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Summary

Many interactions in nature are long range. As long range interactions, we
refer to those in which parts of the system far away from each other inter-
act considerably. An historical example of such systems are stars inside a
galaxy or globular clusters. Typically, in such a system, a star is subjected
to a force dominated by the ensemble of the other stars (long range) rather
than, for example, the neighboring ones (short range). As a consequence,
one expects a very different behavior (and often counter-intuitive) compared
to what happens in the short-range interacting regime usually encountered
in statistical physics textbooks. For example, in the thermodynamic equi-
librium, there is nonequivalence of ensembles [1] or a possible apparition of
negative specific heat in the micro-canonical ensemble [2]. The macroscopic
dynamics is also very different: starting from arbitrary initial conditions,
the system forms rapidly a quasi-stationary state (like a galaxy) and then
relaxes towards thermodynamic equilibrium. Recently, it has been observed
[3] that a laser beam propagating through a nonlinear, nonlocal medium
presents a behavior very similar to the formation of a quasi-stationary state
of self-gravitating bosons in the non-relativistic regime [4], which is a serious
candidate for dark matter in the halos of galaxies.

The purpose of this internship, is studying theoretically and numerically
such an optical analogue of a self-gravitating system. The targeted objectives
are listed below.
1. Full description of the analogy between self-gravitating systems and non-

linear optical propagation, together with a variational approach in order
to derive an analytical solution of the equation.

2. Study the evolution of the system for various initial conditions by writing
a code to solve the Schrödinger-Newton equation [5].

3. Comparisons between theory and simulations oriented to the realisation
of the optimal experimental procedure in the optical framework.
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Chapter 1

Full Description Of The
Mathematical Analogy

In this chapter we introduce the analogy we relied on and the equations
over which it is based: the Newton-Schrödinger equation and the Paraxial-
Helmholtz equation. We first describe them separately, then we explain under
which conditions the mathematical analogy is perfectly valid.

1.1 The Newton-Schrödinger equation
The Newton-Schrödinger equation (NSE) describes the evolution of a distri-
bution of massm, associated with a wave function ψ (interpreted as the mass
density) and subjected to the classical, i.e. Newtonian, gravitational field φ
generated by itself:

i~
∂ψ

∂t
+ ~2

2m∇2ψ +mφψ = 0 (1.1)

∇2φ = −4πGm |ψ|2 . (1.2)

Where G is the gravitational constant, ∇2 is the 3-dimensional Laplace
operator, ~ the reduced Planck constant and m the mass of the particles.

Physical systems like this one, which interact through their own gravita-
tional field, are usually called self-gravitating systems.

Even though the details about the gravitational side of the analogy are not
in the purposes of this work, we just briefly describe in the next two sections
the possible applications of this equation together with its derivation.
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1 – Full Description Of The Mathematical Analogy

1.1.1 Application of NSE
This equation can be used for example to describe dark matter [6]. Even
though exploiting a quantum framework to describe an astrophysical system
could seem illogic, there are at least a couple of good reasons to do that.
The first one is that, often, taking the ~ → 0 limit of the Schrödinger equation
is actually more convenient, as with this technique there is the advantage
of working in a 3-dimensional space (i.e. the positions space for the wave
function) instead of the 6-dimensional one, given by the classical phase-space
distribution of the system. The second reason is due to the fact that the
quantum approach allows to explain, via the Heisenberg uncertainty relation,
the homogeneous distribution of dark matter near the centre of galaxies [7],
while the classical picture, which relies on the Vlasov-Poisson equation, fails
in justifying this feature. In this model, also known as ψDM [7], dark matter
particles are interpreted as bosonic particles whose mass is very small mb ≈
10−23eV and with a very large position indetermination, ∆x ≈ 1kpc.

1.1.2 Derivation of NSE
It is possible to derive NSE from the Klein-Gordon equation coupled with
the weak field limit of general relativity [8]. In this limit, gravity can be
described in a classical way, according to the Newtonian potential:

~2[−(1 − 2Φ)∂2
t + c2(1 + 2Φ)∇2]Ψ −m2c4Φ = 0 (1.3)

∇2Φ = −4πGmΨ∗Ψ
since the metric tensor components are given by:

g00 = (1 − 2Φ) gij = (1 − 2Φ)δij i, j = 1,2,3.

If we assume that Φ << 1 and that Φ2 is negligible, we can proceed
with the usual ansatz often exploited in quantum field theory to get the
non-relativistic limit [9]:

Ψ = ψe− imc2
~ t. (1.4)

By neglecting O(c−2) terms, plugging (1.4) into (1.3) leads to:

i~(1 − 2Φ)∂tψ = −(1 + 2Φ) ~
2

2m∇2ψ +mc2.

Which corresponds, if one neglect ψΦ products, to the regular NSE.
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1.2 – The Paraxial-Helmholtz equation

1.2 The Paraxial-Helmholtz equation
The Paraxial-Helmholtz equation (PHE) describes the evolution of the am-
plitude ε of an optical beam propagating through a nonlocal medium:

i
∂ε

∂z
+ 1

2k∇2
⊥ε+ k0∆nε = 0 (1.5)

∇2
⊥∆n = −αβ

κ
|ε|2 (1.6)

where k and k0 are the wave-numbers of the beam respectively inside the
medium and in void, ∇2

⊥ is the 2-dimensional transverse Laplace operator,
z is the propagation direction of the beam, β is the medium thermo-optic
coefficient, κ the thermal conductivity and α the absorption coefficient.
In particular, we are considering the case of a medium characterized by a
thermo-optical nonlinearity, which links the variation of the refractive index
∆n of the medium itself with the intensity of the beam |ε|2. As we shall see
next, equation (1.6) is essentially a stationary heat-like equation, where the
heat source is associated with the self-focusing laser increasing the tempera-
ture of the medium while propagating through it.

1.2.1 Derivation of PHE
Equation (1.5) can be derived directly from Maxwell equations (ME) under
proper approximations [10]. We consider the case of a continuous wave beam
propagating inside a nonlinear optical medium. In such a medium, for the
electric field vector þE we rely on the following equation, which is a direct
consequence of ME:

∇ þE − 1
c2
∂2 þE

∂t2
= 1
Ô2
∂2 þP

∂t2
(1.7)

where c is the speed of light in the medium we consider and Ô its permit-
tivity. The induced polarization þP consists of two parts such that:

þP (þr, t) = þPL(þr, t) + þPNL(þr, t)

where the linear part þPL(þr, t) and the nonlinear part þPNL(þr, t) are related to
the electric field through the susceptibility first and third tensors, i.e. χ(1)

and χ(3):
þPL(þr, t) = Ô

Ú ∞

−∞
χ(1)(t− tÍ) · þE(þr, tÍ)dtÍ

13



1 – Full Description Of The Mathematical Analogy

þPNL(þr, t) = Ô
ÚÚÚ ∞

−∞
χ(3)(t− t1, t− t2, t− t3)×

× þE(þr, t1) þE(þr, t2) þE(þr, t3)dt1dt2dt3.
(1.8)

In order to reduce these equations to a more treatable form, we rely on
several assumptions, listed and justified below.

• The nonlinear response is assumed to be instantaneous so that the time
dependence of χ(3) is given by the product of three delta functions of the
form δ(t− ti). Than Eq. (1.8) reduces to:

þPNL(þr, t) = Ôχ(3) þE(þr, t) þE(þr, t) þE(þr, t).

The assumption of instantaneous nonlinear response corresponds to ne-
glecting the contribution of molecular vibrations to χ(3) whose detection
requires a resolution in wavelength much higher than the one typically
employed in this framework.

• þPNL can be treated as a small perturbation to þPL because nonlinear
changes in the refractive index are ∆n

n < 10−6 in practice.

• The optical field is assumed to maintain its polarization along the medium
so that a scalar approach can be used, this is valid in our case since we
are interested into isotropic materials.

• We make the ansatz:
þE(þr, t) = 1

2 p̂[A(þr)eikze−iω0t + c.c.]

where ω0 is the carrier frequency, p̂ is the polarization unit vector,
k = k0nb = 2πnb

λ is the propagation constant in terms of the optical
wavelength λ = 2πc

ω0
, c.c. denotes the complex conjugated and A(þr)eikz

is called envelope function. The polarization components þPL(þr, t) and
þPNL(þr, t) can also be expressed in a similar way.

• We rely on the slowly varying envelope approximation [11] which means
that within a distance ∆z = λ, the change ∆A is much smaller than A
itself. Quantitatively this implies that:

ÑA ¹ A ⇔ Ñz ¹ λ ⇒

⇒ ∂A

∂z
¹ A

λ
= Ak

2π ⇒

⇒ ∂A

∂z
¹ kA,

∂2A

∂z2 ¹ k2A.

14



1.2 – The Paraxial-Helmholtz equation

• The thermo-optical nonlinearity can be included by assuming that the
refractive index varies with temperature [12] according to:

n = nb + dn

dT
T̃l

where T̃l represents the laser induced change in temperature. The quan-
tity dn

dT is a constant called the medium thermo-optic coefficient. By
assuming that T̃l obeys to the heat-transport equation, we have:

ρ0C
∂T̃l
∂t

− κ∇2T̃l = αI (1.9)

which in the stationary regime, coincides with Eq. (1.6). Here ρ0C
denotes the heat capacity per unit volume and I = |ε|2 the intensity of
the beam.

• Since, according to our ansatz solution, we are working with monochro-
matic waves, in Fourier space the dielectric constant and the refractive
index are proportional to each other (see Appendix A). This means that
the nonlinear part of the refractive index, comes from the nonlinear part
of þP .

By taking into account these assumptions, with some algebraic manip-
ulations, plugging the ansatz for þE and þP into (1.7) leads to the Paraxial
Helmholtz equation:

2ik∂A
∂z

+ ∇2
⊥A+ 2kk0∆n(I)A = 0

which clearly corresponds to Eq. (1.5).

1.2.2 Experimental reproduction of the PHE system
Even though this internship is essentially a theoretical and numerical work,
a collaboration with INPHYNI lab is planned in order to perform in the
future an experimental realisation of the PHE system. Therefore we would
like to say something about how in practice one could reproduce the optical
framework of the analogy. As shown in figure 1.1, the laser, coming from a
monochromatic source, propagates through a lead glass. Notice that since
in our analogy the propagation direction is mapped into time (this will be
better explained in the next section), it is important to use materials with a
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1 – Full Description Of The Mathematical Analogy

Figure 1.1. Example of a typical experimental setup employed to
simulate PHE systems.

bar-like geometry: then longer the material is, then larger is the time-scale
which can be explored through the analogy.

However, since there are some technical limits in the realisation of such
very long media, as we shall see next, we will exploit the manipulation of the
input laser and of its power, in order to explore larger values of time in the
gravitational framework. A good control over the initial condition is ensured
by the phase mask which is characterized by 1000 × 1200 pixels. This means
that we are able to select and manipulate phase and intensity in the optical
beam with a very high precision. Moreover we are able to work within a
range of power which approximately goes from 1W to 10W .

1.3 Analogy between the two frameworks
If we consider a 2-dimensional slice of the NSE system, namely:

∇ = ∇2
⊥ = ∂2

∂x2 + ∂2

∂y2

and if we do the mapping:
z ↔ t

then apart for constants NSE and PHE are perfectly equivalent under a
mathematical point of view [13]. The advantage of this is that, while on the
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1.3 – Analogy between the two frameworks

one hand the optical system can easily be reproduced with an experiment
in a lab, on the other hand the NSE system has been studied strictly theo-
retically. Therefore one can exploit this analogy in order to achieve a better
understanding of gravitational systems, which are often harder to directly
observe.

1.3.1 Dimensionless form
Now we make our equations dimensionless, we do it by considering the most
general form:

ia1
∂ψ̃

∂z̃
+ a2

2 ∇̃2ψ̃ − a3Ṽ ψ̃ = 0

∇̃2Ṽ = a4
---ψ̃---2 (1.10)

where the ai > 0 are constants and tilded quantities correspond to di-
mensional variables. The dimensionless form is achieved by choosing the
following scales:

z̃ = ga1

a2a3a4
z, (x̃, ỹ) = ( g

a3a4
) 1

2 (x, y)

ψ̃ = (a2a3a4

g
) 1

2ψ, Ṽ = a2a4

g
V.

(1.11)

In particular, by plugging Eq. (1.11) into (1.10) we get:

i
∂ψ

∂z
+ 1

2∇2ψ − V ψ = 0

∇2V = g |ψ|2
(1.12)

where the constant g > 0 can be fixed to any positive value. Notice that
a direct comparison with eq (1.2) and (1.6) would imply V = −φ.
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Chapter 2

Hydrodynamical Picture

In this chapter we describe a variational approach to the analytical solution
of the equations, this approach relies on a hydrodynamical picture and a
gaussian ansatz. The results obtained will be useful for later comparisons
with the numerics. In what follows we will use g = 1 referring to eq (1.12),
therefore:

i
∂ψ

∂z
+ 1

2∇2ψ − V ψ = 0

∇2V = |ψ|2 .
(2.1)

2.1 Madelung Transformation
We start by writing the wave function in Eq. (2.1) using what in the literature
goes under the name of Madelung transformation [14]:

ψ(þr, t) =
ñ
ρ(þr, t)eiS(þr,t) (2.2)

where ρ(þr, t) and S(þr, t) are respectively the amplitude and the phase of
the wave function.

Plugging (2.2) in (2.1) leads to:

i
1

2√
ρ

∂ρ

∂t
+√

ρ
∂S

∂t
+1

2

A
∇2√ρ+ i

√
ρ

∇ρ · ∇S + i∇2S
√
ρ− |∇S|2 √

ρ

B
−V√

ρ = 0

(2.3)

∇2V = ρ. (2.4)
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2 – Hydrodynamical Picture

By direct comparison of real and imaginary part of both sides of equation
(2.3), we get two equations:

∂ρ

∂t
+ ∇ρ · ∇S + ∇2Sρ = 0

∂S

∂t
+ 1

2

A∇2√ρ
√
ρ

− |∇S|2
B

− V = 0. (2.5)

If we introduce the quantity þu = ∇S and apply the gradient to Eq. (2.5),
then we get:

∂ρ

∂t
+ ∇(ρ · þu) = 0 (2.6)

∂þu

∂t
+ þu(∇ · þu) = −∇V + 1

2∇
A∇2√ρ

√
ρ

B
. (2.7)

We have just proved how the NSE system is completely equivalent to a
hydrodynamical system, as 2.6 and 2.7 represent respectively the continu-
ity and the Euler equation for a fluid with density ρ, velocity field þu and
subjected to a potential V , given by Eq. (2.4). The 1

2∇(∇2√
ρ√
ρ ) term can

be interpreted as a pressure. In particular, since it comes from the kinetic
energy in the quantum frame, we can interpret it as a kinetic pressure due
to Heisenberg uncertainty relation.

2.2 Variational approach
It is convenient at this point, to derive a Lagrangian density associated with
the equations of the system:

∂ρ

∂t
+ ∇(ρ · þu) = 0

∂þu

∂t
+ þu(∇ · þu) = −∇V + 1

2∇
A∇2√ρ

√
ρ

B
∇2V = ρ.

(2.8)

To do that, in the spirit of what in the literature is usually done in 3d [15],
we write a Lagrangian density and check that it actually gives back Eq. (2.8)
when we write the equations of motion associated with it. The Lagrangian
density we refer to is:
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2.2 – Variational approach

L(ρ, S, V ) = ρ

2(∇S)2 + ρ
∂S

∂t
+ |∇ρ|2

8ρ + |∇V |2

2 + ρV. (2.9)

Indeed when we write the Euler-Lagrange equations associated with L, by
paying attention to the fact that we should consider derivatives with respect
to space-time like it is usually done in quantum field theory, we get:

∂L
∂ρ

= ∇ ·
A

∂L
∂(∇ρ)

B
+ ∂

∂t

 ∂L
∂(∂ρ∂t )


∂L
∂S

= ∇ ·
A

∂L
∂(∇S)

B
+ ∂

∂t

 ∂L
∂(∂S∂t )


∂L
∂V

= ∇ ·
A

∂L
∂(∇V )

B
+ ∂

∂t

 ∂L
∂(∂V∂t )

 .
(2.10)

The first one gives back Euler equation, the second one gives back conti-
nuity equation and the third one, Poisson equation.

2.2.1 Gaussian ansatz
We know try to explicitly solve Eq. (2.10), through a gaussian ansatz for
the density ρ. From now on, we focus on the optical framework, considering
two spatial dimensions and mapping time into z, for simplicity of notation
though, instead of using r⊥, we still denote as r =

√
x2 + y2 the radial

distance from the origin in the transverse plan.
The ansatz we make deals with a Gaussian in the transverse plane with a
z-dependent width:

ρ(þr, z) = N e
− r2

R(z)2 (2.11)

where N is a normalization constant. The value of N which normalizes
the density to unity in the transverse plane is:

ÚÚ
ρ(þr, z)dx dy = 1 ⇔ N = 1

πR(z)2

which depends on the width R(z).
Thanks to this ansatz we are now able to analytically solve Eq. (2.4),

by exploiting the fact that we only have dependence on r, the equation is
reduced to:
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2 – Hydrodynamical Picture

1
r

∂

∂r

A
r
∂V

∂r

B
= 1
πR(z)2e

− r2
R(z)2 .

By integrating twice with respect to r, we get the expression for the po-
tential:

V (r, z) = a−
Ei

3
− r
R(z)2

4
4π + b log(r)

where Ei is the special function, called Exponential-Integral function, de-
fined as:

Ei(r) =
Ú ∞

−r

e−t

t
dt.

The integration constants a is just a global constant which doesn’t change
the physics, we can choose it to be zero. The other constant b, is rather
fixed by requiring a potential which is always non-singular, i.e. we impose a
compensation between the singularity of the Ei function and the one of the
logarithm at the origin. We obtain consequently:

V (r, z) = −
Ei

3
− r
R(z)2

4
4π + log(r)

2π . (2.12)

We show in fig. (2.1), just to fix the ideas, the profile of the potential for
the initial condition R(z = 0) = 1. To be more precise, we plot its oppo-
site, since, in the optical frame it corresponds to the variation of refractive
index in response to temperature. We can see how it has a maximum at the
origin, where the laser is actually propagating and heating-up the medium
consequently.

For how concerns the continuity equation, it is exactly solved by the ve-
locity field þu(þr, z) = Ṙ(z)

R(z)þr, as it can be easily checked by substitution. The
phase function is therefore given by:

S(þr, z) = Ṙ(z)
2R(z)r

2

where the dot denotes a derivative with respect to z.
At this point we are able to write the Lagrangian of the system L = s L dþr,
only as a function of R(z) and Ṙ(z):
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2.2 – Variational approach

Figure 2.1. Plot of the opposite of the potential V, as described by Eq.
(2.12), evaluated for R(0) = 1.

L(R, Ṙ) = Ṙ2

2 − 1
2R2 − c logR

where c = 1
4π is just a constant.

The Euler-Lagrange equation associated with this Lagrangian is:

R̈ = 1
R3 − c

R
(2.13)

which represents, in the Hamiltonian picture, the equation of motion of
a point-like particle evolving in an external potential U(R) = 1

2R2 + c logR.
Therefore, the first term on the right hand side of Eq. (2.13) is repulsive and
associated with a kinetic pressure, important for small values of R, while
the second term, which becomes important as R grows, is attractive and
associated with gravity.

Eq. (2.13) can be solved analytically only for the inverse function z(R), we
don’t discuss the details of the method since it’s not in the purposes of this
work, besides the so obtained solution z(R) cannot be inverted analytically.
However this result will be used for further comparisons (see 4.3.1).

As one last comment regarding this variational approach, it is important
to underline how with the Gaussian ansatz 2.11, we are supposing to know
exactly the dependence of the solution with the transverse spatial coordinates
and we are additionally including the z dependence with the R function.
This is why we integrated the Lagrangian density L and we worked directly
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2 – Hydrodynamical Picture

with the Lagrangian L, because the informations about the þr dependence are
already contained in the ansatz itself. The reason why this is a variational
method is because, among all the possible gaussian solutions of the form of
(2.11), the one whose width obeys to Eq. (2.13) is the one which minimizes
the action of the system. However in principle the exact solution could have
a completely different form; in the experimental framework we often deal
with gaussian beams though, so it’s still useful to consider such a variational
model as we expect the solution to be not so different from a Gaussian at
the beginning of the dynamics.
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Part II

Numerical simulations
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Chapter 3

Algorithm description

Equation (1.5) together with (1.6) represent a highly nonlinear problem,
whose solutions can only be obtained through numerical techniques. In this
chapter we describe the algorithm employed, which essentially consists into
a second order method combined with a spectral method.

3.1 Split-Step method
In order to solve Eq. (1.1) or (1.5) we exploited a second order method,
known as Split-Step method.

In general, this method can be applied whenever we deal with an equation
like:

∂ψ(þr, t)
∂t

= D̂ψ(þr, t)

where D̂ is a differential operator, which can be split in two terms:

D̂ = F̂ + R̂.

We will stick to the hat notation in order to describe differential operators.
The splitting is usually done in such a way that the differential equations:

∂ψ(þr, t)
∂t

= F̂ψ(þr, t)
∂ψ(þr, t)
∂t

= R̂ψ(þr, t)
(3.1)

can be easily solved. In this case, we can formally write:
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3 – Algorithm description

ψ(þr, t) = eF̂ tψ(þr, 0)
ψ(þr, t) = eR̂tψ(þr, 0)

(3.2)

where the exponential makes sense only if interpreted as a series:

eD̂t =
∞Ø
n=1

tn
D̂n

n! . (3.3)

The solutions (3.2) of (3.1) are exact as long as D̂ does not depend on time
and D̂ψ(þr, t) is continuous with continuous derivatives. The assumptions
according to which D̂ψ(þr, t) ∈ C1 is in our case true, as we are considering
a physical system and the wave function together with its derivatives must
be continuous; in our frame though, D̂ is time dependent and the solution
is more complicated. However, as we will see next, such operator is usually
evaluated over small steps where it can be assumed almost constant.

From Eq. (3.3) is possible to prove that:

eD̂t = e(F̂+R̂)t = eF̂ teR̂t + O(t2). (3.4)

Therefore the method, applied in a time interval [0, T ], deals with subdi-
viding the interval in N small steps of amplitude ∆t and applying in each
step the two operators separately:

ψ(þr, tk+1) = eF̂∆teR̂∆tψ(þr, tk) k ∈ {0,1,2, ..., N − 1},

tk+1 = tk + ∆t, t0 = 0, tN−1 = T.

3.1.1 Error
The error of this method is linked to the O(t2) term in Eq. (3.4), also known
as local truncation error (LTE). The LTE is zero in the case where F̂ and R̂
commute, i.e.:

[F̂ , R̂] = F̂ R̂ − R̂F̂ = 0

which, as we will see next, is not true in our case. It is possible though to
reduce the LTE by considering the alternative splitting:

eD̂t = e
F̂
2 teR̂te

F̂
2 t + O(t3) = e

R̂
2 teF̂ te

R̂
2 t + O(t3)
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3.1 – Split-Step method

as can be easily proved by considering the series in Eq. (3.3) up to second
order. This is called Symmetric Split-Step method and follows the ideas of
other similar algorithms as the Leap-Frog one, often employed in molecular
dynamics simulations [16].

Moreover, when many steps are applied successively, the algorithm effi-
ciency can be increased by merging two consecutive iterations, yielding:

ψ(þr, tk+1) = e
F̂
2 ∆teR̂∆teF̂∆teR̂∆te

F̂
2 ∆tψ(þr, tk).

Adaptation to PHE

In order to apply this algorithm to solve Eq. (1.1), we can identify D̂ with
the Hamiltonian of the system, F̂ with the kinetic energy and R̂ with the
potential energy operators. The latter, being given by Eq. (1.2) explicitly
depends on time, therefore we should write, instead of Eq. (3.2):

ψ(þr, t) = e
s t

0 dt
ÍR̂(tÍ)ψ(þr, 0).

However, if we choose a time step small enough compared with the vari-
ation of the potential, the integral can reasonably be approximated as a
product between the integrand and the step and Eq. (3.2) remains valid.

In this way we can evolve the wave function according to the usual quan-
tum time evolution operator Û(t, t0 = 0) = e−iĤt, considering the kinetic
K̂ and the potential V̂ contribute in the Hamiltonian Ĥ separately. The
advantage of this is that the K̂ and V̂ operators are local, respectively in
Fourier and in real space:

ψ(þr, t+ ∆t) = F−1[e−iK∆t åψ(þk, t)] = F−1[e−i k2
2 ∆t åψ(þk, t)]

ψ(þr, t+ ∆t) = e−iV∆tψ(þr, t)

being åψ(þk, t) the Fourier transform (FT) in þr of ψ, k2 the modulus square of
the wave vector, V the potential we are dealing with and F−1 denotes the
inverse FT.
Taking into account the mapping between Eq. (1.1) and Eq. (1.5), we obtain
the following pseudo-code:

ε(þr⊥, z + ∆z
2 ) = F−1[e−i k2

2
∆z
2 åε(þk, z)]

ε(þr⊥, z + ∆z) = ei∆n(þr,z+ ∆z
2 )∆zε(þr⊥, z + ∆z

2 )
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3 – Algorithm description

ε(þr⊥, z + ∆z) = F−1[e−i k2
2

∆z
2 åε(þk, z + ∆z)].

Therefore at each iteration we first compute the FT of ε, evolve it in
Fourier space for half step with the kinetic energy and then we inverse Fourier
transform it, this step corresponds to the first one of the latter three equations
and is also known as "drift". Then we evolve ε for a whole step by using the
potential energy in real space, in what is traditionally called "kick", i.e. the
second one of the latter three equations. Finally we do another "drift".

3.2 Spectral method
We have shown how to solve only one of the two coupled equations described
by (1.12). In particular we still have to discuss the solution of the Poisson
equation:

∇2
⊥∆n(þr⊥, z) = −g |ε(þr⊥, z)|2 .

To solve this equation we rely on a spectral method i.e. a method based on
Fourier Transform. Indeed by switching to Fourier space in the transversal
dimensions, the differential equation becomes:

ç∆n(þk⊥, z) = g

^---ε(þk, z)
---2

k2

where the tilde denotes the Fourier transform in þr⊥. Therefore we can
easily evaluate ∆n in Fourier space and inverse Fourier transform it whenever
we need it.

In order to perform all of these FTs, we will exploit the algorithm described
in the next section.

3.2.1 Fast Fourier Transform
The Fast Fourier Transform (FFT) algorithm computes the discrete Fourier
Transform (DFT) of a function, in an efficient way. If one consider the
definition of the DFT of a N dimensional vector þx = (x1, x2, ..., xN−1):

Xk =
N−1Ø
n=0

xne
− 2πin

N k k ∈ {0,1,2, ..., N − 1} (3.5)
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3.2 – Spectral method

and devise the algorithm by simply applying it, the number of operations
needed for the computation is O(N2). Nevertheless, because of the symmetry
of the DFT it is possible to divide the sum (3.5) of N terms into two sums
of N

2 terms each:

Xk =
N/2−1Ø
n=0

x2ne
− 2πin

N/2 k + e
2πik

N

N/2−1Ø
n=0

x2n+1e
− 2πin

N/2 k

by separating the contributes of the index even and odd values. This
allows us to compute the DFT recursively in O(N logN) operations and is
known as Cooley-Tukey FFT algorithm.

We will employ this technique to evaluate the Fourier Transforms which
appears in the Split-Step method as well, in particular we will exploit the
FFTW library [17].
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Chapter 4

Results for different initial
conditions

The simulation was run with a discretization of the x − y plan in a grid of
N × N cells, with N = 2048, in such a way that the relation between the
steps in real and Fourier space is:

∆k = 2π
N∆x.

The step of the z axis was chosen to be 10−5 in order to ensure energy
conservation.

As initial condition, we work with one or more gaussian beams of the form:

ε(þr⊥, z = 0) = N e− r2
⊥

R2

where N is fixed by the normalization and R is the width of the beam.
Of course we made sure that the wavefunction is approximately zero at the
boundaries of our grid during the entire simulation.

4.1 Parameters value
Since |ε|2 is the intensity of the beam, its dimensions are:

[ε] = [E]L−2R−1

energy over a surface over a time, therefore its integral on the whole
transversal plane coincides with the power of the beam. We consequently
fixed the normalization in such a way that:
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4 – Results for different initial conditions

ÚÚ
dx dy |ε|2 = P

where P is the power of the optical beam. At this point it is reasonable to
adimensionalize Eq. (1.10) by choosing R as typical transversal dimension
and

ñ
P
R2 as typical amplitude of the beam. In this way, the control parameter

g in Eq. (1.12) is given by:

g = αβ

κ
kk0R

2P. (4.1)

The numerical values of these parameters, typical of the experimental
framework are listed in table 4.1.

Parameters Values
α 0.01 cm−1

β 14 × 10−6 K−1

κ 0.7 Wm−1K−1

λ 532 nm
nb 1.8
R 360 µm
P 1 − 10 W

Table 4.1. Values of the parameters one typically employ in an
experimental setup.

where we recall that k = k0nb = nb
2π
λ .

4.2 Conserved quantities
In order to test the code, we first checked that total energy and total prob-
ability (or, to be more precise, the power) are conserved, i.e. the quantities:

E =< Ĥ >ε=< − 1
2k∇2

⊥ − 1
2∆n >ε

ÚÚ
dx dy |ε|2 = P

should be independent of z, which play the roles of time in our analogy.
In the latter the < Ô >ε denotes the quantum average of the operator Ô
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4.3 – Single beam initial condition

over the wave function ε:

< Ô >ε=
ÚÚ

dx dyε∗Ôε.

We expect that power is always perfectly conserved, as the the Split-Step
method does not perturb the norm of the wave function, while on the other
hand energy should be better conserved as the z step gets smaller. As pointed
out by fig. 4.1 and 4.2 we verified that our algorithm correctly conserves the
discussed quantities.

Figure 4.1. Total energy E as a func-
tion of the propagation length z, for
several step sizes. As we can see for
dz = 10−5 we have good conservation.

Figure 4.2. Total power P of the op-
tical beam as a function of the propaga-
tion length z, as expected is it perfectly
conserved.

4.3 Single beam initial condition
In fig. 4.3 and 4.4 is shown the output of the simulation for a single gaussian
beam of power P = 1.6W . As we can see we have a self-focalisation at the
beginning, due to the fact that the interaction is indeed attractive as we have
a minus sign in Eq. (1.6), followed by non linear breathing modes, whose
sizes get smaller as the laser keep propagating trough the medium.
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4 – Results for different initial conditions

Figure 4.3. Initial evolution of the
y = 0 slice of the normalized inten-
sity of the optical beam as a function
of x and z. The axis units are in the
adimensional frame.

Figure 4.4. Evolution of the y = 0 slice
of the normalized intensity of the optical
beam as a function of x and z for larger
values of z. The axis units are in the
adimensional frame.

4.3.1 Variational model comparison
We are now able to compare the results of the numerical solutions of the
equations with the one found according to the variational approach described
in 2.2. In particular we compare the average width of the wave function
< x2 + y2 >ε, with the solution of Eq. (2.13). As we can see from the
comparison in fig. 4.5, we have good agreement in the initial phase of the
dynamics, then we have a difference between the two curves which grows as
z increases. There are essentially two reasons for that, even though they can
be seen as the two sides of the same coin:

1. The Gaussian ansatz we made to derive the Lagrangian approach is not
the exact solution of the equations.

2. As z grows, other phenomena like Landau damping and violent relax-
ation, start to play an import role. This phenomena are typical of such
systems characterized by long range interactions and will be better ex-
plained in the next chapter.
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4.4 – Double beam initial condition

Figure 4.5. Comparison between the exact solution of the equation for R
coming from the variational model and the one obtained with the numerical
simulation. All the units are in the adimensional frame.

4.4 Double beam initial condition
We also run the simulation by inserting a double gaussian as initial condition:

ε(þr⊥, z = 0) = N (e− (|þr⊥+þa|)2

R2 + e− (|þr⊥−þa|)2

R2 )

where again the normalization constant N was chosen to be consistent
with the total power of the injected beams and the parameter þa was fixed
in such a way that we have no relevant overlapping between the beams at
the beginning, i.e. |þa| > 3R. We show in fig 4.6 the plot of the numerical
solution of the equations for such initial condition.

As we can see there is a merging of the beams in the first phase of the
dynamics, due again to the fact that the interaction is self-focusing, then
there is a repulsion which is essentially linked to diffraction effect and finally
as the propagation length increases the two beams merge again.

Since the dynamics showed from these simulations is very rich, it would be
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4 – Results for different initial conditions

Figure 4.6. Evolution of the y = 0 slice of the normalized intensity of the
optical beam as a function of x and z for a double gaussian initial condition.
All the units are in the adimensional frame.

interesting to directly compared these results with the evolution of optical
wavepackets observed in the experiments, we plan to do that in a future
cooperation with the INPHYNI lab.

38



Chapter 5

Quasi-stationary state

In the previous chapter we mentioned that the system, for large values of z
is dominated by the Landau damping phenomenon as well as by a violent
relaxation. Now we are going to explain this in details and we are going to
discuss how the system reaches a quasi-stationary state.

5.1 Virial theorem
The Landau damping phenomenon is strongly linked to the Virial theorem,
we start from its explanation in the classical case and then focus on the
quantum version, which is the interesting one for our system.

5.1.1 Classical Virial theorem
In the classical case, for the analogue gravitational system in dimension d =
3, after sufficiently long time a stationary state is reached. This state is
described by the Virial theorem, which in its classical version states that for
such a system twice the time average of the kinetic energy computed over a
long period, is equal to the opposite of the potential energy, averaged over
the same period:

2K̄ = −Ū .

Phenomenologically, Landau damping deals with the violent dynamics of the
system in the beginning, which gets more violent then smaller the virial ratio
K

2|U | is at the initial time. The kinetics energy starts to rapidly and intensively
oscillate, whit an amplitude which slowly decreases as time grows, relaxing
progressively to the stationary state predicted by the theorem.
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5.1.2 Quantum Virial theorem
For a quantum system characterized by the same interactions, happens more
or less the same. The quantum Virial theorem [18] indeed states that, if
the system is in an eigenstate of the Hamiltonian, the average of the kinetic
energy over the wave function of the system is equal to half the average of
the potential energy:

< 2K̂ >ε= − < þ̂r · ∇V̂ >ε . (5.1)

Note that in the quantum version of the theorem, the two sides of the
equation are not averaged over time, therefore they are exactly the same, the
system must be in an eigenstate of the Hamiltonian though.

In the particular case of our system, it is possible to evaluate the right
hand side of Eq. (5.1) by exploiting G(þr, þr Í), the Green function of the
2-dimensional Laplace operator (see Appendix B):

G(þr, þrÍ) = 1
2π log |þr − þr Í|

V̂ = −∆n(þr, z) = g
Ú
G(þr, þr Í) |ε(þr Í, z)|2 dþr Í =

= g

2π

Ú
log |þr − þr Í| |ε(þr Í, z)|2 dþr Í.

Consequently, after some manipulation (see Appendix B) we find the value
to which the kinetic energy relaxes:

< K̂ >= g

8π (5.2)

where g is out control parameter, given by Eq. (4.1).

5.2 Comparison with simulations
Coming back to the simulation, we now compare the behaviour of the kinetic
energy obtained for different initial conditions, with the relaxation values pre-
dicted by the quantum Virial theorem. In this case, we set a single Gaussian
initial condition and vary the power associated with the beam, in particu-
lar we explored values of power very similar to the one we are able to work
with experimentally: 1W, 1.5W, 3W and 5W. As we initialize the system to
a state which is not stationary at all, since simple gaussian beams are not
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solutions of Eq. (1.5) and (1.6), we expect the kinetic energy to fluctuate
around the predicted value.

From fig. 5.1, we can see how in all cases we get good agreement within a
discrepancy of the order of 5% (see table 5.1), it is possible to observe though,
how this discrepancy get smaller as the power increases. One reason for that
is that by increasing the power, we are decreasing the Virial ratio K/ g

8π , as
the power of the beam is inside U (see Eq. 4.1), therefore the relaxation is
faster. However, a more insightful way to understand this, is explained in
the next section.

P (W) d (%)
1 8.2
1.5 4.7
2 4.1
3 3.7
5 2.8

Table 5.1. Values of the percentage discrepancy d between the average of
K and the Virial value for different initial conditions.
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Figure 5.1. Plots of the kinetic energy as function of the propagation
direction z in the adimensional frame, together with the Virial relaxation
value for different powers of the optical beam.
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5.2 – Comparison with simulations

5.2.1 Multiscale nature of the problem
Qualitatively speaking, one reason why larger values of power lead to a faster
formation of a quasi-stationary state, is that increasing the power means
increasing the interaction size of the system, therefore we expect the self-
focalisation to be faster. Indeed considering Eq. (4.1), points out how g,
which is the coupling parameter associated with the interaction, is propor-
tional to the power of the beam. Under a quantitative point of view, this
can be understood by pointing out the multiscale nature of the NSE system.
This system is indeed characterized by two scales for the propagation length
z, one linked to the kinetic pressure and the other one linked with the self-
focusing interaction. In order to underline the first scale we mentioned, we
can rely on the adimensionalization of the equations. By setting the typical
scales for ε and the transversal lengths, i.e. x and y, in a way compatible
with the experimental set:

ç∇2
⊥ = 1

l2typ
∇2

⊥ = 1
R2 ∇2

⊥

|ε̃|2 = ε2
typ|ε|2 = P

R2 |ε|2

exactly like we already did in section 4.1, this leads to having just one control
parameter, given by Eq. (4.1), in the adimensionalized equations:

i
∂ε

∂z
+ 1

2∇2
⊥ε+ ∆nε = 0

∇2
⊥∆n = −g |ε|2 .

Therefore, if we look at the typical scale of the propagation length ztyp,
given by Eq. (1.11), it will be:

ztyp = 1
k0∆ntyp

= kR2.

As k is associated in the original dimensionful frame with the kinetic
energy term, this is the kinetic pressure scale.

On the other hand, if we consider Eq. (1.6) and exploit its green function
solution form (see Appendix B):

∆n(þr, z) = αβ

2πκ

Ú
dþr Í log(|þr − þr Í|)|ε(þr Í, z)|2
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we get that the self-focusing interaction scale is given by:

∆ntyp = γR2εtyp
2π = Pγ

2π
where for simplicity of notation we denoted γ = αβ

κ . Therefore the typical
value of the propagation length associated with the interaction term is:

ztyp = 1
k0∆ntyp

= 2π
Pγk0

= λ

Pγ
(5.3)

which indeed decreases as the power grows.

5.3 Study of the stationarity in time
Together with the quasi-stationary state related to the propagation length,
there exist also a stationary state in time. Until now we have considered the
system to be in such a stationary regime, as we ran all the simulations by
considering the heat-like equation to be time independent. In principle, in
the experimental optical system, we deal with these two equations though:

i
∂ε

∂z
+ 1

2k∇2
⊥ε+ k0∆nε = 0

ρ0C

κ

∂∆n
∂t

= ∇2
⊥∆n+ αβ

κ
|ε|2

(5.4)

where the second Eq. in (5.4) is a direct consequence of (1.9) and we re-
member that ρ0C is the heat capacity per unit volume of the optical medium.
We know that by waiting for sufficiently long time, heat propagation in the
optical medium will saturate and the system will reach a stationary regime
described by Eq. (5.4) with the l.h.s of the refractive index equation approx-
imately equal to zero. To investigate the details of this limit, in principle
one should study the unicity of the solutions of this two coupled differential
equations system. However, we proceeded with a method perhaps not as
much elegant, but still efficient, namely we went for a numerical solution.

5.3.1 Numerical solution
The algorithm employed is essentially the same we described in chapter 3,
with the difference that now we should consider one more loop over time.
The initial conditions are:
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5.3 – Study of the stationarity in time

ε(þr⊥, z = 0, t = 0) = N e− r2
⊥

R2

∆n(þr⊥, z, t = 0) = 0

as we always inject a gaussian beam and assume that at t = 0 the refractive
index of the medium remains unchanged, since no propagation has occurred
yet. In addition, we require the following boundary condition:

ε(þr⊥, z = 0, t) = ε(þr⊥, z = 0, t = 0) ∀t > 0

since at the beginning of the medium interface, i.e. z = 0, we force the
solution to be gaussian.

Adimensionalization

In order to make Eq. (5.4) adimensional, we follow the usual procedure we
already exploited in section 4.1, with particular attention to the fact that we
have one extra term. The result is very similar though:

i
∂ε

∂z
+ 1

2∇2
⊥ε+ ∆nε = 0

∂∆n
∂t

= ∇2
⊥∆n+ g |ε|2

where g is again given by (4.1). For how concerns the typical time scale,
it turns out to be:

αt = ρ0CR
2

κ

therefore, since in our experimental setup the heat capacity per unit vol-
ume of the medium is ρ0C = 1.6 J

Kcm3 , we have αt ≈ 0.5s.

Results

We ran the simulation with the same spatial steps we used in the stationary
one and with a time step ∆t = 0.001. In order to study the convergence of
the solution, we made several snapshots of the intensity of the single gaus-
sian beam |ε|2 and compared them with the output of the time independent
simulation with the same initial conditions. The results are shown in fig. 5.2
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and points out the system actually converges to the same state, in a time
which is of the order of some αt.

Therefore, we expect the time transient to last approximately a few sec-
onds in the experiment. It will be interesting to check whether this is true
or not in practice, as well as performing a mathematical study of the unicity
of solutions regarding Eq. (5.4), all of this will be done in the PhD thesis
which will continue this project.
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5.3 – Study of the stationarity in time

Figure 5.2. Plots of the y = 0 slice of the normalized intensity of the
optical beam as a function of x and z for different values of time. The last
plot shows an overlap with the time stationary solution. All the units are
in the adimensional frame.
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Chapter 6

Phase-space picture

In this chapter, we are going to focus on the phase-space picture of the NSE,
by introducing the Husimi distribution [19].

6.1 Classical limit of NSE
The employment of a phase-space picture could seem not appropriate for a
quantum system, for which knowing simultaneously the values of position
and momentum is forbidden by Heisenberg uncertainty relation. However,
the optical system we are dealing with can actually be consider as classical.
There are at least two ways to realise it.

6.1.1 Comparison with Planck constant
The first one deals with a direct comparison between the PHE and the NSE:

i
∂ε

∂z
+ 1

2k∇2
⊥ε+ k0∆nε = 0.

Formally the PHE can be interpreted as a Schrödinger equation for a
particle of mass k, in a universe where ~ = 1. However, k ≈ 108 in our setup,
since we are working with beams in the visible region of the electromagnetic
spectrum, this is like considering a quantum particle with a huge mass. More
quantitatively, by comparing the uncertainty relations for an electron and for
our optical system:

∆xe ≈ 10−10m ∆pe = m∆ve ≈ 10−30kg × 106ms−1

∆xe∆pe ≈ ~ ≈ 10−34Js
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6 – Phase-space picture

∆x ≈ 10−4m ∆p ≈ 108m−1

∆x∆p º 1.

We can see that the typical scales of our optical system are much larger
than the analogue value of ~, compared with what usually happens for an
electron in a hydrogen atom (we used the values of the electron typical posi-
tion and momentum delocalization, ∆xe and ∆pe, given by the Bohr model.)

Momentum interpretation in the optical framework

In the latter we treated the momentum in the PHE equation as a wavenum-
ber, this is due to the De Broglie relation þp = ~þk together with the fact
that in our analogy, as we have already mentioned, ~ = 1. Therefore, is
completely legit to interpret the momentum þp as a wavevector in the optical
framework: its magnitude will be fixed by the wavelength of the laser we
are injecting, but its component will in principle vary with the propagation
length. In addition, as ∆x∆p must have the dimension of ~ which again is 1
in this picture, it is easy to convince ourselves that p must indeed have the
dimension of the inverse of a length, therefore, of a wavenumber.

6.1.2 Role of the quantum pressure

The second reason, is linked with the quantum pressure term 1
2∇(∇2√

ρ√
ρ ),

we have introduced at the end of section 2.1. It is possible to show how
for our optical system this term is actually very small compared with the
others appearing in Eq. (2.7), proving that in the experimental context we
are actually dealing with a classical system, as one expect. The comparison
between the quantum pressure term and all the other ones in the Euler-like
equation, is shown in figure 6.1.
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Figure 6.1. Plot of the quantum pressure term (purple curve), compared
with the self-focusing potential term (red curve), appearing in Eq. (2.7)
as a function of the distance from the origin in the transverse plane in
units of the beam width.

6.2 Husimi distribution
Now, that we have justified why we would like to rely on a phase-space rep-
resentation of this system, we present the mathematical tool we will exploit
in order to achieve the goal: the Husimi distribution F (þr, þp). It is defined as
follows:

F (þx, þp, t) =
------
A 1

2π~

Bn/2 A 1
πη2

Bn/4 Ú
dnrψ(þr, t) exp

C
−(þx− þr)2

2η2 − i
p · (þr − þx/2)

~

D------
2

(6.1)
where n denotes the dimension of the space where the system represented

by the wavefunction ψ lives, therefore in our optical case we wil take n = 2.
As we can see from Eq. (6.1), we are essentially doing a spatial coarse
graining over a scale η with a gaussian field and then performing something
which is very similar to a Fourier Transform in momentum to the coarse
grained wavefunction. The parameter η must be chosen in a proper way,
depending on the scales of the problem, in particular it must satisfy [22]:
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6 – Phase-space picture

d ¹ η ¹ ∆x (6.2)

where d is the grid step we employ in the numerical simulation and ∆x
the typical delocalization of the system, therefore in the case of the optical
beam, its width.

Such a phase-space probability density is by construction always non-
negative, it doesn’t give back the right values of current and charge densities
when integrated though [23], this is why it is actually a quasi-probability
distribution. To be more specific, by considering the one dimensional case
for simplicity: Ú

dpF (x, p, t) /= |ψ(x, t)|2

Ú
dpF (x, p, t)p /= j(x)

where |ψ(x, t)|2 and j(x) = ~
2mi(ψ

∗ ∂ψ
∂x − ψ ∂ψ∗

∂x ) are what traditionally in
quantum mechanics are called and interpreted as charge and current density
respectively [24].

6.2.1 Numerical evaluation and plots
In evaluating numerically the Husimi distribution (HD), we exploited again
the FFT algorithm, this allows to save a lot of computational time: in par-
ticular we switch from N3 operations required by an algorithm which applies
directly the definition of the HD according to Eq. (6.1), to O(N2 logN)
operations with the FFTW. We computed the HD in the optical framework,
for different values of the propagation length z, which substitutes time in
the definition (6.1). We then plotted F (x, y = 0, px, py = 0, z), for different
values of z, making sure that, as one expect, the radial symmetry proper of
the wavefunction is maintained. The radial symmetry implies the odd-like
symmetry: F (x, y = 0, px, py = 0, z) = F (−x, y = 0,−px, py = 0, z).

What is happening in the plots of fig. 6.2 is that at z = 0 the system has
px = 0, and a gaussian-like distribution in x, consistently with our initial
gaussian beam condition. The reason why we have zero "velocity" at the
beginning is that, as explained in section 6.1.1, the momentum can actually
be interpreted as the wavevector, therefore px coincides with its components
in the x direction, which is zero at the beginning since we are injecting the
beam in a perpendicular way with respect to the medium transversal face.
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6.2 – Husimi distribution

Figure 6.2. Plots of the Husimi density function F (x, y = 0, px, py = 0), in
the slice y = 0 = py for z = 0,0.2,0.3,0.6, in natural units.

For how concerns the z > 0 plots, we can rely on the gravitational analogy in
order to understand them in a more intuitive way. For example for z = 0.1
the particles start to collapse towards the centre: in the x > 0 they therefore
acquire a negative momentum and in the x < 0 region a positive one, notice
how the odd-like symmetry is indeed satisfied. In general the plots points
out a filamentation in phase-space which is typical of long range interactions
systems.
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Conclusions

We have shown that, with a proper mapping, a medium with positive ther-
mal–optical nonlinearity can be exploited in order to simulate the NSE. The
simulations pointed out how the system, after a quite rapid and violent be-
havior represented from the first peak of the kinetic energy as a function of
z, slowly relaxes to a quasi-stationary state characterized by smaller oscil-
lations. Energy and power conservation have been verified, the variational
gaussian model turned out to be valid only for in the initial part of the
dynamics, while the agreement with the Virial theorem is good for high pow-
ers. We also showed that exploring the system for larger values of z leads to
better agreement, anyhow in the experimental framework is better to manip-
ulate the power and keep the length of the material constant. This is due to
the fact that firstly, very long material with these optical properties are not
easy to produce and secondly, then longer the medium is, then larger will be
the effect of power dissipation. There are still many things which need to
be done about this project and they will be carried out with a PhD thesis.
For how concerns the theoretical aspects, we aim to better understand some
mathematical properties of the NSE equations, like the unicity of solutions
and its classical limit with the Vlasov-Poisson equation [20]. Moreover we
would like to perform some studies about the breaking of symmetry [21] and
the structure formations in the cosmological context, starting from slightly
asymmetrical initial conditions and analysing how they evolve in space and
time. Since the problem is very challenging numerically, requiring the resolu-
tion of a wide range of spatial scales to keep the symplectic properties of the
dynamics, there is a lot of work to do concerning algorithmic developments:
optimization, adaptive grids, smart time steps and implementation on GPUs.
Finally for how concerns direct observations, there will be a cooperation with
the experimentalists of the INPHYNI lab who will perform experiments on
the nonlinear optical system, validating and refining the model.
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Appendix A

Details of the PHE
derivation

The slowly varying part of the nonlinear polarization is given by:

þPNL(þr, t) ≈ ÔÔNLE(þr, t)

where the nonlinear contribution to the dielectric constant is defined as:

ÔNL = 3
4χ

(3)
xxxx| þE(þr, t)|2.

Since the linear part of the polarization can be written as þPL(þr, t) =
Ôχ(1)

xxE(þr, t), we can provide the following expression for the dielectric con-
stant:

Ỗ(ω) = 1 + χ(1)
xx (ω) + ÔNL

where a tilde denotes a Fourier Transform of the quantity under it. The
dielectric constant can be used to define the refractive index ñ and the ab-
sorption coefficient α̃ which both become intensity dependent because of ÔNL.
It is customary to introduce:

ñ = n0 + n2|E|2 α̃ = α0 + α2|E|2.

The liner index n0 and the absorption coefficient α are related respectively
to the real and imaginary part of χ(1)

xx . Using Ô = (ñ + iα̃c
2ω0

)2, Eq. (1.8), the
nonlinear, or Kerr, coefficient n2 and the two-photon absorption coefficient
α2 are given by:

n2 = 3
8nRe(χ

(3)
xxxx)
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A – Details of the PHE derivation

α2 = 3ω0

4ncIm(χ(3)
xxxx)

which shows how the nonlinear part of the refractive index is linked to the
nonlinear part of þP .
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Appendix B

Evaluating Virial integral

In order to evaluate the quantity which appears on the r.h.s of Eq. (5.1), we
first need to compute V̂ in a suitable form. To do that we exploit the Green
function of the 2d Laplacian operator, i.e. the function G which satisfies:

∇2G(þx; þy) = δ(|þx− þy|). (B.1)

Since the problem is rotationally symmetric about the special point þy, the
fundamental solution can only depend on the scalar distance from that point:

G(þx; þy) = G(|þx− þy|).

Because of the delta function, we can easily integrate both sides of Eq. (B.1),
in particular we do that on the following domain:

Br = {þx ∈ R2 : |þx− þy| < r}.

Therefore, we have, by applying the divergence theorem and the definition
of directional derivative:

1 =
Ú
Br

dV∇2G =
Ú
∂Br

dSn̂ · ∇G =

=
Ú
∂Br

dΩ∂G
∂r

r = 2πrdG
dr

which by comparing each sides yields:

dG

dr
= 1

2πr
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B – Evaluating Virial integral

this equation once integrated shows us that the Green function of the 2d
Laplacian operator is a logarithm.

We can therefore write:

< −þr · ∇V̂ >=< þr · ∇(∆n(þr, z)) >=

= g <
Ú
þr · ∇G(þr, þr Í) |ε(þr Í, z)|2 dþr Í >=

= g

2π

ÚÚ þr · (þr − þr Í)
|þr − þr Í|2

|ε(þr Í, z)|2 |ε(þr, z)|2 dþr Ídþr.

By the changing þr ↔ þr Í and exploiting the identity þr·(þr−þrÍ)+þr Í·(þr Í−þr) =
|þr − þr Í|2, together with the normalization of ε,we finally get:

< −þr · ∇V̂ >= g

4π .

Therefore:
< K̂ >= g

8π .
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