
POLITECNICO DI TORINO
Corso di Laurea in Computer Engineering

Tesi di Laurea Magistrale

Vulnerability Assessment tools
aggregator implementation

Relatore
prof. Antonio Lioy

Erik Focareta

Anno accademico 2017-2018

† to Gianfranco Loi

Summary

While information technology is taking steps forward in every aspect of our lives, the necessity of
protecting data and infrastructures is growing everyday bigger. For small and medium businesses,
security have been a synonym of antivirus, firewalls and IDS. However, the current trend is to
prefer proactive solutions instead of reactive. In this context, many automatic scanner tools that
performs vulnerability assessment on customer infrastructures took place in the market. Due to the
complexity of such tools, the integration among them is mostly not available in common solutions.

This thesis aims to describe the functionalities as well as the development process of a cyber
security vulnerability assessment tools aggregator application that offers a view on the overall
exposed surface of customer infrastructures. The platform was developed by the author of this
thesis together with the Shorr Kan IT s.r.l. staff from which the application takes its name (Shorr
kan Vulnerability Assessments - Next Generation).

SVA-ng is therefore a software that allows the integration among already existing Vulnerability
Assessment and Penetration Testing tools both in launching new scans and in analysing the results.
The application offers a single web interface to its users from which multiple operations such
as keeping track of the found vulnerabilities, generating standard reports and interacting with
remote probes hosting specific tools can be performed. SVA-ng has been designed in order to be
configured on a dedicated laptop, shipped to the customer and installed into the target network
with a minimal configuration effort. The tester will then interact with it remotely without having
to move physically to the customer infrastructure. The customer itself can access the assessment
partial results.

We will begin by discussing some of the fundamentals of cyber security in the first chapter,
starting with the concept of known vulnerabilities and how they are modelled and organized. Later
on, we will define and discuss the features of Vulnerability Assessment and Penetration Testing
processes in order to fully comprehend the scope of the SVA-ng application.

Moving onto the second chapter, since the described application aim is to import and to interact
with other applications, we will describe the inner workings of some open-source and proprietary
existing tools. Once again we will make a division amongst instruments used during vulnerability
assessment tasks and during penetration tests. The majority of the described tools are the ones
that the SVA-ng application interacts with.

The third chapter contains the design of the entire platform. At first, the analysis of the
requirements is shown and discussed. On top of the latter, we will move from the physical archi-
tectural organization of devices to the structure of software modules and their behaviours. A brief
introduction to the interaction amongst modules is also described due to the necessity of defining
protocols from a high-level perspective.

The developers manual in the fourth chapter has the aim of describing the implementation
details of the platform. We will start from the configuration of the device hosting the main
server moving to the design of the database structures and to the implementation choices of the
various code sections. We will also briefly describe all of the open-source libraries used by SVA-
ng. Moreover, since the application includes the possibility of using probes hosted on different
machines, the implementation of the communication among them is described.

The users manual, located in the fifth chapter, will then extensively describe the most common
operations that a user might want to perform. Starting from the installation, every action is
described with the aid of screenshots and most common error explanations.

iv

Finally, the sixth chapter contains the analysis of the product by defining and measuring some
of the possible indexes that might be relevant to the end user. This chapter refers to the analysis
of the requirements in order to verify the program compliance to the previously defined goals.

v

Acknowledgements

It is a pleasure to thank all of those that made the work of this thesis possible and enjoyable.
In particular, I would like to thank all of my colleagues for the skills, the knowledge and the
experience they chose to give me for this project. Furthermore, I would like to thank all of those
people, such as friends and relatives, that made available their non-technical support for nothing
but my acknowledgements in return. Last but not least, none of the work here discussed would
have been possible without the professors of Politecnico. To them, I want to show all my gratitude
and respect, and to thank them for the knowledge they passed.

vi

Contents

Summary iv

1 Introduction 1

1.1 Cyber Security Overview . 1

1.2 Known Vulnerabilities . 2

1.3 Vulnerability Assessment . 5

1.4 Penetration Testing . 7

2 Existing Tools 10

2.1 Vulnerability Assessment Tools . 10

2.1.1 NMap . 10

2.1.2 Nessus . 13

2.1.3 Other tools . 16

2.2 Penetration Testing Tools . 17

2.2.1 Kali Linux . 17

2.2.2 Metasploit framework . 18

2.2.3 Responder . 20

2.2.4 Aircrack-ng suite . 21

2.2.5 Other tools . 23

3 SVA-ng Architecture 25

3.1 Requirements . 25

3.2 Architecture design . 28

3.2.1 Physical architecture . 28

3.2.2 Logical architecture . 30

4 SVA-ng Developers Manual 34

4.1 Main Device Configuration . 34

4.2 Database . 35

4.3 Web Server . 38

4.3.1 Frameworks and templates . 39

4.3.2 Web Pages . 41

4.4 Back-end . 49

4.5 Probes . 58

vii

5 SVA-ng User’s Manual 62

5.1 Installation . 62

5.2 Import a new scan . 62

5.3 Results navigation . 65

5.4 Handling fixes . 68

5.5 Manual entries . 69

5.6 Special Configurations . 71

5.6.1 VIP configuration . 72

5.6.2 Risk configuration . 73

5.6.3 Recommendations . 74

5.7 Installing a remote probe . 75

5.8 Launching a probe task . 75

5.9 PT suggestions . 76

6 Results 79

6.1 Functional requirements compliance . 79

6.2 Non-functional characteristics . 82

7 Conclusions 88

7.1 Future Work . 88

Bibliography 90

viii

Chapter 1

Introduction

This chapter introduces the most fundamental concepts of information technology security and it
is meant to justify the need of assessment activities. It starts with a short introduction on the
global cyber security situation developing concepts such as vulnerability, threat and criticality.
Vulnerability Assessment and Penetration Testing activities are later described in order to lay a
solid basis to develop further concepts.

1.1 Cyber Security Overview

The aim of information security is to preserve confidentiality, integrity and availability of
information [1]. Since IT systems are becoming more and more complex, it is impossible to
test outputs exhaustively for every possible input. This makes devices and networks potentially
vulnerable by nature. In order to perform the hard task of protecting them and the data they
handle, it is essential to define what the assets are, what their attack surface is and how much
critical they are.

Assets are identified as all infrastructures, software and people needed for a certain service to
work. While for the purpose of this thesis people are not strictly considered as assets, it is important
to note that a significant amount of cyber-crimes make use of social engineering techniques.

Attack surface defines the complete set of points that an unauthorized user could exploit in
order to compromise the specific service. For what concerns networks, protocols and ports are
considered such. In software development, input fields, file accesses and calls to web services
represents attack vectors. Attack surface is therefore the sum of all these points and might be
not easy to identify. Developers and maintainers frequently ignore some weak spots in the system
considering them as not relevant. This wrong evaluation might lead to critical threats.

Vulnerability is a software or hardware flaw that can be exploited in order to perform non
authorized or unexpected actions on some assets. Vulnerabilities require certain prerequisites and
might have specific impact. As an example, in order to use default credentials on a specific server,
the user must be connected to such server (prerequisite). If it is able to match the requirement
and if the server allows default credentials login (vulnerability), it can obtain access to the system
(impact).

Severity is the measure of how much the exploitation of a specific vulnerability is likely to pro-
duce a relevant impact on the system. While the presence of a certain vulnerability is usually
assertable by a specific linear procedure, the ranking activity is highly dependent on assets crit-
icality. As an example, being able to ex-filtrate all records in a database might have different
consequences for different companies and therefore different severity.

1

1 – Introduction

Threats are defined as the real compromising events. They usually are consequences of a vul-
nerability exploitation. They might be accidental or deliberate (attacks).

1.2 Known Vulnerabilities

Nowadays, the IT market is offering more and more pre-packet softwares while ad-hoc solutions are
becoming fewer. Finding a vulnerability in a product often implies that every solution using the
same product presents the same vulnerable spots. This allowed standardization and the creation of
various databases collecting publicly known exposures. In past decades, vendors used to define their
own standards having high complexity in implementing and managing security on multi-vendor
systems.

The National Vulnerability Database (NVD) is by far the most used multi-vendor vulner-
ability database. It is based on the Common Vulnerabilities and Exposures (CVE) standard
that is maintained by Mitre Corporation, funded by the United States Department of Homeland
Security. Every CVE entry contains [2]:

• a serial number in the form CVE-YYYY-NNNN[N][N]

• a short and unified description of the vulnerability

• any relevant reference to research paper or web page describing it

As an example, one of the eternal blue vulnerability CVE is described here [3]:

• CVE-ID: CVE-2017-0143

• Description: The SMBv1 server in Microsoft Windows Vista SP2; Windows Server 2008 SP2
and R2 SP1; Windows 7 SP1; Windows 8.1; Windows Server 2012 Gold and R2; Windows
RT 8.1; and Windows 10 Gold, 1511, and 1607; and Windows Server 2016 allows remote
attackers to execute arbitrary code via crafted packets, aka ”Windows SMB Remote Code
Execution Vulnerability.” This vulnerability is different from those described in CVE-2017-
0144, CVE-2017-0145, CVE-2017-0146, and CVE-2017-0148.

• References:

– http://www.securityfocus.com/bid/96703,

– http://www.securitytracker.com/id/1037991,

– https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-0143,

– https://www.exploit-db.com/exploits/41891/,

– https://www.exploit-db.com/exploits/41987/

After the discovery of a potential vulnerability, it is possible to submit a request to any CVE
Numbering Authority that, in case of matching prerequisites, will add the entry to the complete
CVE list.

While CVE is useful to enumerate exposures, it does not fully classify them. Developers and
security experts might need a more precise and granular categorization. To tackle this task, Mitre
also maintains the Common Weaknesses Enumeration (CWE) standard. This complete list
of entries includes fault, bugs and architectural issues that might lead to security threats. A single
CWE entry contains [4]:

• CWE identifier number and weakness type (with description)

• Alternate terms for the weakness

• Description of the behaviour of the weakness

2

1 – Introduction

• Description of the exploit of the weakness

• Likelihood of exploit for the weakness

• Description of the consequences of the exploit

• Potential mitigations

• Node relationship information

• Code samples

• CVE Identifier numbers of vulnerabilities for which that type of weakness exists

• References

As an example, the CWE-120 is taken [5]. Since the complete entry would need more than one
page, here we selected only the most relevant fields:

• CWE-ID: CWE-120: Buffer Copy without Checking Size of Input (’Classic Buffer Overflow’)

• Common Consequences: Buffer overflows often can be used to execute arbitrary code, which
is usually outside the scope of a program’s implicit security policy. This can often be used to
subvert any other security service ; Buffer overflows generally lead to crashes. Other attacks
leading to lack of availability are possible, including putting the program into an infinite
loop.

Despite their simplicity, these systems are essential to modern cyber security. Without them it
would not be possible to easily spread critical informations and to automate security procedures.
Historically, every IT company defined its own standards and some of them are still in use. The
most well known example of this phenomena is Microsoft Security Bulletin. At the moment,
it used mainly for internal use in the forms of bug fixing and patches development. Many of the
vulnerabilities present are addressed by one or many CVE IDs making CVE standard the currently
most comprehensive one.

It is important to note that all systems that handle known vulnerabilities share common prob-
lems. The first consists in the necessity of continuous and low latency updates. When a critical
exposure is noticed and documented, the faster the ID request is handled, the faster the notifica-
tion to end users will be. As we will explain in later chapters, automated tools for vulnerability
detection need dedicated plug-ins to be developed. Since many end users refer to these automatic
tools results in order to update their software, shorter database update times have a significant
impact on the length of the exposure window.

The second problematic stands in the nature of these systems. It consists in the fact that
not every vulnerability is present there. End users must comprehend that the non occurrence of
some solution, software or technology in these databases, is not a sufficient condition for claiming
threat-safety. In shorter terms, they are not complete sets.

Another part of vulnerability enumeration is the severity estimate procedure. This classification
is highly dependent on assets criticalities. However the National Vulnerability Database is currently
maintaining an open framework for quantitatively describe general characteristics and impacts of
known vulnerabilities: the Common Vulnerability Scoring System (CVSS) [6]. It defines
the following metrics:

• Exploitability

– Attack Vector, describing required logical distance

– Attack Complexity

– Privileges Required

– User Interaction

3

1 – Introduction

– Scope, describing capability of impacting other assets

• Impact

– Confidentiality

– Integrity

– Availability

• Temporal

– Exploitability, describing the current presence of an automated procedure that exploits
it

– Remediation Level

– Report Confidence, describing the probability that the vulnerability actually exists

Each metric has its own possible values and they are later combined in order to obtain scores
in the range from 0 to 10. General severity of a specific vulnerability is usually described with
the Base Score which take into consideration only exploitability and impact metrics. To increase
precision in the evaluation, whenever possible, temporal metrics are added. The score obtained
by these formulas are not dependent on company specific necessities or characteristics and they
are likely to give a distorted picture of the real risks. To tackle this problem, CVSS also defines
Environmental Metrics. The latter modify previous metrics to better adapt to the environment in
which vulnerabilities are found. In order to increase readability of scores, they are then mapped
to risk classes that consists in: informational, low, medium, high and critical.

As an example, the CVSS of eternal blue is here shown [3]:

• Exploitability

– Attack Vector: Network, since no physical access to the machine is needed to perform
an exploit

– Attack Complexity: High, since it is based on a buffer overflow that is considered quite
complex to perform

– Privileges Required: None, since the attack does not require to be authenticated but
only connected

– User Interaction: None, since it is fully scriptable

– Scope: Unchanged, since in principle the exploit do not affect other resources

• Impact, everything is high since the consequence of the exploit is the possibility to execute
arbitrary commands on the target

– Confidentiality: High

– Integrity: High

– Availability: High

• Scores and general informations

– Base Score: 8.1 (High)

– Impact Score: 5.9 (max. 6.0)

– Exploitability Score: 2.2, due to massive patching after 2017 attacks

It is interesting to note that the CVE and CVSS standards usage is increasing over time (figure
1.1. This trend is probably the result of an increasing security risks awareness and bigger systems
mowing towards a common standard.

4

1 – Introduction

Figure 1.1. Registered CVE ID count over time [7]

1.3 Vulnerability Assessment

In the modern IT world, exposures to security risks represents potential economic losses. For
this reason, companies are implementing business processes in order to minimize the probability
of threats occurring. Vulnerability Assessment (from now on referred as VA) is the process of
verification of the security posture of some specific assets performed by identifying and enumerating
vulnerabilities.

Before establishing a formal procedure to perform such task, a well defined set of assets must
be defined. In the case of network devices this usually consists in some IP subnets while in the
case of web applications, lists of URLs are used. This not only identifies the assets, it also defines
the type of procedures and tools that will be used. Basing on this analysis results companies can
determine if they have the internal know-how to accomplish the task or, in alternative, if there is
the necessity to externalize the process.

The second step consists in evaluating the risk related to each asset for each type of impact.
The most widely used classes are Confidentiality, Integrity and Availability but some businesses
might have more specific requirements. Authentication, Authorization and Non Repudiability are
therefore also often used. Risk evaluation must be done carefully to correctly sort VA entries so
that critical issues are addressed first. These risks will also be useful to better analyze results at
the end of each assessment cycle.

The third step is the actual assessment task. Being the real core of the whole analysis, it is
modeled in the following steps:

• Conduct Assessment consists in performing technical tests on the selected assets. Usually
this phase refers to the same analysis at each cycle in order to save time and therefore to cut
down costs. However, if assets changes, a modification to specifications might occur.

• Identify Exposures consists in assorting issues found in order to account tasks to different
business teams with the most reasonable priorities.

• Address Exposures consists in the real alteration of software, hardware or asset archi-
tecture. There are cases in which the service that caused the exposure is not needed and
therefore it can be disabled without investing on an update.

It is very important to note that the vulnerability assessment process represented in figure 1.2 is
cyclic. This is a consequence of the fact that security is not a product but a process [10]. Encryption

5

1 – Introduction

Figure 1.2. Vulnerability assessment process [8]

standards, malware techniques and in general every aspect of cyber security is constantly changing
over time. This principle therefore applies to vulnerability assessments too. As the previous section
described, databases are constantly updated with sets of new known exposures and tests and it is
therefore necessary to periodically check the state of assets. What was considered secure yesterday
might not be secure today. The faster the cycle, the most updated the system will be and the less
likely it is that threats will occur.

For what concerns the real process of checking vulnerabilities, the methodology is highly de-
pendent on the type of the asset involved.

WAVA stands for Web Application Vulnerability Assessment. While web technology is cur-
rently being used for most new application, security processes specific to this technologies have
been developed. Checking exposures involves:

• Configuration Management testing, consisting in testing SSL/TLS, exposure to administra-
tive interfaces and general infrastructural weaknesses

• Authentication testing, checking for login bypasses, guessable or weak account credentials,
user enumeration and other user related issues

• Authorization testing such as path traversals and weak or not enforced authorization policies

• Session Management testing, consisting in checking cookies and session variables accessibility

• Data Validation testing, leading to SQLInjections, cross site scripting, buffer overflows and
other related attacks

• Web Services testing such as WSDL, XML, SOAP or REST weaknesses

• Ajax testing, asynchronous requests checking

• Business Logic testing, which is highly dependent on the specific applications.

NVA (Network Vulnerability Assessment) is the process of checking for loopholes in a certain
subnet. It involves:

• Network Authentication and Authorization testing, checking for misconfiguration in routes
and firewall policies

6

1 – Introduction

• WiFi and other wireless access points testing

• Network Stress tests, for exposures to DDoS attacks

• Node analysis, checking every single node of the network against known attacks, misconfig-
ured softwares and guessable credentials.

Static Program Analysis is the process of analysing software source code with the aim of
finding loopholes that might expose vulnerable weaknesses.

Results of a vulnerability assessment activity are usually presented in a tabular form called
VAT (Vulnerability Assessment Table). While there is not a common standard, it usually has one
line for each vulnerability and it includes the description, the impact severity or criticality and, if
available, a standard remedy for such weakness. As it is possible to see in figure 1.4, it can have
additional fields depending on company specific requests or assessment type.

Another possible result is the one shown in figure 1.3. This is usually presented for management
use since it gives a better perspective on the overall situation of nodes. Lines are used for different
nodes while columns for different ports and services.

Figure 1.3. NVA matrix sample from SVA-ng

While in principle it is possible to complete all parts of the Vulnerability Assessment manually,
companies often choose to make use of specialized tools that automate parts of the process in order
to minimize time spent on repetitive tasks. The market offers many products to satisfy this need
which we will discuss in chapter 2 but they usually introduce false positives and false negatives in
the analysis results. For this reason, even if in principle some tools are supposed to be completely
autonomous, operators should manually check suspicious signaled vulnerabilities. Errors in results
might lead to wrong risk evaluations and therefore they potentially increase maintenance costs.

1.4 Penetration Testing

While Vulnerability Assessment can be seen as an amplitude search of all exposure of a system,
Penetration Testing is the activity of exploiting them trying to achieve all privileges. It is a
realistic simulation of an attack and therefore it is also called ethical hacking. Operators might
have different levels of insight in the system / application to test:

• Black Box: no previous knowledge, no credentials

• White Box: all internals are documented, credentials are given

7

1 – Introduction

• Gray Box: any different configuration of knowledge, low privileges credentials might be given.

In order for the test to be realistic, the selected methodology is usually the first one. This implies
that the tester should not have worked on the creation, installation or maintenance of the system
and therefore he should not be an employee of the given company.

Vulnerability Assessment and Penetrations Testing are completely different activities. The
latter has the aim to document the system exploitation in order to enumerate and fix the exposures
that might be used by real world attackers. Therefore operators make use of completely different
approaches. Brute-forcing credentials, hashes cracking and network sniffing are some examples
of how the latter is more aggressive and of how it uses realistic techniques. While assessments
tools traffic is usually allowed in the network, testers are also required to evade firewalls, IDS/IPS
systems and anti-malware softwares.

While in VA activities exposures are checked, in PT activities they are exploited. This means
that the tester is actively and willingly violating security principles creating the possibility of
system failures, data ex-filtrations or other defects. For this reason it is not recommendable to
implement autonomous software with PT capabilities. However, many software exists, including
complete operating systems, in order to help the tester in its function. We will describe some of
them in the next chapter.

According to OWASP PTES technical guidelines [11], Penetration Testing activities are usually
structured in the following steps:

1. Intelligence gathering is the collection of information relative to the target. It includes
gathering data about the company, its employees and facilities. Some of the techniques used
are enumerating users and mails, OS banner grabbing and network topology scans. Collected
data are useful in further steps.

2. Vulnerability analysis represents the technical activity of vulnerability assessment.

3. Exploitation consists in gaining access to the system. This is usually obtained by exploiting
known vulnerabilities. During this phase it can occur that the tester does not manage to
gain required access.

4. Post exploitation is the activity of collecting further data of the target system. It involves
hashes, registries and relevant files capture. These are later on used in order to demonstrate
the success of the PT activity.

5. Reporting. Exactly as for VA, results and possible solutions are collected and documented
to the company so that patches can be produced.

In this chapter we introduced basic concepts behind cyber security, vulnerabilities and assess-
ment activities. This will be useful later on in order to understand what automated tools are and
in order to justify some SVA-ng design choices.

8

1 – Introduction

F
ig

u
re

1
.4

.
W

A
V

A
V

A
T

sa
m

p
le

fr
o
m

S
h
o
rr

K
a
n

IT
en

g
in

ee
ri

n
g

(o
b
fu

sc
a
te

d
fo

r
n
o
n

d
is

cl
o
su

re
)

9

Chapter 2

Existing Tools

With the increasing number of interconnected devices and the implementation on a daily basis of
new sensitive services, the need of standard and automated procedures to check the critical points
is fundamental. This chapter presents the existing tools available to perform these activities, their
peculiarities and usage. It later describes some of the tools used in the Penetration Testing in
order to clarify their integration with SVA-ng.

2.1 Vulnerability Assessment Tools

Tools of this category aim to the identification and enumeration of systems exposures. This is
usually done by performing activities such as port scanning, service detection and service specific
vulnerability tests.

2.1.1 NMap

NMap (Network Mapper) is a free open source network security scanner originally developed for
Linux operating systems and then ported to almost every other OS [12]. It is considered one of
the most essentials tools together with netcat. Its original version is completely command line
based but many graphical user interfaces exists such as ZenMap. The reasons behind its success
are simplicity of use and versatility. Indeed, NMap can perform tasks such as host discovery, port
scanning, banner grabbing and OS detection. Its interactions on the network are fully scriptable
via its own scripting engine called NSE or programmed with the Lua language.

Many security tools include NMap or some of its variants in their internals in order to have a
powerful and fully updated network scanner. Mainly for this reason, NMap allows users to choose
among different output solutions. The default one is the interactive, command line based, standard
output (figure 2.1). While this format is easily readable by operators, the preferred solution for
other scripts, is either the ”grepable” output or the XML encoded one. The latter is the format
used by SVA-ng.

While installing NMap, several lists are created in its installation folder. These are databases
containing informations useful for multiple purposes. They include:

• a list of MAC addresses OUI (Organizationally Unique Identifier) with respective companies,
used in order to identify the network interface manufacturer

• a list of OS fingerprints used during OS detection

• a list of expected responses for every service / protocol

• a list of service names, ports, ISO/OSI layer 4 protocols and probability of occurrence, useful
for performing scans only on most probable ports, thus reducing needed network bandwidth

• a list of IEEE protocol numbers with respective names

10

2 – Existing Tools

$ nmap -Pn -p 22 scanme.nmap.org

Starting Nmap 7.50 (https://nmap.org) at 2017-11-27 04:37 EST

Nmap scan report for scanme.nmap.org (45.33.32.156)

Host is up (0.17s latency).

Other addresses for scanme.nmap.org (not scanned): 2600:3c01::f03c:91ff:fe18:bb2f

PORT STATE SERVICE

22/tcp open ssh

Nmap done: 1 IP address (1 host up) scanned in 0.42 seconds

Figure 2.1. Sample of NMap basic scan output

Host Discovery

The first task to perform after a network is accessed consists in identifying available hosts. This
step is called Host Discovery and NMap offers multiple methods to perform it.

Ping Sweep is the technique of sending an echo request ICMP packet to all specified addresses
and waiting for the echo response. It is fully equivalent to the use of command ”ping”. NMap
offers alternatives to echo requests such as timestamps and address masks requests. It is the default
choice of NMap and must therefore be disabled with a specific flag when not needed. ICMP traffic
is very often not allowed by switches and other network devices making this technique impossible.

TCP SYN Ping consists in sending a TCP packet to the specified IP addresses with the SYN
flag set. The destination port (default 80) is not relevant since the default behavior of a port
with no service running is to send a reset TCP packet to refuse the connection. Therefore, if
any message from the target is received, the latter is marked as available and the connection is
dropped. Whenever a firewall is present on the target host, the SYN packet is dropped, causing
the operating system not to respond. This would mark the host as not available even if not true,
making this technique not valid.

TCP ACK Ping is not much different from TCP SYN Ping except for the ACK flag set instead
of the SYN one. This probe was created in order for packets to avoid being dropped by a miscon-
figured firewall. Since most devices nowadays recognize not expected packets and drop them by
default, this technique is mostly used in old networks.

UDP Ping consists in sending an empty UDP packet to port 40125. The choice of the port
number is due to the fact that it is likely to be not in use. The default reaction to a UDP
packet received on a not listening port is to respond with an ICMP port unreachable packet. This
would cause the target to be marked as available. The reason of this technique is again to bypass
misconfigured host firewalls that might not block UDP. SCTP INIT Ping is a similar technique
involving SCTP instead of UDP.

IP Protocol Ping allows the user the specify layer 4 protocol. Default choice is ICMP but
potentially any protocol can be sent. If NMap knows an example header of such protocol, it will
inject it automatically.

ARP Ping or ICMPv6 Neighbor Discovery allows to sweep the network with requests for
layer 2 addresses and if a response is obtained, such IP addresses are marked as available.

11

2 – Existing Tools

Port Scanning

The second and most used task that NMap is designed to perform automatically is port scanning.
It is the activity of checking the state of layer 4 ports on one or more target hosts. Differently
from other tools, NMap do not binary define the possible states but uses a more complex ranking.
A port can therefore be classified as:

• open, if a service is listening on it

• closed, if no service is listening on it

• filtered, if there is some kind of packet filter that stops requests (i.e. firewall)

• unfiltered, if packets are not filtered but it is impossible to determine other states

• open|filtered, if it is impossible to determine if filtered or open

• closed|filtered, if it is impossible to determine if filtered or closed

As for host discovery, many different techniques are available for port scanning in order to better
adapt to network configuration, presence of firewalls, privilege levels on the scanning computer
and layer 4 protocol used.

TCP SYN scan is the default technique. It consists in sending a TCP SYN packet to the
specified port and waiting for the response. If a TCP service is listening, a SYN ACK message is
received while if a TCP RST or an ICMP packet is received it is closed. In the case of missing
response, the sent packet is likely been stopped by a firewall and the port is marked as filtered.
Whatever the behavior of the target is, the TCP connection is not completed by the scanner. This
is due to the fact that old systems did not log unsuccessful connections making the scan unpractical
to detect. SCTP INIT scan is the equivalent for SCTP protocol.

TCP connect scan is used when the user performing the scan does not have administrative
privileges and therefore cannot have control on raw packets. This is due to the fact that low
privileged accounts have a higher level control on network connections, usually through the socket
library. Therefore they are not allowed to leave pending TCP connections uncompleted. Its
behavior is therefore fully equivalent to the previously described technique with the exception of
connection establishment.

UDP scan is used to detect UDP services by sending a service specific or empty UDP packet to
the specified port. The problem consists in the fact that, since UDP is connectionless, it is hard to
detect even if the service correctly accepted the message. NMap solves it by classifying the port
as closed or filtered if an ICMP packet is received according to its type and by classifying it with
open|filtered state when no message is received. Some specific services responds with other UDP
messages marking the port as open.

TCP NULL, FIN, and Xmas scans, TCP Maimon scan are TCP scanning techniques that
respectively set: no bits; FIN bit; FIN, PSH and URG bits; NULL, FIN bits. They all exploits a
loophole in the TCP RFC implying that a RST packet should be sent back if a closed port receives
a TCP packet with any bit configuration. This leads to the impossibility of distinguish between
open and filtered states. The key advantages to their use are stealth in detection and the capability
to bypass some misconfigured firewalls.

TCP ACK scan is able to determine the filtering state of the specified ports by sending TCP
ACK packets to them and waiting for TCP RST. If it is received, no firewall stopped the packet,
therefore the port is marked as not filtered (filtered otherwise). This technique does not allow
to distinguish between open and closed states. TCP Window scans are similar but uses response
packets Window field to determine whenever the port is opened or closed. Indeed, some imple-
mentations respond with different values for different states.

12

2 – Existing Tools

Other advanced scans are available in NMap. While they have interesting features such as the
ability to set arbitrary TCP flags in sent packets, they are rarely used in vulnerabilities assessment
tasks. This is due to the fact that the operator is allowed to generate arbitrary traffic on the target
network and therefore there is no stealth requirement.

Service and OS Detection

Immediately after port scanning, it useful to identify services listening on open ports. This activity
is called Service and Version detection. While usually services are configured to operate on their
default ports, some administrator might configure the system differently. In order to perform
this task, NMap uses its database to generate probes specific for each protocol. Moreover, when
possible, it tries to identify the service version by using protocol specific requests.

When first approaching a target host, it can be useful to get informations about its operating
system. NMap has the possibility to perform an OS detection by comparing various fields in the
TCP response messages and its fingerprints database. It is important to note that, since this
technique is based on statistical fingerprint analysis, it is much more error proned compared to
other NMap features.

Scripting Engine

NMap ships with the possibility to extend its features via NMap Scripting Engine (NSE). This
allows users to create and share their Lua scripted programs. These can add functionalities such as
vulnerability enumeration, additional services identification and potentially also exploit execution.
Scripts can be launched in chunks or singularly and a default set is defined. It is important to note
that NSE does not run in a sandbox and that the scripts database is community based. There
is therefore the possibility of harming target and host systems and extreme care should be used
when executed.

Timing and Bandwidth Considerations

While NMap is extremely optimized for network interactions, performed tasks might take time
due to their nature. As an example, UDP scans are very slow since the technique implies the
waiting of response packets. Operator must therefore carefully analyze timing related aspects
before launching the scan and specify additional optional flags that mitigate this phenomena by,
for example, reducing maximum timeouts. Bandwidth should also be taken into consideration as
the script in figure 2.2 demonstrates. This simple program performs a TCP SYN scan on all ports
of a single target and, as you can see from the results in figure 2.3, it generates around 6 MB of
traffic. This easily scales up to around 1.5 GB for a complete IP class C network. This might
imply network performance problematics for other users.

NMap deception techniques

Since NMap bases its results mainly on the responses presence and their content, it is possible to
configure hosts in order to trick the scanner. Operations such as opening ports with misleading
banners, disable default services responses and kernel TCP stack alterations are some successful
deception techniques. Another important aspect to take into consideration is the possibility to
simply identify NMap activities traffic by IDS. Being the default tool for performing such activities,
many vendors actually ships their devices with the possibility to stop NMap packets leading to the
impossibility of its usage.

2.1.2 Nessus

Nessus [13] is a commercial software developed and maintained by Tenable used to mainly perform
network vulnerability assessment tasks. It has multiple licenses including a free one that is mainly

13

2 – Existing Tools

#!/bin/bash

target=192.168.7.8

Configure ip tables to log network statistics only for target host

iptables -I INPUT 1 -s $target -j ACCEPT

iptables -I OUTPUT 1 -d $target -j ACCEPT

Reset traffic counter

iptables -Z

Execute a TCP SYN scan with NMap on target ports 1-65535

nmap -sS -Pn -n $target -p 1-65535 > /dev/null

Print network statistics

iptables -vn -L

Figure 2.2. TCP SYN scan performance bash test script

$./testNMapPerformance.sh

Chain INPUT (policy ACCEPT 1808 packets, 169K bytes)

pkts bytes target prot opt in out source destination

1314 110K ACCEPT all -- * * 192.168.7.8 0.0.0.0/0

Chain OUTPUT (policy ACCEPT 94 packets, 9117 bytes)

pkts bytes target prot opt in out source destination

132K 5877K ACCEPT all -- * * 0.0.0.0/0 192.168.7.8

Figure 2.3. TCP SYN scan performance bash test script results

limited in the number of concurrent targets that can be scanned. It is well supported for all
commercial operating systems.

Operators can communicate with Nessus using different interfaces. The most relevant is a
GUI provided via HTTP through an ad-hoc configured web server. Nowadays this is a very used
architecture since it allows users to interact with the application using the browser, creating a layer
of abstraction over the OS and allowing operators to use a well known and personally configured
software. As we will explain later on, we chose to adopt the same architecture for SVA-ng. Nessus
also give the possibility of communicating through its APIs. These allow to furthermore automate
scans by permitting integration with other softwares.

Another very convenient feature of this product, available only with high end licenses, is the
possibility to extend it using agents. The network architecture created by this feature has a star
topology, with the main node in the center being used to stock all results and external nodes
performing the network active scans. Probes are simply configurable with user-defined or default
templates via the main application allowing operators to interact with the entire architecture
accessing a single web application. The availability of probes has different advantages. The first is
redundancy so that if a probe fails, not every other does, while if the main node fails it is sufficient
to change it and configurations will still be available on probes. The second is the possibility to
deploy nodes on different subnets. This implies that firewall rules and internal routes configuration
can be also tested. In general, it is therefore possible to perform internal and external vulnerability
assessments with a single application.

As stated above, Nessus main function is to perform network vulnerability assessment. In
order to do so, it performs an initial network scan articulated on host discovery, port scanning
and service detection. After have discovered network topology, it starts testing every service with
known vulnerabilities present in its internal database. In Nessus naming conventions, these tests

14

2 – Existing Tools

are performed by the so called plug-ins, that are nothing more then scripts executing a non invasive
version of the specific attack. The list of plug-ins is actively maintained by Tenable and its usually
up-to-date with latest discovered vulnerabilities.

Using the same methodology, Nessus also offers a reduced set of WAVA scans. It allows con-
figuration of automatic basic-authentication and login forms security processes making possible to
scan pages in authenticated sections of the web portal. In addition, it allows to set SSH, database,
windows credentials for internal scans. Whenever credentials are not available, it is possible to use
more aggressive approaches using brute-forcing tools such as Hydra that is included into the Nessus
appliance. Since nowadays web applications represent the most frequently found services, compa-
nies usually chose to perform such scans with other tools that we will later describe. However,
Nessus support numerous service specific policies such as SCADA scans and PCI scans.

The extensive set of plug-ins represents one of the main reasons why Nessus is one of the most
widely used security product. Furthermore, it is also well integrated with services present in the
network. It is highly customizable for what concerns proxies, mail servers for notifications and
certificate authorities integration.

Nessus gives the possibility to define templates and policies selecting among different predefined
type of scans. It also allows the granular selection of single plug-ins. Moreover, it is possible to
configure it in order for a scan to be performed periodically without the need of an operator
manually starting the job. This is fully in line with the idea of security as a process and not as a
product.

Figure 2.4. Nessus default output - network scan

Figure 2.5. Nessus VAT - network scan

In figure 2.4 the default output of Nessus is shown. This view is management oriented as it
gives an idea of how many vulnerabilities, divided into severity classes, have been found for every
single host but without specifying technical descriptions and remediations. The latter is given in
the VAT format (see figure 2.5). For more specific information, another view is available (see figure
2.9). It contains the description of the vulnerability as well as its default remediation and exploit

15

2 – Existing Tools

scripts availability. It is important to note that this page usually contains all external references
to CVE and CVSS total and partial scores.

While Nessus is a great tool for performing scans, it lacks the possibility of tracking exposed
vulnerabilities over time. Managers are indeed interested in fixing processes as well as in con-
tinuously checking the state of the network. For this reason, even if Nessus is valuable for what
concerns technically identify vulnerabilities, it is not sufficient to perform the whole vulnerability
assessment cycle. As we will discuss in chapter 3, this is one of the main reasons for SVA-ng
creation.

2.1.3 Other tools

This section includes the description of some products used during the vulnerability assessment
tasks. While these instruments are extremely valuable for testers, they have not been integrated
with SVA-ng and they are cited here with the only intention of giving the reader a full perspective
of tools choice possibilities.

NetSparker

While Nessus is mainly oriented on network scanning, NetSparker [14] focus entirely on web ap-
plications. It is a proprietary product with many licensing possibilities and it is mainly used by
web oriented companies for testing the security of their application. As Nessus, it is based on its
internal database containing possible vulnerabilities that is maintained by the developers.

Its main advantage are the extended authentication support with the possibility of scripting
login and logout JavaScript based procedures and the possibility of performing periodic scans
supporting interaction with other tools. Moreover, it is very simple to create a launch script
that executes at every test release so that compilation of source code, deployment on servers and
vulnerability scanning are done automatically.

NetSparker main ability is to detect issues that are highly dependent on the specific web
application such as:

• SQL Injection

• Reflected XSS

• Local File Inclusion

• Remote File Inclusion

• Unvalidated Redirect

• Old, Backup, log files

OpenVAS

OpenVAS [15] is the free open source equivalent of Nessus. It forked from it in 2005 when Nessus
became proprietary and therefore it shares most of its features. The biggest difference stands in its
database that is continuously updated from the public feed of Network Vulnerability Tests (NVT)
maintained by Greenbone with over 50.000 entries available. Due to its GNU General Public
Licensing, OpenVAS is usually chosen by companies that are not willing to spend for other tools.

16

2 – Existing Tools

2.2 Penetration Testing Tools

While vulnerability assessment tools generally aim to automatically perform all activities and
provide an accurate result, penetration testing tools have the only aim to help the tester in its
tasks. This tools are in continuous development and therefore it is practically infeasible to describe
exhaustively the whole set. For this reason, in this section only the programs integrated in SVA-ng
are discussed in order to explain to the reader their main functions and therefore to justify their
integration in the developed framework.

2.2.1 Kali Linux

Kali Linux [16] is a free cyber security oriented operating system distribution based on Debian,
currently maintained and developed by Offensive Security Ltd.. The real advantage of Kali com-
pared to other distribution is that it ships with mostly used utilities, security tools and other useful
datasets already installed and configured. While it supports many architectures and devices, it is
not designed to be light on system resources. However, since it needs to be used also for forensic
tasks, it is design to be executed in live mode (not booted from main storage disks) and on virtual
machines.

The main reason to use such an operating system is the simplicity and completeness of instal-
lation. Indeed, in most penetration testing jobs, it is often useful to work in a clean environment
in order to reduce the risk of spreading previously acquired malware on other hosts. Moreover, in
order to satisfy some customer needs, creating an ad-hoc system and then deleting it at the end
of the task is not time expensive due to its almost null configuration and pre-installed software
packets. It is of course possible to use another distribution and to script installation processes, but
many security companies chose to avoid this cost.

Among others, it includes resources such as:

• a good set of word-lists for cracking hashes, enumerate users and URLs

• gcc, Python, Ruby, Perl and other interpreters

• nc (netcat), wget, NMap and other basic networking tools

• aircrack-ng suite

• services such a configured Apache web server with PHP

• various clients for all network services such as FTP, SSH and rDesktop

• hashcat, John the Ripper and other cracking tools

• Metasploit Framework including msfconsole and msfvenom

• Burp, OWASP ZAP, SQLMap and other web application exploitation tools

• social engineering tools like BeeF and SET

• digital forensic various tools

All software discussed in this chapter, with the exception of Core Impact, Nessus and NetSparker
which are proprietary, are included in the default Kali Linux distribution.

17

2 – Existing Tools

2.2.2 Metasploit framework

The Metasploit framework (from now on referred as Metasploit for simplicity) is the main com-
ponent of the Metasploit Project. It is an exploitation tool released under BSD license currently
maintained by Rapid7. Metasploit is a powerful tool that helps the penetration tester in every
phase of the simulated attack [17].

The internal core of this program is an extensive code database. This includes all sorts of scripts
that the attacker might need during the penetration testing task including the real exploitation
programs for known vulnerabilities. It is possible to query it with keywords related to the target
host including specific versions and vendors. With such tool, the attacker is no longer required
to have knowledge about the technical internal details of a vulnerability in order to exploit it
effectively. As an example, it is interesting to see that the very recent Eternal Blue vulnerability
discovered in 2017 has some entries in the database as you can see in figure 2.6. It is important
to note that the module has not only a description, but also a disclosure date to keep track of the
vulnerability exposure time and a ranking, that users can modify according to the script quality
and probability of success.

msf > search eternal

Matching Modules

================

Name Description

---- -----------

auxiliary/scanner/smb/smb_ms17_010 MS17-010 SMB RCE Detection

exploit/windows/smb/ms17_010_eternalblue MS17-010 EternalBlue SMB Remote

Figure 2.6. Metasploit - query the database for Eternal Blue vulnerability

Exploits for Metasploit are written in Ruby and make use of specific libraries included in the
framework to simplify development. Even if scripts are developed by the community, they tend to
follow a unified coding style in order to ensure readability. Moreover, all exploits are extensively
documented via data structures built directly into the framework Ruby classes. They therefore
include an exhaustive documentation of the vulnerability, external references, architectures that
can be targeted and so on. This flexible but precise architecture allows a unified interaction among
very different modules. Once again, the penetration tester is not require to know the internals of
the single script in order to use it since the experience with the Metasploit framework standards
is sufficient. Developers tend to make their code highly parametric in order to allow extensive
customization without the necessity of modifying the programs. However, whenever it is necessary,
code can be cloned and easily edited due to the extensive use of comments and the high readability
of the ruby language. Some sections of the program can also contain machine code since there
might be specific vulnerabilities that are triggered with specific byte sequences.

Metasploit divides scripts in the following categories:

• Exploit: being the manner in which a certain vulnerability is been used to deliver a certain
payload, this is the core of Metasploit and its database. Once being ran, the real exploitation
is launched and, if no error occurs, the payload is delivered. As an example, as shown in
figure 2.6 in the results second line, Eternal Blue belong to this set.

• Payload: items belonging to this category represents the code being ran once the exploit
delivers them. Metasploit offers different payloads for different necessities as we will discuss
in next paragraphs. The usual objective is to open a communication channel with the target
called session so that further commands can be executed remotely.

• Post: this set contains an extensive list of versatile tools to use once a session is opened.
Activities such gathering users and password hashes are automated with these scripts.

18

2 – Existing Tools

• Auxiliary: items belonging to this category are generally not related directly to a vulnera-
bility exploitation but they help the penetration tester to accomplish other tasks. Scanners
are available to perform host discovery and vulnerable services scanning as is shown in figure
2.6 in the first results line. Simple server implementations such as HTTP and FTP servers
can be used directly from the framework. Availability attacks such as Denial of Services
(DoS) are also available within this category.

While the aim of the exploit is to use a vulnerability to deliver a payload, the objective of
the payload itself is to compromise the system. What is usually done is to deliver a program
that allows to open a communication channel between the attacker and the target hosts so that
further commands can be executed. Metasploit allows to select among different default payload
as well as upload and launch an arbitrary executable. The most convenient programs to execute
are the standard system-dependent shell and the meterpreter. The latter is a particular program
that is able to open a channel and migrate in running processes to hide in the target computer.
While meterpreter peculiarities make it the most practical tool to use in real world applications, its
characteristics are well beyond the scope of this thesis and will therefore be omitted. The way in
which a connection is opened is defined in the payload. Possibilities are described in the following
groups:

• Connection direction

– Bind in which the target host is configured to listen on a specified port and the attacker
opens a connection to it

– Reverse in which the attacker host set up a listening service on a specified port and
the target opens a connection by calling it back

– The first one is used when there is no firewall on the network and therefore there are
not limitations to connection opening. When this is not possible, since many firewalls
are configured not to drop outbound connections, the second one is preferred.

• Connection stages

– Non-staged in which the whole payload is sent directly to the target and then executed

– Staged in which a first part of the payload called stager is sent in the first connection
and executed with the aim of downloading the second part of the payload containing
the real program

– While the first one is less error prone due to its simplicity and necessity of having less
transfers, the second one is usually preferred for stealth reasons.

As an example, in figure 2.7 a complete real world exploitation of Eternal Blue vulnerability
is shown. At first, the exploit is selected and configured to be thrown towards the IP address
10.10.10.40 (target). With the third and fourth input lines, a staged, reverse TCP shell payload
for x64 Windows is selected and configured to open a connection on 10.10.14.119 (attacker) when
executed. The whole exploit is then launched with the ”exploit” command and after a while, a
session is successfully opened. As you can see from the last lines, the opened shell is running on
the remote target host.

The only part that might be present in some modules that is not easy readable is the shellcode.
This is a short piece of code that triggers some specific vulnerability such as buffer overflows
and usually allows to open a shell on the remote system. Shellcode is written in machine code.
Metasploit allows users to generate ad-hoc shellcodes outside of its framework with a utility called
msfvenom. This allows the creation of payloads with various different encodings such that specific
characters can be avoided. This shellcode might indeed be injected in some manner so that some
byte combinations are not allowed. As an example, null bytes (0x00) denotes the end of a file.
Therefore, programs in which a payload containing null bytes is injected are likely to crash before
executing it making the whole exploitation process to fail. For this reason, specific bytes can set to
be avoided. Another interesting feature of msfvenom is the ability to include shellcode in a specific
language files such as PHP or others so that when the program is executed, the shellcode is ran.

19

2 – Existing Tools

msf > use exploit/windows/smb/ms17_010_eternalblue

msf exploit(ms17_010_eternalblue) > set rhost 10.10.10.40

rhost => 10.10.10.40

msf exploit(ms17_010_eternalblue) > set payload windows/x64/shell/reverse_tcp

payload => windows/x64/shell/reverse_tcp

msf exploit(ms17_010_eternalblue) > set lhost 10.10.14.140

lhost => 10.10.14.140

msf exploit(ms17_010_eternalblue) > run

[*] Started reverse TCP handler on 10.10.14.140:4444

[*] 10.10.10.40:445 - Connecting to target for exploitation.

[+] 10.10.10.40:445 - Connection established for exploitation.

[+] 10.10.10.40:445 - Target OS selected valid for OS indicated by SMB reply

[*] 10.10.10.40:445 - Trying exploit with 22 Groom Allocations.

[*] 10.10.10.40:445 - Sending all but last fragment of exploit packet

[*] 10.10.10.40:445 - Starting non-paged pool grooming

[+] 10.10.10.40:445 - Sending SMBv2 buffers

[*] 10.10.10.40:445 - Sending last fragment of exploit packet!

[*] 10.10.10.40:445 - Receiving response from exploit packet

[+] 10.10.10.40:445 - ETERNALBLUE overwrite completed successfully (0xC000000D)!

[*] 10.10.10.40:445 - Sending egg to corrupted connection.

[*] 10.10.10.40:445 - Triggering free of corrupted buffer.

[*] Sending stage (336 bytes) to 10.10.10.40

[*] Command shell session 1 opened (10.10.14.140:4444 -> 10.10.10.40:49168)

[+] 10.10.10.40:445 - =-=

[+] 10.10.10.40:445 - =-=-=-=-=-=-=-=-=-=-=-=-=-WIN-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

[+] 10.10.10.40:445 - =-=

Microsoft Windows [Version 6.1.7601]

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Windows\system32>

Figure 2.7. Spawning a shell exploiting EternalBlue vulnerability on a remote test computer using
Metasploit (some of the output has been trimmed out)

Because of the all features described above, Metaspoit is considered to be one of the must-have
software of all penetration testers. As demonstrated in figure 2.7, a shell on a remote vulnerable
system is opened in as few as 5 lines. This shows how powerful and simple it is at exploiting known
vulnerabilities and gives a whole new perspective on topics discussed in previous sections. It is
interesting to note that a simple activity such as a Nessus exhaustive scan on the network would
have highlighted the exposure so that it could have been patched.

2.2.3 Responder

Responder [18] is a Link-Local Multicast Name Resolution (LLMNR), NetBios Name Service
(NBT-NS) and multicast Domain Name System (mDNS) poisoner that also executes rogue servers
on the attacker host in order to capture meta-data and password hashes by retrieving authentica-
tion processes traffic. In order to do so, it replies to LLMNR, NBT-NS and mDNS requests with
its own IP address with the aim of receiving the traffic of every host on the network that attempts
to authenticate with some service.

Once the program is executed, it starts by spawning authentication servers such as LDAP,
HTTP, FTP, SMB, LDAP, POP3, IMAP, SMTP, HTTPS and MSSQL. It then listen on the
network for any host name resolution protocol request in order to reply to them with its own
address. When an host receives a response back, it tries to authenticate with the attacker specific

20

2 – Existing Tools

rogue server sending it their credentials in the form of a cryptographic hash. From this point on,
the attacker can try to crack the hash. If the cracking process succeeds, the attacker owns the
credentials and can pretend to be the legit user effectively interacting with the servers.

Launching a Responder in an extensively used network is likely to collect relevant hashes in
less than an hour. However, the probability of create a malfunction is very high since clients will
notice that legit servers are not responding correctly. It must therefore be used with extreme care.
Moreover, running this program opens a significant amount of ports to allow servers to listen on
them making the used host not available for other tasks.

2.2.4 Aircrack-ng suite

Aircrack-ng [19] is a free open source wireless network security assessment tool suite. It is consid-
ered to be the swiss knife of WiFi hackers since it contains highly configurable tools while keeping
simple their usages. Aircrack-ng is mainly developed and maintained for Linux operating systems
but it has been ported to other major alternatives. As for NMap, his interface is command-line
based but some GUI implementations are also available. One of its best characteristics is the
possibility to easily integrate its features in user defined scripts due to its simple machine readable
outputs.

Aircrack-ng is contains many versatile tools. In the moment in which we are writing this thesis,
a new version containing new interesting tools has been released. However, since they are of no
relevance to this thesis objectives and they are still not well documented, they will not be taken
into consideration during this discussion. Moreover, some of the older tools played a marginal role
into the SVA-ng design ideas and their capabilities will therefore be omitted.

Airmon-ng

Wireless network interfaces are usually configured to accept layer 2 frames that have the MAC
address of the selected interface. However, not on all devices, it is possible to reconfigure their
behavior in order to accept all frames including the ones not addressed to our interface. Airmon-ng
is a simple tool that allows to change the state of WiFi network cards and swap between managed
mode, the default, and monitor mode, in which we receive all frames.

By doing so, we will be able to capture all network traffic and, if the access point is not
configured to open a separated encrypted channel for every supplicant, we could sniff all traffic
being sent in cleartext. Even if the access point is well hardened, we are always able to collect
meta-data on the current active connections.

Airodump-ng

Airodump-ng allows users to dump captured packets on a specific interface to a file. Its main
usage is to sniff traffic on a monitor mode configured interface in order to later attempt cracking
of credentials. It is impossible to detect its usage from the network since it generates no traffic
itself while listening to all other wireless communications.

When activated, it does not only dump traffic to disk, it also offers a view on spotted active
wireless devices. As you can see in figure 2.8, it offers an extensive amount of metadata. The first
section of the output shows the spotted access points with:

• BSSID from which we can derive the manufacturer of the device

• the signal strength, from which we can triangulate the signal if multiple airodump-ng devices
are simultaneously ran or if we move the sniffing interface

• the amount of captured traffic

• the cypher and the encryption used

21

2 – Existing Tools

• the ESSID or access point name shown to users

Moreover, in the second section we can see the supplicants, having informations such as:

• BSSID of the access point to which they are connected

• the mac address of the device, again with the possibility to guess accurately they manufac-
turers

• the signal strength, with the same consequences stated above

• the amount of captured traffic

• the ESSID of the access point they are attempting to contact, making it possible to get
knowledge about the name of the last access points to which they connected

$ airodump-ng mon0

BSSID PWR Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID

70:4C:A5:2A:5C:97 -40 44 0 0 1 54e. WPA2 CCMP PSK MightySK-AP

22:09:0F:A1:96:87 -61 54 0 0 4 54e. WPA2 CCMP PSK SK-Guest 00:25:53:0D:B0:44 -81 3 0 0 6 54e WPA2 TKIP PSK Alice-53950521 00:23:8E:4B:DE:30 -85 1 0 0 6 54e WPA2 TKIP PSK Alice-38949960

00:21:96:70:6C:F4 -88 8 0 0 6 54e WPA CCMP PSK fastweb-2016

74:EA:3A:BA:1B:5F -87 6 12 0 13 54 WPA2 TKIP PSK mauri

BSSID STATION PWR Rate Lost Frames Probe

(not associated) 8C:F5:A3:7D:2C:31 -85 0 - 1 46 2 Vodafone-30152

(not associated) D0:C5:F3:E9:A7:80 -39 0 - 1 0 3

22:09:0F:A1:96:87 88:83:22:69:D7:26 -54 0 - 6 0 1

Figure 2.8. An airodump-ng interactive view sample

Aircrack-ng

It gives the name to the whole suite of tools and its main use is to crack keys from packets previously
captured from the WiFi. It has no active role on the network working completely offline. It mainly
cracks WEP, WPA, WPA2 and WPA PSK authentication by brute-forcing possible keys or by
using a user specified dictionary. It is also able to convert WPA capture files to other formats so
that other cracking tools can read them.

Aircrack-ng was mainly developed to crack WEP authentication supporting different approaches
in order to better adapt to different situations such as having only few captured packets. However,
the same is not true for WPA. Being WPA technology much more computationally hard to crack,
new tools such as hashcat has been developed. These base their functioning on graphical processor
units in order to speed up the process. For these reason, aircrack-ng is nowadays used only when
the needed computational power is small.

Aireplay-ng

For what concerns WPA cracking, the relevant packets to be captured are sent when the connection
between the access point and the supplicant occurs and the authentication packets are exchanged.
The more packets are captured, the higher the possibility to successfully crack the key. For this
reason, it is sometimes useful to force supplicants to de-authenticate from the access point so that
they will have to reconnect and redo the whole handshake procedure. This activity is performed
using Aireplay-ng that allows many different approaches to solve the task. Moreover, the tool is
able to perform various forms of replay attacks and packet injection.

22

2 – Existing Tools

2.2.5 Other tools

The number of penetration testing tools available on the market is constantly rising and it is not
interest of this thesis to exhaustively describe each one them. Instruments discussed in this section
have not been integrated in SVA-ng but they are worth of notice since they are intensively used in
assessment tasks.

Burp Suite

Burp Suite [20] is a proprietary web application exploitation framework implemented in Java,
maintained and distributed by Portswigger Ltd. It is available under different licenses, one of
which is free and limited only in functionalities.

Its main role is to act as a proxy server for HTTP / HTTPS connections in order to capture
and eventually alter traffic coming from a local or remote browser directed towards a web server.
This feature allows penetration testers to inspect traffic in depth, to identify eventual exposures
and to alter or replay traffic to perform tests on specific potential vulnerabilities. Moreover, it
includes the possibility to execute a spider program that maps websites in order to discover all
accessible web pages URLs. Whenever a page with input parameters is found, the operator can run
an automatic injection of code to check possible exposures. Burp will then keep track of answer
lengths and contents automatically sending alerts if the page is likely to be vulnerable. It also
features an automatic vulnerability scanning tool.

Burp Suite success stands in its simplicity and in the fact that many of its features are offered
for free. Moreover, it extensively supports REST, AJAX and SOAP technologies.

Hydra, Medusa and equivalents

Hydra [21] and Medusa [22] are examples of tools useful to perform online brute-forcing of au-
thentication processes. Differently from previously introduced aircrack-ng and hashcat, these tools
work by interacting with a remote server by guessing the credentials and checking the response.
They are capable of interacting with many different services such as SSH, FTP, MSSQL and RDP.
The use of these tools is very likely to trigger alarms on target systems but they can be configured
to be slightly stealthier.

23

2 – Existing Tools

F
ig

u
re

2
.9

.
N

es
su

s
d
et

a
il
ed

v
ie

w
o
f

si
n
g
le

fo
u
n
d

v
u
ln

er
a
b
il
it

y

24

Chapter 3

SVA-ng Architecture

Shorr Kan Vulnerability Assessment next generation (from now on SVA-ng) is a software tool
developed together with Shorr Kan IT that has the main aim of supporting the company in its
VA and PT activities. In this chapter, we will analyse the original requirements on which the
application has been designed on and the high level view on its architecture. Further details of its
implementation are described in chapter 4, while its use cases are in chapter 5. For performance
and result analysis, please refer to chapter 6.

3.1 Requirements

In an application development cycle, the first step always defines the process of extensively de-
scribing the features that the software must have. The aim of this chapter is to discuss the SVA-ng
initial intended objectives.

As every real world application, SVA-ng has been developed with a simple and general objec-
tive in mind, reduce costs. With IT becoming necessary in more and more activities and stricter
requirements from a security perspective, the market has the necessity of lowering costs of assess-
ment tasks. While demand is quickly rising in numbers, security experts take time to get sufficient
training. For this reason, SVA-ng attempts to reduce the time needed to perform simple tasks,
increasing security teams throughput and in the end decrease costs and prices. The main idea
behind this is to ship a simple laptop with SVA-ng pre-installed to the customer instead of orga-
nizing business trips for assessment tasks. This laptop has to be installed in customers network
and must therefore be simple to install and configure in order to connect to external sources,
such as the assessment team, and internal ones, such as management units.

As stated above, the hardware is shipped with tools already installed and configured. As its
name suggests, SVA-ng must interact with vulnerability assessment and penetration testing tools
such as Nessus, NMap and others. In particular, it must be able to import third party software
results and to actively launch scans. This feature must be programmed in such a way that
operators can easily interact with other software units through a single unified view. By doing so,
SVA-ng creates a new layer of abstraction between the users and the tools underneath allowing
non-experts to perform simple management tasks.

With security tools evolving in time and different necessities expressed by different customers,
SVA-ng must support features that allow integrating new third party software without the necessity
of rewriting the whole project from scratch. The consequence is the necessity of writing a highly
modular program on which new functionalities can be added in small time. While this is a very
general concept in software engineering, in SVA-ng this is simply achieved by letting the input
sources the most extensible and general as possible.

While the aim of the application is to support the comprehensive technical testing of networks,
as in all assessment tasks, the data that is presented to the customer is the conclusive document.

25

3 – SVA-ng Architecture

In real world business, security teams spend most of their time documenting the activity they
did and not performing the real task. Due to the very nature of these activities, automating the
document generation is a very hard task. However, offering to the customer a view on the
results helps giving an idea of the issues present on the system to the management team while
documentation is in creation. For this reason SVA-ng must support a dashboard with security
relevant indicators and other commonly generated result data such as the VAT.

As companies might be divided in different subnets or subunits, the software must support
multi-environment capabilities. This implies the separation of data among different sets con-
cerning the imported data and the results. From now on, these sets will be called companies even
if they occur in different subnets or organizational units. While this feature might seem obvious,
many of the tools available on the market have no time related data. This implies that they do
not store data on previous scans since they are not aggregated with further results and therefore
are of no meaning for the tool.

While many software uses this approach, SVA-ng does not. It must offer the possibility to run
or import multiple scans in the same environment so that results can be compared and analysed
as a unique set of data. These results must therefore be stored and elaborated with timing con-
siderations. For these reason, SVA-ng must support the importation from multiple result
sources to be aggregated on time. From now on we will refer to sets of data that belong to
the same timeslot as scans.

As we discussed in chapter 1, the activity of vulnerability assessment is highly dependant on
specific systems. For this reason, it is necessary that SVA-ng gives the correct priority of
visualization to specific services. As an example, companies that base their business on web
applications might be more interested in vulnerabilities exploitable on HTTP or HTTPS. From
this idea, it is important to define the concept of VIP ports as ports on which relevant services
runs on. These ports will be visualized with more priority compared to the others. It is important
to note that the VIP classification must only be used for visualization rules and no other type of
analysis must be ran on this basis. Automatic classification algorithms should be implemented
in order to further reduce configuration time. Furthermore, this configuration should be easily
adjustable, importable and exportable through different company sets.

While VIP configuration should only affect the view priority, vulnerability related risk classes
should also affect further analysis. SVA-ng must import default risks and remediation suggested
from the tool from which it imported the results. The user must have to possibility to
override risk categories actively changing the ranking of single exposures. These modifications
should apply to all other equivalent vulnerabilities in future scans so that no reconfiguration is
needed. This must be also true for the standard remediation.

As discussed in chapter 1, only vulnerabilities previously known for which a specific test has
been developed can be checked automatically. Other exposures are usually tested manually by
operators. These are usually specific to the application and therefore are not available in the CVE
list. SVA-ng should not only be able to handle known vulnerabilities but should also give the
possibility to the tester to add system specific exposures. These should be accompanied
by all data relevant to their enumeration and identification. They therefore should be treated as
every other entry both in their management and in their visualization. Since they could include
GUI interactions, it is fundamental for the system to support the upload and visualization of
screenshots and other documents.

The possibility to discern among different companies and to aggregate results among scans
leads to the possibility of keeping track of the general security posture on time. This is useful to
continuously check the state of the system among different testing cycles. As stated above, the idea
behind security is strictly related to a process and not to single states. SVA-ng must implement this
by including features that give to the management the correct analysis instruments. Each single
service present in the system will be therefore characterized in each different instant as being in
one of the following states:

• Present: tests have not found any vulnerability

• Vulnerable: one or more vulnerabilities are present

26

3 – SVA-ng Architecture

• Fixed: some vulnerabilities was present but has been fixed

• Accepted Risk: some vulnerability is present, not fixed but its risk is not considered to be
taken into consideration for further analysis

• Mixed: any combination of the above described states

The user must have the possibility to select the current state of each vulnerability and
the system should keep track of variations in time so that further analysis can be made.

Up to now, all described requirements are strictly related to vulnerability assessment activities
and merely take into consideration the aspects related to penetration testing tasks. However, since
what usually happens is that a PT might be considered necessary, suggestion and automation
capabilities for these activities should also be added. In particular:

• the system should suggest the manual operator on the automatically exploitable services
present in the network. This also implies that it should keep data on the available exploits
and the easiness of their use. Given the great usability of the Metasploit Framework, the
presence of one of a vulnerability that can be exploited using it should be considered with
higher priority compared to other scripts.

• the system should keep track of the penetration testing team preferred behaviours by ranking
most commonly exploited vulnerabilities. This implies that operators must be able to select
their preferences for vulnerability classes and visualize suggested exploits ranked on their
preferences.

• the system should include most used penetration testing tools so that the testers do not have
to install them if the SVA-ng hosting laptop is used as the network entry point.

During assessment it is useful to change the location of the actively scanning device in different
points of the network in order to better map the whole subnets. The presence of firewalls and
routing rules might in fact forbid some services to be accessed from some locations. This would
lead to some vulnerable services not being reachable by the scanner marking them as not present
while they might be. The fact that a service is not reachable in many cases cannot be seen as
a protection mechanism. For an attacker it is indeed sufficient to get access to a machine in an
allowed subnet in order to get the required authorization to access the service leaving a vulnerable
service into his hands. For this reason, SVA-ng must be integrated with ad-hoc modules logically
distant in the network from now on called probes. The development of their communication
channel must be standardized in order to allow the development of new modules later on. Being
the internal company network possibly non secure and being the probes security devices that can
interact with the network, probes and their communication channels must be strongly secured so
that the compromising of one of them do not affect the others.

The probes that have been developed are the following:

• NMap scanner: a simple probe that executes port scanning according to the configured
parameters. Its aim is to simply distribute scanning points across the customer network.

• Responder: a probe that executes the Responder script in order to capture network services
credentials in order to facilitate a possible further penetration testing activity.

• WiFi sniffer: a probe mounted on a WiFi enabled device that maps the current state of
access points and supplicants. This module extends the default functionalities of SVA-ng in
order to make it an active monitoring application. It has been developed as an example of
SVA-ng extended capabilities.

Since the nature of this tool comprehends very sensitive informations and use of very interesting
tools from a security perspective, the access to SVA-ng main application must be secured so that
only authorized users can access it.

27

3 – SVA-ng Architecture

3.2 Architecture design

The second step in software development consists in defining the set of modules that have to be
developed, the physical devices on which these modules will be mounted and the various ways
in which they will interact with each other. During this phase, no specific software product or
hardware has to be defined since the relevant aspect of the design stands in defining the necessary
features in order to match the requirements. It is necessary to understand that most of this work
is strictly related to the specific project and are therefore mainly based on the analysts experience.

3.2.1 Physical architecture

In the SVA-ng design, one of the most relevant needed feature to note is adaptability. The system
must be able to adapt and fit in any customer networks with few configuration changes in order to
minimize deployment timings and costs. Even toe it would be possible to graphically represent any
possible topology, for the purpose of design, using a very general schema as the one in figure 3.1 has
more advantages than downsides. Indeed, it reduces identified elements reducing the complexity
and increasing the abstraction needed in further analysis.

Figure 3.1. View of SVA-ng environment

As it is shown in figure 3.1, the elements of the chart are the following:

• Tester computer: the physical machine from which testers will interact with the system

• SVA-ng laptop: the physical laptop hosting the complete SVA-ng application with the only
possible exception of probes

• Series of probes: some other physical device, usually other laptops, on which some external
function will be executed

• Hosts and servers: the whole set of customer devices that will be tested including all
network devices, sensors and physical actuators that are omitted for simplicity reasons.

The most relevant thing to note in the figure is that all devices are located inside the customer
network with the only exception of the tester computer. The configuration on how the communica-
tion should occur is left to the network owner or manager in order to leave them complete freedom
without the need of specific instructions. This allows the customer to include the SVA-ng platform
without extensively modifying its network policies. After the laptop receiving, the company simply
have to install it in the most suitable network logical location and configure firewalls and routers
so that testers have access to the service that it exposes. Choice related to how this should happen
are left to the company operators, here I cite some possible configurations that usually occurs:

28

3 – SVA-ng Architecture

• Providing a VPN access to the tester and configuring firewalls so that all inbound and
outbound traffic is blacklisted with the exception of the specific service required. This is by
far the most secure choice since no service is externally exposed with the exception of the
VPN.

• Configuring an internal device to act as any kind of pivot (allowing therefore tunneling)
between the tester and the SVA-ng laptop.

• Directly exposing SVA-ng to the internet. This is considered the less secure choice and should
be avoided since the service is not proofed to be totally secure.

It is important to note that in the security reasoning stated above, the tester must be considered
trusted. Without making this assumption, it is trivial to understand that including an external
device into the network must always be considered as an insecure behaviour. To ensure tester
trust, customers must consider the possibility of logging all traffic that SVA-ng produces to later
have the ability of proofing eventual incidents.

All probes described above are only needed if the main laptop does not have the possibility to
host them. The most common case in which this condition can happen is the one shown in figure
3.2. Firewalls are indeed configured not to allow suspicious traffic between different subnets and
will therefore stop most of the traffic that vulnerability assessment tools will generate. When an
assessment is performed without changing this configuration, it will fail to assess the exposures
of some network. While in principle this is correct, sometimes customer only wants to test hosts
exposures without considering the filtering performed by network devices such as firewalls. In order
to achieve this task, the first possible solution is to add rules such that all traffic from SVA-ng is
allowed. Since we do not want this to happen because of the deployment timing increase, what
is usually done is to deploy a probe on the specific subnets so that the communication with the
main SVA-ng laptop is allowed. The probe will then perform the exposures analysis and send the
results back to the main application as shown in figure 3.2.

Figure 3.2. An example of a non scannable subnet being traffic dropped by the firewall and a
scannable one using a SVA-ng probe

29

3 – SVA-ng Architecture

3.2.2 Logical architecture

In this section we will describe the design choices at a logical level. Approaching this discussion,
it must be clear that no specific software product such as various framework will be named. The
real implementation such as the choice of the Apache Web Server for providing web pages will
be discussed further on in chapter 4. At the logical level, in fact, we still have to discuss the
software features that the system must have in order to match the requirements. However, for
what concerns the communication systems among the modules, protocols will be named since they
offer a unique mapping to their features.

In figure 3.3, the division among physical devices is made clear. The system is therefore
composed of the following elements already discussed in the previous section:

• the tester computers, that execute and visualize the code provided by the SVA-ng main device
through a simple browser; its internals will not be discussed since they are well beyond the
scope of this thesis

• the SVA-ng main device

• the probes

Figure 3.3. Logical view of SVA-ng application database

SVA-ng web server

The choice of using a web server as the main point of interaction between the system and its users
is related to the increasing use that web technologies are experiencing in this historic time frame.
As for every paradigm experiencing the same trend, the web one nowadays offers many libraries
and frameworks increasing its capabilities and its simplicity of use. Another great advantages is the
availability of graphical tools necessary for visualizing data that fully matches the requirements.
Charts, animations and input forms are in fact available with pleasant aesthetics and simple
programmable functions. Furthermore its interaction with a Database Management System is
well supported as well as its interaction with other web services.

The web service code handles the following aspect:

• Entire view logic: expressed with the use of CSS pages and JavaScript code. Both will
be ran inside the browser actively moving their needed computational power on the clients
browsers.

• A part of the business logic: all rules that must apply to the interaction with the user
such as adding or modifying data are handled here. This is done via a server-side scripting
language that executes therefore on the server.

30

3 – SVA-ng Architecture

• The launch of back-end processes: the web application will in some cases take data from
the user and send a signal to the back-end to start the analysis on them. The communication
between the two components occurs via web calls. This is well supported by any scripting
language and its usage is not resource expensive since these calls are not made continuously.

• Client authentication: provided with credentials (username and password) and well pro-
tected with the most suitable and uptodate methodologies.

The web server is configured to use HTTPS only so that confidentiality and integrity are
provided on communications with the clients. The implementation of this protocol is beyond the
scope of this thesis and will not therefore be discussed.

SVA-ng database

Whenever a web server is in use, the general choice is to include a database (from now on DB) to
handle the entire set of data. This is done because of the stateless nature of the web paradigm that
discourages web services to store data across different web calls. In the case of SVA-ng, since both
the web server and the back-end daemon need to interact with the data, the choice of storing all
informations in the DB also gives a concurrency positive effect. One of the features of the database
management systems is indeed to allow and solve eventual conflicts during concurrent accesses.

While the trend of the last years is to move towards new databases paradigms, mainly non-
relational, in SVA-ng we chose to use a more traditional relational database. This choice has been
done with the idea that vulnerability related data is usually homogeneous and can be formalized
in a set of tables and columns. Moreover, the cardinality of tables rarely exceeds 104 and when
performing queries, a big amount of join operations is needed. For all these reasons, the most
suitable data storage is indeed a relational database.

During the design we chose not to create a single database but to create a whole set of them
storing different information. As shown in figure 3.4 two types of DB are created:

• Application database where all application related data are stored. This informations
include user related data, credentials, access logs and back-end requests history and current
state.

• Company specific databases where all company related data are stored. Each company
therefore have a single database in which it stores its data and configurations. This informa-
tions include all hosts, services, vulnerabilities and users found during scans, VIP ports and
risk configurations, list of active probes with related requests, and so on.

Figure 3.4. SVA-ng database structure, types are expressed by colours

The database separation has numerous advantages. The first is the simplicity of performing
data dumps with company granularity. In fact, no export script is necessary since default SQL
commands can perform the dump. The second is represented by data isolation. With data phys-
ically stored in different DB, the system is less prone to have errors related to non relevant data
being included into outputs and statistics.

From a security point of view, having multiple companies databases in a single system might
affect confidentiality. However, as stated in the previous chapter, in SVA-ng the concept of company
does not refer to separate entities that have nothing to do the one with the other. A company
is actually referred as a certain set of assets on which the assessment activity is ran on. The

31

3 – SVA-ng Architecture

figure 3.5 shows a network topology in which this distinction among companies is necessary. In
particular, if SVA-ng can access two different departments subnets, the customer might want to
execute separate scans by consequently having two distinct sets of resources and results. In this
case, SVA-ng can once more adapt to customer needs.

Figure 3.5. An example of SVA-ng environment in which company differentiation occurs

Back-end

This is the part of the code that checks and executes all computational expensive tasks and all
communication with the various probes. This component interact with the web application via
the filesystem (being executed on the same device) and the database. The only exception to this
paradigm is related to the signals that the web application sends to it when a specific task must
be ran. This feature could be programmed using the database but in order to avoid DB polling
by the back-end to check the presence of eventual tasks, we chose to implement it by including a
simple web server. This module is therefore listening for connections opened by localhost and it is
not exposed to external entities. In order to allow the manual usage of its components, a simple
command line based interface has also been implemented.

The programming language chose for its implementation is the Ruby scripting language. The
reason behind its selection is mainly represented by the vast amount of libraries, called gems, that
the community offers. Moreover, Shorr Kan IT had previously developed functional modules to
interact with its own systems using this language that are able extend SVA-ng functionalities. This
allows a cheap and convenient inclusion of previously developed scripts with low effort.

The activities that the back-end module performs are the following:

• Database configuration for the initialization of the system

• Importation of existing tools results due to the high complexity and computational
effort to adapt datasets to the used database structure

• Generation of new information from imported datasets by performing static anal-
ysis on other tools results; this includes the automatic configuration of VIP ports and the
correlation between previously imported data

• Interaction with the probes by performing SSH communications with the external devices
and importing their collected data

Since the back-end must always be available for the application to work properly, its launch
is been automated. The most suitable methodology to perform this task has been considered to
be daemonization. This implies a simple configuration of the operating system in order to start
the daemon that will then consist in a background process waiting for external commands and
continuously performing checks on the state of probes and database.

32

3 – SVA-ng Architecture

Probes

The internal architecture of probes is highly dependant of the activities they perform. In their
development, the tools cited in chapter 2 were used. For these reasons, describing their internal
implementation is not of our interest. However, during the design phase we chose to unify their
communication interfaces so that the back-end could use a unique method for all probes.

Due to the very high risk related to the non authenticated use of the probes, their communi-
cation channel must be secured and well protected. As in security reinventing the wheel is not
considered secure, we chose to use SSH as main protocol. The description of SSH is well beyond
the scope of this thesis and will therefore be omitted. Moreover, when the transfer of a file is
needed, the SSH based SCP tool is used. On top of the SSH channel, various script with uniquely
defined names will be called remotely in order to perform the following activities:

• start used for starting the probe

• stop used for stopping the probe

• check used for checking the probe state differentiating among not running, running, crashed,
ended

• retrieveStart called before the result file transfer occurs

• retrieveStop called after the result file transfer occurs

This configuration allows to interact with different probes in a unique protocol with the exception
of how the results importation occurs. In order for multiple probes to run concurrently, a simple
token based mechanism has been implemented.

33

Chapter 4

SVA-ng Developers Manual

The aim of this chapter is to describe the technical details of the SVA-ng application implementa-
tion. We will start with a discussion on the main device operating system structures and filesystem
organization. This device represents the central core of the whole application. We will then ex-
tensively describe the internals of the database structures and the main software components that
the web server hosts and execute. The Ruby scripted back-end is then described highlighting the
way in which it automatically generates ad-hoc configurations for different companies. Finally, the
structure of probes will be discussed with a special reference to how communication among the
devices has been implemented.

4.1 Main Device Configuration

As main device we selected an Ubuntu 16.04 distribution but the project contains no binary
program, it could be ran on any Linux distribution for which the later on described interpreters
exists. The reason behind the Ubuntu distribution choice is simply related to its extensive support
by the community and to the fact that it is free.

The main device contains the entire base of code and data of all SVA-ng with the exception
of probe executed code and web client-side scripts. Since the data that the system handles are
related to the security of customers networks and application, this device need to be considered as
a high risk asset. For this reason, the whole application has been developed with security in mind
and a penetration testing task had been perform on the platform itself.

The first system configuration is related to user separation. Considering that, if the web
application is vulnerable to any command execution attack, an attacker could get access to the
system with the same privileges as the web server, it is important that the web server is ran with
very restrictive privileges. Moreover, since the back-end has the possibility to interact with probes
that can contain active tools such as the Responder, it is important that the code of the back-end
is not readable or executable by the web server user. It is important to note that this step does
not guarantee security since the web application still needs to legitimately communicate with the
back-end, however it increases the difficulties that an attacker will face in the event of a breach.
In any case, if the web application is compromised, an attacker could still leak all data present in
the DB.

SVA-ng web application and back-end are fully structured in a single path tree in the filesystem
with the exception of the interpreters configurations that are located into their default installation
directories. More details about system configurations will be given later on. The main common
idea behind system configuration is to leave default choices wherever not dangerous and possible
in order to minimize deployment automation efforts and make SVA-ng as stand-alone as possible.

34

4 – SVA-ng Developers Manual

4.2 Database

MySQL extensive support and the fact that its basic license is free of charge made it the best choice
as the database management system (from now on DBMS) for the application. It is hosted entirely
on the main device and backups are made only in the case of a specific customer request. The
reason behind this choice consists in the fact that if the backup hosting device is compromised,
the whole customers set security data would leak, opening up to disputes with the customers
themselves.

This DBMS allows the creation of multiple virtually independent databases that stores different
table structures. As considered during the architecture design, we made use of this feature to
implement two types of DB. The first, common to all companies, stores all users data and logging
history. The second, one instance for each company, stores data related to the whole set of historic
and current assessments.

The access to a MySQL database is authenticated with username and password. The credentials
policy used in SVA-ng is to create a new user for every different deployment in order for different
instances of the application not to have access to other ones data. Moreover, these accounts do
not have the privileges required to alter the main database structure but only the company specific
ones. This modification possibility is needed to execute these changes at runtime. Activities such
as adding new probes might indeed need this alterations to be performed. As the current state of
the application, these changes are only made by the back-end application. A security improvement
would consist in the creation of two different users, one for the web application with no alteration
rights, and one for the back-end with this possibility.

A specific naming convention for tables and attributes has been chosen in order to simplify
later integration with specific database libraries used in the software modules that will interact
with it. The following is the rule set:

• every name must be written in lowercase

• words are separated by the underscore character

• table name must be the plural of the entity described

• every table should have its primary key called ”id”

• foreign keys are the singular of the foreign entity preceded by the ”id” string

Application main DB

Figure 4.1. SVA-ng main database entity relationship diagram

35

4 – SVA-ng Developers Manual

In figure 4.1 the main application database entity relationship diagram is shown. As the schema
is almost completely self-explanatory, some precise explications must be given:

• In the logs table all login and logout operations are written. It is important to note that
delete operations on this table are not allowed for security reasons.

• In the table requests all operations requested to the back-end are stored. This is the only
table in the DB to be used by both the web application and the back-end concurrently.
Whenever a job needs to be started, a random token is generated and stored together with
the specific request by the web server. The token is then sent to the back-end web service
that will then, if the job has not been executed yet, find the token in this table and run
the requested task. This methodology allows to decouple the two software modules that
exchange informations only trough this table. Further explanation will be given later on.

• In the table users all relevant information about SVA-ng accounts is stored. As the salt
technology is becoming necessary for security reasons, it has been implemented. As shown
in figure 4.2 it consists in simply adding a random string to the password before the hash
function is applied. This string need to be saved into the DB in order to perform the
same operation when credentials checking occurs. This simple trick allows to make unusable
rainbow table based attacks since it would be necessary to generate ad-hoc tables for every
single hash nullifying the attack advantages. Moreover, even if the DB is compromised, if
the user uses the same password for other application, the hashes of different databases are
very unlikely to match because of the random generation of the salt.

Figure 4.2. Salt technology

Company specific DB

In figure 4.3 a simplified version of a company specific entity relation schema. In order to fully
comprehend it, a couple of general points must be highlighted:

• Tables with the ” texts” suffix are tables in a one-to-one relationship with the table above.
The original tables were divided into two sub-tables in order to reduce access times whenever
the extended informations are not required. These tables only contains text fields and since
MySQL is not optimized for fast access on tables with variable length texts, the implemen-
tation choice has been to divide them.

• Tables with the ” has ” string are simply inner tables for many-to-many relations.

• Attributes of tables sambas, oracles, mssqls, domusers and nfss have been hidden in order to
clean the overall picture. They simply contains all credentials found during the assessment
task and are added mostly manually. For this reason, their description is of no relevance.

• Only a sample probe result table is shown while many are actually present in the database.
The choice to implement a table for each probe type has been done because of the hetero-
geneity of collected data.

Taken into consideration this general points, each figured table has some specific use:

36

4 – SVA-ng Developers Manual

Figure 4.3. Simplified view on SVA-ng company specific database entity relationship schema

• scans: contains a list of all executed scans and their timestamps. Almost every other table
refers to it as every activity done during an assessment is related to the assessment activity
itself.

• hosts: contains the list of nodes discovered in the network. They are characterized by their

37

4 – SVA-ng Developers Manual

IP address and their hostname. Among scans, host list is kept unique in order to allow
aggregation on a single host basis.

• host scripts results: contains all information resulting from OS detection scans. Since
hosts can respond in different ways according to their state of patching, this information is
volatile and cannot therefore be statically stored in the hosts table.

• services: contains information gathered from port scanning and service banner grabbing.
It is mainly characterized by a port number, a service name and a layer 4 protocol. This
information is considered to be consistent among scans and if it changes, it is simply updated
to the latest scan.

• scripts: contains information about all VA scripts ran on the specific service in a specific
scan. It also stores the default risk classification based on the one suggested by the scanner
(usually CVSS is used). Another relevant attribute is the fixing data that represents the
current state of exposure of the specific service on which the vulnerability was found. As
explained in previous sections, an exposure can be fixed or its risk can be accepted. In both
cases, the vulnerability is considered not present any more by all statistical analysis.

• vulns: contains a list of all found vulnerabilities. Its entries are not repeated among scans
since they represent the vulnerability type and not the vulnerability instance (expressed
through the scripts entries). While known vulnerabilities should not change their attributes
over time, in some special occasions they do. When this situation occurs, all data is auto-
matically updated and no history is kept.

• vuln ranks: here all suggestions for penetration testing activities are stored. In particular,
the presence of an automatic script that exploit a specific vulnerability is stored together
with an experience indicator of how much the assessment team is able to use it. This data
will be used later on to suggest ranked points of attack to the testers.

• manual vas: contains all additional data used to store asset implementation specific found
vulnerabilities. Basically, every vulnerability that is found manually by the tester is included
in these entries. The screenshots field consist in a list of pictures filenames while the document
is a simple reference string.

• vip configs: contains a list of ports that can be manually or automatically configured
through the application. These represent the business critical ports and are took into con-
sideration by the application whenever specific data visualizations are required. In order to
allow this configuration to be different among scans, entries are related to the scans

• risk configs: contains all manually configured risk classifications and solutions. These two
elements, if present for a certain vulnerability, will override the default values. This will allow
users to manually define business specific risk classes without changing the historical values.
Whenever a new vulnerability instance is found, the last risk configuration is imported and
used.

Whenever a single scan report have to be generated, it is sufficient to query the database for a
specific scans table entry and all non relevant data will be discarded. The whole database schema
has been design in such a way for this to occur since as we will describe later on, almost all pages in
the web application are related to one single scan. What will be usually done is to set a web session
variable with the current analyzed scan identifier removing the need of performing the expensive
SQL join operation on the scans table in every single query. In general, no other optimizations
have been performed with the exception with the ones already described.

4.3 Web Server

A web server is a software that provides web pages over the HTTP / HTTPS protocols based on the
client requests. In order to compose complex dynamic pages on the basis of parametric requests,

38

4 – SVA-ng Developers Manual

the developers need some way to programmatically define how the server should behave. This is
done with another software module that interprets server side scripts. For licensing reasons, we
chose to get these two services using Apache web server [23] together with PHP scripting language
and interpreter [24] which are free and open source.

In order to include additional functionalities to the two software, additional modules have been
installed. In particular, mcrypt, a module that provides cryptographic functions, and php-curl, to
enable the web server to forge and send web requests, were added. Moreover, during the installation
process, Apache must be configured to be used with PHP and PHP together with MySQL through
the installation of libapache2-mod-php and php-mysql packets.

Whenever a Web Server is installed, it must be configured to provide its service on a specific
port in a specific manner and retrieving its pages, scripts and resources from a specific path. The
configuration file for each web site is located at /etc/apache2/sites-enabled. In figure 4.4 the
most relevant configuration rules are shown and commented.

If the SSL module is present and enabled

<IfModule mod_ssl.c>

Provide a service on all interfaces on port 443

<VirtualHost _default_:443>

Specify the root path where to retrieve web resources and scripts

DocumentRoot /var/www/html

Files to store logs

ErrorLog ${APACHE_LOG_DIR}/error.log

CustomLog ${APACHE_LOG_DIR}/access.log combined

Enable SSL engine (provide HTTPS service)

SSLEngine on

SSL certificate files locations (other SSL configurations are omitted

SSLCertificateFile /etc/apache2/ssl/server.crt

SSLCertificateKeyFile /etc/apache2/ssl/server.key

Enable css and javascript caching in order to reduce resources retransmission

ExpiresActive On

ExpiresByType text/css "access plus 1 day"

ExpiresByType application/javascript "access plus 1 day"

</VirtualHost>

</IfModule>

Figure 4.4. SVA-ng website, web server configuration

4.3.1 Frameworks and templates

As web application development is an expanding market, numerous libraries, frameworks and
templates are freely available on the Internet that can simplify all phases of an application design
and implementation. The real advantage of using them stands in the fact that already implemented
and tested functions can be shared among developers that do not need to redo the whole work,
decreasing development times and costs and decreasing time to market. For SVA-ng we selected
two specific ones: CodeIgniter [25] and Gentelella [26].

39

4 – SVA-ng Developers Manual

CodeIgniter

It is a web framework for the PHP language completely free and open source. Its main advantages
are the following:

• Very small footprint on the overall resources and a size of approximately 2MB, the possibility
of removing not needed resources and a low impact on response times through an internal
caching mechanism.

• Very loose set of rules. It does not enforce the usage of its data structure leaving to the
developer the choice of the paradigm they want to use.

• Good support through its documentation and forums

• Programmatically defined simple configuration: framework configurations themselves are
written in PHP.

• Predefined helper functions such as input validation and other security features.

• Database abstraction classes.

• Automatic Model View Controller structure initialization and handling.

The Model View Controller represented in figure 4.5 is a software architectural pattern used to
decouple the three main application components:

• View: handles all graphical logics and generates the web page querying the model for the
data

• Controller: handles user inputs calling specific methods in the model, it then call the view
for page generation

• Model: contains the whole application logic with the exception of inputs and outputs. In
order to do so, it queries and updates the database.

Figure 4.5. Model View Controller web applied pattern

CodeIgniter is fully organized in a single folder called application. All CSS, JavaScript,
images and resources are located together with the latter in the main web server root path (de-
fault /var/www/html). Inside application, multiple folders contain components based on their
architectural use. These includes controllers, models, views, helpers and config.

As an example of CodeIgniter simplicity, in figure 4.6 a simple controller declaration is shown.
Simply by extending the CI Controller class, the engine will respond to web requests at the URL
https://domainname/service with a web page. Its graphical view is defined in the file called
service.php located in the view folder and parametrized with the $data variable. The content of
such variable are generated by a method in the model class service model. Moreover, whenever
this controller will receive any request, it will control user login state and respond accordingly.
From this simple example, all CodeIgniter advantages are noticeable.

40

4 – SVA-ng Developers Manual

<?php

class Service extends CI_Controller {

public function __construct(){

parent::__construct();

$this->login_model->redirect_if_not_logged();

}

public function service(){

$service_id = $this->input->get(’service_id’);

$data = $this->service_model->get_service($service_id);

$this->load->view(’templates/header’, $data);

$this->load->view(’service’, $data);

$this->load->view(’templates/footer’);

}

}

?>

Figure 4.6. Code igniter controller declaration

Gentelella

It is a free administration template that contains a vast amount of preconfigured libraries. Its main
advantage is related to the pre-installation of all possible necessary CSS and JavaScript resources.
It makes therefore possible to develop pleasant and reactive web graphical user interfaces without
being an expert in web design. Included libraries that have been used during SVA-ng development
are the following:

• Bootstrap: a layout engine with multiple preconfigured graphical elements

• Chart.js: a JavaScript library for chart visualization and animation

• Datatables.js: a JavaScript library for data table visualization and asynchronous import of
dataset

• Dropzone.js: a JavaScript library for easily upload files on the web server

• jQuery: a Google general library that simplify JavaScript code development

• pNotify: a JavaScript library for user notification and relative animations, on which we chose
to implement the complete error notification mechanism of SVA-ng

4.3.2 Web Pages

In this section we will discuss every web page that the web server provides and their internals.
Every described content is accessible through the lateral left menu of the main layout with the
exception of hosts and services. Since the PHP code size is of approximately ten thousand lines
of code, only the overall functioning of the non trivial components will be discussed. For this
reason, the CSS and the trivial JavaScript functions such as hiding components or changing their
graphical appearance will be omitted. During the whole chapter, whenever a path is given, the
web application root part will not be included for the sake of simplicity. In general, this prefix is
configured to be /var/www/html/sva-ng/application/.

Configuration file

All SVA-ng application level configuration is defined in the file located config/svang.php. Re-
sources in this folder are automatically included and executed by CodeIgniter whenever a request

41

4 – SVA-ng Developers Manual

to a controller is received. The whole configuration consists in a list of insertions in an associative
array such as:

$config[’dbname’] = ’shorr kan’;

This file includes:

• Database names and credentials

• Allowed IP addresses whitelist

• Pictures and resources default paths

• Probe types

• Back-end interaction parameters such as port and communication codes

Notification handler

In the entire website a unique success and error notification mechanism is used. Wherever there
is the need, a particular session variable is set with the following call where the notification code
specifies the circumstances:

$this->session->set flashdata(’msg’, notification code);

The set flashdata function is a CodeIngiter function that declares a session variable that will be
destroyed after its first use. Inside the header template, the notification code will be mapped to
the specifications present in the helper/notice helper.php file assigning a name, a description
and a color to the notification that will then be spawned on the GUI through JavaScript pNotify
library. This mechanism allows code to be kept during navigation in different pages and has been
implemented since the web programming paradigm is, by default, stateless.

User authentication and logs

In order to access any page of the web application, users are required to log in using credentials.
As SVA-ng is not supposed to add users dynamically, there is no need to have a register page
since it should performed manually. Whenever a login procedure is performed, a log entry is added
keeping track of the user id, the IP from which the request was performed and the timestamp.
The same but inverse procedure keeps track of logout operations updating the previously added
entries. Logs can be consulted in the Administration / Access Log Table. The login mechanism is
based on Apache session variables handling that works in the following way:

• Performing the login, the web server checks the received credentials in the database

• If there is a match, it generates a random unique session identifier and allocates an array of
variables callable in PHP with $ SESSION that is specific for each session identifier

• In this array, it inserts the successfully logged in user identifier

• It then send it to the client in the form of a cookie

• At every successive request, the client sends back the cookie

• The server knows which session array to use since they are uniquely identified by the session
id and therefore the user id can be retrieved

42

4 – SVA-ng Developers Manual

If the communication channel is encrypted and the server is considered secure, the only weak point
in the security chain is the cookie. If this is stolen, an attacker could impersonate the legit user
by simply sending it cookie at every request. In order to avoid this possibility, the user should
force the logout at the end of the usage session so that the web server deallocate the array further
refusing the cookie.

In order for every page to block unauthorized users to access, a the function shown in figure
4.7 checking the validity of the session is called in every controller constructor except for the login
requests controller. The same redirection mechanism will be used later on for other dependencies
in selecting resources such as database names.

public function redirect_if_not_logged(){

// if the session variable does not contain the user id

if(!$this->check_auth()){

// set the error message to be shown

$this->session->set_flashdata(’msg’, ’LOGIN_MUST_LOGIN/’);

// redirect the user to the login page and stop the web server

redirect(’login’);

}

}

Figure 4.7. Function that checks user authentication state

Company and database

As every company has a different database, the system must give the possibility to the user to
select the among them at runtime. This is possible through the Configuration / Choose customer
entry in the main menu. A session variable will be set according to the selected DB name in order
to keep track and visualize only the related data. In order to restraint the usage of some data that
might be present on the system, in the configuration file stated above, it is possible to specify the
database name prefix that the web application will use. Other names will not be shown and will
not be accessible.

In order to increase usability, the web application will attempt to automatically select the most
suitable database without prompting the user if there is not the need to. The segment of code
in figure 4.8 shows how this is implemented. In the current state of SVA-ng, databases can be
added manually from the back-end and no automatic creation is implemented in the web server.
This choice has been taken with the idea that no normal user should be allowed to perform this
operation since it should be done with extreme caution.

Scan choice and import

The same model of the database, with session variable and automatic selection of the most recent,
is applied to scans. The main difference stands in the possibility for the user to import scans with
the aid of the back-end. The procedure can be performed in the Configuration / Import scan main
menu entry. From the form, the user can specify:

• If to append data to the current selected scan or to create a new one

• The type of the imported data (Nessus, NMap, Users or Shares)

• The file containing the entries to add

• The VIP configuration to use or to generate

43

4 – SVA-ng Developers Manual

public function autochoose(){

// retrieve all databases that match the prefix and that have

// the correct schema

$dbs = $this->get_all_databases();

switch(count($dbs)){

case 0:

// No databases are matching the name pattern, redirect

// to the database add page notifying the user

$this->session->set_flashdata(’msg’, ’DB_NO_DB/’);

redirect(’database/add’);

break;

case 1:

// One database matching, select it

$dbname = $dbs[0];

$this->choose_database($dbname);

break;

default:

// More databases matching, need a manual selection

$this->session->set_flashdata(’msg’, ’DB_MORE_DBS/’);

redirect(’database/choose’);

break;

}

}

Figure 4.8. Function of the database model class that implements database auto-selection

In order to perform this task for large files, the required computational effort might lead to
denial of services of the web application or in lags in the user interface. For this reason, the real
importation is performed by the back-end process. In figure 4.9 the necessary communication steps
are shown.

1. The form is sent to the web server together with the file containing data to be imported.

2. The web server generates a random token and stores the attached file into the temporary
path specified in the configuration file named as the token.

3. It then stores the requested parameter in the database

4. A web request is done to the back-end that includes the token

5. The back-end performs the importation and stores the positive or negative (error) outcome
into the database

6. The browser meanwhile continuously poll the database through the web server for checking
the operation state

While polling is not usually considered an efficient technique, in this specific case it allows a
complete decoupling between the front-end and the back-end logic. It is interesting to note that
the model is kept even in the case of importation errors. The whole communication model is based
on asynchronous requests performed by the browser and has been therefore implemented entirely
in JavaScript.

VIP ports, risk and recommendation configuration

The configuration of VIP ports is performed mainly by the back-end during the importation pro-
cedure and will therefore been discussed it the back-end section. What is relevant to highlight is
that, since VIP generation is performed in an automatic way, there is the necessity for the user to

44

4 – SVA-ng Developers Manual

Figure 4.9. Communication schema for VA data imports

be able to manually change it. This is possible through the Configuration / Edit VIP configuration
main menu entry. The same is possible for risk and recommendation configurations. For all of
these, the main problematic is linked to the fact that the modification of an entry in the current
scan should not be retroactive. This is explained in figure 4.10. In order for this to be possible,
an implementation would be to add some logic in all queries to the database in order to get only
the latest configuration. Since modifying all queries is a very time expensive and error prone task,
the whole VIP, risk and recommendation configurations are loaded as objects into the model when
their model constructors are called. By doing so we are sure that if more then one database query
is performed in a single request, configurations are not reloaded more then once, by effectively
reducing query timings and simplifying development.

Figure 4.10. Configuration importation example showing non retroactive behavior

Import and export configurations

The main problem behind the non retroactive behavior in configuration implemented in such way
has the main disadvantage of not offering the user the possibility to be avoided. The implemented
solution is to give the user the possibility to import and export complete or partial scans configu-
rations linked in the main menu under Advanced / Import Export Configurations. Here the user
can chose what to export in the JSON file format. The implementation of such activity is straight
forward and the code presents no particularities with the exception of the view. In this case in fact,
the output is not a web page but a JSON file as shown in figure 4.11. While other peculiarities
are explained in comments, it is interesting to see that no HTML code is present.

45

4 – SVA-ng Developers Manual

<?php

// set header for file download (omitted for simplicity)

header(...)

// get the content from the model, variables $risk, $solution and

// $rank are True according to the user selection in the form

$rr = null; $rs = null; $rp = null;

if($risk)

$rr = $this->riskConfiguration_model->get_risk_array();

if($solution)

$rs = $this->solution_model->get_solution_array();

if($rank)

$rp = $this->vulnRank_model->get_vulnRank_array();

// print the results on the view in JSON format

echo json_encode(array(’risks’=>$rr, ’solutions’=>$rs, ’rank’=>$rp));

// interrupt execution flow so that no other output is appended

die();

?>

Figure 4.11. Configuration JSON file generation view

Dashboards

One of the ideas behind SVA-ng is to provide a new and fully customizable view on data collected
through the vulnerability assessment automatic activities. The dashboard presents charts that
show the executive overall picture of the assets at in latest scan with all correction due to fixing
and risk acceptance. Since the ad-hoc dashboards should be created together with the customers
and the software have not been released yet, the current view is a sample of what the system could
provide. All charts are implemented with the aid of the chart.js library while their data is imported
in a synchronous way. The currently provided charts are:

• Services per port: with all available services in a donut shape

• Vulnerable services per port: with not fixed and not accepted risks in a donut shape

• Number of vulnerable services per risk class in the form of a histogram

• Fixes and risk acceptances per risk class in the shape of a histogram

Some basic visualization JavaScript functions such as selecting the main services and showing them
all has been implemented.

VAT and HVT

The Vulnerability Assessment Table and the Host Vulnerability Table are two matrix created in a
similar way that shows security data related to the exposures. The only difference between them
consists in the aggregation of data. While in the first, each line represents a vulnerability, in the
second, a single line for each host / vulnerability relation is shown and a counter of how many
consecutive scans that vulnerability has been spotted on that host is kept.

The generation of data is complex as it involves the join operation of many database tables.
Since the two are generated with a very similar query, only one of them is here shown (figure 4.12)
as an example. It is interesting to note that, due to its complexity and with the idea of moving
computational effort on the DBMS, the separation between model and view is not respected. In
particular, the GROUP CONCAT and CONCAT MySQL operators allow to merge lines by specifying

46

4 – SVA-ng Developers Manual

the fields and the separator. In this case the HTML is directly injected into the string. Another
interesting thing to note is that the insertion of parameters in the query is not filtered. This usually
leads to SQLInjection vulnerabilities to occur. In this specific case, since the parameter is taken
directly from the model and no user have control on that field, no filtering is required since the
source is trusted.

SELECT vulnlevel,

GROUP_CONCAT(

DISTINCT CONCAT(

ip, ’
 (’,

COALESCE(hostname, ’no hostname’)),’)’

SEPARATOR ’
’

) AS h,

COUNT(hosts.ip) as count,

GROUP_CONCAT(

DISTINCT CONCAT(

services.port, ’;’,

COALESCE(services.name, ’no_name’))

SEPARATOR ’
’

) AS s,

scripts.name, vuln_texts.descr, vuln_texts.solution, vulns.id as vid

FROM scripts

JOIN services ON scripts.id_service = services.id

JOIN hosts ON services.id_host = hosts.id

JOIN vulns ON scripts.id_vuln = vulns.id

JOIN vuln_texts ON vulns.id = vuln_texts.id_vuln

WHERE id_scan = ". $this->scan_model->get_active_scan()[’id’] ."

AND vulnlevel > 0

AND fixlevel = 0

GROUP BY vulns.id, vulnlevel, scripts.name,

vuln_texts.descr, vuln_texts.solution

ORDER BY vulnlevel DESC, vulns.id ASC;

Figure 4.12. VAT creation SQL query

Being these the most useful results of the whole vulnerability analysis, we chose to insert an
export function in order for the user to import it with other tools. It is simply implemented
through the use of a JavaScript configuration of the DataTable library.

Vulnerabilities

The vulnerabilities page, accessible through the Results / Vulnerabilities main menu entry, gives
a view on the situation of every host. Every row represents a host and every column a specific
port. In the resulting cells the color / letter represents the state of the service. For the complete
description of how the output should be read, refer to section 1.3 of this thesis and in particular to
figure 1.3. The user has the possibility to hide non relevant result with the aid of the header form.

The query that generates the table is the most computational expensive operation on the
database. This is due to the fact that the matrix is not a classic table. In fact, the number of
columns is not fixed since it depends on the number of VIP ports. For this reason, for every
different host a separate query has to be performed.

Services and Hosts

In order to get informations about specific assets details two pages are available: service and host.
While all other pages are available through the main menu, these two pages are only available
through the results pages where hyperlinks on table entries are inserted.

47

4 – SVA-ng Developers Manual

The host page consists in a simple mapping to the database entry related to the selected result
with references to all services and vulnerabilities tested on the specific device. Not vulnerable
services are included in the results but hidden with a JavaScript function.

The service page references a specific instance of a certain vulnerability being tested on a specific
host. In addition to the service and vulnerabilities attributes being shown, here it is possible to
update the fixing state of it using the function in figure 4.13.

public function fix_vulnerability($id_script){

// open connection to the database through CodeIgniter functions

$db = $this->database_model->connect_to_active_db();

// update fixlevel attribute to FIXED

$data = array(’fixlevel’ => FIXED);

$db->where(’id’, $id_script);

$res = $db->update(’scripts’, $data);

if(!$res)

return false;

// update the fixing state logs

$date = date_create();

$timestamp = date_format($date, ’Y-m-d_H:i:s’);

$data = array(’fixdata’ => $this->session->user . ’:’ . $timestamp);

$db->where(’id’, $id_script);

$res = $db->update(’scripts’, $data);

if(!$res)

return false;

return true;

}

Figure 4.13. Vulnerability fix model function

Manual VA

As discussed above, SVA-ng offers the possibility to manually insert vulnerability assessment results
using the Manual VA / Add New page. This is implemented with the procedure shown in figure
4.14. The possibility of pictures insertion and removal makes this page significantly different from
others. In fact, while form data insertion is trivial, the file upload is implemented with asynchronous
AJAX calls to manualVas/add screen.php and manualVas/remove screen.php implemented in
the ManualVas.php controller. The client side implementation makes use of the DropZone.js
library.

Users and Shares

Users and Shares pages offer a view on data inserted in database tables nfss, mssqls, sambas,
domusers and oracles. These refers to set of credentials and related data to everything found
during the assessment and penetration testing activities. While the views are trivial mappings to
the database, the data insertion follows the same paradigm and procedure of scans importation
and it is therefore available in the Configuration / Import scan page.

PT suggester

Penetration tester suggestions are handled through the Advanced entry in the main menu. A sim-
ple table sorted on the experience ranks of every vulnerability found is provided through the PT

48

4 – SVA-ng Developers Manual

Figure 4.14. Add new manual VA procedure implementation

Suggester page. The insertion of these data is handled, for what concerns the script availability,
directly through the importation of scans by the back-end. While this is possible since Nessus
directly provides this data in its output files, in many cases the configuration must be done man-
ually. Moreover, experience ranks must be inserted directly by the penetration testing operators.
The view that allows the insertion procedure is called Configure PT Suggester. The modification
of these fields is retroactive.

Illegal IP hook

In order to increase security a check on requests source IP is performed also at the application level.
While an idea would be to explicitly include a PHP segment in every controller that performs it,
CodeIgniter offers a hooking mechanism that allows to execute a segment of code at every received
request. In figure 4.15 the implementation of the non allowed IP check across multiple files in the
application is shown. The explication of the internal mechanism is discussed in the comments.

4.4 Back-end

The back-end component is responsible of performing all computational expensive procedures and
of handling all interactions with the probes. Due to its complexity and non web related paradigm,
we chose to implement the entire module using Ruby [27]. While probes are located remotely, it
is important to highlight that the back-end is located on the same device by which the main web
service is provided. Therefore they share the same filesystem and resources.

In order to create a single deployment package of simple installation, all back-end resources have
been located inside the main web application default path. As this might represents a security
issue since the web server might access to the program files, two measures have been implemented.
The first simply consists in running the main web server and the back-end with different users
belonging to the same group and in configuring the latter path location to be not accessible by
the web server. The second consists in forbidding the web server to provide resources located into
the back-end folder to HTTP requests. This can be performed through the .htaccess Apache
configuration file.

Ruby is a scripting language with an extensive library set that simplify application development.
In the Ruby jargon these pre-packet functions and classes are called gems. The ones required for
SVA-ng in order to execute properly are the following:

49

4 – SVA-ng Developers Manual

// config/hooks.php entry

// insert a new hook to be loaded after a controller received a request

$hook[’post_controller_constructor’] = array(

’class’ => ’IllegalIp’,

’function’ => ’kill_if_not_correct_ip’,

’filename’ => ’IllegalIp.php’,

’filepath’ => ’hooks’,

’params’ => array()

);

// hooks/IllegalIP.php, IllegalIP class

class IllegalIp {

private function check_ip(){

// get the CodeIgniter instance

$ci =& get_instance();

// load the allowed IP addresses from the configuration file

$ipl = $ci->config->item(’allowed_ip_addresses’);

if($ipl == null) return true;

// check if the current IP is whitelisted

$ip = getenv(’HTTP_X_FORWARDED_FOR’) ?: getenv(’REMOTE_ADDR’);

foreach($ipl as $aip){

$r = startsWith($ip, $aip);

if($r) return $r;

}

return false;

}

public function kill_if_not_correct_ip(){

// provide the 404 header if IP is not allowed

if(!$this->check_ip()){

header("HTTP/1.0 404 Not Found");

exit();

}

}

}

Figure 4.15. Hooking mechanism on illegal IPs using CodeIgniter

• active record: an Object relational mapping system that allows the automatic creation of
objects importing data from the database.

• cli: a class that allows to create command-line user interfaces in a simple manner. This
includes the parsing of flags and parameters passed to the script when called.

• csv and json: a set of classes used to import and export Comma Separated Values and
JavaScript Object Notation files or strings.

• daemons: a set of functions that translate ruby interpreted processes into UNIX daemons.

• nessus: a set of classes for Nessus output files parsing or alteration.

• nokogiri: a library for importation of HyperText Markup Language (HTML) and eXtensible
Markup Language (XML) files or strings.

• sinatra: a lightweight Web Server.

50

4 – SVA-ng Developers Manual

Daemon

The back-end needs to be always executing in order for the web application to successfully execute
related tasks. While the Apache web server usually includes the activation of automatic start
up during its installation, for other processes, this feature must be explicitly configured. The
implemented solution makes use of a daemon process.

In UNIX systems, while normal processes need to be under direct control of an interactive
user, daemons are usually children of the system init process and allows no user interaction by
default. The procedure to obtain this usually consists in forking the initialization process so that
when the main process exits the child is inherited by init. As the parent process is executed with
administrative privileges, the child can be launched as any user.

Ruby allows to abstract the whole procedure through the use of the daemons gem. It also gives
the possibility to the user to interact with the daemon through the user of the UNIX standard
syntax (start, stop, restart, etc.) and creates a .pid file in which it stores the daemon process
identifier. In figure 4.16 the implementation used for SVA-ng is shown and commented.

----- File: backend/svang_daemon.rb -----

#!/usr/bin/ruby

include the daemons gem

require ’daemons’

run the script as daemon

Daemons.run("./svang_web_server.rb")

----- File: /etc/init.d/svang.sh -----

#!/bin/sh

in order to run this at boot, a symbolic link must be added in:

/etc/rcS.d/svang

execute as user "svang" the bash commands specified

su - svang -c "cd /var/www/html/sva-ng/backend/; ./svang_daemon.rb start"

Figure 4.16. Back-end daemon in Ruby and automatic execution at boot

Configuration file

The configuration of the entire back-end is shared with the main web-application through the use
of a single php file located in application/config/svang.php. We chose to implement in such
manner in order to further simplify configuration and make it possible to modify the behavior of
SVA-ng through a single file. Since the Ruby language does not contains native functions to parse
PHP, an importation class has been defined in file backend/svang config.rb and the parsing has
been implemented with the use of the regular expressions shown in figure 4.17. As we would like
the configuration to be modifiable at run-time without restarting the daemon, every time another
class wants to access these data, the configuration file is read.

Internal web server

The back-end internal web server is implemented through the sinatra gem. In figure 4.18 the
related code from backend/svang web server.rb is shown and commented. Sections have been
cropped for readability.

51

4 – SVA-ng Developers Manual

File.open(@@configpath, "r").each_line do |line|

key = line[/.*\’([^\’]*)\’.*\’([^\’]*)\’.*/,1]

value = line[/.*\’([^\’]*)\’.*\’([^\’]*)\’.*/,2]

@@items[key] = value if(key and value)

end

Figure 4.17. Parsing PHP configuration file in Ruby

Initialize web server reading the configuration file

conf = SvangConfiguration::Items()

configure do

set :bind, ’localhost’

set :port, conf[’sinatraport’]

end

Redirect all stdout/err to the log file

logfn = conf[’sinatralogpath’]

$stdout.reopen(logfn, "w")

$stdout.sync = true

$stderr.reopen($stdout)

Listen for requests at URL "http://[hostname]/"

post ’/’ do

read the "token" GET parameter

token = params[’token’]

spawn a thread that handles the request

t = Thread.new {handleRequest(token)}

return the token

return [200, token]

end

Listen for requests at URL "http://[hostname]/start/"

post ’/start/’ do

get the "id" GET parameter

id = params[’id’]

puts "[.P.] Start request received for probe with id = #{id}"

t = Thread.new { Probes::start(id) }

return [200]

end

Listen for requests at URL "http://[hostname]/stop/"

post ’/stop/’ do

id = params[’id’]

puts "[.P.] Stopped request received for probe with id = #{id}"

t = Thread.new { Probes::stop(id) }

return [200]

end

Figure 4.18. Back-end web server Sinatra implementation

The series of operation that the back-end will perform for a data importation is shown in figure
4.19. Each step will be discussed in a separate section with the exception of the sanitation of
parameters.

52

4 – SVA-ng Developers Manual

Figure 4.19. Data importation procedure

Table creator

In order for the back-end to dynamically create database tables upon specific web server requests,
the class TableCreator has been implemented. Since the database is based on the SQL language,
we chose not to programmatically create tables in Ruby, but to define table templates in SQL files.
These files will then be modified using regular expressions in Ruby with the specified database
name, saved to a temporary location and launched on the DBMS. This allows all database schema to
be saved in a single and well defined set of files that can be launched dynamically and parametrized
on the DB name.

Builders

The aim of builder classes is to handle the importation of scan result files into the database.
The Builder class has been created to include the constructor method of all scan specific classes
and therefore reduce code redundancy. A single class for every type of result importation has
been created by extending the Builder one. Moreover, all user or share related class extends the
ShareUserBuilder so that the common logic behind a CSV file importation is shared. The UML
class diagram in figure 4.20 shows all classes present in backend/svang builders.rb file.

While for all classes importing CSV files the code is simple and self explanatory, NMap and
Nessus importations are not trivial. In order to perform this task we chose to use the nessus and
nmap/parser gems that allows the creation of temporary result models. These data structures are
later inserted into the ad-hoc database iterating on elements.

VIP configuration

It consists in a set of classes used to perform the automatic configuration of VIP ports. Whenever
the user chose to upload a new scan result file, it selects to use the desired method to use for
the VIP configuration generation and the backend will instantiate the appropriate Ruby class. As
shown in figure 4.21, all classes extends the VipConfigger class in order to allow further methods
to be implemented with simplicity. The cross on the VipConfiggerKeepCurrent class represents
the fact that it is not implemented as a class. Since its procedure would simply be returning, it
is implemented as a switch in the controller procedure so that the ruby file does not need to be
loaded by the interpreter and the execution time decreases. To the current release, implemented
methodologies are the following:

53

4 – SVA-ng Developers Manual

Figure 4.20. Builder classes UML class diagram

Figure 4.21. VIP configuration classes - UML class diagram

• Keep current configuration: use the latest configuration without modifying it. It is simply
implemented by not instantiating any VipConfigger class and skipping the whole procedure
for optimization.

• All ports: define as VIP all scanned ports. It is implemented in the VipConfiggerAll class
and it simply loops on all instances of port in the scan file by adding them to a dictionary
and inserting the complete data structure in the appropriate table in the database.

• Intelligent: tries to identify all business relevant ports and filters out the remaining ones.
The algorithm for identifying such ports consists in calculating the number of ports P to take
with the formula shown below where H represents the number of hosts in the scan and by
taking from the scan results file the P ports that have the highest frequency of occurrence,
inserting them in the DB. The derivation of such procedure is completely empirical and
boundaries 8 and 32 have been identified out of analysis experience. It is interesting to
highlight that the number of ports P is derived from H. This is due to the fact that scans

54

4 – SVA-ng Developers Manual

of larger networks usually host a more heterogeneous set of services and therefore a larger
number of ports is needed.

P = min(max(
√
H, 8), 32)

Script existence checker

It implements the fuctionality of checking the availability of automatic exploit scripts for every
vulnerability found. The ruby class implementing is quite simple since Nessus scan results files
already include this information in their structure.

Such procedure includes the usage of the Nokogiri library in order to simplify the parsing of
the Nessus XML file. A different possibility was to extend the Nessus ruby library in order to
include the script existence information during the initial parsing effectively decreasing execution
times. However, since the implementation of such extension would need a deep understanding of
the library internals, the current solution is less time expensive in the implementation phase and
has therefore been the favorite choice.

Probes

As stated in previous chapters, probes are extensions to the main SVA-ng application function-
alities hosted on different devices usually located in a different network logical location from the
main device. The main idea behind their implementation stands in modularity. While SVA-ng
main components are designed to be mostly static across releases, probes have the need of being
independent the one from the other and of simple implementation. In order to obtain this, we
chose to implement a standard protocol for their usage that is common across all of them. By
doing so, the backend main component is completely decoupled from the internal logic of probes.
In fact, we will see that, with the exception of results parsing, the backend will make no distinction
on probe types.

The implementation of probes has a very high complexity and will therefore be discussed in
an ad-hoc section. The important fact to highlight is that their implementation is concurrently
present in all devices included in the project. The backend on the main device handles:

• installation and configuration of new probes;

• handling of related user requests such as starting, stopping and retrieving results by commu-
nicating to the physical probes;

• parsing of the results and importation in the Database.

For what concerns the insertion of a new probe or its modifications, relevant informations are
simply stored in a table in the database and consists in:

• Name

• IP address of the probe

• Port of the SSH service (default 22)

• Probe Type - specifing how to parse its results (up to now: responder probe, nmap probe,
wifi probe)

• Params - optional field sent to the probe before starting it, in the case of a NMap scanner
probe this would be the IP subnet to scan or any other default NMap client parameter

55

4 – SVA-ng Developers Manual

Whenever the backend ruby web server is started, it automatically spawns a thread whose aim
is to check the status of all probes configured in the database. This operation is performed every
few seconds by sending an ICMP echo request (ping) to all IP addresses present in the probes
table. It is important to highlight that, in some customer networks, ICMP traffic is dropped by
firewalls leading therefore to false negatives. For this reason, SVA-ng is configured not to block
probes commands if the device is not responding.

The probe start procedure is initiated by users with the appropriate command on the GUI,
forwarded by the Apache web server to the ruby one that handles it with an ad-hoc created thread.
The code segment 4.22 is the simplified procedure of such thread on the ruby backend side. It is
important to note that a token is generated, stored and returned in order for further commands
to refer to this specific job. In the last lines, a new thread is spawned to continuously check the
probe status and update the related database field.

def self.start(id)

check id validity

if not Probes::checkId(id) then

puts "Start procedure for probe (id=#{id}) failed: No such id"

return

end

token = nil

ActiveRecord::Base.transaction do

generate token

token = Probes::generateToken

probe = Probe.where(id: id).take

probe.update(token: token)\

parameters sanitizing is omitted for readability

transfer file with parameters

‘echo -n ’#{probe.params}’ > /tmp/#{token}.request‘

‘scp -P #{probe.port} /tmp/#{token}.request #{probe.ip}:/tmp/‘

‘rm /tmp/#{token}.request‘

launch probe

‘ssh -p #{probe.port} #{probe.ip}

l/home/svang/#{probe.probe_type}/start.sh #{token}‘

signed as launched in db

probe.update(job_status: 2)

puts "[.P.] Probe #{id} started"

end

launch the job check thread

t = Thread.new { self.checkJobThreadProc(id, token) }

return token

end

Figure 4.22. Probe start ruby backend function

The probe stop procedure is initiated by users from the GUI and it is directly mapped by the
backend to an SSH call to the script on the probe. The only interesting thing to note is that,
for security reasons, the id of the probe is no longer sufficient to identify the job but the token
generated in the start request must be specified explicitly. This token mechanism allows the single
probe to host multiple same type jobs concurrently.

The job status check procedure shown in figure 4.23 allows the backend to continuously know
the current state of the remote probe jobs. Each case identify a different reaction from the backend
perspective and explanations of each single state are given in the code comments.

Whenever the probe procedure successfully ends with results or the user explicitly stops the job,
the retrieve function shown in the code segment 4.24 is called. The retrieveStart and retrieveEnd
scripts have been added in order for the probe to prepare the results and delete the files when the
transfer succeeded. The specific probe type results importation function is then being called.

56

4 – SVA-ng Developers Manual

def self.checkJobThreadProc(id, token)

while true do

... some sanitizing rows are omitted ...

res = ‘ssh -p #{probe.port} #{probe.ip}

/home/svang/#{probe.probe_type}/check.sh #{token}‘

puts "[.P.] Probe #{id} job_status received: #{res}"

case res

when ’0’

initial state, since check is no longer required return

probe.update(job_status: 0)

return

when ’1’

error state, the job exited in error, return

probe.update(job_status: 1)

return

when ’2’

running, simply wait

probe.update(job_status: 2)

when ’3’

running and partial results present, simply wait

probe.update(job_status: 3)

when ’4’

correctly ended and results present

retrieve the results and then exit

probe.update(job_status: 4)

Probes::retrieve(id, token)

return

else

invalid code, die

probe.update(job_status: 1)

return

end

sleep(5)

end

end

Figure 4.23. Probe status check ruby backend function

Probe results importer

After the job results file is retrieved from the remote probe, the backend will parse it in order
to insert the entries in the database. The implementation choice was to create an ad-hoc table
for every probe type with the relative view in the front-end. This could be avoided by using a
non-relational database such as MongeDB and handling results heterogeneity with their native
implementation.

What the result importer does is explained in the following steps:

• Identify the probe type and call the relative procedure

• Check if a table for the specific type already exists in the database and, if necessary, creates
it

• Parse the result file according to its type and insert relevant data in the DB

• If no errors occurred, remove the retrieved results file

57

4 – SVA-ng Developers Manual

def self.retrieve(id, token)

check id validity

if not Probes::checkId(id) then

puts "Retrieve procedure for probe (id=#{id}) failed: No such id"

return

end

probe = Probe.where(id: id).take

puts "[.P.] Starting probe #{id} job #{token} retrieve procedure"

execute the stopping code

‘ssh -p #{probe.port} #{probe.ip}

/home/svang/#{probe.probe_type}/retrieveStart.sh #{token}‘

‘scp -P #{probe.port} #{probe.ip}:/tmp/#{token}.result /tmp/‘

‘ssh -p #{probe.port} #{probe.ip}

/home/svang/#{probe.probe_type}/retrieveEnd.sh #{token}‘

start the data import sequence

Probes::importResult(id, token)

puts "[.P.] Ended probe #{id} job #{token} retrieve procedure"

delete the tmp file

‘rm /tmp/#{token}.result‘

end

Figure 4.24. Probe results retrieve ruby backend function

4.5 Probes

Probes modularity has been implemented by creating a common file structure across different probe
types. The followings are the filenames and paths that have to be present in the probe filesystem
in order for the backend to deliver jobs and correctly retrieve results:

• /home/svang/[probe type]/ folder will contain all probe code related to the specific probe
type. All files are located here with the exception of temporary request and results.

• start.sh will be called when the startup procedure needs to be launched

• stop.sh will be called when the stop procedure needs to be launched

• retrieveStart.sh will be launched before copying the results back to the backend

• retrieveEnd.sh will be launched after copying the results back to the backend for cleaning
up the temporary files

• check.sh will be called every continuously and have to return (by simply printing on the
standard out) the current job state code

• [token].pid is a temporary file that will be created by the startup procedure and will contain
the process identifier of the process currently handling the job. It will then be removed with
the stop procedure.

• /tmp/[token].request will be created by the backend using the SCP command (copy over
SSH protocol) before calling the start procedure. It contains all parameters for the job. It
will then be removed during the retrieveStop procedure.

• /tmp/[token].result is created by the probe during its execution or by the retrieveStart
procedure containing all relevant job results. The backend will then be in charge of retrieving
this file. As the token.request file, it will be removed during the cleanup procedure.

In the backend, as shown in the previous section, operations are remotely executed by means
of an SSH call to the single probe scripts. While this procedure is extremely simple to implement

58

4 – SVA-ng Developers Manual

and to control, we had the necessity of implementing two distinct behaviors for different calls:
one blocking the program flow on the main device while waiting for the SSH connection to close
and one non-blocking. By default, when in the Ruby language a call to bash is performed using
the backtick characters, the interpreter will stop parsing and executing lines until the command
returns. There is the possibility to perform this operation in an asynchronous manner, but since
we wanted the backend to be completely independent from the probe type, we chose to implement
the non-blocking behavior directly into the probe scripts that need it. An example of how this
operation can be performed is shown in the code segment 4.25. This require the probe to have two
files, here called start.sh and probeStart.sh. The first create the second process by forking with
the nohup bash command and then returns. The second contains the real probe startup code.

start.sh

#!/bin/bash

nohup sudo /home/svang/responder_probe/probeStart.sh $1 1>/dev/null 2>/dev/null &

probeStart.sh

#!/bin/bash

token=$1

pid=$$

echo -n $pid > /tmp/$token.pid

iface=$(cat /tmp/$token.request | cut -d ’ ’ -f 1)

responder -I $iface &> /dev/null

Figure 4.25. Responder probe - start.sh and probeStart.sh

While for starting the Responder probe process we need to use a non-blocking call, in order
to stop it we can use a single file with no forks. In figure 4.26 the stop procedure is shown. The
first step consists in checking that the Responder process with the token provided is still running
and eventually to send a SIGKILL signal to the process to stop it. For this specific probe type we
then want to immediately create the result file from the Responder program folders and to perform
this operation, since it is quite complex, we chose to launch an external Python script. We later
remove the temporary files created by Responder and the pid file.

As stated above, since the Responder program creates multiple files as the result of its activity,
we are willing to unify them into a unique one and to locate it where the backend can retrieve
it. Figure 4.27 shows the Python script that performs this task. The script mostly performs
various string manipulations that transform the result in a format retrievable and parseable from
the backend.

In the case of the responder, retrieve start and end procedures do not perform any operation
with the exception of cleaning the temporary request and results file as shown in figure 4.28.

During the whole execution time of the probe, the backend continuously check the state of the
probe and reacts accordingly. In figure 4.29 the probe-side check.sh is shown. It mostly consists
in a series of checks that classify the current state.

59

4 – SVA-ng Developers Manual

stop.sh

#!/bin/bash

token=$1

pid=$(cat /tmp/$token.pid)

run=0

ps aux | grep python.*Responder.py | grep -v grep &>/dev/null && run=1

Kill the responder process

if [$run -eq 1]

then

kill -9 $(ps aux | grep python.*Responder.py | grep -v grep | awk ’{print $2}’)

fi

Create the result file

python /home/svang/responder_probe/generate_result_file.py $token

chown svang.svang /tmp/$token.result

Clean the intermediate files

rm -f /tmp/$token.pid

rm -f /usr/share/responder/logs/*.txt

Figure 4.26. Responder probe - stop.sh

generate_result_file.py

import glob

from sys import argv

token = argv[1]

fout = open("/tmp/" + token + ".result", ’w’)

fpaths = glob.glob("/usr/share/responder/logs/*.txt")

for fpath in fpaths:

fname = fpath.split(’/’)[len(fpath.split(’/’)) - 1]

fname = ’.’.join(fname.split(’.’)[0:len(fname.split(’.’)) - 1])

ftype = ’-’.join(fname.split(’-’)[0:len(fname.split(’-’)) - 1])

ip = fname.split(’-’)[len(fname.split(’-’)) - 1]

f = open(fpath, ’r’)

for line in iter(f):

fout.write(":".join([ftype, ip, line.strip()]) + "\n")

Figure 4.27. Responder probe - generate result file.py

retrieveStart.sh

#!/bin/bash

retrieveEnd.sh

#!/bin/bash

token=$1

rm -f /tmp/$token.request

rm -f /tmp/$token.result

Figure 4.28. Responder probe - retrieveStart.sh and retrieveEnd.sh

60

4 – SVA-ng Developers Manual

check.sh

#!/bin/bash

token=$1

GET ALL DATA

req=-1

pid=-1

res=-1

if [-f /tmp/$token.request]

then

req=1

else

req=0

fi

if [-f /tmp/$token.pid]

then

pid=$(cat /tmp/$token.pid)

else

pid=0

fi

if [-f /tmp/$token.result]

then

res=1

else

res=0

fi

run=0

ps aux | grep -i python.*Responder.py | grep -v grep &>/dev/null && run=1

IDENTIFICATION LOGIC

if [$req -eq 0]

then

echo -n "0" # normal state

else

if [$run -eq 1]

then

if [$res -eq 1]

then

echo -n "3" # running & results present

else

echo -n "2" # running & no results yet

fi

else

if [$pid -eq 0]

then

echo -n "4" # probe not running but results present

else

echo -n "1" # probe crashed

fi

fi

fil

exit 0

Figure 4.29. Responder probe - check.sh

61

Chapter 5

SVA-ng User’s Manual

This chapter will describe the usage of SVA-ng to a generic end user. While security principles
and tools discussed in chapter 2 are assumed to be known, the operator does not need to know
the inner workings of the platform in order to use it. For this reason, in this chapter none of the
previous program specific knowledge is required.

5.1 Installation

SVA-ng main application is distributed in a single ZIP file containing the entire website, backend
scripts and related hosts configurations. The installation on a Debian-like system is automated
in a Bash installation script contained in the distributed ZIP file. It is necessary to have root
privileges in order to execute it.

unzip svang.zip ; sudo su ; ./installation.sh

The installation process requires Internet connection in order to install the application de-
pendencies. While installing MySQL, the user will be asked to insert the DBMS administration
credentials. The default procedure initializes database tables without creating a separate user for
the SVA-ng application. It is highly recommended to perform such operation in order to segregate
the application from the rest of the DBMS entities. The configuration file must be edited with the
previously configured DB credentials in order for the application to authenticate with it. Figure
5.1 shows the configuration file path and relevant section included in it.

5.2 Import a new scan

The procedure of importing a new scan is necessary when a result file needs to be imported in SVA-
ng. In order to import results from probe tasks, please refer to the relative section. Once logged
into the application, select ”Import scan” in the Configuration menu (figure 5.2). Configurations
in the page are explained here:

• Append to last scan option is set whenever the data to import need to be aggregated in
a unique dataset with others. As an example, whenever performing NMap scans on large
networks, it might be useful to split the address range in multiple subnets and execute them
separately in parallel. The procedure to have a unique dataset in SVA-ng is to import the
first scan with the ”Append to last scan” option set on ”No, create a new one” and the
remaining ones appending them to the first. Please note that if the currently selected scan
is not chronologically the last one performed, SVA-ng will still import the new data into the
one selected. In such a way, if multiple scans have been performed in January and February

62

5 – SVA-ng User’s Manual

/var/www/html/new-sva-ng/application/config/svang.php

// Database configurations

$config[’dbname’] = ’shorr_kan’; // db tables analysed by the application

// must contain this value

$config[’dbusername’] = ’svang’; // db tables username

$config[’dbpassword’] = ’my_pwd’; // db password for such user

$config[’dbhost’] = ’localhost’; // db network location. Alter if the

// DBMS is not locally installed

// IP allowed to access the application.

// The check is performed at the ISO/OSI layer 7.

// To improve security implement lower level solutions

$config[’allowed_ip_addresses’] = [’127.’,’192.168.’,’10.’];

// Location of resources

$config[’tmpfilenameprefix’] = ’/tmp/svang_’;

$config[’uploaded_screen_dir’] = ’/var/www/html/new-sva-ng/screenshots/’;

$config[’location_dir’] = ’/var/www/html/new-sva-ng/’;

$config[’relative_location_dir’] = ’/new-sva-ng/’;

Figure 5.1. SVA-ng configuration file

Figure 5.2. Screenshot of import scan form and menus

and two separate datasets want to be created, even if some data of February have already
been added, it is still possible to add data to the January set.

• File Type option has to be chosen accordingly to the file type currently been imported.
Table 5.1 shows the formats used for importation.

• File option simply lets the user browse on his filesystem. Only one file can be imported at
once.

• Vip Configuration option allow the user to use multiple algorithms in order to select the
VIP ports as he might need. Options and behaviours are the following:

– All simply sets all scanned ports as VIP

– Use last does not alter previous configurations

– Intelligent automatically identifies business relevant ports. Relevant parameters for
this algorithm are the number of hosts, the number of vulnerabilities instances and the
number of ports occurrences.

By clicking on submit, the web application will launch the importer script in the backend. Impor-
tation process can last up to 10 minutes due to complex data analysis. If everything has been set

63

5 – SVA-ng User’s Manual

Import Type File Type Format

NMap XML NMap XML output format, latest version available at
https://svn.nmap.org/nmap/docs/nmap.dtd

Nessus XML Nessus XML output format v2, available on Teenable Nes-
sus website

NFS CSV IP address, share name, read / write permissions

Samba CSV IP address, share name, read / write permissions, notes

MsSql CSV IP address, hostname, port, vulnerability

Oracle CSV IP address, SID, username, password, notes

Domain Users CSV Windows domain name, username, password, enabled / dis-
abled, notes

Table 5.1. Import formats

up correctly, the blue message in figure 5.3 should appear on screen. In this case, the page has
not been set up to refresh in order for the user to be able to perform it manually and notice the
statistics being updated in the top bar.

Figure 5.3. Import success pop-ups

Figure 5.4. Import failure pop-ups

Please note that multiple errors can occur. In figure 5.4 the first picture represents the most
probable error. If this is shown what most likely happened is that the back-end service is not
running. If the first command shown below does not show any relevant result, please restart the
service by typing the second one. If parsing the uploaded file some error occurs, the second message

ps aux | grep svang

/var/www/html/new-sva-ng/backend/svang_daemon.rb start

64

5 – SVA-ng User’s Manual

in figure 5.4 is shown. In this case, the imported file is likely not to be correct. Please recheck if
it matches the format specified above.

5.3 Results navigation

SVA-ng offers multiple view on imported data. Navigation across them is possible via the main
menu on the left shown here in figure 5.5. Highlighted entries in the figure are the one linked to
results views. Before discussing every one of them, it is important to discuss the possibility to
navigate across multiple companies and scans.

Figure 5.5. Results menu entries

Being SVA-ng mostly designed for its internal use in a security audit company, it offers the
possibility of storing results coming from different customers in an aggregate manner. For law and
standard reasons, these datasets are independently stored in different databases. In the configura-
tion file discussed above it is possible to identify what customer (company) to show in the current
web server session. While in principle it is possible to use wildcards in order to show all available
customer, this is not usually done. In any case, it is possible to change the current scope of the
application onto another customer (only if the configuration specifications allow it, in the ”Change
customer” menu entry.

While a customer identifies a single company, it is possible to have multiple instances of the
same scan for the same customer. In SVA-ng this concept is called ”Scan” and it is possible to
navigate across them via the ”Change scan” menu entry. Once a scan has been selected, all results
shown are referring to it.

In figure 5.6 the top bar is shown. Relevant informations such as the number of hosts, the
number of found services and the number of unfixed, fixed and accepted vulnerabilities are shown
there.

Figure 5.6. Top bar

The homepage of the whole application points to the dashboards of the last scan imported
shown in figure 5.7. It is possible to return to that view in every moment with the ”Dashboard”
menu entry. Doughnut charts offer the possibility of hiding or showing items by clicking on their

65

5 – SVA-ng User’s Manual

name or by selecting the appropriate entry in the top right chart menu. The following are the data
shown:

• Number of services found per port

• Number of vulnerable services found per port

• Number of vulnerable services per risk class

• Number of fixes and accepted risks per risk class

Figure 5.7. Dashboard

While the dashboard has the aim to show a higher level view on the data imported, the real
core of the whole application stands in the ”Vulnerabilities” view accessible in the ”Results” menu
entry. Here, the user have the possibility of filtering results through the top form shown in figure
5.8. While the filter form is mostly self explanatory, the result matrix shown in figure 5.9 is often
misunderstood. In this table, every row represents a host (IP) with or without a hostname and
every cell is a service (port). The color and label cases for every cell are explained in table 5.2:

It is possible, by clicking on the hostname, to show the details of such hosts and view every
vulnerability it has as in figure 5.10. By default only vulnerable services are shown here, but it is
possible to show all items by clicking on the ”Show / Hide details” toggle button. From here, it is
possible to have a vulnerability detail such as its suggested remediation simply by clicking on its
name as shown in figure 5.11. This view is also accessible by clicking on the respective vulnerability
matrix cell.

66

5 – SVA-ng User’s Manual

Figure 5.8. Vulnerability Matrix query form

P (green) Service is present but no vulnerabilities were found

V (red) Service is present and at least one vulnerability was found

F (yellow) Service present was vulnerable and was fixed.

A (orange) Service present is vulnerable but the risk relative to its ex-
ploitation is accepted

M (blue) The service hosts multiple vulnerabilities that have at least
two of the above stated states (present excluded)

(white) No service was found on this port

Table 5.2. Vulnerability Matrix colors

Figure 5.9. Vulnerability Matrix

67

5 – SVA-ng User’s Manual

Figure 5.10. Host page

While for management purposes, the vulnerability matrix is the most usable format, for stan-
dard documentation, the vulnerability assessment table (VAT) is the most common result. In
SVA-ng, it is possible to generate the VAT of the current scan simply by clicking on the respective
entry in the ”Results” submenu. An example of such table is shown in figure 5.12. It is important
to note that SVA-ng offers the possibility to export it in the CSV format using the buttons at the
top of the page. While in principle and by default, the VAT is sorted on the risk level, it is possible
to click on the table headers and sort it on the necessity.

The ”Host Vulnerability Table” is accessible though the same menu as the VAT and it is here
shown in figure 5.13. While the VAT aggregates multiple hosts with the same vulnerability in the
same row, this table is useful for identifying vulnerable spots on hosts sequentially in the form of
a checklist. All tabular functionalities of the VAT page are also available for this table.

Fixes and accepted risks table shown in figure 5.14 are mostly useful for checking the fixing
process status. While there is no difference in their tabular layout, the semantics of their dataset
is different. The first shows vulnerabilities that have physically been fixed while the other shows
the vulnerabilities for which the fixing cost is too high for them to be fixed.

Shares and users table accessible trough their relative menu entries are very similar among
them. As shown in figure 5.15 they do not represents vulnerabilities but data extracted during the
assessment task that might be useful later on. This is the only case in which an output can be
configured not to represent only the current scan. Data can therefore be global in the customer
scope.

5.4 Handling fixes

SVA-ng offers to its users the possibility of tracking fixes and risk acceptances. In figure 5.16 the
view of a specific vulnerability is shown. This page can be obtained via various links across the
application results views for every vulnerability. As it is shown in the bottom button, it is possible
to update the current state of the vulnerability instance to ”Fixed”, ”Accepted risk” as well as
revert the state to ”Vulnerable”. Once one of the three button is pressed, the system keeps track

68

5 – SVA-ng User’s Manual

Figure 5.11. Vulnerability Page

of the user who made the change and the current timestamp. The model is then updated with the
new data and all views will then show the new state.

5.5 Manual entries

Since most of the vulnerability assessment tasks have the necessity of performing some manual
activities that are not included in the standard tools set, SVA-ng offers the possibility of manually
inserting vulnerabilities found in a system. This is performed in the ”Add New” page in the
”Manual VA” menu entry. As it is shown in figure 5.17, all data are requested through a single
form. While it is not possible for other vulnerabilities types, for manual ones, the user can add
multiple screenshots or documents that will be available when the specific vulnerability will be
listed in other views. Further modifications are allowed.

In order to offer the possibility of showing only manual vulnerabilities, the page ”List manual
VA” has been added and an example of it is shown in figure 5.18. Please note that, while in the
internals of the application, a manual vulnerability is stored differently from others, from the user
perspective, no difference in results visualization is present.

69

5 – SVA-ng User’s Manual

Figure 5.12. Vulnerability Assessment Table (VAT)

Figure 5.13. Host Vulnerability Table query form

70

5 – SVA-ng User’s Manual

Figure 5.14. Fixes table

Figure 5.15. Example of shares table

Figure 5.16. Changing the state of a vulnerability

5.6 Special Configurations

SVA-ng offers the possibility to users to modify its configuration to fit the customer needs. As a
policy, we wanted no modification to be retroactive in scans. Therefore the general behaviour is,71

5 – SVA-ng User’s Manual

Figure 5.17. Adding a manual entry

Figure 5.18. Listing all manual entries

when the user requests a configuration modification, these alterations will be in place only from
the current scan and the future ones. Of course, if the current selected scan is not the last one,
the modifications will apply from the selected scan on.

5.6.1 VIP configuration

As shown in figure 5.19, the user can manually select and modify the names of the Very Important
Ports. These choice is usually performed during the importation phase but can be altered manually
here.

72

5 – SVA-ng User’s Manual

Figure 5.19. Editing the VIP configuration

5.6.2 Risk configuration

By default, SVA-ng import risk classes from Nessus. If the risk is not matching the customer
needs, the page ”Edit risk configuration” shown in figure 5.20 allow the user to alter them. The
general idea here is that every vulnerability has a suggested risk that can be overloaded with a
manual one. From the selected scan on, if not stated differently, all other scans will have the risk
modified. In the manually configured column, it is possible to know from which scan number, that
configuration has been inherited. The system by default marks in red all vulnerabilities that have
not been modified or for which the suggested value have not been accepted. The lines that will be
submitted for change are marked in green.

Figure 5.20. Editing the risks configuration

73

5 – SVA-ng User’s Manual

5.6.3 Recommendations

As for risk configurations (see figure 5.21), also recommendations are inherited across scans. When
the system shows the ”From base recommendation” label the user knows that no alteration of that
remediation ever occurred.

Figure 5.21. Editing the recommendations configuration

As it might be useful to export configurations across different customers, SVA-ng allows for
importing and exporting them in the ”Import Export configurations” menu in the ”Advanced”
entry. As shown in figure 5.23, the user can chose to export only single aspects of the configuration.
As an example, if a customer needs a VAT with recommendations in another language and another
company already requested so, the only operation needed is to export the previous customer
recommendation configuration file and import it in the new one. Configuration files are written in
JSON in order to be human readable. An example of such file is shown in figure 5.22.

resources.json:

{

"risks":[

{"risk":"0","id":"10028"},

{"risk":"4","id":"10092"},

{"risk":"5","id":"10107"}],

"solutions":[],

"rank":[

{"script":false,"meta_script":false,"exp_rank":"2","id":10028},

{"script":true,"meta_script":false,"exp_rank":"3","id":10092},

{"script":true,"meta_script":true,"exp_rank":"4","id":10107}]

}

Figure 5.22. Example of exported risks and PT suggester ranks - JSON format

74

5 – SVA-ng User’s Manual

Figure 5.23. Export and import configuration forms

5.7 Installing a remote probe

Probe deployment starts with the installation of all necessary resources on the probe computer.
These operations can be summarized in the following steps:

• Clone the zip packet of the required probe on the target machine

• Create the ”svang” user and its home directory according the the UNIX standards

• Extract the packet in its home directory ensuring that the ”svang” user is the owner of all
of them

• Install the main server SSH key in the .ssh/authorized keys file in order for the main server
to be able to remotely login and launch the scripts

• Test the connection manually from the main server

When all the code have been successfully deployed, the next step is to configure the application to
communicate with it. In the ”Advanced” section there is the ”Probes” page shown in figure 5.24.
Under ”New Probe” it is possible to configure the new probe with all needed parameters. All of
them can be modified later on. The ”probe type” must match exactly the name of the probe being
deployed.

5.8 Launching a probe task

In figure 5.25 a correctly configured probe is shown. From this page, the user can edit the probe,
remove it and check its status. When the status is red with label ”Probe is not reachable”, the
user should manually check the connection among the nodes. If it is green, then it can be started.
After being launched, most of the probes need to be manually stopped in order to retrieve the
results. Errors for this procedure are logged in the log file as well as being shown as pop-ups in
the web view. The ”Last results” shows a brief summary of the last task assigned to a task while
to visualise the whole set of collected data, an ad-hoc page is created as shown in figure 5.26.

75

5 – SVA-ng User’s Manual

Figure 5.24. Editing a new probe

Figure 5.25. Interacting with a probe

5.9 PT suggestions

The Penetration Testers suggestions feature is an advanced option available in SVA-ng. By default,
it imports the data about vulnerability exploits availability from the Nessus scans and aggregates
it with other data. In security auditing, when a team have experience in exploiting a particular
vulnerability, their probability of success whenever that vulnerability is found again is higher and
the time consumed for preparation is lower. For this reason, as shown in figure 5.27, it is useful
to create a table sorted by experience and script availability of vulnerability exploitation for the
vulnerabilities found in the current scan.

Modifications of such values are performed in the ”Configured PT Suggester” page shown in

76

5 – SVA-ng User’s Manual

Figure 5.26. Responder probe result table

Figure 5.27. PT suggestion list

figure 5.28.

77

5 – SVA-ng User’s Manual

Figure 5.28. Editing the PT suggester configuration

78

Chapter 6

Results

In this chapter we will discuss the SVA-ng implementation from the point of view of its compli-
ance with the project requirements discussed in chapter 3. We will start, in the first section, by
analysing the fulfilment of the functional requirements. We will then discuss and enumerate, in
the second section, some of the possible performance indexes in order to identify possible efficiency
improvements and possible issues in the current implementation of the product.

6.1 Functional requirements compliance

As for any software implementation project, at the end of the development cycle, it is important
to estimate the compliance of the product with the criteria specified in the requirements. Before
we start discussing every functional criteria, it important to remember and highlight that, as the
writer of this thesis is also the main analyst, software and architectural developer, the following
analysis should not be performed by him. For this reason, the compliance of every point has been
questioned to the main users of SVA-ng.

The following list contains some of the requirements specified in section 3.1 of the present thesis.
Missing entries will be later discussed in the non-functional requirements section.

Ability to import third party software results and actively launch scans.

For the first part of this requirement, being importing third party software scan results, SVA-ng
is fully compliant. Up to this point of the development, not only the NMap and Nessus output
formats are importable from within the GUI, but the Responder tool results too. The layer of
abstraction created between tools is therefore been created as the requirement requested. For
what concerns the active launching of scans, it is possible to order external probes to execute the
scan and retrieve their results. At the moment the NMap scan is fully parametrizable together
with the Responder. No Nessus external launch has been implemented yet due to the continuous
modifications to the Teenable Nessus licenses.

Input sources should be extensible.

This requirement is fulfilled with the modular structure of the back-end code. Whenever a new
third party software want to be added, it is sufficient to add an implementation class written in
Ruby that specifies how data should be inserted into SVA-ng data model. For what concerns
modification to the GUI, one line has to be added to the importation page in order to add the new
entry into the type drop-down menu. With the SVA-ng probe model it is also possible to extend
external data importation whenever new data do not fit in the database schema. In this case, a
new table in the database needs to be manually added.

79

6 – Results

Ability to offer to the customer a complete view on the results.

As shown in the User Guide, SVA-ng offers multiple pages with visualization features. Up to
the current development, a dashboard and a top menu bar showing all informations related to
an ”Executive Report” view on the current scan status have been developed. The system is also
able to create and eventually export technical documents such as the ”Vulnerability Matrix” and
the ”Vulnerability Assessment Table (VAT)”. One of the functional requirements missing in the
first analysis but still implemented is the necessity for results to be highly extensible in the case a
customer needs different outputs. This is simply obtained by having a ”Model View Controller”
pattern in the software internals. Dashboards would still need to be coded in order to extend the
SVA-ng functionalities, but the development is simplified by the usage of well defined programming
patterns.

Must have multi-environment capabilities.

This requirement is fulfilled by using the web architecture. The server and probes still need to
be hosted on Linux platforms, however the client has no specific requirements. While for the
complete development process Mozilla Firefox has been used, during the last assessments, SVA-ng
have been tested on other browsers. Opera and Chrome passed the tests with the exception of
some not visualized transparencies while Internet Explorer and Edge had some issues on label
rotations. Since the usage of SVA-ng is mostly internal, we chose to temporarily ignore these
minimal visualization issues.

Support the importation from multiple result sources to be aggregated on time.

SVA-ng is only partially compliant. While the first idea was to create graphical views and to
perform statistics on the scan sequences, up to now SVA-ng is only able to recognize and unify
hosts and services over time but it does not offer to the user the possibility of navigating though
them in a simple and intuitive way. Possibilities will be discussed in the last chapter of this thesis.

Correct priority of visualization of specific services.

This is fulfilled with the use of the VIP concept. During results file importation, an automatic
procedure calculate which of the found services are considered most important and assign them
the VIP class. The user can manually add or remove entries in the VIP list basing on the customer
necessities. In the ”Vulnerabilities Matrix” page, only the VIP services are shown in order for
the testers and customers to have a weighted view on their network situation. Other generated
documents and pages do not filter out the non-VIP services since some important vulnerabilities
might be hidden in them.

Users must have the possibility to override risk categories.

The user can alter risk categories in the respective page. The model used allows them not only
to alter the classes memberships for the current scan but also to set the default future value of a
certain vulnerability class. The modifications are by default non retroactive but it is allowed to
modify past values. Moreover, in the same page, SVA-ng notifies the user on which risk classes
have not yet been accepted. This is a intuitive way of highlighting to the user which classes might
require attention. Risk classes are also importable and exportable in a human-readable JSON
format.

Give the possibility to the tester to add system specific exposures.

This requirement is fulfilled with the manual VA insertion feature in the related page. The user can
add vulnerabilities related to the current system only together with documents and images related

80

6 – Results

to them. SVA-ng will threat them exactly as the other vulnerabilities with few differences such
as non being listed among risk classes choices. At the moment there is no possibility of exporting
them into other SVA-ng instances though the GUI. Since this operation is not common and since
it is still possible by accessing directly into the database, it might probably not been implemented.

Differentiate in any moment on the state of a service among present, vulnerable, fixed,
accepted or mixed.

The core of the SVA-ng database schema has an explicit field for the vulnerabilities state and
therefore this requirement is extensively fulfilled. The user not only have access to multiple views
on services state, but can also drill-down on which are the specific vulnerabilities affecting the
service. Moreover, a minimal log on vulnerabilities status changes are kept in the system so it is
possible to visualize what operator and when lastly changed them. Up to now, as stated in the
previous section regarding the possibility to aggregate over time, it would be useful to offer the
user the possibility of visualize a specific service timeline with related vulnerabilities, risk classes
and statuses.

The user must have the possibility to select the current state of each vulnerability.

As for the previous requirement, the user can alter states and modifications are logged.

The system should suggest to the manual operator, the automatically exploitable
services based on the team experience.

This is possible through the PT suggester functionality implemented in the two related pages and
through the possibility of extracting script existence from Nessus result files. Users can manually
insert their experience and eventually the presence of their script. The system is able to retrieve
the most exploitable vulnerability list from the ones found and present them to the user in the
form of a sorted list. In this case, exportation and exportation of vulnerabilities is essential since
in general the same penetration tester team is working on multiple customers.

The system should be able to correctly communicate with probes, launching them
and retrieving the results.

Probe functionality is been implemented using a highly modular and standardized paradigm. Users
that manually install remote probes and configure their network accordingly, are able to launch
remote tasks and retrieve results. At the moment, the fully functional probes are offering NMap
scans, Responder tasks and WiFi supplicant scans. For what concerns result importation, some
of the probes might need the creation of accessory tables since the standard SVA-ng data model
might not be useful to them due to the different nature of the data semantics.

Only authorized users should be able to access the system.

SVA-ng hosts an authorization mechanism based on username and password. In the applica-
tion layer, an IP whitelisting mechanism have been used. By default, the installation have been
configured to create isolated users for front-end and back-end. Moreover, the system have been
scanned and manually tested according to the OWASP methodology for the pre-authentication
part and previously found vulnerabilities have been fixed. As developing and testing should never
be performed by the same entity, SVA-ng will be tested by an external company for both the
pre-authentication and post-authentication sections.

81

6 – Results

6.2 Non-functional characteristics

While most of the non-functional attributes taken into consideration are related to time efficiency,
some of them are related to different aspects of the software. Here there are some notable charac-
teristics to discuss before efficiency.

Backup simplicity

SVA-ng has been developed with the idea of being a multi-customer product. As law and contracts
needs data to be stored redundantly and sometimes in isolated systems, it is important for the
application dataset to be easily cloned and eventually deleted. As we discussed in the previous
section, this property is guaranteed by simply applying the Model View Controlled design pattern.
The entire dataset of a customer is stored in a single database together with all of its metadata such
as configurations. All non-related data such as logs and user credentials are stored in a separate
database. As for the measurement of a simplicity index, we could use the number of commands
that a user has to invoke in order for a backup to take place. Since this procedure is a standard
operation for database administrators, MySQL offers the possibility to perform it in the following
single operation on the server:

mysqldump -D database_name -u database_user -p > backup_filename.sql

Without adding an automatic backup procedure that might create issues related to the hetero-
geneous network topologies in which SVA-ng is deployed, it is impossible to further improve this
index, being at least one operation necessary.

Extendibility

Since, it is virtually impossible to create an index in order to measure the property of extendibility
of a specific software application, we chose to list all features that can be added to SVA-ng without
the need of consistent modification of the source code. It is important to note that in order to
perform some of these extensions, a complete understanding of the software internals might be
required.

• It is possible to include new types of importations by implementing their classes in the
back-end Ruby source code. As long as the new data fits the current database schema, no
modifications of other components is required with the exception of the addition of a menu
list entry in the web view.

• It is possible to increase the number of available modules for the VIP ports automatic selection
by simply implementing the related class in the Ruby back-end source code.

• It is possible to include new result views and dashboards in the front-end by simply adding
a new PHP page in the application folder. Since the CodeIgniter framework includes many
of the most commonly needed methods, no deep understandings of PHP are required.

• It is possible to create new probe types and related results parsers. As long as data fits in
the database schema, no alteration of the DB is necessary. In addition, if data do not have
the need of being correlated with others, it is possible to add an isolated ad-hoc table. In
order to create the probe it is sufficient to implement all methods specified in the related
section in the developer manual. The bash language must be known as well as some Ruby.

Simplicity of deployment

With the idea of being deployed into customer networks, the SVA-ng application have the necessity
of being easy to install. This characteristic is obtained with the use of a previously developed in-
stallation Bash script that take care of dependencies and servers configurations. Again, identifying

82

6 – Results

an index to measure simplicity is not a simple task. Here we chose to use the number of user
interactions that the installation procedure needs. The following is the list:

• Deploy the installation zip file on the target machine

• Unpack the file

• Launch the installation script as root

• Chose and confirm a MySql root user password

• Edit the application configuration file

With a total of 5 items, the installation of the server is considered simple enough in order to be
performed by an operator. For what concerns the probe installation, the steps are:

• Deploy the probe installation zip file

• Create a ”svang” user

• Install the ssh certificate for the main server ”svang” user into the authorized keys file of the
local ”svang” user.

• Unzip the probe file into the ”svang” home directory.

• Change file permissions to be ”svang” readable and executable.

• Add a probe through the main application web GUI.

With a total of 6 elements and considering the skills required to perform some operations, the
installation of a probe is slightly more complex that the main application one but it can still be
performed by an operator.

Since SVA-ng has mostly been developed for internal use and no customer was involved in
specifications, non-functional requirements related to time efficiency were not analysed in the
analysis phase. However, due to the nature of software development, it is useful to identify relevant
indexes that represents the speed of completion of some of its tasks in order to compare it to other
solutions that might be developed in the future. Moreover, the analysis of such indicators will be
useful in order to have a better estimate of the time needed for its configuration and usage and to
allocate resources accordingly.

The following is a list of the identified efficiency indexes and their value. The following datasets
have been calculated by running both the SVA-ng server and web client on a laptop computer (main
use case) with the characteristics listed in table 6.1.

NMap scan import time

One of the identified indexes for efficiency is the speed of NMap results file importation. Since all
time consuming operations are executed by the back-end with the exception of the network file
transfer, this index is significant for measuring back-end performance.

For the tests that generated the following datasets, an NMap result file creation script was
created and used. Since the default use case for NMap is for network scanning only, no dataset
contains NMap scripts results. Datasets are realistic, however they have not been taken from a
real-world scan.

The time measurements have been performed directly on the back-end procedure in order
to ignore the overhead introduced by the front-end and by the eventual network transfer. The
database have been cleaned before tests in order to minimize the DBMS overhead and reduce
testing time. However, between tests, no database cleaning has been performed. In theory, this
fact could lead to higher measurements in later scans due to more expensive queries, but in practice,
measuring the same query on an empty database did not lead to significantly different results (¡ 3

83

6 – Results

CPU Intel(R) Core(TM) i7-4500U 1.80GHz

RAM 8 GB

Disk 240 GB Solid State Drive

Network connection Non relevant since server and client are hosted on the same
machine

Operating System Xubuntu 16.04 - Linux 4.4.0-124-generic x86 64

Apache2 version Apache 2.4.18

PHP version 5.6.31-4

MySQL version 14.14 - 5.7.22

Browser Mozilla Firefox 60.0.1

Table 6.1. Test computer specifications

10 services 100 services 1000 services

5 12 kB 107 kB 1.1 MB

hosts 0.2 s 12.0 s 29.2 s

10 19 kB 176 kB 1.8 MB

hosts 0.4 s 13.6 s 47.28 s

15 26 kB 245 kB 2.4 MB

hosts 0.7 s 15.8 s 70.4 s

20 32 kB 315 kB 3.1 MB

hosts 10.9 s 17.5 s 88.0 s

25 39 kB 384 kB 3.8 MB

hosts 11.0 s 19.6 s 105.4 s

30 46 kB 453 kB 4.5 MB

hosts 11.1 s 21.4 s 124.4 s

Table 6.2. Test computer specifications

Configurations on the front-end have been set to ”Create a new scan” and ”VIP Configuration:
All”. The table 6.2 shows the number of hosts, the number of open services found per host, the
corresponding file size and importation time measurement.

The interesting result found is represented in table 6.3 and figure 6.1.

While in theory importation time should be have and exponential behaviour with the respect to
number of services imported due to the algorithm used, we found that it decreases. The mechanism
behind the exponential behaviour should be related to the increasing number searches and join
operations on the database. It it interesting to note that by contrary, the real overhead of calling
the ruby back-end and the procedure activation (ex. connecting to the database) is much greater
compared then the non linear behaviour of the algorithm and therefore leads to results such as
this one.

84

6 – Results

Time Number of ser-
vices

Time per single
service

0,2 50 0,00564

0,4 100 0,00430

0,6 150 0,00430

10,7 200 0,05430

11,0 250 0,04404

11,1 300 0,03712

12,0 500 0,024002

13,7 1000 0,013664

15,8 1500 0,010526

17,5 2000 0,008744

19,6 2500 0,007826

21,4 3000 0,007141

29,2 5000 0,005839

47,3 10000 0,004728

70,4 15000 0,004694

88,1 20000 0,004403

105,4 25000 0,004214

124,4 30000 0,004146

Table 6.3. Importation time per service

Figure 6.1. Importation time per open service found

Nessus scan import time

Since Nessus results file importing is one of the most common operations performed on SVA-ng
it is interesting to measure its algorithm performance. As for the NMap importation time, the
network latency is omitted by calculations since it is highly related to the network architecture
and load.

85

6 – Results

Due to the high complexity of the Nessus XML format, it is unpractical to automatically
generate datasets. Furthermore, the creation of a virtual laboratory to perform automatic scanning
is highly time expensive and would lead to biased results. For these reasons, we chose to select
some of the real datasets for which SVA-ng was used during its short lifetime. However, the
heterogeneity of datasets is likely to introduce noise in the results analysis as we see later.

As for NMap, measurements have been performed directly in the Ruby back-end scripts there-
fore ignoring all front-end and network latencies. No cleaning of tables was performed after each
measurement since, as we demonstrated earlier, it has negligible influence on the end results (¡ 3

Configurations on the front-end have been set to ”Create a new scan” and ”VIP Configuration:
All”. The table 6.4 shows the file size, the importation time and the time per MB of file imported.

Size in MB Importation
Time

Time per MB

0,3 0,1 0,2

0,8 0,9 1,2

1,0 10,8 11,4

1,1 12,5 11,3

1,7 13,0 7,6

2,0 13,4 6,7

3,0 17,0 5,7

4,8 32,3 6,7

6,5 42,1 6,5

11,0 43,6 4,0

15,0 48,0 3,2

Table 6.4. Importation time per MB

Figure 6.2. Importation time per MB of import file size

Overall, Nessus importation efficiency is sufficient for the standard SVA-ng use cases. As for the
fact that efficiency increases when the number of hosts increases, it is mainly a result of overheads
added by invoking the back-end procedure. Furthermore, it is interesting to note that since the

86

6 – Results

importation time is probably not directly correlated to the size of the imported file but to its
internal structure.

Vulnerability matrix generation time

The most time consuming operation that the front-end is performing consists in the creation of
the Vulnerability Matrix. Efficiency in the page loading time is not related to functional purposes
but mainly to the user experience with the application.

Measurements have been performed directly via the browser for simplicity and, since both
the server and the client are hosted on the same physical computer, network overhead should be
constant and negligible. Differently to the other algorithms used in SVA-ng, the creation of this
table is not performed by the database but by the PHP code. The reason behind this choice stands
in the algorithm complexity and the simplicity of writing sequential procedures instead of SQL
queries.

Configuration for the tests have been set to default (no options in the query form are selected).
All VIP ports configurations have been set to include all ports. The datasets imported from the
previous Nessus scan importations have been used. Tables 6.5 shows the results.

Hosts Services Vulnerabilities Generation time
(ms)

7 114 63 123

19 203 327 180

40 365 461 273

69 1057 520 576

95 895 414 602

Table 6.5. Vulnerability Matrix generation time measurements

It is interesting to note from the following chart that the time of importation does not di-
rectly depends on the file size but instead on the number of hosts. This is principally due to the
heterogeneity of the datasets and of related hosts.

Figure 6.3. Vulnerability Matrix generation time per Number of Hosts Found

Overall, it can be said that the time required to load standardly sized tables is not disturbing
the overall user experience.

87

Chapter 7

Conclusions

The initial goal of this thesis was to design and implement the SVA-ng application with the intent
of automating some of the procedures related to vulnerabilities assessment tasks in the context of
cyber security and to integrate the results of different software in a single view.

After we finalized the importation scripts with the most part of the visualizations completed,
we felt the need of extending the original purpose of SVA-ng to better integrate with tools other
then scanners. From here, the idea of adding a Responder probe to intercept and actively collect
domain related traffic on demand. During the development process we chose to create a more
generic model that might include the insertion of multiple probe types.

Furthermore, while adding information to the database related to the existence of automatic
exploitation scripts, we chose to add an entire and more complex view on penetration testing
related data. This was mainly performed in order to help further testers to accomplish their tasks
without the need of re-performing all scans.

The thesis starts by describing fundamentals of cyber security in order to comprehend the
scope of vulnerability assessment processes and how they are necessary to obtain a view on the
overall situation of an infrastructure. We later discussed available software solutions for performing
assessments and penetration tests. With the analysis of the requirements and the description of
the architecture, we discussed how SVA-ng was designed to obtain the integration of the previously
described tools.

The developers and users manuals represent the core of the thesis project. The first contains
all inner working details about the most relevant modules as well as an in-depth description of the
designed communication schema. The second was designed as a simple and comprehensive guide
to the program functionalities from an end-user perspective.

All previous requirements are later re-listed in order to check their compliance. Furthermore,
at the end of development and testing, we created ad-hoc indexes in order to measure the program
efficiency. The results of the tests are available in the Results chapter.

The whole project has been completed in five months of designing, developing, testing and
documenting. During the process, many of the more common tools used in software creation such
as Integrated Development Environments and sub-versioning programs where used. The code is
implemented in four different programming languages used for different devices and purposes.

7.1 Future Work

While, as shown in chapter 6, the SVA-ng application is mostly compliant with its specifications,
during the development process some new ideas and possibilities of improvement where defined.
Since the effort of implementing some of these features and their functionalities are beyond the
scope of this thesis, we chose not yet to implement them and to further extend the product
development timeline. The following is a list of the intended future developments.

88

7 – Conclusions

Extend the set of import programs

In addition to Nessus and NMap, some of SVA-ng users are interested in adding web based auto-
matic scanners such as NetSparker. Since most of the vulnerabilities assessment tasks are nowadays
WAVA, it would be a good idea to extend the functionalities of SVA-ng to support them.

Add a time based comparison dashboard

At this point in development, SVA-ng keeps track of multiple scans over time. Whenever a vul-
nerability is fixed or accepted, SVA-ng keeps track of the modification date. However, SVA-ng do
not yet offer a view in order to show to the user these data. This new view must be designed and
implemented in such a way that users can interact with already available data.

Further optimize importation timings

While the speed of such operations is acceptable, whenever it is necessary to import large datasets
containing thousands of scanned hosts, SVA-ng takes minutes to accomplish the task. As we are
currently using a library for handling importations, it would be useful to analyse the internals of
such libraries and possibly remove all features not used by SVA-ng that slow down our process.

89

Bibliography

[1] ISO/IEC “Information technology - Security techniques - Information security management
systems - Overview and vocabulary”, RFC-2700, 2009

[2] Common Vulnerabilities and Exposures “About CVE”, https://cve.mitre.org/about/
[3] NIST “CVE-2017-0143”, https://cve.mitre.org/about/
[4] Common Weaknesses Enumeration “About CWE”, https://cwe.mitre.org
[5] MITRE “CWE-120”, https://cwe.mitre.org/data/definitions/120.html
[6] National Institute of Standards and Technology “Vulnerability Metrics”, https://nvd.nist.

gov/vuln-metrics/cvss

[7] National Institute of Standards and Technology “CVSS Severity Distribu-
tion Over Time”, https://nvd.nist.gov/vuln-metrics/visualizations/

cvss-severity-distribution-over-time

[8] SANS institute “Vulnerability Assessments: The Pro-active Steps to Secure
Your Organization”, https://www.sans.org/reading-room/whitepapers/threats/

vulnerability-assessments-pro-active-steps-secure-organization-453

[9] Open Web Application Security Project “Testing Guide Introduction”, https://www.owasp.
org/index.php/Testing_Guide_Introduction

[10] Bruce Schneier “The Process of Security”, https://www.schneier.com/essays/archives/
2000/04/the_process_of_secur.html

[11] Open Web Application Security Project “PTES Technical Guidelines”, http://www.

pentest-standard.org/index.php/PTES_Technical_Guidelines

[12] NMap “NMap tool guide”, https://nmap.org/
[13] Teenable “Nessus Main Website”, https://www.tenable.com/products/

nessus-vulnerability-scanner

[14] NetSparker “Main Website”, https://www.netsparker.com
[15] OpenVAS “Main product Website”, http://www.openvas.org/
[16] Offensive Security “Kali Operating System”, https://www.kali.org/
[17] Offensive Security “Metasploit Unleashed”, https://www.offensive-security.com/

metasploit-unleashed/

[18] Responder “GitHub repository”, https://github.com/SpiderLabs/Responder
[19] Aircrack-ng “Documentation”, http://aircrack-ng.org/
[20] PortSwigger “Burp Suite”, https://portswigger.net/burp/
[21] THC “Hydra Tool main page”, https://www.thc.org/thc-hydra/
[22] Medusa “Main website”, http://foofus.net/goons/jmk/medusa/medusa.html
[23] Apache Software Foundation “Apache HTTP Server Project”, https://httpd.apache.org/
[24] The PHP Group “PHP”, http://php.net/
[25] EllisLab “Code Igniter Main Website”, https://www.codeigniter.com/
[26] Puikinsh - Gentelella “GitHub repository”, https://github.com/puikinsh/gentelella
[27] Ruby “Documentation”, https://www.ruby-lang.org/en/documentation/

90

https://cve.mitre.org/about/
https://cve.mitre.org/about/
https://cwe.mitre.org
https://cwe.mitre.org/data/definitions/120.html
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/visualizations/cvss-severity-distribution-over-time
https://nvd.nist.gov/vuln-metrics/visualizations/cvss-severity-distribution-over-time
https://www.sans.org/reading-room/whitepapers/threats/vulnerability-assessments-pro-active-steps-secure-organization-453
https://www.sans.org/reading-room/whitepapers/threats/vulnerability-assessments-pro-active-steps-secure-organization-453
https://www.owasp.org/index.php/Testing_Guide_Introduction
https://www.owasp.org/index.php/Testing_Guide_Introduction
https://www.schneier.com/essays/archives/2000/04/the_process_of_secur.html
https://www.schneier.com/essays/archives/2000/04/the_process_of_secur.html
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
https://nmap.org/
https://www.tenable.com/products/nessus-vulnerability-scanner
https://www.tenable.com/products/nessus-vulnerability-scanner
https://www.netsparker.com
http://www.openvas.org/
https://www.kali.org/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://github.com/SpiderLabs/Responder
http://aircrack-ng.org/
https://portswigger.net/burp/
https://www.thc.org/thc-hydra/
http://foofus.net/goons/jmk/medusa/medusa.html
https://httpd.apache.org/
http://php.net/
https://www.codeigniter.com/
https://github.com/puikinsh/gentelella
https://www.ruby-lang.org/en/documentation/

	Summary
	Introduction
	Cyber Security Overview
	Known Vulnerabilities
	Vulnerability Assessment
	Penetration Testing

	Existing Tools
	Vulnerability Assessment Tools
	NMap
	Nessus
	Other tools

	Penetration Testing Tools
	Kali Linux
	Metasploit framework
	Responder
	Aircrack-ng suite
	Other tools

	SVA-ng Architecture
	Requirements
	Architecture design
	Physical architecture
	Logical architecture

	SVA-ng Developers Manual
	Main Device Configuration
	Database
	Web Server
	Frameworks and templates
	Web Pages

	Back-end
	Probes

	SVA-ng User's Manual
	Installation
	Import a new scan
	Results navigation
	Handling fixes
	Manual entries
	Special Configurations
	VIP configuration
	Risk configuration
	Recommendations

	Installing a remote probe
	Launching a probe task
	PT suggestions

	Results
	Functional requirements compliance
	Non-functional characteristics

	Conclusions
	Future Work

	Bibliography

		Politecnico di Torino
	2018-07-16T16:47:50+0000
	Politecnico di Torino
	Antonio Lioy
	S

