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Abstract

The fiber-reinforced composite materials are now widely used also in sectors differ-
ent from the aerospace one. The main problem of the composite structural parts
design is to understand how they can fail. Considering the small diameters of the
fibers, the failure analysis on this kind of materials should be done at micro-scale
using the micro-mechanics. This thesis work proposes an innovative approach to
the problem able to reduce the computational time and to obtain consistent results
in reduced time. Indeed the code that will be used is based on the Carrera Unified
Formulation (CUF) and the matrix with fibers cells are modelled through the 1D
formulation that requires the use of beam elements and Lagrange polynomials to
define the cross-section. The failure analysis is based on the crack band theory that
was implemented by the Professor Marianna Maiart during her PHD work. This
work is organized as follows: an introduction to composite material and laminates
is provided in chapter 1, a brief theoretical introduction to 1D (CUF) together
with the description of the pardiso library implementation is given in chapter 2,
static analysis are replicated in order to acquire manual skills with the code in the
chapter 3, a brief reference to micromechanics is given in chapter 4 and finally in
the chapters 5 and 6 are reported the achieved results of progressive failure analysis

and the conclusions.
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Chapter 1

Introduction

In this chapter composite materials structure, their properties and modes of failure
will be described while, in the last subsection, computational cost for a failure

analysis will be considered.

1.1 Typical Structure and laminates

By the term "composite materials" are defined all the materials composed of fiber
reinforcements and a matrix (Fig. 1.1[1]). The fibers give strength and stiffness
to the materials while the matrix has the task of binding the fibers together, in
this way the matrix transfer applied load to the fibers and also protects them
from the environmental attack. Composites are anisotropic materials because their
properties vary as a function of fiber direction, indeed they have hight values of
young modulus (E) long the fibers direction whereas in the transverse direction it
has a significant drop off because the most of the applied loads are absorbed by
matrix. For there reasons the laminates were invented (Fig. 1.2[2]) and in order to
improve the mechanical properties in other direction, layers were added with fibers
in different direction. For example, to improve the behavior of laminates in the
transverse direction, a cross-ply laminates [0°/90°] is used.
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1 — Introduction
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. . _ - - Matrix
- -~ Fibers

Figure 1.1: Composite material structure
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Figure 1.2: (a)=Simple laminate; (b)=Cross-ply laminate
1.2 Properties and applications

The "composites materials" offer many advantage compared to the traditional

metallic materials, the main ones are:

e High strength long the fiber direction;
e Light weight and small basis weight;

e Radar transparency;

For these reasons they are widely used in aeronautical industry, where weight
and density are among the most important factors. A composite structures could
have higher stiffness and lower density than an aluminium made one, in the table
1.1 are compared the mechanical properties between two typical aluminum alloys
(Dural and Ergal) and a laminate composed by carbon fibers (All in the same direc-
tion), and epoxy resin [3]. It is possible to understand by the data that a composite
laminate is lighter than an aluminium alloy plate with the same dimension but it

6



1 — Introduction

has a better values of the young modulus only long the fibers direction (134000
MPa vs 73000 MPa), indeed in the transverse direction this value fall down from
134000 MPa to 7000 MPa and it is significantly lower than the young modulus of

aluminum alloy.

Table 1.1: Materials properties

Material E;[M Pa] E[M Pa] v[Kg/dm?] Saving in v
Dural-Ergal 73000 73000 2.8 -
Carbon fibers laminate 134000 7000 1.53 46 %

From 1970 to nowadays, the composite materials percentage used for Commer-
cial Aircraft components has been rising. The Fig. 1.3 [4] shows this trend over
the years, Airbus A350 and the Boing 878 are the first ones to overcome the 50%
of total weight for the composite components and the value is expected to rise over

the nest few years.
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Figure 1.3: Percentage trend of composite weight parts in commercial trans-
port airplanes

1.3 Failure

Composite materials laminates have different failure types, if compared to isotropic
materials, due to their complex structure (Fig. 1.4). The critical zones are: the
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1 — Introduction

fiber-matrix interface and the lamina-lamina interface because both the parts are
stuck together and if the glue fail, the whole laminate could fail. Below are reported

the mains ones failure ways:

e Matrix failure due to transverse traction loads (Fig. 1.7) [5];
e Fibers failure due to applied loads (Fig. 1.6) |6] ;
e Delamination (Fig. 1.5) [7];

e Debonding between fiber and matrix (Fig. 1.5) [8];

In this thesis work only one type of failure will be considered, ie the matrix
failure due to transverse traction loads. Will be analyzed only a very small part
of a generic structure composed by five fibers, it is in the micron (107%m) order of
size. This study approach is called micromechanics because study is concentrated

only in one point of the whole structure.

Lamina

} Laminate

Figure 1.4: Simple laminate structure



1 — Introduction

Figure 1.5: Fiber-matrix debonding (on the left) and delamination (on the
right) examples

Figure 1.6: Fiber fracture example
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Figure 1.7: Matrix fracture example



1 — Introduction

1.4 Finite element method (FEM)

Except for some simple cases, the differential equations of a structural problem,
combined with the boundary condition, do not allow analytical solution. It is
necessary to switch from the strong form to weak form of the problem system
equation, in other words the system equation must be satisfied globally and no
punctually in the problem domain. Mathematically the system equation switch
from differential formulation to integral formulation, however this switch is not
sufficient to find a problem solution. To overcome this issue finite element method
was invented, using this method the entire domain is divided into a small parties
called finite elements and each of them is composed by a finite number of point
called nodes. The solution is evaluated only in the nodes, and in all the other
points it is interpolated by particular functions called shape function. So the entire
domain must be discretized as shown in Fig. 1.9 [9], but the discretizaion inevitably
forms a gap between the physical and computational domain and only the increment
in the finite element number can reduce it. If one or two problem dimension are
predominant over the other, it is possible to reduce the 3D problem to 2D or 1D
problem, e.g. a 3D blade can be discretized by simple beam elements. Solve a
structural problem means to find the displacement field u(z,y, z) that is a 3D
function in the three coordinates x,y and z. It is possible write a complex and
unknown function f(x,y,z) as a infinite summation of simple functions ¢(z,y, 2)

times a coeflicient c:

oo
f(x,y,2) =Y catu(x,y,2) (1.1)
n=1
For numerical solution it is impossible to have infinity summation, so the term

"n" vary from 1 to the total number of the structural nodes and in addition:

e The generic function f(x,y,z) turn into u(x,y,z) for structural problem;

e The constants ¢, turn into u, that are the nodal displacement;

10



1 — Introduction

e The functions ¢ turn into N that are the shape function;

Nyot
u(x,y,z Zun (2,9, 2 (1.2)
For instance, one beam element composed by two nodes and linear shape func-
tion is now considered (Fig. 1.8). The displacements in the nodes are u; and us
and the two shape function are: Ny(z) = 1—x and No(x) = x (where x is the beam

axis). So the displacement in a generic beam point of coordinate x can be write as:

u(x) = uy Ny + ua Ny (1.3)

Solve a structural problem using 3D elements is computationally expensive,
but it is possible to obtain good results, in a reasonable time, using an axiomatic
method based on Carrera unified formulation (CUF). This method use only beam
elements along y direction and 2D shape function F(x,z) to describe the behaviour
of the cross-section, so the 3D displacement field became:

Niot

u(x,y,z ZN (x, 2)ur (1.4)

where 7 is related to the polynomial degree F(x,z) used to describe the cross-
section. In the Fig. 1.10 [9] are shown the main differences between the classic 3D

FEM model and 1D CUF model, the choice of the function F(x,z) is arbitrary and

in the next chapter will be present two polynomials class: Taylor and Lagrange.

ENi Nz:l

Figure 1.8: Beam element with shape funtions
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1 — Introduction

gap between the
physical and
computational domain

Figure 1.9: Domains discretization

Displacementfield by 3D FEM Displacement field by 1D CUF
Niot Niot
u(ny,2) = ) Ni(wy, 2 u(y,2) = ) N0 2y
i=1 i=1
Displacements along the 3 directions: Displacements along the 3 directions:
uy = Ni(x,y, 2)uy Uy = Nf(y)Ft(xaz)uxft
uy = Ni(x,y, 2)uy, uy = N R, Duy,
uy = Niy(x,y, 2)uy; u, = N F(x, 2)u,,,

Figure 1.10: 3D Classical FEM v.s. CUF 1D
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Chapter 2

Carrera unified formulation

Carrera unified formulation "is a new approach for the derivation of FE matrices"
[9], indeed stiffness matrix [k] and all the other FE vectors are derived in terms of
"fundamental nuclei". The fundamental nucleus is an (3 by 3) array and is defined
by four indexes 7, s,4 and j but, key thing, "its form does not change for 1D,2D or
3D problems" [9].

2.1 Principle of virtual work (PVW)

To derive the fundamental nucleus, it is necessary to use the PVW. So in this
subsection it is briefly explained and a simple structural example is also shown.
First of all it is necessary define the virtual variation (J), it is an infinitesimal
variation of the quantity that must be respect the congruence and the boundary

condition. Now let’s consider two system "a" and "b":

e System "a" is composed by real stresses {c®} and forces {F®}, it respect the

equilibrium conditions: > F* =0 and ) M = 0;

e System "b" is composed by virtual strain {de} and displacements {du’}, it
respect the congruence (no tear in the body) and boundary condition;

13



2 — Carrera unified formulation

In the static case, the PVW indicates that: the virtual work done by real
stresses time virtual strain is equal to the virtual work done by the real forces time

the virtual displacements:

5Wint = 5We:ct (21)

Where:

e §W;nt= virtual internal work variation=[{c*}" x {de}*dV;

W, wt= virtual external work vatiation=>_{F2}* x {du?};

de= virtual variation of strains;
e Ju;= virtual variation of displacements;

e o— internal stresses;

P,— external forces;

Now it is proposed a simple example of PVW application, tip displacement of
cantilever beam will be evaluated. The Fig. 2.1 shows the problem, a vertical force
F is applied at the free tip (B) while the other one is fixed. Normal, shear stresses

and bending moment along the beam are the following:

o M(z)=F(zx—L);

In order to apply the PVW, it is necessary to consider a virtual system, identical,
but with a vertical unit load applied at the tip (B). In this case: normal stress,
shear stress and bending moment along the beam are:

14



2 — Carrera unified formulation

o Ny(z)=0;

o T)(r)=1;

o M'(x) =1(x — L);

Now it is possible to write the internal and external work:
5We:pt =1x 5Ub

(2.2)

L  (x L ! (x) L (@
oWint = [; Na:@)NE(A)dx + Jo Ti(x)Erde + Jg Mz(x)ﬂél(z)dx

The first term of 0W;,; is null because the normal stress is null along all the

beam. Replacing the terms in the principle of virtual work:

Fo[r Fo[E )
5%:@/0 Ti(z)dx + EIZ/O (x — L)*dx (2.3)

Solving the integrals, it is possible to find the problem solution in term of tip

displacement:

FL FL3

ou=Gat3EL

The tip displacement du, is composed by two terms:

e Shear contribution:%;

FL3 .

¢ Bending contribution=gz7-;

2.2 Fundamental Nucleus derivation

In structural problems the unknown is the displacement field u(x,y,z). In a clas-
sical cartesian reference system (x,y,z), it is possible identify three displacement

15



2 — Carrera unified formulation

Real system Virtual system

Figure 2.1: Real system on the left and virtual system on the right

components called u,,u, and u, that are dependent by the coordinates x,y and z.

(

Uy = un(x7 Y, Z)

Uy = uy(x,y, 2) (2.5)

\uz = u,(x,y, 2)

These three component can be included in the vector {u} :

{u}" = {uz, uy, u.} (2.6)

Now, "in according with axiomatic method, it’s possible to suppose the behavior

of cross-section using F, expansion function (Taylor, Lagrange, etc.)" 9] :

u = N;(x)Fru,; T=1M; (2.7)
Where:

e M= is the number of expansion terms (it can be arbitrary);
e u,.;— is the vector of unknown displacement;

e N,= are the shape function

It is now possible to define the virtual variation displacement, it requires two

nin

new indexes "j" and "s":

du = N;j(x)Fsdus; s=1,M; (2.8)
16



2 — Carrera unified formulation

Once know the displacements, it is easy to calculate the six strains components
({e} " ={eans €yys €223 €223 €ass €4zt €qy}) and stress ({0} ={04a; Oyy; 0223 0z3 0y
04y }) by the geometrical relations and Hooke’s law. The geometrical relations are
valid in small displacements hypothesis and connect the displacement with strains

by first order derivative:

] — = yJ = 0, Y, 2 29
€ij 2(8xj+8xi> i,j=1,Y,% (2.9)

The Hooke’s low connect the strains to the stresses by the material coefficient

matric [C]:

{0} = [CHes (2.10)

Coefficient matrix is six by six matrix and for composite material in the main

orthotropy axes is the following:

Cnn Cip Ci3 0 0 0
Ca Cyp Cys 0 0 0
Cig Co3 C33 0 0 0
C= (2.11)
0 0 0 Cyu O 0

0 0 0 0 Cs5 O

0 0 0 0 0 Cegs

Replacing the CUF formulation of displacements in the previous relations, the

following relations are obtained:

{o} = [CIINi(y) Fr (z, z){u}r
17
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2 — Carrera unified formulation

Where [b] is three by six matrix composed by differential operators:

d/0x 0 0
0 9/oy 0
0 0 0/0z
b= (2.13)
0/0z 0  0/ox

0 0/0z 0/0y

|0/0y 0/0x 0

The virtual variation of strains becomes:

{00} = [b]Ni(y) Fr (2, 2)0{u}ri (2.14)

Now it is possible to evaluate the fundamental nucleus by virtual variation of

internal work:

Wi = [ s™e1av = [ s{eyic)e

(2.15)
= 5{uy) /V (P, )N, () B [N, () F (2, )V {ure)

The fundamental nucleus is the volume integral between the virtual and not

displacement vectors:

F = /V (Fu(a, )N () B [C) BN, () F (2, )}V (2.16)

If all the components of the displacement are considered, the nucleus is a [3 x 3]

18



2 — Carrera unified formulation

matrix. Fixed the indexes 7,s,i and j fundamental nucleus became:

Ku K Ki
k™Y = Ko Kap Ka (2.17)
_K13 Ko K33_

"its form does not change for 1D,2D or 3D problems" |9].

2.3 Stiffness matrix assembly procedure

Thanks to the four indexes 7, s, i and j,"the assembly of the stiffness matrix consist
of four loop on the indexes and a fundamental nucleus (FN)is calculated for each
combination of them" [9]. The Fig 2.2 [9] shows the assembly procedure starting

from the structural node until the whole matrix:

The FN is the core;

The loop on 7 and s build the node matrix;

The loop on i and j build the element matrix;

The loop from 1 to N, (Total number of structural elements) build the stiffness

matrix;

In the Fig 2.3 is showed the general for of the stiffness matrix, "the FN work as

the core of the matrix construction" [9].

2.3.1 Stiffness matrix evaluation by classical FEM

Now a simple example is proposed, it will be evaluated the stiffness matrix [K] by
traditional FEM and by CUF in order to highlight the differences. A ROD element
with two nodes is now considered (Fig 2.4), two punctual loads are applied in the

19



2 — Carrera unified formulation

AIkyq [ Kin| Kya Fundamental nucleus

k21 k22 kza N ktSii
kG‘I k32 k33

TS
m o
1 Ne
Node Element Structure
@ B O——O——O—

Figure 2.2: Representation of the assembly procedure

I:] .i:N‘iVE
A A
' Y ' ™
T 1 T=M ]| T=M
g=1 gl M1 PRRRTA KIMIN,
=1 : ; : :
g M EMUL L MM KMUN, . pMMIN,
=1 KN plMN, NN, L g IMN,N,
J =N, )
=M KMIN,I MM, KMINN, . gMMN,N,

Figure 2.3: General stiffness matrix
two nodes (P,1; Py) and linear shape functions are considered (Ni; Ny) (Fig 1.8).
The displacement field is the following
uy(y) = N1(y)uyr + Nowyo (2.18)
20



2 — Carrera unified formulation

Where:
L] N1 =1- %
[ ] N2 :%

A
@ Uy1,Pyq @ Uyo,Pyp :::! N
P>Y Y
L Y
N

Figure 2.4: ROD element with two nodes (on the left) and relation between
force and stress (on the right) [9]

It is possible to evaluate the resultant of normal force "N" on the cross section

using the following relation (Fig 2.4):

N=ocxA=FExexA (2.19)

Using the geometric relation, the strain trend along the beam axes is the fol-
lowing:
du 1
€= d_yy = E(uyg — Uy1) (2.20)
While the relation between the normal resultant nodal forces (N) and the applied

forces (P) is:

N =-—
' . (2.21)

Ny =Py
The normal vector on the node "1" is opposite to the direction of the applied
load (Fig 2.4). The final equation system is the following:

P,

yl — 7

g (2.22)
Py = ETA(_uyl + Uy2)



2 — Carrera unified formulation

That in matrix form became:

EA |1 =1} /4 P,
: ( ) _ (Py ) (2.23)
1 1|\ v2

(K] = — (2.24)

2.3.2 Stiffness matrix evaluation by CUF

For the same problem showed in Fig 2.4, the stiffness matrix is now evaluated by
CUF. Displacements, strains and their virtual variation can be write in the following

manner:

(

uy(y) = Ni(y)uy:
5uy(y) = Nj(?/)uyj

€ = Niyuy,

(2.25)

L 66 = Nj,y5yj

. _ dN;
Where: Ni,y = d_y
Now it is possible rewrite the virtual variation of internal work, in order to obtain

the fundamental nucleus.

Wi = /V 0y {o}dV = /v 0y B{e}dV
= duyi / Biy ENiydV )uy (2.26)

= 5uyi kY Uy

22



2 — Carrera unified formulation

k" is the fundamental nucleus of the bar:

kY = /V N;,EN; ,dV (2.27)

It is invariant respect to the number of elements nodes and the choice oh the

shape function (N). The explicit form of the nucleus is the following:

1.1 EA
= | Ny ,EN,,dV = —E—AL = —
/v by LT L
1.1 EA
k2 = / NoyEN, ,dV = ——E—AL = ———
v ’ L L L
11 EA (2.28)
k21:/N EN, . dV = ——E=—AL = — ==
v bRy L L L
1.1 EA
k2= | Ny ,ENy,dV = —E—AL = —
/V 2y L L I
Thus the stiffness matrix is:
K1 Kio Al 1 -1
k= = (2.29)
Ky Koo -1 1

Obviously the stiffness matrix is identical to the previous one.

2.4 The Taylor expansion class (TE)

The Taylor Expansion class (TE) is based on Taylor-like polynomial expansions to
describe the cross-section behaviour, the 1D model has 2D functions (F,(x, z) and
F,(x, z)) in the variables x and z. The order of expansion (N) could be arbitrary but
a convergence study of solution generally is necessary, tab. 2.1 shows the Taylor-like
polynomial terms and the total number of variable (M) as the order of expansion
increases. In according to the Einstein notation and Carrera unified formulation,

23



2 — Carrera unified formulation

the displacement field on the cross-section can be write as:

u= Fu, (2.30)
For example if N=2, the displacement field decomposed in the three direction
is:

)
Up = Uy + TUgo + 2Ugs + T2Ups + T2UL5 + 22 Usg

Uy = Uy1 + TUys + 2Uyz + T Uys + T2Uys + 22Uy (2.31)

Uy = Uy + TUzo + 2Uss + T2Usy + T2UL5 + 22U

\
This model (N=2) has 18 displacement variables:

e 3 constant terms;
e 6 linear terms;

e 9 parabolic terms;

Classical beam theories as Euler-Bernoulli and Timoshenko are particular cases
of the model with unitary order."Nevertheless the use of Taylor-type expansions
has some intrinsic limitations that led to the introduction of different polynomial

classes" [10]. In particular, Taylor-like polynomials on the cross-section entail that:

e The introduced variables have a mathematical meaning (derivatives at the

beam axes) [10];

e Higher order terms cannot have a local meaning, they can have cross-section

properties only [10];

e The extension to large rotation formulation could experience difficulties [10];
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2 — Carrera unified formulation

Table 2.1: Taylor-like expansion [9]

Fy =22 Fy=xz, Fy=2°

F, =23 Fy=2%, Fy =222, Fjy = 2°

N M F;

0 1 Fr=1

1 3 Fh=x F3==z
2 6

3 10

N (N+1(N+2)/2 Fnepniype =2, o vy = 2"
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2 — Carrera unified formulation

2.5 Lagrange expansion class (LE)

In this chapter another expansion class based on Lagrange polynomials is explained.
The finite elements model is based, as in previous subsection, on 1D Carrera unified
formulation, so the F,(x, z) and F(x, z) function are now the Lagrange polynomials
and the unknown variable u, are the nodal displacement. The use of Lagrange
expansion to describe the cross-section behaviour has many advantages, the main

ones are the following:

e LE model variables and boundary conditions can be located above the phys-

ical surfaces of the structure as shows the Fig 2.5 [9];
e The problem unknown variables are the pure displacement components;

e [t is possible to refine locally the cross-section in order to catch local effects,

so the computational cost are reduced;

3D Geometry from CAD
3D Geomeiry from CAD

LE Modelling

i @8 ey Beam element
i E O Beam node
o Lagrange node above the first beam
node cross-section
Lagrange node above the second beam
node cross-section
DOFs: pure displacements of each Lagrange
node (3 DOFs per Lagrange node)

TE Modelling

G i Reference axis

. ®—®@ Boam slement

® Beam node
DOFs: generalized displacements
defined on the reference axis

L]

Lagrange nodes can be placed above Computational Mode
the physical suriace of the structure

Computational Model

Figure 2.5: Comparison between LE and TE class

The Lagrange polynomials are usually given in terms of normalized coordinates
"o'" and "B". It is convenient because in the normalized plane any complex element
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2 — Carrera unified formulation

is reduced to a square or a triangle, so it becomes easy to calculate elements area.
The Fig 2.6 [9] shows three different type of Lagrange elements in the physical plane
(x,y) and in the normalized plane (a,3), they are:

e Three nodes Lagrange elements called 1.3, the first one in the Fig 2.6;

e Six nodes Lagrange elements called L6, the second one in the Fig 2.6;

e Nine nodes Lagrange elements called L9, the last one in the 2.6;

For reasons related to the algorithms stability, L9 is the type element will be

used for the static and failures analysis.

Actual Geometry Normalized Geometry

p
3 -
: a
B
- -
L :
= X 1
B

s

L}}(

Figure 2.6: L3, L6 and L9 elements in physical (x,y) and normalized («, )
plane
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2 — Carrera unified formulation

2.5.1 L9 elements

The Fig 2.7 [9] shows an L9 element in both the planes, physical and normalized.
This type of element is composed by nine nodes, the middle node is necessary
for the evaluation of the local normal vector which in turn is necessary for the
Gauss integration. The numeration of the nodes, called element connectivity, is
not random but starts from an edge point and finish to the middle point following

an anticlockwise sense.

Physical plane
xgr Wy, ) Uz
u'\‘o’u}'ﬁ’u?a
B Usegs Uy, Uy
““““ ufa' u}’a’ ufa
7 6 5
Uy Uy, Uz
8 9 4
a
2 °

u-f“z’ u'yz'u?-z
Uy Uy, Ug,
Normalized

2
______ . ue

2

Figure 2.7: L9 type element in physical (x,y) and normalized (a, ) plane
(left) and L9 DOFs (right)

The Lagrange polynomials are given in terms of normalized coordinates o and
B, so the generic L9 element became a square with long sides equal to two. The
nodes coordinates, in normalized plane, are summarized in the tab. 2.2 and the

Lagrange polynomials F are the following:
(0® +aa;) (8% + 88;), 7=1,3,57
F‘r: Oé?.(OéQ—FOéCYT)(l—BQ)+%B§(62+ﬂﬁr)(1—@2), T:27 47 67 8

(2.32)
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2 — Carrera unified formulation

Table 2.2: Normalized coordinates of L9 type element

Point o, B,

1 -1 -1
2 0 -1
3 1 -1
4 1 0
) 1 1
6 0 1
7 -1 1
8 -1 0
9 0 0
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2 — Carrera unified formulation

"L9 elements can be seen as a parabolic expansion plus two cubic terms (a/3?
and a?f) and a quadratic term (a?5%)" [9].

The displacements field is:

Uy = Frug, + Foug, + ... + Fouy,
uy, = Fiuy, + Fouy, + ... + Fouy, (2.33)

Uy = Fluzl + FQUZQ + ...+ Fguzg

"

Where "ug,...u,,

are the problem displacements variables and they stand for
pure displacement component of each of the nine L9 elements nodes, it is not
difficult now to calculate the problem degrees of freedom (DOFs) because it is
given by the number of the displacements variables. The Fig 2.7 [9]|shows the DOFs
related to one L9 element, it has 3 displace components (u,, u,, u,) for each node so
the DOFs number is equal to 27. In conclusion, "LE model provide elements that
have only pure displacement variables" [10]. The cross-section can be discretized
trough L9 elements and they can be assembled by the common nodes (Fig 2.8),

this cross-section assembly process is independent by the choice of the type and the

number of beam elements.

1 Local connectivity Global connectivity

¢ o 4o

Figure 2.8: Cross-section discetization example (left) and L9 elements as-
sembly process (right)

The Lagrange expansion class has an important feature, previously mentioned,
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2 — Carrera unified formulation

related to the possibility to refine locally the cross-section, it is possible because the
stiffness matrix is assembled in a different way compared to Taylor expansion (TE).
The Fig 2.9 [10] shows a part of stiffness matrix assembly process referred to multi-
component structure composed by two layers: the first one is a homogeneous layer
while the second one is composed by matrix and fiber. This is only the assembly
process part of the cross-section elements, in order to arrive at the global stiffness
matrix [k|, the assembly procedure along the beam elements must be added. The
matrix is assembled for both TE and LE approaches, in the first one (TE) a sort of
properties homogenization is operate because the number of the unknown variable
is fixed by the model order adopted while in the second one (LE) the number of
the unknowns variable is related to the total number of the cross-section node, thus
homogenization does not occur. For these reasons with LE models is possible refine
only a part of the cross-section to catch local effects, as shown in the Fig 2.10 [9],
without having to refine the whole cross-section with a significant computational
savings.

Multicomponent
Layer @ Structure

| *A%} Fivor

X Component 2

e ]
Component 1

3 X 3 Fundamental s IR RO
MNucleus Array WW|w
. T AR
W mwm
S T
=

Component 3

(1010101
aaoom

eiel 1 | Assembled

si . il LE Matrix

ml:“:l i\qssl,embled TE 'A‘ “““
AAA | AAIALA

Multicomponent Multicomponent

Componcnt 2
Com ponem 1
3 X 3 Fundamental X 3 Fundamental

Mucleus Array

Figure 2.9: TE (left) and LE (right) assembly technique for a multi-
component structure
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LE: Local
TE: Global refinement allowed refinement allowed
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Figure 2.10: Global vs local refinements on the cross-section
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2.6 Sparse matrix and computational cost analysis

Progressive failure analysis, will be described in the micromechanical chapter, con-
sist in solving hundreds of times a the linear system 2.34, and if the process is not
optimized the computational cost became unacceptable. For the progressive failure
analysis only the LE class are used to describe the cross-section behaviour and in
this case the stiffness matrix [k| contains a lot of null element. When a matrix
has a lot of zero elements it is called sparse matrix and specific algorithms exist
to solve linear system equation with them, for istance the "PARDISO" library im-
plemented by Intel. Below a simple examples that shows the null elements in the

stiffness matrix is proposed.

F{UY = {F} (2.34)

2.6.1 Example

In this example are showed the zero elements of the stiffness matrix |k| for a cell
composed by 6 beam element with two nodes and 2 cross-section elements with
four point (Fig. 2.11). The value of the indexes "s" and "7" varies from 1 to
6 because six is the total number of section nodes while the indexes "i" and "j"
varies from 1 to 2 because two is the number of the beam nodes. The Fig. 2.12
shows, starting from the fundamental nucleus |3 times3], the nodal contribution to
stiffness matrix [18 x 18], the circles are referred to the first cross-section element
while the square to the second and the white space are the null elements. The next
step is the beam element contribution, it is shown in the Fig. 2.13 and it is possible
to understand that it is composed by four nodal contribution forming a matrix |
36 x 36|. Lastly is the global stiffness matrix shown in Fig 2.14 | it is a NDOFs
x NDOFs matrix i.e. [126 x 126] and it is composed by six element matrix with

the corners overlapped due to the joint node. In the last figure all the blue space
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2 — Carrera unified formulation

represent the zero elements, so it is possible to affirm that the stiffness matrix with

LE class is a sparse matrix.

6(B'2)+2( ) SECTION

BEAMS ELEMENTS

Figure 2.12: Node contribution to stiffness matrix
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MNo-zero

elements \
\

Node

elements

- S

J=1 J=2

Figure 2.13: Beam element contribution to stiffness matrix

No-zero
elements

Zero
elements

Element
Matrix | Joint node I

[36x36]

Figure 2.14: Zero elements in global stiffness matrix
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2.7 Pardiso library

PARDISO is a Intel MKL Library [11] [12], it is high-performance software for
solving large sparse symmetric and nonsymmetric linear system of equations. The
Fig. 2.15 shows all the type of sparse matrix that can be solve the software, but
in this thesis work we are interested only to real symmetric and real un-symmetric
matrix. The software solve the liner system equation as [A]{z} = {b} and it want

in input the two vector x and b and the matrix rewrite in the CRS form.

| Intel MKL PARDISO |

3 _/// %-HH_H_&-%_““-—______
Symmetric \ Unsgr;metric
- e / \\\\\
| e, .
| Real H Hermitian H Complex | ‘ Real H Complex ]
. e —
¥ \ Ny e
| Indefinite | | Pos definite | | Indefinite | | Pos definite |

Figure 2.15: Sparse matrices that can be solved by PARDISO

2.7.1 Compress row storage (CRS) implementation

The software is based on the "compress row storage" (CRS), it is a particular
storage method where the matrix is rewritten as 3 vectors. As shows the Fig. 2.16

the sparse matrix is transformed in 3 vectors:

e Vector {A} contains all the no-zero elements;

e Vector {JA} contains the columns indexes of no-zero elements and it is the

same length of the vector A;

e Vector {IA} contains the indexes elements, referred to vector A, that start a

new raw in the matrix;
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2 — Carrera unified formulation

NOTE: The length of TA vector is equal to "n+1" (n is the number of the matrix
rows/column) because the last element is always equal to the no-zero elements
number plus one.

In case of symmetric matrix, it is stored only the upper (lower) triangular portion
of matrix Fig. (2.16). It is important to note that the matrix is read starting from
the first element and scanning all the rows (from left to right). The code is based
on Fortran language, so the Fig. 2.18 and 2.17 shows the CRS implementation in
this programming language. The CRS implementation for un-symmetric matrix
is composed by two nested do-cycle: the fist one count the number of no-zero
elements so it is possible to allocate the dimension to JA and A vectors, the second
one fills the three vectors as showed before. Instead the CRS implementation for
symmetric matrix is a little bit different because only upper triangular portion
must be stored. The first do-cycle count the number of no-zero elements of the
upper triangular portion except the diagonal, indeed at the end of the cycle, the
length of the two vectors JA and A is equal to the no-zero elements number plus
the number of system equations. The second do-cycle, like the previous, fill the
three vectors, it is more complex because it did non read all the matrix but only

the upper triangular side.

2.7.2 PARDISO subroutine

The implementation of PARDISO library [11] [12] in the code, in order to reduce of
the computational cost of the failure analysis, it is made introducing a new subrou-
tine in the code for the linear system equations resolution. The input parameters

of the subroutine are:
e N DOF TOT = total number of degree of freedom problem;
e K struct = stiffness matrix of problem;

e FORCES = forces vector applied on the structural nodes;
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1 2 3 4 5 6 7 8

1

2

3

4

|

L

T

B

Nonsymmetric Matrix Symmetric Matrix

K IA(K) | JA(K) | A(K) IA(k) | JA(K) | A(K)
1 1 1 T 1 1 7.
2 5 3 1. & 3 ]
B ] [ 2 g [ 3.
[ 10 7 T 10 Fd 7.
5 12 2 BN 12 2 -4
[ 13 3 8. 15 3 ER
T 16 5 0 17 5 a2
8 18 3 5 18 3 i
9 21 8 5 19 8 b
10 4 T 1 7.
11 7 9. i 0.
12 2 -4 5 5.
13 ] T [ -1,
14 [i 3. 7 B
15 ] 5. [ 0
16 2 17. ] B,
17 ¥ 11 T Ll
18 3 3. 8 b
19 7 2.
20 ] 5.

Figure 2.16: CRS for symmetric and un-symmetric matrices

tcounts the number of no-zero elements
nnz=@ !variable initialization
do i=1,N_DOF_TOT
do j=1,N_DOF_TOT
if(K_struct(1,j) .ne. © ) then
nnz=nnz+1
end if
end do
end do
ALLOCATE(jalnnz))
ALLOCATE (a(nnz))
Iprocedure to fill the vectors "a,ja,1a"
c=0 !variable 1nitialization
1a(1)=1 !first "1a" vector element is always one

do i=1,N_DOF_TOT
do j=1,N_DOF_TOT
if(K_struct(i,j) .ne. @ ) then

c=ctl
alc)=K_struct(1,])
jalcl=3
end if
end do

1a(i+1)=c+1
end do

Figure 2.17: CRS implementation for symmetric matrix

e UNKNOWNS = is the unknowns vector;

They are declared in brackets after the subroutine name and they are essential

for the operation of the subroutine. The subroutine output instead is the unknowns
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2 — Carrera unified formulation

tcounts the number of no-zero elements locate over the diagonal (1=])
nnz=0 !variable initialization
do 1=1,N _DOF TOT
de 3=1,N_DOF_TOT
if (1 .1t. 3) Then
if (K _struct(z,7) .ne. 8 ) then
nnz=nnz+1
end if
end if
end do
end do
ALLOCATE (ja(nnz+N_DOF_TOT))
ALLOCATE (a(nnz+N_DOF_TOT) )

Iprocedure to fill the vectors "a,ja,ia"
c=0 !variable initialization
1a(1)=1 !first "ia" vector element 1s always one
do i=1,N_DOF_TOT
do 7=1,N_DOF_TOT
if (1 .eq. ) then
c=c+1
alc)=K_struct(z,])
jalc)=]
elseif (1 .1t. j) then|
if(K_struct(i,j) .ne. @ ) then
c=c+1
alc)=K struct(i,7)

end if
end do
iali+l)=c+1
end do

Figure 2.18: CRS implementation for un-symmetric matrix

vector, it is empty initially and at the end of the algorithm it is filled with the
solution of the linear system equations. Before the declaration of all the subroutine
variables, it is necessary to include the library by the command "include" and
the name of the library is "mkl pardiso.f77". Furthermore the "implicit none"
statement is used, it has the task of inhibit a old feature of Fortran that assign the
integer type at all the variables that start with the letters i, j, k, 1, m and n and also
it makes the detection of the errors easier. In the subroutine there are two type of
arrays: dynamic and static, the static arrays have the dimension assigned while the
dynamic are declares as "allocatable" and the dimension may be allocated in a later
stage. For instance, the size of the vector "a" (the vector containing all the no-zero
variables) is allocated after the first do-cycle of the CRS implementation. After
the declaration of all the variables (Fig. 2.19), the stiffness matrix (K struct) is
decomposed in three vectors by the CRS implementation described in the previous
section so the inputs for the PARDISO library are ready. Before to solve the liner
system equations, there are some library parameters to be set, in the Fig. 2.20 are
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shown all the setting parameter using for the analysis, the main ones are:

e iparm(1)= if the value of this parameter is "0" the library work with default
setting, otherwise if it is equal to "1" the library does not work in default

setting;

e iparm(64)= if the linear system equations is very large, it is convenient to set

this parameter equal to two;

e mtype = this parameter set the solution method through the matrix type, for

instance "11" stay for un-symmetric matrix;

e iparm(3)= this parameter indicates the number of the processor that the
program can be use, it is important because a good setting of it can reduce

the computational time;

NOTE: For the sense of all the other parameter the guide can be consulted.
Now is possible to call the solve by the command "call", it solve the linear system

in three phases:

e Phase 1=Fill-reduction analysis and symbolic factorization;
e Phase 2=Numerical factorization;

e Phase 3=System resolution;

After that the unknowns vector is ready to be processed in other code subrou-
tine, actually there are another phase called "phase zero" that clears all the memory

used during the previous phases.
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R R

C Example program to show the use of the "PARDISO" routine
¢ for symmetric linear systems

subroutine PARADISO(N_DOF_TOT, K_struct, FORCES,
& UNKNOWNS )

IMPLICIT MONE
include 'mkl_pardiso.f77
. Internal solver memory pointer for 64-bit architectures
. INTEGER*2 pt(&4)
. Internal solver memory pointer for 32-bit architectures
. INTEGER*4 ptl&tﬂ
. This 1s OK in both cases
INTEGER*2 pt(64)
. A1l other variables
INTEGER maxfct, mnum, mtype, phase, N_DOF_TOT, mrhs, error
INTEGER msglvl,nnz,j,c
INTEGER iparm(64)
INTEGER ialN_DOF_TOT+1)
INTEGER, ALLOCATABLE :: jal : )
REAL*S, ALLOCATABLE :: al:)
REAL*3 K_struct(N_DOF_TOT,N_DOF_TOT)
REAL*S FORCES(N_DOF_TOT)
REAL*S UNKNOWNS(N_DOF_TOT)
INTEGER i, idum(1)
REAL*S ddum(1)

(e Xakalakal

-

Figure 2.19: Variable declaration in the subroutine

iparm(1) = 1 ! no solver default iparm(1)=1

iparm(2) = 2 ! fill-in reducing ordering for the input matrix...iparm(2)=@ use the minimum degree alhotith
iparm(3) =1 ! numbers of processors

iparm(4) = 6 ! no iterative-direct algorithm

iparm(s) = @ ! no user fill-in reducing permutation

iparm(6) = @ ! =0 the array x containes the solution

1parm(7) = 0 ! not 1n use

iparm(8) = 9 ! numbers of iterative refinement steps

iparm(9) = @ ! not in use

iparm(10) = 13 ! perturb the pivot elements with 1E-13...1t 1s the default value for non simmetric matrix
iparm(11) = 1 ! use nonsymmetric permutation and scallng MPS. . .default value for non simmetric matrix
iparm(12) = @ ! Solve a linear sysyem AX=B

iparm(13) = 1 ! maximum weighted matching algorithm is switched-on (default for non-symmetric)

1parm(14) = © ! Output: number of perturbed pivots...if you want to see this number msglvl=l

1parm(15) = @ ! Output: Peak memory on symboglc factorization.. Jf

iparm(16) = © ! Output: Permament memory on symbolic factorlzatmn bt

iparm(17) = © ! Output: Peak memory on numerical factorization and solution...//

iparm(18) = -1 ! Output: number of nonzeros in the factor LU...//

1parm(19) = -1 ! Output: Mflops for LU factorization

iparm(20) = @ ! Outpur:Diagnostic report about factorizzation

1parm(64)=2 !For large problems

error = 0 ! initialization of error flag

msglvl = @ ! print statistical information if msglv=1

mtype = 11 ! Type of matrix...ll=real unsymmetric matriy

nrhs = 1 !Number of right- hand sides that need to be solved for...Generally used value 1s 1
maxfct = 1 !Maximal number of factors in memory...Generally used value 1s 1

mnum = 1 !The number of matrix (from 1 to maxfct) to solve.. .Generally used value 1s 1

Figure 2.20: PARDISO library setup
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Chapter 3

Static analysis by CUF: assessment

of referred structures

In this chapter it will be analyzed a referred structures with different theoretical
model using CUF. In all cases which will be reported, the reference system will
be the same and it is shown in the figure below (Fig. 3.1).The longitudinal axis
of the beam coincides with the coordinate y (0 < y < L) and the cross-section is

overlayed on the x-z plane.

Figure 3.1: Reference system
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3 — Static analysis by CUF': assessment of referred structures

3.1 Analysis via Euler-Bernoulli beam model

Euler-Bernoulli beam model is obtained as a particular case of the general Nth-order
model. Using this theory, the shear deformation v,, and ,. are not contemplated.
The purpose of analysis is the evaluation of the vertical displacement of the free

tip via Euler-Bernoulli model.

3.1.1 Description of the problem

Let’s consider a cantilever, rectangular cross-section beam under the action of a
punctual load P,.The load is applied at the center point section of the free tip and
it is worth P,—=-10 N. They will be analyzed two similar beam with different length:
L=1m and L=10m. The displacement will be evaluated at the center of the section
of the beam free tip. The geometrical and material proprieties are listed in table

3.1.

Table 3.1: Geometric and material properties of beam

Parameters Values Units

Geometrical Properties

Beam Length (L) 1.0/10.0 m
Slenderness (L/h) 10/100 -
Cross-section width (w) 2.0 cm
Cross-section height (h) 10.0 cm
Material Properties

Young’s modulus 75.0 GPa
Poisson’s Ratio 0.33 -

3.1.2 Results

The analysis results, obtained using five beam elements B2, are summarized in
the table 3.2, furthermore these have been compared with the result obtained via
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analytical theory of Fuler-Bernoulli. Below there are the displacement fields rep-
resentation of two cases taken into account during the analysis (Fig. 3.2 and 3.3).
The difference between analytical theory of Euler-Bernoulli and the FEM result are
indicated with the "Percentage error" value in table 3.2, they are evaluated with

the following equation:

(ANALYTICAL result) — (FEM result)
(ANALYTICAL result)

Error(%) = (3.1)

Table 3.2: Results with Euler-Bernoulli model

Cases u, at free-end [m| DOF Percentage error
Beam (L=1m) —2.640% 107" 18 0.801
Beam (L=10m) —2.640 % 102 18 0.802

BT =

Displacements
0 1.32e-05 2.65e-05
A —

Figure 3.2: Deformed configuration of beam with L=1m

3.2 Analysis via Taylor-like expansion

The reason of the analysis is the evaluation of a beam’s point displacement and the
maximum value of stress o,, under the action of a punctual load P,.These solu-
tions will be obtained via Finite Elements Method varying the type of elements,the

number of elements and lastly the order of the Taylor-like expansions.
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L I |

e

Displacements
0 0.0132 0.0264

Figure 3.3: Deformed configuration of beam with L=10m

3.2.1 Description of problem

For the following analysis has been used the same cantilever, rectangular cross-
section beam employed in the previously one with the same load applied at the free
tip. During these analysis it will be analyzed also the stress o, in two different
points of the section were their value is the maximum one and opposite sign. The

coordinates of these points are in centimetres: (0,0,5);(0,0,-5).

3.2.2 Results

For the analysis it was used only the B4 beam element.

The first analysis based on the two beams (L=1m;L=10m) has been performed
using twenty elements B4 and varying the order of model (N) until the difference
between the results of two consecutive analysis has reached a negligible value. In
addition the results can be compared with the values obtained via and the Navier
equations. The analysis results are summarized in the table 3.3.

The second analysis, based on the same beams, has been performed using N—4
and varying the number of elements until the difference between the results of two
consecutive analysis has reached a negligible value.In addition the results can be
compared with the values obtained via the Navier equations. The analysis results

are summarized in the table 3.4.
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Table 3.3: Result obtained with 20 elements B4

Order model o, top [Pa] o4, bottom [Pa]  wu, at free-end [m|]  DOF
L=1m

Navier 2.994 x 10° —2.994 % 10° - -
Euler-Bernoulli  3.000 * 10° —3.000 * 10° —2.667 % 107° 183
Timoshenko 3.000 * 10° —3.000 * 10° —2.684 % 107° 305
N=1 3.000 * 10° —3.000 * 10° —2.684 % 107° 549
N=2 3.352 % 10° —3.352 % 10° —2.670 % 107° 1098
N=3 3.678 x 10° —3.678 x 10° —2.673%107° 1830
N=4 3.726 * 10° —3.726 * 10° —2.674 % 107° 2745
N=5 4.078 * 10° —4.078 * 10° —2.675 % 107° 3843
N=6 4.121 % 10° —4.121 % 10° —2.675 % 107° 5124
N=7 4.224 % 10° —4.224 % 10° —2.675%107° 6588
N=8 4.234 % 10° —4.234 % 10° —2.675 % 107° 8235
N=9 4.288 % 10° —4.288 * 10° —2.675 % 107° 10065
N=10 4.290 * 10° —4.290 * 10° —2.675 % 107° 12078
L=10m

Navier 2.994 x 10° —2.994 % 106 - -
Euler-Bernoulli  3.000 * 106 —3.000 * 108 —2.667 * 1072 305
Timoshenko 3.000 * 10° —3.000 * 108 —2.667 * 1072 549
N=1 3.000 * 10° —3.000 * 108 —2.667 * 1072 1098
N=2 3.468 x 10° —3.468 * 106 —2.657 % 1072 1830
N=3 3.502 x 10° —3.502 x 108 —2.657 % 1072 2745
N=4 3.503 * 10° —3.503 * 108 —2.657 * 1072 3843
N=5 3.505 * 10° —3.505 * 108 —2.657 * 1072 5124
N=6 3.505 * 10° —3.505 * 106 —2.657 % 1072 6588
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Table 3.4: Result obtained with elements B4 and N—4

N° elements oy, top [Pa] o,y bottom [Pal u, at free-end |m| DOF
L=1m

5-B4 3.634 x 10° —3.634 % 10° —2.649 x 107° 720
10-B4 3.737 % 10° —3.737 % 10° —2.667 x 107° 1395
20-B4 3.726 * 10° —3.726 % 10° —2.674%107° 2745
40-B4 3.499  10° —3.499 * 10° —2.677%107° 0445
60-B4 3.322 % 10° —3.322 % 10° —2.678 % 107° 8145
L=10m

5-B4 3.474 % 106 —3.474 % 108 —2.629 x 1072 720
10-B4 3.481 % 106 —3.481 % 10° —2.648 x 1072 1395
20-B4 3.503 * 106 —3.503 * 108 —2.657 * 1072 2745
40-B4 3.554 * 106 —3.554 % 108 —2.662 x 1072 5445
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3.3 Evaluation of the o, stress trend

In this chapter it will be evaluated the trend of oy, stress long the z axis on a
generical section of beam. The stresses will be evaluated using Taylor-like expansion

for the nodes of the mesh.

3.3.1 Description of problem

Let’s consider the same beam of the previous chapters. The load applied at the
free tip create a bending moment, which in turn, create a o, stress on the faces of
beam. Since the trend of oy, stress is the same for all the section of the beam, it
is evaluated on the points that have x and y coordinate null while the z coordinate

vary from -5cm to bem with a step of 1.25 em (fig. 3.4) .

Figure 3.4: Points where is evaluated the trend of oy, stress

3.3.2 Results

For the evaluation of trend, twenty B4 elements were used while the order of Taylor-

like expansion was varied from N=-1 to N=10 (note that N=-1 was Euler-bernoulli

theory and N=0 was Timoshenko theory) in the first case (L=1m) and from -1 to
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6 in the other case (L=10) . The trends obtained are shown in the figures below
(3.5, 3.6, 3.7, 3.8, 3.9). It is clear that, in the case of tin beam the trends of stresses
change but they remain linear, while in the case of squat beam the trend change

from N=3 onwards and become not linear.

yy (Pa)

O

z (cm)

Figure 3.5: Trend of oy, stress for beam with L—=1
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(Pa)

O

_5 1
-5 0
z (cm)

Figure 3.6: Trend of oy, stress for beam with L=1

Sy (Pa)

Figure 3.7: Trend of oy, stress for beam with L=1

50



3 — Static analysis by CUF': assessment of referred structures

Sy (Pa)

Sy (Pa)

-5 0 5
z (cm)

Figure 3.8: Trend of oy, stress for beam with L=10

_4 L
-5 0 5
z (cm)

Figure 3.9: Trend of oy, stress for beam with L—=10
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3.4 Analysis via Lagrange polynomials

The other way to analyze the beams via FEM is to use Lagrange polynomials for the
cross-section discretization. L-elements are used, in particular L9 and its multiple,

and it will analyzed the displacement field and the trend of o, stress.

3.4.1 Description of the problem

For the analysis are used the same beam of the previous chapters with the same
force applied at free tip. The displacement at the free tip and the o, trend on the
middle section are evaluated by varying the discretization of the section, one, two
and four L9 element are used. The coordinates of the point used for the evaluation

of the trends are: x=0,y = L/2 and z vary from -5cm to 5cm.

3.4.2 Results

For the analysis of beams, in both the cases (L=1m;L=10m), were used: one, two
and four L9 elements for the discretizzation of section, B4 beam elements on the
length of beam and the number of elements were varied from 5 to 40. The results

are shown in the three tables below (3.5; 3.6; 3.7).
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Table 3.5: Results obtained with B4 elements and 1xL9

N° elements oy, max [Pa] u, at free-end [m] DOF
L=1m
5-B4 —5.297 % 103 —2.645 % 107° 432
10-B4 —5.285 % 103 —2.663 x 107° 837
20-B4 —5.286 * 107 —2.670 % 1075 1647
40-B4 —5.286 % 103 —2.673 % 107° 3267
L=10m
5-B4 —5.289 % 103 —2.629 x 1072 432
10-B4 —6.008 * 103 —2.648 x 1072 837
20-B4 —5.094 x 103 —2.657 x 1072 1647
40-B4 —5.285 % 107 —2.662 % 1072 3267
Table 3.6: Results obtained with B4 elements and 2xL9
N° elements oy, max |Pa] u, at free-end [m] DOF
L=1m
5-B4 —8.559 x 103 —2.648 x 107° 720
10-B4 —8.569 * 103 —2.666 * 107° 1395
20-B4 —8.569 * 103 —2.674%107° 2745
40-B4 —8.569 * 10° —2.677 % 107° 5445
L=10m
5-B4 —8.804 x 103 —2.629 x 1072 720
10-B4 —8.445 x 103 —2.648 x 1072 1395
20-B4 —8.379 % 103 —2.657 x 1072 2745
40-B4 —8.569 * 103 —2.662 % 1072 5445
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Table 3.7: Results obtained with B4 elements and 4xL9

N° elements oy, max |Pa] u, at free-end [m] DOF
L=1m

5-B4 —8.552 % 103 —2.649 x 107° 1200
10-B4 —8.530 * 103 —2.667 x 107° 2325
20-B4 —8.569 * 103 —2.675% 107° 4575
40-B4 —8.569 * 103 —2.678 % 107° 9075
L=10m

5-B4 —8.803 * 103 —2.629 x 1072 720
10-B4 —8.233 % 103 —2.648 x 1072 1395
20-B4 —8.723 % 10® —2.657 % 1072 2745
40-B4 —8.585 % 103 —2.662 * 1072 2445
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3.5 Evaluation of the o,. stress trend

The purpose of the analysis is the evaluation of the o,. stress trend long the z
axis. For the analysis are used Lagrange polynomials and Taylor-like expansion for

section nodes, and finally them are compared with Jourawsky theory.

3.5.1 Description of problem

Let’s consider the same beams (L=1m;L=10m) of the previous subchapters with
the same force applied at the free tip. The oy, stress is evaluated on a specific
points that are, at a later stage, interpolated with a straight line. The point have
coordinate: x=0, y = L/2 and z that vary from -5cm to 5 cm with a step of 1.25

cim.

3.5.2 Results

For the analysis of o, stress on the middle section of beams, 40 elements B4 were
used. Moreover the order of Taylor-like was varied from N=-1 to N=10 (where N=-
1 was Euler-bernoulli theory and N=0 was Timoshenko theory)and one/two/four
L9 Lagrange polynomials were used. For the evaluation of stress with Jourawsky

theory the following equation was used:

T (R
0y2—5<3—2 ) (32)

The results are shown in the next diagrams (Fig. 3.10; 3.11; 3.12; 3.13; 3.14;
3.15). It is noted that in the figures 3.12 and 3.15 only the significant trends are

showed .It is clear that:

e Either way (L=1m;L=10m), the EBBT elements return a null values in all
the points on the section of o, stress. It is correct because the theory not
contemplate the shear effects, the shear effects appear from N=2 onwards;
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e The trends evaluated via Taylor-like expansion tend to the trend evaluated

via Jourawsky theory when the order of model rise ;

e The trends evaluated via Lagrange polynomials tend to a cusp shape ;

1k Jourawsky i
— 1*L9
or 2*L9 E

—— 479

z (cm)

_5 L L L L L L L L
-9000 -8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 0

s,, (Pa)

Figure 3.10: Trend of o, stress for beam with L=1 (Lagrange polynomials)
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Figure 3.11: Trend of o, stress for beam with L=1 (Taylor-like expansion)
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Figure 3.12: Comparison of o, trends in the case of L=1
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Jourawsky
1r — 1*L9 b

[ ] 219

——4%L9

z (cm)
o

_5 L L L L L L L L
-9000 -8000 -7000 -6000 -5000 -4000 -3000 —-2000 —1000 0

S, (Pa)

Figure 3.13: Trend of o, stress for beam with L=10 (Lagrange polynomials)
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Figure 3.14: Trend of o, stress for beam with L=10 (Taylor-like expansion)
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Figure 3.15: Comparison of oy, trends in the case of L=10
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3.6 Static analysis of a hollow square cross-section

A clamped-clamped hollow square cross-section is considered for the next anal-
ysis, it is made with an isotropic material with £ = 75GPa, v = 0.33 and
p = 2700K g/m3, while the cross-section geometry is defined by L/h = 20, h/t = 10
and h = 1m. The purpose of the next analysis is to evaluate the displacement of
the loaded points using the Taylor-like expansion and the Lagrange polynomials.

For all the analysis will use 10-B4 beam elements.

3.6.1 One point load applied

In this subsection a punctual load (P, = 1N) applied in point of coordinates (0,L/2,-
h/2) is considered. For the cross-section discretizations, as shown in Fig. 3.16, three
type of L9 mesh are used, the 8L9 mesh is symmetric, whereas 9L9 and 1119 are

mesh refined in the proximity of the loaded point.

(a) (b)

BEEEREEERE

(]

Figure 3.16: Hollow square cross-section discretiza-
tion:(a)8L9;(b)9L9;(c)11L9
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3.6.2 Results

The table 3.8 present the results with the number of DOFSs of each model compared

with reference values derived from other analysis [9)].

Table 3.8: Loaded point transverse displacement of the hollow square beam.

Theory DOFs u, X 10®m Reference [9]
TE

EBBT 155 1.129 1.129
N=4 1395 1.209 1.209
N=8 4185 1.285 1.291
N=11 7254 1.309 1.309
LE

8L9 4464 1.277 1.277
9194 5022 1.308 1.308
11L9 6138 1.326 1.326

3.6.3 Two point loads applied

Two punctual loads are now applied at the same beam (P, = £1N) in the points
of coordinate (0,L/2,4). The L9 distribution are those shown in Fig. 3.16(a) and

3.16(b) that are symmetric and asymmetric distributions.

3.6.4 Results

The table 3.9 gives the displacement of the two loaded points uz.,, and Uzbottom
while the Fig. 3.17 shows the deformation of cross-section under the two punctual

loads when a 1119 mesh is used.
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Table 3.9: Loaded points transverse displacement of the hollow square beam.

Theory  DOFs (Uz—top/Us—bottom) X 107m Reference |9]
TE

EBBT 155 -/+0.0 -/+0.0
N—4 1395 -/+0.178 -/40.178
N=8 4185 -/+1.045 -/+1.046
N=11 7254 -/+1.269 -/4+1.270
LE

8L9 4464 -/ 10.985 /10985
1119 6138 -0.972/1.456 -0.972/1.456
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1.5e-09
I le-9

5e-10
z

<« o |
I -5e-10 ;
-9.8e-10

Displacements Z

Figure 3.17: Deformation of cross-section (1119 mesh)
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3.7 Static analysis of a C-shaped cross-section beam

A clamped C-shaped cross-section beam is considered for the following analy-
sis, it is made with the same isotropic material of previous analysis. The cross-
section is represented in Fig. 3.18 and the geometrical parameters are: L/h=20,

h/t:10,h:b2:1m,b1 = b2/2

by

t

I

by

Figure 3.18: C-shaped cross-section

3.7.1 Two point loads

Two point loads are now considered (P, = F1N), and they are applied in two
points of coordinates (0, I, + 0.4). The displacement are evaluated in (—by/2, L,
0.4). For the analysis by Lagrange polynomials, are used two type of cross-section

mesh (619 and 9L9) that are shown in Fig. 3.19.

{ = I NI EEERERL

' . EREEL

(a) (b)

Figure 3.19: C-shaped cross-section discretization: (a)6L9;(b)9L9
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3.7.2 Results

The result are summarized in the table 3.10 and in Fig. 3.20 are shown the defor-

mation of beam under the two loads using 9L.9 mesh.

Table 3.10: Transverse displacement at (—by/2, L,0.4).

Theory ~ DOFs uz x 10m Reference [9]
TE

EBBT 155 0.0 0.0
N—4 1395 -0.245 -0.245
N=8 4185 -2.160 -2.161
N=11 7254 -2.563 -2.565
LE

819 4464 -2.930 -2.930
1119 6138 -2.982 -2.982

2.8e-08
' 2e-8
0
t-Qe—B I
-3.0e-08
Figure 3.20: Deformed 3D configuration of C-shape cross-section beam (919
mesh)

Displacements Z
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3.7.3 Flexural-torsional load

A flexural-torsional load is now considered, the unitary load (P, = —1N) is applied
in a point of coordinate (by, L, —h/2). Two length-to-thickness ratio are take into

account I./h=20,10 and a 91.9 mesh is used for the analysis.

3.7.4 Results

The result are shown in tale 3.11 while in Fig. 3.21 is shown the deformation of

L=10 cross-section beam.

Table 3.11: Transverse displacement at (—b2/2, L, +h/2).

Theory ~ DOFs uz x 107m Reference [9]
L/h—20

9.9 5310 -14.58 -14.62
L/h—=10

9L9 5310 -2.266 -2.272

0.0e+00
l -5e-8
-le-7

<Yx

-1.5e-7
l -2e-7
-2.3e-07

Figure 3.21: Deformed 3D configuration of beam by flexural-torsional load
(9L9 mesh and L=10)

Displacements Z
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3.8 Static analysis of a open hollow square cross-

section beam

An open, square cross-section is now considered, in Fig. 3.22 is shown the dimension
and the material is the same of the precedent cases. Two opposite unit point loads
(£P,) are applied at (0, L, -0.45) while for the analysis are adopted three different
L9 distribution that are showed in Fig. 3.23.

-- Cut

Figure 3.22: Open, hollow square cross-section.

3.8.1 Results

In the table 3.12 are summarized the result obtained by the analysis and in Fig.

3.24 is shown how the tip cross-section of beam is deformed from the loads.

Table 3.12: Horiziontal displacement at (0, L, —h/2).

Theory DOFs uy X 103m Reference |9
9L9 5310 4.879 4.884
11L9 6417 4.889 4.888
11L9* 6417 5.117 5.116
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Figure 3.23: Open, hollow square cross-section discretization:
(a)9L9;(b)11L9;(c)11L9*.
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0
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Figure 3.24: Deformation of C-shape cross-section (9L9 mesh)
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3.9 Static analysis by solid-like geometrical BCs

In the following analysis the geometrical boundary condition will be impose over
the entire cross-section.In all the following cases,the beams are made with the same

isotropic material of previous analysis.

3.9.1 Compact rectangular beam

A compact rectangular beam clamped at the lateral edge is considered (Fig. 3.25),
the beam have the following geometrical characteristics: L/h=100,b/h=10 and
h=0.01m. A set of 21 unitary point loads is applied along the mid-span cross-
section on the top surface (z=h/2) with constant step in x stating from the edge of

cross-section. Two L9 distributions are adopted (5L9 and 10L9) for the analysis.

I Clamped

Figure 3.25: Compact rectangular beam, clamped at the edges.

3.9.2 Results

The results are showed in the table 3.13 and in Fig. 3.26 is illustrated the defor-

mation of the middle cross-section under the effect of the loads.

Table 3.13: Trasverse displacement at (0, L/2,0) of rectangular beam.

Theory DOFs uz x 10"m Reference [9]

5L9 3069 -1.075 -0.959
10L9 5859 -1.110 -1.110
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I 1.9e-21

z -5e-8

X o
I -1.1e-07

Figure 3.26: Deformation of the middle cross-section of compact rectangular
beam (10L9).

Displacements Z
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3.9.3 Compact rectangular curved beam

Now let us consider a circular arch cross-section beam clamped at the lateral edges
(Fig.3.27).The length of the beam (L) is equal to 2 m, the outer (r;) and inner (rs)
radii are equal to 1 and 0.9 m, respectively. The angle of the arch () is equal to 7/4
rad. Three unitary point loads are applied on the bottom surface at y=0, y=L/2
and y=L with ¥ = /2 and each load acts in the radial direction from the inner
to the outer direction. For the analysis is used the L9 cross-section discretization

showed in Fig. 3.28.

[ — Clamped

Figure 3.27: Compact rectangular curved beam, clamped at the edges.

06

Figure 3.28: L9 mesh for the arch beam clamped at the lateral edges, 12L9.
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3.9.4 Results

Table 3.14 shows the transverse displacement of a point of the mind-span cross-

section and Fig. 3.26 shows the 3D deformed configuration.

Table 3.14: Trasverse displacement on the external surface of the arch beam
(y=1L/2,0=10/2)

Theory DOFs uy x 101%9n Reference |9

1219 6975 4.602 4.809

I 3.0e-09

N

L

29 &

P §
8

¥ le9 2
& © g

=

I -56.0e-12

Figure 3.29: Deformed 3D configuration of the arch beam clamped at the
lateral edges.
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3.9.5 C-shaped cross-section beam

Finally it is taken into consideration the previous c-shaped cross-section beam (Fig.
3.18) with the same geometrical parameters.The boundary condition are shown in
Fig. 3.30 and the L9 mesh shows in Fig. 3.31 is used for the analysis (13L9).Two
point load ( P, = —1N) are applied at (0,0,0.4) and (0,1.,0.4).

L BN N

[N N ]

Figure 3.31: Mesh of C-shaped cross-section beam.
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3.9.6 Results

The vertical displacements of loaded point are summarized in table 3.15 and in Fig

3.32 is shown the deformed 3D configuration of the entire beam.

Table 3.15: Displacement of the loading point of the C-shape beam clamped
at the bottom flanges.

Theory DOFs uy x 108m Reference |9

13L9 7533 -3.686 -3.662

I 3.3e-09

N
2
268 G
2 &
de-8  Q
y X ke]
&
I 6e-8 O
-7.0e-08

Figure 3.32: Deformed 3D configuration of the C-shaped beam clamped at
the bottom flangers.
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3.10 Static analysis of laminated beams

In this section will be analysed the laminated beams by Taylor-Like expansion and

Lagrange polynomials.

3.10.1 Antisymmetric laminated beam

A two-layer antisymmetric beam is considered first. The dimension of the beam

are the follows:
e b=0.2 m (width)
e h=0.1 m (height)
e L=2m (length)

e L/b=10 (slenderness ratio)

(a) 2 layers (b) 3 layers

Figure 3.33: Cross-section domain configuration of the antisymmetric (a)
and symmetric laminated beams (b).

The mesh of section are shown in the Fig.3.33(a)[13],in this particular case
each layer has a sub-domains compose by nine nodes. An orthotropic material is

employed for the two layers that has the following properties:

o [, =25.0GPa

e By = Ey =1.0GPa
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® ViT = V5§Lyz = Vrgz — 0.25
® GLT = 0.5GPa

® GTZ = GLZ = 0.2GPa

An antisymmetric [0,90] cross-ply laminate is analyzed (started for the bottom)
using seven B4 elements.The beam is clamped at y=0 while at y=L are applied

four force in the four corners of the section, the forces have a value of 25N.

3.10.2 Results

The results obtained are shown in the table 3.16,the Fig.3.34 shows the normal
stresses while the Fig.3.35 shows the shear stresses, both the stresses are evaluated

at the middle section.

x 10

(Pa)

yy

— EBBT
2L9 ;
- — —N=1
—k—N=4 ]
‘‘‘‘‘ N=8
-10 :
-0.05 0 0.05

Figure 3.34: Normal stress (o,,) along the height of the middle cross section
of the beam.
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Table 3.16: Deflection and stresses of the antisymmetric laminated beam.

Model — —u, x 1073[m] oyy X 10%[Pad] 0y. X 10%[Pad] DOFs
[0,1,h/2] [0,1./2,h /2] [0,1./2,-h /4]
Reference[13]
219 3.48 88.84 -8.18 990
SOLID 3.48 93.30 -11.36 132300
Result
219 3.47 93.28 -8.17 990
EBBT 3.41 93.44 0 66
N=1 3.49 92.37 -5.04 198
N=4 3.48 93.37 -10.17 990
N=8 3.48 93.18 -11.71 2970
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2000

-4000

(Pa)

yz

©  -6000

-8000

-10000

-12000 :
-0.05 0 0.05
z(m)

Figure 3.35: Normal stress (0,.) along the height of the middle cross section
of the beam.
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3.10.3 Symmetric laminated beam

The same geometry used in the previous analysis is considered again but now with
three-layer symmetric [0°,90°,0°]. Material, loads and boundary condition are also

the same and the cross-section domain division for analysis is shown in Fig.3.33(b).

3.10.4 Results

The table 3.17 shows the results obtained while in Fig. 3.36 and in Fig. 3.37 are

shown normal and shear stresses distribution along the z-axis at the mind-span of

beam.

Table 3.17: Deflection and stresses of the symmetric laminated beam.
Model — —u, x 1073[m)] oyy X 10°[Pal oy. % 103[Pad] DOFs
[0,L.h/2] 0,L/2,h/2] [0,L/2,-h/4]

Reference[13]

219 0.72 269.24 -6.91 1386
SOLID 0.72 311.07 -6.92 195300
Result

21.9 0.72 311.04 -6.91 1386
EBBT 6.64 311.06 0 66
N=1 0.71 311.06 -5.0 198
N=4 0.72 310.90 -7.36 990
N=8 0.72 310.96 -7.03 2970
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x 10
4
3r EBBT K
3L9
ol — — —N=1 i
—k— N=4
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_1 L .
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Figure 3.36: Normal stress (o,,) along the height of the middle cross section
of the beam.
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Figure 3.37: Normal stress (0,.) along the height of the middle cross section
of the beam.
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3 — Static analysis by CUF': assessment of referred structures

3.10.5 Eight-layer composite beam

For the third analysis a thick eight layer cantilever beam is considered. The Fig.3.38
shows the geometric characteristic of beam and the lamination sequence. Two dif-
ferent material are employed for the lamination that are marked with the num-
bers 1 and 2. Both have the same elastic modulus in the transversal direction
Er = 1.0GPa, shear modulus G, = 0.5G Pa and the poisson ratio v = 0.25 (equal
for all direction). They have a different elastic modulus, which is E;, = 30G Pa for
material one and E;, = 5G Pa for material two. Four equal loads are applied at the

corners of tip cross-section, each of F=-0.05N.

Tmm
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b | e
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=
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Figure 3.38: Representation of the eight-layer beam and the lamination
sequence.

3.10.6 Results

In the Fig.3.39 and 3.40 are shown respectively the normal and shear stress distri-

bution along the z-axis at mid-span while in table 3.18 are summarized the results.
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3 — Static analysis by CUF': assessment of referred structures

Table 3.18: Maximum deflection and longitudinal stress at mid span of the
eight-layers composite beam.

Model —u, x 107°[m] oyy X 103[Pad] DOFs
[0,1,h/2] [0,1./2,h/2]
Reference[13]
8L9 3.03 730 4743
N=1 zz 2.99 730 279
N=2 zz 2.99 730 958
N=3 zz 3.03 729 930
N=9 zz 3.04 661 5115
Result
8L9 3.03 730 4743
N=1 2.99 730 279
N=2 2.98 730 258
N=3 3.03 730 930
N=9 3.03 730 5115
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Figure 3.39: Normal stress distribution along the z-axis for the eight-layer
composite beam.
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Figure 3.40: shear stress distribution along the z-axis for
composite beam.

the eight-layer
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3 — Static analysis by CUF': assessment of referred structures

3.11 Single-cell box beam

In this subsection a beam with a thin-walled cross-section is analyzed . The cross-
section dimension are: b=24.2mm, h—13.6mm and t—0.762mm (Fig.3.41) also it is
divided in 16 sub-domains as shows the Fig.3.42 .Three different slenderness ratio
(L/b) are considered 10,20 and 30 and each wall of beam consist in a two-layer
lamination: [0°,90°| for the flangers and [—45°,+45°] for the webs (0° and —45° are
placed outwards). The orthotropic material used have the following characteristics:
E; =69.0GPa,Er = E, = 10.0GPa, v = 0.25 (for all direction) and G=6GPa (for
all direction). The beam is clamped at one edge and loaded with two vertical forces

(F=50N) each applied at the top of corners of the tip.

D
[ e

Figure 3.41: Box section geometry.

Figure 3.42: Cross-section domain distribution.

84



3 — Static analysis by CUF': assessment of referred structures

3.11.1 Results

In Fig.3.43 are shown the normal stress distribution along the thickness of the top
flange at middle section for the slenderness 10 while in Fig.3.44 and Fig.3.45 are
shown the shear stress long the inner an outer layer of the right web. Finally in

tables 3.19,3.20 and 3.21 are shown the results for the three slenderness.

x 107
9 T T

" (Pa)

(¢

1 xK r
6 61 62 63 64 65 66 67 68 69
z(m) x 107

Figure 3.43: Normal stress distribution along the thickness of top flange.
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Figure 3.44: shear stress distribution along the z-axis of the right web (inner

layer).

Table 3.19: Displacements and stresses of the single-cell beam (L/b=10).

Model —u, x 1073[m]  o,, x 105[Pa] o,, x 105[Pa] o,, x 10°[Pa] DOFs
[0,L,h /2] [0,1./2,h /2] [0,0,h /2] [b/2,L/2,h/4]
Reference[13]
1619 7.16 85.80 167.74 -8.31 7740
EBBT 7.09 85.24 170.48 0 155
TBM 7.15 85.27 170.51 -6.40 600
N=3 7.09 84.44 163.50 -9.64 930
N=6 7.16 85.30 165.77 -8.94 2604
Results
161.9 7.16 85.11 163.28 -8.73 7440
EBBT 7.11 85.32 170.63 0 93
TBM 7.17 85.28 163.04 -6.56 155
N=3 7.11 84.65 163.04 -9.72 930
N=6 7.17 85.15 160.47 -7.99 2604
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Figure 3.45: shear stress distribution along the z-axis of the right web (outer
layer).

Table 3.20: Displacements and stresses of the single-cell beam (L/b=20).

Model —u, x 1073[m]  o,, x 105[Pa] o,, x 105[Pa] o,, x 10°[Pa] DOFs

[0,L,h/2] [0,L/2,h/2] [0,0,h/2] [b/2,L/2,h/4]
Reference[13]
1619 96.70 170.52 336.49 -12.11 7740
EBBT 06.43 170.48 340.96 0 155
TBM 06.51 170.48 340.96 -10.30 600
N=3 55.86 169.19 331.75 -14.74 930
N=6 96.25 170.88 332.18 -13.66 2604
Results
161.9 96.76 170.75 331.92 -13.61 7440
EBBT 06.89 170.63 341.27 0 93
TBM 57.0 170.60 341.23 -10.62 155
N=3 56.31 169.20 331.03 -15.32 930
N=6 96.73 170.94 328.81 -11.82 2604
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Table 3.21: Displacements and stresses of the single-cell beam (L/b=30).

Model —u, x 1073[m]  o,, x 105[Pa]  o,, x 105[Pa] o,. x 105[Pa] DOFs
[0,L,h /2] [0,1./2,h /2] [0,0,h /2] [b/2,1./2,h/4]
Reference[13]
161.9 191.85 256.23 504.25 -15.63 7740
EBBT 191.45 255.72 511.45 0 155
TBM 191.71 255.72 511.45 -14.21 600
N=3 189.39 253.92 499.62 -19.66 930
N=6 190.59 256.71 500.89 -18.36 2604
Results
161.9 191.11 256.39 500.58 -18.49 7440
EBBT 192.00 255.95 511.91 0 93
TBM 192.17 255.92 511.87 -14.68 155
N=3 189.70 255.78 498.72 -15.37 930
N=6 190.99 256.26 498.37 -15.51 2604
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3 — Static analysis by CUF': assessment of referred structures

3.12 Multi cell box beam

A two-cell cantilever beam with a cut is now considered. The lamination and the
dimension are the same as the single-cell beam, but a third web is added in the
middle of the section with a lamination [—45°,45°| and also a cut is placed at the
bottom of the right cell. Two vertical and horizontal point loads of 50N each are
applied at the tip section. The two vertical forces are directed upwards and they
are located at the two corners of the top flange. The two horizontal loads have a
opposite direction and are applied at the two bottom corners, in order to open the

right cell.

3.12.1 Results

The Fig. 3.46 displays the deformed configuration of the tip section while the Fig.

3.47 and 3.48 show the normal and shear stresses distribution on the tip section.
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Figure 3.46: Deformed cross-section at the tip of the two-cell beam.
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Figure 3.47: Normal stress distribution at mid span.

Figure 3.48: Shear stress distribution at mid span.
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3 — Static analysis by CUF': assessment of referred structures

3.13 Single and double cell static analysis

In this section a new structural model is considered. At the first a single fiber-
matrix cell is analyzed, it represent simplest element of a more complex composite
structure and it can be assembled in sequence to simulate a realistic one. The
Fig.3.49 represents the cross-section of the model and the reference system, it is
a square cell with: b = 0.1mm, diameter of fiber d = 0.08mm and L/b = 10.
Two isotropic material are used for fiber and the matrix and the property are the

following;:

e For fiber ' = 202.038G Paandyr = 0.2128

e For matrix F = 3.252G' Paandy = 0.355

The structure is clamped at y = 0 and loaded in the point of coordinate
(b/2, L,0) with a vertical force F; = —0.1N. For the analysis are used 40 — B4
elements for Taylor-like expansion and 10 — B4 elements for Lagrange expansion,

while the cross-section discretization (for both models) is shown in Fig3.49.

d

TZ
y "
<-L}
Figure 3.49: Single fibre-matrix cross-section [14]
The double cell model is obtained by two single cell placed side by side how
is shown in Fig3.51. For the analysis, the same discretization of the cross-section,

number of beam elements and materials are used. It is necessary to specify that
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Figure 3.50: Single cell cross-section discretization with 2019 elements

now a = 2b. The structure is clamped at y = 0 and loaded with two vertical forces
(Fz = —0.05) in A(a/4, L,b/2) and B(3a/4, L,b/2).
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Figure 3.51: Double fibre-matrix cross-section [14]
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3 — Static analysis by CUF': assessment of referred structures

3.13.1 Results of single cell model

In the tables 3.22 and 3.23 are summarized and compared|[14] the results. Further-
more a solid model is created and analyzed by abaqus software and for the analysis

a 20 nodes brick is used. In Fig 3.52 and 3.53 are shown the vertical displacement

and the oy, stress on the clamped section.

Figure 3.52: Vertical displacement field evaluated by abaqus software

Figure 3.53: o, stress on clamped section evaluated by abaqus software

3.13.2 Results of double cell model

In the table 3.24 and 3.25 are summarized and compared|[14] the results. Further-
more a solid model is created and analyzed by abaqus software and for the analysis
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3 — Static analysis by CUF': assessment of referred structures

Table 3.22: Deflection and stresses of single-cell model.

Model —u, x 10*[mm)] oyy X 1072[M Pa) DOFs
[b/2,L,0] [b/2,L/2,d/2]
Reference[14]
EBBT -7.81 9.47 363
TBT -7.83 9.47 605
N=1 -7.85 9.47 1089
N=2 -7.77 9.36 2178
N=3 -7.78 9.36 3630
N=4 -7.79 9.33 5445
N=5 -7.78 9.33 7623
N=6 -7.80 9.32 10164
N=7 -7.80 9.32 13068
N=8 -7.80 9.35 16335
12L9+-8L6 -7.93 9.45 7533
SOLID -7.82 9.49 268215
Result
EBBT -7.83 9.49 363
TBT -7.85 9.49 605
N=1 -7.85 9.49 1089
N=2 -7.78 9.37 2178
N=3 -7.79 9.37 3630
N=4 -7.80 9.34 5445
N=5 -7.81 9.34 7623
N=6 -7.81 9.33 10164
N=7 -7.81 9.33 13068
N=8 -7.82 9.36 16335
20L9 -7.82 9.39 8277
SOLID -7.82 9.46 56613
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Table 3.23: Deflection and stresses of single-cell model.

Model oyy X 1072[M Pal 0y. X 1071 [M Pal DOFs
[b/2,L/2,0.03] (0.01,L/2,d/2]
Reference[14]
EBBT 7.10 - 363
TBT 7.10 -1.96 605
N=1 7.10 -1.96 1089
N=2 7.02 -2.31 2178
N=3 7.02 -2.46 3630
N=4 7.02 -2.45 5445
N=5 7.11 -2.37 7623
N=6 7.11 -2.37 10164
N=7 7.12 -2.30 13068
N=8 7.05 -2.30 16335
12L9-+8L6 7.05 -2.50 7533
SOLID 7.09 -2.38 268215
Result
EBBT 7.12 - 363
TBT 7.12 -2.83 605
N=1 7.12 -2.83 1089
N=2 7.03 -2.83 2178
N=3 7.03 -2.38 3630
N=4 7.10 -3.13 5445
N=5 7.10 -2.42 7623
N=6 7.11 -2.34 10164
N=7 7.11 -2.12 13068
N=8 7.13 -2.11 16335
20L9 7.09 -3.25 8277
SOLID 7.09 -2.34 56613
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a 20 nodes brick is used. In Fig 3.54 and 3.55 are shown the vertical displacement

and the o, stress on the clamped section.

Figure 3.54: Vertical displacement field evaluated by abaqus software

Figure 3.55: o, stress on clamped section evaluated by abaqus software
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Table 3.24: Deflection and stresses of double-cell model.

Model —u, x 10%[mm)] oyy X 1072[M Pal DOFs
la/4,L,b/2| la/4,L/2,0.03]
Reference[14]
EBBT -3.91 4.73 363
BT -3.92 4.73 605
N=1 -3.92 4.73 1089
N=2 -3.87 4.68 2178
N=3 -3.87 4.68 3630
N=4 -3.88 4.63 5445
20L9+16L6 -3.96 4.65 12555
SOLID -3.90 4.74 236430
Result
EBBT -3.92 4.74 363
BT -3.93 4.74 605
N=1 -3.93 4.74 1089
N=2 -3.88 4.68 2178
N=3 -3.88 4.68 3630
N=4 -3.90 4.63 5445
40L9 -4.05 4.69 16089
SOLID -3.90 4.72 214437
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Table 3.25: Deflection and stresses of double-cell model.

Model oyy X 1072[M Pa) 0y. X 1071 [M Paq] DOFs
[3/4a,L,/2,0.03] [0.01,L/2,0]
Reference[14]
EBBT 3.55 - 363
BT 3.55 -0.98 605
N=1 3.5 -0.98 1089
N=2 3.51 -1.59 2178
N=3 3.51 -1.77 3630
N=4 3.51 -1.76 5445
20L9+16L6 3.52 -1.58 12555
SOLID 3.5 -1.52 236430
Result
EBBT 3.56 - 363
BT 3.56 -0.98 605
N=1 3.56 -0.98 1089
N=2 3.51 -1.59 2178
N=3 3.51 -1.77 3630
N=4 3.51 -1.76 5445
40L9 3.54 -1.50 16089
SOLID 3.5 -1.53 214437
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3.14 Static Analysis of a cross-ply laminate by dif-
ferent models

Let us consider a cross-ply plate [14], it is composed by three layers oriented at
[0°,90°,0°] and it have the following geometric parameters: length L = 40mm,
width b = 0.8mm, height h = 0.6mm and diameter of fibers d = 0.02mm (As
shown in Fig 3.56). The same plate is analyzed with four different model and the

component have the following mechanical characteristic:

e Fiber is considered orthotropic: E; = 202.038GPa, F, = F3 = 12.134G Pa,
G12 = G13 = 8358GPCL, Ggg = 47756GPCL, V19 = V13 = 0.2128 and V93 —
0.2704;

e Matrix is an isotropic material: E = 3.252G Pa and v = 0.355;

e Layer properties are the following: F; = 159.38G Pa, Fy, = F3 = 14.311G Pa,
G12 = G13 = 3711GPCL, Ggg = 5209GP(I, Vg = V13 = 0.2433 and V93 —
0.2886;

The plate is clamped at Y = 0 and a force (F, = —1N) is applied in the point
of coordinate |b/2;L;0].

Z A

L O

b

< 1

Figure 3.56: Geometry of laminated plate
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3.14.1 Model 1

The first model consist in a simple analysis of beam by three layers of orthotropic
material (Fig 3.57). For the analysis are used 40 — B4 elements for Taylor-like
expansion, 5 — B4 elements for Lagrange expansion and 20 nodes brick for solid

analysis by abaqus.

Figure 3.57: Representation of model 1

3.14.2 Model 2

The second model used for the analysis consist in a two layers of orthotropic material
and the last layer is the combination of fibers and matrix (Fig 3.58). For the
discretization a 20 node brick is used and the analysis is calculated by abaqus

software.

3.14.3 Model 3

The third model consist in a one central layer of orthotropic material and the
remaining two layers are composed by fibers and matrix (Fig 3.59). For the dis-
cretization a 20 node brick is used and the analysis is calculated by abaqus software.
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Figure 3.59: Representation of model 3

3.14.4 Model 4

The third model consist in a two layers of orthotropic material and the last one are
composed by one fiber and the remaining part of orthotropic materia (Fig 3.60).
For the discretization a 20 node brick is used and the analysis is calculated by

abaqus software.

3.14.5 Results

In the Fig 3.61 is shown, for model 1, the trend of 0, along the Z axis and coordinate
X =0.3 and Y = 0, while in the table 3.26 are summarized and compared|[14] the
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Figure 3.60: Representation of model 4

results. Instead, in the table 3.27 are summarized the result of the solid analysis of

the remaining models.
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Figure 3.61: oy, trend along Z axis evaluated with model 1
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Table 3.26: Deflection and stresses of model 1.

Model u, x [mm] oy, x 1072[MPa] o,, x [MPa] DOFs

[b/2,L.0] 10.5,0,-0.2] 10.55,0,-0.2]

Reference[14]

N=4 -9.63 -5.71 - 0445
3L9 -9.63 -5.76 3.63 1008
Model 1

N=4 -9.63 -5.69 - 5445
3L9 -9.63 -0.77 3.57 1008
SOLID -9.64 -5.74 2.96 3129

Table 3.27: Deflection and stresses of model 2,3 and 4.

Model u, x [mm] oy, x 1072[MPa] 0., x [MPa] DOFs

[b/2,1,,0] [0.5,0,-0.2] [0.55,0,-0.2]
Model 2
SOLID -9.73 -7.32 1.42 23031
Model 3
SOLID -9.90 -7.41 1.04 196623
Model 4
SOLID -9.66 -7.28 1.32 174888
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Chapter 4

Micromechanics

Given that the complex structure of composite materials and the very small di-
ameter of the fibers (6um), the failure analysis requests a multiscale approach. As
shown in Fig 4.1 [10], the analysis, starting from a big and complex structure, as an
airplane, switches over to a laminates and, lastly, it cames to analyze a microstruc-
ture composed by a few fibers: it is like a loop because there is a constant exchange
of information between the macro and micro scale. For this reason the microscale
and consequently the micromechanics are essential for structure failure analysis.

In this work thesis the micromechanics is used for the matrix failure analysis using

a code based on Carrera unified formulation (CUF).

Figure 4.1: Multiscale analysis
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4.1 Repeated unit cell (RUC)

The fibers, in a real structure made by composite materials, can be ordered only
along one direction while on the cross-section they cannot have a hated arrange-
ment: this happens because during the production process it is impossible to con-
trol the transverse placement of the single fiber when fibers and matrix are mixed.
So the cross-section fibers arrangement is unknown, but the distance between the
fibers influences the stresses distribution which defines the crack initiation. To
overcome the problem and find a solution to the failure problem, it is required
the micromechanics plus a simplified model and a statistical analysis. The problem
could be simplified assuming the existence of a repeating cell in the structure called
RUC (Fig 4.2 [10]): it is a rectangular parallelepiped with a square sections and
dimension ratio L/h = 10, so the macrostructure can be seen as composed by a
periodic array of simple cells (RUC). The microscale failure analysis is performed
on different RUCs type composed by the same number of the fibers but different
arrangement and the final result is evaluated statistically taking account of all the

RUCs results. For these reasons the necessary parameters to describe the RUC are:

e The number of the fibers Ny;

e ['iber diameter ¢; and dimension ratio %;

e Volume Fraction—=V; = I;Z%Fél[’jgsvvoolfnﬁe;

Where "h" is the length of the square RUC cross-section and "L" is the trans-
verse RUC dimension as shown the Fig. 4.2 [10]. All the others parameters, except
the fiber centers, can be obtained as combination of the main parameters.

For the matrix failure analysis, have been created 10 different RUCs composed
by 5 fibers and random arrangement of fiber (Fig 4.3 [15]). They have the following
geometric properties:
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_______
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Figure 4.2: Repeated unit cell (RUC)
e [iber diameter ¢y = 6um;
e [iber volume fraction Vy = 0.52
e £=10

Every RUC has a square cross-section, so it is simple to evaluate the dimension

of the cell (L and h) from the previous data. The definition of volume fraction is:

__Yf
Vi= e (4.1)

The unknown is vrUC because the fibers volume is simply calculable as:

vy = (mry)? X Ny x L= L x 141.372um? (4.2)

Where Ny is the total fibers number (5). Now it is possible to calculate "h" by

the relation:

v 141.372um?
URUC:h2XL:7;:LXT;L

Definitely h = 16.49um while the "L" is evaluated by the dimension ratio

(4.3)

L/h =10, so it is equal to L = 164.9um.
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(a) RUC #1 ) RUC #2 (c) RUC #3 (d) RUC #4
4 hdd d A
(f) RUC #6 (g) RUC #7 (h) RUC #8 (i) RUC #9

(e) RUC #5

(i) RUC #10

Figure 4.3: Cross-section representation of five RUCs fibers

4.2 Periodic boundary conditions (PBC)

In order to ensure the continuity between two consecutive RUCs, periodic boundary

conditions (PBC) are necessary for microscale analysis. The PBC shall ensure that

all the RUCs of the structure have the same deformation mode because when the

deformation starts there must be no gaps or overlaps between them. In terms of

displacements (u,v,w), the boundary nodes of each RUC are constrained by the

following equations systems [10]:

Sidel

Side2 :

= 9

\

u(lb Y, Z) - U(O, Y, Z) = 6llll
v(ly,y,2) —v(0,y,2) = 2e12ly
\w(llv Y, Z) - w(07 Y, Z) = 2613l1
U($, 127 Z) - U(07 Y, Z) - 262112

v($7l272) - U(an7'z) = 62212

w(z,ls, z) —

’LU(O, Y, Z) = 2623l2
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4

u(r,y,l3) — u(z,y,0) = 2els
Side3 : S v(x,y,ls) — v(x,y,0) = 2esl3 (4.6)

w(z,y,l3) —w(@,y,0) = es3ls

Where sides 1, 2 and 3 ar(; referred to the pairs of cell faces and [q, ls and [3 are
the cell dimension along the x,y and z axes directions (Fig 4.4). In other words, the
cell faces belonging to the same "side" deform in the same way, indeed the PBC

must be applied at all the node boundary nodes.

Figure 4.4: BPC sides representation

To clarify the concept, a simple example is now presented (Fig 4.5) [10] , the
RUC is represented by only one L9 element on the cross-section and one beam

element with three nodes along the beam axis. The PBC are the following:

e PBC of the "side 1" are applied on the nodes i=3,4,5 and j=1,8,7 (regardless

of the apex);

e PBC of the "side 2" are applied on the nodes i=5,6,7 and j=3,2,1 (regardless

of the apex);
e PBC of the "side 3" are applied on the nodes i=1"",...,9”" and j=1’,...,9’;
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Figure 4.5: Example representation

4.3 Progressive failure analysis of matrix

The failure analysis is an iterative process that solves a linear system equations at
each iteration, where the linear system is the typical of the FEM (4.7). The code
is based on the "crack band theory for fracture of concrete" [16] that it is not a
main topic of this work thesis, for this reason only a reference to the theory will be

given.

K{U} = {F} (4.7)

Since the analysis purpose is the studies of the microcracks effect in the matrix
and it is classified as a monolithic material, only the opening mode shown in the
Fig. 4.6 [10] is considered for the progressive failure analysis. The crack band
theory assumes that the opening direction is a function of the maximum principal
stress.

The failure criteria is the maximum strain, it is used to define the failure ini-
tiation, and the analysis is strain controlled. The Fig. 4.7 [10] shows how it is
conducted the analysis, the RUC is fixed on the left at the coordinate z = =z
while on the other face it is applied a strain Az because it is strain controlled. At
each iteration are evaluated displacement, stress and strain fields in all the domain
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A’Ix
¥
Z

!

Figure 4.6: Opening mode representation

nodes and if on a L9 cross-section element the value of the strain exceeds the limit
value assigned (failure strain e;), it breaks and the stiffness matrix is penalized.
The analysis ends when the RUC is broken in two parts. The Fig. 4.7 [10] shows
the typical stress-strain curve for the fracture process, where the stress and strain
are calculated as the average values on the right RUC face. Before the peak, a
linear elastic behaviour is assumed for the material, when the maximum value of
the strain is reached, that is the peak, the curve stops growing and begins to de-
crease until complete rupture of the cell. The post-peak behaviour describes the
progressive strain-softening or rather the decrease of stress at strain increasing [10]
while the area under the curve represents all the energy consumed in formation and
propagation of the crack in the material, the value of this kind of energy is fixed

for all the failure analysis.

ANO X0 X
N
7

UCI‘
—>
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¢’ % —>
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P

Z,
Ly
Figure 4.7: Stress-strain diagram for the fracture process (left) and RUC

progressive failure analysis (right)
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Chapter 5

Results of progressive failure

analysis of matrix

This chapter contains all the results of matrix failure analysis, starting from a
simple case with only one L9 element on the cross-section, to arrive at the failure
analysis of the RUCs with five fibers. The cross-section meshes has been created by
abaqus, the main problem was that the abaqus rectangular elements are composed
by 8 nodes and the connectivity of elements is ordered differently (Fig. 5.1). A
matlab code is used to add the central node and modify the elements connectivity,

the central node coordinates (x;z) are evaluated in the following way:

o — Xo+Xe+X7+Xs
- 4

(5.1)

_ Ys+Ye+Yr+Ys
Y= 4

They are the average value of the four lateral nodes of the abaqus rectangular
element. As stated above, the progressive failure analysis is performed by a code
based on Carrera unified formulation and the Crack band theory [16], analyzes
only one between all the composite failure modes, the matrix failure. The analysis
method has already been described in the previous chapter. It is important to

specify that in all the successive analysis only one beam element composed by 3
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5 — Results of progressive failure analysis of matrix

nodes will be use along the beam axis.

4 7 3 7 6 5
@ L
g ® @6 g e
; -
1 5 2 1 2 3

Connectivity of elements:

12345678 123456789

Figure 5.1: Abaqus rectangular element v.s. L9 element

5.1 Homogeneous block

In this section an homogeneous block is analyzed with different material properties
and different discretiation of the cross-section, with the scope to show the code
operation. The geometrical characteristics of the block are fixed for all the next

analysis and they are: [y = [3 = 0.00lmm and the transversal dimension is [, =

0.01mm (Fig 5.2).

m
i}

3=z W3
24
[ Y

1=x

Figure 5.2: Representation of the homogeneous block dimensions

For the last two cases (9 and 25 L9 elements), in order to induce the crack
formation in the center of the block and the propagation in vertical direction, a
different values of failure stress are assigned at the L9 elements.
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5.1.1 One L9 element on the cross-section

The first case analyzed is an homogeneous block discretized with only one L9 el-
ement, this example can help the lectors to achieve a better understanding of the
failure criteria and generally the code operation. It is the simplest possible case
because uses for discretization only one L9 element on the cross-section and one
beam element with three nodes along the beam axes. The block is fixed on the left
surface while a strain "Az" is applied on the opposite face at each iteration (Fig.

5.3), for the analysis an isotropic material with the following properties is used:
e Young modulus E= 127600 MPa;
e Poisson ratio v=0.3;

e Failure stress o, = 0, = 0, = 1730 MPa;
While the parameters setting of analysis is:

e Number of increments N = 250;
e Delta increment pulling Az = 1.0 x 107%;

e Degree of freedom number NDOF's = 81;

Fixed edge

Ax
®

(1

X

Figure 5.3: Failure analysis representation of one L9 element
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The Fig. 5.4 shows the stress strain curve. The material has a linear elastic
behavior until the peak, in the peak the strain achieves the critical value which
leads to the breaking of the element. The critical value of stress and strain in the

peak are the following:

Oz failure = 2318.26 M Pa
(5.2)

€xfailure = 0.0135

It is possible to realize by the graphics that for value of strain around the

e = 0.019 the block is completely crushed.

2500 T
20001 : -

AB00F il ..........................

[MPal]

X

] TR ...........................

I i i ;
0] 0.005 0.01 0.015 0.02 0.025 0.03
g

Figure 5.4: Stress-strain curve of one L9 element case

5.1.2 Nine L9 elements on the cross-section

Now the cross-section of homogeneous block is meshed by nine L9 elements while

along the beam axes only one beam element with three nodes is used, nine is the

minimum number of element necessary to create a failure zone in the center of the

block and to force the failure to start in the center (Fig. 5.5[10]). The failure zone
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is located at the center of the block and it has a thickness t—0.0001 mm while the
other dimension are the same of the block and in order to force the failure in the
center a different values of failure stress are assigned at different element in order

to induce the crack formation in the center. The material properties are:

e Young modulus E=3252 MPa
e Poisson ratio v = 0.355

e Failure stresses:op = 27.5M Pa, o9 = 29.5M Pa and o3 = 66.5M Pa

The Fig. 5.5 shows the cross-section discretizzation and the failure stress assign-
ment, the numbers in the figure are related to the failure stresses o;. The failure
is induced to start in the central element because it has the lower value of failure
stress opp = 27.5M Pa (Fig. 5.5[10]) and later it is forced to propagate within the
upper and lower elements because the failure stress (o7, = 29.5M Pa) is lower than

the remaining elements. The parameters setting of the failure analysis is:
e Number of increments N = 250;
e Delta increment pulling Az = 1.0 x 1073;

e Degree of freedom number NDOF's = 441,

. Failure i
C FOSS'Sect on initiation point —
>t -
3 2 3 * T
3 1 3 b=l |~
3 3 :
Failure region

Figure 5.5: Cross-section material assignment(left) and failure initiation
point representation(right)
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The failure analysis result are shown in the Fig. 5.6, the stress-strain curve has
a linear elastic behavior until the first element failure. In this case the failure of
the one element does not imply the collapse of the whole block, indeed the peak
is after the failure of the central element. The critical value of stress and strain in

the peak are the following:

Oz faiture = 82.91M Pa (53
5.3

€xfailure = 0.02

100 T

o. [MPa]

0 0.05 0.1 0.15 0.2 0.25

Figure 5.6: Stress-strain curve of nine 1.9 elements case

5.1.3 Twenty five L9 elements on the cross-section

The last case of failure analysis of homogeneous block is identical to the previous
except for the cross-section discretizzation, indeed 25 element are now used so
the propagation zone of the failure is now composed by four L9 elements while in
the previous case there were only two. Due to the increase of the cross-section
elements also the NDOFs rose significantly, in fact now it is NDOF's = 1089. The
Fig. 5.7 shows the cross-section discretizzation and the failure stress assignment,
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the numbers in the figure are related to the failure stresses oy so the failure is forced

to start in the center.

Cross-section

3 3 2 3 3
3 3 2 3 3
3 3 1 3 3
3 2 3 3
3 E] 2 3 3

Figure 5.7: Cross-section material assignment of 25 L9 elements case

The failure analysis result are shown in the Fig. 5.8, the curve trend is similar
but not identical to the previous case because the NDOFs is changed. The critical

value of stress and strain in the peak are the following:

Oz failure = 86.63M Pa

€z failure = 0.02

100 T

. [MPa]

0 0.05 0.1 0.15 0.2 0.25

Figure 5.8: Stress-strain curve of twenty five L9 elements case

In the Fig. 5.9 are compared the two solution. The stress o in the peaks are
different, 86.63 MPa versus 82.91 MPa, but the value of the strain is the same
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€x failure = 0.02.

100 T
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o
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Figure 5.9: Comparison of stress-strain

cases
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5.2 Single fiber

Now a cell composed by one fiber in the center is analyzed, the cross-section and

the cell dimensions are shown in the Fig. 5.10. Cell geometric properties are:

e Cross-section dimension [; = I3 = 0.008mm;
e Transversal dimension [, = 0.08mm;
e Fiber diameter ¢ = 6um;

The two materials, used for the matrix and fiber, are isotropic material with
a failure stresses assigned along the three principal directions, their properties are
summarized in the table 5.1. The Fig. 5.10 represents the cross-section meshing,
twenty 1.9 elements are used for cross-section discretization of which 12 only for
the fiber while along the beam axes the usual 3-node beam element is used. The
analysis operation is the same of the previous cases and the parameters setting is

the following:

e Number of increments N=200;
e Delta increments pulling Az = 3.0 x 107°

e Degree of freedom number NDOFs= 801;

The result in terms of stress-strain curve is shown in the Fig. 5.11. The critical

value of stress and strain in the peak are the following:

Oz tailure = 97.30M Pa 5.5
2.5

€z failure = 0.00667

As in the previous cases, the curve trend is linear until the peak and after it

collapses due to the brittle behavior of the matrix material.
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Table 5.1: Materials properties

Matrix Fiber
Yang modulus E 3252 MPa 250634 MPa
Poisson ratio v 0.355 0.2456
Oz failure 3398.1 MPa 66.5 MPa
Oy failure 2052.6 MPa 255 MPa
O failure 186.8 MPa 74.0 MPa
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Figure 5.10: Representation of cross-section discretization (left) and repre-
sentation of cell dimensions (right)

s. [MPal]
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Figure 5.11: Stress-strain curve of one fiber
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5.3 Random packed

Lastly, random packed RUCs with five fibers are analyzed. All their cross-section
were meshed with the help of the abaqus automatic meshing, but despite the im-
plementation of PARDISO library in the code to reduce the computational time
and improve the management of the memory, the analysis requires equally large
amount of virtual memory. For this reason the number of L9 elements and nodes on
the cross-section is restricted and beyond a limit, the code gives insufficient virtual
memory error. Indeed the analysis of the RUC#1, with the cross-section fibers
distribution shown in the Fig. 5.13, did not work because the number of the cross-
section nodes is greater than all the other cases. The geometrical characteristic of

the RUCs are the following:

Cross section dimension l; = I3 = 16.5um (Fig. 5.12);

Transversal length I, = 165um (Fig. 5.12);

Fiber diameter ¢y = 6um;

vf
veotal

Fiber volume fraction V; =

The materials properties used for fibers and matrix are the same of the single
fiber case and are summarized in the table 5.1.The Fig. 5.12 [10] shows the analysis
operation, as in the previous cases, the left side is fixed while on the opposite one
is applied an increment Az. All the RUCs cross-section with the respective crack
propagation are shown in the Fig. 5.14, 5.16, 5.18, 5.20, 5.22, 5.24, 5.26, 5.28 and
5.30, while all the information about every RUCs analysis and the maximum value

achieved of stress and strain are summarized in the tables 5.2 and 5.3 where:

® Noements 1S the number of L9 elements on the cross-section;

® Nyointsin the number of cross-section nodes;
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NDOFs is the total number of degree of freedom;
® Nipcrements 15 the total number of increments for the analysis;
e Az represents the quantity of the each increment;

® O failure 18 the maximum value of the stress achieved during the analysis;

€z failure 1S the maximum value of the strain achieved during the analysis;

The Fig. 5.15, 5.17, 5.19, 5.21, 5.23, 5.25, 5.27, 5.29, 5.31 show all the results in
terms of stress-strain curve; during the pulling, a stress concentrations can arise on
the cross-section especially in the zones between two close fibers. So any elements
can fail early but this does not involve the total collapse of the structure and

furthermore it is the reason of curves broken trends.

A\ 4

RUC [ Ax

s

1A z
L1 . . | "
1=x

Figure 5.12: RUC dimensions (left) and RUC analysis representation (right)
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Table 5.2: Results

RUC #1 RUC #2 RUC #3 RUC #4 RUC #5
Nolememnts 204 107 120 120 123
Npoints 857 463 517 515 527
NDOFs 7713 4167 4653 4635 4743
Ninc’/‘ements - 250 180 260 250
Ax x107° - 4.4 4.4 4.4 2.8
axfailme[MPa] - 59.193 61.711 64.711 740597
€z failure - 0.00412 0.00386 0.00522 0.00528

Table 5.3: Results

RUC #6 RUC #7 RUC #8 RUC #9 RUC #10
Nolememnts 104 143 89 103 106
Npoints 453 611 395 453 459
NDOFs 4077 5499 3555 4077 4131
Nincrements 200 175 120 160 300
Ax x107° 4.4 4.4 6.4 4.4 2.4
Og failure [MP&] 55.752 54.874 68.784 63.064 62.739
€xfailure 0.00430 0.00514 0.00561 0.00514 0.00549
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Figure 5.13: RUC#1 cross-section representation (left) and RUC#1 meshing
representation (right)

Figure 5.14: RUC#2 cross-section representation (left) and RUC#2 crack-
path (right)

60

50 : 4

40 : ~ 1

30t ~ :

s, [MPa]

1 1 1 1 1
0 0.002 0.004 0.006 0.008 0.01 0.012
€

Figure 5.15: Stress-strain curve of RUC #2
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Figure 5.16: RUC#3 cross-section representation (left) and RUC#3 crack-
path (right)

Figure 5.18: RUC#4 cross-section representation (left) and RUC#4 crack-
path (right)
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Figure 5.19: Stress-strain curve of RUC 44

Figure 5.20: RUC#5 cross-section representation (left) and RUC#5 crack-
path (right)
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Figure 5.21: Stress-strain curve of RUC #b5
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Figure 5.22: RUC#6 cross-section representation (left) and RUC#6 meshing
representation (right)
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Figure 5.23: Stress-strain curve of RUC #6

Figure 5.24: RUC#7 cross-section representation (left) and RUC#T7 crack-
path (right)
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Figure 5.26: RUC#8 cross-section representation (left) and RUC#8 crack-
path (right)
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Figure 5.27: Stress-strain curve of RUC #8
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Figure 5.28: RUC#9 cross-section representation (left) and RUC#9 crack-
path (right)

c, [MPa]

Figure 5.30: RUC#10 cross-section representation (left) and RUC#10 crack-
path (right)
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Figure 5.31: Stress-strain curve of RUC #10

131



Chapter 6

Conclusions

The PARDISO library implementation has allowed to reduce the analysis time
and to obtain the results in around eighteen minutes. Nevertheless the virtual
memory required for the analysis is still a lot, therefore the number of points used
to describe the cross-section was limited. Given that the arrangement of the fiber
over the cross-section was unknown, the results obtained in the previous chapter,
about the RUCs matrix failure, have been used to obtain an average values of stress
and strain. This was possible because the results showed that the maximum values
of stresses and their respective strains did not differ significantly. The average
values are Ogpegage = 96.185M Pa and €gperage = 0.00445. Moreover, the generical
stress-strain curve could also be extracted by a statistical average of all the curves
obtained previously, and it represents the typical trend of a general RUC matrix
failure. The order of magnitude of these values is reasonable, but a further work
of validation should be done. Given that the computational cost is very low, the
next step could be the implementation of this method in a software for multi-scale

analysis.
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