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Summary

Threshold effects in networks trigger global cascades which may generate the failure of
such systems. This phenomenon was observed in the case of iWiW, a very popular Hun-
garian online social network which collapsed due to the cascading abandon of the service
by its users, driven by exogenous and endogenous factors. In this research, we analyze the
dataset of iWiW and try to characterize some of the dynamical features of the networks,
basing our study on the timestamped interactions between users. We first look at the
degree distribution of the network and then focus on identifying some of the ego-centered
networks. We will then detect the communities in each ego-centered network and analyze
the rank correlation between the registration dates and the last login dates of users in-
side the communities. We find out that the communities have some particular dynamical
features but that these are not easily related to their qualitative features (measured with
the help of some metadata), pointing out that we need a more refined analysis to reach
a conclusion on this particular issue. After that, we still look at the rank correlations for
the nodes in some specific paths in the network and show that there is a strong tendency
towards anticorrelation. We then develop a criterion according to which a node is consid-
ered as part of a departure cascade or not; applying the criterion to all the nodes, we are
able to reconstruct the entire cascades history and look at some of their main statistical
properties. Lastly, we illustrate the results of the simulations of a simple model that can
explain some general dynamical features of such cascading effects on online social networks.
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Chapter 1

Introduction

1.1 Social networks
Social networks are one of the most studied types of networks, in which vertices (or

actors, using sociologists’ terminology) are people or groups of people and edges (or ties)
may represent any pattern of interaction between them [1, 2].

The expression "social networks" commonly refers to online social networking services
such as Facebook or Twitter. But social networks analysis does not necessarily apply to
online users’ platforms but to any social structure one can think of, in which the connec-
tions among actors range from friendships or professional relationships to communication
patterns or exchange of money, depending on the specific research goal [1].

Figure 1.1: Friendship patterns between boys (triangles) and girls (circles) in a class of
students in the 1930s (drawing by J. Moreno) [4].

Indeed, the investigation of such systems goes back in the past much further than their
recent computer representations. Worth mentioning researches are countless and range
from the inspiring work of Jacob Moreno[4] in the 1930s to the famous Milgram experi-
ment in 1961 [3]. In Figure 1.1 we can see what is most probably the first representation
of a social network: it has been drawn by Moreno in his book Who shall survive?[4] and

7



Ludovico Napoli et al. Dynamics of Online Social Networks

it depicts friendship patterns in a class of students, as a result of a real questionnaire (he
called this kind of diagrams sociograms). It is worth noticing the two distinct communities
of boys (triangles) and girls (circles) that emerge. Moreno was interested in the dynamics
of social interactions within groups of people and is considered the founder of sociometry.

Nowadays, the great amount of human digital traces that we leave every day is a new
incredibly powerful source of information and thanks to the recent developments of com-
putational tools we can address new challenging research questions and find empirical
verification of theoretical models. In particular, data of online social networks, of email
conversations or of money transactions between people match perfectly well with the ab-
straction we make by representing the interaction between people as two dots connected
by a line. E.g., in Figure 1.2 we can see a beautiful representation of a small portion of
the Facebook network, where links are the mutual friendships between users (nodes).

Figure 1.2: A portion of the Facebook network.

In this research we are going to focus on the phenomenon of cascading failures in on-
line social networks, analyzing the dramatic collapse of iWiW, a popular Hungarian online
social network which was active between 2002 and early 2013. We will show the results
of some data analysis, trying to get some important properties of the dynamical processes
which governed the social network life, and secondly illustrate how the simulations of a
simple model can explain some general dynamical features of such cascading effects.

Regarding the data analysis, we will first look at the degree distribution of the entire
network and then will focus on identifying some of the ego networks. We will then detect
the communities in each ego network with the Louvain algorithm and analyze the rank
correlation between the registration dates and the last login dates of users inside the com-
munities. Then, we will look at some metadata (city, age, gender, education level) to see
how the characteristics of the users inside a community overlap with the respective ego
and if the possible overlap is related to the correlations previously found. After that, we
will still look at the rank correlations in some specific paths in the network. Lastly, we will
develop a criterion according to which a node is considered as part of a departure cascade
or not; applying it to all the nodes, we will be able to reconstruct the cascades and look
at some of their statistical properties.
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1 – Introduction

We will first make an introduction on the important phenomenon of cascades in sociol-
ogy and in network science.

1.2 Cascades
In a social system, actors interact with each other and on many occasions, they are

required to take a binary choice. We are continuously exposed to such situations: whether
to go to a social event or not, to join a riot, to adopt a new technology, to vote for a certain
candidate, to move to another neighborhood or country, to take part in a strike. The
decision of actors is not only moved by individual principles and values but is constantly
influenced by social pressure. To make a simple example, if a person was attending a
boring public lecture but nobody from the audience had left so far, he would hesitate to
do it first; but if he noticed that a consistent portion of the attendants had left the room,
he would certainly take the option in greater consideration.

The combination of single decisions can generate cascading effects, which are usually
very difficult to model and hence to predict. Groups with very similar average preferences
may generate very different outcomes, which sometimes appear paradoxical. In the previous
example, it could happen that even though the lecture is boring to the majority, everybody
hesitates to leave first and stays until the end; on the other side, a few early leavers could
convince others to leave and the room will empty very quickly. We can see how the
combination of single decisions generates completely different outcomes: even though in
both situations the individual perspectives about the lecture were the same, an external
observer in the first case would point out how the audience was really captured by the talk
(paradoxical).

Even a simple example like this points out how hazardous it is to infer individual
dispositions from aggregate outcomes. Since collective behaviors can bring to much more
dramatic phenomena than the abandon of a public lecture, sociologists have always been
interested in their study. Granovetter in 1978 came out with his famous threshold model,
according to which everybody’s preferences about an issue are efficiently summarized in a
frequency distribution of individual thresholds [7]: in order for an actor to take a certain
decision (e.g., to join a riot), the portion of the group that has already chosen that option
must exceed his personal threshold. He studied how a given threshold distribution could
bring the system to an equilibrium point, but showed how the equilibrium may be extremely
unstable by slightly varying the parameters of the distribution. Starting from a Gaussian
distribution of individual threshold, in Figure 1.3 the equilibrium fraction of people joining
a riot is plotted as a function of the standard deviation of the Gaussian: we notice that
there is a critical point where the outcome of the dynamics varies abruptly by slightly
changing the preference distribution.

Schelling used a very similar approach in his research on racial segregation in the U.S.
and came out with surprising results deriving from collective behavior [8]. In his model,
even if agents were inclined to integration (up to a critical point), requiring less than
half of their neighbors to be of their same kind, the evolution of the system converges to a
segregated configuration, with an average fraction of same kind neighbors much higher than
the individual actual requirement. Again, inferring the individual preference or prejudice
from the collective outcome would bring to misleading conclusions.

9



Ludovico Napoli et al. Dynamics of Online Social Networks

Figure 1.3: The fraction of individuals joining a riot at equilibrium as a function of the
standard deviation of the preferences distribution (Granovetter model) [7].

The rise of network science offered to collective behavior and threshold models a new
powerful tool, adding to previous studies the underlying network structure which is typical,
among others, of social systems. Thanks to the universal nature of networks, it is possible
to study and generalize very different cascading phenomena at the same time, although
they are generated by quite different mechanisms: from the spreading of information to
the financial contagion in networks of banks[16] and the failures in physical infrastructure
networks and complex organizations.

Inspired by the previous work of Granovetter and Schelling, Watts implemented an
elegant model of cascading behavior on networks, showing that a global cascade (occupying
a macroscopic fraction of nodes) can occur from a small initial shock due to the interplay
of individual threshold and network structure [6]. In the initial configuration, all nodes
start in a state 0 except a small initial seed of nodes in state 1 (adopters). A node with
degree k switches to state 1 if the portion of neighbors in state 1 exceeds his individual
threshold φ. The emergence of a global cascade depends on the degree distribution of the
network, the distribution of individual thresholds and the initial seed. The condition for
a global cascade is the existence of a percolating component of vulnerable nodes, which
are connected to the seed and have thresholds 0 < φ ≤ 1/k (needing just one adopting
neighbor before exposure). Assuming an Erdős - Rényi random network with average
degree z, Watts showed how a phase boundary exists in the (φ, z) plane, encompassing a
regime where a global cascade can occur (see Figure 1.4).

Kertész et al. generalized Watts model in order to overcome its limitations when com-
pared to real social spreading data [14]. In addition to the individual thresholds, they
introduced a rate p of random adoption, such that at each time any node can switch to
state 1 with probability p even without the fulfillment of the threshold condition. Another
parameter, r, is considered: it is the fraction of "conservative" nodes, who remain blocked
in state 0 independently of the dynamics of their neighbors. This model better applies to
real systems, where the adoption of a technology in a small city as well as the diffusion of
a picture on Facebook can also occur independently of social pressure; at the same time, it

10



1 – Introduction

Figure 1.4: Cascade window for the Watts threshold model, for a uniform random graph
with homogeneous threshold distribution (all nodes with the same one) [6].

is realistic to consider a small fraction of actors who are reluctant to adopt. The authors
showed how the addition of these two parameters modifies the cascading regime area in
the (φ, z) plane (see Figure 1.5).

Figure 1.5: Different cascade windows by adjusting the parameters p and r in the model
of Kertesz et al [14].
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1.2.1 Information cascades
Information cascades are important and deeply investigated dynamical cascading pro-

cesses in networks. They occur when the diffusion of rumors, photos, disease, memes, or
fake news rapidly spreads starting from a small set of nodes in the network, finally encom-
passing a large fraction of it [17].

Information cascades can be regarded as a manifestation of the robust yet fragile nature
of many complex systems: a system may appear stable for long periods with respect to
external shocks (robust), then suddenly and apparently inexplicably exhibit a large cascade
(fragile)[6]. This kind of cascades is one of the most studied because, behind the interest
in the implications of such rare but overwhelming events, there are loads of digital data
that can be analyzed.

Since large cascades are very rare (a widespread property that has been observed quan-
titatively in many systems where information can be shared), they are very hard to predict.
It has been shown that e.g. in Twitter, although the largest cascades tend to be generated
by the most influential users, predictions of which particular user will generate large cas-
cades are rather unreliable [11]. Adamic et al. studied to what extent the future trajectory
of a cascade is predictable and which features, if any, are most useful for this prediction
task [12], analyzing resharing data on Facebook. They found out that the relative growth
of a cascade becomes more predictable as more of its reshares are observed (see Figure 1.6)
and that, initially, breadth rather than depth is a better indicator of larger cascades; also,
they observed that temporal and structural features are key predictors of a cascade size.

Figure 1.6: Observing the first k reshares of a cascade, the precision in predicting whether
the cascade will double in size increases by observing more of it [12].

Besides the fact that most cascades are small and that large cascades are very rare
phenomena, the latter also have very different shapes and properties. Dow et al. pointed
out that on Facebook just a small fraction of photos account for a significant proportion of
reshare activity, and they are the ones that generate cascades of non-trivial size and depth
[9]. They studied the characteristics of two very large cascades (regarding the reshares of
a picture posted by Obama and one by a common user which has become viral) and found
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out that they are very different in some of their general properties, such as time evolution,
reshare depth distribution, the predictability of subcascade sizes and the demographics of
users who propagate them.

Adamic et al. investigated how different diffusion protocols of information resharing
on Facebook (from tapping a single button in case of a photo resharing to creating and
posting a video in the ALS Ice Bucket Challenge) affect the properties of large cascades
[10]. In Figure 1.7 we see a representation of one of such cascade with a volunteer diffusion
protocols (posting music from an artist whose name matched the letter they were assigned
by a friend). They identified two counterbalancing factors (the effort required to participate
and the social cost of not participating) that are most influent on the cascade growth and
its predictability.

Figure 1.7: Diffusion tree of a cascade volunteer diffusion protocol on Facebook [10]. Early
edges are in red while late ones are in blue.

1.3 The data
iWiW (International Who Is Who) was launched on the 14th of April, 2002, starting

as a non-profit project, and shortly became the most known online social network (OSN)
in Hungary and even the most visited national website in 2006. The number of users
was limited in the first years but started to grow quickly in 2005, probably due to the
introduction of new features (e.g. translation into 15 languages, personal advertisements,
picture upload, public lists of friends, town-classification, e-mail system, etc.)[15]. In April,
2006 Origo (member of the Hungarian Telecom group) became the owner of the site when
the system had 640,000 members with 35 million connections.

The number of registered users continued to rise after that time; it counted for 1.5
million users in December 2006, more than 3.5 million users in October and more than 4
million in December of 2008 [15], in a country with a population of 10 million (worldwide
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Figure 1.8: Registered (red) and active (green) users in iWiW [5].

13 million native speakers) and, at that time, about 60% Internet penetration. It was
certainly the leading social network site of Hungary for years and it is considered as a main
driving force behind the speedup of Internet penetration in Hungary [5].

Figure 1.9: Google trends of iWiW and Facebook for Hungary [5].

Until middle 2011 the service was invitation based. Every user, after 30-50 days, got
one invitation voucher and new users could register in the service only if they had received
a voucher from an already existing member [5]. Later, vouchers were redistributed irregu-
larly, so that users could invite new people without waiting 30-50 days; in the last period
after 2012, registration became unconditional (no more vouchers).

This mechanism has two interesting implications: despite the slow down in the growth
of the service due to the limited amount of vouchers and the waiting time before get-
ting a new voucher, the site reached a great size and became the most popular OSN in
the country; secondly, this limitation makes the data of the early period potentially very
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interesting, as we are more confident in assuming that the links represent strong acquain-
tances (if one has just one shot, it is reasonable to assume that he will invite a close friend).

Figure 1.10: Cumulative number of inactive users during iWiW activity period (in blue)
and quadratic curve y = 0.227(day)2 (in orange). In this plot and in future ones, the day
axis starts from the 1st of August, 2007.

The site has remained widely used even after Facebook became popular (see Figure 1.8
and Figure 1.9) [5]. The story of iWiW came to a sudden and quick end due to various rea-
sons: Facebook became more attractive, especially to young people, after the introduction
of games and application; the lack of a usable message filtering system made iWiW a prime
target of spammers, which were using mainly compromised accounts; a consistent portion
of the Hungarians living abroad also gave a strong push to convert friends to Facebook,
which rapidly became the most popular Hungarian OSN. This resulted in a rapid increase
in the number of churning users in 2011 and finally led to the collapse in 2012. The site
was closed down in June 2014[5].

The blue curve in Figure 1.10 gives us an idea of the sudden breakdown of the service:
the number of inactive users (a user is considered inactive after its last login date) started
to grow very quickly, especially in the last months where almost all users decided to leave
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and the system collapsed.
It is interesting to notice how the number of inactive users grew quadratically until

a certain time (the fit with the orange parabola is almost perfect), while after that time
it started to grow more rapidly, leading the service to the collapse. The figure suggests
that the collapse was driven by two distinct factors, each dominating the dynamics in two
distinct periods (before and after the bifurcating point in Figure 1.10). It has been shown
that indeed this is the case, and that the churning dynamics was initially driven by random
churners, who left the service with a linearly increasing rate, and after the bifurcating point
cascading dynamics started to be triggered and gradually started to dominate more and
more the churning dynamics, leading to the collapse [5].

Figure 1.11: The fraction of active users in time: results of the simulations of the threshold
model for different parameters (colored curves) compared with the data ("+" dots)[5].

The first process is strictly related to random churners, whose abandon was moved by
exogenous factors. The second one is a purely endogenous factor of the network, related to
phenomenon according to which a user decides to leave when a certain fraction of neighbors
have already left (threshold model). By considering these two combined factors, it has been
shown that the simulations of the model fit very well for a certain choice of parameters
(the coefficient of linear rate γ and the waiting time τ between the threshold fulfillment
and the effective abandon of the user), as shown in Figure 1.11 [5].

The anonymized data used for the following research on the dynamics are: registra-
tion and last login dates of each user (when provided) and time-stamped link creation
information. Those data are sufficient to reconstruct the whole life of the OSN. Also, in
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a small section, we used some metadata of the users when these have been provided: city,
age, level of education and gender.
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Chapter 2

Ego-centered networks,
communities and paths

We start our analysis by looking at some general features of the dynamics of iWiW.
Since it is computationally very hard to analyze the whole network (∼4.5 millions of nodes),
we start by selecting single nodes and analyzing their ego-centered networks.

Figure 2.1: An example of an ego-centered network in iWiW.

An ego-centered network is a subgraph of the entire network, whose nodes set is formed
by a specific node (the ego) of the network and the group of nodes which are linked to it
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(the alters); the edge set is formed by the links between the ego and his alters and the
links between the alters.

The latter ones are a natural common characteristic of social networks: two people who
are friends with a third person are also likely to be friends. This very small structure forms
a triangle and its widespread presence is a well-known property of any social network (and
other real systems).

At a larger scale, the effect of these many triangles in social networks is the emergence
of communities, which are groups of nodes with many edges between them and compara-
tively few between them and the nodes of different groups. The emergence of communities
is a very particular and well-studied feature of many real networks that is absent, e.g., in
random networks models like the Erdős - Rényi or the Barabási - Albert. Their detection
is a very important issue in network science and a very hard problem, not satisfactorily
solved despite the huge effort of a large interdisciplinary community of scientists.

In Figure 2.1 we can see an example of the ego-centered network of an iWiW user with
200 friends. It is an undirected unweighted network, like all the ones we are going to an-
alyze in this chapter. In this case, it is relatively simple to identify the communities: the
clustering structure is quite clear just by looking at the visualization of the graph, without
needing the outcome of a sophisticated algorithm.

In this chapter, we would like to understand whether the community structure in the
ego-centered networks presents some relevant dynamical features. Also, in the last section,
we show how one can find some non-trivial dynamics by going through certain specific
paths in the whole network.

Figure 2.2: Degree distribution density
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2.1 Degree distribution
We first look at the general degree distribution of the 4.5 millions vertices of the OSN

(regardless of the dynamics) by collecting the respective number of neighbors for each
node. The result is plotted in Figure 2.2. We didn’t include the non-physical hubs with
thousands of acquaintances to make the histogram visible.

As expected, the degree k has a scale-free distribution. The mean degree is 208, but it
changes in time. Its evolution is plotted in Figure 2.3. We notice how the average degree of
all users (active and inactive) remained constant after 2009 but how the average degree of
the active users increased slightly until mid-2011 as shown, indicating that less embedded
users left first [5].

Figure 2.3: Evolution of the average degree for active (green) and registered (red) users
[5].

2.2 Community detection
As we mentioned before, community detection is a very hard problem. During the past

few years, scientists have developed hundreds of different algorithms. There are many
features that qualify the goodness of an algorithm and, indeed, one can be better than
another relative to an indicator and worse to another. Depending on the specific problem
one is analyzing, he would choose a particular algorithm with good performance in the
features of interest.

Many algorithms, like the one we are going to use, are modularity-based, meaning that
they identify the communities in a graph by minimizing a function called modularity, whose
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Figure 2.4: Community detection with Louvain algorithm of the ego-centered network in
2.1 after removing the ego: different communities are plotted with different colors.

expression is the following:

Q = 1
2m

∑
ij

(Aij − Pij)δ(Ci, Cj) (2.1)

where the sum runs over all pairs of vertices in the graph, A is the adjacency matrix,
m the total number of edges and Pij represents the expected number of edges between
vertices i and j of the null model. The null model is a random graph with the same feature
of the analyzed graph except for the clustering structure, which is not present in random
graphs, as mentioned before; it is usually used to quantify the properties of the clustered
structure of a given network. Ci and Cj are two subsets of vertices. This class of algorithm
compares the number of edges inside the clusters (C1, ..., CN ) with the expected one in a
random graph. The algorithm runs through all the possible configurations of clusters and
maximizing this difference (and hence Q) it obtains the desired configuration[18].

The algorithm we are going to use is called Louvain algorithm; it is one of the most used
and it works as follows. It is generally applied to weighted networks, but, of course, can be
applied also to our unweighted ego-centered networks (an unweighted network can be seen
as a weighted network with all the weights equal to 1). Initially, all vertices of the graph
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are put in different communities (one community per node). The first step consists of a
sequential sweep over all vertices, meaning the following: given a vertex i, one computes
the gain in weighted modularity (equation 2.1) coming from putting i in the community
of one of its neighbors j; at the end on picks the community of the neighbor that yields
the largest increase of Q (as long as it is positive). At the end of the sweep, one obtains
the first level partition. In the second step considers the graph where communities are
replaced by supervertices and two supervertices are connected if there is at least an edge
between vertices of the corresponding communities. The same sequential sweep is applied
to the supervertices, obtaining a second level partition (in this case, the weight of the edge
between the supervertices is the sum of the weights of the edges between the represented
communities at the lower level). The two steps of the algorithm are then repeated, yielding
new hierarchical levels and supergraphs, until a single supervertice remains at the last level
[18].

In Figure 2.4 we plotted the result of the Louvain community detection algorithm
applied to the ego-centered network in Figure 2.1, after removing the ego (since it should
be included in every community due to its full connectivity).

2.3 Rank correlation
As a first indicator of the role of communities in the dynamics of the ego networks, we

compute the Spearman correlation coefficient (or rank correlation) between the registration
dates and the last login dates of users inside the communities, for each community of each
selected ego network. To have a heterogeneous sample, we collect 200 ego networks for
each degree from k = 50 to k = 400 with jumps of 50 (hence for k = 50,100,150, ...,400).

Figure 2.5: Registration date (x-axis) and last login date (y-axis) plotted together for every
user, each in the square relative to the community it belongs to. The colors are the same
used in Figure 2.4.

The Spearman correlation just takes into account the order (rank) in which two sets
of variables are placed, regardless of their value (unlike the Pearson correlation). By
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definition, the Spearman correlation is the Pearson correlation for the ranked variables.
For a sample of size n, the n raw scores Xi, Yi are converted to ranks rgXi and rgYi and
the rank correlation coefficient rs is computed from:

rs = ρrgX ,rgY
= cov(rgX , rgY )

σrgX
σrgY

where ρ denotes the usual Pearson correlation coefficient but applied to ranked variables,
as mentioned before; cov(rgX , rgY ) is the covariance of the ranked variables; σrgX

and σrgX

are the standard deviations of the ranked variables.
In Figure 2.5 we plotted the registration date (horizontal axis) against last login date

(vertical axis) for every user inside the communities of the ego network in Figure 2.4. The
rank correlation is supposed to measure whether there is an order in these two quantities
inside the communities; we are interested in measuring whether this is on average more
significant than the expected one (obtained from a null model).

Figure 2.6: Statistics of the collected rank correlation coefficients inside the communities.
Real data are in dark green while the null model (shuffled data) distribution is in light
green.

Our aim is to collect all these coefficients, to make a statistics and to compare it with
the statistics of a null model. Hence, we first collect the coefficients of all the communities
of all the 1600 ego-centered networks of our sample and we make the histogram of the
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Figure 2.7: Standard deviation of the correlation distribution for different community sizes.

coefficients. Then, for the null model, we shuffle at random the last login date values
before computing the rank correlation, so that the order is completely random. If the
community structure has some role on the dynamics, we expect the real distribution to be
wider than the one relative to the null model (which for a large sample should be peaked
around zero).

The comparison of the two distribution is plotted in Figure 2.6. The largest (in absolute
value) correlations come from small communities, as we can see in Figure 2.7: we collected
the coefficients by different community size and analyzed the different distributions, finding
out that the small communities distributions are wider while the large communities ones
are more peaked around zero.

We can observe how the null distribution in Figure 2.6 looks slightly more peaked around
zero (as expected), while the real one is wider and a bit shifted towards anticorrelation
values. The latter characteristic is something we could expect. In fact, inside a community
people are supposed to have closer relations, on average, and for a strong community, we
expect the following dynamics: I invite my best friend to join the service, my best friend
invites his best friend and so on, until the community emerges; then, I leave the service
because my best friend has already left because his best friend had already left and so on.

The two chained dynamics (entry and abandon) go in opposite directions, hence in the
previous ideal case the rank correlation between registration and last login date would be
rs = −1. Of course, this is very simplified, but nonetheless, we expect a tendency towards
anticorrelation and the slight shift of the empirical distribution towards negative values
seems to confirm our assumptions; nevertheless, this is not so evident and we probably
need more accurate analysis in this sense.

We would like to quantify how much wider is the real distribution compared to the
random one (null model). To do that, we consider two relevant quantities related to
the distributions: the variance and the Shannon entropy. We consider them as random
variables and compute their z-score with respect to the distribution of the null model values
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Figure 2.8: The variance of the real distribution (blue line) and the variances of the 100
null model distributions (light blue dots). The horizontal axis is just the order of the null
models (first value, second value, etc.)

Figure 2.9: The Shannon entropy of the real distribution (blue line) and the Shannon
entropy of the 100 null model distributions (light blue dots). The horizontal axis is just
the order of the null models (first value, second value, etc.)
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of variance and entropy obtained from many null model outcomes. The z-score is defined
as:

z = x− µ
σ

where x is the observed quantity (the variance or the Shannon entropy of the real distri-
bution), µ and σ are respectively the expected value and the standard deviation obtained
by the many null model outcomes: by performing the shuffle of the last login dates many
times, one obtains different null model distributions; by collecting the variances and the
entropies of each of them, we have a distribution of variance and entropy values, from which
we can compute the mean value and the associated standard deviation for the calculation
of the z-score.

We collect the variances and the Shannon entropies of 100 null model distributions and
then compute the mean and the standard deviation of these 100 values, which will corre-
spond to µ and σ.

Figure 2.10: The z-score values for the variance of the aggregate distribution (red horizontal
line) and of the single degrees distributions (blue dots).

The results are plotted in Figure 2.8 for the variance and in Figure 2.9 for the entropy.
We observe how effectively in both cases the real value (the horizontal blue line) is on
average consistently higher than the outcomes of the null model distributions (light blue
dots), indicating that the dynamics inside communities is not random. The two quantities
(variance and entropy) show similar outcomes (besides a slightly higher concentration of
the null model values in the variance plot): this is not surprising, as the variance and
entropy are two ways of measuring the property we were interested in.
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Figure 2.11: The z-score values for the Shannon entropy of the aggregate distribution (red
horizontal line) and of the single degrees distributions (blue dots).

We plot the results for the z-score in Figure 2.10 and Figure 2.11, adding the results for
the single degree distributions, i.e. the collection of the coefficients of egos with the same
degree (50,100,...), to compare them with the aggregate outcome. The horizontal axis is
the degree and the dots are relative to the distribution of egos with the same degree, while
the red line is relative to the aggregate distribution (see Figure 2.6). We notice how the
z-score is very high both for the variance and for the entropy (∼7) and how the aggregate
value is always higher than the single degree values.

We have found that the order of registration and last login dates in communities is
not random, which is a preliminary but important finding of the dynamics inside the
communities of ego-centered networks.

2.4 Overlap
We have seen that the order in which users register and abandon the service is not ran-

dom inside the community. We would like to see if the rank correlation is somehow related
to some general features of the users inside the community, compared to the features of
the ego.

To understand if the dynamics of the communities is related to their features, we ana-
lyze some metadata: city, age, education level and gender. Unfortunately, not every user
has provided all these data and one could address these missing data with some data min-
ing technique; however, this is a preliminary exploration and if there is some sort of effect
it will be evident even from the available data.

We introduce a measure that quantifies the similarity between the community and the
ego: the overlap. We first look at the metadata of the ego and then focus on the users of
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communities. The overlap of a single user related to the ego is just the number of features
that this user has in common with the ego (e.g. if he lives in the same city, if he was
born no more than two years before or after the ego, ect.), divided by the total number
of possible comparisons, to obtain a fraction. Besides the previously mentioned metadata,
among the features we analyze to compute the overlap we take a property that is also an
indicator of the similarity between two nodes: the number of neighbors they share (friends
in common). Once we have the overlap value of all the users in the community, we average
all these values to obtain a single overlap between the community and the ego.

Figure 2.12: Overlap of communities users vs. rank correlations inside the communities.

Our aim is to see whether the qualitative similarity between the community and the ego
is also related to the order in which the nodes of the community sign in and log out. We
compute the overlap for all the communities whose correlation coefficient has been already
collected (see the previous section).

The result is in Figure 2.12, where we plotted the overlap vs. the rank correlation for
every community of every ego. As we can see, there is no clear effect but just a big cloud
of points. Therefore, we can not conclude anything about the relation between the order
of the community and the similarity with the ego.

We wanted to see if the most overlapping communities (which are likely the ones which
have more influence on the ego) had a particular dynamical order inside. The problem
with this approach is that we didn’t filter the communities of an ego and just analyze all
of them, while one would expect that not all the communities have the same influence on
the ego, but probably the most important are just one or two per ego. Or it could also be
that the most influential users for the ego are not all concentrated in just one community
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but are rather distributed in more than one.
For all these reasons, to get an answer on if and eventually how the most influential

communities are related to the dynamics of the ego, we need more accurate analysis. If
there is some effect, in our current analysis is certainly screened.

2.5 Paths
Leaving the refinement of the overlap analysis for further research, we now start to focus

on the phenomenon of cascades which led to the collapse of iWiW. It has already been
investigated [5] and it will the focus of the next chapter. In this section, we still concentrate
on the rank correlation as an indicator, but instead of looking at the communities we now
focus on some "cascading paths".

To construct a cascading path, we start from one of the 1600 egos we have already
analyzed and look at all the neighbors who have a last login date prior to his. We select
the neighbor that is "closest" to the ego in this sense, meaning the one who left just before
him. Once selected the closest neighbor, we look at all his neighbors (not just the ones who
are also linked to the ego) and apply the same selection process. We iterate this procedure
for five step and we will end up with a chain of six nodes, ordered according to the last
login date: the last one to have left is the ego and the first one is the last node of the chain.

Figure 2.13: Rank correlation distribution in cascade paths

We do the same procedure for all 1600 egos and compute the rank correlation between
the registration dates and the last login dates of the six nodes in the chains. We do the
statistics of the collected coefficients, which is plotted in Figure 2.13. This time the result is
much more evident than in the previous sections: there is a clear and very strong tendency
towards anticorrelation, reinforcing the intuitive idea of the two opposite directions of the
incoming and the outgoing dynamics that we mentioned before.

We see how by refining the analysis one ends up with clearer outcomes. In the previous
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section, we were considering all the nodes in all the communities in the same way, even
the largest communities where certainly any effect would be screened by the great amount
of irrelevant information (it is hard to think that all the many nodes interact with all the
others, which is actually more likely to happen in a small community). Although there was
a slight tendency towards anticorrelation, the idea that we were trying to verify is much
more evident in our last analysis.

In the next chapter, we will concentrate on the cascades, leaving these preliminary
results about the dynamics and the similarity of communities and the relation between the
flow of registering users and the cascade dynamics for future research.
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Chapter 3

Cascades

We have seen some preliminary results about the dynamics of the social network and
how the analysis so was not sophisticated enough to capture the role of aggregated meta-
data in the evolution of the service. We will now look deeper at the cascade phenomenon
that brought iWiW to the collapse.

We want to identify the cascades and characterize them, looking at some of their prop-
erties. The first task is not as trivial as it seems, since in this case being an adopter for
a node means leaving the service and in the end, all users left; therefore the network of
adopters coincides with the whole network, a trivial and uninteresting result which does
not say much about the fascinating endogenous effects and the cascading dynamics.

In this chapter, we develop a criterion according to which select those nodes who are
more likely to have left due to the cascading effect, distinguishing them from the ones whose
departure is most probably not related to the endogenous dynamics of the network. Once
we apply the criterion to the entire network, we will have the set of "cascading nodes" and
we will be able to reconstruct the structure of the cascades by going back in time towards
the links between those particular nodes.

3.1 The criterion
We want to distinguish the users who most likely left the service due to the cascading

effect from the ones that left randomly, due to exogenous effects, since it has been shown
that the collapse has been caused by these two combined processes [5] (see Figures 1.10
and 1.11). In order to detect those users, we consider the number of friends who left in the
last four weeks before the user’s churning (memp).

Our criterion is based on the evaluation of the probability that, given the number
of active friends W four weeks before the user’s last login, memp of them leave in this
four weeks period. The probability is computed according to the quadratically increasing
counting process (linear rate) which represents the random departures (orange curve in
Figure 1.10); given the hypothesis that users leave randomly with a time-linear rate, if this
probability, summed to the probability of more extreme events (more than memp friends
leave during the four weeks period), is very low, then we can consider that the node has
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been involved in a cascading process. Formally, given the null hypothesis X that users
leave randomly, we will evaluate the probability of the event Y that memp or more out of
W friends have left in this time window (p-value). We will now formalize mathematically
this concept.

Considering the random departures counting process X (null hypothesis) which grows
quadratically with time (see Figure 1.10), we compute the probability of the event Y =
"m friends of the selected user left in the last four weeks before his departure (among the
W friends still active at that date)" given the model X: Pm(Y |X). Then we compute
the p-value as the sum over m of all these events with m > memp (memp is the empirical
one). So basically, if the number of user’s friends who left just before his departure is much
greater than what is expected from the random departures model, then we can consider
him a "cascading leaver".

To compute this value we use the following parameters:

• Constants:

– τ (last login date of the selected user)
– T (4 weeks)
– memp (empirical number of friends who left in the interval [τ − T, τ ])
– W (total number of active friends of the selected user at τ − T )
– M (total number of active users in the social network at τ − T )

• Variables:

– E[N(t)] ≡ N(t) (total expected number of inactive users at time t (hence the
number of users that have left before time t) according to the random departures
model: the quadratic orange curve in Figure 1.10)

– n(t)dt = dN
dt dt (number of users who leave in the interval [t, t+ dt])

Given τ (and henceM), N(t) grows quadratically with time and so does N(t)/M , which
is the probability that a generic node leaves before time t (considering that the process
starts at time τ − T ); n(t)/M is the probability density associated with this process.
The probability we are looking for is the probability that m nodes (among W ) leave in
the interval [τ − T, τ ] and the other W − m leave after time τ , among all the possible
combinations:

Pm(Y |X) =
[∫ τ

τ−T n(t)dt
M

]m[
1−

∫ τ
τ−T n(t)dt

M

]W−m
W !

m!(W −m)!

And integrating:

Pm(Y |X) =
[
N(τ)−N(τ − T )

M

]m[
1− N(τ)−N(τ − T )

M

]W−m
W !

m!(W −m)!
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which is actually a binomial probability distribution. If we define Pm(Y |X) ≡ Pm and
q ≡ N(τ)−N(τ−T )

M we obtain:

Pm = qm[1− q]W−m W !
m!(W −m)!

=
(
W

m

)
qm[1− q]W−m

(3.1)

Of course, q (and hence Pm) depends on τ (the last login date we are considering). We
can see how the shape of the distribution Pm changes with time in Figure 3.1, where we
plot an example with W = 200 friends still active at τ − T , for different τ .

Figure 3.1: Pm shape for different τ

We notice how the shape gets broader with time and how larger m values get a finite
probability as time passes: this makes sense, as the hypothesis X we are testing is based
on a counting process whose rate grows linearly with time, so the more time passes the
more people are expected to leave the service (which is also true for a time window like
T ). Hence for later times, it becomes more likely that many friends leave during the last
four weeks before the user’s departure, while the probability of the same event is cut off
for earlier times.

To obtain a criterion according to which select the "cascading nodes", we consider
both the probability of the observed event and the probability of more extreme events
(m > memp). Referring to Figure 3.1, we consider the right tail of the distribution, summing
over m and obtaining the p-value p:
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p =
∑

m>memp

Pm

If p is very small, it means that our hypothesis X of random departures does not
describe well the observed event and is therefore rejected, which is equivalent to say that
if the observed number of friends’ churnings is much greater than the expected one, we
can consider the selected user’s departure a cascading event. We fix the threshold for p at
0.05, meaning that if for a user we find that p < 0.05, we consider him a cascading node.

In Figure 3.2 we show how the p-value changes with time for different memp (with
W = 200 like in Figure 3.1). The meaning of the figure is clear: when the p-value curve is
under the threshold line y = 0.05, we consider the respective event a cascading event. We
see how for small memp, the p-value crosses the threshold line y = 0.05 very early (or does
not), meaning that few friends leaving just before the user’s churning can be considered a
cascading event only for early dates (where fewer people were leaving the service, according
to the linear rate). On the other hand, the departure of more friends in the T period is
taken as a cascading event also at larger times.

Figure 3.2: Evolution of the p-value (in semi-logarithmic scale) W = 200 during the social
network’s life. The different curves represent different memp. The horizontal dashed line is
the threshold y = 0.05.

Now we developed a method to select the cascading nodes, which we will use to recon-
struct the entire cascades back in time and then characterize them.
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3.2 Aggregate results
We apply the method to all the 4298776 users with available last login date and times-
tamped acquaintances. The result is shown in Figure 3.3.

Figure 3.3: In orange, the evolution of the total number of inactive users (the same as the
blue curve in Figure 1.10. In blue (dashed), the parabola (orange curve in Figure 1.10).
In green, the users with p-value > 0.5 (non cascading).

The orange and the dashed blue curves are the same of Figure 1.10. We added the result
of our "filter": the green line is the evolution of the total number of users whose p-value
was found to be greater than 0.05 and, therefore, who we will not consider as cascading
nodes. The difference between the orange and the green curve is the evolution of the total
number of cascading nodes.

The green curve does not overlap very well with the dashed curve, but this is not
surprising: it is true that we took as the hypothesis to reject the dashed curve (linear rate),
however the choice of the threshold 0.05 for the p-value is completely arbitrary; eventually,
if one wished to have a better overlap, he would just need to increase the threshold. Also,
the dashed curve is just a model for the random churners, based on the initial shape of the
real inactive users curve; but this does not guarantee the future evolution of the number
of random churners to be the same as before the bifurcating point (where the two curves
of Figure 1.10 separate). And finally, even the choice for T = 4 weeks is arbitrary (another
choice would change the green curve).

However, the qualitative behavior of our filtering is what we were expecting and looking
for: initially, there are almost no cascades; then, after the bifurcating point, the two curve
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start to separate, meaning that more and more cascades are triggered as time passes.
Of the total number of users analyzed, 57.5% have been selected by our criterion as

cascading nodes.

3.3 Identifying the cascades
Now that we have identified all the cascading nodes, we can build the cascades, which

are subgraphs of the original network which we construct in the following way.
We start from a cascading node and we look at the neighbors which are cascading

and which left in the four weeks period before our node’s departure (we will refer to the
neighbors which have those two properties as "cascading neighbors"). Once selected, we
add edges (in the cascade graph) between them and the starting node. Then, we do the
same for the selected neighbors, looking for their cascading neighbors, but selecting only
nodes that have not been added to the cascade graph yet, in order to avoid loops and end
up with a tree structure.

A fictitious but useful example is shown below (both the network and the selection
of the cascading nodes are random): in Figure 3.4 we show a network where the node
from which we start building the cascade (the root) is in red. The nodes in light blue are
the ones that have been selected to be part of the red node cascade, either because they
are cascading neighbors of the red node or because they are cascading neighbors of the
cascading neighbors of the red node etc... The nodes in blue are all the other nodes (note
that they might also be cascading nodes, but may have left after the node to which they
would be linked or more than four weeks before). Finally, we end up with the tree structure
in Figure 3.5, which is, according to our criterion, the cascade structure that brought to
the churning of our selected red node.

Figure 3.4: Fictitious network: starting
node in red; in light blue, nodes that
have taken part in the (fictitious) cascade
of the starting node; in blue, all other nodes.

Figure 3.5: The fictitious cascade tree of the
starting node (red), obtained from the ficti-
tious graph in Figure 3.4.
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3.4 Results
We are now ready to apply our methods to the data: starting from a cascading node,

we can build his cascade tree, which, according to our model, is the endogenous dynamics
that caused his departure. We remind that in a cascade tree, two nodes are linked to each
other if they are cascading nodes, if their last login dates are closer than four weeks and,
of course, if they are linked in the iWiW network.

Since the number of selected cascading nodes is very high (57.5% of the total number of
users, which means almost 2.5 million nodes), identifying the cascades takes quite a long
computational time. We present here the results for ten nodes, chosen at random among
the cascading nodes.

Figure 3.6: The breadth of each layer of ten different cascades. The label in the legend is
referred to the I.D. of the starting node (the root of the cascade).

The shape of the cascades is shown in Figure 3.6: every curve is one of the ten analyzed
cascades. We said that the cascade graphs we built are trees and hence, taking the starting
node as the root, every node of the structure belongs to a well-defined layer (or generation).
In Figure 3.6 we are plotting the number of nodes belonging to each layer (the breadth of
each layer).

There are some interesting characteristics which stand out. First of all, we notice how
the largest layers are between layer 5 and layer 30, meaning that the majority of the cascade
nodes is concentrated in this region, independently of the starting node. Secondly, while
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the very first layers and the last ones seem to have approximately the same size for the
different cascades, the interesting region where most nodes are placed shows a very rich
behavior: in fact, the maximum breadth ranges from ∼5000 to ∼100000 nodes, outlining
very large fluctuations.

It is interesting that despite reaching the maximum breadth in the initial layers, the
cascade can reach a very long tail, meaning that the initial trigger of the cascade (in
the last layers) can be very far in time from the last login of the starting node. Indeed,
the dynamical process might be quite long in time. We plot a detail of the shape of the
last layers in Figure 3.7, showing that also in this layers’ region one can find a quite rich
behavior by looking at a different scale.

Figure 3.7: Zoom on the tail of 3.6.

As expected, the cascades can be very large and hence computationally hard to detect.
We expect that the size of the cascades (meaning the total number of nodes) depends on
the last login date of the starting node we are looking at. In fact, if the selected node
left the service late, there are more nodes who might potentially be part of his cascade.
Indeed, this is the case, as shown in Figure 3.8: the cascade size grows monotonically with
the last login date of the selected user.

Since we selected the ten starting nodes at random and since the size of their respective
cascade might be very large, we are interested in seeing whether the cascades overlap, i.e. if
one among the ten selected starting nodes also belongs to the cascade of some of the other
nine. What we find is find is at the same time expected and surprising: the cascades do
not simply overlap in one or a couple of cases, but they are actually all parts of one single
cascade. We would have expected, given the large fraction of cascading nodes selected
by our criterion, that by analyzing all the cascades, we would have found that the great
majority of them, if not all, are all parts of one single giant connected component. Instead,
we find that this is the case just by picking at random ten cascading nodes.
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3 – Cascades

Figure 3.8: Size of each of the ten analyzed cascades as a function of the last login date of
the cascade root.

To give an idea of the overlap we plot the results in the directed network in Figure 3.9.
The nodes are the ten roots selected at random whose cascade shapes are plotted in Figure
3.6. An arrow from node i to node j means that i belongs to the cascade of j. Of course,
a link has a single direction as one of the two nodes left the OSN later than the other and
hence it can not belong to his cascade. Also, one can check that if i belongs to the cascade
of j, who belongs to the cascade of k, then also i belongs to the cascade of k.

3.5 Discussion
We have developed a criterion which allows us to select the users who have left the service
as a result of a cascading effect and to distinguish them from the random churners. There
are some arbitrary parameters in the criterion, like the four weeks timescale or the p-value
threshold at 0.05, that are crucial for the final configuration of cascading nodes. Our choice
gives us the qualitative outcome we were looking for: the cascades start to emerge at a
certain time (bifurcation point) and their number starts to grow after that time.

With this criterion, we had the possibility to reconstruct the shape of a few cascades
by looking at the entire network topology, the last login dates of each node and the con-
figuration of the cascading nodes. The resulting cascades are tree graphs where the leaves
are the first churners (the triggers of the cascades) and the root is the last churner (the
selected node from which we started building the whole structure). This graph gives us an
idea of the dynamical structure which led to the churning of the root node.

The structures of the cascades show some interesting features: while there is a common
rapid growth (in terms of number of nodes) in the first layers and very long and narrow
branches, the region between layer 5 and layer 30 shows some very rich behavior and large
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Figure 3.9: Graphical representation of the overlap between the analyzed cascades. The
node at the tail of an arrow belongs to the cascade of the node at the head of the arrow.

fluctuations.
The size of the cascades increases with the last login date of the root node, as expected

from the observed growth of cascading nodes with time. Finally, we observed that the
analyzed cascades have a strong overlap, being each a portion of the same single cascade.
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Chapter 4

The model

We have already seen how threshold effects in social networks like iWiW trigger global
cascades which may generate the failure of such systems. In this chapter, we build a very
simple dynamical model in order to understand how the parameters related to growth and
to the shrinking of the network bring the system size to equilibrium. We generalize the
Watts and the Kertesz models [6, 14] in order to apply it to the evolution of the struc-
ture of online social networks (OSN) and see when and how those systems collapse due to
cascading phenomena and if these effects can be balanced by a constant growing rate of
people joining the platform.

4.1 The iWiW case and the model
We have already seen how the combined dynamics of random and cascading churners

is what seems to have generated the collapse of iWiW. We remind with the help of Figure
1.10 how the two different factors mainly drove the failure dynamics of the OSN: initially,
departure from the network is mainly due to a linear rate of random churners, while at
some point cascades start to dominate the dynamics and they rapidly bring the network
to the collapse.

Since we assume that these issues are valid for any OSN, we focus here on the reasons
why some of them manage to survive. Our idea is to discuss whether introducing a growing
or recovery rate in the dynamics of the system is enough to make it survive. We assume
that apart from people leaving the network for exogenous reasons (random churners) and
people churning for endogenous issues (threshold) generating the departure cascade, at any
time new people decide to join the service for the first time or people who have left decide
to join again.

To model such a system, we consider three parameters which drive the dynamics of the
OSN: the probability p that at any time a node leaves spontaneously, which is responsible
for random departure (in the iWiW case, the random churning rate is growing linearly
with time, but for simplicity we consider a constant rate p); the individual threshold φ,
which is the main responsible for cascading failures; the growing rate k.

We consider a sample of N individuals, Nin of which have already joined the social
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network. At each time step, inactive individuals join the network with rate k and active
users leave the network with rate p or because a fraction x > φ of their neighbors have
already left. We let the system evolve until it converges and take ρ =< Nactive > /N
as order parameter, where Nactive is the number of active users at a given time step and
the average value is taken over the last 100 steps of the simulation if the system hasn’t
collapsed, otherwise it is simply zero. To clarify the evolution of the system, in Figure 4.1
we plotted the steps of the evolution with a specific set of parameters.

(a) Network of active users

(b) Network of all users who have been in the system, both active and inactive

Figure 4.1: Evolution of a simulation with p = 0.1, φ = 0.4 and k = 0.05: from left to
right, time steps 1, 3, 5 and 7 (the last before the collapse). Red nodes have joined at
previous time steps; green nodes are new incomers; blue nodes have left the service at the
previous time steps; light blue nodes have just left the service; yellow nodes (very few in
this case) are inactive users who join the service again.

In the figure, the above list of images is the time history of the service (active users),
while the list below is the evolution of the network of both active and inactive users, which
clarifies the way nodes leave the service as time goes on. We notice how initially all nodes
are active and how in the first steps of evolution some users join the system while the
parameter p is responsible for some initial random departures. Going forward with the
evolution, the number of inactive users starts to be consistent enough to make threshold
departures rise. At this point, we can appreciate how these effects have a dramatic effect on
the service number of active users which decreases very rapidly and how the new incomers
rate is not enough to avoid the system to collapse. We also notice that some (very few) of
the previously inactive users join the system again (yellow nodes). Despite the simplicity
of the model, the dynamics of the extremely fast collapse looks qualitatively similar to
what has happened to iWiW.

We want to understand if and how the model we constructed could prevent collapse by
tuning the parameters which govern the dynamics.
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4.2 Results
We make a set of ten simulations of 1000 time steps for each pair of values k and φ (we

take the parameter p fixed to 0.1) and analyze the behavior of ρ =< Nactive > /N . The
simulations show that the system undergoes a discontinuous phase transition (Figure 4.2)
with a very clear interpretation: in order for the system to prevent cascading collapse, it
has to keep a minimum finite size. If this is not the case, the growing rate k is not enough
to provide the system a stable finite size and the threshold effect rapidly overcomes. We
will refer to the two different phases as the collapsing phase and the stable phase.

Figure 4.2: ρ dependence on k for different φ values.

The critical value kc grows by decreasing the threshold parameter φ, as expected: a
low threshold makes users leave just with a few inactive acquaintances, hence accelerating
the cascading collapse; in this case, a higher growth rate is necessary to keep the system
alive. Also, the minimum finite (normalized) size ρmin(φ) is reached at the critical point
kc, meaning that beyond that point a higher growth rate keeps the system stable with a
larger fraction of users. These are all intuitively expected results.

It is interesting to observe that the different curves overlap perfectly when they reach
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the stable phase, no longer depending on φ: this means that once the system has managed
to balance the threshold effects, his size depends only on the growing rate k and we may
assume that cascades have no influence in the stable phase. To verify the latter statement,
we made simulations over the whole range of values in the (φ, k) plane and plotted the
results in the heat map in Figure 4.3.

Figure 4.3: ρ heat map in the (φ, k) plane.

All the previous analysis are confirmed. The system clearly undergoes a first-order
phase transition with a critical value kc decreasing with φ. In the stable phase, the color
changes moving vertically but not horizontally, confirming that the phase does not depend
on φ. It is worth observing how even for low φ values the system has a stable phase,
meaning that even if cascading effects are triggered very easily they can be balanced by
a sufficiently high growth rate. Nevertheless, there is a region φ < 0.3 where no k value
is able to balance the cascades and the service necessarily collapses. This portion of the
plane would certainly vary with different p and we suppose that by decreasing it the stable
region would be larger and maybe reach the φ < 0.3 region.

As suggested by the plot in Figure 4.4, kc seems to follow a power law as a function of
φ with critical exponent α = 2.38.

We also expect the time required for the service to collapse to follow a diverging scaling
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Figure 4.4: Scaling behavior of the critical value kc as a function of φ.

law behavior when the parameters approach the critical point, as fluctuations usually show
this kind of diverging behavior in critical phenomena. The latter assumption is motivated
by observing that when approaching kc the system manages to survive for a longer time
until a large fluctuation suddenly breaks the apparent equilibrium (metastable state) and
rapidly drops ρ to zero (see Figure 4.5).

This scaling divergence seems to be confirmed in Figure 4.6, where we plotted the
collapsing time as a function of k near the critical point for a particular choice of the
parameters, but the result is also valid for other values (not shown).

4.3 Non-interacting mean field model
The simulations show very clearly a discontinuous phase transition. We want to make

sure that this result is confirmed at least qualitatively by an approximated analytical model
of the system. We first notice in Figure 4.5 the temporal evolution of three simulations near
the critical point: we can see how initially the dynamics is mainly driven by k and p since
at early time steps there are too few inactive users to trigger global cascades; after some
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Figure 4.5: Evolution of ρ in time during some simulations near kc for φ = 0.4.

time, a consistent fraction of the N potential users have joined and left the system and at
this point cascades may be triggered or balanced. Ideally, the evolution is divided in two
distinct dynamical phases: initially the system reaches a metastable state due to the effects
of only k and p (non-interacting dynamics); then, the threshold φ determines whether the
system may collapse or survive, based on the global properties of the metastable state it
has reached (mean field dynamics).

With these assumptions in mind, we first look at the expected number of active users
step by step in the non-interacting dynamics. Starting with n0 users, after one time step
the expected number will be n1 = n0 + k(N − n0) − pn0. Since at each time step the
dynamics is the same, rearranging the terms we can write the recursive relation:

ni = kN + (1− k − p)ni−1

Solving the recursive relation and defining x = 1− k − p we obtain the relation for the
expected number of active users after t time steps, starting from n0:
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Figure 4.6: Scaling behavior of the collapsing time.

nt = kN
t−1∑
i=0

xi + n0x
t

The metastable state will be obtained in the limit of infinite t. Reminding that | x |< 1
we obtain:

n∞ = kN
1

1− x
which corresponds to a density:

ρ∞ = k

1− x = k

k + p

Now the second part of our simplified dynamics comes over. We make a very simple
mean field approximation and consider the final network as fully connected: in this way,
the global density ρ∞ will coincide with the local fraction of active nodes of every user,
which will be the same for everyone. Hence the local threshold φ which should be applied
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to every single node now becomes a global property of the system: if the fraction of
inactive users 1− ρ∞ is greater than φ the system collapses (since the threshold condition
is satisfied for every node), otherwise it survives with the finite size n∞. With these simple
approximations, the collapse condition becomes:

φ < 1− k

k + p

In Figure 4.7 we plot this condition and the critical points of the simulations (the ones
of Figure 4.3). The mean field model exhibits a discontinuous phase transition as well
and the shape of the critical curve between the two phases is the same. Nevertheless, the
empirical points don’t fit the curve because of the brute mean field approximations. The
distance between the points and the mean field curve becomes greater with small φ and
this is also expected. Indeed, with our approximations the system evolves regardless of the
threshold condition until it reaches ρ∞; in reality, the parameter φ enters in the dynamics
mechanisms the earlier the smaller it is.

Figure 4.7: In green, the phase transition predicted by the non-interacting mean field
model. The scattered blue points are the phase transition obtained from the simulations.
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Our analytical model approximations are too strong to make some predictions about
the system as it is only able to show the shape of the transition. Much more refined
approximations are required to have a better fit with the simulations.

4.4 Discussion
Every online social network’ s survival is based on how many people register and how

many leave. Some platforms such as Facebook and Twitter survive and grow in term of
active users while some others collapse, as it happened to iWiW. It is very important for
such services to understand which parameters will determine their future dynamics while
they are still active. However, each network’s dynamics is governed in a non-trivial way
by many and different endogenous and exogenous factors such that each OSN should be
considered and analyzed separately.

Aware of these limitations, we made a general simple model and from the simulations we
found that by tuning the growth rate k of new registered users and the threshold φ which
is responsible for endogenous cascading collapse the system undergoes a discontinuous
transition between two distinct phases in the (φ, k) plane: a collapsing phase, where the
system collapses, and a stable phase, where the system is able to keep a finite size. Both
the critical value kc as a function of φ and the collapsing time near the critical point follow
power laws, reinforcing the phase transition result.

We tried to model the behavior of the system by splitting the dynamics into two distinct
parts: a non-interacting evolution which brings the system to a metastable state and a mean
field one, governed by the threshold φ, which drives it to the equilibrium state (collapse or
finite size). Although the bad fitting with the results of the simulations due to the strong
approximations, we find the same qualitative behavior (discontinuous phase transition in
the (φ, k) plane).

In the iWiW case, it has been shown how a very simple generalized threshold model is
able to fit the data of the collapse very well[5]. Even though the dynamic was different (the
random departure rate p was linear with time instead of constant, and there was another
parameter relative to waiting time of a user between threshold overtaking and effective
departure), our results allow us to make at least some qualitative conclusions.

According to our model, the system could have survived with an appropriate growing
rate k; in fact, even with a low threshold value, the stable phase of our model occupies a
non-vanishing portion of the plane (even larger with a smaller p). These assumptions seem
to be confirmed by Figure 4.8: considering the time evolution of the registration rate (the
analogous of our k), we can observe how besides an initial growth it decreases with time
until it reaches zero. This means that at a certain point the growth rate reached a critical
value without increasing again and the network was not able to survive any longer. At the
same time, we see the limitations of our model, where we considered a constant k while
in the iWiW case its evolution is much more complex and should be considered in future
research. What drives the dynamics of the registration date could also be very interesting,
but it’s a completely different research topic out of our current purposes.

For the sake of simplicity, we considered a constant p during the simulations, while in
the iWiW case it showed a linear dependence on time. It would very interesting to make
more sophisticated simulations in order to have a better model of the empirical observation
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Figure 4.8: Evolution of the registration rate in time (iWiW data)

and, if available, to compare them with other OSNs data.
Despite its simplicity, we think that our dynamic model is able to explain various

real-world scenarios of both OSNs or non-virtual aggregation platforms such as affiliation
clubs or communities. Although the model is not able to incorporate all the nonetheless
important endogenous and exogenous factors in an actor’s decisions, it captures some of
the main dynamical features. We hope that future analysis will help in the direction of
modeling and predicting such dramatic cascading failures.
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Chapter 5

Conclusions

Cascading phenomena in social networks and in other real systems can lead to unex-
pected and dramatic outcomes, like the financial contagion following a shock in a network
of banks, the rising of a riot or the cascading failures in infrastructures. In this research we
have tried to get a better understanding of the dynamics of such effects in a social context
by analyzing the data of the Hungarian online social network iWiW.

Our aim was to have an overview of how a user becomes an adopter in the cascade which
has been triggered in the social network (where in this case, adopting stays for leaving the
service). We first analyzed the dynamics inside the communities which formed around a
node (an ego) and we found out that the registration and last login dynamics of the users
inside a community are not random. We then introduced a measure of similarity (the
overlap) between a community and the respective ego to see whether these to quantities
were related, in order see whether there is a common pattern in the most overlapping
communities (which are thought to be the most influential in the ego’s decisions). We need
more accurate research to address this issues, as our level of analysis is not able to provide
a satisfactory answer.

Instead of focusing on the communities which formed around the egos, we looked at the
dynamical features of some "cascading paths" and measuring the rank correlation between
the registration and the last login dates of the chained nodes we found a very strong ten-
dency towards anticorrelation (the first to leave is the last who has registered).

Then we managed to develop a criterion according to which select the users who left the
service due to endogenous effects (the ones who triggered the cascade failures) distinguish-
ing them from the random churners who left due to exogenous effects, as it has been shown
that the failure dynamics of iWiW was mainly driven by these two types of dynamics.
Selecting the cascading users according to this criterion, we were able to reconstruct the
entire cascade structure which led to the abandon of a given user and gives us an idea of
the cascading dynamics.

Finally, inspired by the dynamics of iWiW we developed a generalized Watts model to
see whether threshold effects can be balanced by a proper growing rate of new incoming
users. We found out that the system undergoes a first order phase transition in the pa-
rameter space with two distinct regimes: a collapsing phase, where the threshold dynamics
overcomes and leads the system to the collapse, and a stable phase, where the rate of new
incomers balances the cascading effects and the system reaches an equilibrium finite size.
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We have investigated the phenomenon of cascades in the breakdown of iWiW, adding
some findings to the previous knowledge about the service and pointing out new challeng-
ing questions for the future research. In particular, the next goal is to investigate the role
of communities in the cascades we identified, in order to obtain coarse-grained cascades,
and to use the metadata to characterize the qualitative structure of the cascades.
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