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Summary

In this work, we have addressed the problem of understanding which features of a game
influence the convergence of a learning algorithm. We focused on the relation between the
empirical convergence frequency for a given game and its best reply structure. We tried
to broaden this framework and obtain more precise predictions by including quasi-best
replies. In order to do so, we developed an analogy between the execution of a game by
two players and a diffusive process on a fully connected weighted graph. We looked at the
stationary distribution of such a process and tried to see if it could be used to calibrate
the strength (e.g to infer the relative size) of each attractor. The aforementioned analogy
was based on a logit one parameter (β) transformation that mapped the payoff matrix in
a stochastic one. We ran extensive simulations to see how our predictions performed as
β varied. Unfortunately, the new framework seemed to give little or no improvement to
the old one. Arguing that the problem was choosing the same value of β for all the games
included in the simulation, we introduced the notion of optimal beta β∗ and tried to see
whether this could be directly inferred from the payoff matrix. To this aim, we developed
and tested four different measures that were coherent with the properties of the learning
algorithm. We finally shared some thoughts about why these methods failed and which
issues they are not able to cope with.
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Introduction

The concept of equilibrium permeates mainstream economic theory on many different lev-
els; it is not of simple definition and can’t be easily captured in a formula as it often
happens in natural sciences, nevertheless it could be - vaguely - defined as a state in which
beliefs match outcomes.

To be more precise, we must restrict our focus on specific areas. In microeconomic the-
ory, for example, this intuition (called Walrasian[3] equilibrium in honour of Leon Walras
who first formalized it and showed its existence) is declined as the assertion that demand
and supply are perfectly balanced: both producers and customers manage to agree on the
same prices for all the goods, it is produced nothing more than what is required, and in
this sense beliefs match outcomes. The proof of the existence of such a state is a strong
result and lies at the core of what is known as the General Equilibrium Theory, describing
the formation and evolution of economic variables (like prices) from the interaction of a
set of markets.

Another field where this concept is pervasive is Game Theory. Game theory is the
mathematical study of interaction among independent, self-interested agents [4]. It was
first introduced by J. Von Neumann et O. Morgenstern in 1944 [2], it has gone through
a dramatic increase of interest in many fields and is now intensively studied in disciplines
as diverse as political science, biology, psychology, economics, linguistics, sociology and
computer science [5, 6, 7, 8].

In this framework, as we will see later, an equilibrium is a state where the expectations
of one player (and consquently his actions, that are always a best reply to such beliefs) re-
garding the others’ behaviors indeed match the choices of his rivals: once again essentially
beliefs match outcomes. Following the pioneering work by John Nash [9], who proved that
such a state exists for any game with a finite number of players, the traditional approach
is based on equilibrium (also known as Nash equilibrium) and on the assumption that all
the players can instantly coordinate to it.

In the example we provided, the existence of the equilibrium is just half of the story:
for both theories to have a real value, it should be also shown that agents are capable of
finding it. In microeconomic theory Walras himself devised a method, known as tâtonem-
ment, through which all markets manage to balance demand and supply and economic
agents maximize their utilities or profits. An equivalent reflection for Game Theory only
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arose some years after Nash’s seminal papers and took essentially two directions. The first
is the field of Algorithmic Game Theory, which investigates the computational complexity
of computing a Nash equilibrium[11]. The second is based on the assumption that play-
ers learn the equilibrium by repeating the game. On this intuition, a number of different
learning algorithm were devised with the aim of mimicking the way actual humans learn.
This seems to be a reasonable, reality-grounded approach, but opens a new, interesting
question: when do this algorithms converge to a solution? Or equivalently, under which
circumstances are players able to learn?

There is not a unique way to address the problem. Analytically, some results have been
obtained for some subclasses of games (so-called dominance-solvable[12], coordination[13],
potential[14], supermodular[15] or “weakly acyclic”[16] games). Another field of research
applied Non Linear Dynamical Systems Theory to learning algorithms.
In this framework, a pioneering paper by T. Galla and J.D. Farmer [18] addressed the issue
by studying ensembles of randomly-generated games and trying to estimate the average
behavior of the expected convergence frequency in the parameter space1. By studying
ensembles of 2-person, N-strategies games were able to divide such space into different
regions: in one of them the dynamics of learning was essentially chaotic, meaning that
players never manage to identify the equilibrium of the game. However, little understand-
ing of the reasons for this erratic behaviour was provided.
In this direction, and always taking the investigation of ensembles of random games as a
starting point, a further work [19] introduced a formalism that depends on a basic prop-
erty of the game. This is its best reply structure, namely the set of cycles or fixed points
that the players can get stuck into by myopically responding to each other with their best
replies. The authors show that their formalism predicts non-convergence of several learn-
ing algorithms that have been used in behavioral economics and population biology. Their
estimate works particularly well for boolean payoff matrices (which we will define later),
but is not as efficient for normal ones. In this thesis, we tried to understand where this
mismatch comes from and if the gap can be filled.

1The idea of studying randomly generated games was not new to the physics community. In [30]
for example, the authors tried to approach game theory from a Statistical Physics point of view via
the theory of disordered systems. It was nevertheless the first time where simulations were launched on
ensembles of random games in the attempt of devising a phase space for the learning algorithm
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Chapter 1

Theoretical Remarks

We report here a few notions that are essential to the following discussion.

1.1 Game Theory
Game theory studies the interactions among self-interested agents. By self-interested we
don’t necessarily mean that they want to cause harm to each other neither that they only
care about themselves. We just assume that each agent "has his own description of which
states of the world he likes — which can include good things happening to other agents
— and that he acts in an attempt to bring about these states of the world"[4]. Agents’
interests are modelled via a utility function, a mapping from states of the world to real
numbers. These numbers are interpreted as measures of an agent’s level of happiness in
the given states. When the agent is uncertain about which state of the world he faces, his
utility is defined as the expected value of his utility function with respect to the appropri-
ate probability distribution over states.
When utility functions are assigned to agents, acting optimally in an uncertain environ-
ment is conceptually straightforward, but things can get considerably more complicated
when the world contains two or more utility-maximizing agents whose action can affect
each others’ utilities. This setting is investigated in noncooperative game theory.

We begin by giving the definition of a normal form game, the most familiar represen-
tation of strategic interactions in game theory; "a game written in this way amounts to
a representation of every player’s utility for every state of the world, in the special case
where states of the world depend only on the players’ combined actions"[4]. Many other
representations of interest can be reduced to the normal form, making it arguably the most
fundamental in game theory.

Definition 1 (Normal Form Game) A (finite, n-person) normal-form game is a tuple
(N, A, u), where:

• N is a finite set of n players, indexed by i;
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• A = A1 × . . . × An, where Ai is a finite set of actions available to player i. Each
vector a = (a1, . . . , an) ∈ A is called an action profile;

• u = (u1, . . . , un) where ui : A → IR is a real-valued utility (or payoff) function for
player i

A natural way to represent games is via an n-dimensional matrix. In 2-players games,
each row corresponds to a possible action for player 1 (also called Row or R), each column
corresponds to a possible action or move for player 2 (also called Column or C), and each
cell corresponds to one possible outcome. Each player’s utility for an outcome is written
in the cell corresponding to that outcome, with player 1’s utility listed first. Here a simple
example, the game of paper, rock, scissor:

R

C




(0,0) (−1,1) (1,−1)
(1,−1) (0,0) (−1,1)
(−1,1) (1,−1) (0,0)

Although this is the most compact way to represent the game, in our study this matrix
will always be deconstructed in the two matrices ΠR and ΠCcontaining respectively only
the payoffs for player R and C. It is important to stress that when considering the payoff
matrix of a single player, the rows always correspond to the possible actions for that player,
columns being the choices available to his opponent.
Let us now introduce strategies. Strategies can be considered as the available choices for
the player. One kind of strategy is to select a single action1 and play it. We call such a
strategy a pure strategy. We call a choice of pure strategy for each agent a pure-strategy
profile.
Players could also follow another, less obvious type of strategy: randomizing over the set
of available actions according to some probability distribution. Such a strategy is called a
mixed strategy. We define a mixed strategy for a normal-form game as follows.

Definition 2 (Mixed Strategy) Let (N,A, u) be a normal-form game, and for any set
X let ∏ (X) be the set of all the probability distributions over X. Then the set of mixed
strategies for player i is Si =

∏
(Ai). The set of mixed-strategy profiles is simply the

cartesian productof the individual mixed-strategy sets S = S1 × . . . × Sn . By si(ai) we
denote the probability that an action ai will be played under mixed strategy si.

1In this work we will use action and move as synonyms
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1 – Theoretical Remarks

Given a mixed strategy profile, its expected utility is defined as follows:

Definition 3 (Expected utility of a mixed strategy) Given a normal-form game (N,A, u),
the expected utility (or expected payoff) ui for player i of the mixed-strategy profile s =
(s1, . . . , sn) is defined as:

ui(s) =
∑
a∈A

ui(a)
n∏
j=1

sj(aj)

This notation can be semplified in the case of 2-players games by renaming s1(aj) as
xj and s2(aj) as yj , or writing in general si(aj) = sij .

If an agent knew how the others were going to play, his strategic problem would become
simple: it would essentially become a single-agent problem of choosing a utility-maximizing
action. We define s−i = (s1, . . . , si−1, si+1, . . . , sn), a strategy profile s without agent i’s
strategy, and can write s = (si, s−i). If the agents other than i (whom we will collectively
denote as −i) were to commito to play s−i, a utility maximizing agent i would face the
problem of determining his best response.

Definition 4 (Best response) Player i’s best response to the strategy profile s−i is a
mixed strategy s∗i ∈ Si s.t. ui(s∗i , s−i) ≥ ui(si, s−i) for all strategies si ∈ Si

Definition 5 (Nash equilibrium) A strategy profile s = (s1, . . . , sn) is a Nash equilib-
rium if, for all agents i, si is a best response to s−i.

A Nash equilibrium is a stable strategy profile: no agent would be better off by chang-
ing his strategy if he knew what strategies the other agents were following. If the strategy
of each player in the equilibrium is a pure one than we will have a Pure Strategy Nash
Equilibrium, otherwise we will have a Mixed Strategy one.

For a more detailed introduction see [4].

1.2 Experience-Weighted Attraction Learning Algo-
rithm

As we said, Game Theory originally assumed that players could instantly coordinate on
equilibrium. Later on, a number of behaviorally plausible learning algorithms were de-
veloped in order to mimic how humans actually learn. These learning algorithms can be
grouped in two classes: in reinforcement learning, players only learn based on the payoff
they received; in belief learning, players only consider what the expected action of their
opponent is. Experience-Weighted Attraction (EWA) has been proposed by Camerer and
Ho [20] to generalize reinforcement these two classes. Essentially, players update their
strategies by taking into account both their predictions about what the other players will
do (as in belief learning) and how their strategies performed in the past (as in reinforcement
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learning). The connection between reinforcement and belief learning lies in the update
of the moves that were not played, i.e. in considering the foregone payoffs. If only the
probabilities of the moves that are played are updated, EWA reduces to a simple version of
reinforcement learning. If all probabilities are updated with the same weight instead, EWA
reduces to a belief learning algorithm (such as fictitious play or best reply dynamics, depend-
ing on the parameters). EWA has been extensively studied by experimental economists who
have shown that it provides a reasonable approximation for how real people learn in games
and has hence been taken as the reference learning algorithm in this and other ([18]) works.

Formally, the key quantities in EWA algorithm are the so-called attractions or propen-
sities Qµ

i (t) that quantify the appreciation for the move i by player µ at time t.The way
to obtain the mixed strategies from them is through a logit model:

sµi (t) = eβQ
µ
i (t)∑

j e
βQµj (t) (1.1)

Attractions are updated through the equations (here we focus on a 2-players game):

Q1
i (t+ 1) =

(1− α)N(t)Q1
i (t) + (δ + (1− δ)xi(t))

∑
j ΠR(i, j)yj(t)

N(t+ 1) (1.2)

where:

N(t+ 1) = (1− α) (1− κ)N(t) + 1 (1.3)

N(t) represents the experience as it increases monotonically with the number of rounds
played; the more it grows, the smaller will be the influence of each round played on the
update rate for the attractions.

As pointed out in [18] under this update rule, player 1 knows his own payoffs and also
the frequency yj with which player 2 makes each of his possible moves (and vice-versa).
This approximates the situation in which the players vary their strategies slowly in com-
parison with the timescale on which they play the game, so that they can collect good
statistics about the others before updating their strategy. In the machine learning litera-
ture, the practice of infrequent parameter updating is called “batch learning.”

Parameter Choice and Convergence Criteria
Following papers [29], [18], we used the following set of parameters:

• α = 0.18; sufficiently large to reach convergence in decent simulations’ time, but small
enough to avoid convergence to a trivial, meaningless fixed point.

12
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• β =
√
N , N being the number of moves. The reason is that the expected payoffs∑

j ΠR(i, j)yj and
∑
j ΠC(i, j)xj scale as 1√

N
; indeed the sum

∑
j Πµ(i, j) scale as

√
N due to the Central Limit Theorem (it is a sum of gaussian variables) while yj

and xj go as 1√
N

due to the normalization constraint. Therefore, increasing the size
of the payoff matrix has the same effect as decreasing β. In the limit β → 0 this
eventually leads the players to choose uniformly at random between their possible
moves, irrespectively of the payoff matrix.

• κ = 1, in order to keep the experience factor constant and assign the same weight at
each round of the game.

• δ = 1, again to avoid convergence to trivial fixed points2.

To decide whether the process converged we adopted the following procedure (given in
[19]). We run the EWA dynamics for 500 time steps and we consider the last 20% time
steps to determine convergence. With the parameter values we chose for α, β, κ and δ, the
transient is usually of the order of 100 time steps, so 500 time steps is enough to identify
convergence. We then check that the average variance of the logarithms of the components
of the mixed strategy vectors does not exceed a certain (very small) threshold, 10−2. We
look at the logarithms because the probabilities following the EWA dynamics vary on an
exponential scale and can be of the order of, e.g, 10−100.

Invariance Property
This choice of parameters makes the update equations invariant under the transformation:

Πµ(i, j)→ Πµ(i, j) + bj (1.4)

b̄ being whatever N-dimensional vector.

We give proof of that for 2-player games (the choise is made to simplify notation; the
proof for multiple players goes just the same). Let QR

i be the attraction of player Row
towards the move i and A be the matrix whose rows are just copies of the vector b̄. Then
the transformation 1.4 can be rewritten as Πµ(i, j) → Πµ(i, j) + bj = Πµ(i, j) + A(i, j) =
Π̃µ(i, j). The update equations with a similar payoff matrix will be:

2 See [29] for a more detailed explanation.
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QR
i (t+ 1) =

(1− α)N(t)QR
i (t) +

∑
j Π̃R

i,jyj

N(t+ 1) =

(1− α)N(t)QR
i (t) +

∑
j(ΠR

i,j + Ai,j)yj
N(t+ 1) =

Q
oldR
i + 1

N(t+ 1)
∑
j

Aijyj

(1.5)

Since Aij has equal rows, the sum
∑
j Aijyj is independent on i and can be rewritten

as a constant c. But then:

x̃i(t+ 1) = eβQ
R
i (t+1)∑

j e
βQRj (t+1) = e

β

(
Q
oldR
i (t+1)+c

)
∑
j e

β
(
Q
oldR
j (t+1)+c

) (1.6)

Calling eβc = α we will have:

x̃i = αeβQ
oldR
i (t+1)

α
∑
j e

βQ
oldR
j (t+1)

= eβQ
oldR
i (t+1)∑

j e
βQ

oldR
j (t+1)

= xi (1.7)

Hence, the learning dynamics is not affected by a payoff transformation of the form 1.4.

1.3 Best Reply Structure

A best reply is the move that gives the best payoff in response to a given move played by
the opponent. When in a 2 players game each player responds to his opponent by always
playing his best reply we have a best reply dynamics.
The best reply structure is the arrangement of the best replies in the payoff matrix.

14
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Figure 1.1

1 2 3 4
sC

1

2

3

4

sR

7,-5 2,14 -4,3 -10,-6

-9,16 10,-3 3,15 -3,-7

-8,-9 0,-6 8,1 6,-9

0,2 6,-7 -1,-4 -4,-6

A 1 2 3 4
sC

1

2

3

4

sR

1,0 0,1 0,0 0,0

0,1 1,0 0,0 0,0

0,0 0,0 1,1 1,0

0,1 0,0 0,0 0,0

B

Illustration of the best reply structure. SR = 1, 2, 3, 4 and SC = 1, 2, 3, 4 are the possible moves of
players Row and Column and each cell in the matrix represents their payoffs (Row is given first). The
best response arrows point to the cell corresponding to the best reply. The vertical arrows correspond
to player Row and the horizontal arrows to player Column. The arrows are colored red if they are part
of a cycle, orange if they are not part of a cycle but lead to one, blue if they lead directly to a fixed
point, and cyan if they lead to a fixed point in more than one step. The payoff matrix in B is the
boolean version of matrix A (more details on this in the following). Image and caption from [19]

The best reply structure will then essentially be a collection of fixed points, free best
replies3 and cycles of various length; neglecting the free best replies, it can be encoded in
a best reply vector v̄ whose components will be

vi = #cycles of length i

where fixed points will be simply considered cycles of length 1.

Cycles and fixed points are basins of attraction for the best reply dynamics (once the
dynamics enters one of them it can get out) and their size can roughly be estimated by
counting the number of actions they contain.

It is important to stress that, while learning algorithms are synchronous (strategies
for each player are updated simultaneously), best reply dynamics is asynchronous (players
choose their moves one after the other). In 2-players games, this asynchronicity has anyway
no impact on the best reply vector4.

3Best replies that lead to a fixed point or a cycle but are not part of it
4Meaning that in two players games one gets the same best reply structure independently from which

of the two players is the first one to choose
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One final remark is that best reply dynamics is deterministic. If we identify the decision
to play move i by player 1 with the strategy profile x̄ : xj = δi,j , then the dynamics of the
game will follow the equation:

x̄(t+ 1) = BR ·BC · x̄(t) (1.8)

where BR and BC are the boolean payoff matrices defined by:

BR(i, j) =
{ 1 if ΠR(i, j) = max k

(
ΠR(i, k)

)
0 otherwise (1.9)

(similar equations hold for strategy ȳ of player 2 and BC)5.

1.4 Markov Processes
A stochastic process is a system which evolves probabilistically in time or more precisely,
"a systems in which a certain time-dependent random variable X (t) exists"[22]. We can
measure values x1, x2, x3, . . ., etc of X (t) at times t1, t2, t3, . . . and we assume that a set of
joint probability densities exists

p (x1, t1;x2, t2; . . .)

which describes a system completely.

A Markov chain is "a stochastic model describing a sequence of possible events in
which the probability of each event depends only on the state attained in the previous
event"[24]. A Markov process, named after the russian mathematician Andrey Markov, is a
stochastic process that satisfies the Markov assumption; formulated in terms of conditional
probabilities, it requires that if we take a sequence of ordered time steps in time t1, t2, . . . , tn
such that:

t1 ≤ t2 ≤ . . . tn

then the conditional probability is determined entirely by the knowledge of the most
recent condition, i.e.:

p (xn, tn|xn−1, tn−1;xn−2, tn−2;xn−3, tn−3; . . .) = p (xn, tn|xn−1, tn−1)

5NB: the booleanization doesn’t alter the best reply structure of the game
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If the system can be described by a countable number of states, then its evolution can
be depicted via a stochastic (or Markov) matrix S, whose entries Sij represent the prob-
abilities to go from state j to state i at each time step. If one takes the diffusion on a
network as an example, then each state will correspond to a node and the entries of the
matrix will be the probabilities to go from a node to another at each time step.

In order to be a (column) stochastic one, a N ×N matrix S must satisfy the following
conditions:

• Sij ≥ 0 for all i and j, as each entry is a transition probability

•
∑
j Sij = 1 for all i; this is again very intuitive: if one is is on a site i at time tn−1,

with probability 1 he will be somewhere at time tn.

Markov matrices have some interesting properties:

• Any Markox matrix always has an eigenvector with eigenvalue 1.

• If each entry of a Markov matrix A is strictly positive all other eigenvalues have
absolute value strictly less than 1.6

The dynamics of a Markov Process obeys an evolution equation of the form:

p̄ (t+ 1) = Sp̄ (t) (1.10)

p̄ (t) being the vector s.t. p̄i (t) = probability of being in state i at time t. Under the
conditions of stricly positive entries Sij > 0 ∀ i, j , it can be proved that p̄(t) will converge
in the limit t → ∞ to the eigenvector associated with the eigenvalue 1. We don’t give an
exact proof here, but just sketch the reasoning. Let’s consider the initial vector p̄ (0). If
we decompose it as a linear combination of eigenvalues s̄k of S we will get:

p̄ (0) =
∑
k

c0
ks̄k

Plugging it into the evolution equations:

p̄ (1) = Sp̄(0) = S
∑
k

c0
ks̄k =

∑
k

c0
kλks̄k

6 We don’t give proof of these properties here; the demonstration is essentially based on the properties
of the kernel and on Perron-Frobenius theorem. They can be found in [23]
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And in general:

p̄(t) =
∑
k

c0
k(λk)ts̄k

Each component hence grows accordingly to (λk)t. We know that the largest eigenvalue
is 1 and that there is a unique eigenvalue associated to it: in t→∞ limit the component
related to the largest eigenvalue will then be much larger than the others, eventually mak-
ing them negligible7. The eigenvector ē1 is hence the stationary probability for the Markov
Process.

1.5 Previous Work

The work done in this thesis is rooted in a paper by M. Pangallo, T. Heinrich, J. D.
Farmer [19]. In an attempt to challenge the equilibrium assumption, the authors show that
the convergence of learning processes over a given game is tied to its best reply structure.

The idea is the following: best reply cycles and fixed points are attractors for the best
reply dynamics. Cycles are associated with out-of-equilibrium behaviours, as the players
are constantly changing the moves they are playing even if in a periodic fashion, while
fixed points (Pure Strategy Nash Equilibria in game theory jargon) are associated with
equilibrium.

The presence of such structures deeply influences the dynamics of a learning algorithm.
Indeed, both in learning processes and best reply dynamics, players are trying to maximize
their payoffs, so it is not unreasonable to believe that they can be related; our guess is that
the existence of a cycle in the best reply dynamics increases the chances of having a basin
of attraction different for the one of the fixed point also for the EWA learning dynamics.

To clarify that, we include two examples of EWA learning dynamics. In the first one
(Fig 1.2) the dynamics gets stuck in a fixed point. In the second (Fig 1.3), instead, it
enters into a cycle. In both cases, the presence of the fixed point/cycle could be predicted
by looking at the best reply structure of the game.

7This property was exploited in the simulations in order to find the stationary probability of the
process
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Figure 1.2: Example of a convergent EWA learning dynamics

Example of a convergent EWA learning dynamics in a 20x20 game with best reply vector v̄ = (1,0, . . . ,0).

Figure 1.3: Example of EWA learning dynamics in a cycle

The figure shows an example of EWA learning dynamics caught in a cycle in a 3x3 game. In this case
moves 1 and 2 (whose probabilities x1 and x2 are respectively the blue and green line in the plot) were
part of a cycle of length 2. One can immediately understand in which sense the presence of a best reply
cycle influences the dynamics of the learning process. The best reply vector was v̄ = (0,1,0): a cycle of
length 2 was predicted
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An estimate of the ratio between the basin of attractions of the cycles and the basin
of attractions of the fixed points could then give a good prediction of the probability of
convergence of learning dynamics for a given game. The measure proposed for this goal is:

F (v̄) =
∑N
j=2 (vj × j)∑N
j=1 (vj × j)

(1.11)

that estimates the probability of non convergence of learning over a game. In this
formula:

• N is the number of possible strategies available to each player (equal to the size of
the payoff matrix)

• the numerator is equal to the number of actions associated with cycles. This is ob-
tained by multiplying the number of cycles of a given length (vj) for their length
(j) and then by summing over all the possible lengths (of course being N the total
number of strategies, it will also be the maximum length for a cycle)8.

• the denominator is equal to the total number of actions associated with attractors,
and is indeed obtained by adding to the numerator the number of fixed points9

To sum up:

F (v̄) = nmoves associated to cycles

nmoves associated to cycles + nmoves associated to fixed points
(1.12)

The article shows that this prediction has a very good agreement with the empirical
convergence probability for a large class of learning algorithms, suggesting a relationship
between the attractors of the best reply dynamics and the ones of the learning processes.
The prediction becomes essentially exact if learning processes are run on the boolean ver-
sion of the payoff matrix.

8The length of a cycle is the number of different actions that one player plays once the dynamics
enters in the cycle and not the total number of actions played by all players.

9that can be considered as cycles of length 1
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Figure 1.4
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best reply dynamics F(v). The vertical axis gives the frequency of non-convergence in the simulations,
as averaged over all payoff matrices and initial conditions having the same v̄. In the insets simulations
are based on Boolean approximations of payoff matrices. The identity line is plotted for reference.
Image taken from [19]

Where does the mismatch between the two predictions come from? Can we find a way
to make correct (or at least better) predictions for learning processes over normal, non-
boolean games (meaning with this games whose payoff matrices have not gone through
transformation 1.9)? In this thesis, we make an attempt to extend the result in this direc-
tion.
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Chapter 2

Research Work

2.1 A new estimate for the attractors’ size
2.1.1 Softening the booleanization
As we said, the probability of (non) convergence was initially estimated by taking the ratio
between the size of basins of attractors related to non-equilibrium dynamics over the one of
all the attractors of the best reply dynamics. Even when dealing with non boolean games
this hypothesis seems plausible, still the way in which the attractor’s size is computed
might be modified to best capture the characteristics of the actual game.

The idea explored in this thesis relies on the concept of quasi-best replies. To give an
intuition, imagine a situation in which a player has to choose between two different moves
with a very narrow payoff gap. This proximity between the payoff could mislead the player,
who could choose the quasi best reply (in other words, the move whose payoff is nearly as
high as the one of the best reply) eventually leaving an attractor and getting trapped into
another one.

We make an example to clarify this idea. Let us take a dummy payoff matrix:




(1,1) (0,0) (0,0)

(0.99,0) (0,1) (1,0)

(0,0) (1,0) (0,1)

From the point of view of the best reply dynamics, there is one fixed point (upper left
entry) and a cycle of length 2 (lower right side of the matrix). If the player C chooses to
play move 1, then the best reply for R would be to play move 1 as well. Nevertheless, he
could make a mistake and choose move 2, as the associated payoff is = 0.99, very close to
the higher one. Once the mistake is made, if player C plays its best response, the dynamics
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would leave the fixed point and enter the cycle.

To quantify this all, we made two observations:

• The boolean payoff matrix Bµ can be obtained by Πµ through the transformation:

Bµ(i, j) = lim
β→+∞

eβΠµ(i,j)∑
k e

βΠµ(i,k) = lim
β→+∞

T µβ (i, j) (2.1)

• For any finite value of β, the equation:

x̄(t+ 1) = TRβ · TCβ · x̄(t) (2.2)

describes a Markov Process (TR/Cβ are indeed column-stochastic matrices by defini-
tion1). We recover the best reply dynamics 1.8 in the limit β → +∞. In the following,
we will occasionally refer to the matrix TRβ · TCβ as M for simplicity.

Can the stationary probability distribution of such stochastic process 2 help us build a
better estimate of the attractors’ size?

2.1.2 A new measure for the attractors’ size
In the previous model, each cycle was assigned a weight proportional to its length (see
1.11). This essentially meant assigning an equal weight to all the moves. We investigated
if any improvement could be achieved by weighting each move with the stationary proba-
bility of the Markov process associated with the matrix M .

There are some reasonable arguments to build a similar framework, we briefly look over
them.

Trembling hand
As we said, the initial guess was that quasi best replies could have an impact on the choices
of one player. This is what is known in game theory’s jargon as the trembling hand [25],
namely the possibility for the players to choose unintended, non-optimal strategies; in other
words, the possibility for players to make mistakes.

We already introduced the best reply dynamics. If one carefully looks at the equation he
will notice that it is essentially describing a diffusive process over a non-ergodic network,

1Please note that the scalar product of two stochastic matrices is still a stochastic matrix
2Of course this is just one of the many possible transformations that one could use. This one seemed

anyway the most reasonable to us since it avoids problems with negative payoffs - differently from
transformations of the form xβ

i,j∑
k
xβ
i,j

- and moreover is, as well as the learning algorithm, invariant w.r.t

the transformation 1.4. For supplementary information about Markov processes see [22]
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whose adjacency matrix is given by BRBC . The components of this network are the cycles,
the fixed points, and the free moves of the best reply dynamics. We give an example to
clarify this concept.

Let us take the (already booleanized) payoff matrix in 1.1. As can be seen from the
figure, there is one cycle of length two, one free move and one fixed point. The payoff
matrices for the two players are:

BR =




1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0

BC =




0 1 0 1
1 0 0 0
0 0 1 0
0 0 0 0

Hence:

Adj = BRBC =




0 1 0 1
1 0 0 0
0 0 1 0
0 0 0 0

We can already see the presence of a cycle and a fixed point in it, as expected. If we
use it as an adjacency matrix for a graph we obtain:

1
2
3 4
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In such a model, attractors are separate entities and, if a player starts in one of them, he
will never reach another3. The transformation 2.1 instead allows us to create links between
the attractors, whose strengths depend on the loss the player gets by deciding to change
(i.e. the difference between the payoffs).

Figure 2.1

The size of the edges are proportional to their (relative) weight; increasing β we are left with only the
links related to the best replies.

For a finite value of β, the graph is ergodic and allows us to find a stationary probability
distribution for a dynamical process taking place on it.

Being p̄ the stationary probability distribution of the Markov process, the new estimate
for the convergence frequency will then be4:

fconv =
∑
i∈FP pi∑

i∈FP pi +
∑
i/∈FP pi

=
∑
i∈FP

pi (2.3)

being FP the set of all the moves associated to fixed points. The second equation comes
from the fact that, being p̄ a probability distribution,

∑N
i=1 pi = 1.

3This is why the number of the moves contained in a cycle is the size of its basin of attraction for
the best reply dynamics

4Note that the vector with entries equal to 1 in the moves belonging to an attractor and 0 in the
free best replies is an eigenvector with eigenvalue = 1 of the boolean matrix. In this sense, in the limit
β →∞ the two measures of fconv are equivalent, the only problem being the degeneracy of eigenvalue
1 in the boolean case
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Before proceeding, it seems necessary to make a few remarks:

• First, it should be stressed that the model seems particularly reasonable as it cre-
ates unbalanced transition probabilities within different attractors depending on how
close the payoffs associated to quasi-best and best replies are. We again explain this
through an example. Let us take the (single player) payoff matrix (we will assume it
to be for player R)

ΠR =




1 0 0

0.99 0 100

0 100 0

Following our assumption, if player C choices move 1, then player R might be con-
fused between move 1 and move 2 as their payoffs are very close; if instead player
C selects either move 2 or 3, then the gap between the payoffs will be so high that
player R will hardly ever get wrong. This is captured by our model. Indeed if one
takes the logit of ΠR with e.g. β = 5, he will end up with:

TRβ =




0.51 0 0

0.49 0 1

0 1 0

We see that there is a non null transition probability between the fixed point and the
cycle: pFP→cycle = TRβ 2,1 + TRβ 3,1 = 0.49, while the probability of getting from the
cycle to the fixed point pcylce→FP = TRβ 1,2 + TRβ 1,3 is zero.

If we imagine that the situation for player C is reversed, i.e its payoff matrix is:

ΠC =




100 0.9 0.9

0 0 1

0 1 0
→ TCβ =




1 0.49 0.49

0 0 0.51

0 0.51 0
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Then this will rebalance the transition probabilities and indeed the final stochastic
matrix will be:

TRβ T
C
β =




0.51 0.25 0.25

0.49 0.75 0.24

0 0 0.51

and essentially pFP→cycle = pcycle→FP .

• One could argue that, since TRβ · TCβ /= TCβ · TRβ , we would end up having two differ-
ent Markov processes depending on which of the two players moves first. We solved
the problem by using the average of the two estimated convergence frequency. The
behaviour of the two, varying β, is anyway very similar (see Fig. 2.2)
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Figure 2.2: An example of the process

Here we show the behaviour of the expected convergence probability as a function of beta. In the game
chosen, a 3x3 one, only one fixed point was present: the probability indeed goes to one as β increases

• There is then an issue for what concerns the ergodicity of the Markov process. Indeed,
in the limit β → +∞ the matrix M = limβ→+∞ T

R
β · TCβ = BR · BC would become

non ergodic if there are multiple attractors in the best reply structure.The problem
was tackled by assuming that for any finite value of β, even if large, the system would
still be ergodic.

We then checked if the new estimate gave better predictions.

It might be remarked that, even if this work was not originally inspired by it, the idea
we proposed is similar to the one behind the PageRank algorithm, invented by Google’s
founder Larry Page and still at the basis of the search engine’s positioning algorithm for
web pages. Indeed in both cases, a directed, unweighted network is transformed in a com-
plete, weighted one (even if in a quite different fashion); a Markov Process is then used to
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assign to each node a numeric value that is depictive of its importance within the network. 5

Before showing the results, a few words need to be spent on the simulation protocol.

Simulation protocol

To obtain a result that could hold as generally as possible, random games were used
throughout the study. With random games we mean games described by payoff matri-
ces whose elements are randomly drawn from a given probability distribution. Following
[18] at initialization we randomly generate N2 pairs of payoffs (a couple for each possible
combination (i, j) played; the elements in the couples are the payoffs that players get by
respectively playing moves i and j) and we keep the payoff matrix fixed for the rest of the
simulation (In the language of the theory of disordered system the random payoff matrix in
our problem represents quenched disorder [28]). We consider an ensemble of payoff matri-
ces constrained by the mean, variance and correlation of the pairs. The Maximum Entropy
distribution that obeys these constraints is a bivariate Gaussian (again, see [18]), which we
parametrize with zero mean, unit variance and correlation Γ. The meaning of including a
constraint on the correlation was to have a control over the "nature" of the game, enhancing
competition with Γ < 0 and cooperation6 with Γ > 0. In the following simulations, only
the parameter Γ = 0 was used (traditional definitions of competitive/cooperative games
can be found in every game theory manual; see for example [21, 6, 4]).

For each game, the empirical convergence frequency was computed by performing the
learning process 100 times. The number of games taken into account varies depending on
the simulations.

In general, 2-player games with N = 20 moves were used. This allowed to simultane-
ously have a non-trivial best reply structure and a decent computational cost.

2.1.3 Results

Since the results of this process heavily depend on the value chosen for β, it seemed rea-
sonable to start by studying how well the prediction performs varying β and if there exists
an optimal value for the latter that could be chosen in order to have the best estimates.

5For further information on PageRank see [26]
6With cooperation we mean here the tendency of a combination of moves to be favorable for both

players at the same time
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Figure 2.3: Behaviour of R2

The picture shows the behaviour of the coefficient of determination R2 as a function of the parameter β.
The dashed red line shows the R2 obtained by using the boolean estimate for the convergence frequency.
We see that the new prediction only brings little improvement for β ∼ 50. Fifty 20x20 games were used
in the simulation. We want to remark that, even if the qualitative behavior of the function R2 (β) seems
to be essentially the same in all the simulations (with the only possible difference being that sometimes
the peak doesn’t manage to outperform the old predictions), the exact position of the peak and the
value of the offset are subject to small but still significant variations; we consider the impossibility
of exactly placing an optimal value for β a major flaw of the model, but are unfortunately unable to
perform larger simulations.

βmax = 100 was chosen to be the maximum value of β since, for size N = 20, the
matrices T µβmax are already very close to the boolean ones (see following figure).
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Figure 2.4: Distance between transformed and boolean matrices

The plot shows the behaviour of the distance between transformed and booleanized matrices for different
values of N . As a measure of distance, we simply took Dist. =

〈∣∣Tµβmax(i, j)−Bµ(i, j)
∣∣〉

(i,j)
. For each

value of N, 50 matrices were extracted randomly. The curve in the figure shows the mean distance
between this ensemble

Unfortunately, as can be seen in the plot the new approach seemed to bring little or no
improvement to the old one7. The behaviour as a function of β assumes, in general, a con-
vex shape in the central part (even if in some simulation it appeared to be monotonically
increasing) and, as expected, converges to the old value in the β →∞ limit.

We ran the same analysis on a sample of games which contained at least one fixed point.
Indeed both the old approach and the new one (independently from β) assign to games

7 The setup here is different from the one found in [19] for two different reasons. First of all, the
authors of the paper managed to launch larger simulation and it is shown that the value of R2 increases
with the size of them; Secondly, in the paper an averaged way of computing R2 was used, but its
extension to our case is not straightforward. The plot hence must be intended to have a comparative
value between the two predictions, not an absolute one.
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which only have cycles a probability of convergence = 0, so it seemed reasonable to exclude
them from the simulations and check which of the two performed better on the other games.

Figure 2.5: Behaviour of R2 excluding matrices with only cycles

For numerical reasons we had to stop the value of β at the value βmax = 100; theory anyway assures
us that the curve will asymptotically reach the setup value in the limit β →∞

We can immediately see two trends from the figure8; first of all, there is a more evident
improvement of the predictions made via the new approach with respect to the original
one; secondly there is a small drop in the setup value of R2. This is not unexpected, as
games with no fixed points are indeed very likely to be associated with a non-convergent
dynamics (the only possibility of converging being related to a "numerical coincidence"9),
hence on them predictions are often exact. It can be computed analytically that such games

8The same considerations made in the caption of the previous figure hold for this result
9More on this in 2.2
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represent approximatively the 37% of all possible games with 2 players and N = 20 moves,
hence removing them means essentially getting rid of a large number of exact results. Still,
this drop should be taken in consideration when evaluating how good predictions are.

In none of the two cases we seemed to achieve a solid match between predictions and
empirical results. Can we fix things or should we discard the model?

Trying to fix the model
A first attempt to interpret the result has been to question the legitimacy of expecting a
unique, best-performing value of β to exist. Indeed, one could argue the following. β is
responsible for the "level of noise" of the final Markov process (here and in the following,
with process we mean the stochastic process described by the matrix M): in the limit
β → +∞ the process becomes deterministic, while for β → 0 the process becomes a ran-
dom walk in a complete, homogeneous graph. Every intermediate, finite value of β gives
rise to a process that is still equiparable to a random walk in a complete graph, but where
the probabilities to jump from a node to another are different: the more they are different
(↔ the more β grows), the less random will the process be.

Each game, on the other hand, has a peculiar conformation that makes learning the
equilibrium more or less difficult, hence we could say that in each game is encoded a differ-
ent "level of noise" (leaving intentionally this definition vague for the moment). Shouldn’t
then we expect each game to be best modeled (i.e. its convergence frequency to be best
approximated) by a process obtained through a value of β that is peculiar to the game and
related to the level of noise that it encodes?

2.2 Predicting the optimal β
The focus has now shifted on the problem of trying to predict the optimal β = β∗ for
each game, meaning with that the value of β for which the transformation described in the
previous section gives the best result.

We started by checking if any connection existed between β∗ and various metrics that
could fit the definition of "level of noise" encoded in a matrix. The results have unfortu-
nately been discouraging.

Before showing the results, a few words on how the metrics were chosen. First of all,
as we already said, the learning process is invariant under the transformation 1.4; metrics
should then have the same property. This leaves out a large ensemble of possible metrics
that might seem reasonable: everything that is constructed including means, maximum
values, ratios between elements etc. should be ruled out. It should be borne in mind that
our original guess was convergence is influenced by quasi-best replies: the more close their
payoffs are to the ones of the best replies, the more likely will be for the dynamics to escape
an attractor. Our metrics should hence try to quantify this all.
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Metrics tested were the following (when talking about columns we refer to the columns
of the payoff matrices):

Metric 1 Average standard deviation 〈σ〉

of the columns

Metric 2 Standard deviation σFP

of the column that contains the fixed point

Metric 3 Average distance 〈d〉

between payoffs in the same column

Metric 4 Distance d1,2 between the payoff

associated with the fixed point and the second largest payoff in the same column

Results of the tests are shown in the following plot:
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Figure 2.6: Results obtained by using the different metrics

The plot shows the results obtained by using the different metrics. As evident from the figure, none of
them seems to be correlated with β∗. Simulations were performed over 100 different games.

As we can see, there is unfortunately no clear correlation between any of this metrics
and the value of β∗.

Some intuitions about why metrics don’t work
As we saw, the metrics we used (and possibly the whole model previously built) seem in-
capable of improving the predictions of the old one. In the following, we will try to throw
out a few thoughts about why this is the case.

The principal assumption of our model was that players can get "distracted" in their
learning dynamics by quasi-best replies. This led naturally to a model where everything
was conceived column-wise: the Markov process was implemented by applying a logit
transformation on the columns of the payoff matrices and the metrics took into account
quantities that were computed column-by-column. This still seems natural, but is not
necessarily true. From the update equations of the EWA algorithm 1.2 we see that, if one
of the two players sticks to a given move, its opponent will eventually learn to play his
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best reply no matter how the distance between the largest and the second largest payoff is
(even if the closer they are, the longer will learning take).

Another key issue might be that a move that is a best reply to a given move of the
opponent might not be a convenient move to play in general. Let us take as an example
the game:




(1,1) (0,0) (0,0)

(0,0) (100,0) (0,100)

(0,0) (0,100) (100,0)

At the beginning of the learning process the strategy vectors x̄ and ȳ extracted ran-
domly from a uniform distribution. We adopt the point of view of player R and define the
expected payoff π̄exp as

πexpi =
∑
j

ΠR
i,jyj

We can immediately see that it is highly unlikely (the probability obtained numerically
is ∼ 10−4) that move 1 will be the one with the largest expected payoff, meaning that

P

(
1 = arg max

k
(πexpk )

)
∼ 10−4

Unfortunately, the growth rate of the probability associated with each move is propor-
tional to its expected payoff (see 1.2 again), so move 1 will end up having a null probability
of being played and indeed the empirical convergence frequency of such a game resulted to
be zero.

All this could be in principle be captured by the Markov process, but it’s not clear
whether efficiently or not. We report here an example to give a flavour of what happens.
Let us take again the matrix in 1.110 and change two of its elements in the variables a and b.

10Actually a smaller version of it
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Π =




(7,−5) (2,14) (−4,3)

(−9, a) (10,−3) (3,15)

(b,−9) (0,−6) (8,1)

We can look at how the convergence frequency is affected by varying a and b11.

Figure 2.7

11More specifically, we increase a and decrease b in order not to change the best reply structure of
the game; when one of the two variables is varied, the other is maintained fixed to its original value
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Figure 2.8

Increasing a (Fig. 2.7) we’re increasing the expected payoff for move 1 of player column.
Since the move belongs to a cycle we expect - and observe - a destabilizing effect. The
same reasoning holds if we decrease b (Fig. 2.8), hence decreasing the expected payoff that
player one has for move 3, the only fixed point of the game. Again, the destabilizing effect
is observed.

Can our framework capture this phenomenon?

(a)

39



Luca Mungo et al. Will we ever learn?

Figure 2.9

(b)

The dashed line represent the predicted probabilty for various values of β: 0.1,1,2.5,5; the steepest the
decrease in figure (a), the larger is β

We see that the predictions work well (at least qualitatively) when a increases, but are
unable to follow the behavior of the empirical convergence frequency when b is the one
who varies. This would suggest that our predictions are not always able to capture how
the initial expected payoffs influence the dynamics of the learning process.

Some issues arise from the nature of convergence as well. It is not uncommon to observe
convergent simulations in games that lack any fixed point. What did the players learn?
An optimistic guess would be to assume that players learned the mixed strategy Nash equi-
librium of the game, that we know to exist([9]) for every game with a finite number of
players and moves; unfortunately, this is not the case in the vast majority of simulations.
Convergence is then to ascribe to an accidental balance between memory loss and growth
rates of EWA updating equations, hence essentially casual or heavily dependent on the
choice of parameters. All this makes the prediction of such kinds of convergence essentially
impossible by an analysis of the game solely based on game theory and, in general, by
simple models: they are heavily dependent on the details of the algorithm.
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Chapter 3

Conclusions

In this work we have addressed the problem of understanding which features of a game
influence the convergence of EWA learning algorithm. Taking recent literature as a start-
ing point [19] we focused on the relation between the empirical convergence frequency for
a given game and its best reply structure. We tried to broaden this framework and obtain
more precise predictions by including quasi best replies. In order to do so, we developed an
analogy between the execution of a game by two players and a diffusive process on a fully
connected weighted graph. We looked at the stationary distribution of such a process and
tried to see if it could be used to calibrate the strength (e.g to infer the relative size) of
each attractor.

The aforementioned analogy was based on a logit one parameter (β) transformation
that mapped the payoff matrix in a stochastic one. We ran extensive simulations to see
how our predictions performed as β varied. Unfortunately, the new framework seemed to
give little or no improvement to the old one.

Arguing that the problem was choosing the same value of β for all the games included
in the simulation, we introduced the notion of optimal beta β∗ and tried to see whether this
could be directly inferred from the payoff matrix. To this aim, we developed and tested
four different measures that were coherent with the properties of the learning algorithm.
Unluckily, none of them seemed to have a clear predictive value. We finally shared some
thoughts about why these methods failed and which issues they are not able to cope with.

Even if our guess might be considered unsuccessful, we think it was not unuseful. First
of all, it gives a hint on how solid the methodologies of [19] are, showing that the very
basic model used there is hardly improved by including more complex and detailed features
of the game. Secondly, the whole work gives a flavor of how important details are when
dealing with this problems: the parameters and the heuristics we choose have a dramatic
impact on the results one obtains. This is why it is hard to capture them with simplistic
models and, in our opinion, to outperform the very basic one; it could be argued that
predictions based on the best reply structure are maybe the best that one could get and
that what they fail to capture is essentially noise - and is there really a reason in trying to
capture noise in random games?
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Finally, we hope that this work could be a basis for further investigations of the topic.
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Appendix A

Is equilibrium common?
In this thesis we tried to clarify what is the link between the structure in which best replies
are arranged in a game and the frequency at which players manage to learn how to prop-
erly play it. A further step would be then to study the statistical properties of best reply
structures: how likely is it for a generic game to have a given best reply structure? This
was investigated in [19] using a microcanonical point of view, i.e. using combinatorial tech-
niques to count how many configurations would show a given structure over the complete
ensemble of possible games.

Another possible approach might exploit some well-known results in random matrix
theory. To understand this link, two observations are necessary.
First of all, one should remember that the games we studied are formally described by a
pair of payoff matrices whose entries are randomly extracted from a gaussian distribution:
hence by two random matrices.
Secondly, after the booleanization, the spectrum of the matrix A = BRBC we see in 1.8
(from now on Adjacency Matrix) encodes all the information about the best reply structure
of the game [33]. Indeed, is quite straightforward to show that free best replies (best replies
that lead to a best reply dynamics’ attractor without being part of it) will correspond to
a λ = 0 eigenvalue, fixed points correspond to a λ = 1 eigenvalue, while a cycle of length
k will correspond to a set of eigenvalues such that k

√
λ = 1. Finding the probability distri-

bution for the eigenvalues of this kind of adjacency matrices will then essentially give an
estimate of how likely it would be to find a given best reply structure.

Up to now, most of the literature in random matrix theory focused on Gaussian En-
sembles1. The matrices we are dealing with are, anyway, of a completely different nature.
Their elements can only be zeros and ones; moreover there can be just one non-null element
per column. Such matrices are called permutation matrices.

The most general result for random matrices eigenvalues can arguably be considered
the circular law theorem, asserting that for any sequence of random n× n matrices whose

1Particularly appealing as they can be used to model several different kinds of Hamiltonians; for
those ensembles (Gaussian Unitary or GUE, Gaussian Orthogonal or GOE, Gaussian Symplectic or
GSE) the full joint probability distribution for the eigenvalues is known.
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entries are independent and identically distributed random variables, all with mean zero
and variance equal to 1

n , the limiting spectral distribution is the uniform distribution over
the unit disc. More precisely:

Definition 6 (Circular Law Theorem) Let x be a complex random variable with mean
zero and bounded variance σ2. Let Nn be a random matrix of order n with entries being
i.i.d. copies of x. Let λ1, . . . , λn be the eigenvalues of 1

σ
√
n
Nn. Define the empirical spectral

distribution µn of Nn by the formula:

µn (s, t) := 1
n
] {k ≤ n|Re(λk) ≤ s; Im(λk) ≤ t}

Then µn converges to the uniform distribution µ∞ over the unity disk as n tends to
infinity.

Permutation matrices, anyway, don’t fall in this category, their entries being far from
independent. Nevertheless we saw in 2.1 how such matrices can be obtained by ordinary
ones, the interesting part being that for small values of β the matrix TRβ TCβ can be approx-
imately considered a Gaussian random matrix. The reasoning goes the following way: let
Rij be an entry of the payoff matrix for player row. Applying the logit transformation, it
will become:

Rij →
eβRij∑
j e

βRij

Let R′ be equal to eβRij . By definition, R′ will be a log-normal distributed random
variable with well defined moments. Now let’s assume that, in the large N limit, we can
approximate the denominator of the previous expression with

∑
j e

βRij ∼ N 〈R′〉. We have
now found a matrix whose entries are i.i.d log-normal variables, with mean value ∼ 1

N and
variance ∼ 1

N2 . The same reasoning applies to the payoff matrix C of player column. To
construct the adjacency matrix A, we have to take the scalar product of the two. The
element Alk of such a matrix will be:

Alk =
∑
i

R′kiC
′
il

Each term R′kiC
′
il, being the product of two independent lognormal variables, is itself

a lognormal variable2; Alk is then given by the sum of N i.i.d random variables with well
defined moments and hence can be approximated with a gaussian random variable due
tu the Central Limit Theorem; moreover, it’s independent from the other entries in the
matrix. Indeed:

2This comes by the properties of the lognormal distribution
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E [AklAqr] = E

∑
i

R′kiC
′
il

∑
j

R′pjC
′
jr

 = E

∑
ij

R′kiR
′
pjC

′
ilC
′
jr


Now:

• if l,p,k,r are all different, then the four variables are all independent and:

E

∑
ij

R′kiR
′
pjC

′
ilC
′
jr

 =
∑
ij

E [R′ki]E
[
R′pj

]
E [C ′il]E

[
C ′jr

]
=

= N (E [R′ki])
4 ∼ N

1
N4 → 0 in the large N limit (3.1)

• if k = p (or equivalently l = r):

E

∑
ij

R′kiR
′
kjC

′
ilC
′
jr

 =
∑
ij

E
[
R′kiR

′
kj

]
E [C ′il]E

[
C ′jr

]
' 1
N2

∑
ij

E
[
R′kiR

′
kj

]
(3.2)

Let’s now decompose the sum in two terms:

∑
ij

E
[
R′kiR

′
kj

]
=
∑
i /=j

E
[
R′kiR

′
kj

]
+
∑
i

E
[
R′2ki

]

Now, for i /= j the variables R′ki and R′kj are independent. The first term hence goes
like N2E2 [R′] ∼ N2 1

N2 ∼ 1 and gives no contribution when multiplied by the factor
1
N2 . The second term instead goes like N 1

N2 ∼ 1
N and again goes to zero.

To sum up our results, it seems like the entries of the matrix A can be well approxi-
mated, at least for small values of β, by independent Gaussian variables; we then expect
its spectrum to follow the Circular Law for such βs. We also now that, in the β → ∞
limit, A will become a permutation matrix, whose eigenvalues can only be on the center
or at the border of the unit circle. We expect then to observe a gradual transformation of
the spectrum from a uniform distribution to a very inhomogeneous one as β grows.
Simulations seem to confirm this intuition3:

3 Note that it is normal to have a radius different from 1 for the uniform circle if the random variables
have not been rescaled
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Figure 3.1

The higher N, the more resemblant the distribution is to an homogeneous circle for low values of β;
The smaller N, the faster the eigenvalues tend to recollocate themselves either on the center or on the
border of the cycle.

Note that, the eigenvalues on the unit circle are only located on angles α = 2π
n , with

n ∈ [1, N ]. This is why they are more distanced from one another in the N = 20 case.

Investigating in detail how the eigenvalues’ distribution deviates from the circular law
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as β varies4, and hence trying to find the probability distribution for the eigenvalues of
permutation matrices, might be interesting for future analyses.

4Note that β influences the actual values of the moments of the distribution of R′
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Appendix B

More than two players
The results we showed in this thesis - both originals and not - were focused on two play-
ers games. It would be quite straightforward to ask how they are affected by increasing
the number of players. In this regard, the only work available up to now is a paper by
Sanders, Galla and Farmer [28] who, taking [18] as a starting point, managed to show
both analytically and numerically that chaotic behavior of learning processes seems to be-
come more common when the number of players increases (i.e. the region of the parameter
space associated with chaotic dynamics is larger for games with a higher number of players).

A similar extension of [19] has not been realized yet. It is anyway possible to make some
preliminary remarks. First of all, the definition of best reply structure can be expanded
also to games with a higher number of players. As long as one assumes a fixed order of
choice5, the very same formalism is recovered: we will still find free moves, fixed points and
cycles for the best reply dynamics and work with them. Moreover, if the same network
analogy is applied to a p-players game, the best reply dynamics can be depicted via a
p-partite graph. This network, if one makes a sequence of bipartite network projections
can in turn be projected in a monopartite one with Np−1 nodes. 6.

As we already know, the properties of this last monopartite graph can be studied by
looking at its adjacency matrix, that will still be a permutation one. This seems to suggest
that, if one looks at the best reply structure, the only difference between a p-player and a
2-player game will be the size of the adjacency matrix. This would allow us to exploit the
analysis carried on for 2p games in [19] even for a larger number of players.

Let’s see if our intuition works on an easy example. In the following plot we show the
frequency of occurrence of cycles as a function of the number of strategies for games with
different numbers of players.

5Meaning with that, a fixed order in which players make their moves, e.g. Player 1 chooses first,
then Player 2 chooses,...

6If one assumes the point of view of player 1, each node would correspond to a possible sequence of
moves played by all the other players, with the link between two nodes being a connection between two
sequences established via the choice of player 1
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Figure 3.2: Occurrence of cycles as a function of the number of strategies

7The presence of cycles is only related to the best reply structure of a game and can
hence be investigated by simply looking at the adjacency matrices. Our guess is that the
only difference between a p-players, N strategies game and a 2-players one with the same
N lies in the size of these matrices (again, Np−1×Np−1 for the p-players game and N ×N
for the 2 players one). This means that, for example, that a 4 players game with N strate-
gies would have the same frequency of occurrence of cycles of a 2-players game with N3

strategies, or of a 3-players game with N
3
2 strategies and so on. The curves in Fig. 3.2

should then collapse in a single curve if one appropriately rescales the x axis for each value
of p.

7Original plot by courtesy of Dr. Torsten Heinrich
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If the x axis is properly rescaled the five curves collapse in a single one. The 4p curve was taken as a
reference in this example

This is indeed what we observe in the simulations. The result might be important be-
cause it tells us that, if a correlation between the best reply structure and the frequency of
convergence of learning algorithms exists also for higher values of p, than all the analytical
results obtained for 2p games in [19] can be extended to generic values of p.

Up to now, a similar investigation has not been carried on, so every enthusiasm would
be premature. Moreover, as we said, the reasoning only holds as one assumes a fixed
order of choice for p players games, while the dynamics of learning algorithms is anyway
synchronous and doesn’t imply any order of choice. A new definition of the best reply
structure that takes this problem into account could be realized, but it’s not sure whether
the scaling results would still hold for it.
If it works anyway, with a reasoning not uncommon in science, the fixed order choice could
anyway still be assumed as a crude yet useful approximation.
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