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SOMMARIO 
L’attività di ricerca di questo progetto di tesi ha portato allo sviluppo di un sistema di 
Computer Aided Diagnosis (CAD) per la segmentazione e l’analisi delle lesioni tumorali 

del seno su immagini di Risonanza Magnetica Mammaria. Una volta terminato il 
contornamento, dalle regioni segmentate vengono estrapolati parametri geometrici e di 
Texture Analysis che facilitano la diagnosi da parte del medico. 
Il processo consiste di 5 step fondamentali realizzati mediante algoritmo Matlab: 
 

1. Pre-processing dell’immagine, per ciascun paziente sono state fornite le immagini 
dinamiche con contrasto (DCE-MRI) in sei scansioni temporali, una pre-contrasto 
e 5 post-contrasto (195 immagini per scansione). Delle sei scansioni temporali si 
selezionano quelle di maggior interesse clinico e da queste si ricavano le sottratte. 
Per gli esami pre-terapia neoadiuvante viene applicata una variazione del 
contrasto con lo scopo di evidenziare le regioni maggiormente perfuse. Nel caso 
delle scansioni post-trattamento, essendo i tessuti tumorali meno perfusi, non 
viene variato il contrasto onde evitare una sottostima della regione tumorale.  

 
2. Contornamento dell’area da esaminare, per minimizzare la regione di ricerca 

delle lesioni tumorali, dall’immagine originale si ricavano due sotto-immagini 
contenenti i due seni. Su ciascuna di esse viene poi applicato un algoritmo di 
segmentazione del contorno (Level-set) seguito da un algoritmo di Thinning. 
Queste operazioni vengono effettuate per la rimozione degli elementi che non 
sono di interesse clinico in questa applicazione quali organi interni e la pelle del 
seno. 
 

3. Segmentazione delle lesioni tumorali, sulla regione da investigare viene applicato 
un algoritmo di segmentazione a doppia soglia (Seeded Region Growing) per 
l’identificazione e il contornamento delle regioni sospette. Utilizzando 
l’algoritmo di Mean Maximum Raw Thresholding (MMRT) viene costruita una 
maschera binaria contenente solo le aree aventi intensità maggiore del valore di 
MMRT. Dalla maschera si ricava l’immagine originale in toni di grigio e per ogni 

regione si calcola il valore di densità corrispondente; l’area con densità maggiore 

è quella che viene riconosciuta come regione sospetta (SR). La prima soglia viene 
selezionata come valore massimo di intensità della regione scelta, e utilizzata per 
determinare il Seed iniziale dell’algoritmo. Il valore della seconda soglia invece 
viene scelto come la differenza tra l’intensità media della regione sospetta e quella 
del suo vicinato. Questa operazione viene ripetuta separatamente per i due seni.  

 
4. Analisi euristica, per una riduzione dei falsi positivi le zone segmentate vengono 

valutate ed eventualmente scartate sulla base di criteri geometrici e di intensità dei 
pixel. Essendo la morfologia delle lesioni tumorali molto variabile, la valutazione 
geometrica si ripropone di discriminare solo le segmentazioni con una forma 
prevalentemente allungata generalmente corrispondente ai vasi. Per una maggiore 
selettività sono stati implementati due criteri geometrici:  
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▪ Valutazione delle segmentazioni piane: se la forma risulta essere 
prevalentemente allungata allora viene scartata.  

▪ Valutazione delle segmentazioni volumetriche: la regione segmentata 
viene confrontata con il volume di una geometria regolare, se il rapporto 
tra le due supera una certa soglia fissata allora la lesione viene rimossa.  

Il criterio geometrico non è però sufficiente a discriminare forme più diversificate, 
per questo motivo è stato aggiunto un criterio di discriminazione che si basa sulla 
valutazione della perfusione dei tessuti. Per ciascun volume segmentato viene 
ricavata la curva rappresentativa dell’assorbimento del contrasto nelle diverse 

scansioni temporali. Le lesioni tumorali hanno un assorbimento più rapido rispetto 
agli altri tessuti, sfruttando questa caratteristica si riescono dunque a discriminare 
i falsi positivi con maggiore selettività. 

 
5. Caratterizzazione parametrica, per ciascuna regione segmentata si calcolano 

informazioni geometriche e parametri clinici (Texture Analysis) utili ai fini 
diagnostici. Queste caratteristiche vengono calcolate sia sulle segmentazioni 
piane che su quelle volumetriche. Regioni aventi geometrie sospette devono 
essere analizzate indipendentemente dai valori degli altri parametri, più la forma 
è complessa maggiore sarà la probabilità che la lesione sia maligna. Per quanto 
concerne i parametri di Texture Analysis è stato osservato, da diversi studi, come 
questi possano essere di aiuto ai fini diagnostici per facilitare i clinici nella 
discriminazione tra lesione benigne e maligne.  

 
L’algoritmo è stato costruito su 10 pazienti e successivamente validato su altri 5, di questi 
ultimi sono stati forniti diversi esami post-trattamento per valutare l’efficacia della terapia 
nel tempo. Per la validazione sono state valutate sia la capacità dell’algoritmo di 

identificare le regioni sospette all’interno della mammella, sia la qualità della 
segmentazione delle ROI. Le immagini sono state fornite dall’ospedale Borgo Trento di 

Verona in collaborazione con Tecnologie Avanzate S.r.l. 
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Chapter 1 

 
Introduction 
 
 
In 2003, 5.3 million of men and 4.7 million of women were estimated to develop a 
malignant tumor annually and 6.2 million would die from the disease. In 2014, 14.1 
million people were expected to develop cancer annually. Breast cancer is the second 
leading cause of cancer death among women, this affect more than one in 10 women and 
accounts for 28.8% of female cancer. Several studies have shown that there is 1.4% of 
probability for a 40-year-old woman of being diagnosed with breast cancer over the next 
10 years [1] [2] [3]. 
Mammography is usually a good method for breast lesions screening but in compromised 
mammogram patients MRI study is usually recommended, the most common cases are 
related to breast preservation therapies and difficult histology due to lobular carcinoma 
or ductal carcinoma in situ. MRI are also used in patients with dense breast, silicon 
augmented breast, breasts with scarring. Magnetic Resonance Imaging (MRI) has been 
chosen as imaging modalities because of its sensitivity and a threefold improvement in 
specificity over conventional imaging. The better performances of this technique are used 
to improve the quality of diagnosis and effectiveness of the treatment of breast cancer [3] 
[4] . 
Computer Aided Diagnosis (CAD) systems has an increasingly important role in 
healthcare applications. The main purpose is to assist radiologists in evaluation of clinical 
images to provide a ‘second opinion’ and optimize clinical diagnosis time. CAD studies 

improve diagnosis accuracy of radiologist, reduce diseases missing due to fatigue and 
improve inter- and intra-reader variability, with a minimum error related to the device 
failure [5].  
There are several methods for breast lesions segmentation in MRI, these can be 
categorized into two main groups: contour-based segmentation and classification-based 
segmentation.  
Segmentation methods based on classifiers can be divided into three main categories: 
supervised, semi-supervised and unsupervised. Supervised methods, such as Neural 
Network and Support Vector Machine [6] [7] [8], are those with greater accuracy but 
require a large amount of data difficult, expensive and slow to find. Non-supervised 
methods on the other hand do not require training data but have much lower performance, 
e.g. Markov Random Field and Fuzzy C-means and others [9] [10] [11]. A good 
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compromise between these categories is semi-supervised approach that maintain high 
accuracy, but it still requires labelled data, a semi-supervised method application is the 
one proposed by Azmi R. et al. [12]. 
Contour-based segmentation, as it is not operator dependent, can reduce analysis time and 
provide more repeatable results. Only few studies have presented algorithms for 
automatic lesion detection in breast MRI. Vignati et al. (2011) developed a segmentation 
method based on multiscale 3D Sato’s vessel enhancement filter for vessels intensity 
identification, this value is used to remove all vessel from segmented regions, then an 
empirically threshold is determined to segment only tumoral regions. The advantage of 
this algorithm is that it works both on fat-sat and non-fat sat DCE-MRI, but it use mean 
intensity projection image over time (mIPT) and this could underestimate lesion size, 
error that could lead to a wrong lesion classification [13]. Renz et al. (2012) implemented 
a fully automated CAD system based on a hierarchical 3D Gaussian pyramid, each voxel 
of a lower level was linked to a voxel of the next upper level depending on the intensity 
similarities, the limitation of this work is related to the difficult to identify nonmass-like 
lesion [14]. Gubern-Mérida et al. (2014) performed an algorithm that identifies the 
candidate lesions using blob and relative enhancement voxel features. In this work spatial 
information were provided by probabilistic atlases the results of this system are less 
accurate because of the use of only one seed for lesion detection [15].  
To overcome some of the limitations just listed, in this study we investigate a fully 
automated segmentation algorithm for tumor breast, referring to the work of Al-Faris et 
al. [16]. The main objective of the system proposed by Al-Faris et al. is the identification 
of lesions on DCE image without user interaction; this study consist of single image 
segmentation and does not include an evaluation of the results to reduce the number of 
false positives. In our work we tried to solve these restrictions, the built system receives 
as input the folder with all DCE images which consist of six-time scans (195 images per 
scan), the algorithm processes all images and after it works on each slice individually. 
For the lesion identification and contouring a Seeded Region Growing is applied, the 
threshold selection is totally automatized based on gray level intensity of the image. After 
lesion segmentation we reconstruct the regions volume and several considerations are 
applied to distinguish lesion from non-lesion. At the end of the suspected regions 
selection, to facilitate the diagnosis by the radiologist, geometrical variables and texture 
analysis were determined for the selected regions characterization. Morphological 
parameters provide further information relevant for prognosis, suspicious morphology 
should be followed and controlled, regardless of other features [17] [18]. Texture analysis 
(TA) otherwise give information about gray level distribution on the selected region, 
these parameters are related to different histological types, tumor grades and micro-vessel 
distributions. These clinical features provide prognostic and predictive information, 
useful also for molecular subtypes classification [19]. 
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Chapter 2 

 
Breast Magnetic Resonance Imaging  
 
 
Magnetic Resonance Imaging (MRI) plays an important role in clinical care, it is a 
scanning method that obtains tomographic images of the human body through a magnetic 
field. MRI is generally considered non-harmful to the patient, the information given by 
the magnetic resonance images are different from those of the other imaging methods, it 
is possible to discriminate between tissues, based on their biochemical composition. With 
MR there are images of the body sections on three different planes (axial, coronal, 
sagittal). The main disadvantages of this technique are costs and time necessary for 
images acquisition.  
 
Breast MRI is a complementary radiological examination of conventional imaging 
(mammography and ultrasound), it can be used to have functional information of the 
breast tissue noninvasively. This technique has a relevant role in monitoring of 
neoadjuvant chemotherapy, several studies shown that parameters deriving from 
pharmacokinetic models can be used as imaging biomarkers, it is crucial in assessing the 
patient's response to therapy and to evaluate the size of the lesion in patients with low 
response [20] [21] [22].  

Figure 1. MR system with MammoTrack trolley [23].  
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2.1 Breast image acquisition 

To minimize inhomogeneity, in breast MRI, magnets have a high B, higher than 1T. The 
acquisitions are multi-phase and they have a high signal-to-noise ratio. Fat-suppression 
is used in routine magnetic resonance imaging for several reasons:  

• Suppression of the signal from adipose tissue 
• Reduction of chemical shift artifact 
• Improvement of the contrast uptake visualization  
• Characterization of tissues.  

Signal in non-adipose tissues is not affected by fat-suppression but signal-to-noise ratio 
in adipose tissue decrease. The major disadvantage is that an inhomogeneity in the radio-
frequency field can reduce the effectiveness of the fat-suppression which leads to water-
suppression and therefore to a poor quality of the signal. 
Coils used are bilateral multi-channel and volumetric, able to acquire 3D images in the 
three planes with high spatial resolution and with thin layers (maximum 3mm). Coils are 
positioned on the tabletop with the aperture to the magnet, correct positioning of the breast 
coil is crucial to limit the number of artifacts. 
 

The basic images produced in breast MRI includes: 
 

▪ T2 sequences 
▪ T1 gradient-echo  
▪ Injected dynamic 3D sequences 

 
T2 sequences give useful information about signal analysis and anatomy of the breast, 
this scan performed without fat saturation guarantee a good predictive value for a benign 
cyst, while the sequences acquired with fat saturation are useful in detecting small tumors.  

Figure 2. SENSE breast coil with 4 element phased-array coil and one coil receive 

only (left), SENSE breast coil with 7 element phased-array coil and one coil 

receive only (right) [23]. 
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The T1-weighted sequences are useful in detecting the fat component within the lesion, 
which is an index of the benign nature of the tumor. This type of scan allows also to detect 
metal markers inserted at the end of the biopsy, to be able to see this artifact it is necessary 
to have a longer TE value associated with a high TR value (to maintain a high SNR). If a 
good compromise between TE and TR is not found, to be able to see both lesions and 
metal markers we need to do different scans with different settings for the two purposes.  

Injected dynamic 3D sequences are instead useful to locate exactly the lesions as it 
reconstructs the total breast volume, this facilitates the identification of the region of 
interest and its characterization. Breast MRI sequences without contrast agent are less 
utilized because they have a low diagnostic value of T1 and T2 signals. Thanks to the use 
of medium contrast agent, breast MR highlights the neoangiogenesis of tumoral tissue. 

Figure 3. Comparison of a T2-wighted axial sequence on 1.5T (a) 

and 3.0T (b) machines [24].  

a 

b 

Figure 4. Comparison of a T1 GE 3D axial sequence on 1.5T (a) 

and 3.0T (b) machines [24].  

a 

b 
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Tumor regions have a higher vascularization than the other tissues, this guarantees a very 
high contrast absorption which in the image results as a more intense signal. MR images 
have a high sensitivity but the biggest limitation for this type of acquisition is low 
specificity which can lead to several false positives [23] [24]. 
 
 

2.2 Dynamic Contrast Enhanced MRI 

Dynamic Contrast Enhanced MRI (DCE-MRI) is one of the most important MRI 
acquisition for the identification of malignant tumor lesions. DCE images provide tumor 
morphology and contrast kinetics information from which it is possible to obtain a series 
of physiological parameters showing the behavior between the tumors and adjacent 
tissues [22]. Cellular density, micro-vascularity permeability and tissue perfusion can be 
obtained thanks to the use of an appropriate pharmacokinetic model.  
DCE is based on the rapid diffusion of a contrast agent, the agent generally used is 
Gadolinium. The contrast medium is injected through an injector which is loaded with 
syringes containing 20cc of physiological and 0.2cc x body weight of Gadolinium. 
Observing the perfusion of Gadolinium, it is possible to obtain useful information for 
diagnostic purposes. Typical DCE images are acquired before and after the injection of 
the contrast agent (CA), observing these images we can see how tissue absorb and release 
the contrast agent over the time [25]. Differently from DCE-CT the variations of MR 
signal are not linearly correlated with the variation of the contrast concentration. MR 
images can be acquired using T2 * or T2 weighting DCE-MRI (known as dynamic 
susceptibility contrast MRI or DSC-MRI), or T1 weighting (T1 weighted DCE-MRI).  
 
Dynamic susceptibility contrast MRI. In DSC-MRI the loss of the signal is related to the 
change of the contrast agent concentration. To estimate a baseline a series of pre-contrast 
injection is acquired, the contrast agent is then injected as an intravenous bolus with the 
auxilium of a pump, followed by a saline flush. The images are acquired in different times 
so the time-intensity signal can be used to estimate the CA concentration in the tissues. 
The susceptibility contrast mechanism is related to changes in the local field within the 
tissue caused by paramagnetic contrast molecules. These variations also influence water 
molecules away from the contrast, so measurements of apparent CA concentration will 
be influenced by the local vascular structure. This technique is useful in study changes in 
grey and white matter because SNR is better than in T1 weighted techniques, furthermore 
it provides information about size and distribution of vessels. In tumor tissues, an analysis 
of endothelial permeability is possible, but the change in the signal in the tissues around 
the contrast medium makes this analysis less reliable. For this application, therefore, it is 
preferable to use the T1 weighted DCE-MRI technique. 
 
T1 weighted DCE-MRI. T1 weighted DCE images are a sequence of total volume imaging 
that is repeated over time. Time scans are acquired for the 5 minutes following the 
injection of the contrast agent. A T1 measurement is performed before the contrast 
injection and then it is rapidly repeated several times in the next 10 minutes after 
intravenous injection of gadolinium. This sequence can be acquired in 3D or 2D: three-
dimensional imaging is acquired by applying suitable gradients during image acquisition; 
2D imaging, on the other hand, are obtained by means of selective excitation. 3D imaging 
has a shorter repetition time than the 2D multi-section image and allows to obtain thinner 
sections because it has a higher intrinsic signal-to-noise ratio. However, a 2D sequence 
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suffers less from motion and pulsation artifacts. Both sequences can be performed with 
and without fat suppression.  
 
2.2.1 Functional MRI 
From the 3D sequences it is possible to obtain the intensity-time curve and concentration-
time curve (TCC). The intensity-time curve (or signal-time curve) is basically the MR 
signal intensity of a single voxel or a region of interest plotted over the acquisition time 
point; it provides useful information to evaluate the absorption rate and clearance of 
gadolinium in the tissues and from this evaluation obtain biomarkers of the tissues 
vasculature. The rate of contrast uptake in breast lesions is non-linear and differs between 
malignant and benign lesions as can be seen in Figure 5. This feature is very useful for 
differential diagnosis. Malignant lesions exhibit stronger and faster contrast absorption 
than other tissues (type III). In the benign lesions the curve has an increasing continuous 
progression in all the temporal instants (type I). In cases where the curve presents a 
plateau (type II) the lesion classification is doubtful [26]. 

To determine the concentration time curve, time intensity curve and pre-contrast scans 
are necessary. TCC depend on the relaxation of the CA used and the acquired T1 signal, 
it represents the relation between the concentration (or dosage) and the time needed to 
produce an action.  

Figure 5. Time-intensity curves for breast lesions [26]. 

Figure 6. Time concentration curve, AUC is the area under the 

curve, it represents the number of molecules of CA present 

and it estimates the release time. 
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TCC is analyzed performing a kinetic model using curve-fitting [27], the accuracy of the 
curve-fitting techniques is influenced by the temporal resolution, the SNR and by the 
pharmacokinetic model utilized, whereby the validity of the parametric estimates will be 
directly influenced by the quality of the data. Although the acquisitions can be optimized, 
there is still a compromise between temporal resolution, SNR and tissue coverage. The 
most commonly adopted solution is the choice of a simplified pharmacokinetic model 
that improves accuracy at the expense of biological specificity [28]. 
 
 

2.3 Data collection (DCE-MRI) 
Patients involved in this study were subjected to a Mammary Magnetic Resonance 
examination by 3T MRI scanner. All patients had breast abnormalities on mammography 
or sonography, confirmed by cytology and/or micro-biopsy. 
10 patients were examined, 5 pre-neoadjuvant therapy and 5 post-treatment. Of these 
post-treatment patients several scans were available, overall 15. Thanks to post-treatment 
scans it was possible to evaluate the functioning of the algorithm also for monitoring the 
effectiveness of the therapy. 
All images were provided by Borgo Trento Hospital in Verona.  
 
2.3.1 MRI Protocol 
All patients were scanned at 3T scanner (Philips Achieva STx) with a 16-channel breast 
coil used only for diagnostic purposes. Patients were placed in prone position on the 
MammoTrak with breasts falling into the appropriate cavities and the arms positioned 
above the head. The breasts must be "hanging" freely in the coil and they must be free of 
folds. All scans were made with fat-suppression. The automatic injector of contrast agent 
was connected via the cannula to a peripheral vein of the patient.  
The bed was lifted and introduced into the gantry, the light visor is centered to the middle 
of the breast and then the patient is completely introduced into the gantry from the feet 
side [29]. 

 

Figure 7. MammoTrak Set-up (upper row). MammoTrak is approached to 

the gantry until the breast coil is aligned with the isocenter (lower row) 

[23]. 
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Over the common T1-TSE (TR/TE=400/10ms) and T2-STIR (TR/TE=5000/60ms) 
sequences, Dynamic contrast enhancement (DCE) were acquired.  
This scan includes multiple T1-weighted acquisition before and after injection of 
gadolinium multihance contrast. 6 scans were acquired every 90 seconds, application of 
the contrast agent was started after the first scan. 195 slices were acquired per scan, with 
a total of 195x6=1170 images. TR/TE 4.8/2.4 ms; FOV, 340 mm (RL and AP), 175.5 mm 
(FH); the dimensions of matrix are 384x384 with voxel size 0.90x0.90x0.90 mm. Total 
scan duration was around 9 minutes. 
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Chapter 3 
 
Lesion detection algorithm 
 
 
The lesion detection pipeline consists of five main steps: image registration, pre-
processing, breast region contouring, lesion segmentation and heuristic analysis of the 
results. The fully automated segmentation algorithm works on each slice separately but 
in the post-segmentation phase, overall considerations will be made on the whole volume 
for false positives reduction.  
The algorithm was built in Matlab. To have a greater morphological consistency, the 
images are first registered and then subjected to a preprocessing phase.  
Volume slice are 195, for each slice breast region is selected to prevent false positives 
due to structure such as heart and vessels that are not of clinical interest in this application. 
On the isolated region we initialize a Level Set algorithm for skin detection followed by 
a Thinning algorithm for removal of skin contour. Double threshold Region Growing is 
subsequently applied, after an appropriate thresholds selection, the algorithm recognizes 
lesions and then segments the contour of the identified region. In the last step, a 
geometrical evaluation and intensity-based considerations help to reduce the number of 
false positives.  
All these steps are reported in Figure 8, the flowchart represents all phases of the 
algorithm with the relative results. At the end of the false positives reduction geometric 
features and texture analysis were calculated both on the single segmented slice and the 
entire volume.  
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Figure 8. Methodology flowchart. 
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3.1 Image registration 
 
The first step of the algorithm is the registration of the volumes, the DCE-MRI provided 
are composed of one pre-contrast injection scan and five scans post-contrast injection. 
For the image registration the fixed volume is the pre-contrast acquisition and the five 
subsequent volume are rigidly realigned to the fixed volume.  
The rigid realignment function is based on the intensity image distribution, Matlab 
function imregconfig is used to set the configuration parameters for the registration. 
 

PARAMETERS DEFAULT 
VALUES 

SETTED 
VALUES 

Gradient Tolerance Magnitude 10-4 10-4 
Minimum Step Length 10-5 10-3 
Maximum Step Length 0.0625 0.1 
Maximum Iterations 100 50 
Relaxation Factor 0.5 0.5 

 
 
To evaluate the convergence of the results the metric used is the mean square error, the 
other parameters of the registration optimization are reported in Table 1. To improve the 
algorithm performances some default values are changed, in this way computational time 
are lower and even if the results are less performing, this does not affect the effectiveness 
of the algorithm. Values changed are minimum step length, maximum step length and 
maximum iterations: 

▪ Minimum Step Length defines how accurate the process must be; 
▪ Maximum Step Length is the maximum stride length; 
▪ Maximum Iterations is the maximum number of iterations the optimizer performs 

at any pyramid level. 

The metric and optimization values are loaded in the imregister function which realign 
the moving volume to the fixed volume. This function builds an image pyramid that has 
N levels, each level decreases the resolution by a fixed factor.  

Table 1. Optimizer metric configuration. 

Figure 9. Image registration flowchart. 
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Starting from the lower resolution step of the pyramid the function run until the Maximum 
Iterations is reached or until the optimizer converges, the process flowchart is represented 
in Figure 9. At this point the function restart with the current transformation estimate on 
the next pyramid level. This process continue until the full original resolution is reached.  
 
3.2 Pre-processing 
 
The algorithm pre-processing consists of several phases, after the loading of the DCE-
MRI folder, the uploaded images are processed in order to obtain 195 slices representing 
the entire volume, containing properties of the different time scans. On the slices thus 
obtained several steps are applied to obtain the axial image division in two sub-images. 
Start from this point the algorithm will work separately on each breast. In Figure 10 we 
can see the steps of the pre-processing phase: after the axial image division in two sub-
images a contrast enhancement is applied only if the scans are pre-treatment, later the 
reason of this distinction will be explained. 

 
 
 3.2.1 Subtracted images computation 
DCE-MRI folder includes 1170 images for the six-time scans, every scan includes 195 
images each representative of a slice belonging to the entire breast volume. To better 
emphasize the contrast perfusion, it was decided to calculate the subtracts of the different 
scans.  
In order to choose the correct combination several tests were made, Figure 11 shows some 
of the tests carried out, at each scan starting from the first post contrast injection, the pre-
contrast scan was subtracted, the result being that the perfused regions remain still bright, 
the other areas are attenuated. This is a significant advantage for ensuring fewer false 
positives. 
 

Figure 10. Pre-processing flowchart. 
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From the examples of Figure 11 it is possible to deduce that the images with a higher 
intensity are the first two, the third still has good evidence of the lesion but the image has 
other artefacts for which it is discarded. From a comparison with the clinicians it has been 
confirmed that the first two post-contrast scans are those of greater clinical interest, this 
is why at this stage it was decided to consider only the first two.  

Evaluating the results obtained with these scans and after having carried out further tests, 
we found the solution that would optimize the algorithm's performance. The operation 
consists in the sum of the first two post-contrast images and, to the image obtained we 
subtract the pre-contrast image: 

𝐼𝑚𝑔{𝑖} = 𝑖𝑚𝑎𝑔𝑒𝑠{𝑖 + 𝑛𝑠𝑙𝑖𝑐𝑒} + 𝑖𝑚𝑎𝑔𝑒𝑠{𝑖 + 2 ∗ 𝑛𝑠𝑙𝑖𝑐𝑒} − 𝑖𝑚𝑎𝑔𝑒𝑠{𝑖} 

Figure 11. Subtraction example. Considering pre the pre-contrast scanning and 

post1, post2, post3, post4 and post5 respectively the first, second, third, fourth 

and fifth post-contrast scanning, the images can be defined as: (a) post1-pre, (b) 

post2-pre, (c) post3-pre, (d) post4-pre, (e) post5-pre. 

a b 

c d 

e 
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Img{i} is the current output image, images{i+nslice} and images{i+2*nslice} are 
respectively the first and the second post-contrast image of the current i-th image, while 
images{i} is the i-th image acquired before contrast injection.  
This operation is repeated for each of the 195 images acquired, at the end Img will contain 
the subtracted images of all 195 slices. This aid to emphasize the region more perfused 
by the contrast agent.  

 
3.2.2 Axial image division in two sub-images 
Algorithm works on each breast separately; the division of the image is therefore a 
fundamental step because it defines the region that the algorithm will explore. A wrong 
selection of the region would inevitably lead to a wrong segmentation. 
To select only the breast region, several steps have been performed. First a binary mask 
is created; for the discrimination of the object from the background Otsu threshold is 
selected, the Matlab adapttresh function is implemented with a sensitivity value equal to 
0.4.  

Figure 12. Representation of the slice 23 (patient 3) in the different time scans 

necessary to calculate the subtracted image. (a) pre-contrast scan, (b) first post-

contrast scan, (c) second post-contrast scan, (d) result of the subtraction. 

a b 

c d 
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Otsu thresholding generate white area in the background because of the intensity noise in 
the image, to delete this artifact a morphological operator is used. One dilatation is applied 
with a structural element 'disk' of radius 3. Then the biggest area is selected with the 
Matlab function bwareafilt (Figure 14). 
  

To estimate the breast location the most anterior point of the breast is defined as the upper 
limit, and the deepest point between the two breast is the lower limit. To ensure that no 
tumor lesion is lost near the ribs, a safety margin, of approximately 20 pixels, is added to 
the lower limit.  

For the initial contour of the level set, as we will see in paragraph 3.3.1, the external limits 
(left limit and right limit) of the breasts will also be useful (Figure 15).  

Figure 13. Original gray scale image (left) and binary mask (right). 

 

Figure 14. Result of morphological operator (left), result of biggest area selection 

(right). 
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In this way we have localized the position of the two breast, and then the axial image 
division in two sub-images is implemented (Figure 16). 

Matrix dimension is 288x193, this value is fixed for all slices because to correctly 
reconstruct the volumes it is necessary to have all the images of the same size. 
 
3.2.3 Contrast enhancement 
 
To emphasize the region of interest (ROI), a contrast enhancement is implemented. The 
variation of contrast is useful because the bright objects became highly different from the 
background, to do that we have to change the intensity of each pixel. The reference value 
for the brightness change, calculated for left and right breast separately, is the Luminance 
L: 

𝐿 =
𝐼𝑂𝐷

𝑚𝑥𝑛
=

∑ 𝑝𝑖𝑥𝑒𝑙

𝑚𝑥𝑛
 

 

Figure 15. Identification of upper and lower limit (left) and left and right limit 

of the breast (right), shown by arrows. 

Figure 16. Axial image division after breast 
localization.  
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In Figure 17 the horizontal line is the luminance value, the curve blue represents pixels 
intensity of the original image, the curve black represents the intensity profile of the same 
pixels after the variation of the contrast. 
All intensity values higher than the luminance is increased, those with a lower value are 
attenuated. The variation of the intensity value is proportional to the distance from the 
luminance, pixels with intensity value very distant from the luminance will have a higher 
variation. Several tests were carried out to select the percentage value for the contrast 
variation that would provide the best results. 

Figure 18. Results of the different percentage variations of the contrast. (a) 

Original image, (b) 10%, (c) 30%, (d) 50%, (e) 70%, (f) 90% of intensity pixel 

variation respect to the luminance distance. 

a b c 

d e f 

Figure 17. Curve representing the variation of contrast.  

L 

Intensity 

Value 

Pixel 
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Figure 18 shown the effects of the contrast enhancement with different percentages of 
intensity pixels variation; applying a variation of 10% or 30%, several elements in the 
image are not sufficiently attenuated so they could lead to incorrect segmentations. 
Between the 50% and the 90% of variation, from the observation of the images in Figure 
18, there are no big differences; to choose the most appropriate value, several tests have 
been carried out iterating the algorithm on images with different percentage values. From 
these tests it was observed that with a more accentuated variation of the contrast a greater 
selectivity was guaranteed in the choice of the seed that in other cases led to a wrong 
segmentation (Figure 19).  

This means that a greater contrast more emphasizes tumor regions than other noise areas, 
allowing the algorithm to select more specifically the threshold for lesions detection. For 
this reason, the pixel intensity is increased or attenuated of the 70% of its distance from 
the luminance, based on its original intensity value.  

Figure 19. Segmentation result with contrast 

variation of 50% (left) and variation of 70% (right). 

Figure 20. Contrast enhancement. (a, c) Original gray 

scale intensity for the left and right breast 

respectively, (b, d) left and right breast after contrast 

a b 

c d 
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Contrast enhancement provides significant advantages when the lesions are brighter and 
more defined than the background, this property is not always respected by the scans 
carried out after neoadjuvant therapy. For this reason, to avoid missing identification of 
tumor regions, in post-treatment scans the contrast is not changed and the segmentation 
algorithm work on the original images. 
 
 
3.3 Breast skin removal 
 
Breast skin has intensity value comparable to those of tumor lesions, the purpose of this 
step is to identify the breast contour and eliminate the skin. This phase is necessary to 
reduce the possibility of error in the selection of the seed and it also decreases the number 
of false positives. For breast skin detection a Level Set algorithm has been implemented 
followed by a Thinning algorithm to delete the breast skin border. Image resulting from 
these processes includes only the internal region of the breast in which the thresholds for 
the lesion contouring algorithm will be chosen. 
 
3.3.1 Breast skin detection (Level Set) 
 
Level set method is a geometric deformable model, this technique can conform numerical 
computations without the need to parameterize the objects to be contoured. To detect the 
breast contour, we use a bidimensional level set formulation. The initial contour 
represented by the zero-level set is defined as C(t)= {(x, y) | ϕ (t, x, y) = 0} of a level set 
function ϕ (x, y, t). Each point of the level set function has a value corresponding to the 
Euclidean distance from the boundary point closest, the external points having the 
greatest distance are the vertices, the internal point having the greatest distance is the 
center. The representation of the level set in three dimensions is represented in Figure 21, 
the points on the contour have distance value equal to zero.  

The level set equation is the following: 
 

𝜕𝜙

𝜕𝑡
+ 𝐹|𝛻𝜙| = 0 

 
The function F is the speed function and depends on the image and the level set function 
ϕ, this term is the one that iteratively moves the boundary towards the object. In traditional 
level set function, ϕ can develop irregular shapes that induce to a wrong contouring, to 
solve this problem a re-initialization of the function is periodically applied during the 
evolution, but the re-initialization process can be complicated and sometimes it can also 
deviate from the desired result. In this work we used a variational formulation of a level 

Figure 21. Level set functional evolution. 
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set evolution without Re-initialization, as proposed by Chunming et al. [30]. This method 
forces the active contours to be near to a defined distance function, in this way the re-
initialization process is not necessary.  
The energetic function, which move the active contour towards the region to be outlined, 
is a combination of an internal energy term (P(ϕ)) and an external energy term (εm(ϕ)): 
 

𝜀(∅) = 𝜇𝑃(∅) + 𝜀𝑔,𝜆,𝜈(∅) 
 
The internal energy term penalizes the deviation of ϕ, it is defined as: 

𝑃(𝜙) = 𝜇 [∆𝜙 − 𝑑𝑖𝑣 (
∇𝜙

|∇𝜙|
)] 

Where μ>0 is a parameter that regulates the effect of penalizing the deviation of φ and 
∆ is the Laplacian operator. The external energy term otherwise moves the zero-level set 
towards the object contour, it is composed by two terms, one that computes the length of 
the zero-level curve and the other representing the weighted area. These terms can be 
expressed as follows: 

𝜀𝑔,𝜆,𝜈(∅) = 𝜆𝛿(𝜙)𝑑𝑖𝑣 (𝑔
∇𝜙

|∇𝜙|
) + 𝜈𝑔𝛿(𝜙) 

Where λ>0 and ν are constant (ν can be positive or negative depending on where the zero-
level set is positioned relative to the object), δ is the delta di Dirac function and g is the 

edge indicator function:  

𝑔 =
1

1 + |∇𝐺𝜎 ∗ 𝐼|2
 

With I image and Gσ the Gaussian kernel whit a standard deviation σ. The formulation 
for delta di Dirac function is: 

𝛿𝜀(𝑥) = {
0                                 |𝑥| > 𝜀

1

2𝜀
[1 + cos (

𝜋𝑥

𝜀
),           |𝑥| ≤ 𝜀          

 

 
Algorithm iterates a certain number of times (N_iter) as long as the curve does not reach 
the convergence. The equation representing the update of the level set curve is the 
following: 

∅ = ∅0 + 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 ∗ 𝜀∅ 

Where ϕ is the new level set function, ϕ0 is the zero-level set function (previous iteration) 
and εϕ is the energy contribution. Time step is a multiplicative coefficient that increases 
the variation for each iteration, in this way it can reduce the number of iterations. 
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In the listed formulations there are a series of numerical parameters (constants) that must 
be set. Some of these parameters have been chosen according to the criteria of other 
applications on MRI images, while others have been chosen specifically for the images 
used in this application. 
 

PARAMETERS VALUES 
 0.04 
 5 
 1.5 
 1.5 

Time step 5 
N_iter 80 

 1.5 
 

 
Values µ, λ, ν and ε have been selected by others study [31]; time step, n_iter and σ instead 

they have been chosen to adapt them better to our needs. Varying these parameters, the 
algorithm's performances change; several tests have been performed, with different 
combination of these values. Increasing too much the σ value, with an equal number of 
iterations, the level set did not correctly distinguish between outside and inside the breast, 
the most appropriate value found is 1.5. Once σ has been set, other tests have been carried 
out to choose the most appropriate number of iterations, the combination that led to the 
best results is time step equal to 5 and n_iter equal to 300. 
In this work computational times are very important, so to improve the speed of level set 
method without reducing its performance, the zero-level set is initialized near the breast, 
to do that we use upper and lower limit of the breast and we also get the lateral limits of 
the breast previously obtained (Paragraph 3.2.2), in this way only 80 iterations are 
sufficient to obtain a correct contouring of the region. 
 

 
 

μ 

λ 
ν 

ε 

σ 

Figure 22. Level set evolution: evolution of level set function φ (Row1) and evolution 

of the corresponding zero-level set curve (Row2). The first column is the algorithm 

initialization, the fourth column is the converged result [30]. 

Table 2. Level set parameters setting.  
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The first zero-level set is created by constructing an initial mask of the same size as the 
original image where the pixels within the initial outline have the same negative value, 
the external ones have the same positive value. 
In Figure 24 we can see the results of the Level Set contouring. 

Figure 23. Examples of zero-level set initialization in 

two different slices. (a, b) Patient 3, slice 23 

respectively left and right breast. (c, d) Patient 3, 

slice 74 left and right breast. 

a b 

c d 

Figure 24. Examples of level set segmentations of 

different slices. (a, b) Patient 3, slice 23 respectively 

left and right breast. (c, d) Patient 3, slice 74 left and 

right breast. 

a b 

c d 
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3.3.2 Breast skin elimination (Thinning) 
 
After skin detection, the breast contour is deleted with a morphological thinning operator. 
Thinning is a topological skeleton which erodes pixels from the boundary, comparing the 
pixel with its neighborhood.  
This technique iteratively eliminates the pixels of the object contour to reduce it without 
altering its morphology. Thinning operator works on binary mask, to decide if the current 
pixel should be deleted an 3x3 neighborhood is considered. The conditions to be respected 
are divided into two iterations: 

1. Pixel p is deleted if and only if the first three conditions shown below are all 
satisfied.   

2. Pixel p is deleted if the first two and fourth conditions are all satisfied. 

First condition: 
𝑋𝐻(𝑝) = 1 

Where  

𝑋𝐻(𝑝) = ∑ 𝑏𝑖

4

𝑖=1

 

𝑏𝑖 = {
1, 𝑖𝑓 𝑥2𝑖−1 = 0 𝑎𝑛𝑑 (𝑥2𝑖 = 1 𝑜𝑟 𝑥2𝑖+1 = 1)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑥𝑖 are all values of the eight neighbors of p.  

Second condition: 

2 ≤ min {𝑛1(𝑝), 𝑛2(𝑝)} ≤ 3 

Where 

𝑛1(𝑝) = ∑ 𝑥2𝑘−1𝑉𝑥2𝑘

4

𝑘=1

 

𝑛2(𝑝) = ∑ 𝑥2𝑘𝑉𝑥2𝑘+1

4

𝑘=1

 

Third condition: 

(𝑥2𝑉𝑥3𝑉𝑥8) Λ 𝑥1 = 0 

Forth condition: 

(𝑥6𝑉𝑥7𝑉𝑥4) Λ 𝑥5 = 0 

The two iterations just listed constitute a single iteration of the thinning algorithm. The 
Matlab bwmorph function, which use the algorithm specified above, is used to remove 
breast skin.  
The thinning algorithm works on binary masks, therefore starting from the contour 
obtained from the level set method the binary masks are obtained, and different tests are 
carried out in order to be able to select the number of times the thinning has to be repeated 
(NTh). 
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NTh=11 is the chosen iteration number that allows the algorithm to remove the appropriate 
amount of pixel which corresponds to the thickness of the breast skin. 

Thinning method results have some remaining extensions shown in the red circles (Figure 
26) which can lead to wrong segmentations, to avoid this problem a further morphological 
operator was applied. An erosion operator was applied to the image after the thinning, the 
structural element used is a 'sphere' of radius 1. 

Figure 25. Thinning algorithm results. First row shows the left 

breast results, and second row is the right breast. (a, d) Binary 

mask of the level set contour, (b, e) thinning algorithm result, 

(c, f) original gray scale image after thinning.  

a b c 

d e f 

Figure 26. (a, c) Left and right breast respectively. 

(b, d) Erosion operator results for the two breasts. 

a b 

c d 
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The binary image is now reconverted into the original gray scale representation, Figure 
27 shows the final result of the breast skin removal. 
 

 
3.4 Lesion segmentation algorithm  
 
In this work, the lesion segmentation algorithm chosen is the Seeded Region Growing 
(SRG). This method is a morphological technique which contours the region maintaining 
a morphological coherence. The method starts from an initial seed and then SRG begins 
to grow up, the boundary is defined by a second threshold that distinguishes the object 
from the background. Generally, these thresholds are set manually, in our case an 
automatic algorithm for threshold selection has been implemented. 

3.4.1 Automatic thresholds selection 
 
The automatic threshold selection includes two main phases, a Seed selection that defines 
the starting point of the segmentation algorithm (maximum pixel intensity) and the choice 
of SRG threshold that determines the minimum intensity of pixels belonging to the object, 
the threshold selection is made independently for each breast.  

Figure 27. Final gray scale image after thinning (left and 

right). 

Figure 28. Lesion segmentation algorithm flowchart. 



27 
 

The Seed selection includes 3 main steps: 
1. For the selection of a suspected region, a binary mask has been created thanks the 

Mean Maximum Row Thresholding algorithm (MMRT). This method searches 
for the maximum value in each row, then a sum of these values is calculated. The 
MMRT is obtained dividing the sum by the number of rows of the image: 

𝑀𝑀𝑅𝑇 =
∑ 𝑀𝑖

𝑁
𝑖=0

𝑁
 

Where i is the index row of the image, N the total number of rows and Mi is the 
maximum intensity value of the row i. 
To have a more specific discrimination of the suspected region, in this work 
MMRT is calculated dividing the sum of the rows maximum by the number of 
rows whose maximum is a non-null value. The calculated threshold is therefore 

used to create the binary mask using the Matlab function imbinarize, pixels with 
intensity value below MMRT belong to the black region, pixels with the greatest 
intensity are the white region. The small traces of noise that do not belong to the 
suspect regions are removed by the application of a morphological open operation 
(erosion followed by dilation), applied only once with a structural element 'disk' 
of radius 1 (Figure 29).  
 

2. From the binary mask obtained at step 1, the original gray scale image is extracted 
multiplying the binary image with the original image matrix. For each suspected 
region in the image two value has been calculated: mean intensity value of pixels 
and the area of the region (area is the number of the pixels of the region). From 
these values, the region’s density is calculated dividing the area of each region by 

the corresponding Mean Intensity value: 

Figure 29. (a, d) Left and right breast original gray scale image after 

thinning. (b, e) Left and right breast binary mask using MMRT threshold. 

(c, f) Left and right binary mask after morphological open. 

a b c 

d e f 
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𝑅𝑒𝑔𝑖𝑜𝑛′𝑠 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝐴𝑟𝑒𝑎

𝑀𝑒𝑎𝑛 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
 

3. Among the regions obtained the one corresponding to the higher density value is 
chosen as a suspect region (SR), because the tumor region has the highest intensity 
area among other regions. In SR we will select the Seed value, it is chosen as the 
maximum intensity value pixel of the region selected.  
 

The selection of SRG threshold is based on an estimated threshold value, it includes 3 
main steps: 

1. For the SR selected in the previous phase we find the mean intensity value 
(MeanIntsSR) in the original gray scale image. 

2. The neighboring area of the SR (NeighboringArea) is isolated from the unwanted 
regions like background, breast skin and SR itself. For this region we find the 
mean intensity value (MeanIntsNA).  

3. Then the SRG threshold has been calculates as the difference between the 
MeanIntsSR and MeanIntsNA:  

𝑆𝑅𝐺𝑇ℎ𝑟 =  𝑀𝑒𝑎𝑛𝐼𝑛𝑡𝑠𝑆𝑅 − 𝑀𝑒𝑎𝑛𝐼𝑛𝑡𝑠𝑁𝐴  
 
 

3.4.2 Seeded Region Growing 
 
Region growing is part of the morphological operators because it can recognize and 
contour a homogeneous region of the image. It differs from the classical morphological 
operators because it can outline even regions that do not have a known geometric shape. 
This method maintains morphological consistency, it considers the object under 
examination as a closed object surrounded by other elements that are not the object. 
The Seeded Region Growing is an iterative method, it starts from an initial seed and then 
grow up recognizing all the points belonging to the region. To do this a structural element 
is defined (exploration region), made from adjacent or connected points to the point under 
examination. Starting from the seed point the algorithm explore the connected pixels, if 

Figure 30. Region Growing operation. 
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their value is greater than the SRG threshold, they are joined to the starting point 
otherwise they are ignored.  

Figure 30 shown the intuitive operation of the region growing: from an initial point, the 
neighbors are explored to evaluate if the near pixels belong to the region. In this example 
case a 4-connected array was chosen, as the pixels are added to the region their 
neighborhood should also be explored. These operations are repeated until the entire 
region has been explored. This method is independent from the initialization, choosing 
different seeds the result does not change; provided that the seed is inside the region, this 
variation can affect only the number of iterations.  

The algorithm implemented is the double threshold region growing, one threshold is used 
to identify the seeds, the other one is used for the region propagation. One of the most 
important step is to choose the seed inside the region to contour, if this condition is not 
respected the algorithm identifies something in the background that does not belong to 
the object. For this reason, the seed selection must to be restrictive, therefore in the 
selection of the seed we have chosen the seed as maximum intensity value of the 
suspected region selected. If we use the same seed threshold for the region propagation it 
doesn’t work because it is too restrictive, so we need an SRG threshold for the 
propagation less than the seed threshold. SRG threshold ensures that the pixel 
incorporated in the region do not belong to the background. 

The algorithm stars with the creation of an initial toProcess vector which contains the 
initial Seed, for each pixel in the vector toProcess the neighbor is explored. If the pixel 
intensity is higher than the SRG threshold then the pixel is inserted into the toProcess 
vector and it will be subsequently processed, otherwise the pixel is discarded. The 
algorithm reiterates as long as the toProcess vector is not empty which means that all the 
pixels in the neighborhood do not belong to the explored region.  

Figure 31. Application of the region growing algorithm. Starting from the 

initial seed (a) gradually the points joined to the region increase up, until they 

cover the entire region (f). 

a b c 

d e f 
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Sometimes, pixels in the region do not respect the SRG threshold, so there may be holes 
in the area. Therefore, we use the Matlab function imfill that fills all the holes in the 
contoured area so that we can only select the external contour (Figure 32).  

As alternative to the region growing, a level set algorithm was tested. To be able to 
automatically discriminate the background, the skin of the breast and the tumor tissues, a 
4-phase level set was implemented, each phase ranking one of the previously listed 
elements, the fourth phase (C02) includes the misclassifications elements that do not 
belong to any of the other three phases. The logic behind the four-phase level set is the 
same as for the two-phase level set seen in the paragraph 3.3.1, the only difference is that 
unlike what happened with the two-phase level set, we can now recognize more colors in 
the image. The first contour initialization is represented in Figure 33. 

 

All previously applied equations are simply split, the new formulation is the following: 

𝜀(∅) = 𝜇1𝑃(∅1) + 𝜇2𝑃(∅2) + 𝜀(𝑔,𝜆,𝜈)(∅1) + 𝜀(𝑔,𝜆,𝜈)(∅2) 

The extensive formulation is: 

Figure 32. Result of the Seeded 

Region Growing. 

C00 ∅2 

∅1 

C01 
C02 

C03 

Figure 33. Four phase Level Set. ∅1  and ∅2  are the 

two level set initialization. C00, C01, C02 and C03 are the 

four phases.  
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𝜀(∅) = 𝜇1 [∆𝜙1 − 𝑑𝑖𝑣 (
∇𝜙1

|∇𝜙1|
)] + 𝜇2 [∆𝜙2 − 𝑑𝑖𝑣 (

∇𝜙2

|∇𝜙2|
)] + 𝜆1𝛿(𝜙1)𝑑𝑖𝑣 (𝑔

∇𝜙1

|∇𝜙1|
)

+ 𝜆2𝛿(𝜙2)𝑑𝑖𝑣 (𝑔
∇𝜙2

|∇𝜙2|
) + 𝜈1𝑔𝛿(𝜙1) + 𝜈2𝑔𝛿(𝜙2) 

Several test are done to evaluate the performances of the two algorithms. Overall, the 
results can be considered comparable, but in a careful analysis it was possible to observe 
different aspects that led to the choice of the region growing rather than the level set: 

▪ The four-phase level set formulation has a double complexity rather than the two-
phase level set, the parameters that must be set are doubled so balancing them 
becomes more complicated.  

▪ Computational time of the level set is longer than the region growing, there is a 
difference of about 5 seconds for each slice which leads to a total delay of about 
16 minutes. 

▪ Number of false positives is greater in the level set, this leads to a further 
processing time increasing; time increase in a range that varies between 5 and 10 
additional minutes, this variation is related to the artifacts in the images.  

 
 
3.5 Volume reconstruction 
 
The segmentation algorithm works on each slice individually, this means that there is no 
relationship between segmentations in consecutive slices. This aspect does not affect the 
ability of the algorithm to segment areas considered suspected regions but certainly by 
creating a relationship between the slices it is possible to obtain useful information for 
the discrimination of erroneous segmentation. The volume reconstruction is also used to 
provide a parametric analysis of the regions of interest, it is helpful for radiologist to 
obtain useful information for tumor diagnosis. 
For these purposes, a function that allows to reconstruct the volumes of each segmented 
area has been created. The Volume_Reconstruction function is applied when the 
segmentation algorithm has finished contouring all 195 slices, it works on binary images 
of the segmented regions, so the first step of the function is the creation of a cell vector 
containing a mask for each slice, the background is black and the segmented region white.  
This function explores all the masks previously created individually, the bwlabel Matlab 
function is used to create the black and white mask of each segmented area alone, if the 
mask under analysis is the first it is inserted directly into the vector containing the 
volumes otherwise checks are made to verify that the regions belong to an existing 
volume. To be added to the volume made, the segmented region must respect two 
conditions:  

1. the region must intersect with the last slice of the volume at least 30% of the length 
of the largest area between the two compared,  

2. the slice is considered as belonging to the volume only if the slice is adjacent to 
the last slice of the volume. 

If these conditions are not respected, a new volume is initialized.  
At the end of all checks a cell vector will be obtained with cells containing the binary 
mask of the segmented volumes. The reconstructed volumes that extend only on two 
slices are removed as they are generally associated with noise in the image. 
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3.6 False positives reduction 
 
One of the limitations of mammary magnetic resonance imaging is the low specificity 
that can lead to a high number of false positives. For this reason, a correction function is 
implemented at the end of segmented volumes reconstruction. This correction consists of 
two main evaluations: a first consideration is made on the geometry of the lesion, the 
second one is a heuristic evaluation of the results. Geometrical considerations are not very 
restrictive because the shape variability of the lesion is very high, so it is difficult to create 
a discriminating criterion that encloses all the variability. For this reason, a heuristic 
evaluation is added to the geometric criterion to discriminate further wrong 
segmentations. Heuristic is based on the observation of the wash-in and wash-out curves 
which provides information on tissue permeability. 
 

 
3.6.1 Geometrical selection 
 
The main objective of geometric correction is to discriminate vessels from lesions as they 
have intensity values comparable to those of suspect regions. The criterion is based on 
the evaluation of the shape of the segmented region, it is evident that the vessels have an 
elongated shape almost cylindrical in contrast to the lesions whose shape is regular or 
irregular but, in any case, almost circular. The evaluation is done both on a single slice 
and on the whole volume, for small segmentations of vessels the criterion on a single slice 
is more discriminating than with considerations on the whole volume. For longer vessels, 
however, the single slice criterion is not sufficiently selective because longer vessels have 
a greater thickness than the smaller ones and adapting the criterion on a single slice to 
these vessels would led to a wrong classification of some small tumor lesions. Even if 
one of the implemented criteria considers the geometry of the segmentation on a single 
slice, the elimination of the contour remains however linked to the entire volume,  
we will explain the considerations made below.  

It has been observed that the wrong vessel segmentations have a small distance between 
the two longer sides, the implemented criterion counts the number of contour points that 
are two pixels away from the opposite side, this verification is made on each slice 
belonging to the volume and then an overall check on the volume is made to decide if the 
segmentation should be discarded. There are two conditions: 

1. Single slice: more than 31% of the contour pixels are distant from the opposite 
side less than 2 pixels  

2. Whole volume: more than 60% of the slices belonging to the volume respect the 
condition of point 1.  

Figure 34. False positives reduction flowchart. 
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If these conditions are respected, the contoured volume is classified as a vessel and then 
discarded. Some examples of this case are represented in Figure 35. 

 
In the discrimination of longer vessels segmentations, the most selective criterion appears 
to be the one applied to the entire volume. Using the Matlab regionprops3 function, the 
volume and the longest axis of the region under examination are obtained. The longest 
axis is defined for each of the three directions [x, y, z], the maximum of these three values 
is chosen as the diameter for a sphere that surrounds the segmented region. To 
discriminate the wrong segmentations, the ratio between the volume of the sphere and the 
volume of the segmented region is made, if this value is greater than 1, then the segmented 
region is discarded (Figure 36). 
 

 
 
3.6.2 Heuristic 
 
As seen in the previous paragraph geometrical selection is useful for discrimination of 
segmentations like vessels, but this criterion is not enough for the discernment of all false 
positives, so a new condition has been applied.  
For a further reduction of false positives, a control based on kinetic of contrast uptake in 
time has been implemented. In the time-signal curve are represented six points, the first 
point at time t = 0 corresponds to the pre-contrast scan, the following 5 points correspond 
to the scans after the injection of the contrast medium with a range of 90s between one 

Figure 35. Examples of small vessels segmentations discarded from 

the criterion described above. 

Figure 36. Examples of longer vessels segmentations discarded from 

the criterion described above. 
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scan and the next. From this curve it is possible to obtain useful information for 
discriminating a lesion from a non-lesion, there are three possible cases: 
 

 
Curve of type 1 usually belongs to benign lesions, it shows a slow uptake without 
washout; curve of type 3 is typical of malignant lesions, it has a fast uptake and washout. 
Curve of type 2 is instead a combination of the two cases mentioned and generally defines 
the uncertain lesion type.  
In the images used in this algorithm, the contrast medium used spreads by diffusion, for 
this reason in the six temporal scans we cannot distinguish the wash out phase of the 
tissues. So, to discriminate lesions from non-lesions a control on the uptake of the curve 
was applied; for a greater slope of the curve, the probability that it is a tumor tissue is 
greater. The kinetic of contrast uptake in time was calculated for each volume, once the 
volume in question was selected, the average intensity value of the pixels belonging to 
the volume in each of the 6 corresponding time scans was calculated.  

Figure 37. Contrast uptake in time possible cases.  

Figure 38. In the first row the images are relative to the left breast, in the second 

row to the right breast. (a, d) Pre-contrast injection scan. (b, e) First scan post 

contrast injection. (c, f) Second scan post contrast injection. 

a b 

d e 

c 

f 
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To evaluate the contrast absorption by the tissues under examination, the value of the first 
derivative was calculated between the point at t=0 and t=1 because the greater variation 
of tissues luminosity occurs at the first scan post injection of the gadolinium.  
Figure 38 shown one example of the kinetic of contrast uptake in time, it is possible to 
observe how from the pre-contrast scan (d) to the first post-contrast scan (e) the tumor 
tissues show a noticeable change in brightness, whereas in the other tissues the brightness 
varies slightly. From the first post-contrast scan (e) to the second one (f) the difference in 
variation between tumor tissues and healthy tissues is not obvious. This confirms the 
validity of the choice to evaluate the difference between the pre-contrast scan and the first 
post contrast injection.  
To select the correct threshold to discriminate tumoral tissues from healthy tissues several 
tests has been performed. In Figure 38, for example, Volume 1 is the healthy tissue and 
Volume 2 is the tumoral tissue, observing several graphs like this the value chosen for 
lesion discrimination is a value of first derivative equal to 22.  

For values below 22 the volume under examination is discarded, otherwise the 
segmentation is maintained and subjected to the examination of a clinician for a more 
appropriate evaluation. Some examples of false positives removed by heuristic are shown 
in Figure 40.  

Figure 39. Contras uptake in time curve.  

Figure 40. Wrong Seeded Region Growing. 

a b 

c d 
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Sometimes, the segmentation algorithm erroneously contours regions near the ribs 
(Figure 40 (c, d)), this error occurs mainly when, in the absence of the breasts, the 
initialized region is very close to the body. 

Some of the scans provided for the construction and validation of the algorithm are post-
treatment scans, applying the algorithm on these images has been observed as the 
thresholds set for discarding the false positives in the pre-treatment scans are too 
restrictive in these cases. Therefore, in post-treatment scans, a new threshold for false 
positives reduction has been implemented, this distinction requires an interaction with the 
user. Various methods have been evaluated to automatically discriminate between the two 
cases, but none of the variants tested has provided consistent results, so it was considered 
appropriate to keep the user's selection of the scan type to guarantee a lower probability 
of error. Unlike the condition applied in pre-treatment scans, the evaluation performed on 
the post-treatment images is more diversified as summarized in Table 3. 

PRE-TREATMENT SCAN POST-TREATMENT SCAN 
 
 
 
 

𝒅𝑰

𝒅𝒕
< 𝟐𝟐 

 
If slice_number > 11 
 

𝑑𝐼 ̅

𝑑𝑡
< 49  

 
If slice_number <= 11 
 

𝑑𝐼 ̅

𝑑𝑡
< 40  

In the first column of Table 3 there is the condition for the pre-treatment scans, the first 
derivative between the pre-contrast injection (time 0) and the first post-contrast injection 
(time 1) must be higher than 22, otherwise the segmentation is deleted. For the post-
treatment scan there are two conditions for two different cases, the condition applied is 
always relative to the first derivative, the only difference is the set thresholds. The 
requirement on the number of slices is an important aspect because by evaluating the 
average intensity on a larger number of slices the resulting value is lower than the value 
assumed in the case of a smaller volume. Applying only the higher threshold value set to 
49 it was observed that the final result had a greater number of false positives, to reduce 
them without affecting the ability of the algorithm to identify the tumor tissues, it was 
decided to apply a double variable threshold according to the number of slices of the 
volume. This guarantees a better discrimination between a correct and a wrong 
segmentation. 

 

 

 

 

 

Table 3. Summary table of the conditions of discrimination of false positives 
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Chapter 4 
 
Image features 
 
To aid radiologist in the analysis of the segmented region a parametrical analysis was 
built for each slice and for the global volume. This characterization is very useful for 
diagnostic purposes, the obtained parameters can provide information otherwise not 
obtainable from the region of interest only by observing it.  Therefore, geometric variables 
and texture analysis were calculated to provide a set of global information about the 
region. 
 
 
4.1 Geometrical features  
Geometrical features are computed on the binary masks of the segmented regions; starting 
from the points of the contour, a binary mask is created with indices belonging to the 
contour white and the background black. To fill the form thus created, the Matlab imfill 
function is used, which generates the binary mask with the filled white object and the 
whole black background. In this phase the information regarding the intensity of the 
pixels are not necessary because the evaluation is only geometric. 
Based on Huang et al. [32] we calculated the 2D and 3D parameters, values calculated 
are: 

▪ Radius (R) 
▪ Area (A) 
▪ Spiculation (Rs) 
▪ Compactness (C) 
▪ Compactness new (Cn) 

The 3D formulation is the following. The Radius R is 

𝑅 =
1

𝑛𝑏
∑ √(𝑖 − 𝑥𝑐)2 + (𝑗 − 𝑦𝑐)2 + (𝑘 − 𝑧𝑐)2

𝑥=(𝑖,𝑗,𝑘)∈𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

 

Where 𝑛𝑏 is the number of boundary voxels and 𝑥𝑐, 𝑦𝑐 and 𝑧𝑐 are ROI center defined as 
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𝑥𝑐 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

                    𝑦𝑐 =
1

𝑁
∑ 𝑦𝑖              𝑧𝑐 =

1

𝑁
∑ 𝑧𝑖

𝑁

𝑖=1

𝑁

𝑖=1

 

Where N is the number of pixel in the tumor (ROI). Spiculation Rs is calculated as 

𝑅𝑠 = √
∑ (𝑅𝑥 − 𝑅)2

𝑥=(𝑖,𝑗)∈𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝑛𝑏 − 1
 

Where Rx is the radius for each boundary pixel. Compactness and compactness new are:  

𝐶 =
36𝜋 ∗ 𝑉2

𝐴3
 

𝐶𝑛 =
𝑛 − (

𝐴
6𝑎)

𝑛 − √𝑛23  

Where A and V denote the area, and the volume of the tumor; a is the area of one surface 
of a voxel, n is the number of voxels in the tumor. 
For the 2D formulation Radius and Spiculation are almost similar, they lose only the z 
component. Compactness and Compactness new are instead remodeled as follows: 
 

𝐶 =
4𝜋 ∗ 𝐴

𝑝2
 

𝐶𝑛 =
𝑛 − (

𝑝
4𝑎)

𝑛 − √𝑛
 

Where p is the perimeter of the tumor.  
 
 
4.2 Texture Analysis   
MR images cannot obtain microscopic information from pixels, to increase the 
information obtainable from medical images the computation of a Texture Analysis (TA) 
is a useful method. Texture features are parameters derived from the grey-level intensity 
distribution, to evaluate the inter-relationship of the pixels there are several methods: 

1. Structural method represents the geometric shape of the object using primitive 
geometric shapes, such as straight lines. This representation is useful for defining 
a synthesis of the object or to make a structural analysis.  

2. Model-based method use mathematical models for the image analysis like fractal 
or stochastic, but in the parameters estimation there is a computational 
complexity.  

3. Statistical method is based on the grey-level values in the medical image, this 
approach provides a higher indexes discrimination.  

4. Transform method analyze the texture in different spaces, this method is base on 
Fourier, Gabor or Wavelet transform.  

The parameters used in this work for texture analysis are: 
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▪ Histogram  
▪ Run-length matrix (RLM) 
▪ Co-occurrence matrix (CM) 

These categories all belong to statistical class [33]. A total of 24 features are computed: 
3 Global features are computed for grey-level frequency, 8 for Grey-level Co-occurrence 
matrix (GLCM) and 13 for Grey-level Run-length matrix (GLRLM). To extrapolate these 
parameters, the ROIs are quantized on 32 grey-levels (Ng) and pixels outside the ROI are 
set to NaN. All the voxels inside the ROI with a value outside the range μ±3σ are rejected 

to make texture measurements more consistent [34].  

Histogram is the count of how many pixels have the same grey-level value in an image. 
To obtain ROI histogram the Matlab function hist is implemented, the convention is to 
set the lower values to darker gray-level, and the higher value to lighter gray-level. In this 
case the 0 value denotes the black, the number of gray levels normalization Ng denotes 
the white. X coordinate represents the intensity values of the pixels, y coordinate 
represents the corresponding number of pixels. From histogram many parameters can be 
obtained, we calculated Variance, Skewness and Kurtosis.   
 
Co-occurrence matrix is a technique for the extraction of statistical information from the 
image. It is based on the observation of intensity pixels value distribution, the matrix 
count pairs of pixel having the same grey-level distribution. There may be different co-
occurrence matrix, one for each direction: horizontal, vertical and two main diagonals 
directions.  

Figure 41 shown one example of the GLCM matrix calculation, starting from the 4x5 
image I on the left the GLCM values are obtained. The element (1,1) in the GLCM has 
the value 1 because there is only one pair in the image where two horizontal adjacent 
pixels have both value 1. Element (1,2) has value 2 because two pair in the image have 
the adjacent value 1 and 2. In summary, matrix value Pi,j is the number of times pixel with 
grey level i has a neighbor with grey level j.  
In this study, GLCM is a 32x32 matrix, based on 32 grey levels, computed adding up the 
frequency of co-occurrence of all pixels with distance d=1 in the horizontal (0°), vertical 
(90°) and two main diagonals (45° - 135°) directions. All GLCM parameters are reported 
in Table 2 and explained in Appendix A.  
 
Run-length matrix measures for each gray level value the number of times it occurs that 
two or more pixels of the same value are adjacent. There may be different run-length 

Figure 41. Grey-level co-occurrence matrix computation. On the 

left there is the original grey level distribution, on the right is 

represented the GLCM matrix. 
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matrix, one of each pair of distances and directions. The range of distances usually varies 
from 1 to 5 pixels in the horizontal, vertical and two main diagonals directions.  
 
 

 
Figure 42 shown one example of GRLM computation in the four main directions for 
distances equal to 1, 2, 3 and 4. Matrix element Pi,j represents the number of time a 
segment with intensity i is as longest j pixels.  
GLRLM is a 32xj matrix, where j is the longest available run. Segment frequencies are 
summed up in all directions. All GLRM parameters are reported in Table 4 and explained 
in Appendix A [33]. 

Figure 42. Grey-level run length matrix computation. On the 

left there is the original grey level distribution, on the right is 

represented the GRLM matrix in the four main directions. 

Figure 43. Imaging features extrapolations: the defined ROI (first column) 

is discretized to 32 grey level (second column up). Global features are 

derived from frequency grey-level histogram (second column down). 

Grey-Level Co-Occurence Matrix (GLCM, third column up) and Grey-Level 

Run-Length Matrix (GLRLM third column down) are used for second order 

TA feature calculation. 
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Imaging features 
 
Geometrical 

 
 

 

1 Compactness new     Measure of deviation from regular square shape 
2 Compactness          Measure of deviation from regular circle shape 
3 Radius  
4 Spiculation             Measure of margin irregularity 
5 Area  
 
TA Global 

 
 

 

6 Variance                 Measure of grey level frequency homogeneity 
7 Skewness                Measure of histogram asymmetry 
8 Kurtosis                  Measure of histogram "peakedness" 
 
TA GLCM 

  

9 Energy                    Measure of local uniformity of grey levels 
10 Contrast                  Measure of the amount of grey levels 
11 Entropy                   Measure of randomness of grey levels 
12 Homogeneity           Measure of local homogeneity, higher with less contrast 
13 Correlation               Measure of neighboring pixel grey level linear dependency 
14 Sum Average  Measure of overall image brightness 
15 Dissimilarity  Measure of spread out of grey levels sum of pixel pair 
16 Variance GLCM  Measure of deviation from average values 
 
TA GLRLM 

  

17 SRE  Short Run Emphasis 
18 LRE  Long Run Emphasis 
19 GLN  Grey-Level Nonuniformity 
20 RLN  Run-Length Nonuniformity 
21 RP  Run Percentage 
22 LGRE  Low Grey-Level Run Emphasis 
23 HGRE  High Grey-Level Run Emphasis 
24 SRLGE  Short Run Low Grey-Level Emphasis 
25 SRHGE  Short Run High Grey-Level Emphasis 
26 LRLGE  Long Run Low Grey-Level Emphasis 
27 LRHGE  Long Run High Grey-Level Emphasis 
28 GLV  Grey-Level Variance 
29 RLV  Run-Length Variance 

 

Table 4. All collected features. TA = Texture Analysis. GLCM = Grey-Level Co-Occurence Matrix. GLRLM = Grey-Level 

Run Length Matrix 
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Chapter 5 
 
Validations  
 
For the algorithm validation, 5 patients are provided by Borgo Trento Hospital in Verona, 
of these 5 patients we have several post-treatment examinations, 10 in total. The purpose 
of this phase is to evaluate the algorithm performances both on pre-treatment images and 
post-treatment images. The last ones are acquired exactly like the first type, the only 
differences between the two is that in a post-treatment patient the luminance of the 
tumoral tissue is lower, so the values of the threshold in the algorithm must be readjusted 
to ensure coherence with the new images. For this reason, a new correction for false 
positives reduction has been implemented; the operations of the two methods are the 
same, the only variable are the thresholds (see Paragraph 3.6.2).  

For the algorithm validation two main approaches were adopted: a first analysis was 
carried out to evaluate the ability of the algorithm to recognize the lesions, afterwards we 
focused on the evaluation of segmentation quality, it means how accurate was the region 
contouring compared to that of two operators supervised by an expert.  

The main objective adopted in the realization of the algorithm is to guarantee the greatest 
possible coverage in terms of lesions recognition, also to the detriment of a greater 
number of false positives. To evaluate the algorithm's effectiveness in terms of 
recognizing suspect regions we classify all region segmented in three main categories: 

▪ True Positive (TP) corresponds to the correct identification and segmentation of 
the tumor region; 

▪ False Positive (FP) is the wrong segmentation of a healthy tissue that can be a 
vessel, an internal organ or areas affected by noise; 

▪ False Negative (FN) is recognized as the failure to segment a tissue that is 
identified as suspected by an expert. 

 Given this classification, two main parameters were used defined in [35]: 

• Precision is the number of correct segmentation divided by the number of all 
segmented regions: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

• Recall, also called sensitivity, is the number of correct segmentation divided by 
the number of the segmentations that should be returned: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

These two values are useful to obtain a curve, called PR curve, which is an alternative 
approach to ROC curve for evaluating the segmentation performances. The PR curve 
focuses on the algorithm’s ability to detect lesions in mammary MRI, but it ignores the 
accuracy of the region contouring. So, to give a more complete evaluation of the 
algorithm performances, further parameters are computed.  

To provide a statistical validation of image segmentation we referred to Snekha Thakran 
et al [36], they propose the Dice Similarity Coefficient (DSC) and Jaccard coefficient; to 
compute these parameters a manual segmentation is needed. DSC is used as spatial 
overlap index, to compare the automated and the manual segmentation: 

𝐷𝑆𝐶(𝐴, 𝐵) =
2 ∗ (𝐴 ∩ 𝐵)

𝐴 + 𝐵
 

Where A is the manual segmentation and B the automated segmentation, ∩  is the 
intersection between the two segmented areas. This index ranges from 0 to 1, 0 indicates 
no overlap between the two segmentations, and 1 indicates the complete overlap.  

The other parameter calculated for the evaluation of the segmentation accuracy is the 
Jaccard coefficient, the formulation is the following: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
|𝐴 ∩ 𝐵|

|𝐴| + |𝐵| − |𝐴 ∩ 𝐵|
 

Like in the Dice Coefficient, A is the manual segmentation and B the automated 
segmentation. This value also provides an evaluation of the similarity between the two 
segmentations, given the manual segmentation A and the automated segmentation B 
several parameters are computed to give a more complete evaluation of the segmentation 
accuracy, like reported in [16]: 

• Sensitivity 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
|𝐴 ∩ 𝐵|

|𝐵|
 

• Specificity  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
|𝐴 − 𝐵|

|𝐴|
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5.1 Results 
The algorithm was applied to the 15 exams provided for validation. For each of these 
exams the volume consisted of 195 slices, so the algorithm was tested overall on 2925 
images. The performances of the algorithm were evaluated in terms of true positives, false 
positives and false negatives. The results obtained are shown in Table 5: 

 Values 
True positives 456 
False positives 10 
False negatives 75 

 
The priority of the algorithm was to outline all the suspicious regions present even at the 
expense of a greater number of false positives. As can be seen from the results obtained, 
the false positives are far below the true positives, evaluating the implications of the false 
negatives, it has been observed that most of them belong to the outermost slices of the 
segmented volumes, which does not imply a lack of recognition of the suspect region. To 
evaluate the algorithm's effectiveness in terms of recognizing suspect regions we 
calculated precision and recall values: 

  
Precision 0,978540773 
Recall 0,858757062 

 
From the value resulting it is possible to observe a good ability to recognize suspicious 
tissues (about 98%), which was the main purpose in this phase of analysis; the algorithm 
also guarantees a higher probability of recognizing true positives despite other 
segmentation errors.  
These values, however, do not give any information on the accuracy of the segmentation, 
in order to have an overall evaluation of the algorithm's performance a subsequent 
evaluation to the segmentation has been added. To do this, it was necessary to manually 
segment the images, the software used for the manual segmentation was 3D Slicer. A 
sample of 31 images were randomly selected from the 15 available exams to ensure the 
greatest variability. To evaluate the intra- and inter-operator variability two operator have 
been selected, the manual segmentations were subsequently evaluated by an expert to 
ensure greater validity of the results obtained.  
The computed parameters are the Dice and Jaccard coefficients. Observing the results 
coefficient of all single manual segmentations greater performances was detected in pre-
treatment scans compared to post-treatment, the most evident variation has been seen in 
the Dice and Jaccard coefficients. Figure 44 shown the boxplot of the two operator’s 

segmentations, the boxplot shown the variability of the obtained values in the different 
slices segmentation.  
 
 
 

Table 5. Results of algorithm segmentation. 

Table 6. Precision and Recall results. 
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For both operators the maximum and median value of the parameters obtained in the pre-
treatment segmentation are greater than the post-treatment segmentation, this means that 
in the scans before the application of neoadjuvant therapy, the algorithm presents a greater 
precision in the recognition of the suspect regions contours. 
The greatest differences can be seen for Operator 2, the values obtained for the pre-
treatment scans are so much greater than the values obtained in the post-treatment 
segmentations, the variation is about the 7.2% for the mean Dice coefficient and 10.7% 
for the mean Jaccard coefficient. For Operator 1 the variability between pre and post 
treatment seems minimal, the most evident is the Jaccard coefficient, it has a median value 
greater for the pre-treatment scans of about 5.7%.  
For both operator we can observe as the post-treatment segmentation values have a lot of 
outliers compared to the pre-therapy values, this means that the segmentation algorithm 
in post-treatment cases is not as solid as in the pre-treatment cases. This variability, as 
already mentioned above, is mainly linked to the effects of therapy. After a 
chemotherapeutic treatment the contours of the tumor tissues no longer have a clearly 
defined shape, for this reason the operator segmentation variability is greater because 
some operators (Operator 1) segment only the brightest region, others (Operator 2) on the 

(a) Boxplot of the Dice Coefficient of Operator 1 
segmentations. 

(b) Boxplot of the Jaccard Coefficient of Operator 1 
segmentations. 

(c) Boxplot of the Dice Coefficient of Operator 2 
segmentations. 

(d) Boxplot of the Jaccard Coefficient of Operator 2 
segmentations. 

Figure 44. Boxplot of the Dice and Jaccard coefficients of the two operator’s segmentations. 
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other hand tend to overestimate the region of interest also surrounding bordering regions 
with little perfusion. 

To give an overall evaluation of the segmentation algorithm performances, in addition to 
the Dice and Jaccard coefficients also sensitivity and specificity are computed. Of all 
these values the mean and standard deviation values have been calculated and the 
maximum and minimum values have been reported to guarantee a complete evaluation: 
 
 
 
 
 
 
 

 
 
 
 
 
 

In Table 7 and Table 8 we can see the result value of all image segmented, both pre- and 
post- treatment scans; the overall results obtained for both operators show how the 
algorithm is consistent with the evaluations carried out by the operators. Values of Dice 
coefficient greater then 0.7 are considered a good overlap for image segmentation, 
Jaccard coefficient has lower value than DSC but it is still a good result. In the tables are 
also shown the value of Sensitivity and Specificity of the automatic segmentation, these 
ranges from 0.53 to 1 for the sensitivity and 0.001 to 0.44 for the specificity. The values 
between the two operators are overall comparable, but we can observe the variability of 
the standard deviation, operator 1 has a lower value than the operator 2, this is probably 
related to the post-treatment scans variability.  
 

 
 
 
 
 
 

OPERATOR 1 DSC Jaccard 
Coefficient 

Sensitivity Specificity 

Mean 0,870213661 0,772714098 0,83138663 0,185589754 
Standard Deviation 0,042905925 0,067989656 0,08712151 0,096362259 
Max 0,954180444 0,91237579 0,97709924 0,379746835 
Min 0,808510638 0,678571429 0,69556025 0,021967526 

OPERATOR 2 DSC Jaccard 
Coefficient 

Sensitivity Specificity 

Mean 0,854519 0,748585 0,818854 0,18365 
Standard Deviation 0,063806 0,183179 0,124711 0,132838 
Max 0,969644 0,941077 1 0,448819 
Min  0,691806 0 0,536558 0,00117 

Table 7. Manual segmentation results for Operator 1. 

Table 8. Manual segmentation results for Operator 2. 
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Chapter 6 
 
Conclusions  
 
In this study it was proposed a fully automated system for lesion identification and 
segmentation on Mammary Magnetic Resonance Images. The algorithm works 
individually on each slice and then considerations are made on the reconstructed volumes. 
Starting from the proposed algorithm [16], a series of changes have been made to 
compensate the recognition and segmentation errors found.  
The user must select the folder containing the DCE images and then the algorithm 
performs the operations explained previously, at the end of the computation, on the 
recognized volumes a parametric characterization, useful for diagnostic purposes, is 
provided both on 2D and 3D setup. 
Algorithm run about 5-8 minutes for the complete volume scanning, at the end of the 
computation all images segmented are saved in a folder called ‘Img_segmented’ and all 

parameters useful for the tissue characterization are saved in a ‘Data.xlsx’ file.  
The advantages of the algorithm are the following: 

1. Fully automated identification and segmentation algorithm 
2. Low number of false positives 
3. Low computational times 
4. Results not dependent from the operator 
5. Automatic computation of geometrical features and Texture Analysis 

The lesion detection system created has a precision value of 98% with a low number of 
false positives. The segmentation algorithm shows a great compatibility in the pre-
treatment images with a Dice coefficient equal to 87%, in the post-neoadjuvant therapy 
results seems less performing because the region of interest contour is not well defined. 
This limitation isn’t a clinical problem, the main purpose of the project was to identify 

the suspect tissues and deliver an overall assessment of the extension of the tumor region, 
also providing additional clinical parameters for the valuation of tissue malignancy. Since 
several tests of the same patient were provided, even after some sessions of neoadjuvant 
therapy, it was possible to observe how the algorithm was able to monitor the 
effectiveness of the therapy over time, providing not only a geometric evaluation of the 
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residual but also a parametric region evaluation, with a series of texture analysis features 
useful for providing a more complete evaluation. 
The results obtained therefore respect the required expectations, of course the 
performances of the system can be improved: the segmentations of the post-therapy tissue 
can be enhanced reshaping the selection of thresholds and adjusting post-treatment 
images pre-processing, the number of false positives can be further reduced with a more 
accurate discrimination criterion and also the computational time can be improved 
optimizing the Matlab script or transferring the codes to a more optimized platform.  
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Appendix A 
 
Texture Analysis Features 
 
A.1 Global texture features  
For the Global features computation, a frequency histogram is defined. P(i) is the number of 
pixels with grey-level I; i ranges from 1 to Ng where Ng is the number of grey-level 
normalization: 

𝑝(𝑖) =
𝑃(𝑖)

∑ 𝑃(𝑖)
𝑁𝑔

𝑖=1

 

The Global texture features are: 

• Variance:  

𝜎2 = ∑(𝑖 − 𝜇)2

𝑁𝑔

𝑖=1

𝑝(𝑖) 

• Skewness: 

𝑠 = 𝜎−3 ∑(𝑖 − 𝜇)3

𝑁𝑔

𝑖=1

𝑝(𝑖) 

• Kurtosis: 

𝑘 = 𝜎−4 ∑[(𝑖 − 𝜇)4

𝑁𝑔

𝑖=1

𝑝(𝑖)] − 3 
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A.2 Grey-level Co-occurrence Matrix (GLCM) texture 
features  
The GLCM texture features need the GLCM computation of the quantized region of interest 
(ROI). Ng is the number of quantized grey-level, GLCM has size Ng x Ng where P (i, j) 
represents the number of times a pixel of intensity i is near a pixel with intensity j in the ROI. 
Only one GLCM is computed per ROI by adding up the co-occurrence matrix of all main 
directions. Pixel outside ROI were defined as NaN to not influence the features computation.  
p (i, j) pixel of normalized GLCM is defined as: 

𝑝(𝑖, 𝑗) =
𝑃(𝑖, 𝑗)

∑ ∑ 𝑃(𝑖, 𝑗)
𝑁𝑔

𝑖=1

𝑁𝑔

𝑖=1

 

The quantities needed for GLCM features computation are the following: 

𝜇𝑖 = ∑ 𝑖

𝑁𝑔

𝑖=1

∑ 𝑝(𝑖, 𝑗),               𝜇𝑗 = ∑ 𝑗

𝑁𝑔

𝑗=1

∑ 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑖=1

  

𝑁𝑔

𝑗=1

 

𝜎𝑖 = ∑(𝑖 − 𝜇𝑖)
2

𝑁𝑔

𝑖=1

∑ 𝑝(𝑖, 𝑗),              

𝑁𝑔

𝑗=1

𝜎𝑖 = ∑(𝑗 − 𝜇𝑗)2

𝑁𝑔

𝑗=1

∑ 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑖=1

 

The GLCM texture features are then defined as: 

• Energy:  

𝐸𝑛𝑒𝑟𝑔𝑦 =  ∑ ∑[𝑝(𝑖, 𝑗)]2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

• Contrast: 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ ∑(𝑖 − 𝑗)2𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

• Correlation: 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  ∑ ∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝑝(𝑖, 𝑗)

𝜎𝑖𝜎𝑗

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

• Homogeneity: 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑ ∑
𝑝(𝑖, 𝑗)

1 + |𝑖 − 𝑗|

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
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• Variance: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝐺𝐿𝐶𝑀 =
1

𝑁𝑔 x 𝑁𝑔
∑ ∑[(𝑖 − 𝜇𝑖)

2𝑝(𝑖, 𝑗) + (𝑗 − 𝜇𝑗)
2

𝑝(𝑖, 𝑗)]

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

• Sum Average: 

𝑆𝑢𝑚 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑁𝑔 x 𝑁𝑔
∑ ∑[𝑖𝑝(𝑖, 𝑗) + 𝑗𝑝(𝑖, 𝑗)]

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

• Entropy: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔2(𝑝(𝑖, 𝑗))

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

• Dissimilarity: 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑ ∑ |𝑖 − 𝑗|𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

 

A.3 Grey-level Run-Length Matrix (GLRLM) texture 
features  
The GLRLM texture features need the GLRLM computation of the quantized region of interest 
(ROI). P(i, j) represents the number of pixel of grey-level i and of length j in the ROI. Matrix 
size is Ng x Lr where Ng is the number of grey-level quantization, Lr is the longest run of any 
grey-level in the ROI. The GLRLM is obtained adding up all possible longest run-length in all 
the directions. p(i, j) of the normalized GLRLM is defined as: 

𝑝(𝑖, 𝑗) =
𝑃(𝑖, 𝑗)

∑ ∑ 𝑃(𝑖, 𝑗)
𝐿𝑟
𝑗=1

𝑁𝑔

𝑖=1

 

For the GLRLM texture features the following quantities are required: 

𝜇𝑖 = ∑ 𝑖

𝑁𝑔

𝑖=1

∑ 𝑝(𝑖, 𝑗)

𝐿𝑟

𝑗=1

,       𝜇𝑗 = ∑ 𝑗

𝐿𝑟

𝑗=1

∑ 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑖=1

 

The GLRLM texture features are defined as: 

• Short Run Emphasis (SRE):  
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𝑆𝑅𝐸 = ∑ ∑
𝑝(𝑖, 𝑗)

𝑗2

𝐿𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

• Long Run Emphasis (LRE): 

𝐿𝑅𝐸 = ∑ ∑ 𝑗2𝑝(𝑖, 𝑗)

𝐿𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

• Grey-Level Nonuniformity (GLN): 

𝐺𝐿𝑁 = ∑ (∑ 𝑝(𝑖, 𝑗)

𝐿𝑟

𝑗=1

)

2𝑁𝑔

𝑖=1

 

• Run-Length Nonuniformity (RLN): 

𝑅𝐿𝑁 = ∑ (∑ 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑖=1

)

2
𝐿𝑟

𝑗=1

 

• Run Percentage (RP): 

𝑅𝑃 =
∑ 𝑖 ∑ 𝑝(𝑖, 𝑗)

𝐿𝑟
𝑗=1

𝑁𝑔

𝑖=1

∑ 𝑗 ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔

𝑖=1
𝐿𝑟
𝑗=1

 

• Low Grey-Level Run Emphasis (LGRE): 

𝐿𝐺𝑅𝐸 = ∑ ∑
𝑝(𝑖, 𝑗)

𝑖2

𝐿𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

• High Grey-Level Run Emphasis (HGRE): 

𝐻𝐺𝑅𝐸 = ∑ ∑ 𝑖2𝑝(𝑖, 𝑗)

𝐿𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

• Short Run Low Grey-Level Emphasis (SRLGE): 

𝑆𝑅𝐿𝐺𝐸 = ∑ ∑
𝑝(𝑖, 𝑗)

𝑖2𝑗2

𝐿𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

• Short Run High Grey-Level Emphasis (SRHGE): 
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𝑆𝑅𝐻𝐺𝐸 = ∑ ∑
𝑖2𝑝(𝑖, 𝑗)

𝑗2

𝐿𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

• Long Run Low Grey-Level Emphasis (LRLGE): 

𝐿𝑅𝐿𝐺𝐸 = ∑ ∑
𝑗2𝑝(𝑖, 𝑗)

𝑖2

𝐿𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

• Long Run High Grey-Level Emphasis (LRHGE): 

𝐿𝑅𝐻𝐺𝐸 = ∑ ∑ 𝑖2𝑗2𝑝(𝑖, 𝑗)

𝐿𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

• Grey-Level Variance (GLV): 

𝐺𝐿𝑉 =
1

𝑁𝑔 x 𝐿𝑟
∑ ∑(𝑖 𝑝(𝑖, 𝑗) − 𝜇𝑖)

2

𝐿𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

• Run-Length Variance (RLV): 

𝑅𝐿𝑉 =
1

𝑁𝑔 x 𝐿𝑟
∑ ∑(𝑗 𝑝(𝑖, 𝑗) − 𝜇𝑗)2

𝐿𝑟

𝑗=1

𝑁𝑔

𝑖=1
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