
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Computational approaches for the
identification of candidate

chemotherapy-related lncRNAs in
HGSOvCa

Supervisors

prof. Elisa Ficarra
prof. Sampsa Hautaniemi
prof. Rainer Lehtonen

Candidate

Maria Serena Ciaburri

matricola 231745

July 2018



This work is subject to the Creative Commons Licence



Ai tre venti gentili che

soffiano nelle mie vele



Summary

High grade serous ovarian cancer (HGSOvCa) is a malignant tumor subtype that originates

from the female reproductive system. The standard therapies prescribed to HGSOvCa pa-

tients include several chemotherapy cycles based on platinum-taxol drugs and a debulking

surgery for removing cancer tissues.

A fundamental characteristic of this disease, that drastically decreases the 5-years sur-

vival rates, is the acquisition of chemotherapy resistance by the tumoral cells after the

first-line treatment. Both the cancer aggressiveness and the development of the platinum

resistance increase the necessity of a more effective and targeted therapy.

During the last 10 years, a branch of the cancer research has focused its attention on

the genomic components called “long non-coding RNAs”. These elements, originating from

RNA molecules, do not encode for proteins and are composed by a number of nucleotides

that ranges from 200 to 100000. Even if they do not have encoding properties, it was

shown that those transcripts are actively involved in many cell functions and they are

dysregulated during the genesis and the development of different tumors.

The main goal of this master thesis is to develop a pipeline for the automatic identifi-

cation of long non-coding RNAs that can be possibly involved in the platinum-resistance

process (generally called drivers). By knowing the drivers and the molecular processes that

lead to chemotherapy resistance, it would be possible to identify efficient pharmacological

targets and design a more effective therapy.

This thesis was conducted in collaboration with the System Biology Lab for Drug Re-

sistance of the Helsinki University in Finland. The data employed in this analysis are

clinical and genetic information regarding HGSOvCa patients enrolled in a chemotherapy

treatment after the diagnosis of the disease. As genetic information the analysis uses the
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expression levels computed from the total RNA-sequencing of the patients’ samples. Ex-

pression levels measure the amount of the different genetic elements present in the sample

and they consequently facilitate the identification of the processes in which those elements

are involved.

In order to achieve the proposed goal, the analysis was focused on the identification of

genes that show different behaviours (so different expression levels) in the chemo-resistant

patients with respect to the chemo-sensitive ones. For this reason, samples were initially

divided in two groups, according to the available clinical data.

The analysis was conducted by realizing a pipeline that integrates two different strate-

gies: an unsupervised hierarchical clustering approach supported by statistical processing

and a supervised procedure based on feature selection through machine learning methods.

With the first strategy, lncRNAs showing differences in the expression levels between

the chemo-resistant and chemo-sensitive patients were extracted by considering the genes

judged as statistically significant by the Mann-Whitney-Wilcoxon test. Those genes were

successively employed in the unsupervised hierarchical clustering of the available samples,

which produced two separate chemotherapy-related clusters of patients. Moreover, the ap-

plication of the Kaplan-Meier analysis and the log-rank test revealed a significant difference

between the survival rates of the two subgroups.

In the second approach, the identification of platinum resistance related lncRNAs was

exploited by applying two feature selection methods. The first one, is a customized ap-

proach that involves several runs of the Random Forest (RF) algorithm and the employment

of the leave one out cross-validation for assessing the model’s accuracy. Differentially ex-

pressed long non-coding RNAs were extracted by considering the Mean Decrease Accuracy

(or MDA) index computed in the RF learning phase. The second feature selection tech-

nique is, instead, an already available wrapper algorithm called Boruta, which is specifically

created for feature selection. Also this method uses the MDA index as variable importance

metric. In both cases, the application of unsupervised hierarchical clustering based on the

retrieved lncRNAs produced two well-separated clusters: one containing chemo-resistant

samples and the other containing chemo-sensitive ones.

The choice of combining different methods for the same analysis was raised by the

necessity of having more confident results. The outcomes of the two employed methods,
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in fact, were finally compared and only the long non-coding RNAs identified by all the

techniques were taken into account.

From the analysis were retrieved 6 long non-coding RNAs that can potentially be related

to the chemotherapy resistance process and that are currently under wet-lab validation. In

this thesis are also highlighted the strength and the weaknesses of the adopted approaches.
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Chapter 1

Introduction

High grade serous ovarian cancer (HGSOvCa) is an aggressive gynaecological malignancy

that affects women worldwide. It is characterized by asymptomaticity, that leads to a

delay in the diagnosis of the disease and consequently to a late beginning of the therapy.

HGSOvCa is also characterized by the acquisition of chemotherapy resistance by the tu-

mor cells after the treatment. This means that even if the first-line chemotherapy has a

positive outcome, a relapse phase in which the disease shows up again is still possible. The

recurrence of the disease happens in the 75% of the cases and it usually leads to death [1].

Both the asymptomaticity and the chemotherapy resistance have an highly impact on the

increase of the mortality rate. In fact, the 5 year survival rate for this kind of malignancy

is very low and it is extimated around 35%-40%.

The standard therapy for this kind of disease is not effective enough and there is the

need to find a more accurate and targeted solution. It has to underlined that cancer in

general is a malignancy that originates from a mutant cell and subsequently differenti-

ate in sub-clones. Those sub-groups can develop in different ways and they can produce

different outcomes to the same therapy. This heterogeneity raises the need of a better

understanding of the underlying processes and a more focused therapy. Different aspects

of this malignancy, from the genesis to the chemoresistance, are currently under study.

During the last ten years it emerged the hypothesis that among the different genomic

elements that compose a cell, there are some components that do not encode for proteins.

These elements generate from RNA molecules and they are called non-coding RNAs. It
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1 – Introduction

was found that even if they do not encode for proteins, they play an active role in different

cell functions and, consequently, they also take part to the development of cancer. By now,

not all the functions of these non-coding regions are yet fully understood and classified.

On the basis of this hypothesis, this work of thesis is focused on the identification of

long non-coding RNAs that can possibly be related to chemotherapy resistance in patients

with HGSOvCa. For this purpose, it was realized a pipeline that integrates two different

strategies: a feature selection technique and a statistical one. The combination of the two

different approaches is adopted in order to obtain a bigger confidence in the results and

eliminate possible false positives.

The data on which the analysis is based are the expression levels of the cell compo-

nents. The expression levels are a measure of the cell activity. The challenge is to identify

which processes in the cell activity, and therefore which elements, are responsible for the

development of the chemoresistance. Once identified the drivers of this process, it is pos-

sible to understand in details the different biological phases that lead to the acquisition of

chemotherapy resistance and find an adequate and targeted therapy.

Expression levels are highly informative but noisy data and they need to be carefully

analyzed. One component of the noise has a biological nature and it is related to the huge

amount of information contained in these data. The expression levels describe the whole

set of processes ongoing in a cell, so it is necessary to isolate the one we are interested in.

Through RNA-sequencing it is possible to obtain the amount of cell activity each RNA

element is responsible for. Computational processing is then needed in order to identify

which portion of this activity is actually involved in the chemoresistance process and, at

the same time, which are the genomic elements responsible for it. The other component

of the noise has a technological nature and it is due to the computational errors present in

each step of the RNA-sequencing process.

Both the complexity of the data at disposal and their intrinsic technological errors lead

to the necessity of using different approaches to obtain more confident results. Confidence

is in this case gained by comparing the results obtained with both techniques. The anal-

ysis is based on primary samples taken from the patient when the disease is diagnosed.

Those samples are divided in two categories on the basis of clinical data, in order to dis-

tinguish chemoresistant patients from chemosensitive ones. The common goal for the two
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1 – Introduction

approaches is to identify long non-coding RNAs showing different expression levels between

the two groups of patients, in order to highlight a set of genes that may be involved in

the chemotherapy resistance. The long non-coding RNAs found with both approaches are

currently under validation in wet lab.

The following chapters describe the analytical work in details. In the second chapter

there is an overview on the biological background, with the description of the high grade

serous ovarian cancer characteristics, the long non-coding RNAs functions and the RNA-

sequencing technique. In the third chapter, there is the introduction of concepts about

machine learning and statistical theory that will be used during the analysis. The fourth

chapter is dedicated to the illustration of the input data used and the results obtained and

the description in details of the approaches and the choices adopted in this study. The

conclusive chapter comments the results of each analytical step from a critical point of

view and presents the limitation encountered during the study.
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Chapter 2

Biological background

2.1 High grade serous ovarian cancer

Cancer is a set of multifactorial diseases characterized by an uncontrolled growth of cells

that can affect organs and tissues. The reasons why cancer develops can be ascribed to

genetic mutations, that can be both hereditary or due to environmental causes. Because of

alterations in the genomic sequence, cells can lose their habitual properties and functions

and they can gain new different ones. A list of the capabilities acquired by cancer cells

during the malignant progression was first compiled in 2000 by Hanan and Weinberg under

the name of “Hallmarks of cancer” [2] and then reviewed in 2011 [3]. The list is shown in

the figure below and it includes processes that allow deregulated growth and sustainment

of tumor cells and that promote tissue invasion and metastatization.

Ovarian cancer is a malignant tumor subtype that involves the female reproductive

system. According to the site from which the tumors presumably originate [4], it can be

classified in:

• surface epithelial-stroma tumor, if it arises from the cells that constitute the surface

epithelium;

• sex cord-stroma tumor, if it arises from the cells that constitute the inner tissue of

the ovary;

• germ cells tumor, if it arises from the cells of the germ line.
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2 – Biological background

Figure 2.1. Hallmarks of cancer (2011)[3]

The epithelial tumors (or epithelial ovarian cancers, EOC) are almost the 85%-90% of

all ovarian cancers [5] and one of their subclassification is the serous ovarian cancer, that

can be again distinguished in low grade serous ovarian cancer (LGSOvCa) and high grade

serous ovarian cancer (HGSOvCa) according to the aggressiveness of the tumor cells. This

type of disease originates from the fallopian tubes and it is known for being asymptomatic.

This means that in the majority of the cases, the discovery of the cancer coincides with

the latest stages of the disease. Because the five-year survival rates get worse with the

progression of the tumor, the HGSOvCa is also characterized by high mortality. In fact,

the 5 year survival rate for this kind of disease is extimated around 35%-40% [6].

Once discovered, the HGSOvCa can be treated with a primary debulking surgery (PDS)

to remove the cancerous tissues, followed by adjuvant chemotherapy (ACT)[7]. In stan-

dard chemotherapy are employed platinum-based drugs (e.g. carboplatin and cisplatin)

in combination with paclitaxel (also known as “taxol”). If it is not possible to have a

complete resection of the malignant tissues during PDS because the cancer is too vast, the

patient can undergo to a first neoadjuvant chemotherapy (NACT) followed by an interval

debulking surgery (IDS)[8]. This kind of surgery is performed to remove all the residual

tumoral tissues, in order to raise the chances of a good therapy response.

Anyway, even if patients initially present a good response to the treatment, the majority
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2 – Biological background

Figure 2.2. Ovarian cancer subtypes

of them have a relapse phase after few months (tipically 6 - 12 months) in which the disease

come back[9]. This is due to the fact that ovarian cancer cells acquire drug resistance after

the chemotherapy. The acquisition of platinum resistance prevent the cells to be sensitive

to the treatment and leaves to the cancer the possibility to grow. Until now, the reasons

and the processes for the acquisition of drug resistance are still not completely clear.

2.2 Long non-coding RNAs

During the last 10 years, it was found that only 1-2% of the whole genome encodes for

proteins while at least the 75% of the remaining part encodes for regulatory RNA[10]. RNA

molecules that lack in protein coding capabilities are collectively referred to as non-coding

RNA. These non-coding RNAs are functionally divided into housekeeping non-coding RNA
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2 – Biological background

and regulatory RNA. The non-coding RNAs are also classified according to their molecular

size into:

• short non-coding RNAs, ranging in length from 20 to 200 nucleotides;

• long non-coding RNAs, ranging in length from 200 to 100 000 nucleotides.

The long non-coding RNA topic is still quite new, so the functional role of many non-

coding RNAs is still unknown or not well defined. By now, it is known that several

lncRNAs are involved in different biological processes and regulate growth, differentiation

and establishment of cell identity. The main functions in which long non-coding RNAs are

involved in are [11]:

• the regulation of gene expression at transcriptional level, involving chromatin re-

modelling and histone modification achieved through the interaction with protein

complexes;

• the regulation of gene expression at post-transcriptional level, in which long non-

coding RNAs may function as endogenous sponges and down-regulate a series of

microRNAs;

• the assembly of protein complexes, in which they can act as scaffold to bring together

different proteins in the same location.

Because these processes are commonly deregulated in several kinds of diseases, like cancer,

lncRNAs play an important role in this field. As protein coding genes, in fact, long non-

coding RNAs can act as oncogenes (genes that promotes the development of the disease)

or tumor suppressor genes (genes that goes against the development of the disease) and

influence several hallmarks of cancer. For example, HOTAIR, one of the most famous

lncRNAs, participate to the promotion of angiogenesis[12],that ensure nutrient suppliers

for tumor cells, and to the promotion of tissue invasion, that leads to metastasization[13].
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2 – Biological background

2.3 Experimental procedures

2.3.1 RNA-sequencing

RNA sequencing[14] is an approach used for the study of the transcriptome (the whole set

of RNA molecules we can find in one or more cells) that take advantage of the use of next

generation sequencing technologies (NGS). NGS technologies are the second generation of

sequencing techniques, characterized by high scalability and speed. This new generation

of machines is able to sequence huge amount of data in parallel. The RNA-sequencing

process is used in order to:

• understand the transcriptional structure of the genes, to be able to identify gene

mutations or fusions;

• quantify the expression levels of a gene over time or among different groups of donors;

• classify all the genomic elements of a transcript.

Some steps or methods in the RNA-seq process can vary according to the experimental

goals, but the general flow can be described as follows. The first phase of the sequencing

process is the creation of a library made of cDNA fragments. CDNA stands for “comple-

mentary DNA”, that is the DNA obtained from the synthesis of RNA molecules. A library

is a pool of DNA fragments with adaptors. During the composition of the cDNA library,

large RNA molecules are isolated from the original sample, reverse transcribed to cDNA

and then fragmented in smaller pieces long 200-500 bp. Adaptors (that act as hooks for

the sequencing platform) are ligated to both ends of these fragments and the final library

is constructed.

In the second phase, the library is provided as input for the NGS machine, that se-

quences the fragments and generates as output a file containing the corresponding set of

reads. A read is the sequence of nucleotides that constitute a fragment, inferred from the

sequencing steps.

The last phase is dedicated to data analysis. When cDNA is fragmented, the order

of all the pieces is lost and also the reads are not ordered. In this step, to reconstruct

the whole sequence, reads can be aligned by mapping them to a reference genome. Once
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2 – Biological background

aligned, they can be assembled in transcripts. Transcripts can be reconstructed through

alignment, by inferring the transcriptome sequence from the abundance of reads aligned to

a reference genome, or they can be reconstructed de novo, by using a reference genome or

annotations as a guide.

At this point, the expression levels of the genes can be computed by counting the

number of mapped read that align with the obtained transcriptomes. Because the number

of reads is influenced, among other variables, by the library size and the gene length, the

raw counts must be corrected with ad-hoc metrics. The final expression levels are usually

computed as FPKM (fragment per kilobase of transcripts per million mapped reads) or

RPKM (reads per kilobase of transcripts per million mapped reads).

2.3.2 RNA-sequencing decomposition

In the traditional sequencing methods are used millions of cells coming from the same

sample. If the purpose of the sequencing is analysing samples coming from a patient

affected by cancer and obtaining the expression levels of the genes in those samples, it is

necessary to highlight that only a portion of the whole sample is actually constituted by

cancerous cells.

When a single sample is taken, in fact, it is composed in various proportions by tumor

cells, fibroblast, immune cells and other kind of cell types. This means that when the

expression levels are computed, they are not referred only to the cancerous component in

the sample, but to the whole ensemble of cells. The analysis made on these data needs of

course to take this heterogeneity into account, because the results would be influenced by

it. A way to retrieve only the expression levels of a certain cell type is to use the single

cell sequencing, in which is sequenced only one cell at a time. This kind of analysis is more

challenging than the one previously described.

A possible alternative to single cell analysis is the decomposed RNA-seq analysis. This

kind of process tries to identify the sample composition and the cell-type specific expression

patterns that compose each sample. The portion of each cell type in the original RNA-seq

sample is not known a priori, but can be inferred through the use of an iterative expectation

maximization algorithm [15] from single cell data. Once the composition is known, it is
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possible to decompose the expression levels of the original sample and obtain cell-type

specific values.

The basic idea that underlies this procedure is shown in the figure 2.3. On the left side

of the figure there are the expression levels of the original samples and on the right side of

the figure there are the decomposed ones. The decomposed expression levels obtained with

this technique are 4 and are related to the epithelial ovarian cancer cells, the fibroblasts,

the immune cells and the remaining cell types.

Figure 2.3. Decomposed RNA-seq sample
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Chapter 3

Background on computational

science methodologies

3.1 Machine learning

Machine learning is a branch of artificial intelligence whose goal is building a system that

is able to learn how to solve a task without actually being programmed for it. The system,

by adopting a bottom-up approach, is in fact able to extract the rules necessary to solve a

problem from experimental data and experience. There are 3 different types of learning:

• the supervised learning, in which the learning process is supported by some previous

knowledge about the data. The system, in fact, is trained with data for which the

final outcome is known. These data are called “labelled”;

• the reinforcement learning, based on the development of a system that continuously

self-improves by interacting with the environment. Each time the system takes a

decision, it receives a reward/punishment value in return as a measure of the goodness

of the choice taken. The learning method is based on the trial-and-error approach

and the system gains knowledge on the basis of the feedbacks it receives after each

decision;

• the unsupervised learning, in which the algorithm simply explores the data at disposal
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3 – Background on computational science methodologies

without any guidance. It is employed when the relationships existing between the data

are not known and there is no previous knowledge on the dataset.

3.1.1 Supervised learning

The supervised learning approach is used when it is necessary to predict the outcome

of unlabelled data on the basis of the knowledge acquired with the labelled ones. For

this reason, it is employed both in classification and in regression problems. The term

“classification” is used when the outcome of the prediction is a categorical class label,

while the term “regression” is used when the prediction outcome is a continuous value.

A machine learning model that uses a supervised approach is composed by several

phases: preprocessing, learning, evaluation and prediction. The objects that constitute

the dataset are represented by a certain number of attributes or measurements called

features and each of them has a label that represents the final expected outcome.

During the preprocessing phase, the complete dataset is partitioned into a training and

a test set. The training set is the ensemble of data instances used for training the machine

learning algorithm and building the model, while the test set is the ensemble of instances

used for testing the obtained model and assess its performances. Usually, the training set is

composed by the 70% of the initial data set and the test set is composed by the remaining

30%. Preprocessing is also necessary for elaborating the data before dividing them in the

two set. This elaboration can include: the rescaling of the numerical values of the features

in a different range, the encoding of the categorical features as numerical quantities and

the reduction of the number of features to be taken into account by the system. The last

problem is known as “feature reduction” problem and it is faced when there is an high

number of features for each observation. This can limit the both the storage space and the

computational performances of the machine learning algorithm. The two main approaches

exploited for feature reduction are the dimensionality reduction and the feature selection.

In the first approach, the original features are mathematically recombined in a new set

of features having lower dimensionality. Well-known examples of dimensionality reduction

algorithms are the Principal Component Analysis (or PCA) and the Linear Discriminant

Analysis (or LDA). In the second approach, instead, a subset of the most informative
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3 – Background on computational science methodologies

features is extracted from the original features set. According to the literature [30], feature

selection methods are divided in:

• wrapper methods, which involve the usage of a ML algorithm. Subsets of features are

iteratively used to train models and features are selected according to the models’

performances;

• filter methods, which involve statistical steps that compute the variable correlation

with the correspondent outcome. They do not involve any learning algorithm;

• embedded methods, which are a combination of filter and wrapper techniques.

The learning phase is the core phase of a machine learning system. In this step, the

selected machine learning algorithm is trained with the training set and the final model is

built. Among the numerous machine learning algorithms that can be used in this phase, it

is worth to mention the Random Forest and the Support Vector Machine. There is not an

optimal algorithm for all the problems, so each time a machine learning system is built it

is necessary to understand which algorithm has the best behaviour according to the data

at disposal and according to the task to solve.

During the evaluation phase, there is the assessment of the performances of the model

built in the previous step. Quantifying the performances of the obtained model is necessary

to understand the confidence of the following results and evaluate which is the best machine

learning algorithm for a specific problem. In this phase, the instances composing the test

set are used as input for the model and the predictions obtained as output are compared to

the data labels. Ideally, it would be desirable to have a large number of data to divide in

training and test sets but in the reality there is not always this possibility. In this case, it is

possible to iteratively sample the initial dataset in order to create at each iteration different

combinations of the two sets. This implies that several models are generated and tested.

The most straightforward way to do it is by using the crossvalidation. This procedure

partitions the labelled dataset in a certain number of subsets (also called “folds”) and then

starts an iterative procedure in which, at each iteration, one of this folds is used as testing

set and all the others are used as training set. Well-known cross-validation techniques are:

• k-fold cross-validation, in which the number of created folds is equal to k;
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3 – Background on computational science methodologies

• leave one out cross-validation, in which the number of folds is equal to the number

of instances in the dataset.

The evaluation of performances implies the choice of a performance metric. Among all

the existing metrics that can be used, the most famous ones are the confusion matrix, the

ROC curve and the accuracy.

The prediction phase is the last phase of the machine learning system and it is the

phase in which the model is actually used to predict the outcome of unlabelled data.

3.1.2 Unsupervised learning

The unsupervised learning approach is employed when the relationships existing between

the data are not known and there is no previous knowledge on the dataset. The algorithm

simply explores the data at disposal without any guidance. This technique is majorly

employed for clustering and dimensionality reduction purposes.

With “clustering” it is intended the partitioning of data instances into a certain number

of classes in order to minimize the similarities between the elements of different classes and

maximize the similarity among the elements of the same class. Data objects are usually

seen as point in the clusterization space and the similarity measure is usually seen as the

distance existing between these points. The types of clustering methods can be classified,

according on how they divide the clustering space, into:

• hierarchical methods, in which the obtained clusters are hierarchically organized in a

tree;

• partitioning methods, in which objects are divided into non-overlapping clusters. Each

object belongs to one and only one cluster.
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3.2 Statistical concepts

In a statistical hypothesis test are generally compared two groups of samples in order to

accept or dismiss a certain statement, called null hypothesis or H0. The null hypothesis is

compared to the alternative hypotesis or H1. A result is statistically significant if it has

low probability to happen under the null hypothesis. The significance of the result can be

computed through the use of the p-value. The p-value is a numerical value between 0 and

1. It is defined as the probability to obtain the observed result or a more extreme one,

under the condition that the null hypothesis is true. This means that if it is obtained a p-

value which is higher than a significance threshold, the null hypothesis cannot be rejected;

while if the p-value is lower than the significance threshold, the null hypothesis is rejected

because there is strong evidence against it. As a rule of thumb, the significance level is

usually set to 0,05.

Different statistical hypothesis tests exist and they can be divided in two major cate-

gories, according to the assumptions they made. It is possible to have a parametric test,

in which a normal data distribution is assumed, or a non-parametric test, in which no as-

sumption on the shape of the data distribution is made. This means that the last category

of tests can deal with non-normal or highly skewed data. The most famous parametric

test used is the Student t-test, which verifies that the mean value of a distribution differs

from a certain value. Among the non-parametric tests, instead, the most used ones are the

Kruskall-Wallis and the Mann-Withney-Wilcoxon tests.

When a statistical result is computed, there is always the possibility to obtain small

p-values just by chance. In those cases the results are affected by errors. In particular, the

term “type I error” (or false positive) is used when there is the erroneously rejection of the

null hypothesis, while the term “type II error” (or false negative) is used when there is not

the rejection of the null hypothesis, even if this last one is false.

When multiple statistical tests are performed, the chances to obtain false positives

increase. This means that a portion of the observations believed statistically significant is

actually wrong. In order to correct the obtained results, it is possible to follow two main

approaches: controlling of the Family-Wise Error Rate or controlling the False Discovery

Rate. In the first case, the Family-Wise Error Rate (or FWER) is the probability of
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making at least one type I error in a multiple statistical test. Controlling the FWER

means applying the Bonferroni correction, in which a new statistical test is performed on

each hypothesis of the family by setting a lower significance threshold. In the second case,

the False Discovery Rate (or FDR) is the proportion of false positives among all the rejected

null hypothesis. For controlling it, the Benjamini-Hochberg correction can be applied.
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Chapter 4

Materials and Methods

4.1 Workflow

In the diagram in figure 4.1 it is possible to see the workflow of the analysis described in

the following.

The analysis is divided in two major branches according to the input data used. The

first one (in red) is based on the employment of the expression levels obtained from RNA

sequencing and it consists of a basic explorative step made to understand the informa-

tion contained in the data. In the second step (the one in purple in the figure), decom-

posed RNA-seq data are used to find candidate genes that can be chemotherapy-related

in HGSOvCa. The analytic approaches adopted in this phase are two: an unsupervised

technique based on statistical data processing and hierarchical clustering (depicted in light

purple in the figure) and a supervised technique based on feature selection through ma-

chine learning methods (in dark purple). All the scripts realized to perform this analysis

are written in Python and R.

Before the description of the analysis, there is an overview of the sample collection and

the available input data.
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Figure 4.1. Workflow of the analysis

4.2 Input data description and pre-processing

4.2.1 Sample collection

The data used for this analysis come from high grade serous ovarian cancer patients. Af-

ter the disease is diagnosed, the patient is enrolled in a NACT-IDS or a PDS treatment.

According to the type of treatment, the patient can undergo to a first set of neoadjuvant

chemotherapy cycles or to a primary debulking surgery. In any case, before the begin-

ning of the therapeutic process, tumor samples are collected and those samples are called

“primary”. In case of NACT-IDS, after the chemotherapy, the patient faces an interval

debulking surgery to remove the tumoral tissues. After this surgical procedure, other sam-

ples are collected. These are called “interval” samples. Interval samples are also sometimes

gathered after the first adjuvant chemotherapy cycles in case of a PDS treatment. Once

those samples are collected, the patient undergoes to another adjuvant chemotherapy treat-

ment, after which the follow-up period starts. In this period of time, the patient performs
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a series of periodic controls to monitor the treatment outcome and the disease progression.

If the tumor shows up again, new samples are taken from the patient and these ones are

called “relapse” samples.

Figure 4.2. Samples collection time graph

Several samples can be collected at the same time from a single patient and, in order

to distinguish them, each sample and each patient has a unique identifier. Patients are

identified by an ID composed by:

• one or two capital letters (M, H or OC);

• an integer number of three digits.

Samples, instead, are identified by:

• the patient ID;

• an underscore character;

• a letter that identifies the time point in which the sample was taken (“p” for primary,

“i” for interval and “r” for relapse);

• an acronym for the tissue type from which the samples was taken (“Mes” for In-

testine/Mesenterium; “Napamet” for a metastasized tissue; “Ome” for Omentum;

“OvaR”/”OvaL” for Ovary right or left; “Adn” for Adnex; “Per” for Peritoneum;

“Asc” for Ascites; “LN” for Lymphonode; “Ute” for Uterus; “TubR”/”TubL” for

Fallopian Tube right or left; “PerFd” for Peritoneum/Fossa Douglas);
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• an integer number identifying the number of samples taken.

The three kind of collected samples are really different between them. This is due to the

fact that cancer is on its own a disease that continuously evolves during its development.

The cells that compose the tumor when it is established, in fact, are really different from the

ones that could be found during oncogenesis [42]. Even after the establishment, cancer cells

continuously undergo to genetic mutations and epigenetic alterations that contribute to this

heterogeneity. In addition to that, primary, interval and relapse samples are collected in

different time points during a treatment that, of course, causes changes in the cells. Because

interval samples are taken after a first chemotherapy cycle (NACT or ACT), in fact, they

contain a lower percentage of cancer cells with respect to primary samples. Also, it is not

always possible to take interval samples from the same tissues of the primary ones, because

some tissues could have been removed with the surgery. This means that, in this cases,

it is impossible to compare the same tissue before and after the chemotherapy. Relapse

samples are again different from the primary and the interval ones because the cells that

compose them are chemoresistant cells, completely different from the original tumoral cells

populations.

The analysis described in the following chapters relies on 130 samples from 41 patients.

After the samples are collected, they are sequenced through RNA-Sequencing techniques

and the expression levels of the genes are computed. During the whole therapeutic process,

clinical data are also collected.

4.2.2 Expression level data

The expression level data are contained in two CSV tab-separated files. Each entry of these

files represents a genomic element, identified in the first two columns by its gene ID and its

gene name. The expression levels are computed after RNA-sequencing, quantified by using

eXpress[45] and transformed from raw counts to log2(TPM). TPM stands for “Transcripts

Per Million” and it is a quantity obtained by normalizing the Read Per Kilobase (RPK) for

the sequencing depth. RPK is computed by dividing the read counts for the gene length

expressed in basepair. The sequencing depth, instead, is given by the sum of all the RPK

values in a sample, divided by one million.
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One file contains the original expression levels obtained by sequencing the samples and

the other file contains their decomposed version. In this last file, for each sample and for

each lncRNA are stored: the expression level in the original sample, the one related to the

epithelial ovarian cancer profile, the one related to the fibroblast profile, the one related to

the immune profile and the one related to the remaining cell types.

4.2.3 Data annotation

Data annotation are additional information on the genomic region for which expression

levels are computed. This kind of data are stored in a separate file produced by the

GENCODE consortium [43] of the National Human Genome Research Institute (NHGRI)

within the ENCODE project [44]. One of the file format used to store the annotation data

is called “BED” (Browser Extensible Data). A generic BED file can have from three to

twelve columns. In fact, this standard imposes the use of three required fields (“chromosome

name”, “genomic start location” and “genomic end location”) and nine additional optional

fields. The number of fields per line is consistent throughout any single set of data in an

annotation track and fields are tab-delimited.

In the annotation file at disposal for this analysis there are 10 fields and the last one

contains some additional information. The additional information field is generally made

by an arbitrary number of key-value pairs. The pairs have a <key “value”; > format.

Also this field is composed by several mandatory information and several optional ones.

Each one of the 2 579 817 entries stored in the file contains the information for a RNA

region. Examples of the possible information that can be retrieve from this file are: the

name of the chromosome from which the sequence is extracted, the strand, the starting

and the ending positions of the region within the chromosome. These additional data,

together with the expression levels, can be used to better identify a genomic region and

the biological functions in which it is involved.

For this analysis, the only additional information used is the gene biotype. The gene

biotype describes the genomic sub-type of a specific RNA region. This fields is used in

order to extract from the expression level files only the entries corresponding to long non-

coding RNAs. Among all the possible biotypes, the ones of interest for this work of thesis
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are the ones listed below:

• non_coding, generic elements that do not code for protein;

• 3prime_overlapping_ncRNA, lncRNAs located within the 3’ UTR of protein-coding

genes;

• antisense/antisense_RNA, lncRNAs overlapping the genomic span of a protein-coding

locus on the opposite strand;

• lincRNA, lncRNAs that can be found in evolutionarily conserved, intergenic regions;

• sense_intronic, llncRNAs within a coding gene that does not overlap any exons;

• sense_overlapping, lncRNAs within the intron of any protein-coding on the coding

strand;

• macro_lncRNA, unspliced lncRNAs that are several kilobase in lenght;

• bidirectional_promoter_lncRNA, divergently transcribed lncRNAs which originate

from the promoter region of a protein-coding gene;

• misc_RNA, miscellaneous RNAs.

4.2.4 Clinical data

The original clinical data file is a CSV file storing the clinical information of each patient

participating to the study. Clinical data are collected throughout the duration of the study

and they have different nature. Some of them are personal data (like age), others regard

the past clinical history of the patient and others are related to the therapy the patient is

following. In the clinical data file at disposal, there is one entry for each sample and the

clinical information of interest in this analysis are: the patient and the sample identifiers,

the time to progression and the follow up time. The time to progression is a float number

that identifies the number of months for which the patient is free from the disease after the

end of the therapy. If this information is not available, the corresponding field in the file

contains the value NA. If, instead, the information is available, it shows that the patient

had a relapse phase. The follow up time, instead, is a float number that specifies the
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number of months for which the patient has been followed up. Those two values are used

in order to classify patients (and therefore samples) in two groups: the ones that develop

resistance to the treatment and the ones that do not. In this analysis, if the recurrence of

the disease happens within a year after the end of the treatment, the patient is considered

chemoresistant, because she developed chemotherapy resistance in few months. Instead, if

the disease does not show up again or there is a relapse after more than one year, the patient

is considered chemosensitive. Due to the aggressiveness of this malignancy and its high

mortality rates, that lead to death in really short time, in fact, a relapse after more than

twelve months is considered as a positive result. By expressing the resistance/sensitivity

to chemotherapy in terms of months in which the patients is exempt from the development

of resistance to platinum-based drugs after the treatment, it is possible to use the term

platinum-free interval. In this way, patients identified by a short platinum-free interval are

chemoresistant patients, while the ones characterized by a long platinum-free interval are

chemosensitive ones.

4.2.5 Data preprocessing

The first step of the analysis is to retrieve from the initial input files only the information

needed for the following processing. According to the biotypes in the annotation data, from

the expression level files are extracted only the rows corresponding to long non-coding

RNAs. In this way are obtained two files: one containing the original expression levels

of the lncRNAs and another containing the tumoral decomposed version of the original

expression levels for each lncRNA. Both files have 27 141 rows (the number of extracted

lncRNAs) and 132 columns (the number of samples plus a column for the gene ID and

another for the gene name).

The 130 samples at disposal come from 41 patients, 3 different time points (primary,

interval and relapse) and 13 different tissues. 14 of these samples have cell line origin, while

the remaining 116 have tissue origin. In the whole analysis, only tissue origin samples are

taken into consideration. According to time point, the samples can be divided in 81 primary

samples, 41 interval samples and 8 relapse samples. The investigation focuses only on the

primary set.
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4.3 RNA-seq data exploration

In this section it is described the first step of the analysis, in which input data are explored

using hierarchical clustering and visualisation methods. In this phase, the output of the

unsupervised clustering is analysed to understand the content and the characteristics of

the input dataset.

Hierarchical clustering is a kind of unsupervised clustering method that divides the

input observations in a set of groups hierarchically organized. According to the kind of

strategy used to create the hierarchy of clusters, we can distinguish between a top down

(also called “agglomerative”) approach or a bottom up (also known as “divisive”) approach.

In the first one, the algorithm starts by considering N different clusters, each one con-

taining one of the N available observations. From this, it aggregates at each step the two

clusters that have the smallest intergroup dissimilarity until all the observations are in

a unique cluster. In the second method, the algorithm starts by considering one cluster

containing all the N observations. At each step, it splits the cluster in two sets of observa-

tions having the largest between-group dissimilarity. The measure of dissimilarity between

groups of observations is decided by setting a metric and a linkage criterion. A metric is

a measure of distance between two observations and in the following we have examples of

some of the most commonly used ones:

• the euclidean distance, computed as d(p,q) = d(q,p =
ðqn

i=1(qi − pi)2;

• the square euclidean distance, computed as d2(p,q) =
qn

i=1(qi − pi)2;

• the manhattan distance, computed as d1(p,q) = ëq,pë1 =
qn

i=1 ëqi − pië;

• the canberra distance, computed as d(p,q) =
qn

i=1
|pi−qi|
|pi|+|qi| .

The linkage criterion, instead, is the measure of the distance between groups of observation

as a function of the chosen metric. The main alternatives are:

• maximum or complete linkage clustering, in which the distance between two clusters

is computed as the maximum distance between two observations belonging to the two

different clusters. In formula: L(r, s) = max(D(xri, xsj));
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• minimum or single-linkage clustering, in which the distance between two cluster is

computed as the minimum distance between two observations belonging to the two

different clusters. In formula: L(r, s) = min(D(xri, xsj));

• mean or average linkage clustering, in which the distance between two cluster is

computed as the average of all the distances between all the observations belonging to

one cluster and all the observations belonging to the other one. In formula: L(r, s) =
1

nrns

qnr
i=1

qnr
j=1 D(xri, xsj).

In all the options, the distance is the metric chosen to compute the dissimilarity between

two observations. The choice of the metric and the linkage criterion influences the shape

and the organization of the final hierarchy. There is not a winning combination of the two

criteria that works in a perfect way for all the data. Each set of data and each research

question are unique and require to be properly analyzed.

The results of the hierarchical cluster algorithm can be presented through a binary

tree called dendrogram. The highest level of the tree, the root, contains one cluster with

all the observations. The lowest levels, which correspond to the leaves, contain as many

cluster as the number of observations and each cluster contains just one element. In a

dendrogram, the height of each node (the distance between two nodes in a branch - so the

distance between a child node and its father) is proportional to the amount of dissimilarity

between two siblings nodes (the two child nodes of the father node). The number of levels

in the hierarchical tree is N-1, where N is the number of initial observations. Hierarchical

clustering do not require to specify a priori the number of clusters to be obtained, but by

looking at the dendrogram it is possible to retrieve a certain number of clusters by cutting

the binary tree in an horizontal way. This procedure is equivalent to setting a dissimilarity

threshold and stopping the hierarchical clustering algorithm once that threshold is reached.

In bioinformatics, hierarchical clustering is often used in combination with a heat map,

in order to understand if from the unsupervised clustering method emerge some groups

of observations with some particular characteristics. A heat map (or heatmap) is a two-

dimensional graphic visualization of data contained into a matrix, whose values are repre-

sented through colors. Those maps are widely employed for having an intuitive visualization

of gene expression data. When the hierarchical clustering is applied to a heatmap, the data
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inside the map on which the algorithm is applied are re-organized, clustered together and

a dendrogram is shown.

In this analysis, to identify chemotherapy-related genes, patients and samples are di-

vided in two groups on the basis of the clinical information. The distinction is made

according to the platinum free interval (PFI), the amount of time after the treatment in

which patients are free from the disease. Samples coming from patients who had a relapse

in the 12 months following the therapy are classified as “short PFI”, while the ones coming

from patients who had a relapse phase after 12 months or who did not have progression of

the disease after a year are classified as “long PFI”. The division is made by considering

the “time to progression” and the “follow up time” fields of the clinical data file.

In order to reduce the dimensionality of the problem and facilitate the visualization, in

this phase it is considered only a subset of the lncRNA biotypes. This subset was decided

with the supervision of a geneticist and it includes the most well-known lncRNAs biotypes

in literature[46]:

• non-coding RNAs;

• long intergenic non-coding RNAs;

• macro long non-coding RNAs;

• bidirectional promoter long non-coding RNAs;

• antisense RNAs;

• miscellaneous RNAs;

Always in the view of reducing the dimensionality of the data, also the lncRNAs having

in all samples expression levels lower than 1 are removed from the dataset. These genes,

in fact, are judged as not informative for the research question because they do not show

high differences in the expression levels across all the samples, but they just contribute to

the computational load.

From the pool of remaining samples are extracted the ones belonging to primary time

point. Then, for each lncRNA are computed:

• the average of the expression levels in the “long PFI” samples;
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• the average of the expression levels in the “short PFI” samples;

• the absolute difference of these two values.

The last quantity computed is also called fold change and below there is an histogram of

the fold change values obtained for the primary samples.

Figure 4.3. Histogram of the fold change values in primary samples

The graph shows that the majority of the lncRNAs have small differences in the averages

of the expression levels between the two groups. In order to visualize only the genes having

notably differences in the expression levels between the two sets, are selected the lncRNAs

having fold change value bigger than 1.2. The expression levels of the resulting 20 genes

in the primary samples, together with the correspondent clinical data, are visualized using

a heatmap that is shown in the figure 4.4.

For the hierarchical clustering function it is possible to specify the metric and the

linkage. In this case, it is decided to use the euclidean distance as metric and the complete

clustering as linkage method. In this way, the distance between groups of observations is

computed as the maximum euclidean distance between two observations belonging to two

different clusters.

By looking at the plot in figure 4.4, it is possible to see that in the upper part of

the heatmap, in correspondence of each sample, are displayed some of the clinical data
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information: the progression interval, the survival, the primary therapy outcome, the follow

up time and the progression. The legend on the right explains for each variable all the

possible values. In this heatmap, as well as in all the following plots, the patient ID is

replaced for privacy reasons with an alternative name, computed as the concatenation of

the string “patient_” and a progressive number.
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Figure 4.4. Heatmap of lncRNAs having fold change > 1.2 - primary samples
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4.3.1 Results

From the upper dendrogram in the primary samples heatmap, it is possible to see that the

hierarchical clustering mainly divide the samples in two groups. By cutting the dendrogram

at the first level, in fact, it is possible to see that the obtained sample sets almost follow

the division between “long PFI” and “short PFI” that was previously made by hand. With

some exceptions, in fact, the left side of the heatmap groups together the samples having

a longer platinum free interval, while the right side of the map groups together the ones

having shorter PFI. By analysing the lower levels of the dendrogram, it is possible to

understand that samples coming from the same patient mainly cluster together. If similar

samples group together and we have different numbers of samples per patients, it means

that patients with an higher number of samples will drive the clusterization, so the results

can be actually affected by some patients more than others.

Finally, looking at the dendrogram on the left, the one referred to the long non-coding

RNAs, it is possible to see that there are two clear groups of genes. The one at the top of

the heatmap is the most interesting one, because it contains long non-coding RNAs that

clearly shows high expression values in “short PFI” primary samples and lower expression

values in “long PFI” primary samples.

41



4 – Materials and Methods

4.4 Decomposed RNA-seq analysis

4.4.1 Data selection

From the previous step it can be seen that the obtained clusters of patients are not perfect

and that clusterization is driven by patients having an high number of similar samples. For

these reasons, it is decided to perform the next investigation step with a different approach.

The idea is to consider just one sample per patient, by averaging the expression levels of

the samples coming from the same patient and the same time point. For doing that, it is

necessary to further investigate the similarities and the differences in the expression levels

of the samples to average. To prevent data alteration, in fact, only samples containing

similar expression levels can be averaged. In this way, it is possible to investigate the overall

behaviour of similar samples. To analyse the data, the Principal Component Analysis is

performed.

The Principal Component Analysis (or PCA)[16][17] is a mathematical procedure that

aims to find a new coordinate system of uncorrelated variables starting from a dataset

described by correlated parameters. The new set of variables has the same dimensionality

of the original one, with the advantage that it can be reduced in a way in which the

remaining components describe most of the variation in the data. In this sense, the PCA

can be used in a machine learning system as an unsupervised dimensionality reduction

technique. The assumptions of the principal component analysis are that the variables are

normally distributed and the data are represented by real and continuous values.

From the mathematical point of view, the new variables are a linear combination of

the original ones. In order to obtain orthogonal variables related to the variance of the

data, the PCA is based on the computation of the eigenvectors and eigenvalues of the

covariance matrix associated with the dataset. Because covariance is used, the original

dataset is transformed in a mean-zero matrix by subtracting the variable’s means to each

variable value. Then, the associated covariance matrix, eigenvalues and eigenvectors are

computed. The eigenvalues quantify the variance expressed by the eigenvectors; while

the eigenvectors, once normalized, represent the coordinates of the new reference system.

The eigenvectors are ranked in descendent order according to variance they express and
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organized in a matrix of column vectors. At this point, the new variable are computed as:

Y = XW (4.1)

where X is the (n x m) matrix containing the mean-adjusted dataset; W is the (m x m)

matrix of eigenvectors (PCA coefficients); Y is the (n x m) matrix containing the new set

of coordinates.

The new set of variables can be restricted by considering only the first p eigenvectors

that express most of the variance in the data.

The principal component analysis is useful not only for reducing the dimensionality of

data, that -among other things- helps the visualization of data, but also because it facili-

tates the detection of subsets and outliers. In addition, it contributes in the definition of

the scaling relations existing among data and the correlation between the original variables.

In this analysis, the Principal Component Analysis is used because there is the need

to evaluate the similarities between the samples and decide if it is possible to merge them

together or not. Each sample is described by several feature values that in this case are

the expression levels of the long non-coding RNAs in the sample. Because the interest is

focused on the overall behaviour of each sample, the PCA can be used to ease the analysis

by reducing the number of features that describe the sample’s characteristics.

Unlike the previous analytical step, in this one (and in all the following ones) are taken

into account all the different lncRNA biotypes without distinctions. In this part of the

analysis is used the decomposed version of the RNA-seq data, in order to take into account

only the expression levels related to the tumoral component of each sample. In the previous

analysis, in fact, the expression level values did not refer only to the tumor cells but to

whole ensemble of cells types in the sample. Again, in order to reduce the dimensionality

of the data, lncRNAs having expression levels lower than 1 in all the samples are excluded.

Samples are divided according to time point and the principal component analysis is

applied on the primary set. Only the first two principal components are taken into account.

The results of this step can be see in the figure 4.5.

From the plot, it can be seen that also with the decomposed expression level data, the

samples coming from the same patient tend to cluster together. The clusterization, of

course, is not perfect and this can be due to the sample’s tissue type. Samples coming
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Figure 4.5. PCA results for primary samples

from ascites and adnex, fox example, do not group with the others and because of those

differences they have to be removed from the sample set. Biologically speaking, there are

also differences between the tissues involved in the early stages of the disease (the tissues

from which the cancer originates, like ovary and fallopian tubes) and the ones involved in

the late stages (the tissues where the tumor spread). It was already said, in fact, that this

kind of disease is in constant evolution and that it continuously produces changes. Changes

in the biological processes lead to changes in the expression levels. The final decision is to

take into account only the samples coming from the tissues involved in the late stages of the

disease: peritoneum, peritoneum/fossa douglas, intestine/mesenterium and omentum. The

samples coming from those tissues are extracted from the initial sample set and for each

lncRNA are averaged the expression levels in the samples belonging to the same patient

and the same time point. The results are stored in a new table containing the lncRNAs

on the rows and the new collapsed samples on the columns.
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4.4.2 DEG extraction through statistical analysis and unsuper-

vised clustering

As shown in the workflow at the beginning of this chapter, different approaches are adopted

to retrieve differentially expressed genes related to the chemotheraphy response. In this

section it is described the one based on statistical processing and unsupervised hierarchical

clustering. The underlying idea is to use a statistical test in order to reduce the dimension-

ality of the problem and identify a set of long non-coding RNAs that show significantly

differences in the expression levels between the chemoresistant and the chemosensitive

patients. In order to confirm that these genes are actually related to the platinum-free

interval, it is shown that they can be used as clusterization features. In fact, if the hierar-

chical clustering algorithm, on the basis of the lncRNAs selected in the statistical step, is

able to cluster the samples as they were initially grouped according to the PFI, it shows

that those genes are really correlated with the chemotherapy resistance.

A statistical test is performed in order to compute the p-value related to the difference

in the expression levels of each long non-coding RNA and to extract only the significative

ones. To apply it, data are again divided into two populations according to the PFI value.

Among the 26 new collapsed primary samples, only 14 have the needed clinical data (time

to progression and follow up time). The expression levels of these samples are retrieved

from the new expression level table and the samples are divided as before in “short PFI”

and “long PFI”. The obtained groups are perfectly balanced, because each of them contains

7 samples. For each long non-coding RNA it is then computed the average of the expression

levels in both groups and the fold change. The distribution of the data is plotted in order

to understand the distribution of the values. The plots are represented in the figure 4.6

and the results show highly skewed data in both the populations.
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Figure 4.6. Distributions of the expression levels in primary samples

The shape of the distribution influences the choice of the statistical test to use. In

this case, because of the skewness of the data, it is not possible to assume a normal

distribution and consequently it is not possible to apply any parametric statistical test (like

the commonly used Student-Welch t-test). The non-parametric Mann-Whitney-Wilcoxon

test is then employed for the computation of the p-values for each long non-coding RNA.

The Mann-Whitney-Wilcoxon test (also known as “Mann-Whitney U-test” or”Wilcoxon

rank sum test”)[18] is a statistical hypothesis test. Because this test does not have limi-

tations regarding the distribution underlying the data, it is classified as a non-parametric

test. The Mann-Whitney-Wilcoxon test has three assumptions:

• the two sets of data have the same distribution;

• the two sets of data have the same variation (property called homoscedaticity);

• all the observations in both sets are independent from each other.

The null hypothesis supports the equality of the distribution of the scores for the two

groups. If it is also true that the distribution of the two sets are equally shaped, as in

this analysis, the test can determine if the medians of the two distributions are statisti-

cally different or not. The null hypothesis, in this case, supports the equality of the two

distributions while the alternative one supports the inequality of the medians.
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By considering the usual statistical significance threshold at 0.05, it is possible to re-

trieve from the results of the Mann-Whitney U-test 246 long non-coding RNAs that show

differential expression between chemoresistant and chemosensitive patients. Anyhow, since

the test involves an high number of genes, a multiple testing correction needs to be per-

formed after it. The main alternatives in this case are the application of the Bonferroni

correction or the application of the Benjamini-Hochberg method. The Bonferroni correc-

tion is a conservative technique and it is necessary when a single false discovery in the

results can be dangerous. Nevertheless, when the number of multiple comparisons is too

high, as in this case, it can be too stringent and it can lead to a very high rate of type II

errors. For this reason, it is chosen to apply the Benjamini-Hochberg correction to compute

the adjusted p-values.

The Benjamini-Hochberg approach was designed to control the false discovery rate, that

is the proportion false positives among all the rejected null hypothesis[19]. This method

ranks the p-values obtained from a statistical hypothesis test and then compute for each

of them a quantity that can be expressed by the following formula:

i

m
Q (4.2)

where i s the ranking value, m is the total number of performed tests and Q is the chosen

false discovery rate. All the observations having a p-value < i
mQ are considered significant.

The choice of the false discovery rate value (Q) depends on the data and the situation under

study. It is possible to compute another quantity called “adjusted p-value” by considering

the original p-value (or “raw p-value”) multiplied by the m
i quantity. In this case, the

observations having adjusted p-values smaller than the chosen false discovery rate are

considered significant. The only assumption of this method is the independence of all the

individual tests.

The results of the Benjamini-Hochberg correction show that the smallest corrected p-

value is 0.68, really far from the significance threshold. This means that they cannot be

interpreted as statistically significant. For these reason, it was decided to rely on the raw

p-values and the fold change values for the extraction of the differentially expressed genes.

The figure 4.7 shows a volcano plot obtained by representing the log2 of the fold change

on the x-axis and the −log10 of the raw p-value on the y-axis. In blue are highlighted the
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lncRNAs having fold change greater than 1 and raw p-value lower than 0.05. Those genes

are, according to this kind of analysis, the ones showing higher differences in the expression

levels between a group of chemoresistant patients and a group of chemosensitive ones. The

p-value is taken into account in order to retrieve the statistically significant differentially

expressed lncRNAs, while the fold change value is considered in order to chose the genes

having a considerable difference between the average of the expression levels in the two

groups.

Figure 4.7. Volcano plot

The expression levels of those lncRNAs are then used as input data for the heatmap

in figure 4.8. This step is performed in order to check if the unsupervised hierarchical

clustering, based on these expression level values, classifies the samples in the same two

groups.
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Figure 4.8. RNAs from decomposed RNA-seq samples having raw p-values
<0.05 and fold change > 1

From the horizontal dendrogram in the heatmap it is possible to see that the patients

are almost correctly divided into short PFI and long PFI, with one exception.
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As already said in the previous chapters, the survival of HGSOvCa patients is influenced

by the acquisition of platinum resistance. In order to evaluate the relationship between

the survival rates and the chemosensitive/chemoresistant patients, a Kaplan-Meier plot is

computed.

The Kaplan-Meier estimator (KM, or “product-limit estimator”)[21] is a non-parametric

statistic used in survival analysis. It is a method adopted when it is necessary to assess

the influence of an event upon the survival. The data used in this statistics are lifetime

data. Usually this kind of data are censoring data, so data for which the value of the

measurement or observation is only partially known. It is known that the value is above

(right censored) or below (left censored) a certain threshold, but the exact quantity cannot

be accurately determined. In case of lifetime data, examples of right censored data are the

ones in which[22]:

• the subjects withdraw the study before its conclusion;

• the patients are lost to follow-up;

• the study ends before the subjects had the event under investigation;

• the required information are not available for some reasons.

It is known that those subjects were alive before a certain time point, but it is not know for

how long they lived thereafter. An advantage of the Kaplan-Meier estimator is that it takes

into account all these kinds of incomplete observations. The Kaplan-Meier curve consists

of a sequence of steps with different heights and lengths. The step’s length depends on

the dimension of the temporal interval, while the step’ s height depends on the change in

the cumulative survival rate. The number of the intervals in the diagram is linked to the

number of events that happen during the time sequence under study. Each time there is an

occurrence of the event under investigation, there is a new step in the plot. The survival

rate corresponding to an interval is the percentage of alive patients in that period of time

and it considered constant for all the duration of the interval. This value is computed as

[23]:

S(ti) = ni − di

ni
(4.3)
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where ni is the number of subjects living at risk (the ones that survived) before the time

ti and di is the number of events happened during the interval ti.

When the event under investigation occurs, it is marked on the diagram by a vertical

tick. Because the probability that one patient is alive in a certain interval is related to

the probability that the same patient in the previous intervals, it is possible to compute

the cumulative probability as function of the interval survival. In particular the cumulative

survival rate is given by the product of the survival probability in the interval of interest

and all the survival probabilities in the preceding intervals. This means that in the first

interval the survival probability and the cumulative probability coincide. In formula:

S(t) =
Ù
ti<t

ni − di

ni
(4.4)

where, again, ni is the number of subjects living at risk (the ones that survived) before the

time ti and di is the number of events happened during the interval ti.

The assumption of this method are that the time at which events happens are specified,

the censoring is not related with the prognosis and the survival probabilities are the same

for the all subjects recruited for the study, independently from the time in which they are

recruited.

In order to make a comparison between the survival of the two sets it is usually used the

log rank test [24]. The log rank test (or Mantel-Cox test) is a non-parametric hypothesis

test that compares the survival distribution of two groups of samples under study. The

null hypothesis states there is no difference between the two curves. The log rank statistic

is computed as the sum of the differences between the observed and the expected number

of events in a group, computed each time an event occurs, under the null hypothesis. In

formula[25]:

χ2(logrank) = (O1 − E1)2

E1
+ (O2 − E2)2

E2
(4.5)

where E1 is the total number of expected events in the first group; E2 s the total number

of expected events in the second group; O1 is the total number of observed events in the

first group; O2 s the total number of observed events in the second group;

The Pearson’s chi-square (χ2) test is used to compute the p-value and assess the statis-

tical significance. This means that the two survival curves are significantly different if the

log rank test has a p-value lower than 0.05 (the commonly used significance threshold).
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In medical research and bioinformatics, the Kaplan-Meier curves are usually employed

in order to estimate the effectiveness of a treatment by looking at the recovery rates of

patients after that treatment, compare the survival rates of two groups of patients with

different characteristics, understand the correlation between the event under study and the

survival probabilities.

In this analysis, samples are divided according to the hierarchical clustering obtained

from the dendrogram. The curve shows the relation between the two obtained groups of

patients and the survival probabilities. The “long PFI” group contains 8 samples while the

“short PFI” group contains 6 samples.

Figure 4.9. Kaplan-Meier plot for all the primary samples

The plot shows a clear difference between the two groups of patients. The ones classified

as “long PFI” have a greater probability to survive than the ones classified as “short PFI”.

The log-rank test performed to compare the survival distributions of the two populations

reveals a p-value of 0.041. Because for this kind of statistical test the null hypothesis states

that the two groups have identical survival functions, such a lower p-value highlight that

null assumption can be rejected.
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Because of the high adjusted p-values resulting from the Benjamini-Hochberg correction

after the Mann-Whitney-Wilcoxon test, the obtained set of lncRNAs is further analyzed

in order to verify if there is a link with the chemotherapy resistance. For this reason,

for each one of the differentially expressed lncRNAs is then computed the correlation

coefficient between the platinum free interval value in months and the expression levels.

The correlation is calculated by exploiting the Kendall method and the correspondent p-

value for each gene is saved. A correlation coefficient is a value that expresses the degree

of relation between two statistical variables. If the values of the two variables for N

observations are ranked, it is possible to compute the correlation coefficient between the

variables by looking at the order their values have in the rank. The Kendall coefficient[20]

(also called “Kendall tau”) is a type of rank correlation coefficient. According to it, once

ranked the values, if the value of the first variable in the i − th observation has the same

rank of the value of the second variable in the i − th observation, the variables are called

“concordant”. If not, they are called “discordant”. The tau coefficient is then computed as:

τ = (nc) − (nd)
n(n− 1)1

2
(4.6)

where nc is the number of concordant pairs, nd is the number of discordant pairs and n is

the total number of observations. As it is possible to see from the formula, tau can assume

values that go from −1 to 1. If the coefficient value is equal to 1 the variables are perfectly

positively correlated, while if the coefficient value is equal to −1 the variables are perfectly

negatively correlated. A non parametric statistical test based on the computation of the τ

is called a “tau test”.

In the table 4.1 are listed, for the 29 differentially expressed lncRNAs, the obtained raw

p-values for the Mann-Whitney-Wilcoxon test, the Kendall tau values and p-values for the

Kendall correlation test.
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Gene ID Gene name MWW p-

values

Kendall tau Kendall

p-values

ENSG00000264247.1 LINC00909 0.0005827506 -0.6703296703 0.0004511262

ENSG00000250999.1 RP11-1379J22.5 0.0005827506 -0.4945054945 0.0138377949

ENSG00000202058.1 RN7SKP80 0.0011655012 -0.4945054945 0.0138377949

ENSG00000239653.1 PSMD6-AS2 0.0011655012 -0.5164835165 0.0097530433

ENSG00000276168.1 RN7SL1 0.0040792541 -0.6263736264 0.0012344453

ENSG00000274012.1 RN7SL2 0.0040792541 -0.5824175824 0.0030248117

ENSG00000240869.3 RN7SL128P 0.0040792541 -0.5384615385 0.0067423387

ENSG00000275560.1 RP11-180M15.7 0.006993007 -0.4505494505 0.0263997632

ENSG00000278095.1 RP11-283G6.6 0.006993007 -0.4945054945 0.0138377949

ENSG00000260267.1 RP11-452L6.5 0.006993007 -0.4945054945 0.0138377949

ENSG00000231890.7 DARS-AS1 0.006993007 -0.4945054945 0.0138377949

ENSG00000228274.3 RP3-508I15.9 0.006993007 -0.3406593407 0.1010208746

ENSG00000261326.2 LINC01355 0.0110722611 -0.4285714286 0.0355656671

ENSG00000282221.1 RP11-27G14.4 0.0110722611 -0.4285714286 0.0355656671

ENSG00000261061.1 RP11-303E16.2 0.0110722611 -0.4505494505 0.0263997632

ENSG00000243398.3 RN7SL141P 0.0110722611 -0.4505494505 0.0263997632

Continued on next page
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Table 4.1 – Continued from previous page

Gene ID Gene name MWW

p-values

Kendall tau Kendall

p-values

ENSG00000261116.1 RP3-523K23.2 0.0168366431 -0.3979585917 0.0522036353

ENSG00000283029.1 RN7SL1 0.0174825175 -0.5604395604 0.0045659834

ENSG00000226816.2 AC005082.12 0.0174825175 -0.5384615385 0.0067423387

ENSG00000261799.1 RP11-283I3.6 0.0174825175 -0.5164835165 0.0097530433

ENSG00000236901.5 MIR600HG 0.0174825175 -0.3626373626 0.0794568992

ENSG00000277925.1 Telomerase-vert 0.0262237762 0.3626373626 0.0794568992

ENSG00000267322.2 SNHG22 0.0262237762 -0.4065934066 0.0471759991

ENSG00000224165.5 DNAJC27-AS1 0.0262237762 0.5384615385 0.0067423387

ENSG00000229422.1 RP11-262H14.5 0.0262237762 0.1868131868 0.3879883441

ENSG00000228014.1 ZNF680P1 0.0291249031 -0.2905436016 0.1523577489

ENSG00000263535.1 AK4P1 0.0378787879 -0.3626373626 0.0794568992

ENSG00000231607.9 DLEU2 0.0378787879 -0.2967032967 0.157163016

ENSG00000278451.1 RP11-923I11.8 0.0378787879 -0.4725274725 0.0192786002

Table 4.1: Most significant lncRNAs
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As visual examples of the results obtained, in the following are plotted the correlation

plots of the first 3 differentially expressed lncRNAs having lower raw p-values and higher

fold change values. The correlation plots show the correlation between expression levels

(on the y axis) and the PFI (on the x axis). Ideally, if there is a correlation, the expression

levels should decrease/increase according to the platinum-free interval. In the plot are also

reported the Kendall tau, the Kendall p-value and the interval of confidence (in grey).

Samples are ordered according to the PFI and distinguished by colour according to the

group they belong to. The blue ones are the patients in the short PFI group, while the

dark ones are the patients in the long PFI group. The green line is computed as the mean

of all the expression levels in the samples and it is used to distinguish between high and

low values of the gene expression.

Figure 4.10. Correlation plot for the LINC00909 lncRNA
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Figure 4.11. Correlation plot for the RN7SKP80 lncRNA

Figure 4.12. Correlation plot for the RP11-1379J22.5 lncRNA
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4.4.3 DEG extraction through feature selection - Random Forest

In order to exploit an alternative way to extract differentially expressed genes that are

chemotherapy related, two feature selection techniques based on the Random Forest algo-

rithm are used. The first one, is a customized approach that involves several runs of the

machine learning algorithm and the employment of the leave one out cross validation for

assessing the model’s accuracy. The second one is, instead, an already available algorithm

specifically created for feature selection. This section describes the first approach, while

the following section illustrates the second method.

Random forest[26] (RF) is a supervised machine learning algorithm for classification

and regression. Its main goal is to predict the value of a target variable. The term

“classification” is used when the predicted value is a label, a categorical attribute; while

the term “regression” is used when the predicted value is a real number. Machine learning

algorithms do not follow manually programmed rules or code instructions to catalogue a

certain input, but they “build” a classification procedure starting from a training set of

data for which the correct output is known. The input data are composed of a set of

observations, defined by different values of a group of features. The output is a label or a

real number. In order to build a machine learning model that is able to autonomously take

decisions, it is necessary a learning phase. In this phase, the initial set of labelled data is

divided in a training and a test set. By their names, it is intuitively understandable that

the first set is used for building the model, while the second is used for testing it. After

the training and the test phases, the ML algorithm is able to classify unlabelled data.

The Random Forest algorithm is called “ensemble method” because it exploits the use

of a set of different decision trees to improve the predictive performances. A decision tree

is a predictive model with a tree structure in which each node represents a decision point,

each edge a possible decision outcome and each leaf an output variable used to take the

final decision. Decision trees are known to be fast to construct and easy to interpret, but

they may lack in accuracy and easily produce overfitting[27]. Because of that, the random

forest algorithm trains several decision trees to mitigate those side effects. Of course, the

adoption of this technique may lead to a significant reduction in speed. Random forest uses

the bagging (or “bootstrap aggregating”) strategy [28] to create different input dataset for

58



4 – Materials and Methods

the trees. These new datasets (called “bootstraps”) are created by sampling uniformly and

with replacement the original input set. Each Random Forest model is then fitted with a

different bootstrap and the final outcome is computed by averaging the single outputs in

case of regression or by adopting a voting technique in case of classification.

The Random fForest algorithm can be described in pseudo-code as follow[27]:

for b = 1 to B: do

(a) Draw a bootstrap sample Zõ of size N from the training data.

(b) Grow a random-forest tree Tb to the bootstrapped data, by re- cursively repeating

the following steps for each terminal node of the tree, until the minimum node

size nmin is reached.

i. Select m variables at random from the p variables.

ii. Pick the best variable/split-point among the m.

iii. Split the node into two daughter nodes.

end for

Output the ensemble of trees {Tb}B
1 .

To make a prediction at a new point x:

Regression: f̂B
rf (x) = 1

B

qB
b=1 Tb(x).

Classification: Let Ĉb(x) be the class prediction of the bth random-forest tree. Then

ĈB
rf (x) = majority vote {Ĉb(x)}B

1 .

The existing implementations of this algorithm have three major parameters that can

be tuned by the user, according to the kind of data at her disposal:

• mtry, the number of variable that have to be taken into consideration at each split.

The value that is usually used in this case is the rounded square root of the total

number of variables in the dataset;
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• ntree, the number of trees in the forest;

• nodesize, the minimum size of the terminal nodes. The default value is 1.

In the machine learning methods that use bootstrap samples, it is possible to measure

the prediction error of the fitted model by using the out-of-bag error (OOB error). Because

in the bagging strategy some samples are left out, the OOB error for the random forest

algorithm can be computed as the mean value of the prediction errors evaluated by using

the left out samples on the trees that did not use those samples in the training phase [29].

The OOB estimation is also used to compute variable importance. The variable im-

portance is a measure of how each variable contributes to the predictions made by the

model. When a research question involves high dimensional data (data whose number

of observations is much smaller than the number of features), it is possible that not all

the features initially involved in the search are informative. In order to define which are

the most informative features, it is possible to exploit a feature selection (FS) technique.

The Random Forest algorithm is widely used for classification and regression purposes,

but actually its structure gives the possibility to use it also as a feature selection method.

In particular, the algorithm can be seen as a wrapper feature selection method, because

it automatically computes variable importance while training the model. In the training

phase of the Random Forest, when several decision trees are built, classification rules are

constructed on the basis of the most informative features. A feature is judged as informa-

tive if, according to its value, the algorithm is able to correctly classify an instance. During

training, for each feature is computed a measures of variable importance and that value is

subsequently employed for the identification of the most significative features that are able

to discriminate the input variables in the different classes. There are two types of scores

for the computation of the variable importance in this algorithm:

• the mean decrease accuracy (MDA);

• the mean decrease impurity (MDI).

The MDA measure [26] relies on the idea that the permutation of a non-informative feature

values does not decrease the model accuracy, while the permutation of important feature

values affects it significantly. Model accuracy is computed by using the OOB error. The
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values of each features are randomly permuted in the OOB samples and the difference

between the correspondent OOB error and the one obtained without permutation is com-

puted. The MDA index measured by averaging all the quantities computed all over the

trees.

The MDI measure is based on the fact that each node of a tree in the forest evaluates

a condition on a single feature and splits, according to the results, the ensemble of data

in two different sets. The choice of the variable to be used for the splitting is based on

the local extimation of the split purity. The purer are the subsets obtained after the split,

the more informative is the used feature. The measure of the impurity reduction that

each feature produces can be computed for each tree and than averaged over all the forest.

When the Gini index is used as measure of importance, the metric is also called “Mean

Decrease Gini” (MDG) or “Gini importance” [31].

Beyond the possibility of using Random Forest as a feature selection technique, this

method is chosen, among all the machine learning algorithms, also because it is known for

being robust[47] and having good performances [48] [49]. In this analysis, the features are

the long non-coding RNAs at disposal, while the input instances are the available samples.

The primary samples at disposal are again 14, always divided in two groups according

to the platinum-free interval. In order to obtain more stable results with a such small

number of samples, the feature selection algorithm is repeated several times. Because the

Random Forest uses random variables, in fact, it does not return the same results with

the same dataset all the times. Variability in the results is also given by the high number

of features involved with respect to the number of samples. For this reason, similarly as

before, the number of initial long non-coding RNAs is reduced by discarding the genes

having expression levels lower than 1 in all the samples. The used implementation of the

Random Forest algorithm leaves to the user the setting of the mtry and ntree paramters.

In this case, it is chosen to use standard values for the parameters setting and to define

mtry as the rounded square number of remaining lncRNAs and ntree as 501.

Because the procedure is repeated 10 times, 10 different seeds are computed and saved

for reproducibility. For each one of the 10 seeds, the Random Forest algorithm is run for

training a new model on all the 14 samples and the resulting features rankings are saved.

The metric employed for the assessment of the variable importance is the mean decrease
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accuracy. The resulting rankings of the features for each run and their corresponding MDA

values are reported in the plots below. In each plot, are shown the 30 long non-coding

RNAs having the highest values of mean decrease accuracy.

Once performed several runs of the algorithm, the final set of most informative long non-

coding RNAs is retrieved by applying the major voting technique. The 30 most informative

features of each run are merged together and for each of them it is computed a value

indicating in how many runs that feature was judged as informative. This value is called

“votes”. Features are then ranked in descending order according to this value and from this

rank are extracted the lncRNAs having more than 5 votes. As final result, it is obtained

that 37 long non-coding RNAs are judged as informative in more than half of the cases.

Those lncRNAs and their corresponding votes values are reported in the table 4.2. Those

genes are then visually analysed through a heatmap shown in the figure (figure 4.15).

Gene ID Gene name votes

ENSG00000239653.1 PSMD6-AS2 10

ENSG00000250999.1 RP11-1379J22.5 10

ENSG00000265666.1 RARA-AS1 10

ENSG00000241187.1 CTC-209L16.1 9

ENSG00000259673.5 IQCH-AS1 9

ENSG00000265688.1 MAFG-AS1 9

ENSG00000277423.1 RP11-173P15.9 9

ENSG00000278811.4 LINC00624 9

ENSG00000219023.1 RP3-340B19.2 8

Continued on next page
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Table 4.2 – Continued from previous page

Gene ID Gene name votes

ENSG00000239899.3 RN7SL674P 8

ENSG00000264247.1 LINC00909 8

ENSG00000267834.1 RP11-167N5.5 8

ENSG00000275142.1 RP5-999L4.2 8

ENSG00000282221.1 RP11-27G14.4 8

ENSG00000202058.1 RN7SKP80 7

ENSG00000228274.3 RP3-508I15.9 7

ENSG00000228613.1 AC144450.1 7

ENSG00000229473.2 RGS17P1 7

ENSG00000242170.3 RN7SL329P 7

ENSG00000249159.6 RP11-480D4.2 7

ENSG00000255067.1 RP11-47J17.1 7

ENSG00000260259.1 RP11-368I7.4 7

ENSG00000260597.1 AC012531.25 7

ENSG00000268080.2 RP11-388K12.3 7

ENSG00000268987.1 CTC-435M10.10 7

Continued on next page
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Table 4.2 – Continued from previous page

Gene ID Gene name votes

ENSG00000278075.1 RP11-248M19.1 7

ENSG00000200488.1 RN7SKP203 6

ENSG00000228232.1 GAPDHP1 6

ENSG00000228280.1 RP11-367B6.2 6

ENSG00000231170.5 AC002451.3 6

ENSG00000234115.2 RP11-288G3.4 6

ENSG00000239726.3 RN7SL688P 6

ENSG00000245468.3 RP11-367J11.3 6

ENSG00000255468.6 RP11-867G23.8 6

ENSG00000262265.1 RP5-867C24.4 6

ENSG00000271984.1 RP3-337O18.9 6

ENSG00000277925.1 Telomerase-vert 6

Table 4.2: Most significant lncRNAs obtained with Random

Forest feature selection
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Figure 4.13. Variable importance plots of the first 6 models
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Figure 4.14. Variable importance plots of the least 4 models
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Figure 4.15. Significative lncRNAs obtained through Random Forest feature selection
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The assessment of the model performances is achieved by using the leave one out cross-

validation. The cross-alidation (CV) is a validation method that evaluates the degree of

generalization of a statistical analysis when this is applied to a new independent set of

data. In machine learning algorithms, CV methods are widely used for assessing the model

performances when there are too few data and it is not possible to partition them in a

test and a training sets. Testing a learning model on the same data used for training

it, in fact, leads to over optimistic results [34]. the cross-validation adopts an iterative

behaviour in which the initial dataset is first partitioned in a training and a test sets and

then, the chosen learning algorithm is runned on them. This means that at each iteration

a new model is built and validated. The outcome of each validation is stored and used

for the computation of the final performance. The assumptions of cross-validation are the

independency and the identical distribution of the data (i.i.d.). Without having i.i.d. data,

it is not possible to create independent test sets so it is impossible to correctly evaluate

the model performance. A particular kind of cross-validation is called “leave one out cross-

validation” (or LOOCV), in which, at each step, the training set is created by excluding

one observation from the original set. The correspondent test set, instead, is composed by

the observation left out from the original set. In this way, at each step, mutually exclusive

subsets of data are created. The number of iteration performed by this algorithm is equal

to the number of original data. In this analysis the algorithm is repeated 14 times and

each time the outcome of the prediction made on the test set is saved. In the end, all

the saved predictions are used to compute the performance metrics. In this analysis, in

order to evaluate the Random Forest performances, are computed the ROC curve, the area

under the curve and the confusion matrix.

The confusion matrix (also called “contingency table”) is a squared matrix that have

on one dimension the predicted values and on the other the real values. Each dimension is

divided in a set of classes, which correspond to the possible categorical outcomes. In the

case study proposed in this work of thesis there will be only two classes, so the confusion

matrix will be a 2x2 matrix, like the one in the figure 4.16:
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Figure 4.16. Confusion matrix [36]

Generally, the two classes are called “positive” and “negative”. The terms contained in

the matrix are the following ones:

• true positives, which express the number of cases in which the actual class value was

positive and the case was correctly classified;

• true negatives, which express the number of cases in which the actual class value was

negative and the case was correctly classified;

• false positives, which express the number of cases in which the actual class value was

negative but it was classified as positive;

• false negatives, which express the number of cases in which the actual class value was

positive but it was classified as negative;

From these terms, it is possible to compute some performance measurements. Accuracy is

obtained by dividing the sum of the true positive values and the true negative ones by the

sum of all the real positive values and all the real negative ones. Specificity is computed

by dividing all the true negatives by the sum of all the true negatives and all the false

positives. Sensitivity, also called recall, is computed as the ratio between the true positives

and all the real positives.
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The ROC curve (acronym for “Receiver Operating Characteristic curve”) is a two-

dimensional graphical representation having on the x axis the false positive rate (also

known as “probability of false alarm”, computed as 1-specificity) and on the y axis the

true positive rate (also known as “probability of detection”, the sensitivity). It is a cost-

benefits graph for a binary classifier, in which costs are expressed in terms of false positives

and benefits are expressed in terms of true positives. All the curves in the graph originate

in the point (0,0) and terminate in the point (1,1). The diagonal line y=x is called the

“line of no-discrimination”, the ones that define a classification based on random guessing.

If the curve is below that line, it means that the classification is worse than random; if the

curve is above, it means that the classification is better than random.

Figure 4.17. ROC space

The area under the ROC curve (AUC or better AUROC)[37] is a real number between

0 and 1. It expresses the portion of the graph area that is under the ROC curve, as it is

guessable from the name. Its value is equal to the probability that “the probability that

the classifier will rank a randomly chosen positive instance higher than a randomly chosen

negative instance” [36], assuming that the in the rank the positive instances are above the

negative ones.

For the Random Forest algorithm employed in this thesis, the performance metrics
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computed after the leave one out cross-validation step are the following ones:

Confusion matrix:
X1 X2

X1 4 2

X2 3 5

Accuracy: 0.6429

Specificity: 0.7143

Sensitivity: 0.5714

Figure 4.18. ROC curve

The area under the ROC curve is equal to 0,6122.
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4.4.4 DEG extraction through feature selection - Boruta

The last approach used for the extraction of differentially expressed genes is based on the

Boruta algorithm. This wrapper feature selection method is relatively new and it is chosen

for having something comparable to the previous feature selection step. Also Boruta is,

in fact, based on Random Forest and it also uses the Mean Decrease Accuracy index for

ranking the most informative features. In addition to that, it is known from literature

[41] that this feature selection method is a powerful and stable when applied on omics

data. Feature selection can be used in order to find the smallest subset of features that

ensure the best classification (minimal optimal problem) or to find the complete subset

of features that are relevant for the classification (all-relevant problem)[38]. The Boruta

was designed to overcome the second type of problems. The importance measure of an

attribute on which this algorithm is based is the Z score. This quantity is computed as the

ratio between the average accuracy loss and its standard deviation. For each tree in the

forest, in fact, the loss in classification accuracy obtained by shuffling the feature values

between objects of a tree is computed.

Boruta uses the significance of the Z score values to divide the features in “important”

and “unimportant”. In particular, the steps needed for achieving the attributes selection

are the following ones[39]:

1. The initial dataset is extended with the addition of the copies of the attributes.Those

copies are called “shadow attributes”.

2. The values of the additional attributes are then shuffled to remove their correlation

with the response and the Random Forest algorithm is runned several times on this

new set.

3. For each RF run, the Z score values for both the original and the shadow attributes

are computed. The maximum Z scores among all the shadow attributes is evaluated

and this quantity is called MZSA. A hit is marked for all original features having Z

score higher than the MZSA value.

4. A two-sided test is computed on all the original attributes. The null hypothesis is

that there is the equality between the variable’s importance and the MZSA value.
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For each feature is computed the total number of hits in all the RF runs.

5. The attributes having a number of hits significantly higher than the expected value

are marked as “important” (or “accepted”) in that run.

6. The attributes having a number of hits value significantly lower than the expected

value are marked as “unimportant” (or “rejected”) and are removed from the extended

dataset together with their correspondent shadow attribute.

The procedure is run a predefined number of times and the the stopping conditions are

the following:

• the max number of iterations is reached;

• all the attributes are rejected before the max number of iterations is reached;

• all the attributes are accepted before the max number of iterations is reached.

The Boruta method was adopted with promising results in several bioinformatics studies

[40][41] based on omics data and in particular for gene selection problems. It showed

good computational time, easily interpretable parameters and good accuracy in variable

selection.

As in the previous case, also this time are performed several runs of the algorithm in

order to obtain more stable results. Being based on the Random Forest algorithm, in fact,

also this methods internally sets some random variables and this lead to different results

for different runs on the same dataset. As in the previous approach, the process is repeated

10 times on all the samples and the final results are computed by performing major voting

on the different outcomes. Each run returns as output the gene identifiers of the lncRNAs

that are judged as more informative. The only parameter that can be set by the user

in the Boruta algorithm is the maxRun value (the maximun runs of the Random Forest

algorithm), that in this analysis is set equal to 501.

The major voting is performed on the lncRNAs obtained from the 10 runs. The resulting

long non-coding RNAs are merged together and, also in this case, for each feature (gene),

it is computed the number of times it was judged as informative by the algorithm. This

value is again called “votes” and the resulting long non-coding RNAs are ranked according
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to it. The number of total features extracted from the results of the different runs are 56,

but the number of genes that are judged as informative in more than 1 run is equal to 38.

Those 38 genes and their “votes” values are reported in the table below.

Gene ID Gene name votes

ENSG00000250999.1 RP11-1379J22.5 10

ENSG00000264247.1 LINC00909 10

ENSG00000265666.1 RARA-AS1 10

ENSG00000265688.1 MAFG-AS1 10

ENSG00000278811.4 LINC00624 10

ENSG00000277423.1 RP11-173P15.9 8

ENSG00000202058.1 RN7SKP80 7

ENSG00000242170.3 RN7SL329P 6

ENSG00000239726.3 RN7SL688P 5

ENSG00000239899.3 RN7SL674P 5

ENSG00000234115.2 RP11-288G3.4 4

ENSG00000239653.1 PSMD6-AS2 4

ENSG00000241187.1 CTC-209L16.1 4

ENSG00000243854.3 RN7SL67P 4

Continued on next page
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Table 4.3 – Continued from previous page

Gene ID Gene name votes

ENSG00000253438.2 6 PCAT1 4

ENSG00000255067.1 RP11-47J17.1 4

ENSG00000228274.3 RP3-508I15.9 3

ENSG00000228613.1 AC144450.1 3

ENSG00000244349.1 HCG16 3

ENSG00000261116.1 RP3-523K23.2 3

ENSG00000268987.1 CTC-435M10.10 3

ENSG00000279738.1 RP5-1014D13.2 3

ENSG00000219023.1 RP3-340B19.2 2

ENSG00000228280.1 RP11-367B6.2 2

ENSG00000229473.2 RGS17P1 2

ENSG00000234354.3 RPS26P47 2

ENSG00000244389.3 RN7SL242P 2

ENSG00000259673.5 IQCH-AS1 2

ENSG00000261662.1 RP5-1042I8.7 2

ENSG00000262380.1 CTB-193M12.3 2

Continued on next page
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Table 4.3 – Continued from previous page

Gene ID Gene name votes

ENSG00000265745.2 RN7SL375P 2

ENSG00000267655.1 CTD-2286N8.2 2

ENSG00000267834.1 RP11-167N5.5 2

ENSG00000270558.1 CTD-2124B8.2 2

ENSG00000271984.1 RP3-337O18.9 2

ENSG00000275142.1 RP5-999L4.2 2

ENSG00000276529.1 AP001505.10 2

ENSG00000277925.1 Telomerase-vert 2

Table 4.3: Most significant lncRNAs obtained with the Boruta

feature selection algorithm

The same set of genes is also used, together with the primary samples information and

their correspondent clinical data, as input value for the heatmap shown in figure 4.19.
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Figure 4.19. Significative lncRNAs obtained through the Boruta feature selection method

By examining only the results obtained with the two supervised machine learning meth-

ods, it is obtained that 25 long non-coding RNAs are identified as chemotherapy related by

both the approaches. If are taken into account also the results obtained with the unsuper-

vised clustering and the statistical analysis, instead, the number of common results drops
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to 6. The long non-coding recognized as potentially related to chemotherapy resistance by

all the approaches exploited in this analysis are listed below:

• ENSG00000239653.1, PSMD6-AS2

• ENSG00000250999.1, RP11-1379J22.5

• ENSG00000264247.1, LINC00909

• ENSG00000202058.1, RN7SKP80

• ENSG00000228274.3, RP3-508I15.9

• ENSG00000277925.1, Telomerase-vert
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Chapter 5

Results and Comments

This work of thesis has the intention to present the possibility and the usefulness of using

different analytical approaches for the identification of chemotherapy-related long non-

coding RNAs in patients affected by high grade serous ovarian cancer. In particular, the

approach adopted consists in the employment of an unsupervised technique supported by

statistical processing and two different supervised feature selection methods based on the

Random Forest algorithm. The results obtained with different methodologies are in the

end integrated to increase the confidence level.

5.0.1 Evaluation of the RNA seq analysis

The explorative step of the analysis is conducted just by dividing samples in short platinum-

free interval and long platinum-free interval, by computing the fold change as absolute

difference between the average values of expression levels in the two groups for each long

non-coding RNA and by using the genes having fold change values > 1.2 as input data

for the hierarchical clustering. The results obtained show that samples belonging to the

same patient and the same tissues tend to cluster together. This reveals two things: that

a patients with a lot of samples can potentially drive more the clusterization with respect

to the patients having one or few samples and that the sample’s tissue type influences the

expression levels.

The use of heatmaps combined with hierarchical clustering also reveals the difficulty
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of analyzing in a visual way a huge amount of data. This raises the necessity to reduce

the dimensionality of data. Having a great number of long non-coding RNAs in a single

heatmap leads to interpretational problems and the presence of non informative data may

not reveal the existence of patterns in the dataset. This means that before using visual-

ization methods, it is necessary to preprocess the initial set of data in order to detect the

data that are most informative for the research question.

5.0.2 Evaluation of the decomposed RNA seq analysis

In the core part on the analysis, it is decided to use decomposed data in order to decrease

the variance and to focus only on the information related to the tumoral activity present

in the samples. As already stated in the Materials and Methods chapter, it is also decided

to average the expression levels of the samples coming from the same patients. In this way,

even if the analysis is not performed on the original data, the overall behaviour remains

unaltered.

The results obtained through the statistical processing and the unsupervised clustering

technique reveal the necessity of further investigations. In the statistical analysis, per-

formed with the Mann-Wilcoxon-Withney test and the Benjamini-Hochber correction, in

fact, are obtained high p-values. The high difference between the adjusted p-values and

the significance threshold lead to the impossibility to discard the null hypothesis. It is

consequently not possible to state that the detected long non-coding RNAs are effectively

chemotherapy related or not. The explanation for such high adjusted p-values may be

linked to the small number of samples employed in the analysis. In addition to that, there

is the problem that the Benjamini-Hochberg correction does not take into account the pos-

sible correlations existing among the variables. In this case, variables are long non-coding

RNAs and these can be highly correlated because they can interact with each other and

participate to the same processes.

Because it is not possible to retrieve statistically significant results with this approach,

it is decided to further analyse the long non-coding RNAs with raw p-values smaller than

0.05 and fold change >1 and check if they are correlated with the platinum-free interval by

using the Kendall tau correlation. By examining the Kendall p-values computed for those
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genes and reported in table 4.1, it is possible to see that the majority of the long non-coding

RNAs (21 ou of 29) present Kendall p-values smaller than 0.05. As shown in the correlation

plots in section 4.4.2 of the previous chapter, there is effectively a correlation between the

expression levels in the samples and the number of months in which the patient is free from

the disease after the chemotherapy treatment.

The selected genes are also used as input values for the heatmap in figure 4.8. This

plot shows a good separation between the samples belonging to the “long PFI” group and

the “short PFI” group. The upper dendrogram of the heatmap, in fact, clearly divides

the samples in two groups and, on the basis of the long non-coding RNAs selected, the

hierarchical clustering is able to correctly group 13 samples out of 14. Of course, because

of the small number of samples it is not possible to be sure that the same division would

be kept with a larger dataset.

By considering the divisions in the two groups performed by the hierarchical clustering

algorithm, it is also performed a survival analysis by reproducing a Kaplan-Meier plot. The

graph in figure 4.9 shows a clear distinction between the survival curves of the patients

having low values of PFI and patients having high values of PFI. The distance between

the two curves highlight the difference existing among the two groups: patients classified

as “long PFI” have greater probability to survive for a longer time with respect to patients

classified as “short PFI”. The p-value resulting from the log-rank test has a value of 0.041

and it clearly rejects the null hypothesis for which there is no difference between the two

curves.

Talking about the analysis performed in the supervised approach with the Random

Forest algorithm, from the heatmap in figure 4.15 it is possible to see that the long non-

coding RNAs extracted with the feature selection process are actually able to correctly

divide the samples in chemosensitive and chemoresistant. The exiguous number of samples,

anyway, is a strong limit for the Random Forest approach. Machine learning algorithms

need a relatively big number of data during the training phase in order to produce a good

classifier. In the ROC curve in figure 4.18, it is shown that the general performances of

the algorithm are better than the random guessing (AUC = 0.5), but the results are still

far from the best case. Having such a small dataset on which to perform the training,

the algorithm is not able to learn all the main distinctive characteristics of the data and,
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consequently, it is not able to well classify them.

With the last approach, the one based on the Boruta algorithm, are obtained results

similar to the ones obtained with the Random Forest approach. By looking at the heatmap

in figure 4.19, in fact, it is possible to verify that the patients are divided in the same way

in both the cases. In addition to that, as already mentioned in the previous chapter, the

results of the two methods partially overlaps and they identify 25 common long non-coding

RNAs.

5.0.3 Limitations of the study and comments

The major limitation of this work of thesis is constituted by the number of samples at

disposal. With the available data it is possible to show that different techniques for the

identification of candidate chemotherapy-related long non-coding RNAs are possible, but

further analysis with a larger set of data are still needed. Given the complexity of infor-

mation contained in the dataset, even with a larger number of samples, the combination

of different techniques may be a useful approach for reaching a bigger confidence in the

results. A biological assessment in wet-lab is then needed to definitively validate the iden-

tified chemotherapy-related long non-coding RNAs.

Moreover, it is possible to understand from the analysis that it would be desirable to

have more samples equally distributed with respect to the platinum-free interval variable.
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