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Abstract

In the present thesis a hybrid theory [Shorter and Langley 2005b] for calculation of Coupling

Loss Factors (CLFs) in hybrid Finite Element Method (FEM) / Statistical Energy Analysis

(SEA) modelling is applied to a hybrid line junction, with the aim of providing a derivation

example. The case study is chosen to be a hybrid line junction composed by a rigid beam

modelled with FEM, which couples two incident SEA plates coincident to the beam along

one of their edges. The theory allows to obtain the Coupling Loss Factors from the Stiffness

Matrix of the deterministic subsystems and the Direct Field Dynamic Stiffness Matrix of the

statistical subsystems. Most of this work is focused on the derivation of the plate’s Direct

Field Dynamic Stiffness under the assumption of semi-infinite plate, explaining in detail the

reason why such a hypothesis can be reliable when computing the CLFs, and its resulting

benefits. Three possible methods for the derivation of the direct field stiffness in modal

coordinates are proposed using Green’s Functions, wavenumber modal transformation and

defining complex-valued shape functions in the wavenumber domain for a Galerkin method,

which has consequences on the symmetry of the stiffness. Results for the CLFs are shown

and compared between the different derivations of the direct field stiffness.
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1 Introduction

In chapter 2 the thesis begins with a quick review of the most used numerical methods in

vibroacoustics, explaining their features at different frequency ranges and values. Determin-

istic FEM and BEM methods are summarised and compared, SEA method and its governing

parameters are introduced, paying particular attention to the Damping Loss Factor, Modal

Density and Coupling Loss Factors formulation. The need of hybrid methods is introduced

from the inadequacies of deterministic and statistical methods.

In chapter 3 the Hybrid FEM/SEA method used in this implementation is reviewed defining

the configuration of the model organised in deterministic and statistical subsystems. The

diffuse field reciprocity relationship is derived in detail, as well as the procedure for the

calculation of the Hybrid Coupling Loss Factors and the Hybrid Reverberant Power Balance,

writing the system of linear equations used for computing the energy response.

In chapter 4 the hybrid theory is applied to a model containing the hybrid line junction

plate-beam-plate. The properties and geometry of the model are described. A detailed dis-

cussion on the assumptions made for the model and the derivation of the direct field dynamic

stiffness matrix is exposed. A detailed analytic explanation of three possible methods for

the derivation of the direct field stiffness of a semi-infinite plate is reported, developing the

stiffness defined in wavenumber domain using Green’s Functions, Modal Transformation and

a Galerkin Method.

In chapter 5 results for wavenumbers, modes and coupling loss factors are presented. The

CLFs are compared with the two derivations of the direct fields stiffness adopted, by using

two different lengths of the line junction and by changing the damping loss factor.

The thesis ends with the conclusions in chapter 6. The proposed methods are summarised

and discussed underlining pros and cons.
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2 Numerical Methods in Vibroacoustics

Considering a certain component excited by the direct transmission of vibration in the me-

chanical coupling with other components or by the interaction with a surrounding fluid, its

vibroacoustic behaviour is the relation between its dynamic displacement and the conse-

quent acoustic pressure led by waves propagating through the medium until reaching the

observation point. When studying the vibroacoustc behaviour of a system, one of the most

important aims is the estimation of the noise produced by the vibrations, which has nega-

tive effects on the comfort of the users interacting with the system. In order to perform a

vibration control and noise reduction in advance of the production of a prototype, numerical

simulations are used to predict the vibroacoustic response.

With the aim of solving motion’s differential equations, several computational methods have

been using and developing since the end of the 1930s, and the evidence of their usefulness

came up in the early 1960s with the coming of digital computers. The most traditional and

important among these methods for vibroacoustics can be mainly sorted by time as Finite

Element Method (FEM), Boundary Element Method (BEM), Statistical Energy Analysis

(SEA).

In order to face problems deriving from the defects of these classical procedures, starting

from the 1990s new methods have been developing to fill the gap of the traditional vibroa-

coustic analyses. These methods can be listed as follows: Energy FE Analysis, Wave-Based

Structural Analysis, Hybrid FEM/SEA Method, Hybrid FEM/TPA Method. [Hambric et al

2016].

In the following sections, an overview of the evolution from classical methods to hybrid

methods is proposed distinguishing FEM, BEM and SEA as deterministic or statistical ap-

proaches.
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2.1 Deterministic Numerical Methods: FEM, BEM

Deterministic methods such as FEM and BEM aim to find an approximate solution of partial

differential equations in the integral form on a domain that must be finite in the case of

FEM, and can be infinite in the case of BEM. The solution obtained with these methods

is affected by an overall error produced because of different causes: discretization through

nodes and shape functions, residual energy due to the loss of stiffness of the model compared

to the reality, irregular shape of the finite elements, numerical integration and numerical

approximation.

The FEM approach consists in writing the system of governing equation in integral form over

a finite domain, and applying a discretization of the continuum introducing shape functions.

Substituting the vectorial form of the shape functions in the governing integral an algebraic

system of equations is obtained, and the problem is transformed in a matrix equation. The

discretization is performed using a finite number of nodes to define a finite number of elements

with which one attempt to fit the real geometry. For a given component of the solution vector,

the number of degrees of freedom corresponds to the number of unconstrained nodes, or to

the number of considered mode shapes if a modal superposition is adopted. The resulting

matrices are typically banded if the shape functions are appropriately selected so that they

can be stored as sparse matrices [Somà 2016].

Concerning the BEM approach, it can be noticed that the partial differential equation does

not need to be solved through the integration all over the domain, but it is sufficient to apply

the divergence theorem and transform the domain integral in the correspondent boundary

integral, provided that the Green’s Function of the problem is known. Once the boundary

integral is written, the solution at any point of the domain can be calculated using a dis-

cretization only over the boundary along lines or surfaces and substituting the coordinates

of interest in the resulting function which is analytical. The BEM has many simulation

advantages compared to the FEM, such as a greater precision when the same discretization

is used, a fewer number of degrees of freedom since only the boundary of the domain is

discretized, that means smaller dimension of the matrices and shorter computational time,

and a great time saving in the preparation of the model since only the boundary must be

modelled. Also a higher resolution of the response over the domain is ensured since the

solution is continuous, and the Green’s Function can be defined also for semi-infinite and

infinite spaces which cannot be modelled with FEM. On the other hand, the boundary ele-

ment method also presents disadvantages and limits with respect to the FEM, such as the

inability to consider an eventual heterogeneous materials which require to be modelled in
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all their volume other than over the boundaries, and the inability to model the non-linear

behaviour. Besides, although the BEM matrices are smaller in dimension, they are fully

populated [Banerjee 1994].

Concerning vibroacoustics, the main advantages of the BEM matches the most of the appli-

cation cases of waves propagating in closed or open environments, and represents a powerful

tool for predicting the system’s behaviour in the early phase of the design since the changes

in geometry are easy to perform since the only boundary has to be discretized.

To choose which method suits better the simulation of a given problem can depend on many

factors, for example if the problem is linear or non-linear. One method can be well-suited

for solving a problem and preferred to other methods depending on the type of application

and on the geometrical discretization of the structural-acoustic system, on how important

is considered to model geometrical details with high precision and on the relative size of

the whole system compared to these small details. For example it is possible to divide

noise studies in two different cases: interior and exterior sound. When an interior sound

problem is given, it is possible, for example, to model the system using the finite element

method, with a 1, 2 or 3-dimensional geometrical discretization of the closed environment

within which the waves propagate, or with a boundary element method discretizing only the

contour lines or surfaces, reducing the number of degrees of freedom involved and so reducing

the computational time, but also generating asymmetric and fully populated matrices. On

the contrary, for exterior sound problems, it is not possible to model the radiation of waves

to infinity by using finite elements, and the variation ’Infinite finite elements method’ can

be applied, as well as the boundary element method since it implicitly includes the infinite

environment with a considerable reduction of degrees of freedom [Hambric et al 2016], [von

Estorff 2007].

A simple confront of two different systems for which the sound pressure is computed using

different methods is shown in Figure 2.1. While in the finite element model of the car all the

volume is discretized, in the aircraft section only the boundaries of the cavity are computed

and the results can be evaluated over any domain within the system.

The common aspect of these two methods is the philosophy used to describe the relation

between excitation and response, that is obtained with a numerical solution of the analytical

governing equation, and the certainty with which the properties of the system are considered.

Neglecting the source of errors listed at the beginning of the section, to a certain domain

distribution of the excitation corresponds an unique domain distribution of the response

variables which satisfy the equation. This is the reason why they are called ”deterministic

methods”. These methods provide the most accurate procedure to obtain the solution of
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partial differential equations, but only when the number of nodes used for the discretization

is big enough to properly represent these results.

(a) Sound pressure displayed on a FEM model
of a car

(b) Sound pressure displayed on a BEM model
of an aircraft section

Figure 2.1: FEM and BEM models (figure of [von Estorff 2007])

2.2 Limits of Deterministic Methods in High Frequency

Problems

Whilst using a huge number of nodes in the discretization increases the model accuracy in

fitting the reality, on the other hand it implies a greater computational effort which results

in an increased computation time and bigger numerical error, so that the number of nodes

cannot be easily chosen as big as necessary without negative consequences.

The choice of the number of nodes can be mainly motivated by two reasons: the level of

detail desired to properly fit the real geometry and resolution of the response required to

analyse all the relevant amplitudes of wave components. The resolution is not arbitrary

when talking about vibroacoustics, but it is governed by the minimum wavelength it is

intended to capture in the results in order to represent all the harmonic components of the

vibrations. In the particular case of the noise prediction, the fundamental wavelength of

the noise vibrations are the shortest among all the relevant components, and they get even

shorter as the frequency values of the simulation increase, requiring a huge density of nodes

on order to be approximated even with simplest shapes of wave.
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This last consideration implies that the reliability of a vibracoustic numerical method mainly

depends on the frequency range of the response. Indeed, the efficiency of one method depends

on the frequency values around which the system vibrates, and the previous example of

comparison between FEM and BEM makes sense only when the frequency range of the

simulations floats around low values, the so called Low Frequency Problem (LF), in which

the number of nodes required for representing the minimum relevant wavelength does not

compromise the numerical procedure in terms of time consumption and storage request.

Wanting to classify the need of a huge number of nodes to represent the response at a certain

frequency, it is possible to define a parameter that keeps track of the frequency and the size of

the system. Considering a component or an acoustic region with a characteristic dimension

L along a certain direction, vibrating with a wavenumber k along that same direction, it

is possible to define how many wavelengths occur within L through the non-dimensional

parameter z = kL/2π [Hambric et al 2016].

If the solution frequencies are large enough to correspond to space wavelengths which are

small with respect to the characteristic space dimension of the domain, also z will be large

and a huge number of nodes would be required to represent the mode shapes participating

in the response, and if the frequency range is wide, also a huge number of modes must

be taken in account. This condition typically occurs when one structure is very big with

respect to the wavelength of its vibration, like aircraft components, and the consequence is

an unsustainable computational time if the problem is solved with a deterministic method.

An example of how the wavenumber increases when the frequency values are large can be

seen in Figure 5.1a together with the decreasing of the wavelength in Figure 5.1b .

The computational inadequacy of FEM and BEM when z is big is one of the reasons why the

Statistical Energy Analysis has taken hold in high frequencies vibroacoustic simulations.

2.3 Statistical Energy Analysis and Coupling Loss Factor

In this section, any information regarding SEA method is referred to [Lyon and DeJong

1995].

When the frequencies of a problem reach high values, two main consequences can be deduced.

One phenomenon consist in the relevant participation of the high frequency resonant modes

to the response of the system, which are characterised by high wavenumbers getting back

to the problem of the huge number of nodes required to correctly represent the results, as

explained in section 2.2. Another consequence is the high sensitivity of the results to the
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minimum details of a system, in terms of geometrical features and mechanical properties.

Indeed, when high frequencies are used in the excitation, a non-negligible variance of the

response is caused by the small variance of mechanical properties due to the manufacturing

process which it not predictable, and the non complete repeatability in applying the load and

impose boundary conditions. Because of the first phenomenon, deterministic methods fail in

high frequency simulations in terms of numerical error and time consumption due to the high

number of degrees of freedom required, whereas the variance of the response would require

a large number of different models on the same system, varying properties and geometry, so

that they cannot be taken in account with a deterministic approach.

These failure problems of deterministic methods can be circumvented by using a statistical

approach, developed in the Statistical Energy Analysis [Lyon and DeJong 1995]. Starting

from the analysis of complex structures excited by random loads in 1959, Richard Lyon and

Preston Smith carried out the two fundamentals facts on which the SEA is based on. It

has been proven that in a given system with lightly coupled components, energy flows from

the high energy vibrating system to the low energy one, and the flow is proportional to the

difference between the energy level of the two components. This oscillation energy flow can

be compared to the thermal and electric energy flow in the presence of electric potential

difference or temperature difference.

2.3.1 SEA Procedure and Assumptions

Based on the results of Lyon and Smith, SEA method is developed in such a way that:

• the degrees of freedom are constituted by subsystems (components and modes) in which

the system is subdivided

• the input of the model is given in the form of powers, the output is a set of averaged

energies

• the unknown variables to be computed are the energies, instead of the displacements,

flowing through the degrees of freedom

• the flow of energy is governed by three fundamental parameters that have to be known

in advance of the statistical analysis: modal densities, damping loss factors, coupling

loss factors

• the energy result of the method is then converted into the physical quantity of interest

like velocity or acoustic pressure, in the form of root mean square (RMS)
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The system is subdivided into many subsystems as it is necessary to subdivide its modal

behaviour. This means that two subsystems may differ because they represent different

components like beams and plates, but also because representing different wave types of

one same component (for example out of plane and in plane modes of a thin plate can be

modelled as two different subsystems). The energy is modelled as a quantity flowing through

these subsystems, and the flow depends on three fundamental parameters: Coupling Loss

Factor, Modal Density and Damping Loss Factor. The last two are taken as an average over

the subsystem.

A very quick derivation of the SEA equations can be summarised as follow.

Considering a system subdivided in N subsystems as schematically shown in Figure 2.2a the

time average input power can be defined through the boundary impedance Z or mobility Y

and the exciting mean square velocity or force or pressure.

Being

f = Zv v = Y f (2.1)

In the simple case of a point excitation with harmonic functions (and so complex vectors

with absolute values |f | = F and |v| = V ), the input power is

Pin,i = 〈vf〉t = 1
2 Re(v∗f) = 1

2F
2 Re(Y ∗) = 1

2V
2 Re(Z) (2.2)

For line or surface excitation the input power is computed averaging the physical quantities

over the excitation area and using line or surface impedances, which involve more complicated

formulas. Some examples can be found in [Lyon and DeJong 1995, chapter 11].

A generic subsystem i excited with a power input Pin,i over a frequency range ∆ω vibrates

with a certain energy Ei at steady state with the participation of Mi modes, in an equilib-

rium given by the energy flowing to all the other j communicating subsystems Pij and the

dissipated power in its damping behaviour Pd,i.

Pin,i = Pd,i +
∑
j

Pij (2.3)

Given a Damping Loss Factor ηd,i [see subsection 2.3.2], the dissipated power of the i-th

subsystem can be expressed as

Pd,i = ωηd,iEi (2.4)
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(a) Power balance between two generic sub-
systems i and j

(b) Power flow between modes ϕ and φ of the
subsystems i and j

Figure 2.2: SEA subsystems

The net power flow Pij which transfers energy from the subsystem i to the subsystem j is

the subtraction of the two single power flows

Pij = Pi→j − Pj→i = −Pji (2.5)

The single power flows are the summations of the energy exchange between all the commu-

nicating modes of the two subsystems. The direction of the net power flow between modes

is from the higher to the lower modal energy Ei, proportionally to the difference in modal

energy value with a constant B. As it is shown in Figure 2.2b the energy exchange between

a mode ϕ of subsystem i and a mode φ of subsystem j is

Pϕi→φj = B(Ei,ϕ − Ej,φ) (2.6)

The modal energy Ei is define through the number of modes Mi participating over the

frequency range ∆ω. The number of participating modes is given by the modal density [see

subsection 2.3.3], and under the assumption that the total energy is equally distributed in

each of the Mi modes:

Ei,ϕ = Ei = Ei/Mi (2.7)

Considering all the modal energy exchanges in Equation 2.6, and using Equation 2.7:

Pij = MiMjB(Ei − Ej) = B(EiMj − EjMi) (2.8)
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Defining the Coupling Loss Factor ηij [subsection 2.3.4] the power flow can be written as

ηij = BMj

ω
(2.9)

Pij = ω(ηijEi − ηjiEj) (2.10)

Substituting Equation 2.10 in the power flow balance Equation 2.3, the final balance for the

i-th subsystem can be obtained depending on the total energies E or the modal energies E

Pin,i = ω(ηd,iEi +
N∑
j 6=i

ηijEi −
N∑
j 6=i

ηjiEj) (2.11)

Pin,i = ω[(ηd,i +
N∑
j 6=i

ηij)MiEi −
N∑
j 6=i

ηjiMjEj] (2.12)

Considering all the N subsystems of a system behaving like in Figure 2.2a, the power balance

can be extended and written in a matrix form



Pin,1

Pin,2
...

Pin,i
...

Pin,N


= ω



ηd,1 +
N∑
j 6=1

η1j −η21 . . . −ηj1 . . . −ηN1

−η12 ηd,2 +
N∑
j 6=2

η2j
... −ηj2

... −ηN2

...
...

. . .
...

−η1i −η2i ηd,i +
N∑
j 6=i

ηij −ηN1

...
...

. . .
...

−η1N −η2N . . . −ηjN . . . ηd,N +
N∑
j 6=N

ηNj





E1

E2
...

Ei
...

EN



(2.13)

If the relation is expressed considering the modal energies as the unknown variables, the

matrix of the system becomes symmetric



Pin,1

Pin,2
...

Pin,i
...

Pin,N


= ω



(ηd,1 +
N∑
j 6=1

η1j)M1 . . . −ηj1Mj . . . −ηN1MN

. . .
...

...
...

(ηd,i +
N∑
j 6=i

ηij)Mi . . . −ηNiMN

symm.
. . .

...

(ηd,N +
N∑
j 6=N

ηNj)MN





E1

E2
...

Ei
...

EN


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(2.14)

This symmetry can be proven by multiplying Equation 2.9 by Mi, obtaining the reciprocity

relation

ηijMi = ηjiMj (2.15)

which guarantees the equality of the off-diagonal terms and justify the preference to use this

matrix because of the convenience in the storage.

Once the energies are computed, the mean square velocity or pressure can be derived from

the subsystems properties as follow

E = ρV 〈v2〉t = V 〈p2〉t
ρc2 (2.16)

These linear equations make sense only if some assumptions are taken in account, like the

uncorrelation between the exciting sources necessary for the linearity, the proportionality

between the power flow and the difference in modal energy (Equation 2.6) and the modal

energy uniformly distributed over all the participating modes (Equation 2.7). Also, the

dissipated power in a subsystem is proportional to its energy (Equation 2.4), the negligibility

of power loss in the coupling through subsystems (Equation 2.9), and the coupling must be

considered weak, that means it must not be strong enough to generate such a power flow to

produce an energy of the excited subsystem of a different order of magnitude compared to

the uncoupled condition.

With this short resume of the SEA method, the vibroacoustic problem is reduced to a

simple linear algebraic system of power balance and the matrix of the problem is composed

of three different parameters: damping and coupling loss factors, and the number of relevant

participating modes.

2.3.2 Damping Loss Factor

The Damping Loss Factor ηd is one way to represent the capability of a system to reduce the

amplitude of vibration dissipating energy. To create a reliable mathematical formulation for

damping is very complicated for many materials because of different phenomena occurring in

the dissipation. An easy way to model the damping behaviour for small displacements and

linear parameters is under the assumption of hysteretic damping, adopted in this implemen-

tation, in which the dissipation is due only to viscous forces. This formulation is supported
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by fast experimental methods for the direct evaluation from the response, such as Logarith-

mic Decrement Method, Half-Power Point Method, Kennedy-Pancu Method [Fasana and

Marchesiello 2006]. The formulation for the damping can be quickly derived considering a

single degree of freedom system vibrating with harmonic displacement x(t) = X cos(ωt),
completing one oscillation cycle as a result of an external excitation of frequency ω which

does a work per cycle equal to

Wc =
∫

cycle

cẋdx =
∫
T

cẍ2dt = πωcX2 (2.17)

However many experimental results showed that for many materials, the dissipated energy is

almost independent of the frequency. In order to obtain a simple model, the correspondence

between the work per cycle in Equation 2.17 and the work done by viscous force in a viscous

damper (Wdamper = aX2, which depends on a material constant a) is imposed: Wc = Wdamper.

This equality can be obtained writing the damping coefficient in an equivalent form as follow:

ceq = a

πω
(2.18)

Using the exponential notation x(t) = X expiωt, the motion equation can be written as

mẍ+ ceqẋ+ kx = F expiωt

mẍ+ k(1 + iηd)x = F expiωt (2.19)

where ηd is the constant damping loss factor, it depends on the material mechanical hysteresis

and can be written as ηd = a/kπ. Considering Equation 2.18 the damping loss factor is

related to the damping ratio:

ηd = 2ζ ω
ωn

(2.20)

In the resonant condition in which the damping loss factor is typically measured, the relation

becomes

ηd = 2ζ (2.21)

Using the previous notation, the stiffness of the system k(1+iηd) can be studied as a complex

value where the real part is the elastic component and the imaginary part represents the

damping [Fasana and Marchesiello 2016].
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One advantage of using this notation is that in order to consider the damping it is sufficient

to multiply the elastic constants by (1 + iηd), as it is done in section 4.3

2.3.3 Modal Density

The modal density n is the quantity with which it is possible to find the number of modes

M participating in the vibration of a subsystem over a certain frequency range ∆ω. When

talking about modes, it is possible to discern between different types of shapes based on

different motions, for example modes of a beam can be divided in bending, torsional and

longitudinal, as well as for a thin plate with the addition of the shear waves. To evaluate the

modal density experimentally requires many measures since it is necessary to excite a system

in all the possible ways of the related application, otherwise there would be a risk of missing

some shapes which would not manifest unless subjected to precise conditions. Analytic

formulations of the modal density are derived from its definition through the wavenumber:

n(ω) = dM
dω (2.22)

n(ω) = M

∆ω , if n is constant (2.23)

Referring to [Lyon and DeJong 1995, chapter 8], the angular frequency derivative of the

number of modes can be simplified if transformed in a wavenumber derivative.

n(ω) = dM
dω = dM

dk
dk
dω (2.24)

It follows that the modal density can be calculated once the relation between the wavenumber

and the time frequency of the load is defined.

In a one-dimensional system of length L, the wavelength and the wavenumber can be derived

as a function of the number of modes:

λM = 2L
M + δ

k = (M + δ)π
L

(2.25)

where δ is a constant depending on the boundary conditions, δ = 0 for simply supported

beams. Deriving the number of modes with respect to the wavenumber gives the modal

density. In order to do it, it is possible to change the differentiation variable using wave

group speed cg and wave phase speed cφ

cg = dω
dk cφ = ω

k
(2.26)
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Being the number of modes

M(k)1D = kL

π
− δ (2.27)

The modal density in the 1D systems can be derived as

n(ω)1D = dM(k)
dk

dk
dω = L

πcg
(2.28)

Considering the different values of cg and cφ for different type of waves, the modal density

of a 1D system can be obtained as reported in Table 2.1, where κ is the radius of gyration

(= h/
√

12 for beams of thickness h, and = r/
√

2 for pipes of radius r), E is the Young’s

Modulus, G is the shear modulus, J the torsional inertia, Ip the polar inertial moment of the

cross section, K the bulk modulus and cL, cT , cB, c0 respectively the longitudinal, torsional,

bending and medium wave speed.

Considering 2-dimensional systems like flat plates, the same approach leads to the following

wavenumber expression, where 1, 2 are the two coordinate directions and σ and τ are mode

indices:

kσ,τ =
√[

(σ − δ1) π

L1

]2
+
[
(τ − δ2) π

L2

]2
(2.29)

Defining A as the plate area, P as the plate perimeter, h the plate thickness, ν as the

Poisson’s ratio and κ = h/
√

12 the radius of gyration of the plate, the modal densities for

the 2D system are reported in Table 2.1.

The number of modes results in:

M(k)2D ∼
Ak2

4π + ΓPk (2.30)

where Γ is the correspondent of δ for the 2-dimensional problem, and the modal density

n(ω)2D ∼
Aω

2πcφcg
(2.31)

Repeating the same procedure for a 3-dimensional system, the results are the following
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(Table 2.1):

kσ,τ,θ =
√[

(σ − δ1) π

L1

]2
+
[
(τ − δ2) π

L2

]2
+
[
(θ − δ3) π

L3

]2
(2.32)

M(k)3D ∼
V k3

6π2 + Γ1Ak
2 + Γ2Pk (2.33)

n(ω)3D ∼
V ω2

2π2c2
φcg

(2.34)

Wave type cg, cφ n(ω)

1D

Longitudinal cg = cφ = cL =
√
E/ρ L/(πcL)

Torsional cg = cφ = cT =
√
GJ/ρIp L/(πcT )

Bending cg = 2cφ = 2cB = 2√ωκcL L/(2πcB)

In a pipe cg = cφ = c0 =
√
K/ρ L/(πc0)

2D

Longitudinal cg = cφ = c′L =
√
E/ρ ωA/(2πc′L

2)

Shear cg = cφ = cS =
√
G/ρ ωA/(2πcS2)

Bending cg = 2cφ = 2cB = 2
√
ωκc′L A/(4πκc′L)

Flat rigid cavity wall cg = cφ = c0 =
√
K/ρ ωA/(2πc0

2) + ωP/(2πc0)

3D
In elastic solid cL and cS constants V ω2

2π2c3
L

+ V ω2

2π2c3
S

In 3D rigid acoustic chamber cg = cφ = c0
V ω2

2π2c3
0

+ Aω
8π2c2

0
+ P

16πc0

Table 2.1: Modal Density for 1D, 2D, 3D subsystems.

2.3.4 Coupling Loss Factor’s

The coupling loss factors ηij , ηji are the ratio between the respective gross power flows Pi→j

and Pj→i between two subsystems i and j, and the respective subsystems energies Ei and

Ej as defined in Equation 2.9 and 2.10. It can be written generically as

ηij = Pi→j
ωEi

(2.35)

The coupling loss factors in the two directions are related to each other by the reciprocity

relation (Equation 2.15), so that it is sufficient to compute one of them, and the second can
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be calculated knowing the number of modes of the two subsystems:

ηij = ηji
Mj

Mi

= ηji
nj
ni

(2.36)

The CLFs are the most important parameters of SEA since they constitute the matrix of

the algebraic system, and it is necessary to know their values in advance of the simulation.

Experimentally, the CLFs can be evaluated using the Power Injection Method, which consists

in exciting all the subsystems with a unit power and measuring the power output, building

a matrix composed by the ratios between excitation and response. The resulting response

matrix can be inverted and the CLFs evaluated. It is clear how the CLFs only depend on

the geometry of the connection between two subsystems, the so called Junction. It will

be explained in section 3.2 how, if the frequency values are high enough to induce strong

uncertainty, the dependency of the CLFs is only related to the junction and to the modal

densities of the subsystems. This fact allows to define the calculation of the CLFs only by

dividing the different possible types of junctions through subsystems of the same or different

space dimension:

• Point junctions: can be obtained by coupling a 1D subsystems in its extreme points to a

1D (beam-beam) or a 2D (beam-plate) subsystem, or also coupling two 2D subsystems

(plate-plate) using only one common point on their boundaries.

• Line junctions:can be obtained by coupling 1D and 2D subsystem along a line (beam-

plate or plate-plate).

• Surface junctions: can be obtained by coupling 2D and 3D subsystems (plate-cavity),

or two 3D subsystems (cavity-cavity)

The approach to compute the CLFs between a source and a receiving subsystem, consists in

writing the transmitted power Pi→j using the geometric features of the junction, that is the

impedance of the subsystem’s boundary. Then, neglecting the dissipation in the transmission

and considering the CLFs independent of the whole subsystem’s details (section 3.2), divide

this power by the frequency value and the subsystem’s energy. The transmitted power is

usually defined though the transmission coefficient τij that is the fraction of the input power

in i transmitted to j

τij = Pi→j
Pin,i

(2.37)

The transmission coefficient is also symmetric [Cremer et al 2010]. As an example of deriva-

tion of the CLFs, a 1D system can be considered in the transmission of power between two
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adjacent collinear beams i, j in a point junction [Lyon and DeJong 1995]. The energy of a

beam i is composed by its power input Pin,i plus the reflected power at the point junction

Pr:

Ei = Li
cg,i

(Pin,i + Pr) (2.38)

The reflected power is related to the transmission coefficient for the point junction between

beams, which is defined through the point impedance of the semi infinite beam Z∞

Pr = Pin,i − Pi→j = Pin,i(1− τij,∞) (2.39)

τij,∞ = 4 Re [Zi,∞] Re [Zj,∞]
|Zi,∞ + Zj,∞|2

(2.40)

where the impedance depends on the type of wave considered:

Z∞ = (1 + i)ρlcB , for bending waves (2.41)

Z∞ = ρlcL , for longitudinal waves (2.42)

Considering the fact that the reflected power is the same magnitude of the input power, the

transmitted power is much smaller giving a τij value much smaller than 1. The coupling loss

factor can therefore be derived as

ηij = cg,i
ωLi

τij
2− τij

' cg,iτij
2ωLi

(2.43)

With similar and different approaches, CLFs for other type of junctions have been derived.

Point Junctions can involve connection between two beams or between beam and plate.

As shown in [Langley and Shorter 2003], referring to Figure 2.3a, a point junction between

a certain number of beams and a plate of area A is studied.

Generically, the mean power associated to a certain wave is proportional to its square

amplitude a and group velocity cg

P = αcg |a|2 (2.44)

With α proportionality constant. Considering two subsystems i and j, the transmission

coefficient of a certain wave incident to the junction is the ratio of the power transmitted

away from the junction by the wave component αij to the power carried towards the junction
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(a) Point junction between plate and beams (b) Line junction between beam and plates

Figure 2.3: Point and Line Junctions (figures of [Hambric et al 2016])

by an incident wave component ain

τij = αjcg,j |aij|2

αicg,i |ain,i|2
= τji (2.45)

The power carried by one wave towards the junction in this system is:

P = Eicg,i
2L when carried by a 1D subsystem (2.46)

P = Eicφ,icg,i
ωA

when carried by a 2D subsystem (2.47)

Considering the modal density formulation in Table 2.1 for 1D and 2D subsystems

n1D = L

πcg
n2D = ωA

2πcgcφ
(2.48)

and considering all the possible incident waves (R) at the junction with the plate, the trans-

mitted power is

Pi→j = Eicg,i
2L

R∑
rj

τirj when i is 1D (2.49)

Pi→j = Eicφ,icg,i
ωA

R∑
ri

τrij when i is 2D (2.50)
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The CLFs are calculated dividing the transmitted power by ωEi:

ηij = cg,i
2ωL

R∑
rj

τirj = 1
2πωni

Ri∑
ri

τrij for 1D → 2D transmission (2.51)

ηij = cφ,icg,i
ω2A

R∑
ri

τrij = 1
2πωni

Ri∑
ri

τrij for 2D → 1D transmission (2.52)

If both i and j are 2D subsystems with R incident waves at the junction in i and S incident

waves at the junction in j, the resulting CLF is

ηij = 1
2πωni

R∑
ri

S∑
sj

τrisj (2.53)

Line Junctions can involve connection between two plates along one edge or between a

beam and plates along the length of the beam and the edge of the plate. Referring to Figure

2.3b, a method to calculate CLF for line junctions was developed in [Langley and Heron

1990]. The method consists in averaging the coupling loss factor over all the possible angle

θ of incidence of the waves with the junction:

ηij = 1
π

∫ π
2

−π2
ηij(θ)dθ (2.54)

Considering the energy carried by the vibrating plate of area Ai towards the junction of

length Ljunc

Ei = Ai(Pin,i + Pr)
Ljunccg,i sin θ

= Ai
Ljunccg,i sin θ

Pin,i(2− τij(θ)) (2.55)

τij(θ) depends on the line impedance of the plate. The CLF of the line junction between

two plates i and j where the plate i transmits power with a wave of type p in the plate j

generating a wave of type r, can be written:

ηprij (θ) = Pi→j
ωEi

= Ljunccg,i sin θ
ωAi

τ prij (θ)
2− τ prij (θ) (2.56)

Since τ prij (θ) is nearly zero, the integral becomes:

ηijpr '
2
π

∫ π
2

0

Ljunccg,i sin θ
ωAi

τ prij (θ)
2 dθ = 1

π

Ljunccg,i
ωAi

∫ π
2

0
τ prij (θ) sin θdθ (2.57)

Writing as τ prij the integral of the transmission coefficient, the CLF for the line junction
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results in

ηprij '
cg,iLjuncτ

pr
ij

πωAi
(2.58)

which can be related to the modal density of the plate i in base of which types of wave are

considered. An alternative method is proposed in [Skeen and Kessissoglou 2007], where a

scattering matrix method is combined with an analytical waveguide model for the calculation

of the transmission coefficients.

Surface Junctions can involve connection between a cavity and a plate over its surface or

between two cavities over the surface that delimits the two volumes. Considering a plate of

mass mplate vibrating with a root mean square velocity 〈v2〉, its energy can be written as

Eplate = mplate〈v2〉 (2.59)

Considering now a cavity containing a fluid with volumetric mass density ρ0 and wave speed

c0, excited from one of its surfaces S by the vibration of the plate, the radiated power in the

cavity depends on the radiation efficiency σrad of the plate:

Prad = σradρ0c0A〈v2〉 (2.60)

The radiation efficiency can be calculated as shown in [Fahy 2000, Chapter 10.14.3]:

σrad ' 1 k ≥ kc

σrad ' 2P
πkcA

√
k
kc

k � kc
(2.61)

Where P and A are the perimeter and area of the plate, and kc is the critical wavenumber of

the plate, at which the acoustic and structural wavenumbers and phase speed are the same.

The coupling loss factor of the power transmission from the plate to the cavity, assuming

A ≥ S is:

ηplate→cavity = Prad
ωEplate

= ρ0c0Aσrad
ωρSS

(2.62)

Considering the power transmission in the direct coupling between two cavities, the coupling

loss factor can be calculated using the same approach as the plate-plate coupling, defining

the CLF as a function of the angle of incidence with which a wave reaches the junction and

integrating over all the possible angles given by the geometry of the problem. Considering a
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transmission surface S, and the cavity volume V :

ηij(θ) '
c0,iS

2ωVi
τij(θ) (2.63)

Performing the same integration of Equation 2.57 in two dimensions, the CLF is finally

expressed as follow

ηij '
c0A

4ωVi
〈τ〉 (2.64)

In chapter 3, a more generic method to compute the CLFs is explained considering also the

presence of deterministic components for hybrid theory.

2.4 Hybrid Methods: Motivations and Applications

In this chapter it was explained how deterministic methods are the best way to simulate

the low-frequency problem, and how they fail in the high frequency range because of two

reasons:

• great computational effort requested because of the huge amount of degrees of free-

dom needed to appropriately represent the response, which has consequences on the

computational time and the numerical error

• the variability of the response due to minimal changes in the system properties cannot

be predicted with deterministic variables, unless a large number of simulation is carried

out

Statistical Energy Analysis is a valid alternative in the high-frequency range because it com-

pensates the limits of deterministic methods since the result is related to the average energetic

behaviour of the components, instead of being the exact deformed shape of displacements.

Also, it treats the loading and the mechanical properties with a stochastic approach resulting

in a certain variance of the response comparable with experimental data. On the other hand,

it is exactly for these reasons that SEA is not suitable for low frequency values.

Since it is not possible to define a frequency value and a frequency range threshold to

discriminate whether it is better to use a deterministic method (FEM, BEM) or a statistical

method (SEA), and since in one system can be present subsystems of different wavelength

of vibration in base of their modal behaviour, starting from the 1990s a new method has

been studied: the Hybrid FEM/SEA method. This method is supposed to be used when
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the frequency values related to the dimensions are neither small enough to justify a FEM

approach, which would lead to a very dense mesh, nor high enough to justify a SEA approach,

which would require a high frequency to produce reliable results. This kind of problem is

the so called ’Mid-Frequency Problem’.

A gross guide to choose the numerical method depending on the frequency range of the

problem can be found in Table 2.2, in any case it is very challenging trying to give such a

guide since the choice of the method can strongly depend on many features of the problem.

For the sake of completeness, is worth mentioning that also Hybrid methods FEM/EFEM

and FEM/TPA are used to perform simulation in the mid-frequency range, and EFEM in

the high-frequency range [Hambric et al 2016].

Another possible criteria for choosing the method can be seen in [Peiffer 2016], where

in a resume of acoustic methods for aircraft, several simulation strategies are classified in

relation to their complexity and the frequency range as shown in Figure 2.4. The primary

structures of an aircraft are typically very stiff and vibrate with a low wavenumber over a

large frequency range. For this reason they can be modelled with deterministic methods until

∼ 400 Hz, where the panels wavenumber strongly increases favouring a hybrid method. The

lining has less structural requirement than the fuselage, therefore it is composed by thinner

panels which produce high wavenumber at lower frequency values. For these subsystems, the

necessity to be modelled with a statistical approach occurs around 200 Hz. When big cavities

containing fluid are considered the wavenumber of the vibration gets easily high, requiring

ray-tracing techniques. Also very complex systems cannot be analytically modelled at high

frequencies and energy flow method (EFM) must be adopted between detailed subcomponent

finite element models.

Other typical applications of the hybrid method FEM/SEA are for example automotive or

buildings, but the generic frequency threshold would shift with respect to the aircraft case

Frequency range z = kL/2π Methodology Resolution

Low Frequency 0 < z <∼ 10 FEM, BEM High

Hybrid FEM/SEA

Mid Frequency ∼ 5 < z <∼ 20 Hybrid FEM/EFEM

Hybrid FEM/TPA

High Frequency ∼ 10 < z SEA, EFEM Low

Table 2.2: Approximate frequency range based classification of computational methods in vibroacoustics
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because of the different application frequencies and because of the different typical thickness

and area of components affecting the wavenumbers.

As it will be shown in section 3.1, the frequency range is not the only reason why the hybrid

modelling must be taken in account; a new procedure for the calculation of CLFs must be

adopted if deterministic subsystems and boundary conditions to the statistical subsystems are

present in the model. The reason is that SEA formulas (subsection 2.3.4) are not able to

consider deterministic conditions, and are not able to model junctions with complex shapes,

but can only represent a subsystem as it was totally statistical and junctions in the simplest

form.

The aim of this thesis is therefore to compute the CLFs for the plate-beam-plate line junction

considering the beam as a deterministic component and the plates as statistical (random)

components (section 4.1), so that the energies can be computed. Such a target cannot be

satisfied with the method proposed in subsection 2.3.4 for the line junction, since it does

not allow to impose deterministic conditions and compute deterministic results (loads or

displacements) on the deterministic subsystem (beam).

Figure 2.4: Numerical modelling techniques mainly used in aerospace systems (figure of [Peiffer 2016])
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3 Hybrid FEM/SEA Method

In this chapter the hybrid FEM/SEA method is explained in detail with the derivation of

the reverberant power balance which defines the algebraic system of linear equations for the

solution of the statistical subsystems. The derivation was exposed by [Shorter and Langley

2005b] as a generic method, without any reference to the hybrid FEM/SEA. The method

is introduced with a description of the junctions and the subsystems, and the assumptions

with which they are classified (section 3.1). Then, the Diffuse Field Reciprocity Relationship

is derived (section 3.2) in order to correctly write the power transmission at the junctions

(section 3.3). Defining a cartesian coordinate system
(̂
i, ĵ, k̂

)
, with coordinates x=[x, y, z],

the set of displacements and rotations can be written as y=
[
uxî, uy ĵ, uzk̂, θxî, θy ĵ, θzk̂

]T
. It

is necessary to make the assumption that the time dependence of the displacements has

a harmonic behaviour, so that the set of displacement components can be written as a

summation of harmonic contribution, for example through a Fourier Series Decomposition.

The single contribution of the set of harmonic displacements y(t,x) is then related to the

velocity ẏ(t,x) as follows:

y(t,x) = Y(x) expiωt ẏ(t,x) = V(x) expiωt = iωY(x) expiωt = iωy(t,x) (3.1)

In this chapter the displacements are considered transformed in a discrete set of Nq general-

ized coordinates q(t)=q expiωt, q=[q1, q2, ...qNq ]T which give the physical coordinates through

Nq basis functions ψi,k, k=1...Nq, for each i-th displacement component. Basis functions can

be mode shapes (then giving q in modal coordinates) or whatever valid basis functions set,

capable to represent the results (examples of basis functions as modes or sinc function are

expounded in subsection 4.3.3 and subsection 4.3.4). Considering a generic displacement
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component ui(t,x), this transformation can be written as

ui(t,x) =
Nq∑
k

ψi,k(x)qk(t)

u̇i(t,x) = iω
Nq∑
k

ψi,k(x)qk(t)

(3.2)

using as
[
ψi,1, ψi,2...ψi,Nq

]
the basis functions of the i-th displacement component. Because

of next use, is useful to write the conjugate of the velocity as

q̇(t)∗ = −iωq(t)∗ (3.3)

3.1 Subsystems, Boundaries and Hybrid Junctions

A hybrid or complex system is an ensemble of components whose properties are not known

to a sufficient level of precision to justify an approach that is completely deterministic. As

explained in section 2.2, the uncertainty of properties of a component is mainly due to a big

variance in the response at high frequency excitation, and to the very high precision required

by the system to be solved deterministically.

In section 2.4, the need of the hybrid FEM/SEA method is manly attributed to the possi-

ble coexistence of deterministic and statistical subsystems because of a mid-frequency range

of excitation frequency. Actually, the hybrid modelling is also used in the high-frequency

problem, at wavelength values that lies in the statistical case. In fact, even if the very high

frequency level leads to choose the only SEA approach, when a junction presents a complex

shape which is not traceable as a simple point, line or area, a deterministic description must

be adopted, otherwise the SEA CLFs will refer to a different case. Beside, if determinis-

tic boundary conditions are located within a few wavelengths of the connection, its local

impedance is largely influenced, and so are the CLFs and the energy flow. For these reasons

a deterministic description on some details of the system must be done, and this is allowed

by the method presented in what follows.

A subsystem of a hybrid model can be ”deterministic” or ”statistical”, see Figure 3.1. The

classification of the type of a subsystem can be done by confronting the maximum wavenum-

ber of its vibration with the relative characteristic length, as already done in section 2.4

though the parameter z. The deterministic subsystems are the ones that requires a deter-

ministic approach (low z), and the statistical subsystems are the ones that require a statistical
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approach (large z). The response is studied as a random variable as in SEA because of the

presence of statistical subsystems. The ensemble average power flow between the statistical

subsystems is computed taking into account the influence of the deterministic details, that is

the deterministic stiffness. The hybrid algebraic system of equations derives from the power

balance over the statistical subsystems, and it is in a similar form to the SEA equations.

A generic statistical subsystem of a hybrid model is characterized by high wavenumbers and

strong uncertainty of properties and it is exactly like a SEA subsystem, with the addition of

the possibility to possess deterministic details on its boundary.

The subsystems in a generic hybrid model are connected to each other though three possible

types of junction, see Figure 3.1

Figure 3.1: Hybrid system composed by generic deterministic and statistical subsystems connected
through junctions at their deterministic and random boundaries. Deterministic junctions can
be omitted and viewed as part of the connected deterministic subsystems.

1. deterministic junction: is the connection between deterministic components and,

as such, there is not need of particular discussions since it is sufficient to impose the

equality between the connected degrees of freedom or the forces of the two boundaries,

in a way which depends on the type of joint

2. ”statistical junction”: is the connection between two directly coupled statistical

subsystems which exchange energy as described by the SEA CLFs in subsection 2.3.4.

The SEA approach provides CLFs formulation only for point line and area junctions,

then if a ”statistical junction” is defined, such a connection can only be modelled as if

it represented one of these simple cases. (Using the nomenclature ”statistical junction”
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can be object of discussion, indeed in order to define the SEA CLFs, one must know

how the statistical subsystems are connected, which means that the connection is not

completely uncertain. For this reason, this definition is only referred to the fact that

there are no deterministic subsystems between the statistical ones and assumptions on

the junction geometry are made so that the SEA CLFs can be used).

3. hybrid junction: is the connection between two statistical subsystems which are con-

nected through a deterministic subsystem, or directly connected through a determin-

istically defined junction. Referring to what said regarding the ”statistical junction”, if

the junction geometry does not correspond to one of the simple cases provided by SEA

formulas for the CLFs, the connection can be defined deterministically as a hybrid

junction.

Considering a group of statistical subsystems, the presence of deterministic subsystems and

hybrid junctions requires a new derivation of the power balance defined in subsection 2.3.1.

Studying a hybrid junction means to compute the power flow between the connected sta-

tistical subsystems, that means compute the hybrid CLFs. It will be explained how the

properties of the hybrid junction only depend on the well known deterministic impedance

and on the impedance of the statistical subsystem defined only in the proximity of the con-

nection. In conclusion, the hybrid model includes statistical subsystems and deterministic

details which consist in hybrid junctions. A generic statistical subsystem with uncertain

properties and high wavenumber possesses in this model also deterministic details, which

are hybrid junction themselves or deterministic boundary conditions, therefore a part of

boundary that is deterministic. The part of boundary of a statistical subsystem which is

connected through a hybrid junction, is called ”deterministic boundary”. The remaining

part of the statistical boundary is called ”random boundary”. Therefore the deterministic

boundary must coincide with the connection region with the deterministic subsystems, or

with deterministic boundary conditions. In general, it can be stated that a random boundary

is the boundary of a statistical subsystem whose dimensions are very large with respect to

the wavelengths, so that it is likely that such dimensions will not be know with sufficient

precision to be included in a deterministic description.

One particular case of statistical subsystems is represented by a component with large dimen-

sions compared to the wavelengths, and so considered as statistical, which has deterministic

connection region all over its boundary. An example can be a thin flat plate with a big

area for which a statistical approach is well suited, surrounded at its boundaries by very

stiff beams, for which a deterministic description is more opportune (the reasons of this

classification lie in the wavenumbers and are discussed in a more detailed way in chapter 4).



28 3 Hybrid FEM/SEA Method

Even if the plate has only deterministic boundaries, it must be considered as a statistical

subsystem, and a series of hypothetical internal random boundary can be imagined to model

the existing random scattering within the plate’s domain.

Another detail that is fair to mention is the interaction between multiple deterministic con-

nections in the same statistical subsystem. Considering a statistical subsystem with two or

more deterministic connections at its boundary, like for example the statistical subsystems

in Figure 3.1. If the two connections of a subsystem are relatively close enough to be in a few

wavelengths of each other, then they exhibit coherent interaction with each other and they

are said to be ”coherently coupled”. If the two connections present a distance big enough

with respect to the wavelengths, then the interaction is sensitive to perturbations and the

connections are said to be ”incoherently coupled”.

3.2 Diffuse Field Reciprocity Relationship

In this section, the statistical behaviour of the forces on the deterministic boundary of a sta-

tistical (hybrid) subsystem are analysed through the derivation of the diffuse field reciprocity

relationship, referring to [Shorter and Langley 2005a].

Figure 3.2: Direct and Reverberant Fields in a statistical subsystem connected with a junction at its deter-
ministic boundary.

Looking at Figure 3.2, a statistical subsystem possesses a deterministic boundary because

of the connection to a hybrid junction or a deterministic boundary condition. Considering

an excitation on the deterministic boundary, a radiation field in the direction of the random

boundaries of the statistical subsystem is generated. This field is called ”direct field”. The

direct field radiates the domain until reaching the random boundary, where it gets partially

transmitted to other eventual subsystem or dissipated, and partially reflected. The field

generated by the reflection of the direct field at the random boundaries is called ”reverberant
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field”. The diffuse field reciprocity relationship discussed in this section shows how, if under

some assumptions the reverberant field is a ”diffuse field”, in a statistical subsystem the

loading on the deterministic boundaries due to the reverberant field is statistically zero, and

its cross-spectrum is statistically related to the behaviour of the direct field, proportional to

the resistive part of its stiffness. In order to derive these results, it is necessary to write the

analytical form of the forces related to the direct and the reverberant fields, which requires

to define natural coordinates (subsection 3.2.2) and the statistics of boundary conditions at

the random boundaries (subsection 3.2.3).

3.2.1 Free Field Radiation Stiffness of Statistical Subsystems

Distinguishing loads and displacement on the two different types of boundaries, qd, fd for

the deterministic ones and qr, fr for the random ones, the stiffness problem can be written

as Hq = Gf , writing q =
[
qT
d qT

r

]T
and f =

[
fTd fTr

]T
.

Supposing to use a direct boundary element approach as described by [Brebbia and Dom-

inquez 1992] over a boundary which is partitioned into a deterministic part and a random

part (Figure 3.2), the relation between loads and generalized displacements becomes:

Hdd Hdr

Hrd Hrr

qd
qr

 =
Gdd Gdr

Grd Grr

fd
fr

 (3.4)

In order to calculate only the deterministic displacement which are related to well-known

properties of the respective boundary, the system of equation can be reduced to the deter-

ministic variables:

fd + frev = Ddirqd (3.5)

Ddir is called ”direct field dynamic stiffness matrix”, or ”free field radiation stiffness matrix”,

and can be expressed as

Ddir = G−1
dd Hdd (3.6)

The direct field dynamic stiffness of a statistical subsystem is the stiffness that the subsystem

presents when excited by the direct field at one of its deterministic boundaries. It can be

typically derived from a boundary element method, but for simple cases like point, line and

area junction under certain assumptions can be computed analytically, as it will be discussed

in section 4.3. If real or imaginary valued basis functions are used to express the generalized
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coordinates of the discretization, then Ddir is a complex and symmetric matrix. If the

basis functions are complex valued and the functional used to describe the radiation is also

complex, then Ddir loses its symmetry, while it is still symmetric its absolute value. This is

the case of the application of this thesis (subsection 4.3.3 and subsection 4.3.4).

Looking at Equation 3.5, it is evident how the influence of the random boundary can be

totally represented by the so called ”blocked reverberant” force frev that excites the deter-

ministic boundary. This force can be seen as the effect of the reverberant field reaching

the deterministic boundary, behaving like an intrinsic excitation of the subsystem. frev can

be interpreted as the force that needs to be applied to the deterministic boundary degrees

of freedom in order to keep them blocked when the random boundaries are moved by a

prescribed displacement boundary condition. The blocked reverberant force can be derived

from Equation 3.4 imposing a boundary condition on the random boundary. The derivation

of frev for clamped and free random boundaries is developed in section A.1, and the results

are: frev = −
(
G−1
dd GdrG−1

rr Grd

)
fd +

(
G−1
dd GdrG−1

rr Hrd

)
qd , qr clamped

frev = −
(
G−1
dd HdrH−1

rr Grd

)
fd +

(
G−1
dd HdrH−1

rr Hrd

)
qd , qr free

(3.7)

Any random boundary produces a blocked reverberant force which is completely coherent

with the direct field that generates it. This means that the reflection of the direct field at

the random boundary does not change the phase of the wave at a given frequency.

Since the random boundary is defined as a boundary whose properties are uncertain like

over the statistical subsystem, it is opportune to study such a subsystem with a statistical

approach, computing the expected value of the cross-spectral response. The cross-spectrum

of two signals evolving in space and time domains x and y is indicated with Sxy, and it can

be computed by multiplying the first signal by the hermitian transpose of the second signal,

since the cross-spectrum is the Fourier Transform of the respective convolution (assuming to

be in time-frequency domain). The operation generates the cross-spectral matrix

Sxy = xyH (3.8)

In order to compute the cross-spectrum of the response signals on the deterministic boundary

Sqdqd , Equation 3.5 must be inverted:

qd = D−1
dir (fd + frev) (3.9)
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The cross-spectrum of the deterministic generalized displacements results in:

Sqdqd = qdqH
d = D−1

dir

(
fdfHd + fdfHrev + frevfHd + frevfHrev

)
D−Hdir (3.10)

The term fdfHd is the cross-spectrum of all the loadings applied on the deterministic boundary

as a result of external excitations or of junction excitation due to a deterministic subsystem.

The term frevfHrev is the cross-spectrum of the blocked reverberant forces applied on the

deterministic boundary by the reverberant field, generated by the reflection of the direct

field at the random boundary. The mixed factors fdfHrev and frevfHd are the cross-spectra of

the loadings on the deterministic boundary due to external forces and reverberant fields.

Following the stochastic approach, the expected value 〈...〉 of the cross-spectrum can be

evaluated:

〈Sqdqd〉 = 〈qdqH
d 〉 = D−1

dir

(
fdfHd + fd〈fHrev〉+ 〈frev〉fHd + 〈frevfHrev〉

)
D−Hdir (3.11)

where the expected value operator is omitted for the external loading at the deterministic

boundary, assuming this load to be known deterministically, so with a single possible value.

With the intention of deriving the Diffuse Field Reciprocity Relationship, it is appropriate

to define the natural coordinates for the radiating fields which contribute to the vibration of

the statistical subsystems.

3.2.2 Natural Coordinates for Direct and Reverberant Fields

Since the direct field is the radiation generated by the deterministic boundary without any

interaction with the reflected field, it can be studied by neglecting the random boundaries

and so the reverberant field. Regarding the direct field, a set of natural coordinates q can

be defined on the deterministic boundary to describe in the easiest way the power radiating

into the subsystem. To find them, one can write the radiated power from the deterministic

boundary considering Equation 2.2, 3.1 and 3.3, and recalling that for a complex quantity

X is valid Re [iX] = − Im [X]:

Pdir = − iω
2 Re

[
qHf

]
= ω

2 Im
[
qHDdirq

]
(3.12)

This set of natural coordinates is the one for which the imaginary (resistive) part of the

radiation stiffness matrix is diagonal, so it comes from the associated eigenvalue problem:
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Im DdirV = Vλ (3.13)

Being V the real orthogonal eigenvectors matrix and λ the diagonal eigenvalues matrix. The

eigenvectors are conveniently normalized to obtain VHV = I.

The direct field amplitudes a in the natural coordinates q can be obtained with the trans-

formation:

a = VTq (3.14)

and considering the relation between the physical coordinates and the generalized ones in

Equation 3.2, it is possible to relate the displacement component ui due to the direct field

with the amplitudes a using the new basis functions Φdir
k (x), which are related to the k-th

direct field radiation component:

udiri (t,x) =
∑
k

Φdir
k (x)ak(t) (3.15)

Using this natural coordinates the imaginary part of the radiation stiffness matrix becomes

diagonal VHDdirV = λ and substituting Equation 3.14 in Equation 3.12, the direct field

radiation power can be written as:

Pdir = ω

2 Im
[
aHλa

]
= ω

2
∑
k

a∗kλkak = ω

2
∑
k

λk
∣∣∣a2
k

∣∣∣ (3.16)

A certain k-th radiation component with its associated non-zero eigenvalue λk 6= 0 represents

a radiation mode of the deterministic boundary which radiates power into the statistical

subsystem. A null eigenvalue represent a deterministic boundary mode whose displacement

does not introduce energy in the statistical domain. If Ddir is positive semi-definite, then all

the eigenvalues are greater or equal to zero.

Considering now the reverberant field, its natural coordinates will be different from the ones

used for the direct field, since the reverberant waves are generated from the interaction

between the reflected waves and the incident direct field waves at the random boundary.

Nevertheless, this fact can be exploited to choose shape functions for the reverberant field as

they were generated from the shape functions of the direct field, trying to reply the reflection

and the interaction on their formulation.

A reflected wave can therefore be modelled as a time reversal of the incident wave, so the

shape functions associated to the reflected waves are the time reversal of the direct field
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shape functions. This time reversal can be obtained by conjugating the direct field shape

functions1. The interaction with the incident waves of the direct field can be modelled with

the same philosophy, subtracting the direct field shape functions from the reflected wave

shape functions. The shape functions of the reverberant field can therefore be expressed as:

Φrev
k (x) = Φdir,∗

k (x)− Φdir
k (x) = −2i Im

[
Φdir
k (x)

]
(3.17)

Naming b the deterministic boundary amplitude vector in natural coordinates for the re-

verberant field, the i-th displacement component due to the reverberant field results in:

urevi (t,x) =
∑
k

Φrev
k (x)bk(t) (3.18)

Thanks to the definition of these two sets of basis functions, it is now possible to derive an

analytical expression for the force at the deterministic boundary related to the direct field,

and the blocked reverberant force viewed as a superposition. Substituting Equation 3.14 in

Equation 3.5 the free field radiation component of the force at the deterministic boundary

is:

fd = DdirVa (3.19)

and considering Equation 3.17, the reverberant force is the superposition

frev = [(DdirV)∗ −DdirV] b = (D∗dir −Ddir) Vb = −i2 Im [Ddir] Vb (3.20)

Substituting Equation 3.13, the blocked reverberant force and its cross-spectrum can be

derived as functions of the radiating eigenvalues and eigenvectors of the direct field, and the

natural coordinates of the reverberant field:

frev = −i2Vλb (3.21)

Srevff = frevfHrev = 4VλbbHλVT (3.22)

1For a given direct wave described as a complex function propagating in the direction of a wall, the respective
reflected wave propagating in the opposite direction can be obtained by a phase conjugation, that means
changing the sign of the imaginary part of the complex function, maintaining the same amplitude and
phase absolute values.
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For the derivation of the reciprocity relationship, the amplitudes a and b must be made

explicit by defining boundary conditions at the random boundary.

3.2.3 Maximum Entropy at Random Boundary: the Diffuse Field

The amplitudes of the direct and the reverberant fields are constrained to satisfy the bound-

ary conditions at the random boundary.

A generic form of the combination between the natural coordinates is C1a +C2b = 0, where

C1 and C2 are calculable with a Galerkin method. The reverberant field response is expressed

as a function of the direct field, as done in Equation 3.17:

b = T0a T0 = −C−1
2 C1 (3.23)

T0 is s complex scattering matrix of the direct field at the random boundary. A simple

substitution can be done to change the natural coordinates in order to have unitary power

in Equation 3.16

ck = ak
√
λk dk = bk

√
λk (3.24)

The constraint relation becomes then:

d = Tc T = −λ−1/2C−1
2 C1λ

−1/2 (3.25)

There T is the scattering matrix in the new coordinates. For a single well-known boundary

curve, the interaction between direct fields and reverberant fields normalized components is

coherent. If there is uncertainty in the the location and definition of the boundary conditions

at the random boundary, T becomes a random variable, and the coherence is perturbed. The

interaction between direct and reverberant fields is then related to the statistics of T, which

is analysed in what follows.

One could choose whatever definition of the boundary conditions at the random boundary

to define T, but if the uncertainty is very strong it is opportune to choose the definition

providing the minimum amount of information. This is the case of maximum entropy at the

boundary, for which none precise statements can be made about the boundary conditions.

The shape function definition can be modified in order to study the behaviour of the random

variable T. Supposing to use new generic shape functions defined transforming c and d:

ĉ = R1c d̂ = R2d T̂ = R2TRH
1 (3.26)
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The first order statistic of the scattering matrix expressed using the new basis functions is:

〈T̂〉 = R2〈T〉RH
1 (3.27)

Equation 3.27 expresses a dependency of the expected value of the scattering matrix upon

the shape functions used to define the natural amplitudes. This is an absurd statement,

because it means that the statistics of the scattering depends on the mathematics adopted

and not on the physics of the wave field deviation. The only mean value of the scattering

for which this result can be true is zero.

〈T〉 = 0 (3.28)

The second order statistics of the scattering can be written as the expected value of the

cross-spectrum using Equation 3.27:

〈T̂jkT̂ ∗rs〉 =
∑

m,n,p,q

〈TmnT ∗pq〉R2,jmR
∗
2,rpR1,sqR

∗
1,kn (3.29)

Considering the transformation matrices hermitian to conserve the overall power in the direct

field and the overall energy in the reverberant field: RHR = I, the term 〈TmnT ∗pq〉 is written

〈TmnT ∗pq〉 = C ′δmpδnq (3.30)

and C ′ is a constant, which means that 〈TTH〉 is a diagonal matrix with C ′ in each element

of the diagonal. This guarantees that the second order statistics is invariant to a change of

basis functions.

Equation 3.28 and 3.30 show that when the entropy of the definition of the random boundary

is maximum, then the first order statistics of the scattering matrix is null, and the second or-

der is constant and invariant to a change of basis functions. Substituting these two equations

in Equation 3.25 and considering then the substitution made in Equation 3.24:

〈bmb∗n〉 = C

λm
δmn, 〈amb∗n〉 = 0, 〈bm〉 = 0 (3.31)

C is a constant dependent on the direct field power incident to the random boundary. The

final results shows how the reverberant field produces a power amplitude b which is incoher-

ent with itself and with the direct field power amplitude a. Such statistics are characteristic

of a reverberant field that is named ”diffuse field”.
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In conclusion, if there is an extreme uncertainty on the random boundary properties, the

reverberant field which it is generated is the Incoherent Diffuse Field: the blocked rever-

berant force presents a null expected value and a cross-spectrum which is proportional to the

imaginary part of the radiation stiffness matrix, that corresponds to the resistive impedance

of the direct field. This is the definition of the Diffuse Field Reciprocity Relationship and it

can be seen substituting Equation 3.31 into Equation 3.21 and 3.22:

〈frev〉 = −2iVλ〈b〉 = 0 (3.32)

〈Srevff 〉 = 〈frevfHrev〉 = 4Vλ〈bbH〉λVT = 4CVλVT = 4C Im [Ddir] (3.33)

3.2.4 Cross Spectrum of the Blocked Reverberant Force

In order to use the results of the reciprocity, it is necessary to derive the constant of propor-

tionality of Equation 3.33 (α = 4C) in a suitable way for the SEA approach to the statistical

subsystems, which means using the ensemble energy and the modal density of the compo-

nent.

The reverberant field wave components are derived from the direct field modes (Equa-

tion 3.17), that means they are orthogonal and can be studied separately. The energy

of a reverberant field component can be therefore found as a superposition of energies of two

direct field mode waves: one incident to the random boundary and one reflected. Assuming

to study the energy condition in an area which is far from the deterministic boundary which

generates the waves, the so called ”farfield”, it is possible to define an imaginary surface

R aligned with the local intensity field (Figure 3.3). R is crossed by the incident and the

reflected mode waves which must have the same energy so that the total reverberant energy

along any possible boundary R is equal to zero. It is now possible to define a group velocity

for the k-th component as the ratio of the power incident on R and the energy density of R

carried by the component (each waves carries the half of the total reverberant energy):

cg,k = Pincident,k
1
2etot,k

(3.34)

Pincident,k is the same for each component because of the independence of the scattering

matrix by the basis functions, as can be seen comparing Equation 3.31 and 3.16:

Pincident,k = ω

2C (3.35)
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From the two previous equation, C can be derived as a function of the energy density and

the group velocity:

C = etot,kcg,k
ω

(3.36)

The term etot,k represents the energy contained in a unit strip in a direction normal to the R

surface due to the k-th component. Considering the modal density of this unit strip being

nk,unit = 1/(πcg,k) (Table 2.1), the total reverberant energy of the unit strip is

Etot,unit =
∑
k

etot,k =
∑
k

ωC

cg,k
= πωC

∑
k

nk,unit = πωCntot,unit (3.37)

Since the energy and the modal density can be computed as in Equation 3.37 for any strip

and linearly summed, C can be expressed as a function of the total energy of the subsystem

due to the reverberant field and its total modal density:

C = Etot
πωntot

(3.38)

The expected cross-spectrum of the blocked reverberant force from Equation 3.33 can be

finally written as

〈Srevff 〉 = 〈frevfHrev〉 = 4Etot
πωntot

Im [Ddir] (3.39)

Figure 3.3: Energy flow at the imaginary surface R in the farfield of a statistical subsystem. The unit strip
is a portion of unitary volume.
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3.3 Hybrid Equations and Coupling Loss Factors

From the previous results regarding the the diffuse field reciprocity, one can understand

how in a statistical subsystem connected to a deterministic one makes sense to place nodes

only over the deterministic boundary, since the behaviour of such a subsystem under the

assumption of diffuse field is statistically defined by the only forces acting on the deterministic

boundary Equation 3.5. A typical example of nodes distribution for a hybrid model is given

in Figure 3.4, where the two statistical plates do not possess any node within their domains.

In this case, nodes are also placed over the line connection between the SEA subsystems,

this is linked to what has been said regarding the ”statistical junctions” in section 3.1. These

junctions can be studied either with the SEA CLFs, or with nodes used to define the geometry

of the interface with 1D or 2D elements, despite there are no deterministic components.

Naming q1 the degrees of freedom of the deterministic subsystems, and q2 the eventual

degrees of freedom at the statistical junctions, the column vector of the deterministically

calculable generalized displacements is q =
[
qT

1 qT
2

]T
. Being D(i)

d the dynamic stiffness

matrix of the i-th deterministic subsystem which relates the deterministic forces fd to the

deterministic displacements q, the overall deterministic forces are computed using Dd which

is the assembling of the deterministic matrices D(i)
d (i = 1...Nd). Such a stiffness can be

computed with classical finite element or boundary element methods.

fd = Ddq f (i)
d = D(i)

d q(i) (3.40)

The behaviour of the statistical subsystems which possess a part of boundary that is deter-

ministic, is the one described in section 3.2. The deterministic boundary of the statistical

subsystem constitutes the interface of the hybrid junction. Considering the subset of degrees

Figure 3.4: Hybrid System example: two statistical plate subsystems (A and B) are connected through
a line junction, and the deterministic plate subsystem is connected to the plate B through a
hybrid line junction (figure of [Shorter and Langley 2005b])



3.3 Hybrid Equations and Coupling Loss Factors 39

of freedom laying on the deterministic boundary qjunc : qjunc ⊆ q (in Figure 3.4 the nodes

on the two connections), and recalling subsection 3.2.1 where is explained how the response

of a statistical subsystem can be represented by the superposition between a direct and a

reverberant field, the force at the boundary fjunc is (Equation 3.5)

fjunc = fdir + frev = Ddirqjunc f (i)
junc = f (i)

dir + f (i)
rev = D(i)

dirq
(i)
junc (3.41)

where D(i)
dir is the direct field dynamic stiffness matrix of the i-th statistical subsystem con-

nected with a hybrid junction, and Ddir the assembling of all the D(i)
dir over all the hybrid

junctions; f (i)
dir and f (i)

rev are the direct and blocked reverberant loads on the deterministic

boundary of the i-th statistical subsystem.

Assembling the equation of motion for the statistical and deterministic subsystems, the total

dynamic stiffness matrix is obtained: Dtot, which is the sum of the deterministic matrix

Dd and the direct field dynamic matrices over Ns statistical subsystems
Ns∑
i

D(i)
dir. The total

stiffness represents the relation between the generalized displacements q and the assembling

of the loads f . The load assembling is a vector containing all the forces applied on the de-

terministic nodes and on the deterministic boundaries, plus the summation of the blocked

reverberant forces over the deterministic boundaries of the i statistical subsystems:

f =
[
fTd

Ns∑
i

f (i),T
dir

]T
+

Ns∑
i

f (i)
rev = fext +

Ns∑
i

f (i)
rev (3.42)

fext +
Ns∑
i

f (i)
rev = Dtotq (3.43)

Dtot = Dd +
Ns∑
i

D(i)
dir (3.44)

q = D−1
tot

(
fext +

Ns∑
i

f (i)
rev

)
(3.45)

Studying forces and displacements as stochastic variables, the expected cross spectrum of

the force f = fext +
Ns∑
i

f (i)
rev acting on the complex system is

〈Sff〉 = 〈ffH〉 = Sextff + 〈Sext,revff 〉+ 〈Srev,extff 〉+ 〈Srevff 〉 (3.46)

This equation reflects Equation 3.11 considering any amount of subsystems. The first term is

the cross spectrum of the external forces which is know deterministically, so it has constant

probability and the expected value is omitted. The three remaining terms are respectively
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the cross-correlations between external and blocked reverberant force (and vice versa), and

the cross-correlation of the single frev:

Sextff = fextfHext (3.47)

〈Sext,revff 〉+ 〈Srev,extff 〉 =
Ns∑
i

(
fext〈f (i),H

rev 〉+ 〈f (i)
rev〉fHext

)
(3.48)

〈Srevff 〉 =
Ns∑
i

Srev(i)
ff =

Ns∑
i

Ns∑
j

〈f (i)
revf (j),H

rev 〉 (3.49)

The results of the diffuse field reciprocity relationship (Equation 3.32, 3.39) can now be

taken in account to simplify the equations. It can be stated that if the properties of the

random boundaries of the statistical subsystems are extremely uncertain so that the maxi-

mum entropy is reached in their definition, the reverberant fields are diffusive and they are

incoherent with each other and with all the direct fields, which means:

〈Sext,revff 〉 = 〈Srev,extff 〉 = 0 (3.50)

〈Srevff 〉 =
Ns∑
j

4Ej
πωnj

Im
[
D(j)
dir

]
(3.51)

Being qH = fHD−Htot , the power spectrum of the generalized coordinate response is

〈Sqq〉 = D−1
tot〈Sff〉D−Htot = D−1

tot

Sextff +
Ns∑
j

4Ej
πωnj

Im
[
D(j)
dir

]D−Htot (3.52)

Recalling Equation 3.12, the time and ensemble average input power to the direct field of

the i-th statistical subsystem through its deterministic boundary can be written, using l,m

as node indices for a total number of Ntot nodes in the system:

P
(i)
in,dir = ω

2 Im
[
qH
juncfjunc

]
= ω

2

Ntot∑
l

Im
[
q∗junc,lfjunc,l

]
(3.53)
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Writing the generalized forces for the hybrid connection of the i-th statistical subsystem as

in Equation 3.41 and considering its cross-spectrum, the input power results in:

P
(i)
in,dir = ω

2 Im
[
qH
juncD

(i)
dirqjunc

]
= ω

2

Ntot∑
l

Im
[
q∗junc,l

(
Ntot∑
m

D(i)
dir,lmqjunc,m

)]
=

= ω

2

Ntot∑
l,m

Im
[
D(i)
dir,lm〈Sqq,lm〉

] (3.54)

Since 〈Sqq,lm〉 is real, it can be set outside the imaginary part operator of the multiplication.

Under the assumption of extremely uncertainty on the property of the random boundaries,

the response cross-spectrum can be written usgin Equation 3.52, and the input power to the

direct field of i results in a final form

P
(i)
in,dir = ω

2

Ntot∑
l,m

Im
[
D(i)
dir,lm

]D−1
tot

Sextff +
Ns∑
j

4Ej
πωnj

Im
[
D(j)
dir

]D−Htot


lm

(3.55)

This formula results simplified thanks to the assumptions of the direct field reciprocity

relationship. If the random boundary cannot be studied as extremely uncertain, then the

reverberant field is not a diffuse field and it is coherent to the direct field. If a correlation

between the results and the shape of the boundary is wanted or cannot be neglected, then it

cannot be found under the assumption of diffuse field and the matrix Ddir must be computed

considering the reverberant field. In that case, also the complete formulation of the force

cross-spectrum must be used (Equation 3.46).

The input power to the direct field of the i-th statistical subsystem can be divided in two

contributions, one due to the external loading
(
P

(i)
in,ext

)
and one due to the reverberant

loading associated with its reverberant field and the reverberant fields of any other statistical

subsystem
(
P

(i)
in,rev

)
P

(i)
in,dir =

(
P

(i)
in,ext

)
+
(
P

(i)
in,rev

)
(3.56)

P
(i)
in,ext = ω

2

Ntot∑
l,m

Im
[
D(i)
dir,lm

] {
D−1
totSextff D−Htot

}
lm

(3.57)

P
(i)
in,rev =

Ns∑
j

2Ej
πnj

Ntot∑
l,m

Im
[
D(i)
dir,lm

] {
D−1
tot Im

[
D(j)
dir

]
D−Htot

}
lm

=
Ns∑
j

ωjEjηji (3.58)

(
P

(i)
in,rev

)
is the net power input in the i-th subsystem as effect of the reverberant fields of all

the statistical subsystems. In Equation 3.58, this power can therefore be seen as the sum of
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the gross incoming power flows, by analogy with the transmitted power of the SEA equations

(term Pj→i of Equation 2.5). Therefore, using the same form of SEA equations, it is possible

to write the average transmitted power of the reverberant field as a sum of the reverberant

energies, modal densities and coupling loss factors between statistical subsystems.

From Equation 3.58, the Hybrid Coupling Loss Factor which identifies the average trans-

mission of power from the reverberant field of the statistical subsystem i to the one of the

statistical subsystem j is:

ηij = 2
πωni

Ntot∑
l,m

Im
[
D(j)
dir,lm

] {
D−1
tot Im

[
D(i)
dir

]
D−Htot

}
lm

(3.59)

It follows that the energy exchange properties between very uncertain subsystems is totally

determined by the deterministic behaviour of the hybrid junction. This method for the

derivation of the coupling loss factors is totally general in terms of the junction type. It can

be indistinctly used for point, line or area junctions. It can be noticed that if there are not

deterministic subsystems, for a point junction the coupling loss factor reflects perfectly the

SEA formulation in Equation 2.40 and 2.43.

Since the total stiffness matrix can be obtained in a symmetric form by using real valued

shape functions, also the hybrid coupling loss factor can be written in a symmetric form called

”ensemble average power transfer coefficient”, which is useful for handling the matrices:

hij = ωniηij , hij = 2
π

Ntot∑
l,m,r,s

Im
[
D(i)
dir

]
lm

Im
[
D(j)
dir

]
rs

(
D−1
tot

)
lr

(
D−Htot

)
ms

= hji (3.60)

The coefficients hij describes the average energy flow in a reverberant field of a system per

number of modes (so it is still assumed that the modal energy is constant).

Figure 3.5 shows the ensemble average energy flows in the reverberant field of the i-th

statistical subsystem. The input power presented in Equation 3.56 gets lost because of

dissipation within the reverberant field P
(i)
diss and because of the work done by the blocked

reverberant force on the deterministic boundaries P
(i)
out,rev. Therefore, the power balance for

the reverberant field of the statistical subsystem can be written:

P
(i)
in,dir = P

(i)
out,rev + P

(i)
diss (3.61)

The power lost because of the reverberant force depends on the cross-spectrum of the

displacement due to the single action of the reverberant field (second term of Equation 3.52),

which involves the total set of degrees of freedom. Using the same procedure of Equation 3.54:
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Figure 3.5: Power balance in a statistical subsystem excited by external and reverberant loadings Pin,dir.

P
(i)
out,rev = ω

2

Ntot∑
lm

S(i),rev
qq,lm Im [Dtot]lm = Ei

ni
htot,i (3.62)

where in the last equation is used a power loss coefficient for this power flow, which describes

the energy leaving the i-th statistical subsystem per its unit modal energy density, and can

be defined by multiplying the power by the modal density and dividing by the energy of the

subsystem:

htot,i = 2
π

Ntot∑
lm

Im [Dtot]lm
(
D−1
tot Im

[
D(i)
dir

]
D−Htot

)
lm

(3.63)

This work rate of the blocked reverberant force is a power transmitted to other subsystems.

Therefore, the loss of this power flow can be seen as the result of two contribution: the

dissipation by the damping of the deterministic subsystems (that depends only on the de-

terministic stiffness), and the transmission to reverberant fields of other subsystems (that

is described by the coupling loss factors, and so by
∑
hij). Considering Equation 3.44, the

total stiffness matrix which identifies this power loss can be divided in the deterministic part

and free field radiation part Im [Dtot] = Im [Dd] +
Ns∑
j

Im
[
D(j)
dir

]
. By naming hαi the trans-

mission coefficient relative to the dissipation in the damped deterministic subsystems due to

the reverberant power leaving the i-th statistical subsystem, the total power loss due to the

blocked reverberant force is:

P
(i)
out,rev = ω

2

Ntot∑
lm

S(i),rev
qq,lm

Im [Dd]lm +
Ns∑
j

Im
[
D(i)
dir

]
lm

 = Ei
ni

hαi +
Ns∑
j

hij

 (3.64)

htot,i =
hαi +

Ns∑
j

hij

 (3.65)
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Considering the already stated formulation of hji from Equation 3.59, and substituting the

reverberant term of Equation 3.52 in Equation 3.64:

hαi = 2
π

Ntot∑
lm

Im [Dd]lm
(
D−1
tot Im

[
D(i)
dir

]
D−Htot

)
lm

(3.66)

If the deterministic subsystems are undamped, the imaginary part of the deterministic stiff-

ness is null and hαi =0.

The dissipated power in the reverberant field P
(i)
diss can be written as in Equation 2.4 using

the damping loss factor, and also transformed as a function of the modal energy so that can

be compatible with the previous transmission coefficients h:

P
(i)
diss = ωηiEi = Mi

Ei
ni

(3.67)

Mi = ωniηi (3.68)

The transmission loss coefficient for this dissipated power Mi is the half power bandwidth2

modal overlap3 of the i-th reverberant field.

Substituting in Equation 3.61 the three power flow expressions (Equation 3.56, 3.62 and 3.67),

the final form of the power balance can be obtained, with the relative matrix formulation:

P
(i)
in,ext = (Mi + htot,i)

Ei
ni
−

Ns∑
j

hji
Ej
nj

(3.69)


P

(1)
in,ext
...

P i
in,ext

 =


M1 + htot,1 − h11 . . . −hi1

. . .

symm. Mi + htot,i − hii



E1
n1
...
Ei
ni

 (3.70)

If the power dissipated in the work done by the reverberant field Pout,rev is written in the

form of Equation 3.64 distinguishing the dissipation in the deterministic subsystems and the

2The ”half power” or ”-3dB” bandwidth of a resonant frequency is the range of frequencies for which the
response amplitude is larger than the amplitude corresponding to the half of the power of the resonant
peak. The half power amplitude is located at -3dB from the maximum amplitude.

3The modal overlap factor can be interpreted as the number of resonances within the half power bandwidth
of a certain resonance frequency.
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transmission to other reverberant fields, the power balance equation becomes:

P
(i)
in,ext =

Mi + hαi +
∑
j

hij

 Ei
ni
−

Ns∑
j

hji
Ej
nj

(3.71)


P

(1)
in,ext
...

P i
in,ext

 =


M1 + hα1 + ∑

j 6=1
h1j . . . −hi1

. . .

symm. Mi + hαi + ∑
j 6=1

hij



E1
n1
...
Ei
ni

 (3.72)

If the deterministic subsystem is undamped and so hαi = 0, Equation 3.72 corresponds to

the symmetric form of the SEA equations in Equation 2.14 derived in a different form, that

is considering the power balance of subsystems with random boundaries.

From the power balance of the reverberant field, it is possible to derive the ensemble average

modal energy density of the reverberant field of each statistical subsystem. Using these en-

ergies is then possible to compute the cross-spectral response using Equation 3.52. The total

energy of a statistical subsystem can be derived by summing the energy of the reverberant

field with the energy of the direct field.

In conclusion, a hybrid system can be viewed as an assembly of statistical subsystems con-

nected trough deterministic subsystems, that constitute the hybrid junctions and contribute

to the power flow with the damping dissipation. Everything stated in the procedure exposed

by [Shorter and Langley 2005b] is an analytically exact statistic, under the assumption of

diffuse field. Because of such an assumption, defining the deterministic domains, the de-

terministic boundaries and the direct field dynamic stiffness of the statistical subsystems,

implicitly defines the hybrid equations. Eventual approximations may occur in defining the

free field radiation stiffness.

It must be noticed that if a detail is considered uncertain in this analysis, the results will

be generated by the condition of maximum entropy on the definition of such a detail. This

means that a certain detail can only be modelled as totally deterministic, or as totally ran-

dom. The assumption of random detail produces results which are not linked to a particular

condition of the statistical subsystem, like its overall dimension, but only on its character-

ising properties for the definition of the direct field radiation stiffness, like the element type

(beam, bar, plate, etc.).

The big advantage of this method is that it allows to consider an arbitrary amount of de-

terministic details to be included in the analysis, and provides a totally generic approach

and systematic procedure for predicting the response of complex systems which require both
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statistical and deterministic treating, differently from SEA. Equation 3.59 is a generic for-

mulation for computing the coupling loss factors between statistical subsystems, and it can

be used in a very fast way to perform a parametric study of the noise transmission between

components, varying the subsystems properties like the damping, or the junction’s features.

A similar study is presented in chapter 5.

In conclusion, the method explained is totally generic and does not depend on the geometry

of the junctions and components. The type of junction only influences the formulation of

the direct field dynamic stiffness.

As done in [Peiffer et al 2009], modal coordinates and mode shapes can be used to express

the displacements. Considering M modes, the i-th component of displacement is:

u(i)(t,x) =
M∑
k

Φ(i)
k (x)qk(t) (3.73)

q = [q1, q2...qM ] is the displacement vector in modal coordinates and Φ(i)
1 (x) ,Φ(i)

2 (x) ...Φ(i)
M (x)

are the mass-normalized mode shapes of the system of the i-th component of displacement.

Using the modal expansion, a generic stiffness matrix D can be expressed in modal co-

ordinates using the modal matrix M, which is composed by the column vectors of mode

shapes assembled considering all the displacement components. Indicating with Φk (x) the

mass-normalized mode shape column vector of the k-th mode mapped on N points, for a

set of three displacements ux,uy,uz the mode vector is composed by the three displacement

components of mode as follows:

Φk (x) =
[
Φux
k,1,Φ

uy
k,1,Φuz

k,1,Φux
k,2,Φ

uy
k,2,Φuz

k,2 ... Φux
k,N ,Φ

uy
k,N ,Φuz

k,N

]T
(3.74)

the modal matrix and a generic stiffness matrix result in:

M = [Φ1 (x) ,Φ2 (x) ...Φk (x) ...ΦM (x)] (3.75)

Dmod = MHDM (3.76)

If D is a deterministic stiffness matrix te modes are mapped over the relative deterministic

subsystem, if D is a direct field dynamic stiffness matrix then the modes are mapped over

the deterministic boundary of the relative statistical subsystem.
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4 Hybrid Line Junction

As shown in chapter 3, when a statistical subsystem presents deterministic details on its

boundary and the remaining part of the boundary is defined with the condition of maximum

entropy, the power balance Equation 3.69 (or in the form of Equation 3.71) which allows to

compute the ensemble average response of the statistical subsystems depends on: frequency,

modal density, damping loss factor, deterministic dynamic stiffness matrix and direct field

dynamic stiffness matrix. Since the deterministic matrix can be computed with a finite

element or boundary element method, the damping loss factor depends on the material, and

the modal density depends on the type of component, the only parameters that must be

defined is the radiation stiffness matrix of the boundary.

In this chapter, the radiation stiffness matrix for a plate-beam-plate line junction is derived,

so that the hybrid coupling loss factors can be computed.

4.1 Plate - Beam - Plate System

The system presented in Figure 4.1a is composed by two plates and one beam in aluminium

(Table B.1) connected along one edge under an angle of 120◦. Referring to Figure 4.1b,

the plates A and B are flat rectangular statistical subsystems with one deterministic edge

each in correspondence of the connection, the beam is a straight C-type cross section and is

modelled deterministically. According to the hybrid theory, this system contains one hybrid

junction which is constituted by the beam and the two connected edges of plates. Since the

beam is modelled with 1-dimensional elements using FEM, the hybrid junction is a simple

straight line of nodes in which the beam and the two deterministic edges are overlapped, that

means all the deterministic degrees of freedom are on the line junction and the deterministic

matrix coincides with the beam matrix:

qjunc ≡ q Dd ≡ Dbeam (4.1)
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(a) Plate - Beam - Plate system (b) Global coordinate system of the model

Figure 4.1: Hybrid System

In Figure 4.1b, the global cartesian coordinate system is chosen in a way that the hybrid

junction lays on the x-axis.

In chapter 5 the results are presented on two different model set-ups: one shorter and

one longer dimension in the x direction. For these two configurations the geometry of the

subsystems is reported in Table B.2 and Table B.3.

The simulated frequency range is the interval 100Hz ∼ 2000Hz. In figure 5.1b it can be seen

how, over such a frequency range, the plates show wavelengths short enough to be studied

as statistical subsystems.

4.2 Assumptions

The principal assumption of the model regards the classification of the subsystems. As

already introduced, the plates are considered as statistical subsystems while the beam is

deterministic. The reason lies in the wavelengths within the frequency range of simulation,

which are short compared to the length of the two plates in the direction of the propagation

of the direct field (perpendicular to the junction) see Figure 5.1b. The wavelength of the

bending motion is indeed very short with respect to the plate dimension which is 1.2 m for

plate A and 1 m for plate B. At 2000Hz the parameter z introduced in section 2.2 is around

12 ∼ 15 for the two plates, which is a value generically associated to SEA components in

Table 2.2. Looking at the wavenumbers of the in-plane motion of the plate, they are con-

siderable smaller than the bending one. This is due to the higher stiffness of the component

to the shear and longitudinal displacements. Such a difference in the wavelengths allows

to separate the out-of-plane and the in-plane motions, if they are decoupled, and to study

only the flexural one in the statistical subsystem, while the in-plane motions could be con-

sidered deterministically. However, it must be noticed that such a distinction is much more
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difficult to be done in more complex geometries, then usually all the motions of a certain

subsystem are classified in the same way, as it is done in this report. Regarding the beam,

it can be stated that since the bending stiffness is strongly greater than the plate’s one, the

wavenumbers which can be computed with Equation 2.25 using the modal density formulas

in subsection 2.3.3, lead to wavelengths which are higher in magnitude order with respect to

the beam length over the simulated frequency range. For this reason, the beam is considered

as a deterministic subsystem.

Another important assumption comes from the hypothesis of diffuse reverberant field, which

allows to use the equations presented in section 3.3. As already explained, under this as-

sumption the reverberant field is incoherent, and the power balance depends only on the

direct field. To study only the direct field of vibration corresponds to neglect all the random

boundaries, and model the vibration coming from the deterministic ones as if there were no

interactions with other fields or discontinuities in the domain. In the case of the plate sub-

system, the direct field can be studied considering the only deterministic boundary, which

means modelling the plate as a semi-infinite space. This result presents a big advantage

since the solution for the semi-infinite and infinite spaces are typically analytic, and simpler

respect to a general component with boundaries. An example for infinite plate solution can

be seen in [Cremer et al 2010] and in subsection 4.3.2, where the response depends only on

the distance from the application point of the loading.

The considered motions of the plate are produced by the bending, shear and longitudinal

forces in the direction perpendicular to the junction. They can be expressed in the semi-

infinite space by the three displacements and the rotation in the direction of the junction.

The local coordinate system used to describe the semi-infinite plate can be seen in Figure 4.2.

The displacements along x,y,z are respectively u,v,w, the forces per unit length are T,N,F.

The rotation of the edge in the x-axes is θ and the moment per unit length is M.

The plate is considered to be isotropic and thin, and the in-plane and out-of-plate motions

are supposed to be decoupled for the Kirchhoff-Love theory, so that the behaviour is the

summation of the bending theory of plates and the membrane theory of shells. The consti-

tutive equations can be derived from the stress-resultants and the Hooke’s law [Timošenko

and Woinowsky-Krieger 1996]. The boundary equations required to describe the motion of
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the boundary are [Ventsel and Krauthammer 2001]:

T = −S
(
∂u

∂y
+ ∂v

∂x

)
(4.2)

N = −C
(
∂v

∂y
+ ν

∂u

∂x

)
(4.3)

F = −B
(
∂3w

∂y3 + (2− ν) ∂3w

∂x2∂y

)
(4.4)

M = −B
(
∂2w

∂y2 + ν
∂2w

∂x2

)
(4.5)

Where the negative signs of the in-plane forces are due to the correspondence between the co-

ordinate system and the positive direction of the loads (a positive N generates a compression

of the plate in y). B, C and S are respectively the bending stiffness, in-plane longitudinal

stiffness and in-plane shear stiffness of a thin plate of thickness h:

B = Eh3

12 (1− ν2) (4.6)

C = Eh

1− ν2 (4.7)

S = Eh

2 (1 + ν) (4.8)

Figure 4.2: Local coordinate system for a semi-infinite plate.
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Another assumption is made regarding the coordinates in which the stiffness matrices of

the plates and the beam will be presented. A modal-based approach is used to derive

the stiffness of the system, so that the deterministic matrices can be found to be diagonal

under the assumption of proportional damping, and the direct field stiffness of the plates is

expressed in modal coordinates using the modal expansion. The modal analysis is performed

with a finite element method.

Under the previous assumptions, the direct field dynamic stiffness matrix for the plates can

be computed considering these statistical components to be semi-infinite.

4.3 Direct Field Dynamic Stiffness Matrix

In this subsection, the governing equations for the vibration of thin plates are presented.

The solution of the vibration must lead to the semi-infinite plate free field radiation stiffness

matrix. In what follows the damping η is neglected to simplify the equations, but it can

be easily considered under the assumption of hysteretic damping, by multiplying the elastic

constants with (1 + iη) as explained in subsection 2.3.2, and so the bending, shear and

longitudinal stiffness since they are proportional to the Young’s modulus (for example B →
B (1 + iη)).

4.3.1 Governing equations for the Direct Field

Writing the dynamic equilibrium of an infinitesimal thin volume with density ρ loaded by

a force per unit area p = {px,py,pz}, the governing differential equations for plates can be

derived for the deflection and the in-plane motion [Ventsel and Krauthammer 2001].

The deflection dynamic is given by:

B∇4w (x,y,z,t) + ρh
∂2w (x,y,z,t)

∂t2
= pz (x,y,z,t) (4.9)

where ∇4 is the biharmonic operator1. Considering the bending wavenumber of the plate kB,

the differential equation can be rewritten from the time domain to the wavenumber domain

1∇4 = ∇2 (∇2) = ∂4

∂x4 + 2 ∂4

∂x2∂y2 + ∂4

∂y4
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assuming the harmonic time dependency with time frequency ω:

kB = 4

√
ρhω2

B
(4.10)

B
(
∇4 − k4

B

)
w (x,y,z) = p (x,y,z) (4.11)

The in-plane dynamic is given by:
C
∂2u

∂x2 + S
∂2u

∂y2 + S
(
1− ν2

) ∂2v

∂x∂y
− ρh∂

2u

∂t2
= px

C
∂2v

∂y2 + S
∂2v

∂x2 + S
(
1− ν2

) ∂2u

∂x∂y
− ρh∂

2v

∂t2
= py

(4.12)

(4.13)

As done for the out-of-plane equation, considering the longitudinal and shear wavenumbers

kL, kS and assuming the harmonic time dependency, the differential equation can be rewritten

in wavenumber domain:

kL = ω

√
ρh

C
(4.14)

kS = ω

√
ρh

S
(4.15)


C
∂2u

∂x2 + S
∂2u

∂y2 + S
(
1− ν2

) ∂2v

∂x∂y
+ Ck2

Lu = px

C
∂2v

∂y2 + S
∂2v

∂x2 + S
(
1− ν2

) ∂2u

∂x∂y
+ Sk2

Sv = py

(4.16)

(4.17)

It must be noticed that the last coefficients are equal Ck2
L = Sk2

S, so they can be inverted

between the two equations.

4.3.2 Green’s Function Method

The Green’s Functions for the semi-infinite plate can be used to solve the differential equa-

tions. Once the Green’s function G is defined, the displacements of the plate boundary can

be expressed in one point directly as a function of a unit harmonic point force:

qj = G (ri,rj) fi (Ddir)ji = 1
G (ri,rj)

(4.18)



4.3 Direct Field Dynamic Stiffness Matrix 53

where ri,rj are the coordinate of two points, i for the force and j for the response. In

[Gunda et al 1998], a general method for the derivation of the harmonic Green’s Function

in wavenumber domain for the bending of a semi-infinite plate is presented. The derivation

comes from the Green’s function of an infinite plate, using the superposition principle with

the boundary conditions. The solution takes into account the only normal force acting on

the plate as a unit harmonic point force at the boundary, and is developed in wavenumber

domain as an improper integral over all the possible wavenumbers. The function is derived

using the zero order Hankel function of the first kind in polar coordinates, and transformed

in cartesian coordinates in order to have a suitable form to apply boundary conditions from a

straight edge. From the derivation reported in section A.2, the Green’s function of equation

Equation 4.11 for an infinite plate in cartesian coordinates results in:

G∞ (ri,rj,kB) = 2c
π

+∞∫
0

cos [kx (xj − xi)]
ei
√
k2
B−k2

x |yj − yi|√
k2
B − k2

x

+ ie
−
√
k2
B+k2

x |yj − yi|√
k2
B + k2

x

 dkx

(4.19)

Where c = i/8k2
BB ad kx is the wavenumber in the x direction. The integrand function is

a sum of an even and an odd functions, so that the odd part can be deleted and the even

part can be doubled and integrated only over a half interval [0; +∞). Such an integral is

convergent and the solution obtained with the adaptive quadrature ”integral” function in

MATLAB matches with the theoretical point impedance of the infinite plate in [Cremer et al

2010]:

Z∞ = − 1
iωG∞ (ri,ri,kB) = 8

√
ρhB (4.20)

For an infinite plate of thickness h = 3 mm and same material of Table B.1 excited by a unit

force at 1000 Hz, the point impedance results to be 0,305 N/(mm s) for both the formulas.

As reported in section A.2, using the method of images as shown in [Gunda et al 1995], it is

possible to find the Green’s functions of the semi-infinite plate for a simply supported edge

and roller supported edge. Then, the superposition of the boundary displacements can be

used to reproduce clamped and free boundary conditions. A resume of the Green’s functions

for the normal loading of the semi-infinite plate can be found in [Cuenca 2009, Section 4.3.2].

In this context, only the Green’s function for the free edge is reported in order to underline

the problem of this method. Since excitation and response are of interest only on the semi-

infinite plate edge, is advantageous to use the free boundary formula derived from the simply

supported case (Equation A.18), since the Green’s function of the simply supported plate in



54 4 Hybrid Line Junction

Equation A.11 at the edge is zero, and referring to Figure 4.2:

G/∞,fs|yi=yj=0 =

= i8ck4
B

π

+∞∫
0

cos [kx (xj − xi)]√
k2
B + k2

x (k2
B − (1− ν) k2

x)
2 + i

√
k2
B − k2

x (k2
B + (1− ν) k2

x)
2 dkx

(4.21)

As it can be seen from the denominator, the integrand function presents a discontinuity of

the second type (essential discontinuity) which is not easy to be solved. Simple adaptive

quadrature is not suitable for this function, even if very small tolerances are imposed. In

[Gunda et al 1998] an integration technique is proposed using the Clenshaw-Curtis integration

with the Čebyšëv polynomial of the first kind.

Looking at the line junction and the assumption made about the degrees of freedom, the

bending deflection is not sufficient to describe the semi-infinite plate behaviour. Regarding

the out of plane motion, one way to represent the Green’s function for the moment excitation

M is shown in [Filippi 2008] as the derivative of the deflection Green’s function in the

direction of the moment, which complicates even more the formulas. Regarding the in-plane

motion, similar procedure for the derivation of the longitudinal and shear waves Green’s

function could be adopted, actually not easily available in literature.

Despite the possibility to find an approximate solution for the Green’s function and so to

derive the radiation stiffness matrix for a given set of nodes on the edge, this method is not

easy to implement because of the complexity of the integration and the very high sensitivity

of the result to the tolerance adopted for the approximation. In the next subsections, two

better suitable methods are presented for the derivation of the direct field stiffness.

4.3.3 Wavenumber Direct Modal Transformation Method

Instead of deriving the Green’s functions, the equations of motion for the out-of-plane and

in-plane vibration of the semi-infinite plate can be obtained directly from the stress resultant

relations (Equation 4.2, 4.3, 4.4, 4.5) under the assumption of harmonic response in time

and space propagation. The following derivation is also done in [Langley and Heron 1990]

and corrected in [Johansson and Comnell 2010], in this thesis some more clarifications are

made as explained in section A.3.

Referring to the coordinate system in Figure 4.2, a generic component pi of the direct wave

field generated from the boundary is supposed to have a harmonic space and time dependency
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written as:

pi(x,y,t) ∼ e−(ikxx+ikyy)+iωt (4.22)

where kx and ky are the wavenumber components in the plate. The displacements associated

to this wave will have the same time/space dependency expressed by a superposition of

amplitudes and wavenumbers which is governed by the differential equations of motion.

Indeed, if the harmonic behaviour is substituted in the homogeneous equations of the out-of-

plane and in-plane motions, the eigenvalues of the resulting eigeproblems will be the bending,

shear and longitudinal wavenumbers needed to describe the motion of the plate.

While the dependency e−ikxx+iωt is given in all the plate by the compatibility at the junction

because of the space and time frequency excitations kx, ω, the y dependency is given by the

plate equations of motion. Wanting to derive the shape of the y dependency as eµBy, the

response can be written as:

pi(x,y,t) ∼ e−ikxx+µBy+iωt (4.23)

Considering in first instance the out-of-plane motion. From Equation 4.11, the homogeneous

equation in wavenumber domain and the corresponding eigenproblem deriving form the

harmonic dependency are:

B
(
∇4 − k4

B

)
w (x,y,z) = 0 (4.24)

(
∇4 − k4

B

)
e−ikxx+µBy+iωt = 0 (4.25)

Developing Equation 4.25 leads to:

(
k2
x + µ2

B

)2
= k4

B (4.26)

Four possible solutions for the y component of the wavenumber can be found. Two are

positive (one imaginary and one real) and two are negative (one imaginary and one real).

Since the plate is semi-infinite, the response must tend to zero at y values which are far

from the boundary. This can only be obtained if µB is negative (Equation 4.22), so the two

negative roots are considered and are called µB1 and µB2 for specify the bending case:

µB1 = −
√
k2
x + k2

B µB2 = −
√
k2
x − k2

B (4.27)
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µB2 is imaginary for |kx| < |kB|. Using these two wavenumbers, the out-of-plane response

can be written as:

w =
2∑

n=1
αBne

−ikxx+µBny+iωt (4.28)

θ = ∂w

∂y
=

2∑
n=1

µBnαBne
−ikxx+µBny+iωt (4.29)

where αBn are the amplitudes of the two waves. Substituting these displacements in the

stress resultant relations for the deflection (Equation 4.4, 4.5), the relation between the edge

forces Fe,Me and displacements we, θe both defined in wavenumber domain can be found

imposing y = 0. The formulas are reported in section A.3, and the final result contains

the direct field dynamic stiffness matrix for the out-of-plane motion in wavenumber domain

Dwn
dir,out:Fe (kx)

Me (kx)

 = Dwn
dir,out

we (kx)
θe (kx)

 =

= B

µ2
B1µB2 + µB1µ

2
B2 −µB1µB2 − νk2

x

µB1µB2 + νk2
x −µB1 − µB2

we (kx)
θe (kx)

 (4.30)

which is antisymmetric. Since µB2 participates in all the coefficients of Equation 4.30, the

out-of-plane radiation stiffness matrix is complex valued for |kx| < |kB|. Repeating the same

procedure for the in-plane case in Equation 4.16 and 4.17, the solutions for the y dependency

are:

µS = −
√
k2
x − k2

S (4.31)

µL = −
√
k2
x − k2

L (4.32)

and the consequent in-plane displacements:

u = [αLkxeµLy + iαSµSeµSy] e−ikxx+iωt (4.33)

v = [iαLµLeµLy − αSkxeµSy] e−ikxx+iωt (4.34)
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The in-plane motion equations can be derived with the same approach, and the matrix Dwn
dir,in

is written as:

Te (kx)
Ne (kx)

 = Dwn
dir,in

ue (kx)
ve (kx)

 =

= S

k2
x − µLµS

 −µLk2
S −ikx (2µLµs + k2

S − 2k2
x)

ikx (2µLµs + k2
S − 2k2

x) −µSk2
S

ue (kx)
ve (kx)


(4.35)

Also the in-plane matrix is antisymmetric and is complex valued for |kx| < |kL| in the terms

containing µL and for |kx| < |kS| in the terms containing µS. The complete radiation stiffness

matrix in wavenumber domain for the semi-infinite plate is then antisymmetric:
Te (kx)
Ne (kx)
Fe (kx)
Me (kx)

 = Dwn
dir (kx)


ue (kx)
ve (kx)
we (kx)
θe (kx)

 Dwn
dir (kx) =

Dwn
dir,in (kx) 0

0 Dwn
dir,out (kx)

 (4.36)

Dwn
dir (kx) =


D11 (kx) D12 (kx) 0 0

D21 = −D12 D22 (kx) 0 0
0 0 D33 (kx) D34 (kx)
0 0 D43 = −D34 D44 (kx)

 (4.37)

As introduced in section 4.2, the matrices for the calculation of the coupling loss factors

are considered in modal coordinates, so it is necessary to apply a modal transformation to

the system in Equation 4.36. In this case, the modal transformation is done directly in

wavenumber domain using a wavenumber integral.

Considering the stress resultants, the force-displacements relation in space domain can be

written as a differential equation where the force functions f space (x,y,z) = [T,N,F,M]T can

be written through the differential operator matrix Q operating on the space displacements
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vector uspace (x,y,z) = [u,v,w,θ]T:

f space = Quspace (4.38)

Q =


Q11 Q12 0 0
Q21 Q22 0 0
0 0 Q33 Q34

0 0 Q43 Q44

 (4.39)

For the modal transformation, the displacements are written as a summation of mode shapes

of the plate edge Φi(x) in space domain, multiplied by the modal displacements qi:

uspace =
∑
i

Φi(x)qi (4.40)

Φi(x) =
[
Φu
i (x),Φv

i (x),Φw
i (x),Φθ

i (x)
]T

(4.41)

A generic mode shape presents four components, one for each type of displacements con-

sidered are the edge. The differential equations can be then written substituting the modal

transformation, and integrating the residual over the plate edge with the pre-multiplication

of the transposed mode shapes:

f space = Q
∑
i

Φi(x)qi (4.42)

∫
L

Φ∗Tj (x)f spacedx =
∑
i

qi

∫
L

Φ∗Tj (x)QΦi(x)dx (4.43)

The mode shapes must be transposed in the pre-multiplication in order to obtain the modal

transformation. Equation 4.43 represents the force displacements relation in modal coordi-

nates, where the modal force on the j-th coordinate is the left part of the equation and is

given by the direct field dynamic stiffness matrix in modal coordinates Dmod
dir multiplied by

the modal displacements:

fmod
j =

∫
L

Φ∗Tj (x)f spacedx =
∑
i

Dmod
dir,jiqi (4.44)

Dmod
dir,ji =

∫
L

Φ∗Tj (x)QΦi(x)dx (4.45)

Considering Equation 4.42, the term QΦi(x) can be seen as the i-th contribution of the

summation for the force vector function in space domain f space
i , normalized with the i-th
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modal displacement qi:

f space
i

qi
= QΦi(x) (4.46)

Dmod
dir,ji =

∫
L

Φ∗Tj (x)f space
i

qi
dx (4.47)

The modal free field radiation stiffness matrix can then be derived from the contribution

of force in space domain due to the i-th mode shape. Such contribution can be written in

wavenumber domain using Dwn
dir considering that the modal displacements are the same as

in space domain. The wavenumber Fourier Transform of the mode shapes is:

Φi(kx) =
+∞∫
−∞

Φi(x)e−ikxxdx =
[
Φu
i (kx),Φv

i (kx),Φw
i (kx),Φθ

i (kx)
]T

(4.48)

Uwn =
∑
i

Φi(kx)qi (4.49)

where Uwn is the wavenumber transform of the space displacements obtained transforming

Equation 4.40. The i-th force contribution derives from the substitution of Equation 4.49 in

Equation 4.36:

Fwn
i

qi
= Dwn

dirΦi(kx) (4.50)

where Fwn
i is the force per unit length vector in wavenumber domain. The inverse Fourier

Transform of Equation 4.50 must lead to the same force written in Equation 4.46, and is:

f space
i

qi
= 1

2π

+∞∫
−∞

Dwn
dirΦi(kx)eikxxdkx (4.51)

Substituting Equation 4.51 in Equation 4.47:

Dmod
dir,ji = 1

2π

+∞∫
−∞

(∫
L

Φ∗Tj (x)eikxxdx
)

Dwn
dirΦi(kx)dkx (4.52)

Inverting the integration order of the line integral, the term in the parenthesis corresponds

to the waveunmber transform of the j-th transposed conjugated mode shape, so the modal
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radiation stiffness matrix can be finally written as a wavenumber integral:

Dmod
dir,ji = 1

2π

+∞∫
−∞

Φ∗Tj (kx)Dwn
dirΦi(kx)dkx (4.53)

Dmod
dir is in modal coordinates, so it has M×M elements with M number of modes considered,

and Dmod
dir,ji is a single element which is function of the time-frequency excitation ω. Indicating

the ij element of Dwn
dir as Dwn

ij , the modal stiffness can be written as:

Dmod
dir,ji = 1

2π

+∞∫
−∞

[
Φu
j (kx) (Dwn

11 Φu
i (kx) +Dwn

12 Φv
i (kx)) + Φv

j (kx) (Dwn
21 Φu

i (kx) +Dwn
22 Φv

i (kx)) +

+Φw
j (kx)

(
Dwn

33 Φw
i (kx) +Dwn

34 Φθ
i (kx)

)
+ Φθ

j(kx)
(
Dwn

43 Φw
i (kx) +Dwn

44 Φθ
i (kx)

)]
dkx

(4.54)

The improper integral should be evaluated over all the possible infinite wavenumber values.

In the context of a simulation, there must be a maximum wavenumber calculable, given by

the Shannon theorem2 for the sampling of mode shapes. Since the modes are taken from a

FE model, their maximum wavelength is related to the FE grid of nodes used to discretize

the junction.

Assuming an equispaced grid to be used with a spacing of ∆L between each node. The

sampling space-frequency is fs = 1/∆L, consequently there will not be mode shapes with

wavelength components smaller than 2∆L, and so the corresponding maximum wavenumber

is kmax = π/∆L. The integration in Equation 4.54 can then be computed only over the

range defined by the maximum wavenumber. One possible way to compute the ij entry of

the radiation stiffness is reported in Appendix D.

Dmod
dir,ji = 1

2π

+fsπ∫
−fsπ

[
Φu
j (kx) (Dwn

11 Φu
i (kx) +Dwn

12 Φv
i (kx)) + Φv

j (kx) (Dwn
21 Φu

i (kx) +Dwn
22 Φv

i (kx)) +

+Φw
j (kx)

(
Dwn

33 Φw
i (kx) +Dwn

34 Φθ
i (kx)

)
+ Φθ

j(kx)
(
Dwn

43 Φw
i (kx) +Dwn

44 Φθ
i (kx)

)]
dkx
(4.55)

As anticipated in subsection 3.2.1, the mode shapes used in this case are complex valued, since

they are the result of a Fourier Transform. The consequence is that the pre-multiplication

by the j-th conjugated shape and post-multiplication by the i-th shape of the wavenumber

stiffness coefficients is not a complete symmetric operation. Indeed, considering two recipro-

2If a sampling frequency fs is used while sampling a signal containing a certain ensemble of frequency
contributions, the maximum frequency that can be sampled is fs/2



4.3 Direct Field Dynamic Stiffness Matrix 61

cal elements Dmod
dir,ji and Dmod

dir,ij only their absolute values are equal, while real and imaginary

parts may be different.

Once the radiation stiffness is totally computed for both the statistical subsystems, the

coupling loss factors can be obtained by using Equation 3.59. In order to do this, the modal

dynamic stiffness of the beam must be computed. Since the mode shapes are needed and

usually calculated with a FEM software, this matrix can be directly extracted from the

FE model. Otherwise, it can be simply written in modal coordinates using the natural

frequencies ωn, under the assumption of proportional damping which allows the decoupling

of the modes, and so the matrix results to be diagonal:

Dmod
beam,ii = ω2

n,i (1 + iηbeam)− ω2 (4.56)

The deterministic matrix corresponds to the beam stiffness, and the total matrix is:

Dmod
tot = Dmod

beam + Dmod,A
dir + Dmod,B

dir (4.57)

Considering M as the number of modes taken in account, the coupling loss factors are then

computed:

hAB = 2
π

M∑
l,m

Im
[
D(B)
dir,lm

] {
D−1
tot Im

[
D(A)
dir

]
D−Htot

}
lm

= hBA (4.58)

ηAB = hAB
ωnA

(4.59)

ηBA = hBA
ωnB

(4.60)

4.3.4 Wavenumber Cardinal Sine Method

Another approach for developing the differential equation in Equation 4.38 and transforming

it in a discrete function formulation, is to use generic shape functions and apply the Galerkin

Method to each stress resultant equation in order to obtain forces and displacement in the

generic set of generalized coordinates.

Considering a set of shape functions ϕi(x) which are bases of the q set of generalized coor-

dinates, the vector of the four displacements is expressed as:

uspace =
∑
i

ϕi(x)qi (4.61)
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The shape functions and their wavenumber Fourier transforms are written as:

ϕi(x) =
[
ϕu
i (x), ϕv

i (x), ϕw
i (x), ϕθi (x)

]T
(4.62)

ϕi(kx) =
+∞∫
−∞

ϕi(x)e−ikxxdx =
[
ϕu
i (kx), ϕv

i (kx), ϕw
i (kx), ϕθi (kx)

]T
(4.63)

Applying the Galerkin method to the stress resultant (Equation 4.38), the residual is in-

tegrated with the substitution of the displacements in Equation 4.61 and with the pre-

multiplication of a set of weight functions which is the chosen to be equal to the set of shape

functions:

∫
L
ϕ∗j(x)f spacedx =

∑
i

qi

∫
L
ϕ∗j(x)Qϕi(x)dx =

∑
i

Ddir,qqi (4.64)

where Ddir,q is the direct field dynamic stiffness matrix in the generalized coordinates q.

Equation 4.64 is similar to Equation 4.43. The only difference is in the transposition of

the pre-multiplied shape function which is adopted for the modal transformation and is not

adopted for this generic solution. Proceeding in the same way as in subsection 4.3.3, the ji

entry of the free field stiffness matrix is:

Dmod
dir,q,ji =

∫
L
ϕ∗j(x)f space

i

qi
dx (4.65)

Writing the force vector in wavenumber domain and its inverse Fourier transform as in

Equation 4.51:

Fwn
i

qi
= Dwn

dirϕi(kx) (4.66)

f space
i

qi
= 1

2π

+∞∫
−∞

Dwn
dirϕi(kx)eikxxdkx (4.67)

Equation 4.67 can be substituted in Equation 4.65, and inverting the integration order of the

L integral, the entry of the direct field dynamic stiffness matrix in generalized coordinates for

the j-th generalized vector of four forces on the i-th generalized vector of four displacements

is:

(Ddir,q)j = 1
2π

+∞∫
−∞

ϕ∗j(kx)Dwn
dirϕi(kx)dkx (4.68)
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The ji entry is a submatrix of the same dimension of Dwn
dir (in this case is a 4× 4), because

the method is applied separately to each stress resultant. The submatrix entry can be written

developing Equation 4.68:

(Ddir,q)ji = 1
2π

∫ +∞

−∞


ϕu
jD

wn
11 ϕ

u
i ϕu

jD
wn
12 ϕ

v
i 0 0

ϕv
jD

wn
21 ϕ

u
i ϕv

jD
wn
22 ϕ

v
i 0 0

0 0 ϕw
j D

wn
33 ϕ

w
i ϕw

j D
wn
34 ϕ

θ
i

0 0 ϕθjD
wn
43 ϕ

w
i ϕθjD

wn
4 ϕθi

 dkx (4.69)

where the shape functions are in wavenumber domain ϕi = ϕi(kx). The total stiffness is then

a 4N × 4N matrix frequency dependent, where N is the number of shape functions adopted

to represent the displacements. Such an approach can be used for any kind of valid set of

orthogonal shape functions, but the problem of the improper integral must be solved.

It can be seen that for a 1-dimensional problem like the boundary response-excitation rela-

tion treated in this chapter, a basis function capable to appropriately reproduce the wave

propagation is the cardinal sine sinc (x). In [Langley 2007], the corresponding 2-dimensional

function (jinc) is used for the normal displacement of plane structures. In its normalized

form, this function can be written as:

sinc (x− xi) = sin [π (x− xi)]
π (x− xi)

(4.70)

Such a function intersect the x axis in all the integer values of x, apart from x = xi where

sinc (0) = 1. An extremely helpful property of this function is represented by its wavenumber

transform, which is the rectangular function of height 1 and width 2π (range[−π; π]) in the

wavenumber domain. The rectangular is the total real part of the transform only if the sinc

is in the origin of the coordinate system, so if xi = 0. Otherwise the wavenumber transform

is rectangular only in its absolute value, since is complex valued with harmonic real and

imaginary parts but still null out of the rectangular base. If the frequency of the normalized

sinc is changed from 1 to a generic sampling frequency value fs, the Fourier Transform

is still rectangular with amplitude fs and frequency band is [−fsπ; fsπ]. In conclusion, if

sinc shape functions are adopted in space domain, their wavenumber transforms are all zero

for |k| > fsπ, which means that the integral in Equation 4.69 is computed only over the

bandwidth [−fsπ; fsπ]. Beside, the same sinc functions ϕi can be adopted to describe all the

four displacements of the plate’s edge, so that ϕi = ϕu
i = ϕv

i = ϕw
i = ϕθi .

The sinc shape functions can be chosen in a particular way so that the formulas get simplified.

The target is to obtain a shape function matrix in space domain which is the identity matrix,

that means no coordinate transformation is needed between the nodal coordinates and the
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”sinc” coordinates. The number of shape functions corresponds to the number of nodes: in

order to form the identity matrix, each sinc function must correspond to one node and the

shape function related to the i-th node must have unitary amplitude in correspondence of

that node and null amplitude in correspondence of all the other j 6= i nodes.

If the nodes grid is equispaced and the spacing is ∆L, indicating the sampling space-frequency

as fs = 1/∆L the i-th shape function and its wavenumber transform are:

ϕi(x) = ϕu
i (x) = ϕv

i (x) = ϕw
i (x) = ϕθi (x) = sinc [fs (x− xi)] = sin [fsπ (x− xi)]

fsπ (x− xi)
(4.71)

ϕi(kx) = ϕu
i (kx) = ϕv

i (kx) = ϕw
i (kx) = ϕθi (kx) =

∆Le−ikxxi |kx| ≤ πfs

0 |kx| > πfs
(4.72)

Using as shape functions these sinc functions with frequency fs, the wavenumber is simplified

in:

(Ddir,q)ji = 1
2π

∫ +fsπ

−fsπ


ϕjD

wn
11 ϕi ϕjD

wn
12 ϕi 0 0

ϕjD
wn
21 ϕi ϕjD

wn
22 ϕi 0 0

0 0 ϕjD
wn
33 ϕi ϕjD

wn
34 ϕi

0 0 ϕjD
wn
43 ϕi ϕjD

wn
4 ϕi

 dkx (4.73)

where the shape functions are in wavenumber domain ϕi = ϕi(kx). In Figure 4.3, the sinc

function in Equation 4.71 is represented together with the sinc at the origin.

In Figure 4.4 two generic wavenumber transforms of the sinc are represented in the absolute

value. The effect of the translation from the origin of a distance xi is the multiplication of

the exponential term in wavenumber domain, which is a harmonic function of kx and does

not affect the absolute value.

Once the free field radiation stiffness matrix is expressed in sinc coordinates it is automat-

ically represented in space domain in nodal coordinates, since the transformation from the

general coordinates of the sinc functions to the nodal coordinates is the identity matrix. The

stiffness matrix can then be expressed in modal coordinates using the modal transformation.

Indicating with M the modal matrix of the line edge as in Equation 3.75:

Ddir = MHDdir,qM (4.74)

Finally, the coupling loss factors can be computed in modal coordinates as in Equation 4.58,

4.59 and 4.60.

One possible way to compute the ij entry of the radiation stiffness with this method is
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reported in Appendix D.

Figure 4.3: sinc Shape Functions in the origin ϕ0(x) and in a generic node ϕi(x)

Figure 4.4: sinc Fourier Transform ϕ0(kx), ϕi(kx): the absolute values of the shape functions in wavenum-
ber domain are equals for all the generalized coordinates and differ from zero only within a
certain frequency range
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4.4 Procedure for the Coupling Loss Factors and Power

Balance

In what follow, the procedure for the calculation of the coupling loss factors of the hybrid

junction adopted for this model is resumed. Given a certain system excited over a certain

range of frequencies:

1. The system is subdivided in a set of coupled subsystems (plate A, plate B, beam)

connected among them through regions on the boundaries that have to be defined

(two edges of the plates and the beam).

2. The deterministic boundaries of all the subsystems are defined, and so the subsystems

are classified as statistical (the two plates) or deterministic (the beam). The classifica-

tion is made estimating the minimum wavelength of vibration in each subsystem and

choosing a wavelength threshold below which the subsystem is defined as deterministic.

Using simple formulas like in subsection 2.3.3 it is possible to compute the wavenumber

of simple components, so that more complex domains can be approximated in order to

get the magnitude of the wavelength. In section 2.4 general thresholds are proposed.

3. The hybrid junctions are then defined in correspondence of deterministic boundaries

of statistical subsystems.

4. Degrees of freedom are defined by placing nodes over the deterministic subsystems

and over the ”statistical junctions” which directly connect two statistical subsystems

through a deterministic boundary.

5. The excitation applied to the system is defined as a cross-spectral matrix function of

the excitation frequency Sextff (ω).

6. The dynamic stiffness matrix of the deterministic subsystem is computed. Determinis-

tic methods like FEM and BEM can be adopted. In this case, the matrices are derived

in modal base, so a preliminary modal analysis of the system is done in order to ob-

tain natural frequencies and modes over the deterministic region. The beam matrix

is then a diagonal defined by the natural frequencies of the system over the simulated

frequency range.

7. The direct field dynamic stiffness matrix is computed for each statistical subsystem in

modal coordinates, mapping the modes over the deterministic boundaries in their local
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coordinate systems. In this thesis two methods are presented with the derivation from

the stiffness of a semi-infinite plate in wavenumber domain Dwn
dir:

a) If the direct modal transformation is used (subsection 4.3.3), the mode shapes are

transformed in the wavenumber domain and used in the wavenumber integral of

Equation 4.54 which gives the direct field stiffness.

b) If a Galerkin method is used with generalized coordinates, the displacements are

described by a set of shape functions which must be transformed in wavenumber

domain. The direct field stiffness is computed in the generalized coordinates as

well as the modal transformation. If sinc functions are used, the wavenumber

integral results simplified because the Fourier transform of the shape functions

are zero out of a certain interval of wavenumbers, and the generalized coordinates

coincide with the nodal coordinates, so that the modal transformation can be done

using the modal matrix in nodal coordinates coming from the modal analysis.

8. The total modal dynamic stiffness matrix Dtot is assembled like in Equation 3.44.

9. Once the modal density of each statistical subsystem is known the coupling loss fac-

tor’s are computed for all the ij combinations of energy exchanges between statistical

subsystems Equation 3.59.

10. The total power transfer coefficients are computed Equation 3.63.

11. The modal overlap factors are computed Equation 3.68.

12. The system of linear equations in Equation 3.70 is solved and the ensemble average

modal energy densities are computed for each statistical subsystem. The input power

are computed from the cross-spectral excitation (Equation 3.57).

13. The modal energy densities are inserted in Equation 3.52 in order to compute the

cross-spectral response 〈Sqq〉 of each statistical subsystem as a contribution of external

and reverberant loading.



68

5 Results

In order to implement the method for the calculation of the coupling loss factor’s of the

model presented in section 4.1, the stiffness matrices are computed in modal coordinate. For

this purpose, a preliminary modal analysis with finite element method is performed on the

entire system. The software used to compute the mode shapes and the natural frequencies is

MSC NASTRAN
TM

. The extraction of the FEM results and the definition of the subsystems

is done with the library ”NV MATLAB lib”. All the subsequent operations are done in

MATLABR© and implemented in the library. The commercial software VAOne is adopted for

a comparison of the results. For software citations see Appendix C.

5.1 Wavenumbers and Mode Shapes

The simulation is performed on two models, which differ in the length in the x dimension.

This is done for testing that the magnitude and the shape of the resulting CLFs do not

present big differences when compared in the two models, and so for proving that the method

is length-independent and can be applied to any line junction. As reported in Table B.3,

the shortest model present a x length of 0.9 meters and the longest 2.2 meters. The FE

model for the modal analysis is the discretization of the system were the beam is modelled

with 45 elements (46 nodes) in the shortest version and with 110 elements (111 nodes) in the

longest version. These elements are 1-dimensional CBEAM type with property PBEAML.

The plates are modelled with shell elements of type CQUAD4 with property PSHELL, and

are 2699 for the plate A and 2249 for the plate B. All the nodes are equispaced, so the length

of each CBEAM element is 20 mm in both the two versions.

In Table 5.1 the structural properties related to the plates of the model of x length 0.9

meters are reported. It can be seen in 5.1a and 5.1b how the bending wavenumber of

the smallest plate (B) is larger than the beam bending wavenumber1. The comparison

1kbeam =
√
ω 4
√

ρAbeam

EI . Abeam: cross section area. I: inertia of the section to the bending moment.
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Plate A [m2] h [mm] B [N/m] C [N/m] S [N/m] n (ω)

A 1.08 1.4 18.2 1.115e+08 3.73e+07 0.0391

B 0.9 1.2 11.5 9.56e+07 3.20e+07 0.0381

Table 5.1: Area, Thickness, Bending Stiffness, Longitudinal Stiffness, Shear Stiffness and Modal Density
for the two plates in the version with junction length 0.9 m.

(a) Wavenumbers of the plate B for the bending,
longitudinal and shear waves, and of the beam
for the bending waves.

(b) Wavelengths and factor z for the bending
waves of the beam and the plate B.

Figure 5.1: Wavenumbers and Wavelengths

is made considering the smallest plate because the wavelength of a vibration is shorter if

the component presents a bigger stiffness to that motion. Since the smallest plate has the

smallest stiffness, its wavelengths will be for sure the longest. This is the reason why the

plates are modelled as statistical subsystems, and the beam as deterministic. The torsional

and shear wavenumbers of the beam are not considered in the comparison since they are

much smaller than the bending one. It must be noticed that the in-plane wavenumbers of

the plate are of the same magnitude of the beam bending wavenumber, but they are included

in the statistical subsystem as explained in section 4.2.

Over the frequency range 100 − 2000 Hz the modal analysis gives 62 modes for the model

with junction length 0.9 m and 149 modes for the longest junction. The mode shapes are

extracted from the FEM results and mapped over the junction, and subsequently projected

into the local coordinates of the two deterministic edges of the plates. This is done in order

to express the direct field stiffness in the local coordinates, using the same equations reported
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in subsection 4.3.3 and 4.3.4, and performing the modal transformation without the need for

a coordinate system rotation. The minimum number of points that have to be used in the

mapping must be large enough to guarantee a correct Fourier Transform for the wavenumber

modal transformation method, that means at least larger than the number of nodes of the

junctions used to compute the mode shapes. But also, there must be enough points to

represent the stiffness in wavenumber domain in Equation 4.36. An example mode is shown

in Figure 5.2, projected in the local coordinate system of the plate A. The Fourier Transform

of the mode shapes used in the direct modal transformation method is done by the FFT

function in MATLAB. An example use of the function is reported in section D.1, and a mode

shape in space and wavenumber domains is shown in Figure 5.3. Using 64 interpolating point

for the junction of 0.9 m, the sampling space frequency is fs = (Npoint − 1) /L = 70 1/m,

and the limits of the FFT domain are kx,s = ±πfs = 219.9 rad/m.

Figure 5.2: Component w − z of the resonant mass-normalized mode in space domain with natural fre-
quency of 2143 Hz, projected in the coordinate system of the edge of plate A, in the model
with the shortest junction length 0.9 m.
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Figure 5.3: Component v − y of the 30-th mode (1754.4 Hz) projected in the edge coordinate of plate
A in space domain Φv

30(x), and its discrete wavenumber Fourier transform Φv
30(kx) real and

imaginary parts.

It can be stated that, generally, the Fourier Transform of a generic mode shape is not very

uniform over the wavenumber domain. This means that in a discrete form it is not easy

to reproduce appropriately, with consequences on the final results as shown in section 5.3,

where the wavenumber transform results very sharp. Zero padding2 can help to obtain a

better approximation of the transform.

5.2 Wavenumber Domain Direct Field Stiffness

The direct field dynamic stiffness matrix in wavenumber domain is a function of the wavenum-

ber component in the direction of the edge kx. The shape of these functions must be consid-

ered when the number of point is chosen, in order to have a good interpolation. Thankfully,

all the eight functions of the stiffness can be well represented by a number of point equal

to the nodes on the junction of the FE model. As an example, in Figure 5.4a and 5.4b is

reported the stiffness element which identifies the contribution of the edge rotation to the

edge moment in its real and imaginary part, that is the element D44 of Equation 4.37. This

means that the shape of the stiffness elements does not have much influence on the choice

of the number of interpolating points, which can be totally based on the space frequency of

2The Zero Padding consists in extend the signal in the starting domain with a certain number of elements
whose values are all zero. Such an extension does not modify the Fourier Transform resulting in a more
dense interpolation.
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(a) Real part of the wavenumber stiffness element
D44 for the plate A, with a damping loss factor
η = 0.01.

(b) Immaginary part of the wavenumber stiffness
element D44 for the plate A, with a damping
loss factor η = 0.01.

Figure 5.4: Wavenumber Stiffness D44

the modes. It must be noticed that if the plates are undamped, the imaginary part of the

roots µB2, µL and µS differs from zero only within the absolute value of the corresponding

wavenumbers kB, kL and kS. If damping is present, then the imaginary part is potentially

always present.

The free field dynamic stiffness is then computed in modal coordinates using the direct modal

transformation in wavenumber domain and the sinc shape function methods Equation 4.54,

4.69.

5.3 Power Transmission Coefficients and Coupling Loss

Factors

The power transmission coefficients are computed with the two methods proposed. The

result with the direct wavenumber modal transform is reported in Figure 5.5 referring to the

model with the shortest junction. The symmetry of the power transmission is perfectly

respected since the curves of the coefficients hij and hji coincide. It can be seen how the

resonances arise at high frequencies in several visible humps of the curves. This can be a

natural behaviour because of the resonant modes but also a numerical error due to the fast

Fourier transform used for the mode shapes which is not analytic. The symmetry in the
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power flow gets lost when expressed with the coupling loss factors since they depends on

the modal density of the plates, that are slightly different in this case. The plates with the

smallest modal density will present the largest CLF.

Results for the CLFs of the model with shortest junction are shown again in Figure 5.6,

where also a zero padding is performed in order to reduce the error in the approximation

of the wavenumber transform, and compared to the results obtained with the simulation in

VAOne.

Figure 5.5: Power Transmission Coefficients and Coupling Loss Factors computed with the wavenumber
modal transformation method for the model with junction length Lj = 0.9 m using 64 point for
the interpolation of the functions along the junction and no zero padding.

Figure 5.6: Coupling Loss Factor computed with the wavenumber modal transformation method for the
model with junction length Lj = 0.9 m using 64 point for the interpolation of the functions
along the junction, and 64 points of zero padding.
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Only ηA→B is reported for better legibility. A visible result on the humps is given by the zero

padding, which makes them arise with a smoother shape. The mitigation of the sharpening

due to the FFT shows oscillations which are better attributable totally to the resonances.

Although the results of the commercial software must be taken with a large margin of error

since the exact method which it refers to for the computation of the Ddir is not known, the

comparison gives a correspondence in the magnitude and a good fitting of the shape.

The validation of the second method (sinc shape functions) could be done again in the model

with the shortest junction, which presents results very similar to the ones already presented.

However, it is more interesting comparing the two methods in the calculation of the model

with the longest junction where the weaknesses of the wavenumber modal transformation is

more evident: in Figure 5.7, the CLF ηAB presents a shape which is similar to the previous

results when the ”sinc” method is used, while it presents a strong discontinuity in the slope

at high frequencies when computed using the modal wavenumber transformation. Such a

discontinuity has no reason to exist in nature, indeed it can be addressed to numerical errors,

like in Figure 5.5. Using a large zero padding the slope of this curve tends to be more uniform

as shown in Figure 5.8.

Figure 5.7: Coupling Loss Factor A → B computed with the wavenumber modal transformation method
and sinc method for the model with junction length Lj = 2.2 m using 64 point for the interpo-
lation of the functions along the junction, and no zero padding.
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Figure 5.8: Coupling Loss Factor computed with 64 interpolating points and 64 points of zero padding in
the wavenumber modal transformation.

There is not a big difference in the results of the two methods, which are not the same

because of the different choice of generalized coordinates.

The slope discontinuity of the CLF in the longest junction may be generated by modes which

are more difficult to transform in a discrete form without making a not negligible error, with

respect to the shortest junction. The Fourier transform is only performed in the direct

modal transformation method, and this reveals a big advantage of the ”sinc” method, which

does not require the use of FFT since the Fourier transform is know analytically. On the

contrary, the wavenumber modal transformation is advantageous in terms of computational

time, indeed referring to the results obtained in Figure 5.8 the time spent to build the only

direct field dynamic stiffness matrix of one plate is shorter, see Table 5.2. The simulation

with the wavenumber modal transform are very fast even if a large number of points for

the interpolation and for the zero padding is used. For example using 1024 points on the

Method Interpolating Points Zero Padding Time [s]

Wavenumber Mode Shapes 64 0 0.5

Wavenumber Mode Shapes (padding) 64 128 2.1

sinc Shape Functions 64 - 14.5

Table 5.2: Time spent in the computation of the Ddir with the two methods.
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junctions plus 512 points for the zero padding the computation takes 8 seconds, while using

even only 512 points in for the sinc method, it takes around 13 minutes. This results suggest

that for bigger and more complex models where it can be necessary to compute the CLFs of

many junctions the wavenumber modal transform may be preferred, but attention must be

paid to the minimum number of point and the minimum zero padding.

In figure Figure 5.9 the sensitivity of the CLFs to a change of the damping loss factor of the

deterministic beam is finally shown. With the aim of reducing the power flow between the

two statistical subsystems, is easier and more efficient to increase the damping of the only

deterministic subsystem which constitutes the hybrid junction, indeed when the damping

loss factor of the beam increases, the transmission coefficient decreases. In this case, the

increasing damping of the beam tends to level the resonant peaks, that means they are

mostly due to the beam frequency response function, and not to the modes of the plates. It

follows that the CLFs are mainly governed by the most stiff subsystems, which are typically

modelled as deterministic because of their low wavenumbers.

Figure 5.9: Effect of the damping of the beam on the CLFs for the model with the shortest junction.
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6 Conclusions

For the line junction studied in this thesis, three methods are proposed for the derivation

of the direct field stiffness. The Green’s Function method can be applied with the known

Green’s Functions of the semi-infinite plate for the normal displacements with a complicated

integration technique, while the Green’s functions for the in-plane motion have to be derived.

Starting from the stress resultant in wavenumber domain, the direct field stiffness can be

derived with a direct wavenumber modal transformation or with appropriate shape functions

for the Galerkin method, in this case sinc functions are selected.

From the results of the coupling loss factors it can be seen how the direct wavenumber modal

transform is much faster but requires high precision in the definition of the nodes grid and in

the number of point for the zero padding of the mode shapes, since it involves the wavenumber

Fourier transform which must be done in the discrete form. The sinc shape functions method

is much slower in the computation but the Fourier transform of its shape functions is known

analytically, so that errors on the transformation are avoided. If correctly treated, both the

methods lead to similar results, representing a valid option for the implementation of the

calculation of CLFS for hybrid junctions. The results are also in good comparison with the

output of commercial software.

Another results is carried out by the influence of the damping loss factor on the power

transmission coefficients. The CLFs are mainly governed by the damping loss factor of the

deterministic subsystem which constitutes the hybrid junction. It is shown in Figure 5.9 how

an increase in the damping of the beam can lower the coupling loss factors between the two

plates.

The total error of these methods is the results of the residual due to the discretization in the

modal analysis, the residual due to the discretization in the generalised coordinates of the

Galerkin Method, the error of approximation in the numerical integration and the overall

numerical error in the computation. Another aspect which is not a proper error but that

must be taken in account when considering the results, is the statistical approach and its
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consequences on the impossibility to define a correlation between the results and an exact

configuration of the system.

The great advantages of the hybrid method presented are the possibility to model a very

large range of frequencies and the definition of vibration in the statistical subsystems as if

they were semi-infinite components, identified only by the geometry of the hybrid junction.

The incoherence of the reverberant field allows to describe the property of a junction inde-

pendently on the geometry of the statistical subsystem far from the junction. This means

that if a complex component needs to be modelled statistically with a point, line or sur-

face connection, the definition of the junction can be reduced to a simplified case where the

component is modelled as semi-infinite beam, semi-infinite plate or semi-infinite 3D solid

defining the direct field dynamic stiffness matrix as in one of this simple cases.

Such an advantage fits very well the early design stage simulation, when the exact geometry

of the components is not known exactly but an approximation of the dynamic properties of

the system is required for the subsequent dimensioning.

It must be noticed that the free field which defines the properties of a junction does not only

depend on the junction dimension (1D, 2D or 3D), but on the overall effect of the geometry

on the wave propagation in the proximity of the junction. This means that the semi-infinite

plate connection discussed in this thesis can be used as an approximation of line connection

between flat subsystem, at least in the proximity of the junction. If a subsystem presents a

certain curvature at the connection, then the direct field is influenced and the stiffness must

be modelled taking into account this geometrical feature.
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A Derivations

A.1 Blocked Reverberant Force

The system in Equation 3.4 is reduced to the deterministic variables by pre-multiplying the

first equation with G−1
dd :

G−1
dd Hddqd = fd + G−1

dd (Gdrfr −Hdrqr) Ddirqd = fd + frev (A.1)

which gives the expressions for the stiffness and the blocked reverberant force:

Ddir = G−1
dd Hdd (A.2)

frev = G−1
dd (Gdrfr −Hdrqr) (A.3)

For a clamped boundary condition at the random boundary, qr must be zero. Substituting

this condition in the second equation of Equation 3.4, the force at the random boundary and

so the blocked reverberant force result in:

fr (qr = 0) = G−1
rr Hrdqd −G−1

rr Grdfd (A.4)

frev (qr = 0) = −
(
G−1
dd GdrG−1

rr Grd

)
fd +

(
G−1
dd GdrG−1

rr Hrd

)
qd (A.5)

For a free boundary condition at the random boundary, fr must be zero. Substituting this

condition in the second equation of Equation 3.4, the displacement at the random boundary

and so the blocked reverberant force result in:

qr (fr = 0) = H−1
rr Grdfd −H−1

rr Hrdqd (A.6)

frev (fr = 0) = −
(
G−1
dd HdrH−1

rr Grd

)
fd +

(
G−1
dd HdrH−1

rr Hrd

)
qd (A.7)
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A.2 Green’s Function derivation for the deflection of plates

The Green’s function of the biharmonic deflection equation (Equation 4.11) can be derived for

infinite plate in wavenumber domain as showed in [Gunda et al 1998]. The Green’s function

for the infinite plate in polar coordinate can be expressed as a function of the only bending

wavenumber kB (and so the frequency ω) and the distance between the excitation point ri
and the point where the response is observed rj, using the zero order Hankel function of the

first kind H1
0 :

G∞ (ri,rj,kB) = c
[
H1

0 (kB |ri − rj|)−H1
0 (ikB |ri − rj|)

]
(A.8)

The derivation of the Green’s function for the semi-infinite plate requires the application of

boundary conditions, which is not convenient in polar coordinates. For this reason, Equa-

tion A.8 must be written in cartesian coordinetes by decomposing the Henkel function.

This can be done comparing the different expressions for the solution U of the 2D Hel-

motz equation in frequency domain with a unit harmonic point source. Using the notation

r = |ri − rj|:

∇2U + k2
BU = δ(r) (A.9)

Using the wavenumber decomposition k2
B = k2

x+k2
y, the resulting Hankel function in cartesian

coordinates is:

H1
0 (k,r) = 1

π

+∞∫
−∞

eikxxeiky |y|

ky
dkx = 1

π

+∞∫
0

cos (ikxx) e
iky |y|

ky
dkx (A.10)

Substituting Equation A.10 in Equation A.8, the Green’s function for the infinite plate

deflection in cartesian coordinates is Equation 4.19.

Considering four possible boundary conditions at the edge of the semi-infinite plate:

• simply supported (s): w = 0 and M (w) = 0 on the edge

• roller supported (r): ∂w
∂y

= 0 and F (w) = 0 on the edge

• clamped (c): w = 0 and ∂w
∂y

= 0 on the edge

• free (f): F (w) = 0 and M (w) = 0 on the edge

The solution for the semi infinite plate with simply supported edge can be found by using

the images method [Gunda et al 1995], that means subtracting the infinite plate solution to
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its symmetric image:

G/∞,s (rj,ri,kB) = G∞ (rj,ri,kB)−G∞ (rj,r−i,kB) (A.11)

where, considering Figure 4.2, r−i is the symmetric location of ri with respect to the x axis

in the edge, so with an opposite sign of the y coordinate. The Green’s function for the roller

supported case is obtained by summing the images:

G/∞,r (rj,ri,kB) = G∞ (rj,ri,kB) +G∞ (rj,r−i,kB) (A.12)

Being the response to the unitary harmonic point force:

wj = G/∞,r (rj,ri,kB) (A.13)

edge displacements and edge reactions can be computed in both the conditions (simply and

roller supported), using Equation 4.4 and Equation 4.5 under the assumption of harmonic

motion in time and wavenumber. This force-displacement relation at the boundary can be

derived as it is done in subsection 4.3.3, using the Equation 4.28, 4.29 and Equation 4.30.

Clamped and free boundary conditions are derived by the superposition of simply or roller

supported case, with the edge displacements or reactions.

The clamped edge Green’s function can be found by subtracting to the roller supported

Green’s function the response at the edge of the roller supported plate wedge,cr (rj,ri) due

to an edge normal displacement excitation; or also by subtracting to the simply supported

Green’s function the response at the edge of the simply supported plate wedge,cs (rj,ri) due

to an edge slope excitation:

G/∞,cr (rj,ri,kB) = G∞,r (rj,ri,kB)− wedge,cr (rj,ri) (A.14)

G/∞,cs (rj,ri,kB) = G∞,s (rj,ri,kB)− wedge,cs (rj,ri) (A.15)

Similarly, the free edge Green’s function can be found by subtracting to the roller supported

Green’s function the response at the edge of the roller supported plate wedge,fr (rj,ri) due to

an edge moment excitation; or also by subtracting to the simply supported Green’s function

the response at the edge of the simply supported plate wedge,fs (rj,ri) due to an edge normal
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force excitation:

G/∞,fr (rj,ri,kB) = G∞,r (rj,ri,kB)− wedge,fr (rj,ri) (A.16)

G/∞,fs (rj,ri,kB) = G∞,s (rj,ri,kB)− wedge,fs (rj,ri) (A.17)

The case of free edge derived from the simply supported edge is particularly convenient to

use since the Green’s function of the simply supported edge at the boundary is zero:

G/∞,fs (rj,ri,kB) = −wedge,fs (rj,ri) (A.18)

This form is made explicit in Equation 4.21.

A.3 Wavenumber Domain Free Field Dynamic Stiffness

Matrix

The out-of-plane radiation stiffness matrix is obtained substituting the harmonic normal

displacement and x rotation of Equation 4.28 and 4.29, in the stress resultant equations of

force and moment (Equation 4.4, 4.5), and evaluating the expression at the edge imposing

y = 0. In order to do this, it is necessary to compute all the second and third order derivatives

and mixed derivatives appearing in the stress resultants:

we = (αB1 + αB2) e−ikxx+iωt (A.19)

θe = (µB1αB1 + µB2αB2) e−ikxx+iωt (A.20)

∂2w

∂x2

∣∣∣∣∣
y=0

= −k2
xwe (A.21)

∂2w

∂y2

∣∣∣∣∣
y=0

=
(
αB1µ

2
B1 + αB2µ

2
B2

)
e−ikxx+iωt = θe (µB1 + µB2)− weµB1µB2 (A.22)

∂3w

∂y3

∣∣∣∣∣
y=0

=
(
αB1µ

3
B1 + αB2µ

3
B2

)
e−ikxx+iωt (A.23)

∂3w

∂x2∂y

∣∣∣∣∣
y=0

= −k2
xθe (A.24)
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From the substitution in the stress resultants, the equations at the edge are:

Fe = B

µB1 − µB2

{
we
(
µ3
B1µB2 − µ3

B2µB1
)

+

+θe
[
µ2
B2 − µ2

B1 + k2
x (2− ν) (µB1 − µB2)

]}
=

= B
[
we
(
µ2
B1µB2 + µB1µ

2
B2

)
+ θe

(
−µ2

B1 − µ2
B2 − µB1µB2 + k2

x (2− ν)
)] (A.25)

Me = −B
[(
αB1µ

2
B1 + αB2µ

2
B2

)
e−ikxx+iωt − νk2

xwe
]

=

= B
[
we
(
µB1µB2 + νk2

x

)
− θe (µB1 + µB2)

] (A.26)

And in matrix form:F (kx)
M (kx)

 =

= B

µ2
B1µB2 + µB1µ

2
B2 −µ2

B1 − µ2
B2 − µB1µB2 + k2

x (2− ν)
µB1µB2 + νk2

x −µB1 − µB2

we (kx)
θe (kx)

 (A.27)

Writing all the off-diagonal terms µ2
B1 and µ2

B2 as in Equation 4.27, the out-of-plane matrix

results to be antisymmetric as reported in Equation 4.30:F (kx)
M (kx)

 = B

µ2
B1µB2 + µB1µ

2
B2 −µB1µB2 − νk2

x

µB1µB2 + νk2
x −µB1 − µB2

we (kx)
θe (kx)

 (A.28)

Using the same procedure for the in-plane motion, the results is:

T (kx)
N (kx)

 =

= 1
k2
x − µLµS

 −SµL (k2
x − µ2

S) −iSkx (2µLµs + k2
S − 2k2

x)
−iCkx [µ2

L − νk2
x − µLµs (1− ν)] −CµSk2

L

ue (kx)
ve (kx)


(A.29)

Writing all the terms µ2
S and µ2

L like in Equation 4.31 and Equation 4.32, and considering

the two following relations coming from Equation 4.7, 4.8 and Equation 4.14, 4.15:

C = S
2

1− ν (A.30)

k2
L = k2

S

1− ν
2 (A.31)
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the in-plane matrix results to be antisymmetric as reported in Equation 4.35:T (kx)
N (kx)

 =

= S

k2
x − µLµS

 −µLk2
S −ikx (2µLµs + k2

S − 2k2
x)

ikx (2µLµs + k2
S − 2k2

x) −µSk2
S

ue (kx)
ve (kx)

 (A.32)

In [Langley and Heron 1990] the out of plane relations corresponds to this result, with the

only difference in the sign of the moment which is in contradiction with the coordinate

system of the figures, while the in-plane relations present some mistakes. In [Johansson and

Comnell 2010] the sign of the two moment coefficients are not compatible with the illustrated

coordinate system and positive direction of the forces. One of the two must be inverted

depending on the x axis direction considered, and the substitution for the symmetric (or

antisymmetric) form is missing. Also the in plane stress resultant are referred to a different

coordinate system from the one reported in the corresponding figure. In this thesis, the

equations are consistent with the directions and the cartesian system in Figure 4.2.
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B Model Data

Figure B.1: The beam section presents the same geometry in both the configurations of the length of the
junction.

Material ρ [kg/m3] E [GPa] ν G [GPa]

Aluminium 2700 71 0.33 27

Table B.1: Generic aluminium mechanical properties used in the simulation

d1 [mm] d2 [mm] s [mm]

20 40 2

Table B.2: Beam Cross Section data referred to Figure B.1

Ljunc [mm] 900 2200

Plate A B A B

h [mm] 1.4 1.2 1.4 1.2

A [mm2] 1.08 e+06 0.9 e+06 2.64 e+06 2.2 e+06

Table B.3: Geometry of the statistical rectangular plates
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C Software

NASTRAN of MSC Software R© is one of the most common FEM program. In this these

is used to build the FE model of the plate-beam-plate system and to perform the modal

analysis. http://www.mscsoftware.com/

MATLAB of MathWorksR© is a numerical computing environment working with its specific

programming language. Is used in this thesis for reading the FEM model and results ob-

tained in NASTRAN, and to perform array operations like multiplications, discrete Fourier

transform, discrete integrals. https://www.mathworks.com/

”NV MATLAB lib” is a tool for vibroacoustics developed by the Airbus Defence and Space

dynamics and vibroacoustics department. The code used for the calculation of the CLFs

in this thesis is based on this tool, which is mainly used for reading the FEM results, for

defining the subsystems and the hybrid junction, and for the mapping of modes over the

nodes of interest.

VAOne is a software of ESI GroupR© which allows to perform vibroacoustic FEM, BEM SEA

and Hybrid simulations. In this thesis is used to compute and compare the CLFs of the

same model. https://www.esi-group.com/

http://www.mscsoftware.com/
https://www.mathworks.com/
https://www.esi-group.com/
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D MATLAB R© Code examples

D.1 Fast Fourier Transform

Listing D.1: Example of Fast Fourier Transform of the mode shapes

1 %% Space and wavenumber domains definition

2 % space data

3 L = $$$; % Line Junction Length

4 dL = $$$; % Length increment of nodes in the junction, costant spacing

5 Npad= $$$; % Number of point for the zero padding

6 Nnodes=L/dL+1; % Number of nodes on the junction

7 fs = 1/dL; % Space sampling frequency

8 % wavenumber data

9 if mod(Nnodes,2) == 0 % if Nnodes is even

10 dF = fs/(Nnodes+Npad); % Wavenumber domain increment [Hz]

11 dk = dF*2*pi; % Wavenumber domain increment [rad/s]

12 Fdata_shift = 0 : dF : fs; % Wavenumber domain vector to be shifted [Hz]

13 kdata_shift = Fdata_shift*2*pi; % Wavenumber domain vector to be shifted [rad

/s]

14 kdata = [-flip(kdata_shift(2:(Nnodes+Npad)/2+1)) , kdata_shift(1:(Nnodes+Npad

)/2)];

15 % Wavenumber domain vector [rad/s]

16 else % if Nnodes is odd

17 dF = fs/(Nnodes+Npad-1);

18 dk = dF*2*pi;

19 Fdata_shift = 0 : dF : fs;

20 kdata_shift = Fdata_shift*2*pi;

21 kdata = [-flip(kdata_shift(2:(Nnodes+Npad-1)/2+1)) , kdata_shift(1:(Nnodes+

Npad+1)/2)];

22 end

23 %% Build modal matrix and mode shapes in waveumber domain
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24 Nmodes = $$$; % Number of modes

25 uvw = $$$; % Mode shapes displacements in space domain [Nnodes x 3 x Nmodes]

26 rxryrz = $$$; % Mode shapes retations in space domain [Nnodes x 3 x Nmodes]

27 for i = 1:Nmodes

28 % fft of the mode shapes

29 UVW(:,:,i) = fftshift((fft(uvw(:,:,i), [Nnodes+Npad], 1)/fs),1);

30 % mode shape displacements in wavenumber domain

31 RzRyRz(:,:,i) = fftshift((fft(rxryrz(:,:,i), [Nnodes+Npad], 1)/fs),1);

32 % mode shape rotations in wavenumber domain

33 end

D.2 Wavenumber Direct Modal Transformation Method

Listing D.2: Example of computation for Ddir with the wavenumber modal transformation

1 D_wn = $$$; % Wavenumber stiffness [4 x 4 x Nnodes+Npad x Nfreq]

2 Nfreq = $$$; % Number of simulated frequencies

3 FI = permute([UVW(:,:,:), RxRyRz(:,1,:)], [3 2 1]); % Mode shapes vector

4 D_integrand = zeros(Nmodes, Nmodes, Nnodes+Npad);

5 for ifreq = 1:Nfreq

6 for ipoint = 1:Nnodes+Npad

7 D_integrand(:,:,ipoint) = conj(FI(:,:,ipoint))*...

8 (D_wn(:,:,ipoint,ifreq)*FI(:,:,ipoint).’);

9 % Integrand for the wavenumber integral

10 end

11 Ddir(:,:,ifreq) = 1/(2*pi)*trapz(D_integrand,3)*dk;

12 end

The variable D wn is the semi-infinite plate wvenumber stiffness defined in Equation 4.37 as

a [4× 4× (Nnodes+Npad)×Nfreq] matrix. All the remaining variables are defined as in

section D.1.
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D.3 Wavenumber Cardinal Sine Method

Listing D.3: Example of computation for Ddir with the sinc shape functions method

1 % Analytical efinition of the sinc transform shape functions

2 modematrix = $$$; % Modal matrix built with uvw and rx [4*Nnodes x Nmodes]

3 x_junc = linspace(0,L,Nnodes); % Nodes grid of the junction

4 sinc_tranform = @(k,xnode) ((heaviside(pi*fs - k) -...

5 heaviside(- k - pi*fs))/fs).*exp(-1i.*k.*xnode);

6 dist = x_junc-x_junc(1); % Distances of nodes from the origin

7 FI = sinc_tranform(kdata,dist’); % Shape functions in wavenumber domain [Nnodes x

Nnodes]

8 D_sinc = zeros(4*Nnodes,4*Nnodes); % Stiffness in the sinc generalized

coordinates

9 for ifreq = 1:Nfreq

10 % Build the 8 integrand functions

11 for inode = 1:Nnodes

12 D11_integrand(:,:,inode) = conj(FI(:,inode)).*(D11(ifreq,inode).*FI(:,inode)

.’);

13 D12_integrand(:,:,inode) = conj(FI(:,inode)).*(D12(ifreq,inode).*FI(:,inode)

.’);

14 D21_integrand(:,:,inode) = conj(FI(:,inode)).*(D21(ifreq,inode).*FI(:,inode)

.’);

15 D22_integrand(:,:,inode) = conj(FI(:,inode)).*(D22(ifreq,inode).*FI(:,inode)

.’);

16 D33_integrand(:,:,inode) = conj(FI(:,inode)).*(D33(ifreq,inode).*FI(:,inode)

.’);

17 D34_integrand(:,:,inode) = conj(FI(:,inode)).*(D34(ifreq,inode).*FI(:,inode)

.’);

18 D43_integrand(:,:,inode) = conj(FI(:,inode)).*(D43(ifreq,inode).*FI(:,inode)

.’);

19 D44_integrand(:,:,inode) = conj(FI(:,inode)).*(D44(ifreq,inode).*FI(:,inode)

.’);

20 end

21 % Wavenumber integrals

22 D_sinc(1:4:end-3,1:4:end-3) = 1/(2*pi)*trapz(D11_integrand,3)*dk;

23 D_sinc(2:4:end-2,2:4:end-2) = 1/(2*pi)*trapz(D22_integrand,3)*dk;

24 D_sinc(3:4:end-1,3:4:end-1) = 1/(2*pi)*trapz(D33_integrand,3)*dk;

25 D_sinc(4:4:end,4:4:end) = 1/(2*pi)*trapz(D44_integrand,3)*dk;
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26 D_sinc(1:4:end-3,2:4:end-2) = 1/(2*pi)*trapz(D12_integrand,3)*dk;

27 D_sinc(2:4:end-2,1:4:end-3) = 1/(2*pi)*trapz(D21_integrand,3)*dk;

28 D_sinc(3:4:end-1,4:4:end) = 1/(2*pi)*trapz(D34_integrand,3)*dk;

29 D_sinc(4:4:end,3:4:end-1) = 1/(2*pi)*trapz(D43_integrand,3)*dk;

30 % Modal transformation

31 Ddir(:,:,ifreq)=modematrix’*D_sinc(:,:)*modematrix;

32 end

The shape functions sinc transform are defined analytically using the rectangular function.

The variables D11, D12, D21... are the matrix functions of the wavenumber stiffness defined

in Equation 4.37, and are stored for each simulated frequency as [Nfreq ×Nnodes] matrices.

The variables D11 integrand, D12 integrand, D22 integrand... are the integrand functions

of the wavenumber integral of Equation 4.69, and Dsinc is the stiffness matrix resulting from

the integral, which is defined in the generalized coordinate of the sinc shape functions, which

coincide with the nodal coordinates. The last operation is the transformation of the stiffness

in modal coordinates.
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