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Summary

Non-convex continuous optimization problems occur in many fields
of engineering, ranging from operations research, control theory and
neural network learning. The most common optimization approach
are gradient based method that,however, for large optimization prob-
lems, these approaches are plagued by local minima and saddle
points,that is suboptimal solutions where the gradients are zero and
where optimization halts prematurely. Recently, Baldassi et al. [1]
have introduced a local entropic measure for learning with discrete
synapses that leads to unanticipated computational performance.
Inspired by this line of work, Chaudhari [2] connects this idea to
the solution of a Hamilton-Jacobi partial differential equation and
stochastic optimal control theory [4], providing an algorithm to im-
plement the descent along the gradient of the local entropy.
Here we provide an algorithm based on the work on learning parametrized
controllers done by Kappen and to compare its performances to the
one proposed by Chaudhari [3].
We explore the validity of our method in relevant one dimensional
cases and in multidimensional cases of both a convex and a non con-
vex function, finding that in both cases the control descent gives a
comparable extimate of the global minimum of the original func-
tion given the same fixed parameters and thus suggesting that this
method could prove itself as a valid alternative with further reasearch.
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Chapter 1

Introduction

Non-convex continuous optimization problems occur in many fields
of engineering. Examples are in operations research, control theory
and neural network learning. The most common optimization ap-
proach are gradient based method. For large optimization problems,
these approaches are plagued by local minima and saddle points,
suboptimal solutions where the gradients are zero and where opti-
mization halts prematurely.

1.1 State of the art

In literature it is possible to find different methods to perform global
optimization based on physics, among which we can recall the simu-
lated annealing [6] and parallel tempering [7]. Recently, Baldassi et
al. [1] have introduced a local entropic measure that can be used
as an alternative of global optimization.
Inspired by this line of work, Chaudhari [2] connects this idea to
the solution of a Hamilton-Jacobi partial differential equation and
stochastic optimal control theory [4], providing an algorithm to im-
plement the descent along the gradient of the local entropy.
In their work they both explore the possibility of finding not the
global minimum but a wide valley of local minima, which leads to
better results in implementing learning algoritms.
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1 – Introduction

However their suggested procedure can easily be tuned in to perform
a global optimization problem since it simply depends on the choice
of some parameters. To understand this better we will now proceed
in a brief summary of the procedure explained in [2].
Consider a general optimization problem of the form

w∗ = argminwf (w) (1.1)
where w ∈ Rn and f is a non-convex cost objective. Minimizing f
is usually done using a gradient based method from a random initial
value: wt+1 = wt − η∇f (w) with ∇f (w) the gradient of f at w.
Instead of minimizing f ,minimize a local entropy distribution of the
form:
F (w, γ, β) = − log

Ú
dxp(x|w)e−βf(x) p(x|w) → e−β γ2 ëx−wë2

(1.2)
where ë · ë2 denotes Euclidean norm.
This form is derived from the interpretation of f (w) as an energy
landscape, which leads to a formulation of the Gibbs distribution in
which β takes the role of an inverse temperature and γ is a parameter
that is linked with the convexity of F (w).
Infact for γ → 0 the local entropy will be almost convex, instead for
γ → ∞, F (w, β, γ) will result of the same shape of f (w).
In [2] β is assumed equal to 1 since the goal is not to reach the global
minimum of f (w) but to reach a wide valley of local minima; for our
purposes instead we will keep the parameter since for β → ∞ the
Gibbs distribution concetrates above the global minimum of f (w),
thus preserving the global minimum also in F (w, γ).
However this minimization presents a problem in the sense that the
analitycal computation of F (w) is not always straight-forward, so
in order to perform a gredient descent along the local entropy it is
necessary to estimate the value of ∇F (w).
In [2] this estimate is expressed in the formula:

−∇F (w, γ, β) = γ(w − éxê) (1.3)

8



1.2 – Project Layout

Where é•ê denotes the expectation value over the Gibbs distribution
of the original function f (w). This expectaction value is actually
estimated through a Langevin dynamics, generated by the following
equation:

dxÍ = ∇f (xÍ) − γ(xÍ − w) + dwt (1.4)

with édw2
t ê = 1

2βdt. Then the éxê in 1.3 can be approximated to
1
N

qN
t=1 x

Í
t.

Thanks to this estimate it is now possible to perform a gradient
descent on F (w),by taking into account that it is only a local esti-
mate for the gradient so it is necessary a double loop: The outer loop,
which actually performs the gradient descent on F (w) and gives the
value of the desired w∗; the inner loop, which estimates locally the
gradient through the langevin dynamics at each update.

1.2 Project Layout

In this project is proposed to interpret p(x|w) = p(XT = x|X0 = w)
as the conditional distribution after a finite time T of a Brownian
motion

dXt = dWt X0 = w (1.5)

with dWt Gaussian white noise with mean zero EdWt = 0 and unit
variance E[dW 2

t ] = dt.
E denotes expectation value.
With these assumptions we can relate Eq. 1.2 to a finite horizon
stochastic optimal control problem on the time interval t ∈ [0, T ]
as will be explained in the following section. This link allow us
to estimate the gradient of F (w) in a different way than the one
proposed by Chaudhari in [2], which consists of finding the optimal
control of the above stated problem. In fig. 1.1 we can appreciate
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1 – Introduction

for a random one dimensional function f (w) the different landscapes
that F (w) assumes by fixing the time horizon T , which corresponds
to fixing γ in the Chaudhari formulation. We plot F (w) for T =
0.01 and T = 0.1. The free energy smoothes the local minima and
maxima while the global minimum is kept the same as f (w). Note,
that varying T sets the spatial scale at which the local minima are
removed, but to preserve the same global minimum as f (w) it is
necessary to fix β large enough.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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F (T=0.01)

F (T=0.1)

Figure 1.1. Left: The one dimensional function f(w) has many local
minima on the interval [−1, 1]. The free energy expression Eq. 1.2 for
T = 0.01 and T = 0.1 has less local minima. Note, that nevertheless
the global minima coincide.
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1.3 – Path integral control

1.3 Path integral control

In this section, are reviewed some well-known facts about the path
integral control method. See [3] for more details and references to
the literature.

Consider the following dynamical system on the time interval t ≤
s ≤ T and cost Su of a trajectory τ = x[t:T ]:

dXs = h(Xs, s)ds+ σ(Xs, s) (u(Xs, s)ds+ dWs) Xt = x (1.6)

Su(τ |x, t) = f(XT ) +
Ú T

t
dsV (Xs, s) +

Ú T

t
ds

1
2ëu(Xs, s)ë2 +

Ú T

t
dsu(Xs, s)dWs

(1.7)

The stochastic optimal control problem is to find the optimal control
function u:

J(x, t) = min
u

Eu Su(τ |x, t)
u∗(x, t) = arg min

u
Eu Su(τ |x, t) (1.8)

that minimizes the expected control cost C(x, t) = EuSu, where
Eu is an expectation value with respect to the stochastic process
Eq. 1.6 with control u.
J(t, x) is called the optimal cost-to-go and is the optimal cost

from any intermediate state x and any intermediate time t to the
end time T . For any control problem, J satisfies a partial differential
equation known as the Hamilton-Jacobi-Bellman equation (HJB).
In general, this control problem is very hard to solve. The above
control problem is a so-called path integral control problem [4, 5],
whose optimal solution is given in terms of a path integral

J(x, t) = − logψ(x, t) ψ(x, t) = Eu e−Su(τ |x,t) (1.9)

The optimal control is given as u(x, t) = −σ(x, t)T∇J(x, t).
11



1 – Introduction

Note, that the optimal cost-to-go involve an expectation over a
stochastic process with a control function u. It states that these ex-
pectations are independent of the value of the control u. All controls
give the same unbiased estimate of ψ. However, their variance differ.
It can be shown that the closer u is to optimal control the smaller
the variance. When u = u∗, the optimal control, the sampling pro-
cedure is optimal in the sense that the variance of the estimator is
zero.

Denote pu(τ |x, t) the probability density of trajectories τ under
the dynamics Eq. 1.6 with control u. Then from Eq. 1.9

J(x, t) = − log
Ø
τ
p0(τ |x, t)e−S0(τ |x,t) = − log

Ø
τ
pu(τ |x, t)e−S0(τ |x,t)−log pu(τ |x,t)

p0(τ |x,t)

≤
Ø
τ
pu(τ |x, t)

A
S0(τ |x, t) + log pu(τ |x, t)

p0(τ |x, t)

B
=
Ø
τ
pu(τ |x, t)Su(τ |x, t)

(1.10)

where we used Jensens’ inequality and the fact that the last expres-
sion between brackets is equal to the expression in Eq. 1.7. Eq. 1.10
simply states that the optimal-cost-to-go J(x, t) is less than the ex-
pect cost C(x, t) using any sub-optimal control.

The inequality Eq. 1.10 is saturated when Su(τ |x, t) has zero vari-
ance, in which case J(x, t) = C(x, t) = Su(τ |x, t). The value of
u = u∗ for which this occurs is the optimal control1. Note from
Eq. 1.9 that ψ(x, t) is the normalisation constant of the distribution

p∗(τ |x, t) = 1
ψ(x, t)pu(τ |x, t)e−Su(τ |x,t) (1.11)

which is the distribution over trajectories under the optimal control
2.

1The mathematical condition for this control to exist is that
q

τ p0(τ |, xt)e−S0(τ |x,t)) <
∞.

2From the above arguments it follows that p∗ is independent of u. When u = u∗,
ψ = e−Su(τ |x,t) and p∗(τ |x, t) = pu(τ |x, t).
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Chapter 2

Control Based Gradient
Descent

With the above control formulation, it is possible now identify the
free energy F in Eq. 1.2 as the optimal cost-to-go in Eq. 1.9.
Consider a controlled Brownian motion on the interval t ∈ [0, T ]
with end cost:

dXt = u(Xt, t)dt + dWt X0 = w (2.1)

Su(τ |w) = f (XT ) +
Ú T
0
dt

1
2ëu(Xt, t)ë2 +

Ú T
0
dtu(Xt, t)dWt (2.2)

Since the path cost V = 0, the (uncontrolled) marginal distribution
at t = T is Gaussian: p0(xT , T |w,0) = N (xT |w, T ) and S0(τ |w) =
f (xT ).
The optimal cost-to-go J(w,0) Eq. 1.9 is equal to the free energy
F (w) in Eq. 1.2 with σ2 = T . The optimal control is

u(w) = −∇J(w,0) = éXT ê − w

T
éXT ê =

Ú
dτxp∗(x|w) (2.3)

éXT ê is the expected value of the XT under p∗. Note, that éXT ê
depends on w. Otherwise, the control solution would steer in a
straight line from w to éXT ê in time T .
When T → 0, F (w) → f (w) and we recover the original gradient
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2 – Control Based Gradient Descent

descent algorithm. The finite horizon control picture is illustrated in
fig. 2.1, where we plot F as a function of w and horizon time T .

w

T

−1 −0.5 0 0.5 1

−0.05

−0.04

−0.03

−0.02

−0.01

Figure 2.1. The free energy F is the optimal cost-to-go for a finite horizon
problem with horizon time T and end cost f(w). The figure plots F as a
function of w and horizon time T .

The figure is somewhat misleading. Although it is true that F is
globally minimized and F is much smoother than f , the gradient is
computed only locally around the current w. This is illustrated for
the same function in fig. 2.2. On the left we plot the local energy
E(x|w) = log p0(x|w)e−f(x) for fixed w = −0.8 versus x for different
values of T = 0.001,0.01,0.1. We see that for short horizon T the
gradient steers towards the nearest local minimum around x = −0.65
and for larger T towards the global minimum.

This effect can be better seen in fig. 2.2 right. The minimization
of f is not affected by a global scaling β, but does effect the free
energy. In particular in order to preserve the same global minimum
β should be large enough. We replace T/β with T . The the free
energy becomes:

F (w) = − log
Ú
dxe−βf(x)e−ëx−wë2/2T (2.4)

By plotting éXT ê versus T for different values of β we see that β
14
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Figure 2.2. Left: The local energy E(x|w) = log p(x|w)e−f(x) versus x for
w = −0.8 and different horizon times T = 0.001 (blue), T = 0.01 (green) and
T = 0.1 (magenta). Right: éXT ê versus T for different values of β.

should be sufficiently large, which is in agreement with what we have
stated before.

As Eq. 2.3 and Eq. 1.11 indicate, we can estimate éXT ê by sam-
pling from Eq. 1.5 and weighting each trajectory with e−βf(XT ). We
can improve the sampling efficiency by sampling from the controlled
dynamics Eq. 2.1. In [3] we propose to use the Cross Entropy method
to learn an arbitrary parametrized controller, yielding an adaptive
importance sampling scheme.

15



2 – Control Based Gradient Descent

2.1 Constant Control

Here, we propose the simplest possibility, with u constant indepen-
dent of x, t, so we only have to estimate the vector u itself. In this
case we can integrate Eq. 2.1 which yields XT = w+uT +WT , with
WT a mean zero Gaussian with variance T . The optimal distribution
and approximating distributions are

p∗(x|w) = 1
ψ(w)e

−ëx−wë2
2T −f(x) pu(x|w) = 1√

2πT
e−ëx−w−uTë2

2T

(2.5)

We find u by minimizing the Cross Entropy criterion [3]

KL(p∗|pu) =
Ú
dxp∗(x|w) log p

∗(x|w)
pu(x|w) ∝ Eûe−SûëXT − w − uTë2

(2.6)

û is an importance sampling control that can have any value. By
seting ∂KL(p∗|pu)

∂ui
= 0 we estimate u as

u = û + 1
T

Eûe−SûWT

Eûe−Sû
Sû = f (XT ) + 1

2Tëûë2 + ûWT (2.7)

When û = u∗ is the optimal control Sû has zero variance so that
Eûe−SûWT = e−SûEûWT = 0 and Eq. 2.7 becomes u = u∗, ie. the
CE procedure estimates the optimal control. We choose û = u the
current estimated value of the optimal control.

We can construct two algorithms from the above ideas. The first
is to do treat F as the new cost objective and do gradient descent
in F , where the gradient is given by u in Eq. 2.7. This yields the
following iterative algorithm

• Initialize w. Initialize u = 0. Choose T , remembering that this
value should be large enough to smooth the local minima, nut
not too large that the control problem is no longer considerable

16



2.1 – Constant Control

to be at finite horizon [from our simulations a good value is
T ∈ [0.1,1]]. Choose β large enough [in the following simulations
β = 5, as we seen from 2.2]

• In each iteration,

– draw M samples Wm from a mean zero Gaussian with cir-
cular variance T .

– Compute xm = w+uT +Wm and Sm = f (xm)+ 1
2Tëuë2 +

uWm. Estimate the partition sum as ψ̂ = 1
M

qM
m=1 e

−Sm.
– Update the control

u := u + 1
T

1
M

qM
m=1W

me−Sm

ψ̂
(2.8)

This provides the gradient because u = −∂F
∂w .

– Do the gradient step: wi+1 = wi + ηuT . (We could do
w := w + ηu but find it convenient to rescale η with T . )

– Since uT = éXT ê − w and we have adapted w we should
adapt u := (1 − η)u.

The method is applied to the one dimensional function of fig. 1.1,
with different initializations. We use 15 iterations andm = 500 sam-
ples per iteration. The results for different T are given in fig. 2.3.

As we can see in the fig.. 2.3 for small values of T some of the
trajectories still end up in some local minima instead of steering to-
wards the global minimum, so in order to minimize the original f (w)
one logical step to follow would be to use a large value of T.

After setting this value it is true that the trajectories are con-
verging to the global minima, but as one can appreciate also from
fig.. 2.4, what we are minimizing with the previous algorithm is actu-
ally F (w) and not f (w). Since β is large enough the global minima

17



2 – Control Based Gradient Descent

coincide and our algorithm finds a minimum of w = −0.2558, which
is in agreement with the value ofw∗ = −0.26 found for f (w).
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Figure 2.3. Top: on the left is represented the descent done with the
algorithm for T=0.001, on the right T=0.01; Bottom: Descent with T=0.1
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Figure 2.4. Top: Descent with T=0.1; Bottom: On the left it is shown tha
value of f for each iteration, on the right the value of F for each iteration
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2 – Control Based Gradient Descent

2.2 Multidimensional

Now that we have tuned in a procedure that is working for one
dimensional function, we would like to see if such algorithm performs
well even in higher dimensions.
In order to do that we first want to verify its validity in the simplest
possible case which is the convex one and then see if for a non convex
f (w) the results are comparable to the one found using the Langevin
extimate of ∇F (w) (LBGD).

2.2.1 Convex

Be n the number of dimensions. Consider the function f (w) =qn
i=1

1
2αiw

2
i where wi are the components of the n-dimensional vec-

tor w. In this case it is possible to compute analitically the value of
F (w).
Once done that we can apply the algorithm tested in one dimen-
sion and check that the gradient descent on F (w) and the one done
through the control have the same trajectory. Then we can compare
them to the estimate done trhough Langevin dinamycs.

F (w) = − log
Ú
dxe− ||x−w||2

2T e−βf(x) = (2.9)

= − log
Ú
dxe−β

qn
i=1

αix
2
i

2 e− ||x−w||2
2T = (2.10)

= − log
Ú
dxe−β

qn
i=1 αix

2
i

2 e−
qn
i=1 (xi−wi)2

2T = (2.11)

= − log e−
qn
i=1 w

2
i

2T
Ú
dxe−

qn
i=1 x

2
i

(βαi+
1
T

)
2 e

qn
i=1 2xiwi

2T (2.12)

Let’s now introduce: the matrix A∈ Rm×m defined as Aij =
0 ∀i /= j and Aii = (βαiT+1

T ); the vector B ∈ Rm defined as
20



2.2 – Multidimensional

Bi = wi
T then:

F (w) = − log e− ||w||2
2T

Ú
dxe−1

2x
TAxe

1
2B

Tx = (2.13)

= − log e− ||w||2
2T e

1
2B

TA−1B

öõõõô 2πm
det(A) = (2.14)

= 1
2T

mØ
i=1

w2
i (

βαiT

βαiT + 1) + log(
öõõõô 2πm
det(A)) (2.15)

From 2.13 to 2.14 we used tha formula for gaussian integrals and
then computed the result for our matrix A and our vector B.
With the explicit form of F (w) it is possible now to compute its
gradient components, which are : ∂F

∂wi
= wi( βαi

βαiT+1)
We proceed then to apply our previous algorithm to this f (w)

with n = 2.
In particular we chose the fucntion of this form f (w) = w2

1 + 25w2
2 .

We fix T = 0.5 and β = 5. The global minimum of F (w) and f (w)
are the same: w∗ = [0,0]. This simulation is performed by setting
the number of iteration to 150 and m = 500.

We start all trajectories in w = [3,3] but then we follow four dif-
ferent updates for each trajectory. One trajectory, the blue one in
fig.2.5 follows wr+1 = wr + ηu which corresponds to control based
gradient descent (CBGD), the second one (orange in fig.2.5) follows
wr+1 = wr − ∇F (w) a gradient descent along F (w), the third one
(yellow in fig.2.5) wr+1 = wr − ∇f (w) a gradient descent along
f (w) and the last one (purple in fig.2.5) which follows the algorithm
proposed by Chaudhari .
In this simulation we set η = 0.03; it is needed such a small value
otherwise the taylor expansion needed for the gradient descent along
f (w) wouldn’t be true and then we couldn’t make the comparison.

The results obtained are w = [−0.005,0.001] for CBGD, w =
[0.004,0.001] for GD along F (w), w = [−0.001,−0.001] for the

21



2 – Control Based Gradient Descent

LBGD and w = [0.03,0] for the GD on f (w).
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Figure 2.5. Contour plot of the path done by gradient descent on
f(w) in yellow, on F (w) in orange,SLGD on F (w) in black and with
control descent in blue

From the results stated above we can see how all the gradient
descent performed along F (w) give comparable results, while the
descent on f (w) gives a result which is 10 times bigger.
From fig.2.5 we can also see how in the long run the CBGD actually
gives a better extimate on ∇F (w) than SBGD. This is actually dued
to the fact that at each step the control updates itself, thus giving a
better estimate of ∇F (w) while approaching the optimal control.
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2.2 – Multidimensional

2.2.2 Non-Convex

Once we checked that our code is indeed working on the convex case
and is giving comparable results to the LBGD we can carry out a
comparison for a non-convex f (w).

For this simulation we consider dim = 2 and
f(w) =

ñ
(x− sin(2x+ 3y) − cos(3x− 5y))2 + (x− sin(x− 2y) + cos(x+ 3y))2

with w = [x, y]
In order to compare CBGD, LBGD algorithms to the regular gra-
dient descent we compute analitically the gradient of this function
and then we let the trajectories evolve from the same starting point,
each one of them with its update rules.
∂f

∂x
= (x− sin(x− 2y) + cos(x+ 3y))(−sin(x+ 3y) − cos(x− 2y) + 1)ñ

(x− sin(2x+ 3y) − cos(3x− 5y))2 + (x− sin(x− 2y) + cos(x+ 3y))2
+

(2.16)

+ (3sin(3x− 5y) − 2cos(2x+ 3y) + 1)(−sin(2x+ 3y) − cos(3x− 5y) + x)ñ
(x− sin(2x+ 3y) − cos(3x− 5y))2 + (x− sin(x− 2y) + cos(x+ 3y))2

(2.17)

∂f

∂y
= (−sin(x− 2y) + cos(x+ 3y) − x)(2cos(x− 2y) − 3sin(x+ 3y))ñ

(x− sin(2x+ 3y) − cos(3x− 5y))2 + (x− sin(x− 2y) + cos(x+ 3y))2
+

(2.18)

+ (−5sin(3x− 5y) − 3cos(2x+ 3y))(−sin(2x+ 3y) − cos(3x− 5y) + x)ñ
(x− sin(2x+ 3y) − cos(3x− 5y))2 + (x− sin(x− 2y) + cos(x+ 3y))2

(2.19)

Now that we have computed the gradient we can start our updates;
for this simulation we set m = 500, and η = 0.05. We fix T = 0.8
and β = 5, still have a value large enough in order to make the global
minima coincide.
Starting the trajectories from w = [1,1] after 100 iterations we obtain
w = [0.007,1.28] with control based gradient descent, w = [0.07,1.38]
with Langevin estimate of ∇F (w) and w = [1.55,1.18] with gradient
descent along f (w); the global minimum found using matlab min
function is w = [0.1,1.1]
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2 – Control Based Gradient Descent
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Figure 2.6. Contour plot of the path done by gradient descent on f(w) in
magenta, with control based descent in red and LBGD in black; the blue dot
represents the global minimum

Looking at the fig.2.6 we have the confirmation that both algo-
rithms performs considerably better than the gradient descent along
f (w) since the trajectories actually go towards the global minimum
instead of getting stuck in some local minima.
The results obtained through LBGD and CBGD are also compara-
ble, and in order to have a numerical result to support this statement,
we compute the distance ëw∗

algorithm−w∗
globalë where with w∗

global we
intend [0.1,1.1].
The distances comuputed in this way are 0.21 for the CBGD and
0.29 for LBGD.
This result confirms what one could think by seeing the fig. 2.6, that
is both trajectories end up in a neighborhood of the global minimum.
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Conclusions

From the previous sections we can see that our method gives results
that are comparable to the one proposed by Chaudarhi in finding
a global minimum of an arbitrary function f (w) for the same fixed
parameters.
This gives us certainty on the validity of our algorithm, and opens
up different possibilities for future research. Infact in this project we
performed comparison with set value of T and β, but possibly one
would like to find a method to include in the algorithm the fixing of
these parameters.
One further line of research could be to use this algorithm in the
research of wide valley of local minima as proposed in [2], leading
to an application in neural networks for which would be necessary
generalizing the gradient descent to a Stochastic gradient descent.
Another alternative would be to use a parametrized form of the
control instead of the constant u ,maybe time dependent, in order
to better estimate the ∇F (w).
With this project we have shown that the control based gradient
descent could prove itself as a valid alternative with further reasearch,
maybe even outperforming the algorithm proposed by Chaudhari in
[2].
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