
POLITECNICO DI TORINO

Master of Science
 in Computer Engineering

Master’s Thesis

Development of a VR application 
for the visualization and navigation 

of astronomical data

Supervisor

prof. Andrea Giuseppe Bottino

Candidate

Davide Trenti

A.A. 2017/2018





Abstract

The purpose of this work is to follow the development of an application that allows
realistic and precise visualization of astronomical catalogs in a virtual, navigable and in-
teractive 3D environment. The software was built in the VR laboratory of ALTEC SPA
– Aerospace Logistics Technology Engineering Company – with the game engine Unity3D
that, despite its precision and performance limitations, offers greater simplicity, updata-
bility and stability than a self-produced graphic engine.

This application could be useful for astronomers to visualize data obtained by roaming
satellites - like Hipparcos or Gaia - in order to infer new information and characteristics
of celestial bodies, just by analyzing their position and parameters. It can also be used
as an educational virtual reality experience for everyone, by showing information about
each astronomical object you can travel to. For this reasons, the application must be as
much precise and realistic as simple and accessible.

Hundreds of thousands of astronomical objects are contained inside the Hipparcos
catalogue alone. Being stars, these objects are relatively very small and distant from
each other. The Unity3D engine is not suitable to handle navigation in a galactic scale
environment in a precise and reliable way, due to the limitations of the API and data
types it offers. It is therefore necessary to find a way around these limitations in order to
meet the requirements.

This software’s entire architecture is based on the concept of the scaled space tech-
nique, combined with the floating origin technique and a data type with arbitrary preci-
sion. Together, these techniques allowed to overcome the issues that arose with the use
of Unity3D engine. These techniques will be described in depth in this work, along with
how they were implemented within the visualization, navigation and interaction system
of the application.
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Chapter 1

Introduction

ALTEC – Aerospace Logistics Technology Engineering Company – is the italian center
of excellence for providing engineering and logistics services, supporting the International
Space Station operations and working on the development and implementation of space
venture missions [1].

ALTEC recently set up a Virtual Reality Laboratory, with the purpose to support the
ongoing activities and to start up new projects, researches and collaborations.

This project’s aim is to develop an immersive, interactive 3D system, capable to man-
age and visualize a wide range of astronomical data, at the same time allowing to represent
them according to some specific physical traits of the observed objects.

As a result, the 3D environment created allows the user to interactively explore the
scene thus generated, and, counting on a wide astronomic catalog, to simulate or investi-
gate data obtained from space venture missions.

The game engine Unity3D was chosen for the development of this application. While
it is simple to develop, extend and update any kind of application with this tool, it is not
ideal to simulate an astronomical scale environment.

From full size planets to a worm in an apple, Unity lets you work on any scale you
like. However, if you try to do both the tiny and the huge at the same time, you might
find yourself coming up against some serious difficulties [6].

Floating Point Accuracy

Unity allows you to place objects anywhere within the limitations of the float-based
coordinate system. The limitation for the X, Y and Z position for the Transform compo-
nent is roughly 7 significant decimal digits, with a decimal place anywhere within those 7
digits; in effect you could place an object at 12345.67 or 12.34567, for just two examples.

With this system, the further away from the origin you get, the more floating-point
precision you lose. For example, an object at 1.234567 has a floating point accuracy to 6
decimal places, while an object at 76543.21 can only have two decimal places, and is thus
less accurate.

The degradation of accuracy, as you get further away from the origin, becomes an
obvious problem when you want to work on a small scale. If you wanted to move an
object positioned at 123456.7 by 0.01, you wouldn’t be able to as that level of accuracy
doesn’t exist that far away from the origin.

When the observer strays too far from the origin, things like spatial jitter and inac-
curate physics will occur (Fig. 1.1).
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Figure 1.1: An example of object degeneration caused by SJ. The cylinder’s position
should be fixed to the camera, but while the camera moves further and further from the
origin of the scene, it degenerates and moves in a jittery way, until it finally disappears.

Camera clipping

Unity, like any modern engine, operates on a z-buffer. The z-buffer describes how
’far away’ things are from the camera. Every object has distance value stored as a float,
which has a finite size and therefore a finite accuracy. A camera has a near and far clip
plane, within which the z-buffer operates. The smaller the difference between the near
and far clip planes, the more accurate a scene is going to be rendered. If the distance
between the clip planes is too large, geometries will ’wiggle’ because the step-increments
for the z-buffer are too large [9] (Fig. 1.2).

All of those issues can be solved by implementing an architecture like the one described
in this work.

Figure 1.2: An example of aberration caused by z-buffer precision issues in Unity [11].
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Chapter 2

State of the art

When dealing with large virtual worlds, the traditional approaches to avoid spatial
jitter fall into three classes [8]:

On-the-fly shifting of coordinates

The on-the-fly approach to jitter shifts objects and the viewpoint close to the origin
before calculations are performed that will noticeably affect how they are rendered.

The viewpoint’s position is temporarily set at the world origin and subtracts the true
viewpoint position from that of all other objects, just before they are rendered to each
frame. Thus everything used in rendering a frame now has small, accurate coordinates
and the calculations are consequently higher fidelity, avoiding jitter effects.

Once the frame is rendered, viewpoints and object positions are restored to their
previous values.

Multiple local coordinate systems

To minimize jitter, virtual worlds can also be divided into smaller regions. This
segmentation requires additional structures and management overhead to handle transfers
between regions.

When the observer crosses a certain region boundary, the local coordinate system
changes to that of the region being entered. This ensures that coordinates do not get
large enough to cause jitter.

Piece-wise shifting of coordinates in a continuous virtual world

A true continuous world has a single world coordinate system with no artificial seg-
mentation of that space. To maintain the continuity, instead of diving the world into
segments, there are special viewpoints that contain the origin of an area of interest and
the position of a nearby viewpoint. Whenever the observer moves to a new area of inter-
est, one of this viewpoint is used and the world is reverse transformed by subtracting the
origin from the world coordinates of the nearby viewpoint and other objects resulting in
small coordinate values, thus avoiding jitter. This way, the world is shifted in a piece-wise
fashion as the user goes from viewpoint to viewpoint.

Then, there is the Floating Origin approach, that will be described in this work.
Another issue for large virtual worlds is camera clipping. To avoid using a very far clipping
plane, that could result in z-buffer precision issues, a very common technique is to have
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multiple cameras render different parts of environment. In many applications there is
usually one camera to render local objects and one camera to render very far objects
(Fig. 2.1).

This concept is extended with the use of the Scale Space Technique. In Kerbal
Space Program [4], a game where you can build spacecrafts and explore planets, the scale
space technique allowed to render very large scale environments, from the surface of a
planet to a stellar system. Combined with the floating origin, it allowed the player to
travel far distances without encountering spatial jitter [3].

Figure 2.1: Multiple cameras rendering on top of each other in Kerbal Space Program.
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Chapter 3

Architecture

The core of this software is based on two techniques, Floating Origin and Scale Space,
working with an arbitrary precision data type. In this architecture, both the objects and
the observer are restrained inside certain boundaries of a scene, while keeping the illusion
of depth, and the potential to move in an apparently infinite space.

In order to achieve that, first you need to define multiple layers of space, each rep-
resenting a different scale, depending on the degree of precision you want for the entire
scene. It is also necessary to set the scale ratio with which each layer of space is defined.

3.1 Arbitrary precision numerical data type
The first issue to solve was to find a way to store the actual position and scale of

an object with a more precise data type than a floating point. Considering that this
application has to be scalable, it is also necessary to have an arbitrary precision.

.NET C# Type Description
byte 8 bit unsigned integer (0 to 255)
sbyte 8 bit signed integer (-128 to 127)
decimal fixed point decimal number

(approx 28 significant digits)
double double precision (64-bit) floating point number

(approx 14 significant digits)
float single precision (32-bit) floating point number

(approx 7 significant digits)
int 32 bit signed integer
uint 32 bit unsigned integer
long 64 bit signed integer
ulong 64 bit unsigned integer
short 16 bit signed integer (-32768 to 32767)
ushort 16 bit unsigned integer (0 to 65535)

Table 3.1: .NET C# data types and their characteristics [2]

The current standard data types for .NET C# offer some means to have great pre-
cision, but none of them is arbitrary. There are libraries that offer data types with
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arbitrary precision, but they work by exploiting strings, and could be therefore inefficient
for a real-time application.

A straightforward solution was to develop a data type that stores a value for each layer
that has been defined. This solution fits well with the scale space approach, because it
can simplify the conversion from the precise position and scale values of the objects into
the floating point values actually used in the scene, for a particular layer.

In order to develop a custom numerical data type, it is also necessary to define all the
basic arithmetic operations and comparisons, and other operators that could be useful for
the system.

3.1.1 Scale Space Scalar

A scale space scalar (SSS ) consists in a list of 32-bit signed integers. Each of those
parts represents a value for a certain scale, which is the scale ratio that has been set for
the system. When one of those parts exceeds the maximum value for that scale, a new
part is appended to represent the upper scale.

In other words, a SSS can be seen as a number in which every part is a digit, and
the scale ratio is the base.

It is suggested to have a multiple of 10 as a base, to make the SSS more readable
when printed. Obviously, when choosing the base you cannot exceed the maximum value
of an signed integer, or else overflow issues could occur.

Addition and multiplication

The algorithm behind the addition and multiplication operators simply follows the
paradigm of pen and paper arithmetic. Two corresponding digits will be summed or
multiplied together into a temporary 64-bit signed long integer – to avoid overflow – then
a carry will be computed and added to the next pair of digits.

Subtraction

The subtraction is nothing but an addition where an addend is negated. This could
cause the representation of the SSS to have negative value in some of its parts, while
others are still positive. This could affect some operations, and could also cause aliasing
on the representation. This problem can easily be solved using a method to fix the SSS
in order to have the same sign on all the parts. Whenever the SSS is printed, or needs
to be used for other operations – like division or square root –, this method will be called
first.

Division

The division algorithm between a dividend with any digits and a divisor with one digit
is trivial. But whenever the divisor presents multiple digits, it is far from trivial.

Many division algorithms rely on logarithms, which are difficult to implement in an ar-
bitrary precision, or guesses, which are computationally expensive. Fortunately, a simple
iterative algorithm exists (Fig. 3.1).

This process uses error-correcting iterative steps to converge on the quotient and re-
mainder. Each iterative quotient candidate is multiplied by the divisor, and the difference
between the result and the numerator is halved. This results in a new quotient candidate.
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Figure 3.1: An iterative integer division algorithm

To achieve a quicker convergence, the previous two quotient candidates can be averaged.
Once there is no further oscillation, and the absolute value of the remainder is less than
the denominator, then the proper quotient has been determined [7].

Code reference in Appendix A.1.

Square Root

The square root of an SSS is implemented through the Babylonian method for finding
the square root of an integer [10]. First, you make an initial guess x0. Then, given the
iterative formula

xk+1 =
1

2
(xk +

n

xk

), k ≥ 0, x0 > 0 (3.1)
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The sequence xk converges quadratically to
√
n as k →∞. One can stop as soon as

xk+1 < xk (3.2)

The complexity of this algorithm is O(log(n)). As initial guess, you can right shift one
digit of the number.

x0 = n >> 1 (3.3)

Code reference in Appendix A.2.

Conversion to floating point

The SSS is designed in a way that makes it easy for the whole system to get a re-
scaled floating point value of a number. Given the index i of the layer you want, a simple
algorithm will derive a floating point value that floats the point at the right digit.

Code reference in Appendix A.3.

3.1.2 Scale Space Vector

A scale space vector (SSV ) is nothing but a container of three scale space scalars,
one for each coordinate. Every operation for this data type consists in the same cor-
responding operation for a scale space scalar, for each coordinate, plus other vectorial
operations, like the magnitude, squared magnitude and normalization.

Since the SSV is made out of integers, the only unit vectors you can obtain will point
to the direction of an axis. It is impossible to obtain a normalized vector that points into
a different direction.

However, it is still possible to do any operation that involves the normalization of a
vector. For instance, the length of a vector can be resized.

Resize

Given the SSV to resize and a SSS representing the length you want for the vector,
the algorithm will:

• Calculate the magnitude of the SSV;

• Left shift the SSV for the same number of digits as the magnitude;

• Divide the SSV by his magnitude, ’normalizing’ it;

• Multiply the SSV by the SSS;

• Right shift back the SSV;

This way, the SSV is resized without losing any information about its direction. Code
reference in Appendix A.4.
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3.2 Floating origin
The further the observer goes from the origin, the more likely it for it is to end up

against spatial jitter effects, which causes the observer to move in a jittery fashion. The
shape, appearance and position of geometries close to it may also degenerate (Fig. 1.1).
This happens when the observer’s coordinates are stored as floating point.

The gap between successive representable numbers of a floating point increases by the
size of the number itself; Therefore, the further the observer goes, the bigger the gaps will
be, the more likely visible aberrations will appear.

The floating origin (FO) approach consists into floating the origin of the scene with
the position of the observer. Instead of allowing the observer to move around the world,
the world is reverse transformed to keep the observer at the origin (Fig. 3.2). In other
words, when the observer translates, it actually stays still while the rest of the world
moves around it. This way, the coordinates of the observer will never be great enough to
cause SJ.

Figure 3.2: Comparing conventional and floating origin navigation.

Actually, it is more efficient to implement the FO in a way that the observer is not
always at the origin, but it is shifted when it exceeds a certain shift threshold. This
way, you can avoid updating the position of every object in the scene every time the
observer ’moves’, reducing the overall amount of computation. To work with the Scale
Space approach – where multiple cameras move in different spaces at different scales – you
also need to store a shift vector for each camera. While the position of the camera will
be reset to the origin, every object related to the camera will be translated by subtracting
the current position of the camera, and the Sf will be updated by adding the current
position to it (Fig. 3.3).
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Figure 3.3: Flow chart diagram for the FO algorithm.

3.3 Scale Space Technique
Whenever you need to render very large scale environments, you must have a great

distance between the camera’s near and far clipping planes (Fig. 3.4), otherwise part of
the environment will be cut out from the view. If the distance is too great though, the
z-buffer will run into precision issues, caused by the spatial jitter of the floating point
value it uses to store z values, and there will be visible aberrations while rendering (Fig.
1.2). Also, objects moving too far from the origin will, like the observer, start to move in
a jittery fashion, and will eventually lose precision on the position value they store. To
overcome these issues, you can take advantage of the Scale Space Technique.

A scaled space represents the world in a certain scale and influences the size, position
and velocity of the objects that belong to it. There can be multiple layers of space, each
representing a different scale, living inside the same scene. They are ordered from the
smallest to the largest scale. When the distance from the origin of an object exceeds a
certain transition threshold, it will be transferred into another scaled space, and it will
be accordingly rescaled and repositioned in the scene. Therefore, when an object moves
very close to the origin of a space, it will be put into a smaller scale space, hence shrunk
and repositioned further from the origin in the real space; when it moves very far from the
origin of a space, it will be put into a larger scale space, hence enlarged and repositioned
closer to the origin in the real space (Fig. 3.5).
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Figure 3.4: A camera near and far clipping planes. Objects outside the view frustum will
not be visible.

Each space has its own camera. When the observer moves, each camera moves si-
multaneously – in the scene – with a velocity rescaled accordingly to the scale of the
space it belongs to. Each camera will also render nothing but the objects belonging to
its corresponding space, except for the biggest scale camera, which will also render the
skybox.

Figure 3.5: Scale space visualized.

In order to implement this technique, you need three entities: Scale Space Object
(SSO), Scale Space Camera (SSC) and Scale Space Manager (SSM).
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3.3.1 Scale Space Object

A Scale Space Object represents an object in the scene. It features:

• a precise position (SSV);

• a precise scale (SSS);

• a reference to the camera belonging to the same layer of space (SSC);

• a method to find the correct space it belongs to;

This entity acts as a support for the related object to host its precise coordinates,
which can be easily converted to the floating point coordinates for the object in the scene.

It also has an update method that checks if its rescaled position reached the space
threshold. If so, it finds the new space it belongs to and finally transfers to that space,
updating the camera reference and adding itself to the list of objects related to that
camera.

When the transfer occurs, the FO shift from the previous camera is unapplied, and
the FO shift of the current camera is applied.

Code reference in Appendix A.5.

3.3.2 Scale Space Camera

A Scale Space Camera manages a camera in a specific layer of space. It features:

• a precise position (SSV);

• a precise shift (SSV);

• an index, representing its position in the space layers;

• a list of every object (SSO) belonging to the same space;

• a movement method that handles the FO shift;

The camera related to this entity must render only the objects belonging to the same
layer of space of the camera itself, by setting their culling mask.

Every camera renders on top of each other, so the depth of the camera must be set in
order to keep the objects belonging to the spaces with the smaller scales render on top of
the ones with a bigger scale. This way, even if in the scene an object from a bigger scale
space is actually positioned in front of an object from a smaller scale space, it will still be
rendered behind it, keeping the illusion of depth.

When translated, the camera must check if its distance from the origin exceeded the
shift threshold. If so, the camera must be reset to the origin of the scene, while every
object belonging to the same layer must accordingly shift by the same amount. This
amount will also be added to the shift property of the camera.

Code reference in Appendix A.6.
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3.3.3 Scale Space Manager

The Scale Space Manager handles the entire scale space system. It features:

• an array of scale space cameras (SSC);

• the scale ratio for the entire system;

• the shift threshold;

• the transition threshold;

• a method to move the cameras;

• a method to update the whole system;

This entity has the purpose of setting all the global parameters for the other entities
to follow, and it is the only one who communicates with the rest of the system. When
the observer need to move, he can do it through this entity, that will properly move the
cameras. From this entity you can also make the whole system update.

Figure 3.6: UML Class Diagram of the scale space implementation.
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Chapter 4

Development

The application was developed with the Unity3D engine. The Monobehaviour derived
classes in Unity have an update function called at each frame, but, to avoid performance
issues, it will not be used, since there is a great amount of objects to be updated in the
scene. The update cycle is defined separately from the original one for the majority of
objects, and it will be launched only after an actual change occurs in the scene.

Since this application is still a prototype, it doesn’t interface with a database yet, but
loads a formatted file instead.

Hipparcos catalogue

The file contains data from the Hipparcos catalogue. The first line represents the total
number of astronomical objects, then every tuple has the following data:

Name Description
HIPNO Progressive number of the star in the catalogue

– 0 is the sun –
(X, Y, Z) Coordinates of the star (in parsec),

– (0, 0, 0) is the position of the sun –
RA(D), DEC(D) Polar coordinates of the star (from the earth)
MAGH Brightness magnitude (apparent)
BMV(J) Blue-Violet color rate
SP, CL Spectral classification
RSUN Radius with respect to the sun
DIS(PS) Distance from the sun (in parsec)
D(RSUN) Distance from the sun (in solar radius)

4.1 Implementing the scale space
The ScaleSpaceScalar and ScaleSpaceVector have been implemented as utility

scripts, like a math library.
The ScaleSpaceManager script is attached to a GameObject in the scene and it is

possible to set its scale ratio and threshold parameters from the inspector, for those are
public variables. Since there is no need to differentiate them, the shift threshold acts as a
transition threshold too.
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The scale ratio is set to 106, while the shift-transition threshold is set to 105. This way,
objects and cameras will never go too far from the origin and be affected by spatial jitter.
The base of the ScaleSpaceScalar and ScaleSpaceVector is set during the startup
with the same scale ratio defined for the ScaleSpaceManager.

Three scale spaces are defined, following the 1 : 106 ratio between spaces:

• Kilometer space, 1 : 1;

• Gigameter space, 1 : 106;

• Petameter space, 1 : 1012;

Each of them is implemented as an empty Gameobjects with the ScaleSpaceManager
as parent, and has one Gameobject child with a Camera component and a ScaleSpaceCamera
attached to it (Fig. 4.1). There is a Unity Layer related to each space, and every child
a space contains will be set with the corresponding layer. Each camera have a Culling
Mask parameter set to render only the Layer related to the space their parent represents,
and the Clipping Planes set from 0.1 to 100000 (Fig. 4.2). Finally, each camera is added
to the list of cameras of the ScaleSpaceManager through the inspector.

Figure 4.1: Overall organization of the scene.

The ScaleSpaceObject script just acts as a container to store precise coordinates.
One ScaleSpaceObject is created for every object during the startup, together with a
Star entity that has a reference to it.
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Figure 4.2: Settings for a scale space camera.

4.2 Generating the environment
When the application launches, the Loader starts reading the Hipparcus catalogue

file, showing a loading screen with a progress bar. For each tuple, it creates a Star object
storing all the significant data related to a star, including a reference to a new Scale
Space Object storing the precise position and scale of said star. Each Star will be then
added to the list of the StarManager.

Once the file has been fully read, the UpdateManager starts its first update. When
doing so, it will create a model or a particle for each star – depending on its distance from
the observer –, finally populating the scene (Fig. 4.3).
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Figure 4.3: An example of populated spaces.

4.3 Visualization
Each time it is called by the UpdateManager, the update method of a Star calculates

the precise distance between its ScaleSpaceObject and the observer and then determines
if it is necessary to instantiate a model or a particle, after comparing it to a given threshold.
It is also possible to make a particle selectable, by adding a Collider component to it in
order to be a target for raycasting.

It is not efficient nor useful to instance a GameObject with a model for each star,
because the majority of them will be very far from the observer, therefore impossible
to see. The same goes for the selectable particles: instancing too many GameObjects
with a Collider component would be too heavy for the CPU to handle, and it would
also be useless for the further stars, because they would be covered by closer ones, hence
unreachable by the raycast. That is why there is also a distance threshold for the particles
to be selectable.

4.3.1 Model and shader

Since this application is a prototype, the mesh used to represent a star is a simple Unity
base sphere. To add more realism, it was applied a shader that, given some parameters,
procedurally generates and animates a realistic material for the star. There is also corona
mesh for the star, which material is generated by another shader (Fig. 4.4).

The script StarCreation, attached to the star object, handles the generation of both
shaders. It has a function to set the BV color rate, which will be converted to a Color
after some scientific calculations and then applied to the material. The same function is
used to color the particles too.
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Figure 4.4: A simulated sun.

The corona is flat and visible only when facing it frontally. In order to alway keep the
corona oriented towards the observer, a Billboard script has been attached to it.

The whole Star Creation Tools assets, with scripts and shaders, is available for free in
the Asset Store [5].

4.3.2 Particle effects

Given the great amount of objects in the scene – the Hipparcos catalogue alone has
hundreds of thousands of elements – it is greatly inefficient to instantiate everything as a
GameObject, because at each frame Unity iterates the list of all of those objects, even if
there is no script attached to them.

Generally, the observer will only see a few objects that actually need a model, and
the majority of other objects can be reduced to simple fading circles. This is where the
ParticleManager kicks in.

A ParticleManager features an array of ParticleGenerators, one for every layer of
space in the scene, and manages them (Fig. 4.1). Each generator has a ParticleSystem
attached to it, and will generate particles only for his related camera to see.

In Unity, for a ParticleSystem component it is possible to define and set the pa-
rameters of every single particle that you want to generate. You can disable the emission
and every pseudo-random option, and simply set and visualize the particles by script.

Every time an update occurs, all the current particles will be cleared, and every Star
that has to be shown as a particle will call the ParticleManager to set a new particle to
the corresponding layer of ParticleGenerator. Then, each ParticleGenerator will
generate the particles and populate the scene (Fig. 4.5).
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Figure 4.5: Stars as particles. One star has been selected with the RMB.

4.4 Navigation
The navigation part for this application is far from trivial from a design perspective.

How to navigate a scene populated by relatively small objects only, with a really great
distance between them?

A simple approach is to make the user navigate close to the objects of the scene,
effectively anchoring the observer to them.

When anchored, the user can spherically move around the surface of the object, to
observe it from every angle. The user can also disable the anchor and rotate the view
while staying still, to look around for other objects of the scene. The closest objects can
also be selected, and the user can decide to travel and anchor to them. This can also be
done by searching and selecting the name of an object from a GUI textbox.

Right now, travelling between objects is implemented in a teleport fashion: whenever
a travel occurs, the observer’s position is instantly set to the destination. While still
not implemented, there are available functions to smoothly traslate between two precise
points using a linear interpolation.

4.4.1 Camera controller

The CameraController handles all the input from the user, and manages the whole
observer’s movement and rotation.

When anchored to an object, the user can hold the LMB and use the mouse to navigate
spherically around the object while looking at it, like a third person camera whose focus
is the anchored object. To be able to see the entire object, the observer is positioned at
a certain distance, set as the scale - the diameter - of the object itself.

When not anchored, the user can hold the LMB and move the mouse to rotate the
view while staying still, being able to look for other objects on the scene.
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Whether anchored or not, the user can also select one of the closest objects of the
scene, by pointing that object and clicking it with the RMB (Fig. 4.5). Once selected,
the user can choose to travel towards it by pressing the GUI travel button.

Whenever a translation occurs, the CameraController also sets the UpdateManager
to launch an update cycle for all the objects in the scene.

Raycast

The closest stars shown as particles can be selected in order to navigate towards them.
Each of them is related to an empty GameObject instanced inside the proper space with
a Collider component attached to it.

When the user clicks RMB, a ray will be cast forward from the mouse position in the
screen space. Actually, many rays will be cast, one for each camera, starting from the one
with the smallest scale. Each of those rays will ignore the objects that does not belong to
the same space of the related camera, to avoid the ray to be interrupted from an object
belonging to a different space.

Once an object is found, it will be considered as selected and a GUI pointer will follow
the position of the star.

4.4.2 Threading

The UpdateManager serves the purpose of launching an update for the StarManager
and the ScaleSpaceManager together. The ScaleSpaceManager’s task is to correctly
position and scale the objects both in the scale spaces and in the scene, while the
StarManager calculates the distances between the objects and the observer and chooses
how to show the objects. Both this operations are executed by the CPU and, since they
iterate every object of the scene, they are computationally expensive, hence cannot be
executed at every frame. Therefore, the best approach to handle those operations is to
have another thread to deal with them.

When enabled, the UpdateManager starts a Coroutine that checks, at each frame,
if an update is needed. If so, it launches a thread that handles those updates.

Unity, though, does not allow to run its API operations - like GameObject instancing -
outside of the main thread, because they are not thread safe. Fortunately, there is a small
amount of API operations to be done at each update, since they are limited to GameObject
instancing. It is therefore possible to leave those operations to the Coroutine, which runs
on the main thread, through the use of events.

The API operations are isolated from the others, confined in a delegate function which
will then subscribe itself to an UpdateManager’s event. When the thread ends, the
Coroutine fires the event to finally execute those operations.

During the whole process, a loading icon will show on screen, and the changes on the
scene will not be visible until this process ends. This way, the user will still be able to
move smoothly through the scene during this process, without encountering any frame
rate drops.
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4.5 GUI
The GUI, while still primitive, offers some means of data visualization and interaction.

It features:

• A progress bar: to show during the the file loading;

• A progress icon: to show whenever an update occurs;

• A search bar: to search for a star by name or index;

• An information panel: to show data about the star in which the observer is anchored;

• The travel button: to be able to travel to a selected star;

• The anchor button: to toggle the navigation method;

• The selection pointer: to track a far star that has been selected;

Search bar

Through the search bar it is possible to find the star you’re looking for in order to
travel to it. When text is entered, the StarManager will be iterated in order to suggest
some results. Those results will be shown under the search bar as buttons, and the user
will be able to click on them to travel to the related star (Fig. 4.6).

Figure 4.6: Searching for a star with the search bar.
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Chapter 5

Conclusion

The prototype for this application is capable to populate a scene with stars from the
Hipparcos catalogue and offers the main means of navigation and realistic visualization
of the environment, maintaining the real distances and scales of the objects, in a very
precise way.

The SSS and SSV offer a way to store both precise and scalable numbers, to never lose
precision even when stretched the most. I wrote all the test cases to cover all possibilities
and limits of this representation, and the SSS passed all of them.

The floating origin makes the observer move without the risk of having jittery trajec-
tories, while the scale space approach makes sure that both very close and very far objects
are visibile and do not degenerate. Though, right now there usually is only one object
close to the observer, while the others are very far. When solar systems and other astro-
nomical objects will eventually be added, the full potential of the scale space approach
will unlock, because there will be many objects with different scales relatively close to the
observer.

Every feature of this prototype was built in a way that leaves the opportunity to
extend the application for future additions, thanks to the scalability offered by the overall
architecture, and the ease of use of Unity editor. Every parameter of this application –
especially the scale space part – can be modified inside the Unity editor.

Since there is a low number of geometries to render, there isn’t much computational
load on the GPU. Even though there is a great amount of operations loading the CPU
at each frame, the multithreading approach to updates makes it possible to dissipate the
heavy load. The application runs smoothly at 60+ FPS on most middle-end systems.

5.1 Future work
The next steps we are going to take to improve the current application include:

• More information to show about the selected object, like conventional names other
than their index in the catalogue;

• Smooth traveling between objects by means of linear interpolation, to overcome the
teleport approach;

• Free movement throughout the scene, with GUI options to choose different scales
of velocity;
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• Integrate the solar system and other celestial bodies (planets, asteroid, galaxies, and
so on);

• Replace the Hipparcos catalogue with the Gaia one;

• A better GUI design for managing the selection of objects and the travel between
them;

• A better GUI look and feel;

• Integration with active stereoscopy;

In the future, it is also foreseen to implement:

• Integration with interaction devices, other than mouse and keyboard;

• Interfacing with astronomical databases;

• Time;

• Integration with Oculus Rift, HTC Vive, Hololens;

23



References

[1] Altec SpA website. url: https://www.altecspace.it/.

[2] Microsoft corporation. Data Types. 2012. url: https://msdn.microsoft.com/
en-us/library/bb483010.aspx.

[3] Felipe Falaghe and Michael Geelan. Unite 2013 - How hard can be rocket science
anyway? – Building a new universe in Kerbal Space Program. 2013. url: https:
//www.youtube.com/watch?v=mXTxQko-JH0.

[4] Kerbal Space Program website. url: https://www.kerbalspaceprogram.com/
en/.

[5] Jacob Lane. Star Creation Tools. url: https : / / assetstore . unity . com /
packages/2d/textures-materials/star-creation-tools-80595.

[6] Dave Newson. Unity: coordinates and scales – Creating huge games in Unity’s co-
ordinate system. 2013. url: http://davenewson.com/posts/2013/unity-
coordinates-and-scales.html.

[7] Justin A. Parr. An Algorithm for Arbitrary Precision Integer Division. 2015. url:
http : / / justinparrtech . com / JustinParr - Tech / an - algorithm - for -
arbitrary-precision-integer-division/.

[8] Chris Thorne. “Using a floating origin to improve fidelity and performance of large,
distributed virtual worlds”. In: 2005 International Conference on Cyberworlds (CW’05)
(2005).

[9] Unity answers, Question "Make Object be rendered far away", initiated by "Zi-
toox", answer by "SergeantBiscuits". 2016. url: https://answers.unity.com/
questions/1255982/make-object-be-rendered-far-away.html.

[10] Rick Wicklin. The Babylonian method for finding square roots by hand. 2016. url:
https://blogs.sas.com/content/iml/2016/05/16/babylonian-square-
roots.html.

[11] Zarkov. Issues: FOV, Floating Point Precision. 2016. url: https://www.youtube.
com/watch?v=1lSR7KHg3D8.

24



Appendix A

Appendix

A.1 ScaleSpaceScalar division

public static ScaleSpaceScalar operator /(ScaleSpaceScalar a,
ScaleSpaceScalar b) {
if (b.IsZero())

throw new Exception("Division by 0");
if (a.IsZero())

return a;
ScaleSpaceScalar aAbs = Abs(a);
ScaleSpaceScalar bAbs = Abs(b);
ScaleSpaceScalar quickDividend = aAbs.Clone();

// Get the most significant digit, the quick divisor
int m = b.Scalar.Count - 1;
int quickDivisor = bAbs.Scalar[m];
// Shift divisor for M digits to obtain the quick dividend
quickDividend.ShiftRight(m);
ScaleSpaceScalar quotient = quickDividend / quickDivisor;
// To start the while loop
ScaleSpaceScalar remainder = bAbs + 1;

while (Abs(remainder) >= bAbs) {
// R = N - (Q * D)
remainder = aAbs - (quotient * bAbs);
// To correct the sign
remainder.ExtendSign();
// Qn = Q + R / A;
ScaleSpaceScalar shiftedRemainder = remainder.Clone();
shiftedRemainder.ShiftRight(m);
ScaleSpaceScalar guess = quotient + shiftedRemainder / quickDivisor;
guess.ExtendSign();
// Q = (Q + Qn) / 2
quotient = (quotient + guess) / 2;

}

remainder = aAbs - quotient * bAbs;
if (remainder.Sign() < 0)

25



quotient = quotient - 1;
// Return with the proper sign
return quotient * a.Sign() * b.Sign();

}

A.2 ScaleSpaceScalar square root

public static ScaleSpaceScalar Sqrt(ScaleSpaceScalar n) {
if (n.Sign() < 0)

throw new Exception("Negative radicand");
if (n.IsZero())

return new ScaleSpaceScalar();

ScaleSpaceScalar n1 = new ScaleSpaceScalar(n);
// First guess
n1.ShiftRight(1);
n1++;
ScaleSpaceScalar n2 = (n1 + (n / n1)) / 2;
// Iterative formula
while (n2 < n1) {

n1 = n2.Clone();
n2 = (n1 + n / n1) / 2;

}
return n1;

}

A.3 ScaleSpaceScalar conversion to floating point

public float AsFloat(int index) {
float sum = 0;
int i = 0;
for (; i < index && i < Scalar.Count; i++) {

sum += (float)(Scalar[i] / Math.Pow(Scale, index - i));
}
if (i < Scalar.Count) {

sum += Scalar[i++];
for (; i < Scalar.Count; i++) {

sum += (float)(Scalar[i] * Math.Pow(Scale, i - index));
}

}
return sum;

}

A.4 ScaleSpaceVector resize

public static ScaleSpaceVector Resize(ScaleSpaceVector vector,
ScaleSpaceScalar scalar) {
ScaleSpaceVector temp = new ScaleSpaceVector(vector);
ScaleSpaceScalar magnitude = vector.Magnitude();
temp.ShiftLeft(magnitude.Scalar.Count);
ScaleSpaceVector result = temp * scalar / magnitude;
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result.ShiftRight(magnitude.Scalar.Count);
return result;

}

A.5 ScaleSpaceObject update method

public void OnUpdate() {
while ((CurrentCamera.Vector3Position - Vector3Position).sqrMagnitude <

1 && CurrentCamera.Index > 0) {
// Scale down
Position += CurrentCamera.Shift;
CurrentCamera.RemoveObject(this);
CurrentCamera =

ScaleSpaceManager.Instance.Cameras[CurrentCamera.Index - 1];
CurrentCamera.AddObject(this);
Position -= CurrentCamera.Shift;

}
while ((CurrentCamera.Vector3Position - Vector3Position).sqrMagnitude >

ScaleSpaceManager.Instance.ShiftThreshold *
ScaleSpaceManager.Instance.ShiftThreshold && CurrentCamera.Index <
ScaleSpaceManager.Instance.MaxLayerIndex) {
// Scale up
Position += CurrentCamera.Shift;
CurrentCamera.RemoveObject(this);
CurrentCamera =

ScaleSpaceManager.Instance.Cameras[CurrentCamera.Index + 1];
CurrentCamera.AddObject(this);
Position -= CurrentCamera.Shift;

}
}

A.6 ScaleSpaceCamera move method

public void Move(ScaleSpaceVector velocity) {
Position += velocity;
Vector3 newPosition = Position.AsVector3Float(Index);
if (newPosition.magnitude > ScaleSpaceManager.Instance.ShiftThreshold) {

foreach (ScaleSpaceObject obj in _objects) {
obj.Position -= Position;

}
Shift += Position;
Position = new ScaleSpaceVector();

}
transform.position = Vector3.zero;

} else {
transform.position = newPosition;

}
}
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