4). 

Unfortunately, the Freedom project was soon discarded due to funding 

complications: the cost of it increased to 38.3 billion dollars, much more than the 8 

billions previously forecasted. However, it also represented the foundation for the 

last and definitive project of a space station that lead to the achievements of the 

ISS. 
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Figure 4: Space Station Freedom [c] 

  

.  

The ISS began to take shape in 1998. On November 20th, the Zarya Control Module 

was launched. It was the first piece of the station onto which later modules were 

added. On October 30th 2000, NASA launched, on a Soyuz rocket, the crew 

composed of Yuri P. Gidzenko, William M. Shepherd, and Sergei K. Krikalev, who 

became the first to live and work on board the orbiting outpost. Another 32 

assembly missions had to be accomplished before the completion of the ISS, 

bringing the dream of a space station to life more than a century after Hale’s 

imagination.  
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1.2 The Orbital Manoeuvre Vehicle 
 

 
 

Around a decade before Freedom was developed and while the Space Shuttle 

project, excessive solar activity and, consequently, cumulative drag, caused NASA’s 

Skylab to suffer an early deorbit schedule, on July 11th, 1979. Therefore, many 

contingencies were explored in the last days of its orbital life to try to somehow 

reboost it and postpone its disposal. One of these solutions consisted in grabbing 

Skylab and dragging it to a safe orbit with a system named Teleoperator Retrieval 

System (TRS) [10]. 

No solution was found in time to save Skylab, but NASA decided to keep conducting 

advanced studies on what was then called Space Tug, i.e. a spacecraft (S/C) capable 

of transferring objects, such as satellites, payloads or debris, from an orbit to 

another. However, NASA had to temporarily suspend its development in order to 

focus entirely on the Space Shuttle program. Once the Shuttle was operative, NASA 

got back again on Space Tug projects, renaming it Orbital Manoeuvring Vehicle 

(OMV) (Figure 5) [11] [12] [13].   
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Figure 5: The Orbital Manoeuvring Vehicle 

 

The OMV was meant to be a reusable, remotely controlled, free-flying vehicle and 

able to perform a wide range of on-orbit missions and services in support of orbiting 

spacecrafts. It should have represented an important extension of the Space 

Transportation System (STS), capable of operating from the Shuttle, the Space 

Station (Freedom at that time), or simply being space based. 

The project consisted of a 5m - diameter spacecraft, equipped with reaction control 

system, avionics systems for electrical power, communications, data management, 

guidance, navigation, and a 6-degree of freedom control. The estimation of its 

weight was around 3000 Kg. The OMV was planned to be powered with primary 

batteries as well as by solar array panels to face potential long-term missions. NASA 

also designed to locate all critical avionics components in accessible locations to 

permit an on-orbit maintenance and repair capability.  
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It is easy to understand the benefits offered by OMV: it was capable of retrieving a 

spacecraft to the Shuttle or to Freedom and then redeploy it to its operational 

altitude after the maintenance; it could operate refuelling and hardware 

replacement to on orbit assets and also serve as a payload support platform. No 

orbital refuelling of the OMV was assumed, since it could contain enough fuel to 

get back itself to the departure base at the end of the mission. 

The OMV development program started in 1986 and its designed lifetime was of 10 

years, with over 40 launches/landings. However, even though the first flight was 

scheduled on 1991, it never took place because the program was cancelled at the 

beginning of ‘90s. 
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1.3 European Retrievable Carrier 
 

 
 

EURECA (European Retrievable Carrier)[15][17][f] was a free-flying retrievable 

carrier of experiments which was launched and recovered by the Space Shuttle. It 

was developed by Deutsche Aerospace (DASA) on behalf of ESA as a re-usable, 

multi-disciplinary platform for microgravity, science and technology missions. 

EURECA development began in 1984: the initial plan considered 5 missions of an 

approximately 6 - 9 months duration each and an on-ground turn-around time of 

maximum two years. 

Its first mission started on July 31st, 1992 when EURECA left Cape Canaveral launch 

base as part of the payload in the Space Shuttle Atlantis cargo bay. Atlantis 

deployed EURECA on August 2nd using the Remote Manipulator System (RMS) and 

the satellite raised its orbit to the final altitude of 508 Km. The entire mission was 

monitored from the ESA Mission Control Centre in Darmstadt (Germany) 

throughout all phases, but some payload operations were provided also by the 

Microgravity User Support Centre of the Deutsches Zentrum für Luft- und 

Raumfahrt  (DLR) in Cologne (Germany). The payload included 16 active 

instruments: six for microgravity research, two for space radiation research, five for 

space science research and three for technology demonstrations. 
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Although great importance was given to its abundant and continuous data 

generation, two were the primary objectives of EURECA mission: 

1) the post-flight analysis, in ground-based laboratories, of biological and 

material samples collected during the mission; 

2) the ability of the spacecraft and its payloads to be ready for a new flight in a 

quite limited lapse of time. 

 

Figure 6: EURECA's Flight Scenario [g] 

 

EURECA started its disposal operations around the half of May 1993, about a month 

before the lift-off of the Shuttle Endeavour, designated to bring EURECA back 

home. EURECA descended to a parking orbit of 474 Km and then waited three days 

before the rendezvous with the Shuttle. Endeavour’s crew completed the retrieval 

mission, grabbing EURECA with the RMS and stowing it in the cargo bay. 

Endeavour’s landing took place on July 1st, 1993. 
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Bringing EURECA back to Earth proved to be an invaluable contribution not only to 

payload and mission product owners, but also to technical companies dealing with 

in-orbit performance validation and, in particular, with the identification of the 

causes of in-orbit anomalies. Results of spacecraft in-flight anomalies investigations 

often point to several potential sources of failure which can be sufficient for 

workaround mission continuation but are unable to reveal the real causes; only post 

flight on-ground investigations provide this information. Results of this nature from 

the first EURECA flight have provided important contributions for the improvement 

of following satellites.  

  

Although EURECA would have been a valid low-cost option as on orbit multiple 

experiments platform, the project was abandoned by NASA after the first flight to 

fully concentrate on the realisation of the ISS. 

We have revisited this idea, trying to give a modern interpretation of it. 
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1.4 The Scenario 
 

 
 

 

We would like to first show the scenario we considered, which also represents 

the simplest one, aware that any other scenario might be easily created from ours. 

We will then present a brief overview of our study, which will be fully deepen in the 

following chapters.  

 

 

 

Figure 7: The Scenario 
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As already mentioned, the scenario of our study is very simple and consists of two 

elements (Figure 7): 

- “New_ISS” is a new concept for the ISS; this study needs, indeed, to look 

beyond the forthcoming future, considering a disposal of the current ISS and 

a following feasible new similar outpost positioned on an orbit not so 

different from the previous one; 

 

- “Platform” represents one of the orbiting long-term reusable platform 

presented in the abstract. 

The two satellites present the same inclination of 51.6° - the one of the current ISS 

– but different altitude and Right Ascension of the Ascending Node (RAAN). 

RAAN is the angle from the origin of longitude of the reference plane (directed 

towards Aries constellation) to the orbit's ascending node which is the point 

where the orbiting body crosses the reference plane, while going "upward". 

Considering the 2D vision of the ground track, the RAAN shifts the ground track 

left and right. 

 

Figure 8: Orbital Angles [i] 
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New_ISS has an altitude of 500 km (very similar to the current one) whereas the 

platform is positioned above of it, but the altitude is not given because different 

values of it will be considered. The same happens with the RAAN difference. 

For the transfer, a low-thrust propulsion is considered. 

We have set some default parameters for the transfer (S/C), to be able to give 

effective numerical results:  

- Since we are considering low-thrust propulsion, we used a specific impulse 

(𝐼𝑠𝑝) of 2500 𝑠, which represents a mean value amongst those available 

nowadays.  

- The thrust value is 0.01 𝑁. 

- The mass of the S/C is 15 𝐾𝑔 

 

All these values may affect the final results with different intensity: although this 

problem diverts from the goal of this work, in Chapter 3 we decided to give an 

overview of the influence of each parameter on the final results so that a feasible 

interested space company may have a more accurate prediction of the interested 

case.  
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1.5 The Study at a Glance 
 

 
 

We would like to summarise in these few lines the study we have conducted 

throughout these months. 

Our goal was to optimise the transfer between two orbits with same inclination but 

different RAAN, considering a low thrust manoeuvre. Key objective of the work was 

to include in the optimisation the perturbation 𝑗2, which will be briefly presented in 

the next chapter. It has a really important role in this study, since it is possible to use 

it to save fuel and time simultaneously.  

The first step was to analytically obtain an optimisation of Edelbaum equations 

(introducing the contribution of 𝑗2) through the Optimisation Control Theory (OCT) 

discussed in the next chapter; then, we compiled a MATLAB code to perform the 

integration of the OCT differential equations  using a Genetic Algorithm to converge 

to the global optimum; finally, we generated various graphs to summarize the 

results of the study and probed different scenarios to offer a broader overview of 

the results themselves. 
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Chapter 2: 

 

The Theory Behind 
 

 

 

 

In this chapter we would like to present the basis of our study: everything the 

reader needs to know to better understand the presented work. We will take stock 

of most of the theoretical steps we walked through in these months that allowed us 

to reach the results presented in the next chapter. 

First, we will present the equations of motion, called Lagrange’s Equations or 

Planetary Equations[1] [2], which represent the cornerstone of our work and the point 

where it all began; then, a brief overview of the perturbation 𝑗2
[2] [5] will be given in 

order to understand the reason of our keen interest of it; at a later time, the 

Optimisation Control Theory (OCT) will be presented[6] [7] [8], used to perform the 

optimisation of the equations, considering the perturbation 𝑗2; finally, we will tackle 

the Boundary Value Problem (BVP)[c] [d] and explain one possible method to solve it, 

the Genetic Algorithm[13] .  
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2.1 Planetary Equations of Motion 

 

 

 

In 1808 the Italian mathematician Giuseppe Lodovico Lagrangia, better known 

as Joseph-Louis Lagrange, performed the theory of variation of parameters, which 

still represents one of the most important methods for computation of perturbed 

orbits. The cornerstone of this theory is the concept of osculating orbit, which is the 

gravitational Kepler orbit (i.e. ellipse or other conic) that the S/C would have if 

perturbations were not present. Hence, it is the orbit that coincides with the current 

orbital state vectors 𝑟 (position) and �⃗⃗� (velocity).  

The concept of osculating orbit can be remarkably useful: any variation of the 

osculating elements may be written referred to the perturbating forces and this 

allows to better physically understand the significance of their effects on the orbit. 

Orbital Keplerian parameters (Semimajor axis 𝑎, Inclination 𝑖 , Eccentricity 𝑒, 

Argument of periapsis 𝜔 and RAAN Ω) are constant for Keplerian orbit and can be 

uniquely determined by the position 𝑟 and the velocity �⃗⃗�.  

Lagrange Equations (Edelbaum equations[3] are a particular type of them) are first-

order differential equations, expressing the Keplerian elements variations, due to 

perturbing forces, with respect to time. There are many versions of them, since they 

can be rewritten in many ways depending on the study itself and on the reference 
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system. These equations do not have any analytical solution but rather it is 

necessary to resort to numerical algorithms or to analytical approximating 

techniques. This is possible due to the fact that orbital elements are constant for a 

Keplerian orbit. 

We will first see the general formulation and then the one rewritten referring to our 

study.  

𝑑𝑎

𝑑𝑡
= −

𝜕�̃�

𝜕𝜏

2𝑎2

𝜇
 

𝑑𝑒

𝑑𝑡
=  −

𝑎(1 − 𝑒2)

𝜇𝑒

𝜕�̃�

𝜕𝜏
−
1

𝑒
√
1 − 𝑒2

𝜇𝑎

𝜕�̃�

𝜕𝜔
 

𝑑𝑖

𝑑𝑡
=

1

√𝜇𝑎(1 − 𝑒2) sin 𝑖
(cos 𝑖

𝜕�̃�

𝜕𝜔
−
𝜕�̃�

𝜕Ω
) 

𝑑𝜔

𝑑𝑡
= √

1 − 𝑒2

𝜇𝑎
(
1

𝑒

𝜕�̃�

𝜕𝑒
−

cot 𝑖

1 − 𝑒2
𝜕�̃�

𝜕𝑖
) 

𝑑Ω

𝑑𝑡
=  

1

√𝜇𝑎(1 − 𝑒2) sin 𝑖
 
𝜕�̃�

𝜕𝑖
 

𝑑𝜏

𝑑𝑡
=
𝜕�̃�

𝜕𝑎

2𝑎2

𝜇
+
𝑎(1 − 𝑒2)

𝜇𝑒

𝜕�̃�

𝜕𝑒
 

 

where: 

General formulation of the Lagrange’s Planetary Equations 

 

(2.1) 

𝑎 = 𝑆𝑒𝑚𝑖𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 

𝑡 = 𝑇𝑖𝑚𝑒 

𝜏 = 𝑇𝑖𝑚𝑒 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑏𝑜𝑑𝑦 𝑖𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑒𝑟𝑖𝑐𝑒𝑛𝑡𝑒𝑟 

𝜇 = 𝐺𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑒 = 𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑡𝑦 

𝜔 = 𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑜𝑓 𝑃𝑒𝑟𝑖𝑎𝑝𝑠𝑖𝑠 

𝑖 = 𝐼𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

Ω = 𝑅𝐴𝐴𝑁 
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Particular attention should be paid to �̃�, which represents the disturbing function. 

This parameter is introduced to simplify the equations since, if every perturbing 

forces are expressible through a potential, the equation of motion of a satellite can 

be written in the form 

𝑑2𝑟

𝑑𝑡2
+
𝜇

𝑟3
�̂� = ∇�̃�                                               (2.2) 

 

 

Some observations might be done looking at this first formulation (Eq. 2.1):  

- The variation of the semimajor axis is the only one that does not present 

dependency on any other Keplerian parameters except for 𝜏; it depends only 

on the initial semimajor axis and the perturbing forces; 

- Eccentricity is accountable for the variation of the other parameters, except 

for the Semimajor axis; 

- Variation of 𝑖 and Ω are very similar, which will be even more clear in the 

next formulation.  
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As previously mentioned, Eq. 2.1 represent the planetary equations in terms of the 

classical Keplerian elements. However, a Keplerian orbit can be described as a 

function of any other six independent parameters, combination of the classical 

elements. Therefore, it may be useful for us to consider these six different 

parameters: 

𝛼1 = −𝜇/2𝑎                                 𝛽1 = −𝜏 

𝛼2 = √𝜇𝑎(1 − 𝑒2)                     𝛽2 = 𝜔                               (2.3) 

𝛼3 = √𝜇𝑎(1 − 𝑒2) cos 𝑖            𝛽3 = Ω    

 

One can easily notice that 𝛼1 represents the total energy, while 𝛼2 and 𝛼3 the 

angular momentum and its component about the z-axis, respectively. 

With this set of parameters, Lagrange’s equations become very simple: 

𝑑𝛼1
𝑑𝑡

=
𝑑�̃�

𝑑𝛽1
    ,     

𝑑𝛽1
𝑑𝑡

= −
𝑑�̃�

𝑑𝛼1
 

𝑑𝛼2
𝑑𝑡

=
𝑑�̃�

𝑑𝛽2
    ,     

𝑑𝛽2
𝑑𝑡

= −
𝑑�̃�

𝑑𝛼2
                                    (2.4) 

𝑑𝛼3
𝑑𝑡

=
𝑑�̃�

𝑑𝛽3
    ,    

𝑑𝛽3
𝑑𝑡

= −
𝑑�̃�

𝑑𝛼3
  

This particular form of the equations is named “canonical” and the perturbing 

potential is called “perturbed Hamiltonian”. In deriving the planetary equations, it 

may be useful to consider that:  

𝑑�̃�

𝑑𝛼𝑖
= 𝑎𝑥

𝜕𝑥

𝜕𝛼𝑖
+ 𝑎𝑦

𝜕𝑦

𝜕𝛼𝑖
+ 𝑎𝑧

𝜕𝑧

𝜕𝛼𝑖
                              (2.5) 
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• 𝑉0 is the orbital velocity; 

• 𝜈 is the true anomaly. 

where 𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧 are the components of the perturbing acceleration along the 

respective axis. Since partial derivatives are easy to determine, the equations can be 

written in terms of the perturbing acceleration; thus, we can define these 

acceleration components as follows: 

𝑨𝒖 = 𝑨 𝒔𝒊𝒏𝜶 𝐜𝐨𝐬𝜷 

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑟𝑏𝑖𝑡𝑎𝑙 𝑝𝑙𝑎𝑛𝑒 𝑎𝑛𝑑 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑡𝑜 𝑡ℎ𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣𝑒𝑐𝑡𝑜𝑟 

𝑨𝒗 = 𝑨 𝒄𝒐𝒔𝜶 𝐜𝐨𝐬𝜷 

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑎𝑙𝑜𝑛𝑔 𝑡ℎ𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣𝑒𝑐𝑡𝑜𝑟 

𝑨𝒘 = 𝑨𝐬𝐢𝐧𝜷 

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑢𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑏𝑖𝑡 𝑝𝑙𝑎𝑛𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑏𝑖𝑡𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 

 

It is now possible to rewrite the last formulation of the planetary equations, setting 

the stage for the next chapter. This formulation has been written assuming small 

eccentricity (semi-circular orbits) and small inclination. 

 
𝑑𝑎

𝑑𝑡
=
2𝑎𝐴𝑣
𝑉0

 

𝑑𝑒

𝑑𝑡
=
2 cos 𝜈 𝐴𝑣 + sin 𝜈 𝐴𝑢

𝑉0
 

𝑑𝑖

𝑑𝑡
=
cos(𝜔 + 𝜈) 𝐴𝑤

𝑉0
                                                         (2.6) 

𝑑Ω

𝑑𝑡
=  
sin(𝜔 + 𝜈)𝐴𝑤

𝑖𝑉0
 

𝑑𝜔

𝑑𝑡
=

2 sin 𝜈 𝐴𝑣
𝑒

+
cos 𝜈 𝐴𝑢

𝑒
−
sin(𝜔 + 𝜈)𝐴𝑤

𝑖
𝑉0

 

Edelbaum Planetary Equations 
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2.2 Orbital Perturbations 
 

 

 

As we already described, different forces act on the orbiting satellite and these 

forces are responsible for the variation of the classical elements we mentioned 

about in the previous paragraph. These forces, however, are considerably less 

intense compared to the gravitational one; for this reason, they are, usually, 

neglected, especially with high-thrust transfers. In our case, instead, the transfer 

lasts for a longer lapse of time, long enough to make these effects significant (here 

one can better understand the difference between the real orbit, i.e. perturbed, and 

the osculating one). 

Orbital perturbation[a] [b] can be classified in terms of their effect on classical 

elements:  

- Secular variations represent a linear variation in the elements; 

- Long-term (or -period) variations are periodic perturbations, having a period 

greater than the orbital period; 

- Short-term (or -period) are those with a shorter period than the orbital one. 

We will focus on the first group because they represent those that are, usually, 

neglectable.  
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2.2.1 Third-Body Perturbation 
 

 

The first perturbation is named Third-body perturbation and represents the effect 

of the combination of Sun and Moon’s gravitational forces. This disturbance causes 

periodic variations in all the orbital elements, but only three of them are subject to 

secular variations and only two have relevant consequences on the spacecraft orbit: 

the variation of the longitude of the ascending node Ω and the argument of perigee 

𝜔. The higher is the orbit, the more intense is the effect. For quasi-circular orbits, 

these variations can be expressed as: 

   𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 {
Ω𝑚𝑜𝑜𝑛 = −

0.00338 cos(𝑖)

𝑛

Ω𝑠𝑢𝑛 = −
0.00154 cos(𝑖)

𝑛

 

(2.7) 

𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑜𝑓 𝑃𝑒𝑟𝑖𝑔𝑒𝑒

{
 

 ω𝑚𝑜𝑜𝑛 =
0.00169(4 − 5 sin2(𝑖))

𝑛

ω𝑠𝑢𝑛 =
0.00077(4 − 5 sin2(𝑖))

𝑛

 

 

where 𝑖 is the orbit inclination, 𝑛 is the number of orbit revolutions per day, while 

Ω and 𝜔 are in degrees per day. 
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2.2.2 Atmospheric Drag 
 

 

The second perturbation is due to the atmospheric drag. This effect is clearly more 

intense closer to Earth and this is usually used for deorbiting and disposal 

operations at the end of S/C’s life. The drag force 𝐷 on a body acts in the opposite 

direction of the velocity vector and is given by the equation 

𝐷 =
1

2
𝑆𝐶𝐷𝜌𝑉

2                                                       (2.8) 

where 𝐶𝐷 is the drag coefficient, 𝜌 is the air density, 𝑉 is the body’s velocity, and 𝑆 

is the area of the body normal to the flow.  

Solar activity has also a relevant effect on atmospheric density, which arises with 

high solar activity. Although solar activity has a slight effect when proximal to Earth, 

at satellite altitudes the density variations between solar maximum and solar 

minimum are very important; a consequence of this is that satellites decay more 

rapidly during periods of solar maxima and much slower during solar minima. 

For quasi-circular orbits we can approximate the changes in Semimajor axis, period, 

and velocity per revolution using the following equations: 

Δ𝑎𝑟𝑒𝑣 =
−2𝜋𝐶𝐷𝑆𝜌𝑎

2

𝑚
 

Δ𝑇𝑟𝑒𝑣 =
−6𝜋2𝐶𝐷𝑆𝜌𝑎

2

𝑚𝑉
                                          (2.9) 

      Δ𝑉𝑟𝑒𝑣 =
𝜋𝐶𝐷𝑆𝜌𝑎𝑉

𝑚
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2.2.3 Solar Radiation Pressure 
 

 

Third perturbation is due to Solar Radiation Pressure (SRP) which causes variation 

in all of the orbital elements. The intensity of this effect (acceleration) can be 

quantified through this equation: 

𝑎𝑅 = −
4.5 ∙ 10−8 𝑆

𝑚
                                                 (2.10) 

For low orbit, atmospheric drag results greater than solar radiation acceleration, for 

high orbit occurs the opposite. 

 

 

2.2.4 Asphericity of the Earth 
 

 

The last perturbation [16] [2] [5] explained in this chapter is the one that most we are 

interested in. Generally, we assume that Earth is a perfect sphere, especially when 

writing the 2-body equations of motion; however, it is well known that Earth has a 

particular shape named Geoid which is oblate. This oblateness is responsible for this 

perturbation: the excess of mass at the equators generates a slight torque on the 

satellite about the centre of the Earth, which causes the line of nodes (and 

consequently the orbital plane) to move eastward for retrograde orbits and 

westward for direct ones.  
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(2.11) 

To derive the equation that we will use in the optimisation to add the 𝑗2 effect, it is 

necessary to define the gravitational potential of the Earth, expressed in the 

geocentrical equatorial frame: 

𝜀𝑔 = −
𝜇

𝑟
{1 −∑𝑗𝑛 (

𝑅𝐸
𝑟
)
𝑛

𝑃𝑛(sin 𝐿𝑎𝑡) −

∞

𝑛=2

+∑∑ 𝑗𝑛,𝑚 (
𝑅𝑒
𝑟
)
𝑛

𝑃𝑛
𝑚(sin 𝐿𝑎𝑡) cos(𝐿𝑜𝑛 − 𝐿𝑜𝑛𝑛,𝑚)

𝑛

𝑚=1

∞

𝑛=2

}  

𝑅 (position), 𝐿𝑎𝑡 (latitude) e 𝐿𝑜𝑛 (longitude) are the spherical coordinates of the 

S/C in the reference system. 𝑃𝑛 represents the n-degree Legendre Polynomial, 

expressed by Eq. 2.12 while 𝑃𝑛
𝑚 is the associated Legendre function of degree 𝑛 

and order 𝑚 as defined by Eq. 2.13 

𝑃𝑛(𝑥) =
1

2𝑛𝑛!

𝑑𝑛

𝑑𝑥𝑛
[(𝑥2 − 1)]                                    (2.12) 

𝑃𝑛
𝑚(𝑥) = (−1)𝑚(1 − 𝑥2)

𝑚
2
𝑑𝑚

𝑑𝑥𝑚
[𝑃𝑛(𝑥)]                      (2.13)  

𝑗𝑛 , 𝑗𝑛,𝑚 and 𝐿𝑜𝑛𝑛,𝑚 are numerical coefficients and particular attention should be 

given to the first two. 𝑗𝑛,𝑚 are called tesseral (if 𝑛 ≠ 𝑚) and sectorial (if 𝑛 = 𝑚) 

harmonics and are responsible for the deviation in the East-West direction. This 

effect is, however, generally considered unimportant since it is cancelled by the 

rotation of the Earth with respect to S/C frame, with exception of GEO satellites, 

where Earth seems fixed and this effect is very important. 
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Zonal harmonics 𝑗𝑛 describe the North-South deviation and are all in the order of 

10−6, except the second, 𝑗2, which is three orders of magnitude greater and has a 

value of 1.082639 ∙ 10−3 : this is why its effect is definitely less neglectable than 

the others’. 

Although in the general perturbation method three orbital elements are affected by 

the variation of 𝑗2 (𝜔 , 𝛺 and 𝜏), the only effect we are interested in is described by: 

𝑑𝛺

𝑑𝑢
= −3𝜇𝑗2𝑅𝐸

2
cos 𝑖 𝑠𝑖𝑛2 𝑢

𝑟3√𝜇𝑝

𝑑𝑡

𝑑𝑢
                                   (2.14) 

where 𝑢 = 𝜔 + 𝜈 and 𝑝 is the semi latus rectum.  

Knowing that 

𝑑𝑢

𝑑𝑡
=
√𝜇𝑝0

𝑟0
2                                                        (2.15) 

where the index “0” refers to unperturbed conditions, it is possible to easily obtain 

the variation in time of the Right Ascension of the Ascending Node which will be 

used in the optimisation in the next chapters. 

 

 

We have characterised 𝑗2 perturbation analytically, but it may also be useful to 

understand it physically, in order to help those less space-familiar readers to 

appreciate the great interest we have in it. For this reason, we would like to compare 

the scenario shown in Chapter 1 (Figure 7) and the situation of the same scenario 

one and two months later (Figures 9 and 10). 
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Figure 9: The scenario after 1 month 

 

 

 

 

Figure 10: The scenario after 2 months 
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j2 perturbation causes a rotation of the orbit plane and, as we said, the lower is the 

orbit, the greater is the effect. Considering two orbital planes with different heights, 

there will be a mutual rotation of them, which means that there will be a certain 

moment in which the two planes will coincide. It is easy to understand that the 

smaller is the mutual angle between the two orbital planes, the cheaper will be the 

transfer between them (since Hohmann coplanar transfer is the cheapest transfer 

possible). Therefore, the goal of this work is to study how to take advantage of this 

effect to reduce the RAAN difference and consequently time and costs of the 

manoeuvre between the two orbits. 
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2.3 Optimal Control Theory 
 

 

 

 

Throughout the last 100 years, one of the biggest problem space scientists 

have faced, has been the very high cost of a space mission, even the simplest 

“imaginable”. Therefore, they had to find a solution to this problem and a method 

capable of finding the cheapest way to perform the entire mission or, in other terms, 

the way to maximise the final mass. English scientist Derek Franck Lawden’s work 

Optimal Trajectories for Space Navigation [9] in 1963 has represented the opening 

key to the door of space optimisation and offered space scientists an important 

basis to start from. In this paragraph we would like to give an introduction to the 

Optimal Control Theory and to the steps followed in our study. 

The Optimal Control Theory (OCT) [6] [7] [8] is an example of numerical analysis to 

perform the optimization; fields using this theory are many, due to its versatility, 

and space trajectories represents one of them. In Chapter 3 we will present the 

optimisation we have performed using this method. 

OCT may be applied to a generic system of state equation(s) 

 
𝑑𝑥

𝑑𝑡
= �̇� = 𝑓(𝑥, 𝑢, 𝑡)                                                     (2.16) 
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where 𝑡 (time) is the independent variable, 𝑥 is the n-component state variables 

vector whereas 𝑢 represents the m-component control variables vector. Usually, 

state equations are given together with the boundary conditions which may 

represent constraints imposed to the solution of the problem. Boundary conditions 

are usually expressed as a system of 𝑞 algebraic equations (with 𝑞 ≤ 𝑛 + 2) like 

𝜓 (𝑥0𝑗 , 𝑥𝑓𝑗 , 𝑡0𝑗 , 𝑡𝑓𝑗) = 0                                        (2.17)   

The subscript "𝑗" was introduced due to the fact that, in our study, it may be suitable 

to divide the trajectory into n parts (arches) chosen in order to guarantee the 

continuity of the variables, so that 

 

 
Figure 11: Subdivision of the trajectory 

 

 

Subscriptions "𝑜𝑗" and “𝑓𝑗" indicate the start and the end of the jth interval.  
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The optimal problem consists in determining the solution 𝑥(𝑡) that maximises the 

function expressed by Eq. 2.16, although it is possible to consider a minimization by 

simply changing the sign of 𝜙 and 𝜑. 

𝐽 = 𝜑 (𝑥(𝑗−1)+ , 𝑥𝑗−, 𝑡(𝑗−1)+ , 𝑡𝑗−
) +∑∫ 𝜙(𝑥(𝑡), 𝑢(𝑡), 𝑡) 𝑑𝑡

𝑡𝑗−

𝑡(𝑗−1)+

    

𝑗

 

𝑗 = 1,… , 𝑛                  (2.18) 

𝐽 is the sum of function 𝜑, which depends on boundary values assumed by variables 

and time, and the integral, over the whole trajectory, of function 𝜙 expressed in 

terms of time, variables and controls. In our case, however, it may be useful to 

rewrite functional 𝐽 by introducing Lagrange’s multipliers: 

- 𝜇, which is a q-component vector of constants associated to the boundary 

conditions 𝜓; 

- 𝜆, which is n-component vector of adjoint variables, associated to state 

equations; 

 

Hence, in this case  

𝐽∗ = 𝜑 + 𝜇𝑇𝜓 +∑∫ (𝜙 + 𝜆𝑇(𝑓 − �̇�))𝑑𝑡 
𝑡𝑗−

𝑡(𝑗−1)+𝑗

 

𝑗 = 1,… , 𝑛                  (2.19) 

𝐽 and 𝐽∗ depend on time, control variables, state variables and their derivatives; they 

are equivalent for any choice of 𝜆 and 𝜇, assuming that boundary conditions are 
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satisfied. At this point, the integral can be split into three different integrals as 

follows: 

∑∫ (𝜙 + 𝜆𝑇(𝑓 − �̇�))𝑑𝑡
𝑡𝑗−

𝑡(𝑗−1)+𝑗

=∑∫ 𝜙 𝑑𝑡
𝑡𝑗−

𝑡(𝑗−1)+𝑗

+∑∫ 𝜆𝑇𝑓 𝑑𝑡
𝑡𝑗−

𝑡(𝑗−1)+𝑗

 +                 

+∑∫ 𝜆𝑇�̇� 𝑑𝑡
𝑡𝑗−

𝑡(𝑗−1)+𝑗

                  (2.20) 

 

This step allows to identify that it is possible to apply an integration by parts to the 

third integral so that 

∑∫ 𝜆𝑇�̇� 𝑑𝑡
𝑡𝑗−

𝑡(𝑗−1)+𝑗

= ∑𝜆(𝑗−1)
𝑇

+
𝑥(𝑗−1)+

𝑗

− 𝜆𝑗−
𝑇 𝑥𝑗 +∫ �̇�𝑇𝑥

𝑡𝑗−

𝑡(𝑗−1)+

       (2.21) 

 

It is now possible to rewrite functional 𝐽∗ and obtain its first order expansion: 

𝛿𝐽∗ = (−𝐻0𝑗 +
𝜕𝜑

𝜕𝑡0𝑗
+ 𝜇𝑇

𝜕𝜓

𝜕𝑡0𝑗
)𝛿𝑡0𝑗 + (−𝐻𝑓𝑗 +

𝜕𝜑

𝜕𝑡𝑓𝑗
+ 𝜇𝑇

𝜕𝜓

𝜕𝑡𝑓𝑗
)𝛿𝑡𝑓𝑗

+ (𝜆𝑜𝑗
𝑇 +

𝜕𝜑

𝜕𝑥0𝑗
+ 𝜇𝑇 [

𝜕𝜓

𝜕𝑥0𝑗
]) 𝛿𝑥0𝑗 + (𝜆𝑓𝑗

𝑇 +
𝜕𝜑

𝜕𝑥𝑓𝑗
+ 𝜇𝑇 [

𝜕𝜓

𝜕𝑥𝑓𝑗
]) 𝛿𝑥𝑓𝑗

+∑∫ ((
𝜕𝐻

𝜕𝑥
+ 𝜆�̇�) 𝛿𝑥 +

𝜕𝐻

𝜕𝑢
𝛿𝑢)𝑑𝑡

𝑡𝑓𝑗

𝑡𝑜𝑗𝑗

        𝑗 = 1,… , 𝑛            (2.22) 

 

where the Hamiltonian 𝐻 = 𝜙 + 𝜆𝑇𝑓 has been introduced. 
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The OCT imposes that  

𝑑𝜆

𝑑𝑡
= −(

𝑑𝐻

𝑑𝑥
)
𝑇

                                                    (2.23) 

(
𝜕𝐻

𝜕𝑢
)
𝑇

= 0                                                          (2.24) 

Eq. 2.23 represents the Euler-Lagrange differential equations for the adjoint 

variables, whereas Eq. 2.24 are the optimal control equations. The latter means that 

the optimal control value is the one that nullifies the derivative of the Hamiltonian.  

 

 

One last consideration needs to be done before moving on to the resolution of a 

boundary problem, like the one we are facing. Adjoint variables are named “free” if 

the corresponding state variable 𝑥 is defined in one of the boundaries, such as initial 

or final point and they are continuous if the corresponding state variable is 

continuous. 

In the next paragraph, we will briefly show the characteristics of a Boundary Value 

Problem and will present a method to solve it.  
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2.4 Boundary Value Problem 

 

 

 

A Boundary Value Problem (BVP)[c] [d] consists in a system of ordinary 

differential equations (ODEs) whose solution and derivative values can be evaluated 

at more than one point. Usually, these solutions and derivatives are specified at two 

points a and b which represent the boundaries of the problem; this particular model 

of BVP is known as two-points BVP. A two-point BVP of total order 𝑛 on a finite 

interval [𝑎 , 𝑏] can be written as follows:  

𝑦′(𝑥) = 𝑓(𝑥, 𝑦(𝑥))                                            (2.25) 

with 

𝑥 ∈ (𝑎, 𝑏)                                          𝑔(𝑦(𝑎), 𝑦(𝑏)) = 0 

 

where the first set of equations represents an explicit first order system of ordinary 

differential equations (ODEs). Functions 𝑔(𝑦) represent the n boundary conditions: 

they need to be independent i.e. they cannot be expressed as a function of each 

other. In this problem 𝑦, 𝑓 and 𝑔 ∈ 𝑅 and the reason of the moniker “explicit” can 

be easily inferred: the derivative 𝑦′ appears explicitly.  

However, a BVP in a form like Eq. 2.25 is quite difficult to find, since most of them 

arise as a combination of equations defining various orders of derivatives of the 

variables which sum to 𝑛.  
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“In an explicit BVP system, boundary conditions and right-hand sides of the 

equations can include the derivatives of each solution up to an order one less than 

the highest one of that variable appearing on the left-hand side of the ODE”. 

(GLADWELL I, Boundary Value Problem, Scholarpedia, 2008) 

The moniker two-point is given due to the boundary conditions 𝑔(𝑦), which are 

evaluated at the solution at the two interval endpoints 𝑎 and 𝑏. If 𝑔(𝑦) is also 

evaluated at the solution at other points than 𝑎 and 𝑏, we have a multipoint BVP. 

However, a multipoint problem may be easily converted to a two-point one by 

dividing the interval (𝑎 , 𝑏) in more subintervals between the points the function is 

evaluated in, then defining separate sets of variables for each of them and, in the 

end, adding boundary conditions which guarantee continuity of the variables across 

the whole intervals. As well as rewriting the original BVP in the compact form 

expressed by Eq. 2.25, converting a multipoint problem to many two-point 

problems may not lead to a problem with the most efficient computational solution. 

Most BVPs present separated boundary conditions where the function 𝑔(𝑦) may 

be split into two parts (one for each endpoint): 

𝑔𝑎(𝑦(𝑎)) = 0                        𝑔𝑏(𝑦(𝑏)) = 0                            (2.26) 

Here, 𝑔𝑎 ∈ 𝑅
𝑠 and 𝑔𝑏 ∈ 𝑅

𝑛−𝑠 for some value 𝑠, where 1 < 𝑠 < 𝑛 and where each 

of the vector functions 𝑔𝑎 and 𝑔𝑏 are independent.  
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Many problems have been placed in terms of BVPs in many branches of applied 

physics and math - for example problems involving the wave equation such as the 

determination of normal modes, the eigenvalues Sturm–Liouville problem - gas 

dynamics, nuclear physics, chemistry and study of positive radial solutions of 

nonlinear elliptic equations. All these BVPs could have been solved thanks to many 

methods developed in years, some more complex, some more easy to understand. 

This work made use of Genetic Algorithms (GAs)[11] [12] [13], an evolutionary search and 

optimisation numerical method inspired by processes normally associated with the 

natural world. 

“This approach is gaining a growing following in the physical, life, computer 

and social sciences and in engineering. Typically, those interested in GAs can 

be placed into one or more of three rather loose categories: 

1. those using such algorithms to help understand some of the 

processes and dynamics of natural evolution; 

2. computer scientists primarily interested in understanding and 

improving the techniques involved in such approaches, or 

constructing advanced adaptive systems; 

3. those with other interests, who are simply using GAs as a way to help 

solve a range of difficult modelling problems.” [13] 

 

This work belongs to the last group, since GAs were used to help solving an 

optimization of a transfer between two different orbits. 

In the next paragraph, an overview of GAs is given, along with an explanation of its 

mode of operation and the reasons why it needed to be developed.    
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2.5 The Genetic Algorithms 

 

 

 

2.5.1 Introduction 
 

 

Since the very beginning, computer scientists have built the idea of systems 

capable of simulating one or more of the characteristics of life. During the 50’s, the 

idea of using a population of solutions to solve practical engineering optimisation 

problems was initially considered; however, GAs were conceived, invented and 

developed a handful of years later, by John Henry Holland, in 1972. Although these 

algorithms were designed for problems far more complex that those addressed in 

this thesis, computer scientists could improve and expand his idea to an extremely 

wider and wider range of problems, giving us a very powerful tool for the numerical 

optimisation. 

GAs were born from the idea of extending the concept of natural selection and 

natural genetics of Charles Darwin to help solve other real-world problems.  

But, what does a GA consist of? 

In order to be as clearer as possible, I will summarise the contents of the first 

chapters of “An Introduction to Genetic Algorithms for Scientists and Engineers”, 

published by David A. Coley in 1999 with World Scientific Publishing[13]: if an 



Filippo Grisot – Master Thesis 

Chapter 2 – The Theory Behind 
 

47 

 

interested or simply curious reader would like to deepen what is here summarised, 

he/she should read the entire book. 

If one would like to describe how to build a genetic algorithm, he/she would 

probably summarise what needed as follow: 

• a set, called population, of guesses of the solutions to the problem; 

• a way of calculating the fitness of the individual solution within the 

population, i.e. estimate the accuracy of each term of the population;  

• a method for mixing fragments of the better solutions in order to create new 

and, on average, even better solutions; 

• a mutation operator to guarantee the continue diversity within the solutions. 

By reading so few components, everyone may understand how simple a GA is, how 

easy its developing can be and how powerful it may be if a nowadays processor - 

even the most basic one - has to handle such few parameters.  
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2.5.2 Why do we need Genetic Algorithm? 

 

 

The goal of an optimisation method is to create an infinite set of possible solutions 

for the analysed problem, and then search for the one that best satisfies the 

problem. An example might be trying to find the set of variables that, included in a 

mathematical model, minimise the Δ𝑉 needed for a space manoeuvre. But, what 

does this “search of the best solution” consist in? It is possible to measure the quality 

of the solution by giving it a value of success, called fitness, which represents its 

degree of accuracy. Better/poorer performing solutions will then represent the 

closest points to the maximum/minimum within the search space (or fitness 

landscape). If more than one variable is considered, then the goal of the algorithms 

is to find the combination that gives the highest fitness value, which does not always 

correspond to the set of best solutions. Furthermore, those spaces or landscapes 

can be of surprising complexity: in fact, even for simple problems, they can show 

numerous peaks of varying heights, separated from each other by valleys on all 

scales. The highest peak is usually referred to a global maximum, the lesser peaks 

to local maxima. Usually, the scope of using genetic algorithms is to find out the 

global optimum (i.e. maximum or minimum) solution, but this need not be so. 

Sometimes, for example in real-time control, in architectural design or aerospace 

structures, it is necessary to determine the first point which exceeds certain value, 

but it may not be the global optimum. 
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To understand why GA were introduced, it may be important to figure out why 

many traditional algorithms can encounter difficulties, when searching such spaces 

for the global optimum. Figure 12 shows experimental measurements of a 

dependent variable 𝑦 that have been made at various points 𝑗 of the independent 

variable 𝑥, demonstrating a mutual relationship between x and y values, such as  

                                                         𝑦 = 𝑚𝑥 + 𝑐                                             (2.27) 

 

Figure 12: Feasible experimental values for an example function y=mx+c 

One of the most common numerical ways of finding the best estimate of 𝑚 is by 

using a least-squares estimation. In this technique, the error between 𝑦 (predicted 

solution using Eq. 2.27) and �̅� (measured solution during the experiment), can be 

expressed by a least squares cost function Ω : 

                                            Ω =  ∑(𝑦�̅� − 𝑦𝑗)
2

𝑛

𝑗=1

                                              (2.28) 

where 𝑛 is the number of data points.  
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Expanding Eq. 2.28 gives: 

Ω =  ∑(𝑦�̅� − (𝑚𝑥𝑗 + 𝑐))
2

𝑛

𝑗=1

                               (2.29) 

This method simply evaluates the sum of the squares of the vertical distances 

between 𝑦 and �̅� (see Figure 13). The function Ω will be minimized as soon as this 

sum will reach a minimum; therefore, a smart approach could be to evaluate Ω for 

a large set of values of 𝑚 and then identify the one that gives the lowest estimation. 

 

Figure 13: Vertical distances between two values of m 

This procedure and this case are very easy, but it is even easier to understand that 

things may get really much complicated if the number of variables increases. 

Something not easy to understand, instead, is that they can get worse even with still 

one variable.  

Let’s take a look at Figure 14. 
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This represents the evolution of Ω with respect to 𝑚. In order to identify the value 

of 𝑚 that minimises Ω, a feasible approach may be to guess two possible values of 

𝑚 (𝑚1 and 𝑚2), then if Ω(𝑚1) > Ω(𝑚2), it is possible to discard 𝑚1 and make the 

next guess at some point 𝑚3 where 𝑚3 = 𝑚2 + 𝛿, or else head the other way. 

Given some suitable, dynamic, way of adjusting the value of 𝛿, the method will 

rapidly settle on 𝑚∗ (i.e. the global minimum). 

 

Figure 14: Steps of the evaluation of the best value of m 

This approach is described as a direct search (because it does not make use of 

derivatives or other information) and it can be very efficient. But what happens if we 

have a function like the one shown in Figure 15? 
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Figure 15: Steps of the evaluation of the best value of a 

If either the direct search algorithm outlined above or a simple calculus-based 

approach is used, the final estimation of 𝑎 will depend on the starting point of the 

algorithm. Making the initial guess at 𝑎 = 𝑎2, will indeed lead to the correct (global) 

minimum, 𝑎∗; however, if 𝑎 =  𝑎1 is used then only 𝑎∗∗ will be reached (local 

minimum). It is not difficult now to imagine how complex a multi-variable problem 

can be. 

Here, GA comes to help us. The basic idea is that GA chooses a set of values of the 

variables within a given interval, evaluates the value of Ω for each of them, 

memorising the best one, then it chooses another set of values and repeats this 

cycle until it finds the global minimum.  

But let’s see its mode of operation more in detail. 
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2.5.3 How does it work? 

 

 

Rather than starting from a single point (or guess) within the search space, as said 

before, GA starts working with a population of guesses. The user gives as input a 

range of values among which the algorithm may choose the initial and the following 

guesses of the unknown variables. Typically, these initial guesses arise as binary 

strings of the true variables, although an increasing number of GAs uses "real-

valued" (i.e. base-10) encodings. After the initial guess, the algorithm uses three 

different operators to evaluate a new population of guesses, driving the problem to 

converge at the global optimum. These operators are: selection, crossover and 

mutation (as one can observe, the names are analogous to the natural world).  

Selection seeks to simulate natural selection found in biological systems: a fitness 

value is assigned to each solution, so that poorer performing individuals are 

discarded whether better ones have a greater than average chance of promoting 

the information they contain within the next generation. 

Crossover acts like the recombination mechanism belonging to the human 

reproduction: it deals with the transfer of characteristics from parents to children. 

The most common method to realise that is called single point crossover (SPC). SPC 

consists in choosing pairs of individuals promoted by the selection operator 

(possibly of equal length), randomly determine a single locus (point) within the 

binary strings where the crossover will occur and then swap all the information 
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(digits) to the right of this locus between the two individuals (the example in the 

next paragraph will clarify this process). 

Mutation is, at the same time, the most important and the rarest operator (it is 

applied more or less to one bit in every thousand): its task is to randomly change 

(flip) the value of single bits within individual strings. The role of the mutation is a 

key one due to the fact that it is charged with maintaining the genetic diversity of 

the population. Without it, probably most GAs would not converge to the optimum. 

After selection, crossover and mutation have been applied to the initial population, 

a new population is generated, and this process continues until one of the stopping 

criteria have been fulfilled. Example of stopping criteria might be: maximum number 

of generations, maximum elapsed time, minimum tolerance of fitness value etc. 
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2.5.4 An example 
 

 

Before start using GA, many things need to be specified, e.g. the method of 

encoding the unknown parameters (as binary strings, base-10 numbers, etc.), the 

population size, how to apply the concept of mutation to the representation, the 

stopping criteria. Once all these options are set, GA can start the process of 

optimisation. 

We are going to address the minimisation of the example function: 

𝑦 = 3𝑥2 + 5                                                    (2.30) 

 

Figure 16: Evolution of example function y 

Obviously, the answer to our problem is 𝑥 = 0 but we want the genetic algorithm 

to find the solution for us: therefore, we will now follow its mode of operation step 

by step: 
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1. GA makes a set (eight for this example) of guesses, randomly choosing within 

the range given by the user (for example 0 ≤ 𝑥 ≤ 3500); 

 

2. It tests these guesses as solutions of the function and assigns a fitness value 

to each of them: since our problem is a minimisation problem, the lower is 

the resulting 𝑦, the higher is the fitness value; 

 

Population 

Number 
x Binary String Fitness 

1 125 000001111101 2133,106 

2 2889 101101001001 3,993 

3 548 001000100100 110,998 

4 19 000000010011 91911,76 

5 1237 010011010101 21,784 

6 356 000101100100 263,01 

7 88 000001011000 4303,482 

8 3284 110011010100 3,091 

 

Table 1: Fitness values of initial guesses 

3. It identifies the best half (those with highest fitness, yellow highlighted) and 

converts them to binary strings (bold values); 

 

4. It then randomly selects pairs of parents from the best half (we choose 1 with 

7 and 4 with 6 referring to table 1) and undergoes them a single point 

crossover.  
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Binary Parents 

Strings 
Children 

Numerical 

Children  
Fitness 

0000011/11101 000001011101 93 3853,268 

0000010/11000 000001111000 120 2314,547 

000000010/011 000001011011 91 4024,469 

000001011/000 000000010000 16 129366,1 

 

Table 2: Children of initial guesses 

5. It applies mutation to the children by occasionally changing a 0 to 1 or vice 

versa: for example, if it is applied to the sixth bit of the second child (120) it 

becomes 111000, which corresponds to 56; 

 

6. It puts together the four children with the four parents belonging to the 

group of the best half to form the new population, which still consists of 8 

elements; 

Population 

Number 
x Fitness Binary String 

1 125 2133,106 000001111101 

2 19 91911,76 000000010011 

3 356 263,01 000101100100 

4 88 4303,482 000001011000 

5 93 3853,268 000001011101 

6 120 2314,547 000001111000 

7 91 4024,469 000001011011 

8 16 129366,1 000000010000 

 

Table 3: New Population 

7. It repeats steps 2-7 until stopping conditions is reached.  
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A brief further consideration needs to be done about the importance of mutation. 

Consider this group of parents, chosen as best values from the initial population 

(this example is not related to the previous one): 

000101 

010101 

001111 

001000 

 

As one can observe, each of the values starts with "0"; that means that, from this 

generation until the end, no “1” will appear in first position and this could be a very 

big problem if, for example, the global optimum has 𝑥 > 111111 = 63. Mutation 

would replace one of the zeros with a “1” and this would guarantee a presence of 

“1” in the future generations as well as reaching of the global optimum. 

  



Filippo Grisot – Master Thesis 

Chapter 2 – The Theory Behind 
 

59 

 

 

2.6 The function fminsearch 

 

 

 

fminsearch is a MATLAB function that allows the user to find a local minimum 

of an unconstrained non-linear problem like  

{
min 𝑓(𝑥)

𝑐(𝑥) = 0

                                                      (2.31) 

where 𝑓: 𝑅𝑛 → 𝑅 is the objective function and 𝑐(𝑥) = 0 represents a (or a set of) 

constraint equation(s).  

Its syntax is very simple: it needs as inputs the function to minimise, the initial 

guesses to start the algorithm and, eventually, a vector with the options we would 

like to modify from the default ones. In this work only two options have been 

modified: the output, since we wanted a plot of the function values during the 

algorithm run like the one in Figure 17 (Chapter 3), and the tolerance of the function 

value (changed from 10−4 to 10−6 for a more accurate solution). 

One can ask himself what is the difference with respect to GA? The answer is very 

simple, though.  

fminsearch is very powerful because it converges very quickly to the solution but 

has the big limitation of converging to a minimum, which may be a global or a local 
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one: in fact, it converges to the closest minimum from the initial guesses we give as 

inputs. We do not have any assurance that the minimum found by the function 

matches the global optimum we are looking for.  

This is why, in this work, we used them both: GA guarantees fminsearch an initial 

guesses close enough to the global optimum so that we are sure that the function 

converges to the point we need. 

fminsearch is based on a very successful method for solving nonlinearly 

constrained optimization problems called Sequential Quadratic Programming 

(SQP)[15]”. Like GA, SQP became popular in the 1970s but it is not only an algorithm, 

but rather a basic conception from which numerous other specific algorithms have 

been evolved. Based on a solid theoretical and computational foundation, SQP 

algorithms have been developed and used to solve a remarkably large set of 

important practical problems. In the next paragraph an overlook of the SQP is given 

but it won’t be as detailed as the one for GA since SQP plays a very secondary role 

in this work. 
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2.6.1 Sequential Quadratic Programming 

 

 

The real goal of a Sequential Quadratic Programming algorithm is to model the 

problem shown in Eq. 2.31 at a given approximate solution, for example 𝑥𝑗 , through 

a quadratic programming subproblem, and then to use the solution to this 

subproblem to find a better approximation 𝑥𝑗+1. This process is then iterated to 

create a sequence of approximations that will hopefully converge to the solution 

𝑥∗. 

Probably the easiest way to catch on the mode of operation and basics of SQP is 

the fact that, with an appropriate choice of quadratic subproblem, the method can 

be seen as the natural extension of Newton and quasi-Newton methods. However, 

SQP algorithms present themselves to be really more complex than Newton 

methods due, most of all, to the presence of constraints. 

One last key property of the SQP method should be pointed out. 

SQP is not a feasible-point method; that is, the initial point nor any of the 

subsequent iterates need to satisfy the constraints (i.e. be feasible). It is quite 

obvious that this represents a crucial advantage, since finding a feasible point with 

nonlinear constraints may be nearly as hard as solving the problem itself.  
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(2.32) 

(2.35) 

(2.34) 

(2.33) 

What SQP does is to assume a second-order expansion for 𝑓(𝑥) and a first-order 

expansion for the constraints 𝑐(𝑥) (we consider 𝑥 as a vector of state variables 

𝑥1, 𝑥2, … , 𝑥𝑛): 

{
𝑓(𝑥 + Δ𝑥) = 𝑓(𝑥) + 𝑔𝑇Δ𝑥 +

1

2
Δ𝑥𝑇[𝐻]Δ𝑥

𝑐(𝑥 + Δ𝑥) = 𝑐(𝑥) + [𝐺]Δ𝑥

 

where  

𝑔𝑇 =
𝜕𝑓

𝜕𝑥𝑖
= (

𝜕𝑓

𝜕𝑥1
,
𝜕𝑓

𝜕𝑥2
, … ,

𝜕𝑓

𝜕𝑥𝑛
) 

[𝐻] =  

[
 
 
 
 
 
 
 
 
 
 
𝜕2𝑓

𝜕𝑥1𝜕𝑥1
     

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
     …     

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛

𝜕2𝑓

𝜕𝑥2𝜕𝑥1
     

𝜕2𝑓

𝜕𝑥2𝜕𝑥2
     …     

𝜕2𝑓

𝜕𝑥2𝜕𝑥𝑛

…              …           …          …

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1
     

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥2
    …     

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥𝑛]
 
 
 
 
 
 
 
 
 
 

  

 

[𝐺] =  

[
 
 
 
 
 
 
 
 
 
 
𝜕𝑐1
𝜕𝑥1

         
𝜕𝑐1
𝜕𝑥2

         …         
𝜕𝑐1
𝜕𝑥𝑛

𝜕𝑐2
𝜕𝑥1

         
𝜕𝑐2
𝜕𝑥2

         …         
𝜕𝑐2
𝜕𝑥𝑛

…              …           …          …

𝜕𝑐𝑛
𝜕𝑥1

         
𝜕𝑐𝑛
𝜕𝑥2

        …         
𝜕𝑐𝑛
𝜕𝑥𝑛 ]
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𝑔 represents the gradient of 𝑓 (𝑛-component vector) while [𝐻] represents the 

Hessian of 𝑓 (𝑛 𝑥 𝑛 symmetric matrix) and [𝐺] the Jacobian of constraint equations 

𝑐𝑖 (𝑚 𝑥 𝑛 matrix). 

Note that a linear approximation is implicitly adopted for the gradient, so that 

𝑔(𝑥 + Δ𝑥) = 𝑔(𝑥) + [𝐻]Δ𝑥                                (2.36) 

Using Newton’s method together with a particular set of equations named Kuhn-

Tucker equations (more details can be found in [10]), SQP starts an iterative 

procedure with the goal to find the final solution which, as said before, may not 

coincide with the global minimum if the initial guess(-es) is (are) not close enough. 
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Chapter 3: 

 

The Results 
 

 

 

 

 

The goal of this chapter is to summarise the outcome of our work. Its structure 

is very simple: we will first apply step by step the theory explained in the previous 

chapter and then present the analytical and graphical results. 

As shown in Chapter 1, we have considered a default setup of the S/C that performs 

the manoeuvre, in order to give specific numerical results and offer a better 

overview of them, but it is clearly possible to modify the parameters, customising 

the study as needed. 

We first adapted Edelbaum equations for our study, then performed an optimisation 

for both a one-revolution transfer and a multi-revolution transfer, obtaining 

important analytical results. At a later time, these differential equations were given 

as an input to a MATLAB script, compiled in order to use Genetic Algorithm and 
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fminsearch: their goal is to find the optimal result (global minimum) that nullifies 

the error over the imposed final conditions and the boundary ones by minimising 

an appropriate function. The results show the evolution of our variables in time that 

represents the way to perform the manoeuvre. Finally, we ran different simulations 

by changing the initial conditions, in order to obtain a wide range of solutions and 

capture a variety of scenarios. 
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3.1 The Optimisation of the Manoeuvre 
 

 

 

3.1.1 One Revolution Transfer Optimisation 
 

 

The first step of this chapter is to present the optimisation of the Edelbaum 

equations (Eq. 2.6) for a one-revolution transfer to obtain the variation of the 

Keplerian elements after one revolution around the Earth. 

The first step is defining some assumptions we have done: 

- 𝑒~0, since we consider quasi circular orbit: this allowed us to neglect the 

variation of the eccentricity 𝑒 and the argument of periapsis 𝜔; 

- 𝜃 = 𝜔 + 𝜈, defined as the angular distance from the ascending node; 

- 𝑎 (Semimajor axis) = 𝑟 (position vector) = 𝑝 (semilatus rectum), since the 

eccentricity is equal to zero;  𝑑𝜃/𝑑𝑡 = √𝜇/𝑎3 

- 𝑉 is the orbital velocity defined by: 

𝑉 = √
𝜇

𝑎
 ;                                                     (3.1) 

- The accelerations are defined by: 

𝐴𝑣 = 𝐴 𝑐𝑜𝑠 𝛽,      𝐴𝑤 = 𝐴 sin 𝛽  ;                                  (3.2) 
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(3.3) 

(3.5) 

Hence, we obtain:  

𝑑𝑎

𝑑𝑡
=
2𝐴𝑎2

√𝜇𝑎
cos 𝛽 

𝑑𝑖

𝑑𝑡
= √

𝑎

𝜇
𝐴𝑠𝑖𝑛𝛽 cos 𝜃 

𝑑Ω

𝑑𝑡
= √

𝑎

𝜇
𝐴 (
𝑠𝑖𝑛𝛽

sin 𝑖
) sin 𝜃 −

3

2
𝑗2 (
𝑅𝑒
𝑎
)
2

√
𝜇

𝑎3
cos 𝑖 

𝑑𝜃

𝑑𝑡
= √

𝜇

𝑎3
 

 

At this point, it can be useful to change the independent variable from time to 𝜃 so 

that we can then easy integrate from 0 to 2𝜋. To make this change: 

𝑑𝑥

𝑑𝜃
=
𝑑𝑥

𝑑𝑡
∙
𝑑𝑡

𝑑𝜃
                                                      (3.4) 

Hence, we have: 

 

𝑑𝑎

𝑑𝜃
=
2𝐴𝑎

𝜇/𝑎2
cos 𝛽 

𝑑𝑖

𝑑𝜃
=

𝐴

𝜇/𝑎2
𝑠𝑖𝑛𝛽 cos 𝜃 

𝑑Ω

𝑑𝜃
=

𝐴

𝜇/𝑎2
(
𝑠𝑖𝑛𝛽

sin 𝑖
) sin 𝜃 −

3

2
𝑗2 (
𝑅𝑒
𝑎
)
2

cos 𝑖 

𝑑𝑡

𝑑𝜃
= √

𝑎3

𝜇
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Particular attention must be given to the third equation. The underlined term is the 

contribution of the perturbation 𝑗2 that we add to the equation to take it into 

account. As we mentioned in the previous chapter, the effect is relevant only with 

RAAN, whereas is negligible or totally absent for the other Keplerian elements. 

At this point it is possible to perform the optimisation.   

We have to predefine the control vector u and the state vector x : 

𝑢 = [𝛽] 

𝑥 = [𝑎, 𝑖, Ω, t] 

where 𝛽 = 𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒. 

We can now define the Hamiltonian as: 

𝐻 =∑𝜆𝑥
𝜕𝑥

𝜕𝜃
𝑥

                                                    (3.6) 

However, since we are considering one revolution,  

{

𝑎~𝑎0

𝑖~𝑖0

 

Therefore  

𝜆�̇� = −
𝜕𝐻

𝜕𝑥
= 0   ,     𝜆𝑥 = 𝑐𝑜𝑠𝑡                                  (3.7) 

𝜆𝑥 are very important parameters representing the gain associated with changing 

𝑥; thus, the higher are their absolute values, the greater is the gain. 

With this assumption, Eq. 2.23 is solved, and we need to face Eq. 2.24. 
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The optimum value of 𝛽 is the one that nullify the derivatives of the Hamiltonian: 

𝜕𝐻

𝜕𝛽
= 0                                                          (3.8) 

Solving Eq. 3.8, we obtained: 

tan 𝛽 =
𝜆𝑖 cos 𝜃 +

𝜆Ω sin 𝜃
sin 𝑖

2𝜆𝑎𝑎
                                         (3.9) 

tan 𝜃0 =
𝜆Ω

𝜆𝑖 sin 𝑖
                                                (3.10) 

We can introduce some parameters, such as 

Λ = √(
𝜆Ω
sin 𝑖

)
2

+ 𝜆𝑖
2                                             (3.11) 

𝐾 =
Λ

2𝑎𝜆𝑎
                                                     (3.12) 

Hence, Eq. 3.9 can be rewritten: 

tan 𝛽 = cos(𝜃 − 𝜃0)                                         (3.13) 

It is useful to perform a change of variables as follow: 

𝜃′ = 𝜃 − 𝜃0                                                         (3.14) 

So that: 

tan 𝛽 = 𝐾 cos 𝜃′                                            (3.15𝑎) 
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(3.17) 

sin 𝛽 =
𝐾 cos 𝜃′

√1 + (𝐾 cos 𝜃′)2
                                   (3.15𝑏) 

cos 𝛽 =
1

√1 + (𝐾 cos 𝜃′)2
                                   (3.15𝑐) 

If we then define 

𝑅 = √1 + (𝐾 cos 𝜃′)2                                         (3.16) 

it is possible to rewrite Eq. 3.5 as: 

𝑑𝑎

𝑑𝜃′
=
𝑑𝑎

𝑑𝜃
=
2𝐴

𝜇/𝑎2
𝑎
1

𝑅
 

𝑑𝑖

𝑑𝜃′
=
𝑑𝑖

𝑑𝜃
=

𝐴

𝜇/𝑎2
𝐾 cos 𝜃′

𝑅
cos(𝜃′ + 𝜃0) 

𝑑Ω

𝑑𝜃′
=
𝑑Ω

𝑑𝜃
=

𝐴

𝜇/𝑎2
(
𝐾

sin 𝑖
) 
cos 𝜃′

𝑅
sin(𝜃′ + 𝜃0) −

3

2
𝑗2 (
𝑅𝑒
𝑎
)
2

cos 𝑖 

𝑑𝑡

𝑑𝜃′
=
𝑑𝑡

𝑑𝜃
= √

𝑎3

𝜇
                                             

Now we should integrate these equations from 0 to 2𝜋. Edelbaum also did this, 

assuming 𝜃0 = 0 though: in fact, he considered the case of negligible inclination, 

for which Ω has no meaning. 

In addition, we note that:  

∫
sin 𝜃′ cos 𝜃′

𝑅
𝑑𝜃′

2𝜋

0

= 0                                        (3.18) 
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(3.19) 

(3.21) 

Consequently, we find out that our results are very close to Edelbaum’s. In fact, if 

the index 0 refers to Edelbaum’s solutions, we have: 

Δ𝑎 = Δ𝑎0 

Δ𝑖 = Δ𝑖0 cos 𝜃0 

ΔΩ =
Δ𝑖0 sin 𝜃0
sin 𝑖

 

Δ𝑡 = Δ𝑡0 

Edelbaum’s solutions, however, are not so simple to calculate, therefore it may be 

useful to consider a simplified solution assuming 𝛽 = ±𝐾 where the sign changes 

for 𝜃0 =
𝜋

2
. Under this assumption: 

∫
𝑑𝑥

𝑑𝜃1𝑟𝑒𝑣

𝑑𝜃 = 2 ∫
𝑑𝑥

𝑑𝜃
𝑑𝜃

𝜃0+
𝜋
2

𝜃0−
𝜋
2

                                     (3.20) 

Hence, we obtain: 

𝚫𝒂 =
2𝐴

𝜇/𝑎2
a cos 𝛽∫ 𝑑𝜃

2𝜋

0

=
𝟒𝝅𝑨
𝝁
𝒂𝟐

𝐚 𝐜𝐨𝐬𝜷 

𝚫𝒊 =
2𝐴

𝜇/𝑎2
sin 𝛽∫ cos 𝜃 𝑑𝜃

𝜃0+
𝜋
2

𝜃0+
𝜋
2

=
𝟒𝑨
𝝁
𝒂𝟐
𝐬𝐢𝐧𝜷 𝐜𝐨𝐬 𝜽𝟎 

𝚫𝛀 =
2𝐴

𝜇/𝑎2
sin 𝛽 ∫ sin 𝜃 𝑑𝜃

𝜃0+
𝜋
2

𝜃0−
𝜋
2

− (… ) =
𝟒𝑨
𝝁
𝒂𝟐

𝐬𝐢𝐧𝜷

𝐬𝐢𝐧 𝒊
 𝐬𝐢𝐧 𝜽𝟎 − 𝟑𝝅𝒋𝟐 (

𝑹𝒆
𝒂
)
𝟐

𝐜𝐨𝐬 𝒊 

𝚫𝒕 = 𝑇 = 𝟐𝝅√
𝒂𝟑

𝝁
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These equations express the variation of the orbital elements after a single 

revolution. As we can see, the term of 𝑗2 has remained the same throughout all the 

steps, since it is not function of 𝜃. 

Also, it can be noticed that these equations follow the laws expressed by Eq. 3.19 

perfectly. This means that, even if we are considering also a change of RAAN 

(different to Edelbaum), we can still assume a constant value of 𝛽 (like Edelbaum) 

changing sign according to the sign of (𝜃 − 𝜃0). 

It is now possible to combine these results to obtain those for the multirevolution 

transfer. 
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(3.23) 

3.1.2 Multirevolution Transfer Optimisation 
 

 

Two different approaches may be used in this analysis. 

The first consists of using the Semimajor axis as independent variable, (similarly to 

Edelbaum’s), whereas the second uses time. We will see that the latter is the most 

convenient choice that we have used to calculate the following steps. 

 

Using the Semimajor axis 𝑎 as independent variable, we need to derive the variation 

of the other elements as  

𝑑𝑥

𝑑𝑎
≈
Δ𝑥

Δ𝑎
                                                            (3.22) 

Hence, we have, 

𝑑Ω

𝑑𝑎
=
tan𝛽 sin 𝜃0
𝜋 𝑎 sin 𝑖 

−
3

4
 
𝑗2 (
𝑅𝑒
𝑎
)
2

cos 𝑖

𝐴 cos 𝛽

𝜇

𝑎3
 

𝑑𝑖

𝑑𝑎
=
tan𝛽 cos 𝜃0

𝜋 𝑎
 

𝑑𝑡

𝑑𝑎
=

√
𝜇
𝑎3

2𝐴 cos 𝛽
 

 

We can now perform the optimisation by deriving the Hamiltonian as expressed by 

Eq. 3.6. This time, only 𝜆Ω and λ𝑡 are constant. 
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In fact 

𝜆�̇� = 𝜆Ω(
tan𝛽 sin 𝜃0 cos 𝑖

𝜋 𝑎 sin2 𝑖 
−
3

4
 
𝑗2 (
𝑅𝑒
𝑎
)
2

sin 𝑖

𝐴 cos 𝛽

𝜇

𝑎3
)                  (3.24) 

Here, one can observe that the smaller is the inclination, the higher is the advantage 

in changing Ω. 

In order to find the optimal controls – this time 𝑢 = [𝛽, 𝜃0] – we need to calculate 

the derivatives of the Hamiltonian with respect to the control parameters and then 

find the values that nullify them. 

𝜕𝐻

𝜕𝜃0
=
𝜆Ω cos 𝜃0
sin 𝑖

− 𝜆𝑖 sin 𝜃0 = 0                             (3.25) 

Solving Eq. 3.25 in terms of 𝜃0, we find 

tan 𝜃0 =
𝜆Ω

λi sin 𝑖
                                              (3.26) 

Even though Eq. 3.26 appears to be the same as Eq. 3.10, the difference between 

the two consists in a different meaning of 𝜆𝑥 : in Eq. 3.10 they were intended over a 

single revolution whereas in Eq. 3.26 over a multiple revolution. With Eq. 3.26, 

moreover, there are additional troubles. In order to find 𝜃0 we should use the 

arctangent, that would give us two solutions (first and third quadrant or fourth and 

second) and choose between them. However, OCT imposes that the optimal control 

both nullify the derivatives of the Hamiltonian and maximise it. Consequently, it is 
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(3.27) 

necessary to choose the right solution and figure out the one that correspond to 

the maximum.  

Deriving the second optimum control value: 

𝜕𝐻

𝜕𝛽
= 0 = (

𝜆Ω sin 𝜃0
𝜋 asin 𝑖

+
𝜆𝑖 cos 𝜃0
𝜋𝑎

)
1

cos2 𝛽

+

(

 
√
𝜇
𝑎3

2𝐴
− 𝜆Ω

3

4
 
𝑗2 (
𝑅𝑒
𝑎
)
2

cos 𝑖

𝐴

𝜇

𝑎3

)

 
sin 𝛽

cos2 𝛽
   

Solving, we have 

sin 𝛽 =
Λ

𝜋𝑎
∙

2𝐴

−𝜆𝑡√
𝜇
𝑎3
+
3
2
𝑗2 (
𝑅𝑒
𝑎
)
2

cos 𝑖  
𝜇
𝑎3

                         (3.28)  

Where Λ is expressed by Eq. 3.11. 

With Eq. 3.28 it is easily understandable that by arbitrarily choosing a value of sin 𝛽 

the corresponding value of 𝜃0, which maximises the Hamiltonian, has the same sign. 

Therefore, for simplicity, we consider a positive value of sin 𝛽 so that all the signs 

are positive. 

This approach, as we previously explained, is quite intricate because it is difficult to 

know the type of mission we are going to face a priori: we do not know if it is, for 

example, more convenient to first increase the Semimajor axis and then decrease it 

or vice versa or even to decrease it directly. 
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(3.30) 

This is the reason why we opted for the second approach, assuming time as 

independent variable. Since time is always positive, the problem does not arise 

anymore. 

The steps are the same of the previous approach. 

We define the variation of the elements, referring now to time. 

𝑑𝑥

𝑑𝑡
≈
Δ𝑥

Δ𝑡
                                                      (3.29) 

Therefore, we have: 

𝒅𝒂

𝒅𝒕
≈
Δ𝑎

Δ𝑡
= 4𝜋𝐴𝑎 cos 𝛽  √

𝑎2

𝜇

1

2𝜋
 √
𝜇

𝑎3
=
𝟐𝑨

√𝝁
𝒂
𝟑
𝟐 𝐜𝐨𝐬𝜷 

𝒅𝛀

𝒅𝒕
≈
ΔΩ

Δ𝑡
=
4𝐴𝑎2

𝜇

sin 𝛽

sin 𝑖
𝑠𝑖𝑛𝜃0

1

2𝜋
 √
𝜇

𝑎3
−
3𝜋

2𝜋
𝑗2 (
𝑅𝑒
𝑎
)
2

cos 𝑖  √
𝜇

𝑎3

=
𝟐𝑨√𝒂

𝝅√𝝁

𝐬𝐢𝐧𝜷

𝐬𝐢𝐧 𝒊
𝒔𝒊𝒏𝜽𝟎 −

𝟑

𝟐
𝒋𝟐
𝑹𝒆
𝟐

𝒂
𝟕
𝟐

𝐜𝐨𝐬 𝒊 √𝝁 

𝒅𝒊

𝒅𝒕
≈
Δ𝑖

Δ𝑡
=
4𝐴𝑎2

𝜇
sin 𝛽 𝑐𝑜𝑠𝜃0

1

2𝜋
 √
𝜇

𝑎3
=
𝟐𝑨√𝒂

𝝅√𝝁
𝐬𝐢𝐧𝜷 𝒄𝒐𝒔𝜽𝟎 

 

We can now define the Hamiltonian as 

𝐻 = 𝜆𝑎 (
2𝐴

√𝜇
𝑎
3
2 cos 𝛽) + 𝜆Ω (

2𝐴√𝑎

𝜋√𝜇

sin 𝛽

sin 𝑖
𝑠𝑖𝑛𝜃0 −

3

2
𝑗2
𝑅𝑒
2

𝑎
7
2

cos 𝑖  √𝜇)

+ 𝜆𝑖 (
2𝐴√𝑎

𝜋√𝜇
sin 𝛽 𝑐𝑜𝑠𝜃0)                                                               (3.31) 
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(3.32) 

(3.35) 

First of the following steps is to derive the variations 𝜆�̇�; hence 

𝜆�̇� = −
𝜕𝐻

𝜕𝑎
= − [𝜆𝑎

3𝐴

√𝜇
√𝑎 cos 𝛽 + 𝜆Ω (

𝐴

𝜋√𝜇

sin 𝛽

sin 𝑖
 
𝑠𝑖𝑛𝜃0

√𝑎
 −
21

4
𝑗2
𝑅𝑒
2

𝑎
9
2

cos 𝑖  √𝜇)

+ 𝜆𝑖 (
𝐴

𝜋√𝜇
 
1

√𝑎
sin 𝛽 𝑐𝑜𝑠𝜃0)] 

𝜆Ω̇ = 0 

𝜆i̇ = −𝜆Ω (−
2𝐴√𝑎

𝜋√𝜇

sin 𝛽

sin2 𝑖
cos 𝑖 𝑠𝑖𝑛𝜃0 +

3

2
𝑗2
𝑅𝑒
2

𝑎
7
2

sin 𝑖  √𝜇) 

 

Successively, we have to determine the optimal control values i.e. those that nullify 

the derivatives of the Hamiltonian: 

𝜕𝐻

𝜕𝜃0
=
𝜆Ω cos 𝜃0
sin 𝑖

− 𝜆𝑖 sin 𝜃0 = 0                        (3.33) 

Solving Eq. 3.33 in terms of 𝜃0, we find 

tan 𝜃0 =
𝜆Ω

λi sin 𝑖
                                              (3.34) 

We can then easily define 

sin 𝜃0 = ±
𝜆Ω

Λ sin 𝑖
 

cos 𝜃0 = ±
𝜆𝑖
Λ

 

that represent the same results of the previous approach. Changes will be seen 

immediately. 
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In fact, the partial derivative of the Hamiltonian with respect to 𝛽 is 

𝜕𝐻

𝜕𝛽
= −𝜆𝑎

2𝐴√𝑎

𝜋√𝜇
𝜋𝑎 sin 𝛽 + 𝜆Ω

2𝐴√𝑎

𝜋√𝜇

cos 𝛽

sin 𝑖
𝑠𝑖𝑛𝜃0 + 𝜆𝑖

2𝐴√𝑎

𝜋√𝜇
cos 𝛽 𝑐𝑜𝑠𝜃0

= −𝜋𝜆𝑎𝑎 sin 𝛽 + 𝜆Ω
cos 𝛽

sin 𝑖
𝑠𝑖𝑛𝜃0 + 𝜆𝑖 cos 𝛽 𝑐𝑜𝑠𝜃0 = 0          (3.36) 

Hence, 

tan 𝛽 =
Λ

𝜆𝑎𝜋𝑎
                                                 (3.37) 

and 

sin 𝛽 =
Λ

√Λ2 + (𝜆𝑎𝜋𝑎)
2
                                        (3.38) 

cos 𝛽 =
𝜆𝑎𝜋𝑎

Λ2 + (𝜆𝑎𝜋𝑎)
2 
                                         (3.39) 

 

At this point, observing these results some considerations need to be done: 

- From Eq. 3.31 we see that 𝑐𝑜𝑠 𝛽 must be concordant with 𝜆𝑎  to guarantee 

the maximization of the Hamiltonian. Therefore 𝜆𝑎 tells us how to perform 

the manoeuvre: if it is positive we need to increase the Semimajor axis 

because 𝛽 would be positive: if it is negative, 𝛽 is also negative and we would 

need to decrease the Semimajor axis; 

 

- sin 𝛽 needs to be concordant with (
𝜆Ω𝑠𝑖𝑛𝜃0
sin 𝑖

+ 𝜆𝑖𝑐𝑜𝑠𝜃0) and this means that 

𝑠𝑖𝑛𝜃0 and 𝑐𝑜𝑠𝜃0 need to be concordant with 
𝜆Ω

sin 𝑖
 and 𝜆𝑖 respectively; 
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- Eq. 3.34 and Eq. 3.37 are the main equations of our problem since they give 

the optimum values of our control. The next step has been to compile a 

MATLAB script able to solve the system of five ordinary differential equations 

(ODEs) expressed by Eq. 3.30 and Eq. 3.32 (𝜆Ω = 0 is obviously neglected). 

This step is developed in the next paragraph. 
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(3.40) 

Our Boundary Value Problem 

(State Equations) 

3.1.3 Solution of the BVP 
 

 

Eq. 3.30 and 3.32 constitute our BVP, summarised in Eq. 3.40, and a Genetic 

Algorithm needs to be implemented to solve it. 

 

𝑑𝑎

𝑑𝑡
=
2𝐴

√𝜇
𝑎
3
2 cos 𝛽 

𝑑Ω

𝑑𝑡
=
2𝐴√𝑎

𝜋√𝜇

sin 𝛽

sin 𝑖
𝑠𝑖𝑛𝜃0 −

3

2
𝑗2
𝑅𝑒
2

𝑎
7
2

cos 𝑖  √𝜇 

𝑑𝑖

𝑑𝑡
=
2𝐴√𝑎

𝜋√𝜇
sin 𝛽 𝑐𝑜𝑠𝜃0 

𝜆�̇� = −[𝜆𝑎
3𝐴

√𝜇
√𝑎 cos 𝛽 + 𝜆Ω (

𝐴

𝜋√𝜇

sin 𝛽

sin 𝑖
 
𝑠𝑖𝑛𝜃0

√𝑎
 −
21

4
𝑗2
𝑅𝑒
2

𝑎
9
2

cos 𝑖  √𝜇)

+ 𝜆𝑖 (
𝐴

𝜋√𝜇
 
1

√𝑎
sin 𝛽 𝑐𝑜𝑠𝜃0)] 

𝜆i̇ = −𝜆Ω (−
2𝐴√𝑎

𝜋√𝜇

sin 𝛽

sin2 𝑖
cos 𝑖 𝑠𝑖𝑛𝜃0 +

3

2
𝑗2
𝑅𝑒
2

𝑎
7
2

sin 𝑖  √𝜇) 

 

 

Eq. 3.34 and 3.37 represent the control equations that a potential solution of the 

BVP must satisfy to become a possible optimum value.  
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The control equations are summarised in Eq. 3.41 

tan 𝜃0 =
𝜆Ω

λi sin 𝑖
                                             (3.41𝑎) 

tan 𝛽 =
Λ

𝜆𝑎𝜋𝑎
                                              (3.41𝑏) 

Following this very analytical and manual part of our study, during which only a pen 

and a lot of papers have been used, we had finally the possibility to benefit from 

today’s technological progress and use a calculator to solve the BVP and show the 

final results. 

Mathworks’ MATLAB has been used to perform the optimisation and to solve the 

5-ODEs system constituting the BVP, using both a Genetic Algorithm and 

fminsearch to guarantee the convergence towards the global optimum (minimum 

in this case). We will give a very fast overview of the way we proceeded. 

 

The path we travelled through is here analysed very simply, since our goal is to make 

even an aerospace-unfamiliar reader able to follow the crux of the matter. 

In the first part we had to define the inputs of the problem, already mentioned in 

the previous chapters. We have set three different types of parameters: 

- The S/C characteristics, such as mass, specific impulse and thrust, and the 

lowest altitude that the S/C is allowed to reach; 

- The initial conditions of the S/C’s orbit like altitude, inclination and RAAN; 
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- The desired variation in altitude, inclination and RAAN in order to reach the 

final orbit (here, obviously, the values may be either positive or negative); 

Following the input part, the normalisation of each variable has been performed to 

simplify the calculation process; immediately after, it has been necessary to define 

the function that the genetic algorithm had to use to find the global optimum: in 

our case, the function has been named “errore” and it is expressed by 

𝑒𝑟𝑟𝑜𝑟𝑒 = √(�̅� − 𝑎𝑓)
2
+ (𝑖̅ − 𝑖𝑓)

2
+ (Ω̅ − Ω𝑓)

2
                      (3.42) 

where �̅�, 𝑖,̅ Ω̅ are the solutions of the GA while 𝑎𝑓 , 𝑖𝑓 , Ω𝑓 are the target solutions, 

determined as sum of the initial value and the desired variation. 

The GA have received from the inputs the function “errore”, the number of variables 

– in our case the variables are three i.e. the final time 𝑡𝑓 and the initial values of 𝜆𝑎 

and 𝜆𝑖 – and the range of values that the variables can have. We have then set a 

wide range of values, since we needed to be sure to find the global optimum. The 

GA has given random values to the three variables, it has determined the control 

parameters 𝛽 and 𝜃0 and calculated the value of the function, giving the set of 

random estimations a fitness value. Once the stopping criteria has been fulfilled, it 

has stopped and given the values of 𝑡𝑓, 𝜆𝑎 , 𝜆𝑖 that minimise the function and the 

final solutions �̅�, 𝑖,̅ Ω̅.  

At this point, a check had to be performed, considering that, for certain missions, 

the minimum altitude may have been reached and passed: in this case, the solution 



Filippo Grisot – Master Thesis 

 

Chapter 3 – The Results 
 

86 

 

would not be acceptable. If, instead, the minimum altitude is not passed, the 

solution is correct and can be given as input to fminsearch. 

Considering the first possibility, we needed to perform a more accurate simulation 

of the problem. In this case we needed to split the manoeuvre into three parts: 

- the first one starts from the initial point (𝑡0) and ends when the S/C reaches 

the minimum altitude (𝑡1); 

- the third consists of the time needed to reach the final conditions at the final 

time from the minimum altitude (𝑡2 ÷ 𝑡𝑓); 

- the second represents the variable section, since it depends on the other two 

and the total mission time (𝑡1 ÷ 𝑡2); 

Therefore, the number of variables has increased to five (𝑡1, 𝑡2, 𝑡𝑓 , 𝜆𝑎 , 𝜆𝑖), since also 

the integration needed to be split: 

∫
𝑑𝑥

𝑑𝑡

𝑡𝑓

𝑡0

= ∫
𝑑𝑥

𝑑𝑡

𝑡1

𝑡0

+ ∫
𝑑𝑥

𝑑𝑡

̃
𝑡2

𝑡1

+ ∫
𝑑𝑥

𝑑𝑡

𝑡𝑓

𝑡2

                              (3.43) 

The peculiarity of this problem is that during the second part, the Semimajor axis 

must remain constant as well as 𝜆𝑎: this means that Eq. 3.40 needs to be modified 

to a new version  
𝑑𝑥

𝑑𝑡

̃
 , since the first and the fourth equation must be set equal to 

zero and 𝛽 equal to 90 deg (in fact only with this value, 𝑎 remains constant). 

Once the GA ended to run, as the other case, it has given the vector of the solutions 

which may represent the global optimum. However, we needed to make sure that 
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the values were the real optima, otherwise fminsearch shall find them out. As 

explained in paragraph 2.6, in order to be able to find the correct global optimum, 

fminsearch needs a quite accurate initial value, especially if a multi-variable 

problem is considered. Therefore, we decided to provide the GA’s solutions as input: 

since GA finds out a moderately accurate solution, we could be sure that it will 

calculate in output the global optimum. 

 

Figure 17: Convergence of fminsearch 

 

In fact, Figure 17 shows the convergence of fminsearch which brings the value of 

the function “errore” to be in the order of 10−17/10−20. 
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(3.44) 

The output of the analysis consists of the values of the vector 𝑥 = [𝑡1, 𝑡2, 𝑡𝑓 , 𝜆𝑎 , 𝜆𝑖] 

– times are in days to better understand the duration of the manoeuvre - and the 

evolution in time of the five parameters 𝑎, 𝑖, Ω, λa, 𝜆i. 

The goal of this study, however, is to present an overview of the cost of the studied 

manoeuvre in terms of Δ𝑉 and mass of propellant (𝑚𝑝). Therefore, we need to 

calculate these parameters. 

To do that, two simple formulations are used: 

Δ𝑉 =
𝑇

𝑚0
∙ 𝑡𝑓 

𝑚𝑝 = 𝑚0 (1 − 𝑒
−
Δ𝑉
𝑐  ) 

where the second one is the famous Tsiolkovsky rocket equation [1], 𝑚0 is the initial 

mass, 𝑇 is the S/C’s thrust and 𝑐 is the effective exhaust velocity. 

 

 

 

After this brief overview about the steps followed for the optimisation, we are now 

ready to present the results of a default simulation and, successively, the estimation 

for other different simulations, realised by changing some parameters from the 

default one. 

                                                           
1 TSIOLKOWSKY K, Esplorazione degli spazî cosmici con razzi a propulsione, 1903 
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(3.45) 

 

3.2 The Analyses 
 

 

 

In this paragraph the results of two simulations made for the scenario 

presented in Chapter 1, and shown in Figure 7, are presented: one has a positive 

change in RAAN (+30°) whereas the second has a negative one (-30°). 

 

 

3.2.1 Positive ΔΩ 
 

 

The first case consists of a positive change in altitude and RAAN, without varying 

the inclination. As mentioned in Chapter 1, these are the inputs: 

𝑎0 = 500 𝐾𝑚               Δ𝑎 = 100 𝐾𝑚 

𝑖0 = 0°                           Δ𝑖 = 0° 

Ω0 = 0°                         ΔΩ = +30° 

 

This case is the simplest of the two presented in this paragraph, since it does not 

entail the reaching of the minimum altitude: in fact, as shown later in Figure 18, the 

manoeuvre will first consist of an increase in altitude and then a decrease. Different 

behaviour will have the second case. 
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(3.46) 

The results of this first analysis gives: 

Δ𝑉 = 1,3869 𝐾𝑚/𝑠  

𝑚𝑝 = 0,8247 𝐾𝑔 

𝑡𝑓 = 24,07 𝑑𝑎𝑦𝑠 

𝜆𝑎 = 2,6359 

𝜆𝑖 = 0,9212 

These values are specific for the particular set of inputs shown in Eq. 3.45; however, 

in paragraph 3.3 it is possible to verify that these values can give a good overview 

of other scenarios since results will not be so far from them. 

We believe that it may be useful to show the evolution of the five parameters 𝑎, 𝑖,

Ω, λa, 𝜆i because it offers a simple and easily understandable method to explain 

how the transfer occurs.  

 

Figure 18: Evolution of Altitude with time (Case 𝛥𝛺+) 
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Figure 19: Evolution of Inclination with time (Case 𝛥𝛺+) 

 

 

 

Figure 20: Evolution of RAAN with time (Case 𝛥𝛺+) 
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Figure 21: Evolution of 𝜆𝑎 with time (Case 𝛥𝛺+) 

 

 

 

Figure 22: Evolution of 𝜆𝑖 with time (Case 𝛥𝛺+) 
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Figure 23: Evolution of 𝛽 with time (Case 𝛥𝛺+) 

 

 

 

Figure 24: Evolution of 𝜃0  with time (Case 𝛥𝛺+) 
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The first three figures show the evolutions of the three Keplerian elements. It is easy 

to understand that the manoeuvre consists of a continuous and combined variation 

of them: altitude and inclination are first increased and then decreased until 

reaching the target, whereas the RAAN decreases only. This behaviour is the key of 

our study: the S/C increases the altitude in order to take advantage of the 𝑗2 effect 

which, as we observed, has a greater influence the greater is the altitude difference. 

This approach guarantees a considerable benefit in terms of time and propellant; in 

fact, two other options would be possible: staying on the same orbit, waiting for 𝑗2 

to nullify the ΔΩ and align the two planes – and this would take years and years 

although fuel consumption would be nearly paltry – or to still remain on the same 

orbit but directly rotate the orbital plane – which would have an enormous fuel cost. 

It is also clear that, with an appropriate timing choice, the S/C would reach the final 

orbit in a specific point of it, which could be for example the catching distance of a 

robotic arms belonging to one of the platforms presented in Chapter 1.  

It is important to note that, unlike for altitude and inclination, the final value of the 

RAAN in Figure 20 is not the real final one: in fact, we expect a value of 30° but we 

obtain -80,227°. This is due to the fact that this graph does not consider the effect 

of 𝑗2 on RAAN evolution with time. To find the final value, it is necessary to sum that 

value and the Ω̇ ∙ 𝑡𝑓 obtained by substituting the solutions 𝑎𝑓 , 𝑖𝑓 , Ωf, λa𝑓 , 𝜆i𝑓 in 

the second of Eq. 3.40. In fact, for the final value, we find: 

Ω̇ =  −7,4608 10−4 𝑟𝑎𝑑/�̅� 
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Ω̇ ∙ 𝑡𝑓 = −1,9239 𝑟𝑎𝑑 = −110,23 𝑑𝑒𝑔  

Ω𝑓 = 30,01 𝑑𝑒𝑔 

where �̅� is a normalised time. 

Figures 21 and 22 show the evolution of 𝜆𝑎 and 𝜆𝑖 : both start from a positive value 

and end with a negative one, passing the zero almost in the same moment: we will 

see that this behaviour will not occur with a negative ΔΩ.  Figures 23 and 24 show 

the evolution of the control variables 𝛽 and 𝜃0. Like the previous parameters, also 

in these two we find a symmetry. The first presents a variation that starts very slightly 

and increases with time until the maximum reached, as predicted, at the half of the 

entire duration when 𝛽 is worth 90 deg. It starts from a value lower than 90 deg 

since the component of the acceleration needs to be concordant with the velocity: 

the altitude needs to increase. From that point, the slope starts decreasing again 

but the value of 𝛽 keeps increasing: passing 90 deg, the acceleration is now 

discordant with the velocity since S/C needs to break and to decrease the orbit 

altitude to reach the target. 𝜃0 has a quite different behaviour, since its slope 

remains nearly constant and positive during the whole duration. With these two 

control variables, it is possible to obtain the three components of the acceleration 

as function of time: these parameters will be given as input to the S/C’s navigation 

system and will be the key to perform the fulfilment of the transfer. 
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3.2.2 Negative ΔΩ 
 

 

This second simulation has been made with the following inputs: 

𝑎0 = 500 𝐾𝑚               Δ𝑎 = 100 𝐾𝑚 

𝑖0 = 0°                           Δ𝑖 = 0° 

Ω0 = 0°                         ΔΩ = −30° 

 

In this case we will see the S/C reaching the minimum altitude. Therefore, as 

explained previously, the manoeuvre will be accomplished through three steps. 

The results of the analysis give: 

Δ𝑉 = 1,4009
𝐾𝑚

𝑠
 

𝑚𝑝 = 0,8328 𝐾𝑔 

𝑡𝑓 = 24,32 𝑑𝑎𝑦𝑠 

𝜆𝑎 = −1,2763 

𝜆𝑖 = 1,4390 

We can take a look to the evolution of the five parameters and notice a great 

difference with respect to the previous case. 
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Figure 25: Evolution of Altitude with time (Case 𝛥𝛺−) 

 

 

 

Figure 26: Evolution of Inclination with time (Case 𝛥𝛺−) 
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Figure 27: Evolution of RAAN with time (Case 𝛥𝛺−) 

 

 

 

Figure 28: Evolution of 𝜆𝑎 with time (Case 𝛥𝛺−) 
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Figure 29: Evolution of 𝜆𝑖 with time (Case 𝛥𝛺−) 

 

 

 

 

Figure 30: Evolution of 𝛽 with time (Case 𝛥𝛺−) 



Filippo Grisot – Master Thesis 

 

Chapter 3 – The Results 
 

100 

 

 

 

Figure 31: Evolution of 𝜃0 with time (Case 𝛥𝛺−) 

 

First thing that stands out is the opposite evolution of each parameter except for 

RAAN: altitude and inclination decrease first and then increase, while 𝜆𝑎 and 𝜆𝑖 have 

a positive slope. 

The second important finding is the particular shape of each graph: they have lost 

the simple linearity of the first case. This is due to the split of the integral: in each 

figure it is possible to identify three different sections of the curve: the first and the 

second have mostly the same (Figures 27,28,29) or symmetric (Figure 25 and 26) 

attitude while the second shows an abrupt change. 

Figure 25 shows that the S/C descends until it reaches the minimum altitude: during 

this manoeuvre, the inclination also decreases (Figure 26) as well as the RAAN 

(Figure 27). 
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Once the S/C reaches the minimum altitude, it needs to stop descending and this is 

why both Figures 25 and 28 show a plateau: during the second part, in fact, the 

altitude remains constant while inclination and RAAN decrease with a slope clearly 

greater than before. This is also due to the 𝑗2 effect, which increases the velocity of 

the process. During the third part, the S/C has a symmetric behaviour to the one in 

the first part, and this is why the slopes are so similar: obviously, RAAN keeps 

decreasing, even with a lower intensity, whereas altitude and inclination tend to 

increase again to reach the final values. As shown in Figure 30, 𝛽 starts from a value 

higher than 90 deg - which means that the component of the acceleration is slowing 

down the S/C (i.e. it is opposite to the S/C velocity) - and this causes the altitude to 

decrease. Reaching the minimum altitude, the S/C must not change the altitude 

anymore and this is why 𝛽 remains constant on the value of 90 deg. Once the 

spacecraft has completed the second part of the manoeuvre, 𝛽 starts decreasing 

again but with an acceleration that this time is concordant with the velocity: this 

cause the S/C to accelerate and the altitude to increase again. 

 

These two cases mostly summarise all the possible solutions: obviously, with 

different parameters, the results will be different, but the manoeuvre will be 

performed in one of the two ways already shown. In the next paragraph the results 

of many other simulations are presented: due to a limited number of pages (and 

limited time), it is not possible to analyse in detail every case, therefore the results 

will be given only in terms of Δ𝑉,𝑚𝑝, 𝑡𝑓 , 𝜆𝑎 , 𝜆𝑖 . 
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3.3 Other Examples of Simulations 
 

 

 

 

 

 

Different simulations have been performed, gradually changing first the 

desired ΔΩ and then the desired Δa (keeping the other default settings); in the end, 

only one simulation has been made with a different value of thrust, specific impulse 

and mass in order to provide an estimation of the influence of the thrust on the 

results. 
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3.3.1 Changing in ΔΩ 
 

 

A range of [−70; 70] is here considered with a mass of 15 𝐾𝑔, a thrust of 0,01 𝑁, 

altitude difference of 100 𝐾𝑚 and inclination difference of 0 𝑑𝑒𝑔. 

 

 

 

𝜟𝒂 = 𝟏𝟎𝟎 𝑲𝒎,𝜟𝒊 = 𝟎 𝒅𝒆𝒈,𝒎𝟎 = 𝟏𝟓 𝑲𝒈,𝑻𝒉𝒓𝒖𝒔𝒕 = 𝟎, 𝟎𝟏 𝑵 

𝚫𝛀 𝚫𝑽 [𝑲𝒎/𝒔] 𝒎𝒑 [𝑲𝒈] 𝒕𝒇 [𝒅𝒂𝒚𝒔] 𝝀𝒂 𝝀𝒊 

-70 2,7567 1,5948 47,8596 -1,4770 -2,8322 

-60 2,4410 1,4210 42,3776 -1,4303 -2,5149 

-50 2,1108 1,2370 36,6467 -1,3807 -2,1785 

-40 1,7647 1,0414 30,6369 -1,3288 -1,8207 

-30 1,4009 0,8328 24,3206 -1,2763 -1,4390 

-20 1,0186 0,6102 17,6843 -1,2279 -1,0320 

-10 0,6196 0,3742 10,7573 -1,1931 -0,6038 

0 0,0580 0,0354 1,0066 1,2360 0,0525 

10 0,7624 0,4591 13,2359 1,6869 0,5879 

20 1,1111 0,6644 19,2901 2,2468 0,7870 

30 1,3869 0,8247 24,0782 2,6359 0,9212 

40 1,6260 0,9622 28,2292 2,9386 1,0231 

50 1,8421 1,0854 31,9813 3,1869 1,1047 

60 2,0422 1,1985 35,4552 3,3972 1,1722 

70 2,2304 1,3039 38,7217 3,5791 1,2293 

Table 4: Results changing the 𝛥𝛺 
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Figure 32: Evolution of the costs with 𝛥𝛺 

 

 

 

 

 

Figure 33: Evolution of transfer duration with ΔΩ 
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Figure 34: Evolution of 𝜆𝑎 and 𝜆𝑖 with ΔΩ 

 

 

 

This first set of graphs show an antisymmetric behaviour of the parameters between 

positive and negative desired ΔΩ; this is due to the 𝑗2 effect which has more benefits 

with positive ΔΩ proved by a lower value of Δ𝑉,𝑚𝑝 𝑎𝑛𝑑 𝑡𝑓 considering same 

absolute value of ΔΩ. Obviously, the antisymmetric behaviour affects also 𝜆𝑎 and 

𝜆𝑖. 
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3.3.2 Changing in Δ𝑎 
 

 

Regarding the change of Δ𝑎, we would like to show the evolution of the costs and 

the influence of the target distance, intended as altitude distance. Here is considered 

a minimum altitude difference of 100 𝑘𝑚 and a maximum of 2000 𝐾𝑚. It is possible 

to notice an obvious remarkable increase in propulsive and time costs (Table 5). 
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𝜟𝜴 = 𝟑𝟎 𝒅𝒆𝒈, 𝜟𝒊 = 𝟎 𝒅𝒆𝒈,𝒎𝟎 = 𝟏𝟓 𝑲𝒈,𝑻𝒉𝒓𝒖𝒔𝒕 = 𝟎, 𝟎𝟏 𝑵 

𝚫𝐚 𝚫𝑽 [𝑲𝒎/𝒔] 𝒎𝒑 [𝑲𝒈] 𝒕𝒇 [𝒅𝒂𝒚𝒔] 𝝀𝒂 𝝀𝒊 

100 1,3869 0,8247 24,0782 2,6359 0,9212 

200 1,4764 0,8763 25,6312 2,8215 0,9731 

300 1,5697 0,9300 27,2523 2,9993 1,0230 

400 1,6666 0,9855 28,9345 3,1691 1,0708 

500 1,7667 1,0425 30,6713 3,3305 1,1163 

600 1,8695 1,1009 32,4567 3,4834 1,1593 

700 1,9748 1,1605 34,2850 3,6280 1,1997 

800 2,0823 1,2210 36,1511 3,7642 1,2375 

900 2,1917 1,2823 38,0505 3,8924 1,2727 

1000 2,3028 1,3443 39,9791 4,0126 1,3054 

1100 2,4154 1,4069 41,9332 4,1252 1,3356 

1200 2,5292 1,4698 43,9094 4,2307 1,3633 

1300 2,6441 1,5331 45,9050 4,3292 1,3887 

1400 2,7600 1,5966 47,9171 4,4212 1,4119 

1500 2,8767 1,6602 49,9436 4,5070 1,4329 

1600 2,9942 1,7239 51,9821 4,5871 1,4520 

1700 3,1122 1,7876 54,0307 4,6618 1,4691 

1800 3,2306 1,8513 56,0876 4,7314 1,4844 

1900 3,3495 1,9149 58,1511 4,7962 1,4981 

2000 3,4686 1,9783 60,2196 4,8567 1,5101 

 

Table 5: Results changing the Δa 
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Figure 35: Evolution of the costs with Δa 

 

 

 

Figure 36: Evolution of transfer duration with Δa 
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Figure 37: Evolution of 𝜆𝑎0and 𝜆𝑖0with Δa 
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3.3.3 Changing in Thrust, ISP and Mass 
 

 

In this final paragraph we would like to show the influence of a change in specific 

impulse, thrust and mass. We have considered the default case of the paragraph 

3.3.2. Tables 6, 7 and 8 show the difference between the results by changing each 

parameter. 

 

 

 𝐓 = 𝟎, 𝟎𝟏 𝑵 𝐓 = 𝟎, 𝟎𝟐 𝑵 

𝚫𝑽 1,4009
𝐾𝑚

𝑠
 2,1040

𝐾𝑚

𝑠
 

𝒎𝒑 0,8328 𝐾𝑔 1,2332 𝐾𝑔 

𝒕𝒇 24,32 𝑑𝑎𝑦𝑠 18,26 𝑑𝑎𝑦𝑠 

 

Table 7: Influence of changing the initial 

Thrust 

 

 

 

 𝒎𝒐 = 𝟏𝟓 𝑲𝒈 𝒎𝟎 = 𝟑𝟎 𝑲𝒈 

𝚫𝑽 1,4009
𝐾𝑚

𝑠
 0,8934

𝐾𝑚

𝑠
 

𝒎𝒑 0,8328 𝐾𝑔 1,0732 𝐾𝑔 

𝒕𝒇 24,32 𝑑𝑎𝑦𝑠 31,02 𝑑𝑎𝑦𝑠 

 

Table 8: Influence of changing the initial Mass 

 

  

 𝑰𝒔𝒑 = 𝟐𝟓𝟎𝟎 𝐬 𝑰𝒔𝒑 = 𝟑𝟓𝟎𝟎 𝒔 

𝚫𝑽 1,4009
𝐾𝑚

𝑠
  1,4009

𝐾𝑚

𝑠
 

𝒎𝒑 0,8328 𝐾𝑔 0.5997 𝐾𝑔 

𝒕𝒇 24,32 𝑑𝑎𝑦𝑠 24.32 𝑑𝑎𝑦𝑠 

 

Table 6: Influence of changing Isp 
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As predictable, the 𝐼𝑆𝑃 has a relevant influence in the fuel consumption whereas 

Δ𝑉 and transfer duration remain unvaried. A greater thrust can considerably reduce 

the duration, “paying” this gain in Δ𝑉 and 𝑚𝑝: however, this can be convenient since 

by adding only 0,4 𝐾𝑔 of fuel we can save more than a week in time duration. On 

the other hand, by doubling the initial mass, the fuel needed to perform the 

manoeuvre will increase as well as the global duration of it. 
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Conclusions 

 

The major idea of this work is to offer private companies the subsystem required to 

maintain their payload in orbit for a variable lapse of time; thus, they will only need 

to support the cost of the payload’s launch to the ISS – which could potentially be 

divided among different companies sharing the same launch – the cost of the 

transfer between the ISS and these platforms and the one associated with the 

required platform usage time. The first cost is already known, although it will 

probably and rapidly change in the next years, whereas the third one will depend 

of the platform itself. Thus, with this work, private companies will have an overview 

of the cost of the transfer and will be able to predict the cost of their entire mission. 

Maybe, one day, this project will be considered and, hopefully, this work will be used 

at starting point of it. 
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