
POLITECNICO DI TORINO

UNIVERSITÉ PARIS SUD

Master degree course in Physics of Complex Systems

Master Degree Thesis

Deformation of glassy states in
p-spin models

Supervisors:
Dr. Pierfrancesco Urbani
Prof. Andrea Pagnani

Candidates
Jack Thomas Parley
matricola: 24524

Anno accademico 2017-2018



This work is subject to the Creative Commons Licence



Summary

In this master’s thesis we consider the p-spin spin glass model, in both its spherical
and Ising versions, as a schematic model for amorphous solids. In the first part of
the thesis, we briefly review the main properties of the spherical p-spin model, fo-
cusing in particular on the free energy landscape and the metastable/glassy states.
We then introduce a model for studying the deformation of these glassy states,
consisting in the addition of an s-spin term to the original p-spin Hamiltonian.
This p + Ôs deformation is then studied by considering the Franz-Parisi potential,
which allows us to follow the glassy states and study their stability under the ex-
ternal perturbation.

Considering first the spherical p-spin, a rich phase diagram is found by varying
the degree of annealing (Tg) and the value of s. Fixing p = 3, we find that for
small s (s < 3) the glass yields in a replica-symmetric, elastic regime. However
when s is increased to higher values, the glass may undergo a Gardner transition
to marginal stability before yielding. The same analysis is carried out in the Ising
p-spin, where we also find RS-stable yielding for s = 2, and a Gardner transition
for higher values of s (s ≥ 3). Monte carlo simulations, employing the planting
technique, are performed to test some of the predictions in the elastic case.

Finally, we consider how the formalism may be extended in order to characterise
the fluctuations at the yielding point; this may be approached analytically in the
spherical p-spin, while improved simulation techniques may be employed in the
Ising p-spin in order to study the statistics of avalanches.
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Chapter 1

Introduction

In this introduction we will first briefly discuss some of the main aspects of the
physics of glasses, which are the physical objects under study in this work. We will
then discuss (also briefly) some of the main aspects of the behaviour of glasses under
strain (their rheology), which present us with the interesting physical phenomena
which we are attempting to elucidate in this work using simple mean-field spin
glasses.

1.1 Glasses and the Random First Order Transi-
tion Theory

A glass, or amorphous solid, may be simply defined as a solid with no crystalline
order. What makes it a solid, is that it is capable of responding elastically to
an externally applied shear derformation. However, a glass or amorphous solid is
fundamentally different from its crystalline counterpart; instead of being organized
in a regular lattice, the elementary degrees of freedom are positioned at random in
space, and there is no underlying order.

The glass phase is exhibited by members of all liquid types, including molecu-
lar, ionic and metallic liquids. These glass forming liquids, instead of crystallizing
upon cooling, can be supercooled below the melting temperature Tm and then so-
lidify at some temperature Tg, the glass transition temperature [1]. Understanding
from a theoretical viewpoint both the glass phase and the related glass transition
pose a great challenge. Indeed, what are the mechanisms that drive the freezing
of the supercooled liquid into the glass? Unlike for other well-understood phase
transitions, one cannot reason along the lines of symmetry breaking, given that
the glass phase is apparently just as disordered or amorphous as the supercooled
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1 – Introduction

liquid one.

Here we will restrict ourselves to one of the many theories proposed to un-
derstand this phenomenon, namely the Random First Order Transition Theory
(RFOT) [2]. The reason for this is the deep relation between this theory and the
physics of the mean-field spin glasses considered in this work (see part I). On the
other hand, structural glass models (e.g. hard spheres), which may be solved ex-
actly in the limit of infinite dimension, realize precisely the scenario emerging from
the RFOT.

The RFOT affords us with a picture of the glass transition from the point of
view of the underlying phase space. According to this picture, sufficiently deep
in the supercooled region, the phase space gets clustered into a large number of
metastable states, which are what we refer to as glasses. In finite dimension, these
glassy states or amorphous structures have a finite (albeit very long) lifetime. The
relaxational dynamics in the supercooled phase can be thought of as a set of jumps
from one state to the other. The jumps are well separated in time, and between
them the system explores ergodically the current metastable state. When the sys-
tem is cooled even further, the lifetime of the metastable states increases in an
exponential way with temperature, until at the so-called Kauzmann temperature
(TK) there is an ideal thermodynamic transition where this lifetime diverges.

In this work we will remain always in mean field (infinite dimension), and
therefore the glassy states will have an infinite lifetime. This presents us with a
great advantage: these glassy states may be studied with purely static tools. This
is the approach we will take in this work, following glassy states under external
perturbations as in [3][4][5]. Instead of considering structural glasses, however, we
will consider much simpler models, namely the p-spin (spherical and Ising) mean-
field spin glass models. Despite their simplicity, these models reproduce some of
the main behaviour of glasses, while being fully solvable from the analytical point
of view.

1.2 Glasses under deformation
Understanding the complex response of glassy/amorphous solids to deformations
is a central problem in condensed matter. Besides the fundamental interest in
finding a unified microscopic point of view [6], the problem also has important
consequences in material design and applications.

This problem has been approached in many different ways, but here we will
be most interested in the behaviour of the simplest model of an amorphous solid,
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1.2 – Glasses under deformation

namely dense assemblies of hard spheres [7]. The main reason for this is that the
mean-field HS (hard sphere) model has been solved exactly in infinite dimensions,
and thus the phase diagram can be studied analytically [8]. Among other aspects,
these results have particularly shed light on one of the crucial properties of the
response of amorphous solids, namely the stability, i.e. on how a glass may become
unstable due to increased plasticity under shear deformations.

In [7], extensive numerical simulations are used in order to map out exhaustively
the behaviour of HS spheres under normal and shear stress. We here focus on the
typical stress-strain behaviour of an HS glass (see figures in [7]) obtained through
simulations, which seems to follow the general predictions of the mean-field theory
in d → ∞ [4]. Starting from equilibrated configurations at some value of the
packing fraction ϕg > ϕd, the quasi-static evolution of the system is followed
under the shear strain γ. The system is sheared up to a maximum value, and
then sheared back in the reversed way 1. One may identify three regimes of the
stress-strain curve, which corrrespond to stable, marginally stable, and unstable
states:

1. The elastic regime, where the stress σ increases smoothly and monoton-
ically with increasing γ. To first order, the response is linear, δσ = µδγ, µ
being the shear modulus. Once the strain is reversed, the stress-strain curve
reverses to the origin, thus consituting an elastic response.

2. The marginally stable/plastic regime. Above a certain threshold γG,
the stress-strain curve becomes jerky, consisting of piecewise linear elastic
responses followed by small and abrupt stress drops, which correspond to
plastic events. The system is marginally stable, and thus a tiny increment δγ
can cause these avalanches; but the particles can find immediately another
stable configuration and the material therefore resists entire failure. In this
regime the system is partially irreversible: for small reversed strain the stress-
strain curve is locally irreversible, but globally it may be reversed back to
the origin.

3. Yielding2. At the yielding strain γY , a sudden and significant stress drop
takes place. Once the glass breaks (yields), the system is irreversible. In par-
ticular, if one measures the relative mean square displacement ∆r between
the initial and final configurations, this becomes non-zero in the irreversible

1In [7] the cyclic deformation actually comprises also a change in the normal stress, leading
also to possibe shear jamming (instead of shear yielding), but we will omit this here.

2We omit the possibility of shear jamming, considered also in [7]
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1 – Introduction

case (in the reversible case ∆r = 0, meaning that the initial and final config-
urations are identical).

In terms of the free energy landscape, the glass corresponds to a basin, which
becomes distorted under increasing strain. In the infinite-dimensional solution,
we may identify the first regime with the RS (replica symmetric)-stable phase,
while γG corresponds to a Gardner transition to marginal stability (the basin be-
comes rough). In this marginally stable state, the system can release the stress
via hopping between different sub-basins, corresponding to plastic events. Finally
at yielding the system escapes the basin, corresponding to a spinodal point in the
infinite-dimensional solution.

The main purpose of this work is to study these effects in the spherical and
Ising p-spin spin glass models, which although much simpler than hard spheres,
show some of the key aspects of glassy behaviour (see part I). Instead of considering
the mean square displacement ∆r between particle configurations (see [7]), we will
consider the relative overlap between spin configurations qr; instead of a shear we
will consider an s-spin deformation. Despite these differences, we will see that
these simple models show intriguing similarities with amorphous solids.
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Chapter 2

Spherical p-spin model

In this chapter we first define the model and review some of the main concepts for
studying spin glasses. We then discuss the free-energy landscape of the spherical
p-spin model, focusing in particular on the complexity and the metastable states
in the glassy region. Finally these same results are explained from a different
perspective by considering the Franz-Parisi potential, which will in turn constitute
the basis of the state following approach developed in part II.

2.1 Definition and basic concepts
The p-spin model was first introduced in its Ising version in [9] and [10], and
the spherical counterpart was introduced later in [11]. The p-spin Hamiltonian is
defined as:

Hp[σ, J ] = −
Ø

i1<···<ip

Ji1...ipσi1 · · · σip p ≥ 3 (2.1)

In the spherical version of the model, the spins σi are real continous variables
which are constrained to live on the surface of a sphere of radius

√
N , that isqN

i=1 σ2
i = N . What makes the model a spin glass is the quenched disorder in

the couplings, which are Gaussian random variables with zero mean and variance
given by:

J2
i1···ip = p!

2Np−1 (2.2)

where the overbar denotes average over the quenched disorder. The variance is
chosen in this manner to ensure the proper scaling of the free energy and energy
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2 – Spherical p-spin model

with system size.

Self-averaging and the replica method

When dealing with spin glasses, an important concept is that of self-averaging.
The problem is that in principle, the observables (including the free energy), will
depend on the specific realization of the disorder J 1, and will thus obviously vary
from sample to sample. Luckily, for large enough systems, the free energy density
will no longer depend on the couplings J , and will converge to a J-independent
value given by:

F = − lim
N→∞

1
βN

log Z(J) = F∞(β) (2.3)

Calculating the quenched average log Z is very difficult. This is where the
replica trick comes into play. It stems from the following simple mathematical
expressions for writing a logarithm:

log Z = lim
n→0

1
n

log Zn = lim
n→0

Zn − 1
n

= lim
n→0

∂nZn (2.4)

If n remains a real number, there is no advantage in doing this. However, if we
can promote n to an integer, we can write:

Zn =
Ú

Dσ(1) . . . Dσ(n) exp
1

−βH[σ(1), J ] · · · − βH[σ(n), J ]
2

(2.5)

which is easier to compute.

In fact, it will become even more problematic, as in order to do the calculations
we will exchange the n → 0 and thermodynamic limits:

F = − 1
β

lim
n→0

lim
N→∞

1
N

∂nZn (2.6)

We will come back to this point in the following chapter.

Pure states

In the low temperature phase, and in the thermodynamic limit N → ∞, it
is well known that some systems may present ergodicity breaking: the system at

1Here J is used to denote all the couplings.
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2.2 – The static and dynamical transitions

equilibrium only explores a sub-part of the phase space. In this situation one may
split the Gibbs measure into sub-components called pure states:

é·ê =
Ø

α

wαé·ê (2.7)

where α runs over all the states, and their relative weights are defined as:

wα = Zα

Z
(2.8)

Zα being the partition function restricted to state α.

An important feature of pure states is the clustering property. This states that
the statistical correlation between two points goes to zero when their distance goes
to infinity:

éσiσjê → éσiêéσjê for |i − j|→ ∞ (2.9)

Using this property, we may show for example that the paramagnetic state
(that is the Gibbs ergodic measure over the full phase space) in the Ising model
below Tc is not a pure state. We have

éσiσjê = 1
2 éσiσjê+ + 1

2 éσiσjê− (2.10)

where we have split the measure into two states with positive (+) and negative (-)
spontaneous magnetization. As |i − j|→ ∞:

éσiσjê → 1
2 éσ2ê+ + 1

2 éσ2ê− = m2 Ó= 0 (2.11)

In the case of the Ising model, we have simply two states which are characterized
by a uniform magnetization. In a disordered system in the mean field limit, for a
given sample (realization of the J ’s) each state is characterized by an amorphous
magnetization profile. The TAP (Thouless Anderson Palmer) [12] free energy
F [m] will thus posess many local minima, which we will call TAP states (they are
solutions of the TAP equations, i.e. minima of the TAP free energy functional)
[13] [14].

2.2 The static and dynamical transitions
In this section we will discuss the most important aspects of the model, focusing
on the structure of the pure states.

9



2 – Spherical p-spin model

The states of the spherical p-spin model are sketched in figure 2.1 2. A key as-
pect of the spherical p-spin model is that the spin glass states at zero temperature,
labelled by their intensive energy e at zero temperature, maintain their identity and
can be followed in their evolution at T > 0 [13]. At zero temperature, the number
of states of energy e is Ω(e) = exp

!
NΣ0(e)

"
, where we have defined the complex-

ity function Σ0(e). Σ0(e) is a concave function that vanishes at emin and goes to
zero discontinously at some threshold value eth. Likewise, at higher temperatures
T > 0, one may define

Ω(f) =
Ø

α

δ (f − fα) = exp
!
NΣ(f)

"
(2.12)

where
q

α denotes a sum over pure states, and Σ(f) = Σ0(e(f)), e(f) being the
T = 0 energy of the states of free energy f . Like its zero-temperature counterpart,
Σ(f) vanishes continously at fmin and drops to zero above fth.

Figure 2.1: Evolution in temperature of the p-spin states, reproduced from [14].

We may now write the full partition function Z in terms of pure states. Indeed,
one can think of Zα = exp (−βNfα) as the contribution of this state to the total
partition function. One has:

2Note that df
dT = −s, and so in the case of the spherical p-spin the free energy increases in

temperature because the entropy is negative (the variables are continous). For discrete variables
(such as Ising p-spin) the reverse is true.

10



2.2 – The static and dynamical transitions

Z = exp
!
−βNftot(T )

"
∼
Ø

α

exp (−βNfα) =Ú
df
Ø

α

δ (f − fα) exp (−βNfα) =
Ú

dfΩ(f) exp (−βNf) =

Ú fth

fmin

df exp
1

N
#
Σ(f) − βf

$2
∼ exp

1
N
#
Σ(f∗) − βf∗$2 (2.13)

where f∗ ∈ [fmin, fth] is such that f − TΣ(f) is minimum, i.e.

dΣ
df

----
f∗

= 1
T

(2.14)

Starting from high temperature, one encounters three distinct temperature re-
gions. These are separated by a dynamical transition temperature Td, and a static
transition temperature TK

3.

• T > Td

Above Td, the phase space is ergodic and the system is in the paramagnetic
(liquid) state. The free energy is given by fpara(T ).

• TK < T < Td

At the dynamical transition Td, the phase space gets clustered into an ex-
ponential (in the system size) number of metastable states. Because of the
mean-field nature of the model, energy barriers are infinite, and therefore if
the system is prepared in one of these states it remains trapped there forever
4. Importantly, this phenomenon can only be seen from studying the dynam-
ics. The reason for this is the equality f∗(T ) − TΣf∗(T ) = fpara(T ) (where
fpara(T ) is just the extrapolation to low temperature of the free energy of
the paramagnet) in the whole interval T ∈ [TK , Td].

3The letter K in TK stands for Kauzmann, since it coincides with the Kauzmann temperature
in structural glasses.

4If we allow for timescales exponentially large in N , the system can escape a glassy state.
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2 – Spherical p-spin model

• T < TK

At TK , there is a thermodynamic phase transition; the free energy and its
first derivatives are continuous, but the second derivative of ftot(T ) with
respect to T (the specific heat) has a jump. Below TK , the phase space is
dominated by the lowest free energy states, ftot(T ) = fmin(T ).

In the range of temperature TK < T < Td, one can decompose the entropy into
two contributions:

s(T ) = Σ(T ) + svib(T ) (2.15)

where Σ(T ) = Σ(f∗(T )) is the configurational entropy of the states that dominate
the partition function at temperature T , and svib(T ) is the internal (vibrational)
entropy within these states. This scenario realizes the so-called Random first order
transition (RFOT) theory [2]. At T = TK , Σ(T ) vanishes (the so-called entropy
crisis) and we get a jump in the specific heat as the system freezes into the lowest-
lying states.

2.3 The Franz-Parisi potential method
We will now present a different way of studying the physics in the interval TK <
T < Td [3], which is of particular interest due to its connection with the state
following formalism developed in the following sections.

The starting point is to consider a reference configuration σ(1), and then the
partition function of a replica σ(2) which has an additional term in the Hamiltonian
coupling it to configuration σ(1)5:

Z
1

σ(1), Ô, T
2

=
Ú

Dσ(2) exp
3

−βHp

è
σ(2)

é
+ βNÔqσ(1),σ(2)

4
(2.16)

where the function qa,b gives the overlap between two configurations a and b. We
have:

qσ(1),σ(2) = 1
N

NØ
i=1

σ
(1)
i σ

(2)
i (2.17)

5We will omit the overbar, that is the partition functions and free energies are averaged over
the disorder (J-independent).
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2.3 – The Franz-Parisi potential method

The free energy associated to 2.16 depends on σ(1), but if σ(1) is extracted at
equilibrium at temperature T this dependence should disappear (in the thermody-
namic limit). Thus one may average over the equilibrium distribution of σ(1) at T
to obtain

F (Ô, T ) = − 1
βN

Ú
Dσ(1)

exp
3

−βHp

è
σ(1)

é4
Z(β) log

3
Z
1

σ(1), Ô, T
24

(2.18)

Interested in the behaviour for vanishing coupling strength Ô, we now introduce
the Franz-Parisi potential [3] V (qr, T ) as

V (qr, T ) = max
Ô

#
F (Ô, T ) + Ôqr

$
(2.19)

where the conjugate variable to the coupling field Ô is given by (qr stands for relative
overlap):

qr(Ô) = −∂F (Ô, T )
∂Ô

=
e

qσ(1),σ(2)

f
Ô

(2.20)

The Franz-Parisi [3] potential V (qr, T ) is then the free energy of the system
σ(2) constrained to be at a fixed overlap qr with σ(1):

V (qr, T ) = − 1
βN

Ú
Dσ(1)

exp
3

−βHp

è
σ(1)

é4
Z(β) log

3
Z
1

σ(1), qr, T
24

(2.21)

Z
1

σ(1), qr, T
2

=
Ú

Dσ(2) exp
3

−βHp

è
σ(2)

é4
δ
1

qr − qσ(1),σ(2)

2
(2.22)

Physically, what the Legendre transform is telling us is that dV
dqr

= Ô(qr), and
therefore the possible average values of the order parameter (the relative overlap)
are given by dV

dqr
= 0, the minima of the FP potential.

The FP potential V (qr, T ) is plotted for different temperatures in figure 2.2. At
high temperature (T > Td), the function has a single minimum at qr = 0, as there
is only a paramagnetic phase where the two copies σ(1) and σ(2) are uncorrelated.

13



2 – Spherical p-spin model

Figure 2.2: The Franz Parisi potential for different temperatures, spherical p-spin
(p=3)

At Td, there is an inflection point and a secondary minimum appears at qmin
r (T ),

corresponding to the self-overlap of the equilibrium TAP states at temperature T .
However, this minimum is metastable, as the probability of finding the two copies
in the same TAP state (at zero coupling) is vanishing due to the complexity (the
number of states is exponential in N).

At T = TK , V (qmin
r (TK), TK) becomes equal to V (0, TK). In fact, all this can

be seen quantitatively by realizing that V (qmin
r (T ), T ) is the free energy of the

equilibrium TAP states, and V (0, T ) is just the paramagnetic free energy ftot(T ).
One then has:

V (qmin
r (T ), T ) − V (0, T ) = f∗(T ) − fpara(T ) = TΣ(f∗(T )) (2.23)

And thus the difference in free energy vanishes at TK , where the complexity
vanishes Σ(f∗(TK)) = 0. We have therefore recovered the physics of the previous
section from a new viewpoint.
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Deforming p-spin glassy
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Chapter 3

Introduction

Before turning to the original part of this work, we will first briefly discuss the main
results of the work by Berthier, Barrat and Kurchan [15], where the driven dynam-
ics of the p-spin was considered as a model for the non-linear rheology of glassy
materials. We will then present the model considered in this work, highlighting
the differences and similarities with respect to [15].

3.1 Driven dynamics for non-linear rheology
In [15], the dynamics of the p-spin under a non-conservative driving force were
studied. The relaxational (non-driven) Langevin dynamics in the spherical p-spin
model is just given by:

σ̇j(t) = −µ(t)σj(t) − ∂Hp[σ]
∂σj(t) + ηj(t) + hj(t) (3.1)

where ηj(t) is a Gaussian white noise, with éηj(t)ê = 0 and
éηj(t)ηl(tÍ)ê = 2Tδjlδ

!
t − tÍ". µ(t) is a Lagrange multiplier which is introduced in

order to enforce the spherical constraint 1
N

qN
j σ2

j (t) = 1, and hj(t) is an external
field which for now will only be used to evaluate the linear response. When studying
the dynamics, one is mostly interested in the correlation function C(t, tÍ) and the
linear response function R(t, tÍ), defined by:

C(t, tÍ) = 1
N

Ø
j

éσj(t)σj(tÍ)ê R(t, tÍ) = 1
N

Ø
j

δéσj(t)ê
δhj(tÍ)

----
h=0

(3.2)

We will not consider here the full derivation (which can be found for example
in [13]) , but using the generating functional approach one may average over the

17



3 – Introduction

disorder, and finally obtain effective equations for a single degree of freedom which
moves in an environment which must be determined self-consistently.

The main results regarding the relaxational dynamics (no drive) are as follows.
Above the dynamical temperature T > Td, it is possible to find a stationary so-
lution (C(t, tÍ) = C(t − tÍ) and R(t, tÍ) = R(t − tÍ)), where the correlation and
response functions are related through the fluctuation-dissipation theorem. As one
approaches Td, the relaxation splits into a fast timescale where the correlation
descends to a plateau qd < 1, and then a slow timescale (associated to collective
rearrangements) on a scale τα which diverges at Td. Below Td, on the other hand,
the system can no longer equilibrate. One may still define a stationary (”fast”)
regime down to a plateau qth > qd, but the ”slow” relaxation becomes non station-
ary. In particular, if one looks at C(t, tÍ) as a function of τ = t − tÍ for fixed tÍ, it
decays to zero for τ >> τα(tÍ), where τα(tÍ) is an increasing function of tÍ (aging)
that diverges for tÍ → ∞. In terms of the free energy landscape, what happens in
the aging regime is that the system gets stuck in increasingly long-lived traps just
above the threshold fth.

In [15], the authors introduce an external driving force, which is non-conservative
(cannot be written as deriving from a potential):

hj(t) = Ô

(k − 1)!
Ø

j,j1...,jk−1

åJj,j1...jkσj1 · · · σjk−1 (3.3)

where the åJj,j1...,jk−1 are independent random Gaussian couplings, also indepen-
dent from the ones of the Hamiltonian, and have variance k!

2Nk−1 . These couplings
are not symmetric in the exchange j ↔ jl, although they are still symmetric in the
exchange of two indices jl.

The main results the authors obtain are as follows [15]. On the one hand, the
α-relaxation time tα (the slow timescale associated to collective rearrangements) is
studied as a function of the driving Ô, for temperatures above and below Td. At zero
driving (Ô = 0), it is known that tα increases as Td is approached from above, until it
diverges at Td, and for temperatures below Td indeed one has limÔ→0 τα(Ô, T ) = ∞.
The effect of the driving is that the system becomes stationary for all temperature
and driving forces; it reaches a non-equilibrium steady-state. Indeed in the T < Td

regime, the drive continuously injects energy into the system and allows it to ex-
plore freely the landscape without getting trapped.

On the other hand, the authors also consider the consequences for rheology [15].
Given that the injected power is given by Ô2

tα
, one may also associate Ô

tα
to a shear

rate (γ̇) and Ô to a stress (σ). The main effects are shear thinning both above and
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3.2 – Our model

below Td, and for T < Td the appearance of a yield stress, that is σ(γ̇ → 0) Ó= 0. A
finite driving force (power injection) is needed to keep the system at the threshold
where it may flow freely.

Moreover, in [16] the analysis was extended to the case where the system is
prepared in one of the deep regions below the threshold. From the topology of the
free energy landscape, one expects that a weak driving force will have no effect
beyond a trivial ’elastic’ response, as it is not enough to allow the system to over-
come the barriers. Instead a strong driving force lets the system escape from the
state and surf on the threshold, and then keeps it there forever. These expectations
are confirmed by the calculations performed in [16], where the existence of a static
yield stress σY (T ) is proved, beyond which the system shows liquid behaviour in
its non-equilibrium steady state.

3.2 Our model
In the present work we will not study the dynamics, but instead consider a con-
strained thermodynamics, applying the methods first developed in [3] to study
glassy states. Starting from an equilibrium glass of the p-spin selected at a tem-
perature Tg ∈ [TK , Td], we follow this state under the addition of a perturbation
in the form of an s-spin Hamiltonian, that is:

(3.4)
Hp[σ] → Hp[σ] + ÔHs[σ]

= −
Ø

i1<···<ip

Ji1...ipσi1 · · · σip − Ô
Ø

i1<···<is

åJi1...isσi1 · · · σis

where the deforming couplings are extracted from an independent Gaussian distri-
bution, with zero mean and variance given by åJ2

i1···is = s!
2Ns−1 .

When the glass is thus followed under the perturbation, it may be deformed up
to a spinodal point ÔY , which we identify as the yielding point. This is a purely con-
servative deformation, and all the analysis is restricted to the state being deformed.

Intuitively, one may expect that as high values of s are considered, the glass
basin may become more and more rugged and develop a compex hierarchical struc-
ture of sub-basins before it reaches yielding. Indeed, if one considers the pure s-spin
free energy landscape, for higher values of s the number of states increases, their
volume shrinks and the barriers between them are higher [17]. The possible replica
symmetry breaking before yielding will be studied by the replicon eigenvalue, while
the mode that becomes unstable at the spinodal point is the so-called longitudinal
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3 – Introduction

mode.

We do not, however, consider the full statics or free energy landscape of the
mixed model defined by p+Ôs, as done in [18] or [19]. We are instead simply
following a p-spin equilibrium glass as the overall landscape evolves adiabatically
towards that of a mixed model. Moreover, we do not consider at any point the
final stationary state once the glass yields. One may say that at the spinodal the
system becomes unstable against ergodization; the order parameter (the relative
overlap) jumps from the original high value to a lower value, signaling that the
system has exited the now unstable glass basin. However, whether the new phase
which appears at the spinodal is the paramagnetic (liquid) phase of the mixed
model, or whether the system instead surfaces on the threshold, or eventually falls
into another deep state, are issues which we cannot address in this purely static
approach.
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Chapter 4

Deforming spherical p-spin
glassy states

In this chapter we study the evolution of spherical p-spin glassy states under a
deformation of the form ÔHs[σ]. The calculation of the Franz-Parisi potential in
the RS ansatz is first presented, and then its stability is studied by the replicon
mode. An extensive numerical study of the equations is then performed to charac-
terize the different behaviours at different values of s and Tg (the glass preparation
temperature).

4.1 Reference and constrained replicas
In order to study a glassy state under perturbation, we will proceed in a similar
spirit as in section 2.3, where the so-called potential method was described. The
main difference will be that the constrained replica σ(2) will now have an additional
term in its Hamiltonian, namely an s-spin perturbation term1.

We are interested in calculating the free energy of the glass under the Ô-
deformation, i.e. the potential:

VF P (qr) = − 1
βN

Ú
Dσ(1) exp

!
−βHÔ=0[σ(1)]

"
ZÔ=0

log
1

ZÔ

!
σ(1), qr

"2(Jp,åJs)

(4.1)

1The Ô strength of the perturbation is not to be confused with the coupling Ô in the potential
method.
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4 – Deforming spherical p-spin glassy states

where ZÔ

1
σ(1), qr

2
is the partition function of a constrained replica, which is under

a Hamiltonian Hp + ÔHs and has fixed overlap qr with σ(1):

ZÔ

1
σ(1), qr

2
=
Ú

Dσ(2) exp
A

−β

3
Hp

è
σ(2)

é
+ ÔHs

è
σ(2)

é4B
δ
1

qr − qσ(1),σ(2)

2
(4.2)

As explained in section 2.3, once we average over the equilibrium ensemble of
σ(1), we lose the dependence on the reference configuration, and we obtain the
partition function of the glass we are following under the deformation. It will
be useful to denote this average over the reference configuration by brackets, to
distinguish it from the one over the couplings (denoted by the overbar):

=
·
>

=
Ú

Dσ(1)
exp

1
−βHÔ=0[σ(1)]

2
ZÔ=0

· (4.3)

With this notation the Franz-Parisi potential (4.1) is just:

VF P (qr) = − 1
βN

=
log
1

ZÔ

!
σ(1), qr

"2>(Jp,åJs)

(4.4)

Making use of the replica trick, one may also write equation (4.1) as:

VF P (qr) = − 1
βN

lim
m→0

lim
n→0

∂n

Ú
Dσ(1) exp

!
−βHÔ=0[σ(1)]

"
Zm−1

Ô=0 Zn
Ô

!
σ(1), qr

"(Jp,åJs)

(4.5)
We have thus introduced not one but n constrained replicas, which will allow us

to probe possible replica symmetry breaking in the glass. The number of reference
replicas has also been upgraded to m, and the n constrained replicas are restricted
to having a fixed relative overlap qr with the first of the reference ones. One must
therefore compute the following replicated partition function:

Z(m,n) =
Ú

Dσ(1) exp
1

−βHÔ=0[σ(1)]
2

Zm−1
Ô=0 Zn

Ô (σ(1), qr) (4.6)

and take the appropriate limits.

4.2 The replicated partition function
If may make explicit the integration, expression 4.6 becomes:
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4.2 – The replicated partition function

Z(m,n) =
Ú

Dσ(a)
Ú

Dσ(α)exp

−β

mØ
a=1

Hp[σ(a)] − β

m+nØ
m+1

!
Hp[σ(α)] + ÔHs[σ(α)]

"(Jp,åJs)

m+nÙ
α=m+1

δ
1

qσ(1),σ(α) − qr

2
(4.7)

where the index a = 1, .., m runs over the m reference replicas and the index
α = m + 1, ..., n over the n constrained ones. The first step is to average over the
disorder (the couplings):

exp

β

 mØ
a=1

Hp[σ(a)] +
m+nØ

α=m+1
Hp[σ(α)] + Ô

m+nØ
α=m+1

Hs[σ(α)]




(Jp,åJs)

(4.8)

Giving the terms

Ù
i1<···<ip

Ú
dJi1···ip exp

−J2
i1···ip

Np−1

p! + Ji1···ipβ

 mØ
a=1

σ
(a)
i1

· · · σa
ip +

m+nØ
α=m+1

σ
(α)
i1

· · · σ
(α)
ip




(4.9)
and

Ù
i1<···<is

Ú
dJ̃i1···is exp

−J̃2
i1···is

Ns−1

s! + βÔJ̃i1···is

n+mØ
α=m+1

σα
i1

· · · σα
is

 (4.10)

These are simple Gaussian integrals.

Ignoring pre-factors and using that p!
q

i1<···<ip
∼
q

i1,···,ip for large N , we find
an expression where the sites are now uncoupled; the replicas are instead, through
their overlaps. The overlaps can be simply expressed in matrix form, by defining:

Qab = 1
N

NØ
i=1

σa
i σb

i a, b = 1, . . . m + n (4.11)

This (m + n) × (m + n) Q matrix can be split into three submatrices Q, R and
P .
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4 – Deforming spherical p-spin glassy states

(4.12)Q =
C

Q P
P T R

D

where Q is an m × m matrix containing the overlaps between the m reference
replicas, R is n × n and contains the overlaps of the n constrained replicas, and P
is an m × n matrix with the overlaps between each of the m reference replicas and
the n constrained ones.

The above Gaussian integrals yield:

exp

Nβ2

4

 mØ
a,b=1

Qp
ab +

m+nØ
α,β=m+1

Rp
αβ + 2

mØ
a=1

m+nØ
α=m+1

P p
aα + Ô2

m+nØ
α,β=m+1

Rs
αβ




(4.13)
Besides this we must evaluate the jacobian J(Q), resulting from the trans-

formation from integrating over the spins to integrating over the overlaps. That
is

J(Q) =
Ú

Dσ(a)
Ù
a≤b

δ

NQab −
Ø

i

σa
i σb

i

 (4.14)

This can be shown to give a contribution 1
2 Tr (log Q) [13], which can be ex-

pressed in terms of the submatrices Q, P and R by using the following property:

Tr (log Q) = Tr (log Q) + Tr
3

log
1

R − P T Q−1P
24

(4.15)

The integral can finally be written in the form:

Z(m,n) ∝
Ú

dQ exp NS(Q) (4.16)

And one can evaluate it in the N → ∞ limit by taking the saddle point. We
must therefore find Q, P , R which extremize

S(Q, P, R) = β2

4

 mØ
a=1

mØ
b=1

Qp
ab +

nØ
α=1

nØ
β=1

Rp
αβ + 2

mØ
a=1

nØ
α=1

P p
aα + Ô2

nØ
α=1

nØ
β=1

Rs
αβ


+ 1

2Tr (log Q) + 1
2Tr

3
log
1

R − P T Q−1P
24

(4.17)
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4.3 – Replica symmetric equations

4.3 Replica symmetric equations
To begin with, we must consider the parametrization of the matrices Q, P and R.
We consider the m reference replicas to be in the high-temperature phase, and take
a replica-symmetric ansatz Qab = δab, where the 1 on the diagonal is due to the
spherical constraint and the replicas have zero overlap among each other. Strictly
speaking, in the interval TK < T < Td the phase space is not ergodic, but because
there is an exponential number of states the probability distribution of the overlap
is trivial P (q) = δ(q) [3]. On the other hand, P will just be parametrized by qr,
which measures the relative overlap with the reference replica. Therefore we have:

Q = δab Paα = δa,1qr (4.18)

For the matrix R we will at first take a replica symmetric ansatz parametrized
by q, that is Rαβ = δαβ + (1 − δαβ)q. Importantly, the previous ansatz for Q and
P will remain unchanged even when replica symmetry breaking (RSB) is consid-
ered for R, given that the reference system is completely independent from the
constrained one.

Using these ansatz, the expression for the action S becomes:

S(m,n)(Q, P, R) = β2

4

è
m + n(1 + Ô2) + n(n − 1)(qp + Ô2qs) + 2nqp

r

é
+ 1

2

n log
1

1 − q2
r

2
+ (n − 1) log

3
1 − q

1 − q2
r

4
+ log

A
1 + (n − 1)q − q2

r

1 − q2
r

B (4.19)

We now take the appopiate limits to find the Franz-Parisi potential VF P , given
by2:

(4.20)
VF P = − 1

β
lim

m→0
lim
n→0

∂

∂n
S(m,n)(q, qr, qg)

= − 1
2β

I
−β2

2

1
qp + Ô2qs

2
+ β2qp

r + β2

2 (1 + Ô2) + log(1 − q) + q − q2
r

1 − q

J

2In [3], the authors substract the equilibrium free energy and consider VFP − f(T ); they
therefore do not have the term −β4 (paramagnetic free energy) in the final expression of the
potential.
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4 – Deforming spherical p-spin glassy states

We now look for the saddle point equations for q and qr. Deriving with respect
to q and qr we find

−2β
∂VF P

∂q
= q − q2

r

(1 − q)2 − β2

2

1
pqp−1 + Ô2sqs−1

2
= 0 (4.21)

−2β
∂VF P

∂qr
= β2pqp−1

r − 2 qr

1 − q
= 0 (4.22)

Note that at Ô = 0, if we look for a solution with qr = q we find that both
parameters obey the same equation, namely

β2

2 pqp−1 = q

1 − q

β2

2 pqp−1
r = qr

1 − qr
(4.23)

This equation has only the trivial solution qr = q = 0 at high temperatures,
but if we lower the temperature there appears a non-trivial solution qr = q > 0 at
the so-called dynamical transition temperature Td.

Choosing TK ≤ T ≤ Td , our starting point will thus be Ô = 0, qr = q > 0. Once
we apply a deformation (Ô Ó= 0) we will need to find q and qr by solving equations
(4.21) and (4.22) self-consistently. We may write equations (4.21) and (4.22) in
the following form:

qr = β2

2 pqp−1
r (1 − q) ≡ f(qr, q) (4.24)

q = q2
r + (1 − q)2 β2

2

è
pqp−1 + Ô2sqs−1

é
≡ g(qr, q) (4.25)

which will be more convenient.

4.3.1 Internal energy
We may also compute the internal energy of the glass in the replica symmetric
phase. Here we need to be careful to distinguish the reference and constrained
replicas. Indeed, to reach expression (4.20) we have considered that both the
reference and the slave replicas are at the same inverse temperature β. In the
original work by Franz and Parisi [3], the reference replicas are at equilibrium at
βÍ and the constrained replicas are instead at an inverse temperature β which can
be varied. The corresponding potential is then:

VF P (qr, β, βÍ) = − 1
βN

=
log
1

ZÔ

!
σ(1), qr

"2>(Jp,åJs)

(4.26)
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where now the reference configuration is at an inverse temperature βÍ, so the av-
erage é·ê is in this case:

=
·
>

=
Ú

Dσ(1)
exp

1
−βÍHÔ=0[σ(1)]

2
ZÔ=0(βÍ) · (4.27)

Proceeding in the same way as shown previously, one has that this more general
potential is given by 3:

(4.28)VF P (qr, β, βÍ) = − 1
2β

I
−β2

2 (qp + Ô2qs) + ββÍqp
r + β2

2 (1 + Ô2)
J

To compute the internal energy under the deformation, one may simply consider
e = ∂

∂β (βVF P ), as this gives the thermal average of the energy of the constrained
replica subsequently averaged over the reference configuration:

∂

∂β
(βVF P ) = 1

N

=s Dσ(2)HÔ[σ(2)] exp
!
−βHÔ[σ(2)]

"
δ
1

qr − qσ(1),σ(2)

2
ZÔ(σ(1), qr)

>(Jp,åJs)

(4.29)

Taking this derivative, one finds

(4.30)e = −1
2

î
β(1 + Ô2) + βÍqp

r − β(qp + Ô2qs)
ï

Here we do not vary the temperature of the state we are following , which is
always equal to the temperature of the equilibrium glass, so β = βÍ and one can
write:

(4.31)e = −1
2

î
β(1 + Ô2) + βqp

r − β(qp + Ô2qs)
ï

We can check that at Ô = 0, q = qr = qg, one simply recovers the paramagnetic
energy epara:

e|Ô=0 = −1
2
!
β + βqg − βqg

"
= −β

2 = epara (4.32)

3q is to be determined at the saddle point.

27



4 – Deforming spherical p-spin glassy states

4.4 Replica symmetry breaking
We now consider again the action S, equation (4.17), in the limit m → 0:

(4.33)S(Q, P, R) = β2

4

 nØ
α,β=1

Rp
αβ + 2nqp

r + Ô2
nØ

αβ=1
Rs

αβ

+ 1
2 ln det Q

The determinant of Q can be split into two contributions, where the first van-
ishes and the second is det(R̃), where R̃ is defined as:

R̃ = R − qrqT
r (4.34)

If we then consider full replica symmetry breaking ansatz, the matrix R̃ will
be a Parisi matrix parametrized by {1 − q2

r , q(x) − q2
r}. The entropic term in the

action, i.e. the one coming from the determinant, can be computed using the
general formula [20]:

lim
n→0

∂n

5
1
2 ln det R̃

6
= 1

2

ln
!
1 − éqê

"
+ q(0) − q2

r

(1 − éqê) −
Ú 1

0
dy

1
y2 ln

A
λ(y)!

1 − éqê
"B


(4.35)
where the average é·ê denotes the integral over the [0, 1] domain:

é·ê =
Ú 1

0
dx · (4.36)

and λ(y) is given by:

λ(y) = 1 − xq(y) −
Ú 1

y

dzq(z) (4.37)

On the other hand, the energy term is given by the sum of the elements of the
Hadamard power of matrix R. Because of the algebra of Parisi matrices, the p-th
Hadamard power is also a Parisi matrix parametrized by {1, q(x)p}. In terms of
the set of parameters {m, q}, the full expression for discrete k is:

nØ
αβ=1

Rp
αβ = n

nØ
β=1

Rp
1β

= n
è
1 + qp

k(mk − 1) + qp
k−1(mk−1 − mk) + · · · + qp

0(n − m0)
é

(4.38)
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Once we take the continous limit (k → ∞), we replace the differences mi−1 −mi

by differentials −dx, and thus the previous sum becomes an integral:

nØ
αβ=1

Rp
αβ = n

C
1 −

Ú 1

n

dxqp(x)
D

Ä n

C
1 −

Ú 1

0
dxqp(x)

D
(4.39)

We have finally reached the expression for the action in the appropriate limit,
which we will then have to extremize with respect to to the parameters {q(x), qr}.

lim
n→0

∂nS
#
q(x), qr

$
= β2

4

A1 −
Ú 1

0
dxqp(x)

B
+ 2qp

r + Ô2

A
1 −

Ú 1

0
dxqs(x)

B
+ 1

2

ln
!
1 − éqê

"
+ q(0) − q2

r

(1 − éqê) −
Ú 1

0
dy

1
y2 ln

A
λ(y)!

1 − éqê
"B
 (4.40)

We firstly consider the extremum with respect to qr, i.e.

d

dqr
lim
n→0

∂nS
#
q(x), q

$
= 0 (4.41)

After some manipulations this derivative yields:

qr = pβ2

2 qr
p−1(1 − éqê) (4.42)

which is consistent with the equation (4.23) we had obtained previously for qr.

On the other hand, if we consider the variational derivative with respect to
q(x), that is

δ

δq(x) lim
n→0

∂nS
#
q(x), q

$
= 0 (4.43)

after some calculations we reach the equation:

q(0) − qr
2

(1 − éqê)2 +
Ú x

0
dy

q̇(y)
λ2(y) = β2

2

1
pqp−1(x) + Ô2sqs−1(x)

2
(4.44)

As a check of consistency, if in the previous equation we look for a replica
symmetric solution (q(x) = q constant) then we should recover the RS equation
for q (4.25) . This is indeed the case.

Taking once the derivative of (4.44), we find

q̇(x)
λ2(x) = β2

2

è
p(p − 1)qp−2(x) + Ô2s(s − 1)qs−2(x)

é
q̇(x) (4.45)
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4 – Deforming spherical p-spin glassy states

In the RS phase, this equation is fulfilled immediately as q̇(x) = 0. Otherwise,
the other term must vanish. In fact, the transition from one situation to the other
is signalled by the replicon eigenvalue [21]:

λR = −1 + β2

2 λ2(x)
è
p(p − 1)qp−2(x) + Ô2s(s − 1)qs−2(x)

é ---
q(x)=q∗

(4.46)

If we increase the perturbation in the RS phase, at a certain point (Ô,q), the
eigenvalue may cross 0 (depending on the contol parameters and on p and s) and
the RS solution may become unstable. 4

If we now take another derivative in equation 4.44,we can find the breaking
point x∗:

x∗ = λ3(x)β2

4

è
p(p − 1)(p − 2)qp−3(x) + Ô2s(s − 1)(s − 2)qs−3(x)

é ---
q(x)=q∗

(4.47)

Finally, taking one more derivative we can find the value of the derivative q̇(x∗)
at the breaking point. One finds:

q̇(x∗) = 4
β2

è
λ3(x∗)g2(x∗) − 3λ2(x∗)x∗g1(x∗)

é−1
(4.48)

where we have called g1(x) and g2(x) the functions:

g1(x) = p(p − 1)(p − 2)qp−3(x) + Ô2s(s − 1)(s − 2)qs−3(x) (4.49)
g2(x) = p(p − 1)(p − 2)(p − 3)qp−4 + Ô2s(s − 1)(s − 2)(s − 3)qs−4(x) (4.50)

The function λ(x) evaluated at the breaking point is just:

λ(x∗) = 1 − x∗q(x∗) −
Ú 1

x∗
dyq(y) = 1 − q∗ (4.51)

4In general, this replicon eigenvalue may be calculated directly from the stability matrix
Mab;cd = δ2S(Q)

δQabδQcd

---
Q=Q∗

evaluated at Q∗
ab, the RS saddle point solution. This eigenvalue λR

is characterised by an eigenvector of the form δRQab :
q

b(Ó=a) δRQab = 0
q

a(Ó=b) δRQab,
corresponding to a subspace of fluctuations called the replicon subspace [22].
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4.5 Numerical solution of equations

4.5.1 Procedure and main results
Our procedure for studying glassy states is as follows. First we select a tempera-
ture Tg belonging to the interval [TK , Td]. We know that in this range of temper-
atures the phase space is composed of an exponential (in system size) number of
metastable glassy states. Solving the polynomial equation (4.23):

qg = β2

2 pqg
p−1(1 − qg) (4.52)

we may compute the sef-overlap qg of the undeformed glass prepared at tempera-
ture Tg. We thus select the secondary minimum of the Franz-Parisi potential (see
section 2.3). Our initial condition is therefore qr = q = qg.

In terms of the analogy with structural glasses or hard spheres, lower values
of Tg may be reached by slower and slower annnealing (when the system is finite-
dimensional). Glasses prepared at lower values of Tg will be more and more stable,
as reflected in a higher value of the self-overlap 5. We will therefore consider glasses
selected at different values of Tg ∈ [TK , Td], and study their behaviour under de-
formmations of the form Hp+Ôs = Hp[σ] + ÔHs[σ]. Depending on the value of Tg

and the nature of the deformation s, we are presented with different scenarios. We
will fix p = 3 in the following for simplicity.

The replica symmetric (RS) calculation tells us in all cases that the glass may
be deformed up to a yield value (ÔY ), a spinodal point where the order parameter
(the relative overlap qr) jumps with a square root singularity. This spinodal point
corresponds to the point where the glass yields. However, depending on the value
of s, we find that before reaching the yield value the RS solution may become
unstable, corresponding to the breaking of the original well-defined glass basin
into sub-basins. This transition to an RSB phase witihin a glass is also called the
Gardner transition. Depending on the slope of the overlap function at the breaking
point, the glass basin may develop a 1-RSB structure or full-RSB structure. Thus
the basin may break into disconnected clusters due to the adding of the s-spin
constraints. Whether the behaviour predicted by the unstable RS computation
will be altered when performing the full- (or k-) RSB calculation, i.e. whether the
yielding transition in the broken phase will show the same behaviour, remains to
be addressed.

5Regarding the height of the energy barrier to nucleation of the liquid phase, this is always
infinite as we are in mean-field (fully-connected model).

31



4 – Deforming spherical p-spin glassy states

4.5.2 Replica symmetric (elastic) yielding (s=2)
For low values of s, the replica symmetric calculation is stable all the way up to
yielding. We may call this elastic yielding (there is no plastic regime before the
material yields). Figure 4.1 shows qr and q under the s = 2 deformation; they both
disappear with a square root singularity at the spinodal point.

(a) Relative overlap with reference
qr, s = 2 deformation

(b) Internal overlap q, s = 2 defor-
mation

Figure 4.1: Evolution of qr and q for p = 3, s = 2

In the following figure 4.2 we see the evolution of the replicon eigenvalue λR.
We see it stays negative all the way up to yielding, signaling that the RS phase is
stable during the whole deformation.

Figure 4.2: Replicon eigenvalue under s = 2 deformation. The RS phase is stable
up to yielding

To gain insight into what is happening in the replica-symmetic regime, we may
study how the internal energy is accumulated in the glass as the deformation is
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increased. Following the analogy with structural glasses and real amorphous solids,
we may think of the s-spin perturbation as the equivalent of a strain, which causes
the accumulation of additional internal energy in the glass. In fact what we plot in
figure 4.3 is not precisely equation (4.31). We remove the first term, which is due
simply to the change in variance or stregnth of the couplings. When we do this we
are isolating the increase in energy due to the deformation, as we are comparing
the energy accumulated in the glass with respect to that which would appear in a
paramagnet/fluid subject to the same deformation. We call this quantity eexcess,
and it is simply equal to β

2
!
qp + Ô2qs − qp

r

"
.

Figure 4.3: Excess energy of the glass under s = 2 deformation

We see that for all values of Tg, that is irrespectively of the degree of anneal-
ing, the glasses respond elastically to the deformation. They all follow the same
approximately parabolic curve, and yield at different energies depending on the
degree of annealing (glasses prepared at low Tg may be deformed further).

4.5.3 Limit case (s = 3)
We now consider the case s = 3 = p. In this case the random couplings constituting
the deformation are of the same nature as the couplings of the orignal system.
Thus an s = 3 deformation amounts to randomly perturbing the couplings, i.e.
Jijk → Jijk +Ô åJijk. This should not be confused with state following under cooling.
Indeed if we decrease the temperature, we increase β and so it is equivalent to
increasing the strength or variance of the couplings. However this is fundamentally
different from randomly perturbing the couplings, in which case the variance is also
increased, but the couplings are being deformed randomly at the same time. We
should thus expect a glassy state which was at equilibrium in the original sample
to become unstable at a critical value of the deformation. In figure 4.4, q and qr

are plotted. As in the previous case they display a spinodal point where they have
a square root singularity.
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4 – Deforming spherical p-spin glassy states

(a) Relative overlap with reference
qr, s = 3 deformation

(b) Internal overlap q, s = 3 defor-
mation

Figure 4.4: Evolution of qr and q for p = 3, s = 3

The deformation s = 3 is interesting because it turns out to be the upper
limit of RS-stable yielding. As shown in figure 4.5, the replicon eigenvalue λR is 0
precisely at the yielding point. Although not shown here, this behaviour was also
observed when studying the case p = s = 4. This points to a symmetry in the
action S, which makes both the longitudinal and replicon modes coincide at the
yielding point. However, we have not explored this point further and leave it for
future research.

Figure 4.5: Replicon value under s = 3 = p deformation. λR = 0 precisely at the
yielding point ÔY .

Finally, figure 4.6 shows the excess energy for s = 3. The system still behaves
elastically, but the curves begin to separate, well-annealed glasses (lower Tg) having
larger elastic moduli.
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4.5 – Numerical solution of equations

Figure 4.6: Excess energy of the glass under s = 3 deformation

4.5.4 RSB before yielding (s > 3)
We now explore larger values of s, ranging from 4 to 10. For these higher values of
s we find that the RS phase becomes unstable prior to yielding. Figure 4.7 shows
the typical behaviour of qr and q (in particular what is shown is the case s = 6);
the dashed line is the continuation of the RS solution in the unstable region. This
now unstable RS solution continues to yield at a spinodal point, where the order
parameters show again a square root singularity.

(a) Relative overlap with reference
qr, s = 6 deformation

(b) Internal overlap q, s = 6 defor-
mation

Figure 4.7: Evolution of qr and q for p = 3, s = 6

We know the RS phase becomes unstable by studying the replicon eigenvalue
λR as the glass is deformed (equation 5.65). This is shown in the following figure
4.8 (again for the case s = 6). We see that it becomes positive at a value of the
perturbation which we call ÔG (Gardner transition).
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4 – Deforming spherical p-spin glassy states

Figure 4.8: Replicon eigenvalue under s = 6 deformation

We now consider the excess energy of the glass under the deformation. The
now unstable RS computation tells us that the energy overshoots, which is precisely
what is observed also in the shear stress when following hard sphere glasses under
strain [4]. The system first deforms in an elastic way, up to the Gardner transition
(ÔG), where the deformation induces an RSB transition in the glass. Beyond this
point one expects a plastic response characterized by soft modes and avalanches.
In the full-RSB case, in particular, the system becomes marginally stable. We thus
expect that in the RSB phase the response becomes jerky, and the system becomes
unstable against collective rearrangements, as opposed to a simple elastic response.

Figure 4.9: Excess energy of the glass under s = 6 deformation

In the different cases of s ranging from 4 to 10, one may use equation (5.70) to
calculate the associated breaking point x∗. Figure 4.10 shows the different values
of x∗ obtained for various values of Tg and s. We find that for Tg → Td, x∗ always
tends to 0.5. The breaking point at the dynamical temperature Td should be equal
to the parameter exponent λ of the p-spin, which relates the dynamical exponents
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a and b of the α and β regimes as one approaches Td from above 6. x∗ = 0.5 is
indeed the expected result for p = 3 [23]. In the other cases, the breaking point (via
the associated parameter exponent λ), provides information on the critical slowing
down of the dynamics within the glassy state close to the Gardner transition, where
the glass splits into sub-basins with different associated relaxational timescales.

Figure 4.10: Breaking point x∗ for increasing values of s. Near Td, x∗ = 0.5.

Finally, by studying the slope at the breaking point (equation 4.48), one may
characterize the nature of the RSB transition. Indeed we know that a positive
slope q̇(x∗) > 0 signals a transition to full RSB. If instead it is negative, the flat
plateau q(x) = qRS ∀x develops a step (discontinuity), and the system is 1-RSB.
The results are summarized in figure 4.11.

6The relation is the following: λ = Γ2(1−a)
Γ(1−a) = Γ2(1+b)

Γ(1+2b) , equal to 0.5 for the p = 3 spherical
p-spin.
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4 – Deforming spherical p-spin glassy states

Figure 4.11: Slope at breaking point. As s is increased to 9,10, we find a Gardner
transition to fullRSB (slope becomes positive).

For s = 9, 10, we see that a full RSB phase may appear as we deform the glass.
Interestingly, this only occurs for glasses prepared at a temperature Tg < T∗ (figure
4.12). Thus for values of Tg too close to the dynamical temperature, the system
doesn’t develop a full RSB phase, at least at first. We do not know whether in the
other cases there is a transition to full-RSB at some higher value of the deformation
beyond the discrete replica symmetry breaking point.

Figure 4.12: Plot of breaking point slope for s = 10 (near Td), showing temperature
T∗ < Td below which there is a transition to full RSB.

To summarise, we have found that, having fixed p = 3 and varying the s-spin
deformation, the glass may yield in different ways. For low values of s (<3), the
yielding takes place within the initial purely elastic regime, and thus the system
behaves in a regular manner up to the spinodal point. On the other hand, when
higher (s > 3) values are considered, the deformation is capable of inducing an
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4.5 – Numerical solution of equations

RSB transition, thus signaling the transition from an elastic to a plastic regime,
where the free energy landscape of the original glass basin which the system ex-
plores develops a complicated structure of sub-basins separated by barriers (of all
scales in the full-RSB case). Thus although the RS calculation can be continued
up to yielding, in this regime we expect an irregular behaviour characterized by
avalanches and soft modes.
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Chapter 5

Deforming Ising p-spin
glassy states

We now turn to the case of the p-spin with discrete Ising variables. We may perform
the same theoretical analysis as in the spherical case. Finally we report the result
of Monte Carlo simulations of Ising spins on a fullly-connected lattice in order to
test some of the analytical predictions.

5.1 Analytical approach
5.1.1 The replicated partition function
We now consider the p-spin Hamiltonian with Ising spins, that is:

Hp[σ] = −
Ø

i1<···<ip

Ji1···ipσi1 · · · σip (5.1)

where the spins are now discrete Ising spins σi = ±1. The couplings are, as in the
spherical case, Gaussian random variables with zero mean and variance:

J2
i1···ip = p!

2Np−1 (5.2)

In order to carry out the calculation of the Franz-Parisi potential, we introduce
m reference replicas and n constrained replicas. We will want to consider the
replicated partition function averaged over the quenched disorder:

Zm

=
Zn

Ô

>
(5.3)
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5 – Deforming Ising p-spin glassy states

where the brackets denote the average over the reference replica. We will in the
Ising case take a slightly different approach to the one taken in the previous section
for the spherical model. In fact the two approaches are perfectly equivalent thanks
to the simple structure of states in the p-spin model in the region T ∈ [TK , Td] 1.

We introduce the same notation as in the spherical case (4.12), dividing the
total overlap matrix q into the sub-matrices Q (overlap of the reference replicas
with themselves), P (relative overlap between reference and constrained replicas)
and R (overlap of the constrained replicas with themselves). However, instead of
considering the ansatz Q = δab, we will instead take the m reference replicas to be
in the same state, i.e. Qab = δab + (1 − δab)qg

2. Correspondingly, the constrained
replicas will have a fixed overlap qr with respect to the reference ones, that is

1
N

σa∈[1,m] · σb∈[m+1,m+n] = qr (5.4)

and so instead of the ansatz Paα = δa,1qr we take a matrix Paα = qr ∀a, α. The
matrix q then takes the form:

(5.5)q =



1 . . . qg qr . . . qr

... . . . ...
... . . . ...

qg . . . 1 qr . . . qr

qr . . . qr

... . . . ... R
qr . . . qr


To find the Franz-Parisi potential, we know that by construction:

(5.6)lim
n →0

∂nEJ

log
A

Zm

=
Zn

Ô

>B ----
m →1

= −βVF P

where brackets denote the average over the reference replica. To find the expecta-
tion value over the couplings, one can use once more the replica trick and write:

lim
n →0

∂nEJ

log
A

Zm

=
Zn

Ô

>B ----
m →1

= lim
n→0

lim
s→0

∂n∂sEJ

AZm

=
Zn

Ô

>Bs
 ----

m→1

(5.7)

1In particular, the quenched and annealed free energy coincide in the interval T ∈ [TK , Td].
2Because we subsequently take m→ 1, qg will in the end be irrelevant.
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One may then average over the couplings and express the summation over the
spins in terms of the replicated overlap matrix q̂, which is an (s × (m + n)) × (s ×
(m + n)) block matrix (as an example s = 3 is shown):

A
Zm

=
Zn

Ô

>Bs

∝
Ú

dq̂ exp
1

NŜ(q̂)
2

(5.8)

q̂ =


q 0 0
0 q 0
0 0 q

 (5.9)

Fortunately, there is no need to consider this full replicated matrix, as the s
blocks are completely uncorrelated (their mutual overlaps are 0) in the temperature
region of interest T ∈ [TK , Td]. This means we can factorize the total action
Ŝ(q̂) into the contribution from each single block, and finally find the Franz-Parisi
potential taking the limits n → 0 and m → 1:

(5.10)
VF P = − 1

βN
lim
n→0

lim
s→0

∂n∂s

3Ú
dq exp

1
NS(q)

24s ----
m→1

= − 1
βN

lim
n→0

∂n

Ú
dq exp

1
NS(q)

2----
m→1

To proceed with the calculation of Zm

=
Zn

Ô

>
, we introduce an integral rep-

resentation of the Dirac function (neglecting pre-factors), integrating over a new
auxililary matrix λ:

δ(σ(a) · σ(b) − Nqab) =
Ú Ù

a<b

dλab

 exp

Ø
a<b

λab(Nqab − σ(a) · σ(b))


=
Ú Ù

a<b

dλab

 exp

1
2
Ø
a Ó=b

λab(Nqab − σ(a) · σ(b))


(5.11)

this will constitute the entropic term in the final action S. As regards the inter-
action term, the calculation is done in the same way as in the spherical case, and
gives the same contribution:
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5 – Deforming Ising p-spin glassy states

Zm

=
Zn

Ô

>
=
Ø
{σa}

Ú
dλ

Ú
dq exp

N

2
Ø
a Ó=b

λabqab − 1
2
Ø
aÓ=b

λabσ(a) · σ(b)


exp

Nβ2

4

 Ø
a,b∈[1,m]

Qp
ab +

nØ
α=1

nØ
β=1

Rp
αβ + 2

mØ
a=1

nØ
α=1

P p
aα + Ô2

nØ
α=1

nØ
β=1

Rs
αβ




(5.12)

It is straightforward to see that the sum
q

{σa} over n+m replica configurations
can be factorized into a product of N sums over n + m single Ising spins, that is:

Ø
{σa}

exp

−1
2
Ø
a Ó=b

λabσ(a) · σ(b)

 = exp

N log

 Ø
σ(1)···σ(n+m)

e
− 1

2

q
a Ó=b

λabσ(a)·σ(b)




(5.13)
Finally, we have the following expression for the replicated partition function

averaged over the disorder:

Zm

=
Zn

Ô

>
=
ÚÚ

dλdq exp
1

NS(q, λ)
2

(5.14)

Where the following action S(q, λ) will have to be evaluated at the correspond-
ing saddle point values for λ and q (the first term is obtained taking into account
that the diagonal terms qaa are equal to one):

(5.15)

S(q, λ) = 1
2

m+nØ
a,b=1

λabqab + β2

4

 Ø
a,b∈[1,m]

Qp
ab +

nØ
α=1

nØ
β=1

Rp
αβ + 2

mØ
a=1

nØ
α=1

P p
aα

+ Ô2
nØ

α=1

nØ
β=1

Rs
αβ

+log

 Ø
σ(1)···σ(n+m)

exp

−1
2
Ø
a Ó=b

λabσ(a) · σ(b)




5.1.2 Entropic term
The calculation will be carried out in the general full RSB setting, and then the
replica symmetric equations will be extracted as a particular case. We will thus
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consider the two matrices q and λ parametrized by

q =



1 . . . qg qr . . . qr

... . . . ...
... . . . ...

qg . . . 1 qr . . . qr

qr . . . qr 1 . . . q(x)
... . . . ...

... . . . ...
qr . . . qr q(x) . . . 1


λ =



λ0 . . . λg λp . . . λp

... . . . ...
... . . . ...

λg . . . λ0 λp . . . λp

λp . . . λp λd . . . λ(x)
... . . . ...

... . . . ...
λp . . . λp λ(x) . . . λd


(5.16)

In order to compute the entropic contribution, it is very useful to introduce the
following identity [24][25]:

(5.17)

log

 Ø
σ(1)···σ(n+m)

exp

−1
2
Ø
a Ó=b

λabσ(a)σ(b)




= log

 Ø
σ(1)···σ(n+m)

exp

−1
2

m+nØ
a,b=1

λab
∂2

∂ha∂hb

m+nÙ
c=1

exp (hcσc)
----
h=0


= log

exp

−1
2

m+nØ
a,b=1

λab
∂2

∂ha∂hb

m+nÙ
c=1

2 cosh (hc)
----
h=0


We can now take into account the parametrized structure of λ and single out

the various contributions to the differential operator:

exp

−1
2

m+nØ
a,b=1

λab
∂2

∂ha∂hb

m+nÙ
c=1

2 cosh (hc)
----
h=0

=

exp

−λp

 mØ
a=1

∂

∂ha

m+nØ
b=1

∂

∂hb


 exp

−1
2

mØ
a,b=1

λab
∂2

∂ha∂hb

 mÙ
c=1

2 cosh (hc)
----
h=0ü ûú ý

A

exp

−1
2

m+nØ
a,b=m+1

λab
∂2

∂ha∂hb

 m+nÙ
c=m+1

2 cosh (hc)
----
h=0ü ûú ý

B

(5.18)
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The first term A, which only involves the section corresponding to reference
replicas, is straightforward to compute. To do this we introduce the following
identity, which can be proven by considering the Taylor expansion:

(5.19)exp
C

ω

2
∂2

∂h2

D
f(h) =

Ú ∞

−∞

dz√
2πω

e
−z2
(2ω) f(h − z)

≡ γω õ f(h)

Using this property we can write:

(5.20)

A = exp

−λg

2

 mØ
a=1

∂

∂ha

2

 mÙ

c=1
e

− 1
2 (λ0−λg) ∂2

∂h2
c 2 cosh (hc)

----
h=0



= exp

−λg

2

 mØ
a=1

∂

∂ha

2
 mÙ

c=1
gg(1, hc)

----
h=0

where, for reasons that will become clear in the following section, we have defined
the function:

(5.21)gg(1, hc) = γ−(λ0−λg) ∗ 2 cosh (hc)

At this point we introduce another identity. We have that:

(5.22)

 nØ
a=1

∂

∂h

k

R(h1, . . . , hk) = ∂k

∂hk
R(h, . . . , h) ∀k

In particular, applying this identity for k = 1, we can write

(5.23)A = exp

−λg

2
∂2

∂
!
h(1)

"2

gm(1, h(1))
----
h(1)=0

Parisi flow equation [26]

We now turn to the calculation of the B term in equation 5.18, which involves the
constrained replicas and thus the full RSB part of the matrix λ:

B = exp

−1
2

m+nØ
a,b=1

λab
∂2

∂ha∂hb

 m+nÙ
c=m+1

2 cosh (hc)

 (5.24)
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This is indeed more complicated, but we can exploit the block-structure of the
matrix (figure 5.1) and iterate the procedure we used for calculating the previous
term A.

(a) Block structure of matrix (b) k-RSB

Figure 5.1: Block structure and values qk and mk in the k-RSB ansatz.

We start from the innermost (diagonal) element of the matrix λ and proceed
outwards. Therefore, calling λd the diagonal element and λk the value in the
innermost block, we have the following initial condition for g(x, h):

(5.25)

g(1, h) = g(mk, h)

= exp
C

−1
2 (λd − λk) ∂2

∂h2

D !
2 cosh (hc)

"
= γ−(λd−λk) õ

!
2 cosh (hc)

"
We then apply the next term corresponding to {qk−1, mk−1} and define g(mk−1, h)

as:

g(mk−1, h) = exp
C

−1
2 (λk − λk−1) ∂2

∂h2

D
gmk−1(1, h) (5.26)

We can then iterate this procedure in order to find a differential equation for
g(x, h). We have in general that:

g(mi, h) = exp
C

−1
2 (λi+1 − λi)

∂2

∂h2

D
g

mi
mi+1 (mi+1, h) (5.27)

We now go to the full RSB continous limit, where we can write:

mi+1 = mi + dx λi+1 − λi = λ̇(x) (5.28)
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substituting this into (5.27), we obtain the equation:

g(x, h) = exp
C

− λ̇(x)
2 dx

∂2

∂h2

D
g

x
x+dx (x + dx, h)

∼

C
1 − λ̇(x)

2 dx
∂2

∂h2

Dexp
A3

1 − dx

x

4
log
!
g(x + dx, h)

"B
∼

C
1 − λ̇(x)

2 dx
∂2

∂h2

DC
g(x, h)

3
1 − dx

x
log g(x, h) + dx

∂

∂x
log g(x, h)

4D

∼ g(x, h) − λ̇(x)
2 dx

∂2

∂h2 g − dx

x
g log g + dxg

∂

∂x
log g

(5.29)

We thus have the following differential equation for g(x, h):

g
∂

∂x
log g = λ̇(x)

2
∂2g

∂h2 + 1
x

g log g (5.30)

It will be simpler to define the following function

f(x, h) = 1
x

log
!
g(x, h)

"
g(x, h) = exp

!
xf(x, h)

"
(5.31)

In terms of which the differential equation (5.30) becomes:

∂f

∂x
= λ̇(x)

2

C
∂2f

∂h2 + x

3
∂f

∂h

42
D

(5.32)

This is the Parisi flow equation [26], which was first obtained in the context of
the Sherrington-Kirkpatrick model. The initial condition for f(x, h), on the other
hand, is now:

f(1, h) = log
!
g(1, h)

"
= log

1
γ−(λd−λ(1)) õ 2 cosh h

2
(5.33)

We can write finally the expression for B, in terms of the last convolution
(corresponding to n, m0). We also have to bear in mind that in the full RSB
scheme m0 → n → 0:

B = γ−λ(0) ∗ exp
5

n

m0
m0f(m0, h)

6
= γ−λ(0) ∗ exp

#
nf(n, h)

$
(5.34)

Now that we have A and B, we can go back to the full equation (5.18) and
replace them by our new expressions:
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(5.35)exp

−1
2

m+nØ
a,b=1

λab
∂2

∂ha∂hb

m+nÙ
c =1

2 cosh (hc)
----
h =0

= exp

−λg

2
∂2

∂
!
h(1)

"2 − λ(0)
2

∂2

∂
!
h(2)

"2 − λp
∂2

∂h(1)∂h(2)

 gm
g (1, h(1)) exp

1
nf(n, h(2))

2----
h=0

It will be convenient to introduce a two by two matrix Λ defined as:

Λ =
5

−λg −λp

−λp −λ(0)

6
(5.36)

We can then write equation 5.35 as:

exp

1
2

2Ø
i,j=1

Λij
∂2

∂h(i)∂h(j)

gm
g (1, h(1)) exp

1
nf(n, h(2))

2----
h(1)=h(2)=0

(5.37)

In order to compute the Franz-Parisi potential we will be interested in the limit
of constrained replicas going to zero, i.e. n → 0. We can thus expand the last
exponential, and we get

(5.38)
exp

1
2

2Ø
i,j=1

Λij
∂2

∂h(i)∂h(j)

gm
g (1, h(1)) exp

1
nf(n, h(2))

2

∼ exp

1
2

2Ø
i,j=1

Λij
∂2

∂h(i)∂h(j)

gm
g (1, h(1))

1
1 + nf(0, h(2))

2 ----
h(1)=h(2)=0

Noticing that in this sum of two terms the first one only depends on h(1), and
is thus only affected by the first element of Λij , we can write (5.38) as:

(5.39)
exp

−λg

2
∂2

∂
!
h(1)

"2

gm
g (1, h(1))

----
h(1) =0

+ n exp

1
2

2Ø
i,j=1

Λij
∂2

∂h(1)∂h(2)

f(0, h(2))gm
g (1, h(1))

----
h(1) =h(2)=0

We now need to take the logarithm of this expression in order to obtain the full
entropic term in the action S (equation 5.15):
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log

 Ø
σ(1)···σ(n+m)

exp

−1
2
Ø
aÓ=b

λabσ(a)σ(b)




= log (N ) + n

N
exp

1
2

2Ø
i,j=1

Λij
∂2

∂h(1)∂h(2)

f(0, h(2))gm
g (1, h(1))

----
h(1)=h(2)=0

(5.40)

where we have defined N as:

N = exp

−λg

2
∂2

∂
!
h(1)

"2

gm
g (1, h(1))

----
h(1)=0

(5.41)

Product term

We still have to consider the fist term in the action S (equation 5.15), which we
can also write as a trace, that is:

(5.42)1
2

m+nØ
a,b =1

λabqab = 1
2Tr

1
qλ
2

We take directly the case m = 1. We thus have to find the trace of the product
of two matrices of the form

q =


1 . . . qr . . .
... 1 q(x) . . .

qr q(x) . . . q(x)
... q(x) . . . 1

 λ =


λ0 . . . λp . . .
... λd λ(x) . . .

λp λ(x) . . . λ(x)
... λ(x) . . . λd

 (5.43)

We can decompose the trace into the part coming from the full RSB parts and
the rest, that is:

(5.44)Tr
1

qλ
2

= λ0 + 2nqrλp + Tr
!
DDÍ"

where D and DÍ are two parisi matrices parametrized respectively by {1, q(x)} and
{λd, λ(x)}. It is easy to see, taking first the k-RSB limit and then considering the
continous limit, that:

(5.45)Tr
!
DDÍ" = n

C
λd −

Ú 1

0
dxq(x)λ(x)

D
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5.1.3 Saddle point equations
We can now write the full expression for the action S, for m = 1 and linear order
in n. However, we will add two new terms to equation (5.15), in order to enforce
the differential equation and the initial condition for f(x, h), which are:

∂f
∂x = λ̇(x)

2

5
∂2f
∂h2 + x

1
∂f
∂h

22
6

f(1, h) = log
1

γ−(λd−λ(1)) ∗ 2 cosh h
2

We will thus introduce the function P (x, h) which will act as a Lagrange mul-
tiplier. We will choose it to be normalized, i.e.

s∞
−∞ dhP (x, h) = 1. Our action

will then be (at m = 1, linear order in n):

S
è
q, λ; P (x, h), f(x, h)

é
=

1
2λ0 + n

2

C
2qrλp + λd −

Ú 1

0
dxq(x)λ(x)

D
+ log (N ) + β2

4

+ β2

4 n

2qp
r +

A
1 −

Ú 1

0
dxqp(x)

B
+ Ô2

A
1 −

Ú 1

0
dxqs(x)

B
+ n

N
exp

1
2

2Ø
i,j=1

Λij
∂2

∂h(1)∂h(2)

f(0, h(2))gg(1, h(1))
----
h(1)=h(2)=0

+ n

Ú 1

0
dx

Ú ∞

−∞
dhP (x, h)

∂f

∂x
− λ̇(x)

2

C
∂2f

∂h2 + x

3
∂f

∂h

42
D

+ n

Ú ∞

−∞
dhP (1, h)

5
f(1, h) − log

1
γ−(λd−λ(1)) ∗ 2 cosh h

26
(5.46)

We will now proceed to finding the saddle point equations involving qr, q(x),
λp, λ(x), P (x, h) and f(x, h) [27]. The other parameters won’t contribute to the
extremisation of the Franz Parisi potential.

• qr

The extremisation with respect to qr gives

λp = −β2

2 pqp−1
r (5.47)
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• q(x)

Extremisation with respect to q(x) yields

λ(x) = −β2

2

1
pqp−1(x) + Ô2sqs−1(x)

2
(5.48)

• P (x, h), P (1, h)

Extremising with respect to the Lagrange multipliers just gives back
∂f
∂x = λ̇(x)

2

5
∂2f
∂h2 + x

1
∂f
∂h

22
6

f(1, h) = log
1

γ−(λd−λ(1)) õ 2 cosh h
2

• f(0, h)

The functional derivative with respect to f(0, h) affects the two following
terms:

δ

δf(0, h)

 1
N

exp

1
2

2Ø
i,j=1

Λij
∂2

∂h(1)∂h(2)

f(0, h(2))gg(1, h(1))
----
h(1)=h(2)=0


+ δ

δf(0, h)

AÚ 1

0
dx

Ú ∞

−∞
dhP (x, h)∂f

∂x

B
= 0 (5.49)

which are straightforward to carry out. Using again property (5.19), and
introducing the pair of dummy variables z = {z(1), z(2)}, one finds:

(5.50)P (0, h) = 1
N

Ú ∞

−∞

dz(1)

2π
√

det Λ
exp

5
−1

2zT Λ−1z

6
gg(1, z(1))

----
z(2)=h

• f(x, h)

The extremisation with respect to f(x, h)

(5.51)δ

δf(x, h)

Ú 1

0
dx

Ú ∞

−∞
dhP (x, h)

∂f

∂x
− λ̇(x)

2

C
∂2f

∂h2 +x

3
∂f

∂h

42
D

= 0
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is carried out considering the integral by parts. To simplify the notation, we
use the dot symbol for partial derivative with respect to x and the apostrophe
Í for partial derivative with respect to h. One obtains the following partial
differential equation for P (x, h):

(5.52)Ṗ (x, h) = − λ̇(x)
2
#
P ÍÍ(x, h) − 2x(Pf Í)Í$

• λp

This derivative gives:

qr = − ∂

∂λp

 1
N

exp

1
2

2Ø
i,j=1

Λij
∂2

∂h(1)∂h(2)

f(0, h(2))gg(1, h(1))
----
h(1)=h(2)=0


= − ∂

∂λp

Ú ∞

−∞
dhP (0, h)f(0, h) (5.53)

• λ(x)

Considering extremization with respect to λ(x), we get the following equation
for the overlap function q(x):

q(x) =
Ú ∞

−∞
dhP (x, h)

!
f Í(x, h)

"2 (5.54)

5.1.4 Replica symmetric equations

In the replica symmetric ansatz, the equations simplify as nothing depends
on x. That is


P (x, h) = P (0, h) ∀x

f(x, h) = f(1, h) ∀x

q(x) = q ∀x

λ(x) = λ ∀x
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We thus have four equations to solve for four unknowns: λ, λp, q and qr.
The first two are straightforward:

λp = −β2

2 pqp−1
r λ = −β2

2

1
pqp−1 + Ô2sqs−1

2
(5.55)

On the other hand, to write the equations for q and qr we need to find the
expression of the normalized distribution P (0, h). Looking at equation (5.50)
it may seem that there is also a dependence on λ0, through gg(1, h), and on
λg, present in Λ, but one finds that their contributions cancel out with the
normalization. One finds:

P (0, h) = 1åN exp
A

h2

2λ

B
cosh

3
λp

λ
h

4
(5.56)

where åN is just a normalization factor:

åN =
ð

2π(−λ) exp
A

−
λ2

p

2λ

B
(5.57)

One can then proceed to write equation (5.54) for the overlap q. Again,
although f(1, h) = f(0, h) depends on λd, we are free to set λd = λ as it only
affects the normalization. Then f(0, h) is given by log

!
2 cosh(h)

"
, because

it is just the convolution with a Gaussian of zero variance (a delta function).
The equation for the overlap q is then:

q =
Ú ∞

−∞
dhP (0, h) tanh2 (h) =

=
tanh2 (h)

>
λ,λp

(5.58)

where we have introduced the notation é·ê =
s 1

0 dx
s∞

−∞ dh · P (x, h).
Finally, to find the equation for qr we need to consider the derivative:

(5.59)
qr = − ∂

∂λp

Ú ∞

−∞
dhP (0, h)f(0, h)

= − ∂

∂λp

=
log
!
2 cosh(h)

">
λ,λp

Taking the derivative and integrating by parts, one reaches the following
equation for qr:
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(5.60)qr = 1åN
Ú ∞

−∞
dh exp

A
h2

2λ

B
sinh

3
λp

λ

4
tanh(h)

Consistency check: in the unperturbed case (Ô = 0), we must have q = qr,
and thus equations (5.58) and (5.60) must be identical. Indeed, if λp = λ,
we have:

(5.61)
qr = 1åN

Ú ∞

−∞
dh exp

A
h2

2λ

B
sinh (h) tanh (h)

= 1åN
Ú ∞

−∞
dh exp

A
h2

2λ

B
cosh (h) tanh2 (h)

= q

5.1.5 Franz-Parisi potential

In order to find the replica-symmetric Franz-Parisi potential, all we need to
do is consider the appropriate limit of the action S (equation 5.46), that is
VF P = − 1

β limn→0 ∂nS(qr.q). Bearing in mind that we have fixed λd = λ in
the normalization, one has:

(5.62)VF P = −β

4 (1+Ô2)+ β

2 (p−1)qp
r − β

4 (p−1)qp − β

4 Ô2(s−1)qs

+ β

4 (pqp−1 + Ô2sqs−1) − 1
β

=
log
!
2 cosh(h)

">
λ,λp

As a consistency check, one may evaluate the Franz-Parisi potential at q =
qr = 0, where one should recover the paramagnetic free energy. Indeed one
finds:

VF P (q = qr = 0) = −β

4 − 1
β

=
log
!
2 cosh(h)

">
λ,λp=0

= −β

4 − 1
β

log(2) = fpara

(5.63)
where log(2) = s∞ is the entropy in the high-temperature limit.

In figure (5.2), VF P − fpara is plotted for overlaps qr ∈ [0.4, 0.9] at temper-
atures between TK and Td (0.651385 amd 0.681598 respectively). At each

55



5 – Deforming Ising p-spin glassy states

value of qr, the RS saddle point equations must first be solved to find q,
and then the potential is evaluated. We find indeed that VF P − fpara at
the secondary minimum (which is actually the complexity of the TAP states
Σ(f∗(T )), see section 2.3) vanishes at TK ; and the minimum itself ceases to
exist above Td.

Figure 5.2: Franz-Parisi potential in the Ising case, in the interval qr ∈ [0.4, 0.9].

5.1.6 Replicon eigenvalue

We now turn to the caclulation of the replicon eigenvalue, and the breaking
point where the RS phase becomes unstable. As in the case of the spherical
p-spin, this is done by taking successive derivatives of the equation for the
overlap function (5.54):

(5.64)q̇(x) = d
dx

Ú ∞

−∞
dhP (x, h)

!
f Í(x, h)

"2

In order to perform the derivatives, we will apply the flow equations:

ḟ = λ̇(x)
2

è
f ÍÍ + x

!
f Í"2

é
Ṗ (x, h) = − λ̇(x)

2
#
P ÍÍ(x, h) − 2x(Pf Í)Í$
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We will not repeat here the full calculation, which involves several integra-
tions by parts. One reaches:

q̇(x)
A

−1 + β2

2

è
p(p − 1)qp−2(x) + Ô2s(s − 1)qs−2(x)

é= !
f ÍÍ(x, h)

"2
>B

= 0

(5.65)
The replicon eigenvalue, which signals the instability of the RS phase, is thus
given by (coming from the RS phase):

λR = −1 + β2

2

è
p(p − 1)qp−2 + Ô2s(s − 1)qs−2

é= !
f ÍÍ(0, h)

"2
>

(5.66)

5.1.7 Breaking point

The breaking point is obtained by taking a further derivative of (5.65). At
this point it is useful to define:

g1 = p(p − 1)qp−2 + Ô2s(s − 1)(s − 2)qs−2 (5.67)
g2 = p(p − 1)(p − 2)qp−3 + Ô2s(s − 1)(s − 2)qs−3 (5.68)

g3 = p(p − 1)(p − 2)(p − 3)qp−4 + Ô2s(s − 1)(s − 2)(s − 3)qs−4 (5.69)

After a somewhat lengthy calculation, one reaches the following expression
for the breaking point:

x =
g2é(f ÍÍ)2ê + β2

2 g2
1é(f ÍÍÍ)2ê

β2g2
1é(f ÍÍ)3ê

(5.70)

Proceeding in a similar manner, one could also in principle compute the slope
at the breaking point, as was done in the spherical case.

5.2 Numerical solution of equations
As was done in the spherical case, we may now solve the replica-symmetric saddle
point equations as the deformation Ô is increased. To do this, one needs to solve
self-consistently, at each value of Ô, the four equations for the four unknowns λ, λp,
q and qr. These are, respectively, equations (5.55), (5.60) and (5.58). On the other
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hand, although we will not characterise the RSB phase, using equations (5.66) and
(5.70) we may study the stability of the RS phase and compute the breaking point.
Again we fix p = 3 for simplicity, and study different values of s.

In the following figure (5.3) we have plotted the case s = 2. q (solid lines) and
qr (dashed line) both jump with a square root singularity. On the other hand,
the replicon eigenvalue tells us the RS phase is stable up to yielding, as in the
spherical case. This s = 2 case will be the most interesting for the moment, as it is
the deformation we will study using simulations in the final section (in particular
we will consider the intermediate temperature T = 0.67).

(a) Relative overlap (dashed line)
and internal overlap (solid line) un-
der s = 2 deformation.

(b) Replicon eigenvalue under s = 2
deformation.

Figure 5.3: s = 2 is the only case where the RS phase is stable up to yielding.

For higher values of s (including for s = 3, unlike the spherical model), the
replicon mode becomes unstable prior to yielding. The relative overlap is shown
in figure 5.4. For simplicity we restrict the analysis to a single value of Tg, namely
Tg = 0.655. s is then varied between 3 and 9. As before, the dashed lines represent
the RS solution in the unstable regime.
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5.2 – Numerical solution of equations

Figure 5.4: Deformation of Tg = 0.655 glass under increasing values of s. The
dashed line is the RS-unstable regime.

In figure 5.5 we plot the replicon eigenvalue. It becomes unstable for all the
values of s ≥ 3 considered.

Figure 5.5: Replicon of the Tg = 0.655 glass along the deformation for increasing
values of s. We see that it becomes unstable in all cases (s ≥ 3).

Finally, we may make use of equation 5.70 to calculate the breaking point. As
a check of consistency, we calculate it at Td = 0.68159 and obtain x∗ = 0.7431,
which coincides with the values in [23] 3. In table 5.1 we show the value of the
breaking point as s is increased. The breaking point is at first below the Td value,
and then rises above as higher values of s are considered. The same thing was
observed in the spherical case.

3As mentioned before in the spherical case, this is equal to the parameter exponent, which
carries information on the critical slowing down at Td.
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Table 5.1: Breaking point (Tg=0.655)

s Ô qr q x∗

3 0.2756 0.7034 0.7327 0.6822
4 0.2720 0.7153 0.7328 0.6922
5 0.2738 0.7246 0.7405 0.7087
6 0.2774 0.7333 0.7476 0.7292
7 0.2846 0.7398 0.7529 0.7525
8 0.2932 0.7455 0.7575 0.7775
9 0.3049 0.7499 0.7611 0.8040

5.3 Monte Carlo simulations
In an attempt to test some of our predictions, we have carried out Monte Carlo
simulations of spins on fully connected graphs. As we are interested in studying
states below the dynamical temperature, we are presented with the problem of
equilibration (the associated timescale diverges as T → T +

d . Luckily we can make
use of the so-called planting technique [28], which essentially allows us to equilibrate
for free in the glassy region T ∈ [TK , Td].

5.3.1 Planting
To generate an instance (σ∗, G, J) of the planted spin glass one proceeds as follows:

• One first generates the planted configuration of spins σ∗
i , chosen uniformly at

random between the 2N possible configurations.

• One then generates a graph of interactions G = (V, E); in our case we have
only considered fully-connected graphs, but the planting method can be eas-
ily generalized to diluted models.

• For each triplet (i, j, k), the couplings Jijk are chosen +1 or −1 according to:

P (Jijk|σ∗
i , σ∗

j , σ∗
k) =

exp
1

β
√

3
N σ∗

i σ∗
j σ∗

k

2
2 cosh

1
β

√
3

N

2 (5.71)

where due to the fully-connected nature of the interactions we have to bear
in mind the proper scaling, which in the p = 3 case is precisely Jijk =
±
ñ

p!
2Np−1 = ±

√
3

N .
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If one considers the posterior distribution for the spins, it is easy to see that is
it just given by the Boltzmann measure at inverse temperature β [28]:

P (σ|J) =

r
i1<···<ip

exp
3

βJi1...ip

ñ
p!

2Np−1 σiσjσk

4
Z(β) (5.72)

The important property is that sampling from this posterior distribution will
give an equilibrium configuration (in the context of [28] this corresponds to Bayes-
optimal inference).

In figure 5.6 we show the value of the self-overlap of the equilibrium TAP states
at temperatures between TK and Td, obtained by solving yhe replica symmetric
equations (see subsection 5.1.4) at Ô = 0. A non-zero solution for the overlap first
appears at Td with a square root singularity, and increases as T → T +

k .

Figure 5.6: Self-overlap of the equilibrium glass states between TK and Td. The
vertical lines are the temperatures where the simulations have been performed.

We now use planting to study the dynamics within one of these equilibrium
glass states. We first generate a random initial configuration of spins σ(0); which
will act as our planted configuration. We then generate the couplings (there will be
N(N−1)(N−2)

3! of them) following equation 5.71. Thus our initial random configu-
ration is now an equilibrium configuration at temperature T ∈ [TK , Td]. Therefore
if we run the Monte Carlo dynamics from the this initial planted configuration,
the system should remain in the glass state for long times (the timescale diverges
with system size). In particular, we may consider the correlation with the initial
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configuration, given by:

C(t, 0) = 1
N

NØ
i=1

σi(t)σi(0) (5.73)

If the initial configuration is an equilibrium one then this quantity should, after
a short transient, descend to the corresponding value in figure 5.6. That is,

lim
t→∞

1
N

NØ
i=1

σi(t)σi(0) = qg(T ) (5.74)

In figure 5.7, we show the results of the Montecarlo dynamics (starting from a
planted configuration) at three different temperatures T = 0.655, 0.67 and 0.68.

Figure 5.7: Montecarlo simulations using planting at the three temperatures. Sys-
tem size N = 450; averaged over 20 realizations at each temperature.

The simulations are computationally costly, because at each spin flip we must
consider all the O(N3) triplets associated to the spin in question. We use N = 450,
and there are strong finite-size effects so we average over 20 different runs. Despite
the strong fluctuations, we see that the correlation decays rapidly to the value
predicted by the RS equations at each temperature.

5.3.2 Adding the deformation
We may now finally consider the dynamics with the s-spin perturbation term. We
proceed in the same manner as before, generating a planted configuration, but we
now also create a symmetric matrix of pairwise couplings åJij , which will represent
a conservative s = 2-spin deformation. We will thus be interesting in studying the
evolution under the Hamiltonian:
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5.3 – Monte Carlo simulations

(5.75)H3[σ] + Ô(t)H2[σ] = −
Ø

i<j<k

Jijkσiσjσk − Ô(t)
Ø
i<j

åJijσiσj

where the symmetric couplings åJij are taken uniformly at random from a bimodal
distribution with appropiate scaling åJij = ±

ñ
s!

2N = ± 1√
N
.

Starting from the equilibrium glass, we perform a sudden quench in the Hamil-
tonian (Ô(t) is a stepwise function) and study the evolution using the Monte-
carlo update rule. The results are plotted in figure 5.8, where the temperature
is T = 0.67. We consider 3 different values of Ô. We first take Ô = 0, and we
thus recover at long times qg(T = 0.67), the self-overlap of the equilibrium glass.
If we increase Ô a little amount to Ô = 0.17 < ÔY , we see that the overlap at-
tained is slightly lower, and in fact corresponds fairly well to the value predicted
by the RS equations (see figure 5.3a of the s=2 deformation). Finally, we consider
a larger value of Ô > ÔY . In this case the system no longer remaines trapped near
the planted configuration, and the overlap falls towards zero at long times. The
Franz-Parisi potential tells us that the initial glass state has disappeared (become
unstable); we do not know however what the final stationary state is (this is a
purely dynamical question which we haven’t addressed in this work).

Figure 5.8: Correlation with initial configuration for Ô = 0, 0.17, 1.0. T=0.67.
System size N = 450, averaged over 20 runs.

Although the general picture is recovered, the finite-size effects and long simu-
lation times make it difficult to have a clear-cut view of the transition. A possible
alternative would be to consider the dynamics on diluted graphs, where much larger
system sizes can be attained.
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Chapter 6

Conclusions and perspectives

In this final section we will review the main results obtained in this work, and briefly
outline some perspectives for future research. In doing this it will be convenient to
discuss separately the spherical case, where the equations are exactly solvable, and
the Ising case, where the full-RSB equations are intractable but we can perform
numerical simulations.

6.1 Spherical p-spin
By studying the Franz-Parisi potential of the deformed glass and the associated
saddle point equations for the overlaps, we have found, depending on the values of
p and s, a rich variety of behaviours approaching yielding. Fixing p = 3, at low
values of s (<3), we find that the system is replica symmetric up to yielding. When
s is increased to higher values, we find that the replicon eigenvalue becomes unsta-
ble along the deformation, and the glass undergoes a Gardner transition, yielding
in a replica-symmetry broken phase.

Following the works of Crisanti and Leuzzi [18] [19], one may find the analyt-
ical solution in the full-RSB phase before yielding. As the model is analytically
tractable, one may then characterise the fluctuations and associated susceptibilities
at the yielding point in the different regimes.

The presence of quenched disorder in fact leads to two distinct susceptibilities.
To study these susceptibilities, we need to distinguish all the different averages
which have appeared during this work. Firstly, there is the thermal average of the
constrained replica σ, which is under the Hamiltonian Hp+Ôs [σ]. We denote this
average with brackets é·êth, adding a subscritpt to distinguish it from the average
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over the reference replica.

Secondly, we have the average over the reference configuration τ , which we
denote again by brackets (without a subscript) é·ê:

é·ê =
Ú

Dτ
1

ZJ
exp

!
−βHp(τ)

"
· (6.1)

Finally the overbar · denotes as usual the average over the couplingss
dJp(J)·. Considering all this notation, one may study the connected and discon-

nected suceptibilities 1:

χcon = N

3
ééq2

rêthê − ééqrêthê
2
4

(6.2)

χdis = N

3
ééqrê2

thê − ééqrêthê
2
4

(6.3)

The signature of random-field disorder is that χdis ∝ χ2
con, indicating that

disorder-induced sample to sample fluctuations provide the dominant source of
fluctuations [29]. It would be interesting to see whether the RFIM [30] behaviour
is recovered in the present model, and what differences there are between the var-
ious RS/RSB regimes. This same question has been posed in the case of hard
spheres and harmonic soft spheres [31][32], and we expect that in the p-spin the
anlysis will be simpler to carry out, and may thus shed light on the nature of the
yielding transition.

On the other hand, a complementary approach would be to study the dynamics
of the model. The Langevin dynamics of the p + Ôs model are given by:

σ̇i(t) = −µ(t)σi(t) − ∂Hp+Ôs[σ]
∂σi(t)

+ ηi(t) (6.4)

where ηi(t) is a Gaussian white noise, with éηi(t)ê = 0 and
éηi(t)ηj(tÍ)ê = 2Tδijδ

!
t − tÍ", and µ(t) is a Lagrange multiplier which is introduced

in order to enforce the spherical constraint 1
N

qN
i σ2

i (t) = 1.

1In practice, this would involve introducing couplings between replicas and then sending these
couplings to zero, as in section 2.3 where the Franz-Parisi potential was discussed as a Legendre
transform.
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In particular one would be interested in the dynamics starting from an initial
configuration extracted at equilibrium from the unperturbed Hamiltonian, that is
p(σ(0)) ∼ exp

!
−βHp[σ(0)]

"
. From the dynamical equations it would be possible

to explore further the behaviour in the marginally stable/RSB phase beyond the
Gardner transition, where one expects the system to fall out of equilibrium and
show aging effects (it can no longer explore freely the original glass basin, which
becomes rough).

6.2 Ising p-spin
In the Ising case we have performed the same analysis of the Franz-Parisi potential
of the glass under a deformation. We find, having again fixed p = 3, that for values
of s ≥ 3 the system undergoes an RSB instability before yielding. Although we
can (and have) written down the full-RSB equations to find the breaking point,
solving them analytically in the broken phase is difficult. In the Ising case it would
therefore be interesting to pursue further numerical simulations. Indeed it would be
interesting to study the distribution of avalanches near yielding, in the different RS
and RSB regimes. One could also study the susceptibilities, considering sample-to-
sample averages (that is, over the initial random configuration σ(0)) and thermal
averages over different runs with the same sample. All this would require having
good enough statistics, which could be achieved by considering simulations on
diluted (sparse) models (instead of fully connected graphs as done here).
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