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Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative dis-
order, with serious motor and non-motor complications associated. Freezing of
gait (FOQG) is a form of akinesia (loss of movement) affecting 50-80 % of patients
with PD [186]; it has been included among classic characteristics of PD [93] and
represents one of the most disabling symptoms of PD [54]. Current therapies are
highly effecting in ameliorating the symptoms of the disease [50], but their deliv-
ery has to be patient-specific, based on motor fluctuations and progression of the
disease in each patient [192]. Objective home and lab-based methods are neces-
sary in order to gather more information about FOG manifestation, its frequency,
duration, nature, circumstances and response to therapy [155], thus a long-term
monitoring would lead precious benefit. Werable sensors have been recently pro-
posed for providing objective assessment of FOG during the real life [169]. Aim
of this study was the construction of a system capable of automated FOG de-
tection, in order to prove the feasibility of a simple, small and low cost detection
system for home monitoring of FOG episodes in PD patients. Data acquisition
was executed with a commercial smartphone, which included several inertial sen-
sors (e.g. accelerometers, gyroscopes). A total number of 59 partecipants took
part in the study, including PD freezers, PD non-freezers and control sample, lead-
ing to acquisition of more than 3 hours of signal, yet only 15 FOG episodes were
observed. Data processing of acceleration signal was executed offline; FOG was
described and differentiated from other activities through a small set of features,
both in time and frequency domain, and such features were given as input to two
SVM classifiers for a multi-class classification problem. Results were promising,
with sensitivity, specificity and accuracy reaching values greater than 90 %, while
precision was not as good, reaching only 80 %. Despite the smallness of the FOG
dataset does not allow to give the results statistical meaningfullness, detection
algorithm demontrated great ability of generalization and robustness.
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1 Parkinson’s disease

Parkinson’s disease (PD) is a chronic, progressive, neurodegenerative disorder
whose prevalence increases with age. The overall incidence rate was found to be
greater than 17 per 100,000 person-years [85]. PD is characterize by the death of
the dopamine!-producing neurones in the substantia nigra. The main PD symp-
toms are bradykinesia, rigidity, tremor and postural instability [161]. However, a
number of non-motor symptoms (e.g., sleep disturbances, depression, psychosis,
autonomic and gastrointestinal dysfunction as well as dementia) may occur as
well [87] [37]. Current PD treatments aim to increase dopamine levels, with
levodopa being the most used one. Although this drug temporally reverts the
symptoms, it does not prevent disease progression [159]. Many rating scales are
available for the evaluation of motor impairment and disability in PD patients;
Unified Parkinson’s Disease Rating Scale (UPDRS) is the mos uttilised by neu-
rologists to evaluate different aspects of PD.

1.1 Incidence

PD is the second most common neurodegenerative disorder, affecting approxi-
mately 0.3% of people in the world. This value rises to 3% for individuals older
than 65 years, being aging a major risk factor [43]. Mean age at onset is 55 [36],
mean age at diagnosis is 70 both for men and women [182], and the incidence?
ranges from 0.5 per 100,000 in the 30-40 year category to 120 per 100,000 in
the oldest age category (over 70) [182]. After aging, the male sex is the most
prominent risk factor for developing PD at all ages and for all nationalities [45].
Male to female ratios for incidence rates range from 1.37 to 3.7 and generally
increases with age, suggesting that twice as many men than women suffer from
PD [182]. Incidence of PD also seems to vary by ethnicity: highest incidence
was found among Whites and Hispanic [35] [182], while both prevalence® and in-
cidence are lower in Asians than in Whites [130]. It has been observed an increase
of almost 50% in the incidence of both parkinsonism of all types and of PD over
the 30-year period from 1976 to 2005, particularly in men older than 70 years.
This time trend needs to be interpreted with caution. It may be an artifact
due to improved access to care of patients, or to increased awareness of signs and
symptoms of parkinsonism by physicians [160].

1.2 Pathogenesis

Parkinson’s disease is typified by a degenerative process that affetc dopaminergic
neurons in the substantia nigra. How the degenerative processes damages both the
nigrostriatal system and other brain regions is not completely clear. Studies in lit-
erature suggest two major hypotheses regarding the pathogenesis of the disease.
One hypothesis indicate misfolding and aggregation of proteins to provoke
the death of Substantia nigra pars compacta (SNpc) dopaminergic neurons [20],

'neurotransmitter required for a correct movement control [93]
2number of new cases per population at risk in a given time period
3proportion of population with a disease at a specific point in time



while the other proposes the mitochondrial dysfunction and the consequent
oxidative stress [191], including toxic oxidized dopamin species. The pathologi-
cal hallmarks of PD are the loss of the nigrostriatal dopaminergic neurons and
the presence of intraneuronal proteinacious cytoplasmic inclusions, named Lewy
Bodies (LBs) [36]. LBs are a-synuclein inclusions composed of neuro-filament
proteins and proteins responsible for proteolysis. These include ubiquitin, a pro-
tein playing a primary role in targeting other proteins for dejection. Mutations
in the a-synuclein gene are responsible for some familial forms of PD in which
LBs are also observed [37]. It has been shown that parkin? facilitates the bind-
ing of ubiquitin (ubiquination) to other a-synuclein interacting proteins, leading
to the formation of LBs [33]. Ubiquitin-proteasome system (UPS) is a potential
culprit in the development of cell death. The UPS plays an important role for
intracellular proteolysis and several intracellular processes that maintain the via-
bility of cells. Failure of the UPS leads to the abnormal aggregation of proteins
including a-synuclein, which are a major component of LBs. The link between
UPS and neurodegeneration has been reinforced by the discovery of mutations in
genes which code for several proteins belonging to ubiquitin-proteasome system
in PD [37].

1.3 Symptoms

The four main features of PD are tremor at rest, rigidity, akinesia (or bradyki-
nesia) and postural instability. Also flexed posture and freezing of gait (motor
blocks) have been included among classic characteristics of parkinsonism, with
PD being the most common form [93]. Non-motor symptoms are often present
before diagnosis, rise with disease progression and contribute to severe disability,
impaired quality of life and reduced life expectancy. Non-motor symptoms are
often not well recognised and consequently inadequately treated [29]. Some non-
motor symptoms (e.g. depression, constipation, pain, and sleep disorders) can
be improved with nowdays treatments, while others need the administration of
non-dopaminergic drugs. Treatments aim to slow or prevent the progression of
Parkinson’s disease and provide the best hope of treating non-motor symptoms.

1.3.1 Motor

Tremor can manifest in PD patients in different forms:

e Rest tremor is one of the PD cardinal signs; is often asymmetric, shows
moderate amplitude and frequency ranging from 4 Hz to 6 Hz. It is caused
by an agonist-antagonist alternate contraction pattern [39]. Typically, it
disappears with action and during sleep [93].

e Reemergent tremor represent an action tremor which manifest few seconds
after the transition from rest to posture and has a frequency content similar
to that of rest tremor.

4component of a multiprotein E3 ubiquitin ligase complex which in turn is part of the

ubiquitin-proteasome system



Essential tremor [39)].

Dystonic tremor [167].

Exaggerated physiological tremor [75].

Postural tremor is more prominent and disabling than rest tremor and some-
times is the first manifestation of PD [94].

Almost always tremors are prominent in the distal part of an extremity. Tremor
frequency ranges from low (4-5 Hz) to high (8-10 Hz) [80]. Pathophysiologically,
tremor is linked to altered activity in the basal ganglia circuit, which is affected by
dopamine neurons breakdown, and the cerebello-thalamo-cortical circuit, which
is also involved in many other tremors [80]. Tremor is not correlated with other
PD motor symptoms, such as bradykinesia and rigidity; the magnitude of tremor
is not related to the lack of dopamine and does not respond readily to dopamine
treatment [76]. Studies in literature indicate tremor to be a marker of benign
Parkinson’s disease [86]. The occurrence of rest tremor varies among patients and
with disease stage. Clinically, tremor is seen in 75 % of patients with PD. Both
thermocoagulation and deep brain stimulation provide good to excellent tremor
control [80].

Rigidity is defined as an increased resistance during passive mobilization of a
body extremity [10], and is one of the main hallmarks of PD. PD rigidity is typi-
fied by increased muscle tone, reduced distension to passive movement, increased
resistance to stretching [156]. The increase of rigidity during voluntary movement
of other body part and during stretching is a feature that helps differentiating PD
rigidity from spasticity, which worsens during fast displacement [5]. Similarly to
tremor, no direct correlation has been shown between dopamine deficiency and
rigidity [156]. The mechanism underling PD rigidity has been suggested to include
changes in the passive mechanical properties of joints, tendons, and muscles, and
abnormalities in peripheral sensory inputs that may influence the response to
muscle stretch [157].

Bradykinesia represents the slowness of a performed movement and is the
symptom that best correlates with dopaminergic deficiency [53]. Akinesia and
hypokinesia refers respectively to a poverty of spontaneous movement (e.g. in
facial expression) or associated movement (e.g. arm swing during walking) and to
the low amplitude of movement [13] [93]. Potentially, bradykinesia could be due
to slowness in programming or executing movements, given some instructions [47].
However patients with PD demonstrate intact motor programmes but have diffi-
culties in movement performing without an external trigger, which may be a loud
noise or a visual cue requiring them to overcome an obstacle [93]. Although mus-
cle weakness and other PD motor symptoms may contribute, the principal deficit
was found to be the insufficient recruitment of muscle fibers during the initiation
of movement [13]. In current clinical practice, the assessment of bradykinesia is
carried by observing the slowness and the amplitude of movements during the



execution of rapid, repetitive, alternating movements of the hand and heel tap-
ping [93].

Postural instability is due to the loss of physiological postural reflexes and
commonly manifests in advanced stages of PD, after the onset of other clinical
features [93] [21]. Together with freezing of gait, it is the most common cause of
falls and leads to high risk of hip fractures [188]. It also may contribute to limi-
tations in gait and decreased mobility [21]. Many studies have indicated rigidity,
dystonia, abnormal processing of proprioceptive signals [42], abnormal spatial cog-
nition, and side effects of treatment drugs [27] as causes of postural instability.
Abnormal postural response is clinically accessed through the pull test, in which
the clinician quickly pulls the patient backward by the shoulders and quantifies the
degree of retropulsion: if patient takes more than two steps backwards or does
not show postural response, this indicates an abnormal postural response [93].
Treatment (dopaminergic therapy and deep brain stimulation) can improve some
axial signs but usually does not robustly improve postural instability [112].

1.3.2 Neuropsychiatric

Depression is a very common condition in patients with PD, with prevalence
between 20 % and 70 % [73] [154]. Depression in PD manifests as losing inter-
est, sleep and appetite, decreased energy and motivation, sadness and thoughts
of suicide [87]. Prevalence of Anxiety disorders is higher in PD patients than
age-matched controls (prevalence >40 %) [183] and seems to be related with the
motor fluctuations [118]. Dementia in PD may manifests in advanced stages.
Although PD patients demonstrate cognitive slowing and impaired memory re-
call, recognition memory remains intact [17]. Hallucinations occur in PD, more
frequently in the advanced stages. Psychosis and visual hallucinations are com-
mon, dose-dependent adverse effects of dopaminergic medications, together with
disease progression and medical illnesses [40]. Risk factors include advanced age,
presence of dementia, and polypharmacy. Sleep disturbances are common in
PD patients. Because of depression and/or hallucinations, patients may become
restless at night and have difficulty falling asleep. Higher risks for pathologic
sleep include male gender, advanced stage of the disease, cognitive impairment
and drug-induced psychosis [174].

1.3.3 Other

Orthostatic hypotension induces position-related dizziness, which often leads
to falls in PD patients, fatigue or even fainting. This symptom may not manifest
as a major problem until later stages [68]. Dopaminergic medications may even
worsen the symptoms [101]. Gastrointestinal symptoms are a common problem
in PD. Dysphagia represents a major risk for polmonite ab ingeris, which is a
one of the most common causes of death in PD patients [100]. Constipation is
the most common problem and often is one of the early signs of PD, even before
the appearance of the motor symptoms [147]. At least 59 % of PD patients suffer
from constipation as compared with 21 % in age-matched non-PD patients [98].



Nausea affects many PD patients suffering of the side effects of levodopa or other
PD medications. Irregular peristalsis is due to the stimulation of dopaminergic
receptors, especially receptors of gastrointestinal tract [87]. About one patient
out of three experiences incontinence, due to a spastic bladder [190]. Severity
of bladder dysfunction is has been correlated with the progression of PD [189].
Finally, patients, particularly those taking dopaminergic medications, may become
obsessive and compulsive in gambling, shopping, spending or even sex [87].

1.4 Management

Parkinson’s disease is typified by the loss of dopaminergic neurons in the sub-
stantia nigra. The course of the disease follows the progressive degeneration of
the remaining dopaminergic neurons [153]. Until fifty years ago, ablative surgery
to the controlateral thalamus was used in patients with severe tremor. Surgical
treatment has than been replaced by levodopa, a dopamine-replacement ther-
apy highly effective in improving the symptoms of the disease; it is nowdays the
standard drug for PD treatment [50]. The introduction of stimulators provided
a further development. Deep brain stimulation (DBS) allows specific electrical
stimulation of basal ganglia instead of an irreversible lesion. DBS aims to re-
duce bradykinesia, tremor and rigidity; bilateral subthalamic stimulation also
reduces drug-related motor complications [97]. This can produce dramatic bene-
fit. Dopamine agonists® and monoamine oxidase (MAQ)-B inhibitors® have been
found to relief motor symptoms of PD and lead to a low risk for motor complica-
tions [166]. The MAO-B inhibitor selegiline, if administrated early in the course
of PD, has been shown to improve PD motor symptoms and activity of daily liv-
ing (ADLs) score, and the effects persist up to 7 years or more [92]. Although
dopamine agonists are not as effective as levodopa, they have demonstrated
reduced risk of diskinesias [72], and this may be realeted to their longer half-
life, compared to levodopa [161]. Current medical and surgical therapies for PD
are symptomatic and lack significant disease-modifying effect [161]. At present,
there is no proven neuroprotective therapy, and only symptomatic treatments are
available [37]. The choice of the therapy has to take into account several factors:

e The age of the patient.

The presence of cognitive impairment.

Additional medical conditions.

e Compliance of the patient.

Treatment is carried out in the initial stage to ameliorate symptoms and to allow
the patient to be fully independent. Of fundamental importance is that treatment
is well tolerated by patient. Since life expectancy, from diagnosis to death, in
patients with PD is 17 years [81], a long-term treatment strategy is needed for
most patients, and this should be discussed with the patient at an early stage.

5compound that activates dopamine receptors

Sclass of drugs that inhibit neurotransmitter degradation, including dopamine, thus increas-
ing their concentration in the CNS



1.4.1 Levodopa

Levodopa (L-3,4-dihydroxyphenylalanine) is the metabolic precursor of dopamine
and is combined with carbidopa’ for reducing the induced side effects (e.g. nau-
sea) and maximizing levodopa transport into the CNS [119]. Levodopa-based
treatment led to a significant improvement in both the quality of life (QoL) and
life expectancy of patients, although it does not revert disease progression [81]. It
represents the most effective drug treatment for Parkinson’s disease [37]. Effective-
ness of levodopa decreases with disease progression [144] and long-term therapy
frequently leads to severe side effects. Levodopa-induced dyskinesias are the most
common ones, occurring in more than 50 % of PD patients within 10 years from
starting levodopa treatment [28], with pulsatile administration and higher doses
being sources of motor fluctuations. For this reason, continuous dopaminergic
delivery is necessary in order to minimize motor complications in PD [192]. The
time at which the adverse events manifest strongly depends on the severity of
dopaminergic neuron loss at the introduction of levodopa [168].

1.4.2 Deep Brain Stimulation

Deep brain stimulation is the most common surgical therapy for motor compli-
cations in advanced stages of PD and has demonstrated to be effective in symp-
tomatic PD therapy [19]. Benefits provided by DBS are more constant and pre-
dictable, compared with pharmacological therapy [48]. Stimulation of the sub-
thalamic nucleus (STN) was found to reduce motor symptoms of PD, such as
dyskinesias, bradykinesia, akinesia, and tremor [143]; it also reduces dopamin-
ergic drug posology [48]. DBS requires an electrode to be inserted through the
skull to stimulate the globus pallidus (GPi), STN, or thalamus. A device, similar
to a pacemaker, is implanted under the skin and wires connect the device to the
electrode. Effective frequency for STN or GPi stimulation has been indicated to
be above 100 Hz [187]. The most evident results of this therapy are the reduction
of “off” time, increased “on” time without dyskinesia manifestations, reduction
of required levodopa dose, and improved tremor [161]. DBS therapy is used for
advanced stages of disease, when motor complications have led to an dramatic
reduction in quality of life.

1.5 Rating scales
1.5.1 Hoehn and Yahr scale

The Hoehn and Yahr scale (H & Y) is a widely used clinical rating scale for
PD, which determine large categories of motor functioning. It is simple and of
easy application, capturing typical features of progressive motor impairment, and
providing general assessment of disease progression. It ranges from stage 0 (no
signs of disease) to stage 5 (wheelchair bound or bedridden unless assisted). HY
stages have been found to well correlate with progression of motor complications,
reduction of QoL, and neuroimaging studies of dopaminergic loss [64]. However,

Taromatic amino acid decarboxylase (AADC) inhibitor



its semplicity and lack of detail ignore other specific aspects of motor deficit, and
provides no information about non-motor symptoms of PD. Main focus of this
scale are the unilateral versus bilateral manifestations of motor symptoms and

impairment of postural reflexes. A modified version of HY is often used.

Hoehn and Yahr Scale

Modified Hoehn and Yahr Scale

1: Only unilateral involvement, usually with
minimal or no functional disability

2: Bilateral or midline involvement without
impairment of balance

3: Bilateral disease: mild to moderate dis-
ability with impaired postural reflexes; phys-
ically independent

4: Severely disabling disease; still able to
walk or stand unassisted

5: Confinement to bed or wheelchair unless
aided

1.0: Unilateral involvement only

1.5: Unilateral and axial involvement

2.0: Bilateral involvement without impair-
ment of balance

2.5: Mild bilateral disease with recovery on
pull test

3.0: Mild to moderate bilateral disease; some
postural instability; physically independent

4.0: Severe disability; still able to walk or
stand unassisted

5.0: Wheelchair bound or bedridden unless
aided

Table 1: Hoehn and Yahr Scale

1.5.2 UPDRS

The Unified Parkinson’s Disease Rating Scale (UPDRS) is the rating scale most
employed in current clinical practice to evaluate several aspects of PD, including
disability and impairment [64] [150]. It consists of a questionnaire divided into 4
parts: non-motor aspects, motor aspects, motor examination and motor compli-
cations; in each part, a score ranging from 0 to 4 is given to each item. Validity,
reliability, wide utilization, application across all stages of the disease and wide
coverage of motor and non-motor symptoms, make UPDRS the most established
rating scale for Parkinson’s disease [159]. Ambiguities, lack of enough detailed
instructions [63] and poorness to detect small changes [93] led to the necessity of
the development of a new version of the UPDRS. In 2001, the Movement Disorder
Society (MDS) commissioned a revision of the scale, resulting in a new version,
termed the MDS-sponsored UPDRS revision (MDS-UPDRS). The new scale had
to keep the strenghts of the previous one, modify not enough clear items and add

some new items in order to cover a wider spectrum of features and aspects of the
disease [66].



2 Freezing of Gait

2.1 Introduction

Freezing of gait (FoG) is a form of akinesia (loss of movement) that affects 50-80
% of patients with Parkinson’s disease [186]; it is one of the most disabling symp-
toms of PD [55]. It is defined as a ”brief, episodic absence or marked reduction of
forward progression of the feets despite having the intention to walk” [141] [142],
with different features being dominant: ”shuffling” steps, ”trembling” legs or aki-
nesia [163]. Patients commonly describe this phenomenon as feeling that their feet
7are glued to the ground”. It can affect various extremities but also the face [93].
The consequences of FOG include high risk of falls [15] [93], reduced functional
independence and quality of life [122] [141]. FOG occurs while turning, during the
initiation of gait (start hesitation), in narrow spaces, on reaching a destination
(destination hesitation) and sometimes during walking in an open space [55] [164].
However it is frequently experienced during turning or step initiation. It can also
be triggered by emotional stress [57], environmental constraints [58], dual task-
ing [16], and directional change [172]. The duration of FoG episodes is between
0.5 s and 40.5 s (7.3s £ 6.7s), with 50 % of FoGs lasting for less than 5.4 s and
93.2 % shorter than 20s [114]. Between 20-28 % of patients in the early stages
of PD report to have FOG [55] [177]. In the later stages, this number increases
up to 80 % [103] [82]. It occurs more frequently in men than in women and less
frequently in patients in which the main symptom is tremor [108]. Risk factors
for the development of freezing include the presence of the primary PD symptoms
such as rigidity and bradykinesia [55] [30]. FoG occurs more commonly with in-
creased PD duration, increased disease severity, and long duration of levodopa
treatment [127] [103]. Episodes are most common and more severe in the OFF
state and are mitigated by levodopa therapy [93] [163]. When it occurs during
the ON period, it does not usually respond to dopaminergic therapy, but patients
treated with selegiline have been found to be at lower risk [59]. Less well recognized
types include "unresponsive FOG”, which is indifferent to changes in dopamin-
ergic medication [16]; ”pseudo-on” FOG, seen during a seemingly optimal ”on”
state, but which nevertheless improves with stronger dopaminergic stimulation;
and "on” FOG, induced by dopaminergic medication [107].

2.2 Assessing FoG

FOG assessment is challenging for several reasons:
e It is an episodic phenomenon [172].

e [ts observation may require the use of triggering tricks, such as increased
cognitive load, as in dual tasking, or stressful situations, such as reacting
under time pressure [83].

e FoG may disappear during the examination due to the patient paying extra
attention to gait [172].



e Cognitive [137] and affective factors [44] contribute to the episodic nature
of FoG.

Assessing FoG is difficult also beacause of the great variability of its man-
ifestations among different patients. Several parameters lead to such variability,
including: severity of the disease, motor state ("On”/”Off”), visual input, re-
sponse to variable tricks, and relation to specific gait patterns such as gait initia-
tion or turns, cognitive factors (e.g. attention, anxiety and stress) [49]. The poor
correlation of reported FoG with observed FoG during the clinical exam makes
it difficult to assess this symptom observationally. Only long-term observation,
carried during daily activities, can provide a reliable assessment of FoG. Conse-
quently, researchers have usually to rely on patients’ self-reports for quantification

of FoG.

2.2.1 Subjective methods

Rating scales

To date, a number of different scales are available to assess FOG [133]. However,
the adequacy of these scales in terms of reliability and validity has never been
demonstrated. The UPDRS or the Movement Disorder Society(MDS)-UPDRS
(UPDRS Part II, item 14: Activities of Daily Living) [65] qustions the patient
about the presence and severity of FOG during On and Off states. This is nec-
essary if the examiner is not allowed to perform a levodopa challenge. Knowing
if the patient has dopamine-responsive, dopamine-resistant or dopamine-induced
FoG is critical for further management [140]. The UPDRS questionnaires does
not allow to finely characterize the features of FoG, neither to get details about
number of episodes experienced and their duration.

Questionnaires

Apart from MDS-UPDRS items regarding FOG, two validated questionnaires
exist: the original Freezing of Gait Questionnaire (FOGQ) [60] and a new version
of the former (NFOGQ) [138]. The NFOGQ aims to measure the severity of FoG,
asking patients about its frequency of occurrence and intensity, duration of the
longest FoG episodes, and reported impact on QoL and ADLs. However, the
questions only concern gait initiation and turning, during which often FoG occurs
[165], not considering start and destination hesitations, neither FOG episodes in
narrow spaces. Moreover, no distinction is made between FoG in the On and/or
Off states. Despite the Gait and Falls Questionnaire (GFQ) is not specific enough
for FoG assessment [56], it covers a larger range of FoG triggering circumstances
and ask patients about the longest FOG episodes experienced and about a typical
FoG episode, information that may help for therapeutic adjustments.

Diaries

Since FoG is a phenomenon most commonly experienced at home [136], assess-
ing FoG in a person’s home environment may provide detailed information about
experience of episodes in the patient’s daily life [139]. If patients and caregivers are
informed by clinician about which FoG features need to be recorded, a carefully



structured diary may provide important information about the frequency of FOG
episodes, most exposed time of day, and possible triggering circumstances [120],
and whether the episode resulted in a fall. This informations could lead to drug-
therapy and DBS settings adjustment [51]. Drawbacks of a diary include the
more subjectivity of the reports, compared to questionnaires, and the fact that
only patients with intact cognitive functionality can keep diaries, thus reducing
the possibility to record all FOG episodes, especially for later stages of PD. Diaries
should hence be combined with other assessment methods.

Clinical examination

It has the goal to objectively verify the presence of FOG, assess its severity,
responsiveness to pharmacological therapy, and understand triggering circum-
stances. The MDS-UPDRS III FOG item assesses the severity of FoG through
a 0 to 4 scale, with FoG episodes happening during straight walking (that is a
rare case) considered to be more severe than FoG occurring during turning, step
initiation or walking in a narrow space [67]. However, a single item is not sensi-
tive enough, and also it does not consider the duration of the episodes. Clinical
examination of freezing typically includes 360 degree turns, walking back and
forth, stops on command, walking though narrow spaces, dual motor-tasking, and
cognitive dual tasking. Caution is required since such tasks may lead to falls.
Sometimes, despite these FoG provocation tasks, known freezer patients do not
experience any FoG.

The episodic nature of FOG may make difficult its assessment through ob-
jective methods, leading to a wide use of subjective assessment methods (e.g.
diaries) [84]. Objective home and lab-based methods are necessary to gather
more information about FoG and realize how it varies during the course of the
disease [54]; test its response to levodopa [165], clinical manifestation [141], trig-
gering circumstances (start hesitation, turn and destination FOG, shuffling for-
ward with short steps) [172], relation to cognitive dysfunction [83], and association
with postural instability and falls [16].

2.2.2 Objective methods

Lab assessment

It is required for research on specific effects on FoG. The FoG event(s) can
be video-recorded [51] for offline rating by clinician, which is the current gold
standard for assessing the severity of FoG [128]. Assessment technology can be
synchronized, including motion capture systems, inertial sensors [178] or pressure-
sensitive insoles, aiming to detect shorter FOG episodes which may be missed by
clinicals [194], as well as abnormal gait parameters in the just-prior phase of an
episode. Video recordings are used to augment observational gait analysis and
provide simultaneusly multiple angle views of the patient while executing tasks
or experiencing FOG. Force plates measure the force applied to the ground by
patient’s feet. They measure also the acceleration force and the force directed
mediolaterally. The current clinical solutions for motion sensing involve the use
of an optical motion-capture system, which consists of multiple synchronized
cameras, markers attached to specific body location, and computer software that

10



acquires and process the motion of such markers during walking. EMG sys-
tems are used to measure muscle activities while walking, a process referred to
as “dynamic EMG”. It aims to verify the presence of right and useful control,
determining whether the activity of muscles is phasic or not, with well defined
on and off periods. This above determines the timing and intensity of the EMG
during gait cycles, informing neurological control and muscle integration [31]. An
advantage of assessing FoG in a lab environment is that it allows to assess pa-
tients in both On and Off state [105]. Testing a patient in the Off state increases
the probability of detecting FoG and allows one to appreciate the effect of medi-
cation and its time course. However, lab testing is not suitable for assessing FoG
longitudinally. The monitoring process is carried out in a controlled environment,
while it is well known that many patients experience the most severe FoG episodes
while at home, often due to distraction or inattention to walking [11]. For this
reason, lab data should supplemented by information achieved though the use of
questionnaires, such as the NFOGQ or a home-based assessment.

Home assessment

At present, FoG has been analysed with several systems and sensors, but some
settings can only be used in a laboratory (pressure platforms, EEG [78], EMG,
knee-joint goniometers [38], camera and video systems). Thus, since PD moni-
toring has to be ambulatory and should acquire data for several hours in order
to provide useful clinical information [146], many studies have employed wearable
technology. The application of non-invasive systems to monitor ADLs and the
PD symptoms experienced at home, during daily life may lead to a more accurate
and objective evaluation of FoG. It could be possible to monitor the evolution of
the disease and to better adjust patients therapy plan [155]. Many different types
of sensors have been employed for this purpose. The largely employed method
to objectively detect FoG is based on wearable motion sensors, as they are un-
obtrusive and portable, and provide the best way to evaluate FoG episodes in
patients’ own homes [155]. Inertial sensors use is a promising method for a more
objective assessment of FOG. Most sensor setups involve accelerometers and/or
gyroscopes [7] [115] [117]. The recording of gait abnormalities just before of be-
tween FOG episodes [185] allow a full description of the FOG events [34].

2.3 Acceleration data for FoG detection
2.3.1 Werable sensors for human activity recognition

Werable sensors (WS) applied to human activity monitoring can provide use-
ful and detailed information about patient’s mobility while outside hospital and
clinical settings [26]. The collected data provide qualitative and quantitative in-
formation about patients disability and its progression, which can be analyzed
by engineers and whose results could be very useful for clinicians. Quantifica-
tion of human motion and energy expenditure [14] [4], for example, may lead
to a new and better management of cardiovascular diseases, obesity, diabetes
and other widespread diseases [148]. Accelerometers and gyroscopes are small,
lightweight, affordable, low power and low cost sensors employed both in clinical
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and in home environment, with the aim of a long-term monitoring of patients [62].
The provided acceleration signal could be used to distinguish some specific activity
types [9], gait parameters [173] (e.g. walking speed, step cadence, regularity) [111],
balance and posture transitions [113], rehabilitation progress [90] and detection
of falls [18].

An accurate identification and tracking of the activities of patients with motor
disabilities can eneble better treatment plans. Parkinson’s disease represents an
ideal target, since it responds to an increasing variety of treatment options, includ-
ing drugs and various exercise therapies [69]. An objective analysis of symptoms
both in the clinic and at patient’s home may provide functional measures highly
correlated with quality of life [46]. Specific activity recognition systems have been
developed for the elderly [132], individuals with muscular dystrophy [95], and even
PD [158].

Figure 1: Acceleration plots for the six activities along the z-axis that captures
the forward movements. All six activities exhibit periodic behavior but have
distinctive pattern. Ref [12]
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Figure 2: Acceleration signals from five biaxial accelerometers for running and

tooth brushing. Ref [8§]

2.3.2 Werable sensors for gait disturbances detection

Analysis of the human gait has recently gained a considerable interest, focused
on achieving objective measurement of the several parameters characterizing gait.
Its application field vary from sports [70] to security purposes [171], and also
medicine, since some aspects of people quality of life may be associated with
changes in gait patterns [176].

In medicine, it could be useful to monitor the evolution of different diseases
[176]:

e Neurological diseases, especially multiple sclerosis or Parkinson’s;
e Systemic diseases such as cardiopathies;

e Stokes

e Aging correlated disease.

Monitoring and evaluation of gait characteristics over time may allow an earlier
diagnosis of the disease and analysis of its complications [131]. WS systems aim
to capture information about the human gait during patients ADLs. They use
sensors located on several parts of the body, such as feet, knees, thighs or waist.
Different types of sensors provide different characteristic evaluation of the human
gait. These include accelerometers, gyroscopes, magnetometers, force sensors,
extensometers, goniometers, active markers, EMG and EEG [131]. Human gait
analysis is of crucial importance since gait disorders are widespread woldwide and
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represents an important motor complication in many neurodegenerative disorders
such as multiple sclerosis, SLA or Parkinson’s disease, but also cerebellar ataxia,
brain tumors, myopaties. Gait deficiency has been linked to several gait features,
in elderly people [99]. PD patients suffering from FOG have been found to show
gait abnormalities such as higher gait variability and less solidity, compared to
non-freezers [186]. Accurate reliable informations concerning gait features over
time, will enable clinicians to find the most suitable treatment [131].
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Figure 3: Example of AP waist acceleration (AP-W) of typical gait cycles from a
healthy subject (a) and (b) a child with Cerebral Palsy. Ref [32]

2.3.3 FoG detection

Long-term monitoring of FoG could provide crucial information to neurologist,
not possible to obtain in a lab environment and having little time. Symptoms
are commonly not evident in the clinical environment [135], making it difficult to
assess FoG. Thus, a wearable device capable of ambulatory monitoring FoG could
lead to precious benefits: from the clinicians point of view, it could provide further
information about the disease progression, and this can lead to an improvement
of the treatment [162]. From the patient point of view, it has been demostrated
that patients are able to improving gait in case specific stimulations are provided,
including haptic, visual or auditory cues [106], thus real-time FoG detection may
avoid some episodes and, consequently, avoid falls [6]. A great variety of wearable
sensors have been recently proposed for providing objective assessment of FoG
during the real life [124] [61]. There is yet little agreement concerning the type
of sensors to use and their number, location on the body, protocols for data
acquisition and signal processing algorithms.

e The types of sensors embedded in the devices worn by the participants
vary. Tri-axial accelerometers are the most used, either as a single sensor
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[1] [152] [195], or combined with gyroscopes [77] [41], or magnetometers [34]
[116].

e Both one location and a combination of two or more locations have been
used. The shin [34] [41] and waist [194] [24] were the most common location
on human body, and could be used as single location. When two or more
locations were explored, sensors were placed also on feet [126], knee [96],
thigh [7], chest [180] or wrist [115].

e Experimental protocols include TUG (timed up-and-go) tasks on a stan-
dardized 5-m course [25] [126], walking tasks (e.g. walking back and forth,
turn) with or without FoG provocation (e.g. walking in straight lines and
passing through narrow spaces, walking across crowded halls, negotiate some
obstacles) [7] [115] [125] or dual tasking (e.g. carrying a full glass of water
while walking) [1] [77], unconstrained ADL simulated in laboratory [7] [1]
or at patient’s home [181] [155]. Video recordings of patients while data
acquisition were used by all studies, with videos labeled by clinicians.

Smartphones are convenient and easy to use; contain several sensors and enough
computing power, together with expandable storage space. Thus, smartphones
nowadays represent an alternative to dedicated hardware in medical applications
requiring wearable assistants [117] since they have several internal sensors used
for motion analysis, including accelerometers, gyroscopes and magnetometers. An
evident benefit is given by the fact that users do not have to buy additional
hardware, since usually they own a smartphone. Smartphones were used in
many studies for different purposes: assistants in fitness monitoring [22], heart
rate monitoring [2], gait recognition [134], or to promote wellbeing [104]. Also,
many human activity recognition (HAR) systems have been recently developed
for smartphone use [52] [26] [12]. Smartphone use in FoG detection was recently
explored [25] [77] [117], achieving performances comparable to other studies.

2.3.4 FoG acceleration signal charateristics

Acceleration signals during FoG episodes show different patterns, amplitude and
frequency content, based on body location of the accelerometer sensor. Further-
more, there are several different types of FoG (e.g. FoG while walk initiation,
turning or reaching a destination), as partially shown in figure 5, and the charac-
teristics of signal vary among such types [124]. However, there are some known
specific properties that differentiate the sensor data during FoG episodes from
normal walking (figure 16¢ shows also movement patterns just before FoG); the
gait of patients with FoG also differs between freezing episodes, compared to pa-
tients who do not experience FoG [79]. A feature joining together all kind of FoG
episodes, independently of sensor location, is a large increase in the signal energy
in the 3-8 Hz frequency band [123]. All other features, such as mean and standard
deviation of the signal, its pattern variability, and the exact frequency content de-
pends on several aspects, including patients weight, medication state, disease stage
and episode circumstances (e.g. narrow spaces, obstacles, open space). Features
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able to well differentiate FoG acceleration signal from other motor activities will
be descibed in the next chapters.
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Figure 4: An example of an accelerometer signal, on the three acceleration axes,
that captures the motor variations in the gait of a patient with Parkinson’s disease.
Ref [114]
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3 Data acquisition for FoG detection

The modalities of data acquitition should be accurately identified and some choices
have to be made prior the starting of this process: which sensors to use, based on
which physical quantities to be measured; sample composition, with its dimen-
sion and variability being of fundamental importance; the experimental protocol
require to be accurately choose, considering which is the purpose of the study and
at the same time taking into account its duration, execution semplicity, and its
feasibility in all places where data has to be acquired.

3.1 Smartphone sensors characteristics

Smartphone sensors characteristics, in terms of sample frequency, range and reso-
lution, were analyzed in order to check if the smartphone was a suitable device for
data acquisition, taking into account the activities involved in the protocol and
the location of the device on human body.

e Sensors sample frequency has to respect the Nyquist sampling theorem,
thus having value at least equal to twice the maximum useful frequency
in the signal. The activities executed during the protocol (e.g. walking,
turning, standing) have different frequency band, with walking band lying
in 0-3 Hz and signal during FOG episodes in 3-8 Hz [1] [117] [125] [25].
Anyhow human activity acceleration signal lie in the 0-20 Hz band [146]
[23] [184] [151], thus a sample frequency of at least 40 Hz has to be set.

e Acceleration signal amplitude range depends on considered direction, lo-
cation of sensor and body weight. Considering a waist-mounted sensor,
acceleration amplitude during walking lie in the range + 1lg, increasing to
+ 2g during running [71] [129], with g being the gravitational acceleration.

The table below shows smartphone sensors charateristics, which prove the suit-
ability of the device for data acquisition.

Table 2: Smartphone sensors charateristics

Sensor type Range Resolution | Sample frequency

Accelerometer +2¢g 4-10% g 200 Hz
Gyroscope + 349 rad/s | 1,1- 10 rad/s 200 Hz
Orientation 360° 1° 200 Hz

Many smartphone applications have been developed recently for visualize
and record data acquired by smartphone sensors. The one used in this study
allow to select all desired sensors for data recording and save recordings in a CSV
exportable format. The application also allows to record composite inertial sig-
nals, such as linear acceleration, linear angular velocity and linear orientation,
which involve the use of a combination of multiple inertial sensors yielding com-
posite single output. Since gravity affects in different proportion inertial signal
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components, depending on relative axes orientation, and since smartphone ori-
entation can change during protocol execution, it was considered appropriate to
record linear inertial sensors data, in order to remove gravity influence on output
signals. Linear acceleration is calculated as the difference between accelerometer
and gravity sensors output for each axis and involve the use of both accelerometer
and gyroscope, while linear orientation uses data from accelerometer, magnetome-
ter and gyroscope. Data record file contains the following information for each
line:

Session ID: unique number ID identifying data acquisition session. All sam-
ples with the same session ID belongs to the same participant.

e Sensor name: specify wich kind of sensor data is taken by.

Value: 3-element vector containing sampled data in the three space dimen-
sions.

Timestamp: unix timestamp® relative to the sample.

3.2 Sample charateristics

A total number of 59 partecipants were included in this work. The study involved
two different samples: the first was made of 38 subjects with Parkinson’s disease,
with and without past experience of FOG events, while the second consisted of
21 healthy subjects, in terms of neurological disorders, and used as control set.
Measurements on control sample were taken at ”Orfanelle” nursing home - Chieri
(To) while data acquisition on PD subjects was carried out at Center for Parkin-
son and Movement Disorders - Molinette hospital (To) and ” Associazione Amici
Parkinsoniani Piemonte Onlus” (To). Geriatricians and neurologists selected par-
ticipants to be involved in the study, for control and PD sample respectively, and
provided clinical information about patients. Subjects with vision problems, de-
mentia and other neurological disorders (apart from Parkinson) were excluded.
Subjects needing gait assistence (e.g. walking stick, crutch) were included in the
study. Participants were informed about the execution of the test and the pur-
pose of the study, and gave informed consent prior to their inclusion in the study.
General information about all participants were noted anonymously; information
about disease stage and duration were also obtained for PD partecipants.

A sample containing such groups (control, PD freezers, PD non-freezers) was
considered useful both in this study and in future works for the following reasons:

e Increase gait variability for the training of the classifier, in order to obtain
a robust system.

e Apply FOG detector system also on control and PD non-freezer groups, to
verify that no FOG events were detected (false positives).

e Compare Parkinson’s and control group’s gait, in terms of symmetry, regu-
larity, frequency content, step cadence and other features.

8it is defined as the number of seconds that have elapsed since 00:00:00 UTC, 1/1/1970
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e Compare gait of parkinsonian subjects who used to experience FoG in ev-
eryday life and PD subjects who did not.

e Study gait alterations, asymmetries and balance both in control and in
Parkinson’s group.

Table 3: Control sample charateristics

Age (years)
mean =+ std
21 28.6 85.6 £ 7.2 42.8

Number of participants | Gender (% male) Gait assistance (%)

Table 4: PD sample charateristics

Age (years) | Disease duration | H&Y stage

mean =+ std mean =+ std mean =+ std Gait assistance (%)

Participants | Gender (% male)

38 66.7 70.7 £ 8.2 9+438 2.5 +0.8 21.1

3.3 Positioning and protocol

A single location on waist was chosen for data acquisition, due to the following
reasons:

e It is confortable, compared to other body locations (e.g. shin, shank, tigh,
ankle).

e [t is close to the body center of mass, thus better representing body move-
ment [193].

e [t allows to monitor other sympthoms of Parkinson’s disease, such as bradyki-
nesia and dyskinesia [146].

e It is one of the most suitable placements for detecting FoG [155] [1], leading
to high detection performance [195], comparable to those achieved with
multiple location sensors [170].

A smartphone belt was used to secure smartphone on partecipants waist, at
lower back level, with elastic band ensuring the adherence of the smarthone to
the body.
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Figure 6: Smartphone belt, smartphone position and reference axes

Experimental protocol consisted on a standard 6-minutes test. This test
provides a physical performance measure of functional capacity [8] and has gained
clinical acceptance due to its ease of setting up, administration, patient tolerance,
reproducibility and similarity to requirements of patient function and participa-
tion. It is now also used in clients with cerebral palsy, stroke, multiple sclerosis
and Parkinson’s disease [175]. Participants were asked to walk back and forth
along a hallway for 6 minutes with a waist-mounted smartphone recording iner-
tial data. Participants quit the test if not able to continue. Length of the ride
was set to 10 meters in order to ensure repeatability in all places were data had to
be recorded. Different from all the other studies in literature, no video recording
was carried out, and a chronometer was run at the same time of data recording
start; FoG, festination and hesitation episodes were annotated in time. Also gait
asymmetries were noted down.

A final consideration has to be done, regarding sample and protocol selection.
Four main factors rise the possibility of getting only a small number of FoG events
during data acquisition on PD participants:

e No selection on disease stage was done, thus including in the study also
participants with mild motor symptoms.

e No selection based on FoG history was done, thus including also participants
who have not experienced FoG.

e Most participants were in ”daily On” state while data acquisition, thus
reducing the chances of detecting FoG events.

e No FoG provocation test was included in the protocol.

3.4 Labeling

Since the classification for FoG detection was intended as a multi-class problem,
labeling of different activities was executed offline. A Matlab user interface was
used for the purpose, labeling each activity (walk, turn, stand, FOG, hesitation,
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others) through a vector of the same length of the signal and containing different
numbers (e.g. 1 for walk, 2 for turn, etc) associated to each sample. Data from
all three axes of accelerometer and angular velocity around x axis were used for
better distinguish activities. Figures 7, 8 and 9 show signal after labeling: label
vector is plotted in red, with different heights representing different activities;
signal of gyroscope representing angular velocity around x axis is plotted in black,
ensuring higher accuracy and temporal resolution in activity recognition process.
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Figure 7: User interface used for signal labeling. Signals relative to walking and
turning phases are shown.

Figure 7 shows walk (left side) and turn (right side) labeling, executed ob-
serving that during turning:

e Vertical and antero-posterior components show lower amplitude.
e Vertical and antero-posterion acceleration peaks are no longer in phase.

e Medio-lateral component become predominant among all components, in
terms of amplitude.

e Angular velocity around vertical direction shows different shape and its
mean value increases.

21



Signal Acceleration
T

oyl "W’n ?"‘"ﬂp‘ﬂl "'"lb?

il

’ vlmlﬁﬁ
F

2+
4
6
1 1 1 | | | |
155 16 165 1.7 1.75 1.8 1.85
[ walk ] [ turn [ stand ] [ fog ] [ fog2 l [hesitatinn] [ none }
‘ - ’ - ’

Figure 8: User interface used for signal labeling. Signals relative to walking and
a FOG episode are shown.

Despite FOG episodes were annotated, for a better temporal resolution, la-
beling (as shown in figure 8) was realized noting that during FOG events:

e Both acceleration and angular velocity signals lose their periodicity.

e Frequency of all signals rises significantly.
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Figure 9: User interface used for signal labeling. Signals relative to turning and
a hesitation episode are shown.

Also hesitation episodes were annotated during data acquisition and labeled
offline. Hesitation was found mostly during turning, leading a longer duration
of turning phase, with movements slowing down until a new walking phase was
started. As shown in figure 9, hesitation differs from turning in the following
features:

e Vertical acceleration peaks amplitude decreases.

e There is a lack of marked forward progression, as the antero-posterior ac-
celeration component does not show marked and differentiated peaks.

e Angular velocity around vertical direction shows a lower mean value, indi-
cating a decreased turning velocity.
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4 Detection system

The FoG detection algorithm was realized in Matlab environment. First, acceler-
ation signals were filtered, visualized and analyzed, both in time and in frequency
domain, in order to extract some features considered capable to differentiate the
signal relative to FoG episodes from all the others. Second, the obtained features
were used to train two SVM classifiers, capable of distinguish movement from
stand and FOG from other movements, respectively. Finally, the built algorithm
was tested on different samples and performance was evalueted. A brief explana-
tion of how SVM works is provided at first, since it is useful for understanding
some steps of preprocessing and training phases.

4.1 Algorithm block diagram

| ALGORITHM CONSTRUCTION | | ALGORITHM APPLICATION |

[Actviy exaction |
| Features extraction | | Segmentation and Features computation |
| Segmentation and Feature computation l
l l | L-0-O validation |
I Feature selection |

I Performance evaluation

Figure 10: Algorithm block diagram.

4.2 SVM classifier

Support vector machine (SVM) is a supervised machine learning algorithm, com-
monly used for binary classification problems but also easily expandable for multi-
class classification. A brief explanation of how this algorithm works is reported
below. For semplicity, the two-dimensional case is considered. FEach data item
(red dots and blue stars in the figures below), intented in this study as a temporal
window of acceleration signal, is represented as a point in n-dimensional space,
with n being the number of features used for signal characterization and with the
value of each coordinate being the value of each feature.
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SVM algorithm aims to find the
hyperplane that best segregates
the two classes, leading to the
lowest missclassification rate
possible. Thus line B will be
choosen.

If more than a hyperplane meets
the previous requirement, the
one with the highest margin is
selected, meaning the one with
the greater distance from the
nearest data points of the two
classes. Line C will be selected
in this case.

SVM ignores outliers, thus the
hyperplane with the highest
margin will be choosen also
this time, allowing missclassifi-
cation and thus accepting errors.
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In case of non-linearly sep-
arable data, as in figure (a),
it is mnot possible to find a
plane separating the two classes.
Hence SVM use a kernel func-
tion which transforms the initial
space into a higher dimension
one, as in figure (b). In this
way, not-separable problem is
converted into a separable one,
thus allowing to find the division
hyperplane.

The classificator memory and computational time expensiveness [121] was not
considered as a major issue, since the training phase had to be executed offline on a
personal computer. The decomposition of the multi-class problem into several two-
class problems [109] was achieved using only two classifiers, avoiding an excessive
duration of the training and testing phases [109]. The selection of the SVM for
the classification problem was due to the following reasons:

e Since SVM classifiers are devised to obtain high performance for unlearned
data [102], they have the highest recognition rate among many known
classifiers [109], leading to a very accurate detection system [179].

e The high generalization capability of the algorithm leads to a desired clas-

sifier robustness [74].

e SVM was used as classifier in many studies for activity recognition [110] [3],
FOG detection [155] [1] and monitoring of other PD motor symptoms,
such as bradykinesia and diskynesia [146] [159] [181].
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4.3 Algorithm construction

4.3.1 Input data

As explained in the previous section, acceleration signal for each partecipant was
labeled, with each activity being marked for easy extraction and separation from
the others. Algorithm construction required sufficient amount of acceleration data;
the more variability was in the input data and the more robust the algorithm
would have been. Variability is intended as different signal pattern, shape, ampli-
tude and frequency content shown by different participants while performing the
same activity. The larger is the number of participants involved and the more vari-
able is the input data for the algorithm construction. Acceleration data from all
PD participants, both freezers and non-freezers, was loaded and separated based
on activities: all signals from different participants relative to the same activity
were concatenated, in order to obtain four signals relative to the four activities
performed during the protocol (walk, turn, stand, FoG). The final input data was
a 4-dimensional cell array, with each dimension being the acceleration signal from
all participants and related to the same activity. All the three components of
acceleration signal were kept.

4.3.2 Filtering

Bandpass filtering of the input signals was considered necessary. High-pass fil-
tering was executed in order to remove gravity component [12], align the three
components of acceleration signal (vertical, medio-lateral and antero-posterior)
and avoid that any small smartphone displacement could affect the mean value

of the signal. Low-pass filtering was done for removing possible high frequency
noise [155] [91].

Signal before filtering Signal after filtering

sofF T T T T T T T T — P T T T T T T

Vertical Vertical
Medio-lateral Medio-lateral
Antero-posterior Antero-posterior

acceleration [m/52]
acceleration [m/sz]

. . . . \ \ \ \ \ \ \ \ . \ \ \ \ . \ .
3.08 3.09 31 311 312 313 314 315 316 317 308 309 31 311 312 313 314 315 3.16 317
samples <10 samples <104

Figure 11: Comparison between signal before and after bandpass filtering.

Cutoff frequencies have to be selected taking into account the band of interest
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of the signal. As discussed in the previous chapter, locomotor acceleration signal
lies in the 0.5-3 Hz band while signal during freezing shows frequencies up to 8-10
Hz [7] [124]. An IIR Butterworth filter of order 10 with cutoff frequencies of 0.4 Hz
and 15 Hz was designed, according to other studies [89] [12] [152] [149]. Such filter
order ensured a minimal attenuation of signal with frequency content below 0.2
Hz of a 103 factor, a minimal attenuation of factor 102 for signal with frequency
content over 22 Hz and no alteration of the signal in the band of interest.

Magnitude Response (dB)
T T

8
T

Magnitude (dB)

Magnitude Response (dB)
T T

05
Frequency (Hz)

Figure 12: Frequency response of the designed filter. High (a) and low (b) fre-
quency responses are showed.

4.3.3 Features extraction

Features are any extractable measurement, evaluation or judgment on input data.
Classification of signals using a feature-based algorithm requires characterization
of the signal with a set of features. Feature extraction aims to build a set of
derived values, called features, that attempt to fully describe the input signal,
with each feature providing a piece of information. A wide literature research
led to the definition of a set features, both in time and in frequency domain, and
other features were defined by looking at signal shape, symmetries, amplitude and
repetivity in time domain and frequency content band and shape. Acceleration
signal in the three space directions was segmented and features computed on each
time epoch (window); this process will be better described in the next section.
Features, both found in literature and built in this study are listed below and a
brief description is provided.
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Features in the frequency domain

Power spectral density (PSD) of acceleration signal is shown in figure 13, allow-
ing to understand the differences of the acceleration signal in the frequency domain
during different activities. Despite the overlapping of the frequency bands, power
spectral density shows different magnitude and shape, leading to identify a set
of features that well differentiate the signal during FoG episodes from the signal
during the other activities. PSD shows a shift toward high frequencies for
FoG signal, compared to other considered activities.

PSD z axis

frequency [Hz]

Figure 13: Power spectral density of antero-posterior acceleration signal for dif-
ferent activities.

e Power in the freeze band and locomotor band are respectively higher
and lower for FoG signal than for walk signal (as shown in figure 14), thus
leading to the selection of such features [124] [7].

e The ratio between the first and the second feature leads to the definition of a
new feature, called freeze index (F1I), which is probably the most important
one for FoG detection [25] [145] since it shows much higher values during
FoG episodes than in all the other activities.

e A feature similar to freeze index was used in this study. It was obtained as
the percentage of signal power lying in the 3-10 Hz band.

e Total power is also considered as a valid feature in many studies, since it
allows to distinguish FoG from volitional standing [117] [116] [145].

e In this study, also the frequency value corresponding to the PSD peak was
added in the set of features.
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f [Hz]

Figure 14: Power in locomotor (0.5-3 Hz) and freeze (3-8 Hz) band for FoG and
walk vertical acceleration signals.

0

e Kurtosis? and skewness'? are considered useful for the spectral distribu-

tion characterization [155].

e Spectral entropy!!' aims to provide an estimation of signal’s frequency
content irregularity and disorder.

Features in the time domain

e Entropy in the time domain provide a measure of the distribution of fre-
quency components [117] [114].

e Correlation among each pair of axes gives information about linear rela-
tion between acceleration signal components, which is useful for detecting
normal/continuous gait [155].

9
10

measure of the deviation from the normal distribution
measure of lack of simmetry of the distribution
HUmeasure of lack of order or predictability
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Figure 15: Accleration signals for different activities. All three components of the
signal are shown.

e Standard deviation of signal amplitude on each axis indicates the amount
of movement performed in a window time [155].

e Number of signal peaks over a certain threshold, computed in each time
window and with a threshold set in this study equal to 0.8 times the standard
deviation of signal amplitude, could well differentiate walk and FoG signals.
For this reason, this feature was used in this study.

e Zero crossing rate gives a measure complementary to the previous one,
counting number of times the signal crosses the zero axis. FoG and standing
should show higher values of this feature, compared to walk and turn.

e The ratio between zero crossing rate and number of peaks was
thought to be a stronger feature in case of not enough reliability of the
previous ones.
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Figure 16: Vertical acceleration signals during walk (a), turn (b) and FoG episodes
(¢). Zero level and standard deviations are shown respectively in black and red.

4.3.4 Segmentation and feature computation

FoG detection requires the input acceleration signal to be segmented into windows
of the same size, with or without overlap, and features must be computed in each
time window. Window size and overlap between windows have to be set taking
into account the distribution of FoG episodes duration, the sensitivity and time
resolution desired, and the possible real-time implementation of the algorithm.

e Literature studies found 50 % of FoG episodes to last less than 5 s [7] [117],
with the majority of them (>90 %) lasting less than 20 s [126] [7] (as shown
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in figure 17). In this study, FoG duration was found to be <5 s in 80 %
of the cases, with only two episodes lasting more than 10 s.

Histogram of FOG event durations

Mumber of FOG events

- L B -

5 10 15 20 25 30 35 40 45
FOG length in seconds

Figure 17: Histogram of FoG episodes duration. Ref [7]

e Optimal window size was found to be twice the duration of the shortest FoG
event to be detected [124], and an increase of window size would show a low-
pass filter effect. Smaller window size reduces both the specificity [126]
in signals without FoG and the sensitivity for short-duration FoG episodes
detection [124].

e The wider the window is, the lower the time resolution will be in identi-
fying FoG episodes duration, as figure 18 shows.

Vertical
Antero-pasherion i

=
—
I~
o
v
L —

Figure 18: Increasing of windows size leads to a layer uncertainty in FoG duration
determination. Black box represents FoG episode length while red and green boxes
represent FoG episode detected by algorithm for two different settings of windows
length, 1 s and 2 s respectively.

e Possible real-time implementation of the algorithm leads to take into account
the latency, meaning the time between a FoG episode starting and the time
when the system detects it, which is proportional to the window size [117].
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e Window size and overlap found in literature ranged from 1 s to 4 s and from
10 % to 50 % respectively [115] [25] [155] [117] [7] [114].

All the considerations above led to the selection of a 2 s window length for
algorithm construction, considering such length as a good compromise between
sensitivity and time resolution. Overlap was set to 50 %, ensuring a temporal
resolution of 4+2s. Other differents window sizes were explored at the end of
algorithm construction and performance were evaluated and compared each other.
This will be discussed in the last section of this study.

Features computing was performed as follows: features descibed in the pre-
vious section were calculated for each time epoch (2 s-window) and for the three
acceleration signal components, and were differentiated based on the activity re-
lated to input signal. Power spectral density was estimated using Welch’s method.
Values of features were calculated using Matlab functions (e.g. std, wentropy, kur-
tosis, findpeaks) and system objects (e.g. ZeroCrossingDetector). At the end of
the process, each feature was represented as a cell array, with each cell dimen-
sion representing a different activity. The content of each cell dimension was a
3-colums numeric matrix, with each row being an observation and each column
a component of signal (vertical, antero-posterior and medio-lateral), that is the
value of the feature in each window of the signal. All features were computed in
this phase and their ability to detect FOG was evalueted in the feature selection
part.

4.3.5 Feature selection

Feature Selection (F'S) aims to select a minimal number of relevant and infor-
mative features from the initial set of variables. A feature is said to be relevant
if it is essential to obtain good performance. An informative feature is one that
is highly correlated with the target class but is highly uncorrelated with other
features. The benefits of feature selction are:

e Improving prediction performance.

e Decreasing the complexity of the model.

Facilitating data visualization.

Reducing the measurement and storage requirements.
e Reducing training and utilization times.

In this study, supervised feature selection was used, thus aiming to select the
minimum set of features necessary to discriminate which class the objects belong
to. This means that the dataset used for FS contained not only the features
characterizing each element, but also the information about their class.
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Boxplot is a method used in descriptive statistics for graphically represent-
ing groups of numerical data through their quartiles'?. Outliers'® are plotted as
individual points. The distance between minimum and maximumum value and
between first and third quartile indicate the degree of dispersion in the data.

O = Qutlier

e Maximum

<= 3 Quartile

)= Median

Interquartile Range

<= 1%t Quartile

e Minimum
Figure 19: Box plot representation and description.

Boxplots of feature values for different classes (activities) are able to provide a
qualitative measure of the goodness of a feature, with better features correspond-
ing to that show well separated ranges for different classes. For each feature,
boxplots for the different activities were visualized and analyzed, searching for
features that best differentiate the classes. The distance between boxplots of dif-
ferent activities lead to a good differentiation; on the contrary, an overlapping of
feature boxplots means that such features are not meaningful for class prediction,
with the amount of overlap being a measure of that.

12The first quartile (Q1) is defined as the middle number between the smallest number and
the median of the data set. The second quartile (Q2) is the median of the data. The third
quartile (Q3) is the middle value between the median and the highest value of the data set.
Bobservation that lies outside the overall pattern of a distribution
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Figure 20: Boxplots of kurtosis (a) and skewness (b) for the three components
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Figure 21: Boxplots of entropy (a) and spectral entropy (b) for the three com-
ponents of the acceleration signal. Neither features was found to be meaningful
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Figure 22: Boxplots of power in locomotor band (a) and in freeze band (b)
for the three components of the acceleration signal. Also these features are not
suitable for class differentiation, due to the overlap of boxplots and to the high
number of outliers.
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Figure 23: Boxplots of PSD peak frequency value (a) and number of peaks
of the signals (b) for the three components of the acceleration signal. Boxplots
of these features for the z component (antero-posterior acceleration) show high
distance between FoG episodes and walk/turn, appearing a good feature for dif-
ferentiation of such activities. Furthermore the number of outliers is very small,
making these features robust. Overlap with stand boxplot has to take into account
and new features have to be used in order to separate these two classes.
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Figure 24: Boxplots of standard deviation of amplitude (a) and total energy
of the signals (b) for the three components of the acceleration signal. This features
could be useful for differentiation between FoG episodes and stand. The distance
between their respective boxplots allows a separation between these two classes,
and this is true for all three components of the signal.

x freeze index y freeze index z freeze index x freeze ratio y freeze ratio z freeze ratio
+ T - - ™
16 ¥ % 01, i I £ - 7|02 71 o9 5
¥ | ! 08 =00 5 T |
14 T | | = "L
| 20 | T || 08 I | 0.8
+ 0 ES 1 ;! | |
| i | 07F 1| T £
12 1] 15 ! ! I o7t ! 1
| | | | . 0.7
I = I (I I | s
10 : [ T . 28 I | by
4. 1 P 1 06 i (lasr# 1
e | 1ol ! 05 o T
8 | | | . | | 1 |
8z ; 10 | || 05 0.5 l
= ! 10 0.4 | 1 ! I :
Il [ : T 1] o4 0.4 |
+ oalT |1 : | "
4 Bl & ! 03t | 0.3 i
i st =+ Lo | {
2 i ozf ! 1 [T |
Q | | 021
T & . : | P! Loy
0 1 i 01f 1 + | X
0 0 1 ? o1l L i
2
walk turnstand fog walk turnstand fog walk turnstand fog wak turnstand fog walk turnstand fog walk turn stand fog
(a) (b)

Figure 25: Boxplots of freeze index (a) and freeze ratio (b) for the three
components of the acceleration signal. Boxplots of freeze index in all three axes
show a small margin between FoG and walk/turn and a great overlap with stand
boxplot. Freeze ratio, meaning the ratio between power in freeze band and total
power, show higher margin on y and z component (respectively medio-lateral and
antero-posterior acceleration) and no overlap on y component, thus making this
a more suitable feature than the previous one.
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Figure 26: Boxplots for zero crossing number for the three components of the
acceleration signal. Boxplot of FoG on z component (antero-posterior) show high
margin from walk and turn boxplots, thus highlighting the ability of this feature
to well differentiate FoG from walk/turn.

All the considerations listed above led to the selection of a small number of
features, identifing two sets of features for two different purposes, thus with each
set feeding a different SVM.

e Total power and standard deviation of amplitude, for all the three
components of the signal, were chosen with the aim of differentiating
movement (walk, turn, FoG) from standing.

e The antero-posterior component of frequency value corresponding to
PSD peak, number of peaks, zero crossing rate and both antero-
posterior and medio-lateral component of freeze ratio were selected for
further separating FoG from walking and turning.

Nevertheless, also other features were taken in consideration, for a possible im-
provement in classificator performances, and will be add in the feature set if a
benefit will be shown in training and test phase.

4.4 Algorithm application
4.4.1 Signals organization and concatenation

The purpose of this process is to exploit the maximum possible amount of vari-
ability in the acquired data, keeping at the same time a moderate size of input
data, avoiding excessive duration of all phases involved in algorithm application.
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e From each PD participant, 15 s of signal relative to each activity performed
(walk, turn, stand) were extracted, with 15 s of signal being considered
typical enough to represent all signal.

e Extracted signals from all PD participants were concatenated together,
in order to get a signal database relative to walk, turn and stand, and
representing all acceleration signals acquired (as shown in figures 28, 29, 30
and 35).

e Acceleration signals relative to FoG events show excessive disparity in dura-
tion (as shown in figure 27). Shorter signals were self-concatenated, in order
to reach the longest FoG event signal duration. This process aimed to give
the same weight to all FoG events, exploiting the maximum variability
and avoiding neglecting of singles and shorter FoG events (these could be
considered as outliers by the SVM classifier).

e Obtained FoG signals were concatenated together, thus obtaining a single
FoG signal, representative of all FoG events.

e Obtained FoG signal was self-concatenated in order to reach the same size
of the signals relative to the other activities.

FOG episodes duration

number of episodes
()

2 4 6 8 10 12 14 16 18 20
duration [s]

Figure 27: Histogram of FoG episodes duration. Most of episodes last less than 7
s, with only two episodes lasting between 16 and 20 s.
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Figure 28: Walk acceleration signal obtained from the concatenation of 15 s of
walk signal from each PD participant.
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Figure 29: Turn acceleration signal obtained from the concatenation of 15 s of
turn signal from each PD participant.
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Figure 30: Stand acceleration signal obtained from the concatenation of 15 s of
stand signal from each PD participant.

acceleration [mis?]

Figure 31: FoG accelerations signal obtained from the concatenation of all FoG
episodes.

4.4.2 Training and test

Since no feature was able to distinguish FoG events from all other activities, two
different SVMs were built: one of them suitable to distinguish movement from
stand signals; the other able to detect FoG, differentiating it from other activities
(walk, turn). Training and test phases required the same preprocessing (filtering,
windowing and feature computing) done for algorithm construction.

42



Two SVMs were trained using two training sets, and required two different

processes:

1. °

All signals relative to movement (walk, turn, FoG) were concatenated
and classified as belonging to the first class (movement); stand signals
only composed the second class.

The two signals were made of the same size, self-concatenating the
shorter signal.

The set of features computed was that able to differentiate mov-
ing windows from standing windows (total energy and standard
deviation of amplitude for all three components of signals). Despite
acceleration signal may show reduced amplidude during some turning,
hesitation and FoG, the amount of movement performed is sufficient
greater than that during standing; the features above well capture this
characteristic.

The first SVM was trained with such training data and was able to
distinguish acceleration signal relative to movement from signal relative
to stand phases.

Walk and turn signals were concatenated together and composed the
first class (movement non-FoG); FoG signal only composed the second
class.

The two signals were made of the same size, self-concatenating the
shorter signal.

The set of features computed was the one able to detect FoG, differ-
entiating it from walk and turn (z component of number of peaks, zero
crossing rate, frequency relative to PSD peak, y and z component of
freeze ratio).

The second SVM was then trained with the resulting training data and
aimed to distinguish FoG events from other activities.

Table 5: Training input data.

Activity | Number of participants | Total duration (min)
Walk 38 9.5
Turn 36 8.5
Stand 22 17
FoG 6 1.1

The system was first tested on signals non-containing FoG events, in order
to evaluate system performance in terms of specificity. Signals from control and
PD non-freezers were preprocessed and given as input data to the detection
system. A leave-one-out approach was used for validation of detection system
on FOG events. This process led to the training of the classifiers using all walk,
turn and stand signals, and n-1 FoG events, with n being the total number of
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FoG events in the dataset; subsequent testing phase was realized on the single
FoG episode excluded in the training. Performance in terms of sensitivity could
be analyzed.

Finally, the algorithm was tested on PD freezer subjects who esperienced FoG
during data acquisition. Sensibility, specificity, accuracy and precision were eval-
uated for each patient and mean values and their standard deviation were com-
puted.

Table 6: Test input data.

Sample Number of participants | Total signal duration (min)
Control 21 83
PD non-freezers 33 119
PD freezers 5 18

4.4.3 Performance evaluation

In this study, true positives (TP) were the windows relative to FOG events that
have been detected by the system; true negatives (TN) were the windows relative
to other activities (walk, turn, stand) that the system did not identified as FoG.
False positive (FP) were the windows detected by the system but actually non
containing FOG events; false negatives (FN) were the windows containing FoG
but not detected by the system.

e Sensitivity, expressed as TPTJF%, measures the proportion of actual FoG

windows that are correctly identified as such.

e Specificity, expressed as %, measures the proportion of non-FoG win-
dows (walk, turn, stand) that are not identified as FoG by the system.

TP+TN
e Accuracy, expressed as 75 TTNiFpTFN easures the percentage of the cor-

rect classified windows out of the total windows.

e Precision, expressed as TPZ%, measures the ability of the system to dis-
criminate FoG from non-FoG events.

Specificity was computed as follow: the detection system was run on accel-
eration signals relative to control and PD non-freezers partecipants; the number
of FP was computed counting the number of windows identified as FoG by the
system; the number of TN was calculated as the difference between the total num-
ber of windows and the number of FP; specificity was then computed as the ratio
between TP and the total number of windows.

Sensitivity was computed as follow: detection system was run on all FoG sig-
nals, extracted from PD freezers partecipants; the number of TP was calculated
counting the number of windows detected by the system; number of FN was the
difference between the total number of windows and the number of TP; sensitiv-
ity was then calculated as the ratio between TP and the total number of FoG
windows.

Accuracy and Precision were obtained with formulas listed above.
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5 Results and discussion

The results of algorithm application were worked out on different test sets as
follow:

1. Algorithm was tested on control set (partecipant not suffering from Parkin-
son’s disease);

e every detected window was classified as a false positive;

e the number of true negatives was computed as the difference between

the total number of windows and the number of false positives obtained
before;

e specificity was computed and resulted in 99.93 %.

FoG detection
T

Acceleration [m/s?]

Figure 32: Example of a false positive found in control set.

2. Algorithm was tested on PD non-freezers set ;

e every detected window was classified as a false positive;

e the number of true negatives was computed as the difference between

the total number of windows and the number of false positives obtained
before;

e specificity was computed and resulted in 99.44 %.
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Figure 33: Example of a false positve found in PD non-freezers set.

3. Algorithm was tested on PD freezers set ;

e number of true positives, false negatives and false positives were com-
puted;

e the number of true negatives was computed as the difference between
the total number of windows and the sum of the number of false neg-
atives and the number of true positives obtained before;

e sensitivity resulted in 100 % while specificity was 94.6 %.

e accuracy was found to be 95.5 % and precision was 79.8 %.
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Figure 34: Example of a true positive (TP) and false negative (FN) found on
PD-freezers set.

4. A leave one out validation was performed on FOG events: it consisted in
training the classifier with all walk, turn and stand signals, and n-1 FoG
episodes, with 'n’ representing number of FoG episodes, and testing on the
remaining single FoG episode. For this purpose, shorter FoG signals were
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self-concatenated in order to reach a reasonable length. Detection rate
resulted in 100 %.

5. Time resolution in determining the duration of a FoG episode depends on
the length of the windows used for the detection. Since 2 s-windows were
used in this study, with overlapping equal to half-window size, it has been
expected to have a maximum error of 1 s (half-window size) both at the
beginning of the episode and at the end, thus leading to a time resolution
of 2 s.

FoG detection

Acooleration [mvs?]
o

Figure 35: An example of result of application of FOG detection system. Red
square indicate FoG episode; black line represent the result of the testing phase of
the algorithm. Signals to the left and to the right of FoG event concern respectively
turn and walk. Time resolution in determine the FoG duration is in this case
about 1s.

Table 7: Performance of the classificator.

Sample Performance Value (%) | Total windows

Control Test Specificity 99.93 4980

PD non-freezers Test Specificity 99.44 7140
Specificity 94.6
Sensitivit 100

PD freezers Lt Accuraeyy 95.5 200
Precision 79.8

L-0-O validation | Detection rate 100 65

Finally, different window sizes were set and new phases of training and test
were executed on each participant’s set, as done for the 2 s-windows. Results were
obtained using the same data and classifiers as before but setting windows size
equal to 1 s, 3 s and 4 s. Performance obtained with a 3 s window was very close
to that obtained with a 2 s-long window. Both sensitivity and specificity were
significantly lower for a 1 s window (92 % and 84 %, respectively). Specificity
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only was significantly lower for a 4 s window (75 %), and short-duration FoG
were not detected.

Discussion
Performance of the built classifiers proved to be promising.

Only turning FoGs were observed in this study, thus the suitability of the
built algorithm for other FoG types has to be evalueted in future works,
when additional FoG data will be included in the dataset.

On control and PD non-freezers sets, despite the great variability in the
activities execution, the number of false positives was found to be extremely
low, thus providing a very high specificity, which was considered essential
for the purposes of this study. This is an evidence of high generalization
capability of algorithm, which provided optimal performance, in terms of
specificity, on samples not included in the training set.

On PD freezers set, sensitivity, specificity and accuracy showed values over
90 %, despite gait abnormalities and greater variability have been found on
PD freezers subjects, compared to non freezers [186]. Precision demostrated
not excellent result, partially due to the small number of FoG episodes de-
tected; This represent an issue that could be easily overcome including in the
dataset new partecipants experiencing several FoG episodes of considerable
duration (4 s at least).

Leave-one-out validation, executed for FoG episodes, was done in order
to prove the robustness of the detection system, evaluating FoG episodes
that were not used for the training of the classifier, and demostrated optimal
results.

Analysis of algorithm performance, setting different windows size, suggests
that a 3 s-long window could also be employed, given that it ensures similar
performance of a 2 s-long one; however, such choice would lead to a worse
time resolution in identification of FoG duration, and the minimum duration
of a FoG episode, required to its detection, would increase.

The large number of partecipants involved in the study has led a great bene-
fit, providing great variability and statistical meaningfulness of performance
obtained both on PD non-freezers and control set.

The small size of the FoG dataset, however, is still a huge problem;
further FoG episodes have to be included in the dataset, for consolidating
the algorithm and giving statistical meaningfulness to the results obtained
on PD freezers set, and possibly increasing precision of the system.

Finally, despite algorithm has demonstrated a good generalization ability,
a patient specific training would certainly ensure better performance, in
terms of precision. This way the system would be able to learn specific gait
patterns and FoG manifestation characteristic of the specific subject, and
consequently adjust classificator settings.
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6 Conclusion

An automated detection system for identification of FoG episodes, their duration
and time of day manifestation would lead precious benefit to patients suffering
from Parkinson’s disease. Home monitoring of FoG would provide fundamental
information, useful for monitoring of disease progression, motor fluctuations dur-
ing the day, and for understanding patient response to drug-therapy, thus making
clinicians able to adjust the treatment in a objective, reliable and patient-specific
way. The algorithm built in this study demostrated excellent results, robustness
and high ability of generalization, despite the poorness of FoG episodes detected;
including some more FoG episodes in the dataset would make the algorithm suit-
able for an implementation in a home environment. At the moment, patient may
have two or more sessions of data acquisition during the day, executing the same
protocol as done in this study; the data acquired would be analyzed at the end
of day and information about FoG episodes could be collected. For a costant and
long-term monitoring of patient performing activities of daily living, instead, new
data has to be collected, regarding all the set of activities the patient performs
during his everyday life. Furthermore, a patient-specific training of the classi-
ficator would surely lead to an increase in performace of the detection system,
obtaining a even more reliable tool useful both for clinicians and for patients. At
last, a real-time implementation of the algorithm may be possible, given the sem-
plicity and the rapidity of execution of the proposed algorithm (processing time
for a 10 s signal resulted in less than 0.5 s). Yet, considering time of data trasmis-
sion and actuation of some kind of cue (e.g. auditory, haptic ), the use of an
object oriented programming, together with a programming language faster than
Matlab C, would certainly reduce the latency from FoG episode manifestation to
its detection.
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