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Abstract

A 2-D noise model is implemented in the deterministic reactor code APOLLO3 R© to
simulate a periodic oscillation of a structural component. The Two/Three Dimensional
Transport (TDT) solver, using the Method of Characteristics, is adopted for the calcula-
tion of the case studies, constituted by a detector and a control-rod assembly. The period
is constructed by properly linking the geometries corresponding to the temporal positions.
The calculation is entirely performed in the real time domain, without resorting to the
traditional frequency approach. The periodicity allows to express the delayed fission
source as a function of the flux values over time, instead of precursor concentrations. A
dynamic eigenvalue is defined that takes into account the system average reactivity over
a period. The algorithm is accelerated by combining the Wielandt shift scheme and the
DPN synthetic method. For each cell of the domain, the time values of fission rates are
analysed to determine the noise extent: for this purpose maximum variations relative to
the mean value over the period are plotted.
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Chapter 1

Introduction

The present thesis deals with the neutron noise field and illustrates a research to
develop better methods to simulate the phenomenon and to perform the diagnosis of the
noise signal. It is the result of a six-month internship work, which took place between
September 2017 and March 2018 at CEA1 centre of Paris-Saclay.

This first chapter introduces some basic concepts regarding the topic, highlighting
its strategic importance for nuclear industry, together with a historical recap from
its “discovery”, in the first half of the last century, until nowadays. Moreover, the
characteristics of traditional simulation methods are outlined, followed by an introduction
to the new method implemented by this work. Lastly, the paper structure is described.

1.1 Neutron noise

In physics a noise represents a disturbance, a small and generally periodic deviation of
the quantities from the stationary values. It follows that noise can occur and potentially
be detected only in real systems being monitored over time. Dealing with neutronics the
system is of course the reactor core, with the ensemble of subsystems which compose
it, and the noise affects the neutron flux as a result of perturbations of macroscopic
cross sections; these are due either to vibrations of the structural components or to
fluctuations of the coolant density. This is usually referred to as “power reactor noise”, as
opposed to the “zero power reactor noise” typical of multiplying systems where material
properties are constant.2 In the present thesis only the former is considered. Whenever
the excursions exceed the safety limits, noise signal can be analysed to identify and
localize malfunctions without the need of destructive diagnostics. In this sense the
improvement in the capability of our instruments of detecting the neutron noise signal
and the development of more sophisticated and efficient methods to elaborate it go hand

1Commissariat à l’Énergie Atomique et aux Énergies Alternatives.
2In zero power noise the analysed fluctuation comes from the statistical nature of the neutron collision

with matter. It is only important for low-power systems, where the neutron population is scarce. In this
framework the variance of the neutron flux is comparable to its mean value and is therefore detectable.
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8 CHAPTER 1. INTRODUCTION

in hand with higher levels of safety, which is notoriously of fundamental importance in
the nuclear field.

1.2 Brief history

Neutron noise theory has its origins in the experiments performed at the ”Clinton
Pile” of Oak Ridge in 1940s [10], whose goal was the evaluation of absorption cross
sections of various elements. Although they did not concern diagnostics at all, these
experiments contemplated, for the first time, neutron oscillations. The analyses of these
measurements were collected in a paper by Weinberg and Schweinler in 1948 [22].

Noise diagnostics in neutronics was born several years later when, again in Oak Ridge,
measurements performed in the High Flux Isotope Reactor showed how a peak in the
frequency spectrum, given by neutron detectors, could be traced back to an anomalous
control-rod vibration (the experience was described by Fry in 1971 [5]). This was followed
by several studies and analyses on real power plants during the 1970s, and by eight
symposia on the topic (known as SMORN, Specialist Meetings On Reactor Noise).

After this golden period, the interest in neutron noise gradually diminished: in
fact, during the 1990s and until the mid-2000s noise analysis was only carried out by
universities rather than, as previously, by big research centres and industries [13].

More recently, new developments have been encouraged by the search for higher levels
of safety, but above all by German nuclear industry: E.ON had problems with anomalous
vibrations on some of its Pre-Konvoi reactors installed in Germany and Spain, for which
it was forced to lower their nominal power, and therefore decided to invest in improving
noise methods for diagnostics.

1.3 Methodologies

Traditionally, neutron noise can be simulated by a stochastic model generating the
small deviations randomly or by considering a fixed, periodic modification of the cross
sections [16]. In both cases the common starting point is a critical condition and the
change of cross sections, acting as noise source, produces fluctuations in the neutron flux
which can be either random or deterministic, depending on the nature of the source [10].

These oscillations are usually analysed by means of a frequency-based approach:
as will be shown later and is described in [10, 13], this method considers a perturbed
equation, derived from Boltzmann’s, which is Fourier transformed in order to obtain
linearized equations in the frequency domain. A drawback of this procedure is the
appearance of a frequency dependence in cross sections, with consequent complications
in the numerical discretizations.

The possibility of avoiding such a problem, alongside with the absence of complex
values to deal with are the principal advantages of our method.
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1.4 Goal definition and structure

This thesis aims to illustrate an alternative deterministic approach for the analysis
of noise problems: once the noise source has been chosen among different possible
oscillating elements (a control assembly, a detector), the dynamic behaviour of the system
is described by means of different geometric configurations which follow each other to
simulate its evolution along a period of oscillation. In so doing, the goal is to point out
what results from this induced noise: the fission-rate fluctuations in the different regions
are chosen for this purpose as monitored quantities. The distribution of their oscillation
amplitudes is therefore obtained in the whole domain.

This work is implemented in CEA deterministic code APOLLO3 R© and exploits the
potentiality of its version of the Two/Three Dimensional Transport (TDT) solver.

The paper is organized as follows:

chapter 2 The theory and the methods that form the basis of our work and in general
of any deterministic approach to the solution of neutron Boltzmann equation are
introduced;

chapter 3 Our noise model is described, illustrating our hypotheses and equations,
together with the geometries considered. The traditional frequency model is also
treated, showing its intrinsic difficulties. Lastly, space is given to the description of
the leakage model adopted;

chapter 4 This chapter is dedicated to the acceleration method employed, which com-
bines an original Wielandt scheme with a classic DPN synthetic acceleration. Its
performances are shown for a simple noise case;

chapter 5 Our results are shown, with regards to the eigenvalue obtained in the dynamic
simulations and, in particular, to the amplitude of variation of the fission rates.





Chapter 2

Theoretical background

In the nuclear field all numerical methods aim to solve Boltzmann transport equation,
whose time-dependent form for neutrons is here reported (its derivation is found in [3]):�

1

vpEq
Bt � ~Ω �∇� Σtp~r,E, tq



ψp~r, ~Ω, E, tq � qp~r, ~Ω, E, tq�»

E
dE1

»
S~Ω

dΩ1 Σsp~r, ~Ω
1 � ~Ω, E1 Ñ E, tqψp~r, ~Ω1, E1, tq�

¸
j�1,Nisotopes

χjpEq

4π

»
E
dE1 νΣf,jp~r,E

1, tqφp~r,E1, tq. (2.1)

This integro-differential equation describes the behaviour of the neutron angular flux ψ
in the p~r, ~Ω, Eq phase space over time. Due to the very high number of particles, neutron
population is treated as a continuous fluid whose average properties are investigated in
the neighbourhood of the phase space. The different terms are explained in the following:

~Ω �∇ψp~r, ~Ω, E, tq: the streaming term, representing the net balance in the phase space
between outgoing and incoming neutrons;

Σtp~r,E, tqψp~r, ~Ω, E, tq: the removal term due to interactions of neutrons (absorption and
scattering);

qp~r, ~Ω, E, tq: the external source, usually negligible unless the system is source-driven
sub-critical; this hypothesis is also valid during the start-up phase of power nuclear
reactors;³

E dE
1
³
S~Ω
dΩ1 Σsp~r, ~Ω

1 � ~Ω, E1 Ñ E, tqψp~r, ~Ω1, E1, tq: the transfer term, given by neutrons

emerging from scattering in d~r around ~r and acquiring direction ~Ω and energy E;³
E dE

1 and
³
S~Ω
dΩ1 stand for the integration over the whole energy domain and for

the angular integral over the unit sphere, respectively;°Nisotopes
j�1

χjpEq
4π

³
E dE

1νΣf,jp~r,E
1, tqφp~r,E1, tq: the fission term, made by the contribution

of each fissile isotope j to the number of neutrons emitted in the phase space by
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12 CHAPTER 2. THEORETICAL BACKGROUND

fission, assuming the isotropy of the phenomenon; φ is the scalar flux equal to³
S~Ω
dΩ ψp~r, ~Ω, E1, tq.

It is common practice to write (2.1) in a more compact form, which is obtained defining
the transport term Lψp~r, ~Ω, E, tq as the sum of the streaming and removal terms, and
calling Hψp~r, ~Ω, E, tq and Fφp~r,E, tq the transfer and the fission terms, respectively. In
this way, the initial equation becomes:�

1

v
Bt � L�H



ψp~r, ~Ω, E, tq � Fφp~r,E, tq. (2.2)

In order to well pose this problem, boundary and initial conditions are required:

ψp~rs, ~Ωin, E, tq � ψinpE, tq ~rs P BD, n̂ � ~Ωin   0, (2.3)

n̂ being the versor normal to the contour of the domain BD,

ψp~r, ~Ω, E, t � 0q � ψ0p~r, ~Ω, Eq. (2.4)

An analytical solution for (2.1) is not available for general cases: one-dimensional cases
can be solved analytically only under certain assumptions regarding the medium, the
energy range and the spatial and temporal dependence of the source, whereas 2-D and
3-D problems almost always require a numerical solution, unless the medium is void or
purely absorbing [4].

To solve Boltzmann equation, nuclear industries can rely on two categories of com-
putational methods: the stochastic and the deterministic ones. The former require
the use of Monte-Carlo methods and simulate what occurs in reality by following each
neutron, from the moment it is generated to its absorption; all possible interactions
are considered in this process: fission, capture, scattering, (n,2n) reactions, etc. In this
way, the macroscopic behaviour of the system is reconstructed analyzing what happens
on a microscopic scale. On the other hand, deterministic methods aim to obtain a
numerical solution of the transport equation through approximations that make the
starting problem solvable by computer schemes. This is achieved by discretizing the
domains of the variables involved, and of course the more accurate the discretization, the
greater the accuracy of the solution. The advantage of these latter methods lies precisely
in the possibility of obtaining a rather accurate solution in a relatively short time (with
respect to stochastic methods).

Since, as already mentioned, the present work is produced using the Two/Three
Dimensional Transport (TDT) solver of APOLLO3 R© code, our discussion will now focus
on an introduction to this deterministic tool, based on [4].

2.1 APOLLO3 R© code system

APOLLO3 R© was started by CEA in 2012 [19], after almost thirty years of use
of its predecessor APOLLO2. Like any other deterministic code, at the moment, it
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faces the reactor calculation in two steps: firstly, a detailed calculation of Boltzmann
equation is performed on a small domain, which should be as indicative as possible of
the global system (a fuel cell, an assembly or a cluster of assemblies), considering an
infinite system obtained by reflective/translational/rotational conditions. This first step,
called “lattice” calculation, requires very fine meshes in energy and space to obtain,
by equivalence methods preserving lattice reaction rates, homogenized in space and
condensed in energy cross sections to be used successively. The second step is the “core”
calculation, performing a 3-D calculation on the whole domain with the real boundary
conditions, but using a degraded solver.

In passing from the first phase to the second cross-section condensation is a very
delicate operation: due to resonances, it may be quite tricky to guarantee the conservation
of reaction rates: self-shielding formalism deals with this problem.

As it will be explained in chapter 3, we will limit our attention to the first phase,
merely carrying out the self-shielding and the transport calculation on a 2-D system. To
understand our procedure, in the following we will describe what gives rise to the need of
performing the self-shielding, that is the multi-group approximation. The self-shielding
formalism itself is then introduced.

2.2 Multi-group approximation

Nuclear deterministic methods subdivide the energy domain in a certain number
Ng of discrete groups (281 in our case) and then consider just average distributions of
neutrons inside each group. The following description is based on [4, 20].

To begin with, consider the steady-state form of the transport equation:�
~Ω �∇� Σtp~r,Eq

�
ψp~r, ~Ω, Eq �»

E
dE1

»
S~Ω

dΩ1 Σsp~r, ~Ω
1 � ~Ω, E1 Ñ Eqψp~r, ~Ω1, E1q�

1

keff

Niso̧

j�1

χjpEq

4π

»
E
dE1 νΣf,jp~r,E

1qφp~r,E1q, (2.5)

where keff is the effective multiplication factor, necessary to guarantee stationarity.
Referring to (2.5), it can be expressed as

keff �
4π
³
D d~r

³
E dE Fφp~r,Eq³

D d~r
³
E dE

³
S~Ω
dΩ pL�Hqψp~r, ~Ω, Eq

(2.6)

that is, as the ratio between the total number of neutrons produced and removed in all
the phase spaces. Depending on its value, a system is defined as sub-critical (keff   1),
critical (keff � 1) or super-critical (keff ¡ 1).

Now, identifying the multi-group angular flux as

ψgp~r, ~Ωq �

»
g
dE ψp~r, ~Ω, Eq (2.7)
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and analogously the multi-group scalar flux φgp~rq, one can write eq. (2.5) in terms of
ψg and φg by simply integrating the equation over an energy group. This yields the
multi-group steady-state transport equation�

~Ω �∇� Σg
t p~r,

~Ωq
�
ψgp~r, ~Ωq �

Nģ

g1�1

»
S~Ω

dΩ1 Σg1g
s p~r, ~Ω1, ~Ωqψg

1
p~r, ~Ω1q�

1

keff

Niso̧

j�1

χgj
4π

Nģ

g1�1

νΣg1

f,jp~r,
~Ωqφg

1
p~rq, (2.8)

where the multi-group condensed cross sections Σg
t , Σg1g

s , Σg1

f,j are defined so as to preserve
the reaction rates over the energy group. For instance, considering just the total cross
section, its condensed version is given by

Σg
t p~r,

~Ωq �

³
g dE Σtp~r,Eqψp~r, ~Ω, Eq³

g dE ψp~r, ~Ω, Eq
. (2.9)

It is common practice to neglect the angular dependence in (2.9) in order to avoid
excessive memory storage (this is done by simply weighting the cross sections with the
scalar flux). Moreover, it is apparent that condensation requires the knowledge of the
flux, which is precisely our unknown. Therefore, an approximated value for φp~r,Eq must
be used and, as will be clarified below, the quality of this approximation has a strong
impact on the validity of condensed values.

An intuitive way to satisfy (2.9) for any kind of interactions, neglecting the dependence
on direction, is to evaluate the condensed cross sections of reaction ρ for any isotope j as

σgρ,jp~rq �

³
g dE σρ,jpEqφp~r,Eq³

g dE φp~r,Eq
. (2.10)

For non-resonant isotopes or outside the resonance range (from some eV to some hundreds
of keV, depending on the isotope), microscopic cross sections vary slowly as a function of
energy. Therefore, the weighting function can be approximated by a space-independent
energy spectrum φwpEq, representative of the system considered. This leads to the defi-
nition of so-called “infinite-dilution” multi-group cross sections, which can be computed
once and for all for the neutron spectrum of interest. However, if the same approach
is adopted for the resonance domain, that is, if a slowing-down spectrum is considered
regardless of the spatial position, completely wrong results are produced, since reaction
rates would be overestimated and the resulting keff could be several tens of percent
lower than the real one. Hence, a correct procedure cannot ignore the real geometry of
the problem, because the errors made in localized regions (for instance, in the outermost
layer of the fuel, where the flux is relatively high but there are many resonant isotopes)
may compromise the final result.
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Figure 2.1: Total microscopic cross sections of uranium 235 and 238 as a function of
energy [9]. Resonances clearly characterize the epithermal energy range.

Self-shielding methods have the delicate task of providing reasonably accurate model
for the flux, which is needed in the resonance range to obtain energy-condensed values
for the different homogenized regions the system is divided into.

2.3 Introduction to self-shielding in APOLLO3 R©

This paragraph is meant as a mere introduction to the topic, since an in-depth
dissertation falls beyond the interest of this work. To go into more detail the reader may
consult references [4, 7, 8, 18], from which the following introduction is taken.

By “self-shielding” one denotes the effect of a resonance on the reaction rate: in a very
narrow energy range, the cross section (absorption, scattering or total one) may increase
of several orders of magnitude (see Fig. 2.1), causing a localized tip for the flux, which
is all the more pronounced the more the interaction probability increases. These two
effects compensate each other and, as a consequence, the reaction rate variation is lower
than the ones of the flux and of the cross section. Taking into account this phenomenon,
occurring in regions where resonant isotopes are present and therefore depending on the
real geometry of the system, leads to the evaluation of self-shielded multi-group cross
sections.

Three major self-shielding techniques have been implemented in APOLLO3 R© : the
sub-group method (SGM), Tone method and Livolant-Jeanpierre method. They all
approximate the scalar in-group flux φp~r,Eq, but adopting different strategies. Some
hypotheses are in common, though: in the fissile mixture, for one isotope at a time a
fine cross-section energy structure is considered, while group-averaged cross sections
are used for the others, treated as moderators. An iterative procedure among isotopes
is then required to obtain consistent multi-group values. This approach introduces
errors which are reduced as long as the second common hypothesis is valid, that is the
narrow-resonance approximation: according to it, resonances of different isotopes do not
overlap (obviously, the finer the energy mesh and the more accurate this assumption
becomes). This makes it also reasonable to treat transfer probabilities and emission
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spectra as constant within each energy group, because, if the energy discretization is
fine enough, transfer from other groups represents the major contribution of in-group
emission. Moreover, all shielding methods of APOLLO3 R© assume that the scattering
is isotropic and apply then the same shielding factor, valid for infinite-dilution values
and therefore constant over an energy group, to obtain the anisotropic scattering cross
sections.

Tone and Livolant-Jeanpierre methods are both based on an equivalence principle,
allowing to retrieve self-shielded cross sections from pre-tabulated library functions of
infinite-dilution cross sections, whereas the Sub-group method has a different approach,
which is briefly described below. After that, the other two methods will be treated.

2.3.1 Sub-group method

The sub-group method evaluates the flux within group g for isotope j as solution of
the slowing-down problem �

~Ω �∇� Σ̂tp~r,Eq
�
ψp~r, ~Ω, Eq �

fjpg Ñ gqNjp~rq

»
g
dE σs,jpEqφp~r,Eq�¸

k�j

fkpg Ñ gqNkp~rqσ
g
s,kp~rqφ

gp~rq�

¸
k,g1�g

fkpg
1 Ñ gqNkp~rqσ

g1

s,kp~rqφ
g1p~rq�

1

keff

¸
k,g1

χgk
4π
Nkp~rqνσ

g1

f,kp~rqφ
g1p~rq, (2.11)

where isotopic transfer probabilities fk and per-group emission spectra χgk are known
values that can be found in nuclear libraries, N represents the isotope density (expressed
in rcm�3s) and Σ̂t is the sum of the contributions of the isotope being considered (j) and
of background isotopes (k):

Σ̂tp~r,Eq � Njp~rqσ
g
t,jpEq �

¸
k�j

Nkp~rqσ
g
t,kp~rq. (2.12)

In (2.11), the transfer term is divided into three parts:

fjpg Ñ gqNjp~rq
³
g dE σs,jpEqφp~r,Eq: in-group scattering due to isotope j;

°
k�j fkpg Ñ gqNkp~rqσ

g
s,kp~rqφ

gp~rq: in-group scattering due to background isotopes;

°
k,g1�g fkpg

1 Ñ gqNkp~rqσ
g1

s,kp~rqφ
g1p~rq: scattering from other groups.

As already said, only the first term maintains a fine energy dependence. Denoting by qgp~rq
the right-hand side of (2.11), and by Kp~r,Eq the inverse transport operator integrated
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over directions, one obtains an equation for the in-group scalar flux to be used in (2.10):

φp~r,Eq � Kp~r,Eqqgp~rq. (2.13)

Its solution requires the convergence of an iteration process over all groups, and for each
group an iteration over isotopes is needed, updating their multi-group cross sections
with the values of the already computed isotopes. This evaluation is made by means of
probability tables [12], providing weights to estimate integrals over energy groups through
quadrature formulas. Lastly, homogenized values relative to self-shielding regions are
obtained by approximating the operator K using the collision probability method (CPM,
a description can be found in [4]).

2.3.2 Tone and Livolant-Jeanpierre methods

These methods are based on an equivalence between the real heterogeneous medium
and an infinite homogeneous one. According to Tone, for each self-shielding region i and
isotope j the flux is computed as

φipEq �
D

σt,jpEq � σg0,j,i
, (2.14)

where D is a constant, σt,jpEq the microscopic total cross section of isotope j and σg0,j,i
represents the background cross section, given by the contributions of all the other
isotopes in all regions x. Considering the collision probability PixpEq, which expresses as
a function of energy the probability for a neutron born in region x to undergo its first
collision in region i, Tone approximation states that its energy dependence is only given
by the region of collision i (PixpEq � fgi pEqP

g
ix). This makes it possible to obtain, using

CPM, the background cross section as

σg0,j,i �

°
x P

g
ix

°
k�j Nk,iσ

g
t,k,x°

x P
g
ixNk,x

, (2.15)

Eq. (2.14) has the same shape of the relation for the flux valid for an infinite homogeneous
medium: in fact, each region of the system can be seen as an infinite and homogeneous
domain with a characterizing background cross section σg0,j,i. Self-shielded cross sections
are then computed using probability tables as in SGM, but adopting (2.14) as weighting
spectrum for quadrature formulas.

Livolant-Jeanpierre strategy differs from Tone’s for the equivalence procedure followed.
As described in [7], by considering a system composed of N zones containing fuel and L
with moderators, if each zone contains only one isotope the fundamental equation for
each fuel zone i reads

ViΣo,iϕo,i �
¸

x�1,N

VxPixRoϕo,x �
¸

x�1,L

VxPixΣx, (2.16)

where o is the subscript for the fuel, V denotes the zone volume, Σ the total cross
section, ϕ the fine-structure flux and R the slowing-down operator, such that Roϕo,x �
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³u
u�εx

du1Σs,xpu
1 Ñ uqϕo,x, εx being the maximum gain in lethargy u. Eq. (2.16) is

clearly a heterogeneous problem with source. By exploiting the reciprocity property of
collision probabilities (VxPixΣo,x � ViPxiΣo,i) and since, under the hypothesis of narrow

resonances,
Roϕo,x

Σo,x
�

Roϕo,i
Σo,i

, the previous equation becomes

Roϕo,i � pΣo,i � Σe,iqϕo,i � Σe,i � 0, (2.17)

where the equivalent cross section Σe,i is defined as Σe,i � Σo,i
1�
°
x�1,N Pxi°

x�1,N Pxi
. Eq. (2.17)

represents the homogeneous problem equivalent, by means of Σe,i, to the original one; its
solution ϕo,i is used to compute multi-group shielded cross sections.

In our case Livolant-Jeanpierre method is adopted, alongside with a multi-cell approx-
imation (MCA, its description can be found in [8]), which speeds up CP calculations.

2.4 Iterative procedure for the solution of NTE

The solution of the multi-group problem (2.8) is obtained by a three-level iterative
scheme, in which three types of iterations are used: outer, thermal and inner, the second
and the third being nested in the previous one. What follows is based on [20].

The outer iterations (index o) are solved according to the power method: by com-
pacting (2.8) as

pL�Hq ψgo�1p~r,
~Ωq �

1

keff,o
Fφgop~rq, (2.18)

one obtains the iterative form of the equation to be solved for each energy group, starting
from initial guesses of φgo and keff,o.

The thermal iterations (index t) cycle over groups maintaining the fission source
constant, until the multi-group angular flux ψgp~r, ~Ωq has reached convergence in all of
them. Groups are considered from the highest energy to the lowest, and for each one an
inner iteration (index i) is performed, solving the problem

Lψgi�1p~r,
~Ωq �

»
S~Ω

dΩ1 Σgg
s p~r, ~Ω

1 � ~Ωqψgi p~r,
~Ω1q � Sgp~r, ~Ωq, (2.19)

where Sg is made by the sum of the fission source, relative to the outer step “o”, and
the contributions to the scattering from higher (g1   g, thermal step “t� 1”) and lower
(g1 ¡ g, thermal step “t”) energy groups:

Sgp~r, ~Ωq �
1

keff,o

Niso̧

j�1

χgj
4π

Nģ

g1�1

νΣg1

f,jp~r,
~Ωqφgop~rq�

�
¸
g1 g

»
S~Ω

dΩ1 Σg1g
s p~r, ~Ω1 � ~Ωqψg

1

t�1p~r,
~Ω1q�

�
¸
g1¡g

»
S~Ω

dΩ1 Σg1g
s p~r, ~Ω1 � ~Ωqψg

1

t p~r,
~Ω1q. (2.20)
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More details about this last iteration level will be provided in the next section.

At the end of each outer iteration, the fission term is updated with the new values
φgo�1 of the multi-group scalar flux. Hence, the new keff,o�1 reads

keff,o�1 � keff,o

°
g

³
D d~r Fφ

g
o�1p~rq°

g

³
D d~r Fφ

g
op~rq

. (2.21)

The outer and the nested cycles are repeated until the convergence of keff .

2.5 Method Of Characteristics

To conclude the description of our theoretical framework we introduce here the
Method Of Characteristics (MOC), which is employed in our calculation. This paragraph
is taken from [4] and [20].

This method dates back to the studies carried out by Riemann in 1800s; more
recently, its application in neutronics was proposed by J. R. Askew in 1972 [2]. One
of its advantages is the capability to treat complex arbitrary geometries with a good
compromise between precision and computational time.

As it is known, Boltzmann equation contains partial derivatives: the idea of MOC is
to solve the problem along characteristic lines, for which it translates into an ordinary
differential equation. Starting from (2.8) and considering the curve of points ~r described
by ~rpsq � ~r0 � s~Ω, with ~r0 constant and ~r0 K ~Ω, the ~Ω �∇ψgp~r, ~Ωq term can be rewritten
as

~Ω �∇ψgp~r, ~Ωq � dψgp~r0 � s~Ω, ~Ωq

ds
, (2.22)

where, since the characteristic direction ~Ω is fixed, the right-hand side is now a total
derivative. To exploit the potentiality of this approach, the entire domain D is subdivided
in a set of homogeneous regions Di, inside which the multi-group cross sections and
the emission term qgp~r,Ωq (given by the sum of scattering and fission term in the
r.h.s. of (2.8)) are assumed as spatially constant. The continuous angular variable is
discretized in a discrete set of directions, according to the classical SN formalism (a
possible reference is [3]): basically, we use a quadrature set twn, ~Ωn, n � 1, Nu such that³
S~Ω
dΩfp~Ωq �

°
n�1,N wnfp

~Ωnq, where N is equal to the chosen number of directions

and wn the weight associated with the nth direction. As shown in Fig. 2.2, for a chosen
direction ~Ω, a bundle of characteristic lines parallel to it crosses the domain. Each
region Di can therefore be approximated as a set of rectangles having as dimensions the
chords identified by the characteristics and the transversal step (equal to the distance
between the lines). Clearly, the higher the number of characteristics and the closer this
approximation will be to the real volume of the region.

Given these hypotheses, the solution of the multi-group transport equation relative
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Figure 2.2: Characteristic lines crossing the domain. On the right a zoomed view on a
single region is shown, pointing out for a generic line k its associated cross-sectional area
SK and the angular flux values at the entrance (ψ�k ) and at the exit (ψ�k ) of the region.

to the characteristic line k of direction ~Ω inside Di and for group g reads

ψgkpsq � ψgkp0q expp�Σg
t,isq � qgi p

~Ωq
1� expp�Σg

t,isq

Σg
t,i

, (2.23)

where ψgkpsq is considered as constant over the cross-sectional area SK, perpendicular to
line k. Evaluating (2.23) at the end of the chord, we obtain the transmission equation:

ψg�k � ψg�k �

�
qgi p

~Ωq

Σg
t,i

� ψg�k


�
1� expp�Σg

t,iIk,iq
�
, (2.24)

where Ik,i is the chord length and ψg�k and ψg�k correspond to the entrance (�) and the
exit (�) of the region, that is, to the chord extremes.

In order to have information about ψ̄gi , the average angular flux of group g in region
i, and therefore to update the value of qgi according to the algorithm described in the
previous section, a balance equation is required. This is obtained by averaging (2.8) on
the region volume:

~Ω �
³
Di
d~r ∇ψgp~r, ~Ωq³
Di
d~r

�
Σg
t,i

³
Di
d~r ψgp~r, ~Ωq³
Di
d~r

�
qgi p

~Ωq
³
Di
d~r³

Di
d~r

. (2.25)

This yields, by applying the divergence theorem,

Σg
t,iψ̄

g
i p
~Ωq � qgi p

~Ωq �
1

Vi

»
BDi

d~rs ~Ω � n̂ ψgp~rs, ~Ωq, (2.26)
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where ~rs denotes the set of positions on the boundary of region i and Vi is the volume
of the region. As it is shown in [20], thanks to the subdivision of the region described
above, the surface integral becomes simply

1

Vi

»
BDi

d~rs ~Ω � n̂ ψgp~rs, ~Ωq �
zp~Ωq

Vi

¸
k||~Ω
kXDi

rψg�k � ψg�k s � ∆Jgi p
~Ωq. (2.27)

If the transversal step is fixed (as it usually is), the integration weight zp~Ωq does not
depend on the single characteristic line but only on ~Ω. Hence, the balance equation can
be written as

Σg
t,iψ̄

g
i p
~Ωq � qgi p

~Ωq �∆Jgi p
~Ωq. (2.28)

It has to be noted that, according to [18], the angular dependence of the emission term
relative to group g and region i is treated by means of an expansion over real spherical
harmonics (see appendix A):

qgi p
~Ωq � ~Ap~Ωq � ~qg,i, (2.29)

~Ap~Ωq being the vector of all spherical harmonics functions, which, for an order of scattering
anisotropy equal to K, is defined as ~Ap~Ωq � tAlkp

~Ωq, k � 0,K ^ l � �k, ku. ~qg,i, given by

~qg,i � Σgg
s,i
~Φg,i � Sg,ext, Sg,ext �

¸
g1�g

Σg1g
s,i
~Φg1,i � δ0kFg,iφ̄gi , (2.30)

is the vector of the pK � 1q2 angular moments taking into account, for each moment, the
scattering contribution from the same group g and from the other groups separately and,
only for the zero-order moment, the fission contribution (as expressed by the Kronecker
delta δ0k). Here Σgg

s,i is the diagonal scattering operator applied to the flux moment

vector ~Φg,i which, using the SN quadrature formula, can be written as

~Φg,i �

»
S~Ω

dΩ ~Ap~Ωqψ̄gi p
~Ωq �

¸
n�1,N

wn ~Ap~Ωnqψ̄
g
i p
~Ωnq. (2.31)

At each inner iteration, until the flux convergence in group g, ~qg,i is updated through
(2.30), keeping Sg,ext constant, and therefore used in (2.29) to have the new value of the
emission term to be substituted in the balance equation (2.28). Then, computing the
∆Jgi term by means of the transmission equation (2.24), the balance equation yields the
average per-region angular flux ψ̄gi needed to finally update the flux moments through
(2.31).





Chapter 3

Model and equations

This chapter describes the model we used, alongside with the equations and the
geometries considered to simulate the dynamic behaviour of neutron noise phenomena.
Moreover, the reasons which led us to develop this model are clarified, by highlighting
the difficulties rising from a traditional frequency-based approach.

To begin with, it is worthwhile to consider the nature of our problem: starting from
a static situation, where quantities undergo negligible oscillations, noise introduces a
temporal behaviour in the system which cannot be ignored. Therefore, we are interested
in a kinetic system of equations including, beside the time-dependent Boltzmann equation
(2.1), the equations for the concentrations of delayed-neutron precursors, whose role is
explained briefly below. For each family i of delayed neutrons and fissile isotope j, the
latter read

BtC
j
i p~r, tq � �λjiC

j
i p~r, tq �

»
E
dE1βji pE

1qνΣf,jp~r,E
1, tqφp~r,E1, tq, (3.1)

where

Cji p~r, tq is the concentration per unit volume at time t of precursors of the ith family of
delayed neutrons, generated by fission of the isotope j;

λji is the decay constant of the precursors of the ith family for the isotope j;

βji pEq is the energy distribution of the fraction of delayed neutrons of the ith family
produced by the isotope j.

The form (3.1) is coherent to the nuclear data that can be found in cross-section libraries
such as JEFF [9].

Time-dependent problems require eq. (3.1) to take into account the different time-
scales involved [21]: as it is well-known, while most neutrons generated by fission are
emitted instantaneously (and therefore are called “prompt”), a small fraction of them
appears with a certain delay, that is, when their precursor isotope decays. It follows that
the emission rate of the so-called “delayed” neutrons is ruled by the decay process of the
precursors and that, as a consequence, their lifetime is much longer than the average one

23
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Table 3.1: Delayed-neutron lifetimes relative to the fission of uranium 235 for eight
precursor families. Data are taken from [4].

Precursor family τi �
1
λi
rss

1 8.021 101

2 3.535 101

3 2.352 101

4 7.516
5 3.419
6 1.500
7 6.117 10�1

8 2.813 10�1

Average value 1.302 101

(10�6 � 10�3s, according to [4]), going from a few tenths to some tens of seconds (the
values for uranium 235 are shown in Tab. 3.1). To underline this aspect, for each fissile
isotope j the fission operator of (2.1) can be decomposed as the sum of the prompt and
delayed contributions:

χjpEq

4π

»
E
dE1 νΣf,jp~r,E

1, tqφp~r,E1, tq �

χPj pEq

4π

»
E
dE1

�
1�

¸
i

βji pE
1q



νΣf,jp~r,E

1, tqφp~r,E1, tq �
¸
i

χDi,jpEq

4π
λjiC

j
i p~r, tq, (3.2)

where χPj and χDi,j are, respectively, the prompt-neutron energy spectrum relative to the

isotope j and the energy spectrum of ith family delayed neutrons produced by the isotope
j. It is now apparent that the set of equations (3.1) constitutes a closed system with the
transport equation, the flux being dependent on precursor concentrations and vice-versa.

The discussion focuses now on the description of the model which is commonly used
in the context of neutron noise.

3.1 Frequency model

Traditionally, noise is treated within the framework of the perturbation theory of the
steady-state situation. This is for example the approach followed in [13]. The starting
point is a critical condition given by (2.5) with keff � 1, here reported in a compact
form (for simplicity, the dependence on the phase space is omitted):

�
L0 �H0 � F̂0



ψ0 � T0ψ0 � 0, (3.3)



3.1. FREQUENCY MODEL 25

where F̂0 is the fission operator F̂� �
°Nisotopes
j�1

χjpEq
4π

³
E dE

1νΣf,jp~r,E
1q
³
S~Ω
dΩ� in the

reference state. A perturbation of cross sections is therefore imposed and the following
kinetic equation has to be considered:�

1

v
Bt � T ptq

�
ψptq � 0. (3.4)

As a result of the perturbation, the kinetic operator T can be written as

T ptq � T0 � δT ptq (3.5)

and, under the hypothesis of being in stationary regime (after an initial transient due to
the onset of the perturbation), also the flux reads

ψptq � ψ0 � δψptq, (3.6)

where δψ is precisely the noise. The notation used in (3.5) and (3.6) emphasizes the
different orders of magnitude of the terms: in fact, this procedure assumes both δT � opT0q
and δψ � opψ0q (“small-perturbation formulation”, see [16]); this hypothesis leads to
neglect the second-order term given by the effect of the perturbed kinetic operator on the
perturbed flux (δT δψ). By further assuming that the system criticality is preserved and
substituting the relation for T ptq and ψptq into (3.4), one obtains the linearized problem�

1

v
Bt � T0



δψptq � �δT ptqψ0, (3.7)

which is then Fourier-transformed to obtain the neutron noise standard equation:

T0,ωδψpωq � �δT pωqψ0, @ω P R, (3.8)

ω being the angular frequency, which substitutes time as variable in the Fourier space,
and T0,ω � iu

ω
v � L0 � H0 � F̂0,ω (iu is the imaginary unit). It is worth noting that

the dependence of T0,ω on the angular frequency is not only due to the transform of
the derivative term, but also to the fission operator F̂0,ω. The latter in turn acquires
this dependence through the precursor concentrations, which, as said above, have to be
considered when kinetic behaviours are treated. This aspect is clarified below.

Eq. (3.8) has to be solved for a chosen set of harmonics tωn, n � 1, Nu (the most
important ones according to the perturbation imposed): the values of δψpωnq obtained
are therefore needed to retrieve the flux solution in the temporal domain. However,
the transition to Fourier domain is not exactly a smooth process: beside the need to
deal with complex quantities and the already anticipated frequency-dependence of the
kinetic operator, an even worse complication arises when perturbed cross sections are
Fourier-transformed, since at that point they too depend on ω.

What has been said becomes apparent by considering the time-dependent multi-
group equation (whose steady-state version is reported in section 2.2) after the Fourier
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(a)
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Figure 3.1: Example of a simplified fuel cell (a) with oscillating fuel rod. As shown in
(b) for a T -periodic movement, the total cross section in point x assumes alternately the

value of the fuel (index 1) and of the moderator (index 0).

transformation: �
iu
ω

vg
� ~Ω �∇� Σg

t,0p~rq
	
δψgp~r, ~Ω, ωq �¸

g1

»
S~Ω

dΩ1 Σg1g
s,0p~r,

~Ω1 � ~Ωqδψg
1
p~r, ~Ω1, ωq�

�
1

4π

¸
j

�
χg,Pj

¸
g1

�
1�

¸
i

βj,g
1

i



νΣg1

f,j,0p~rqδφ
g1p~r, ωq�

�
¸
i

χg,Di,j
λji

λji � iuω

¸
g1

βj,g
1

i νΣg1

f,j,0p~rqδφ
g1p~r, ωq

�
�

�qgp~r, ~Ω, ωq. (3.9)

qg is the noise source (�δT ψ0 in (3.8)), given by

qgp~r, ~Ω, ωq � �δΣg
t p~r, ωqψ

g
0p~r,

~Ωq�

�
¸
g1

»
S~Ω

dΩ1 δΣg1g
s p~r, ~Ω1 � ~Ω, ωqψg

1

0 p~r,
~Ω1q�

�
1

4π

¸
j

�
χg,Pj

¸
g1

�
1�

¸
i

βj,g
1

i



δ
�
νΣg1

f,j

�
p~r, ωqφg

1

0 p~rq�

�
¸
i

χg,Di,j
λji

λji � iuω

¸
g1

βj,g
1

i δ
�
νΣg1

f,j

�
p~r, ωqφg

1

0 p~rq

�
. (3.10)
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As discussed in section 2.3, the correct definition of multi-group cross sections requires
the use of self-shielding techniques as a preliminary step before the iterative search for
the solution. The expression of the noise source (3.10) shows that, following this kind of
procedure, a further step is required: a priori, for each frequency considered a different
spatial discretization has to be made, complicating the problem considerably. This may
be clarified by the example in Fig. 3.1: consider a very simplified fuel cell, with the fuel
rod oscillating horizontally along one of the axes with period T ; as a consequence, in the
yellow x point of the axis the total cross-section value oscillates as well, as shown in the
graph. Hence, the definition of δΣtptq in the frequency domain requires, for each spatial
point, the calculation of Fourier transforms for all the N frequencies.

3.2 Our temporal model

The model developed in the present thesis is based on a quite different approach,
aiming to avoid the difficulties caused by the passage to a complex domain. Instead of
introducing the noise into the equations as a perturbation of the terms, our strategy
consists in simulating a periodic oscillation geometrically: different states of the system
are linked to represent its evolution during a period. A visual representation of this,
together with the two case studies considered, is found in section 3.3. In this paragraph
we deal with the description of the equations used and with the way the key quantities
have been computed.

Our approach starts from the coupled kinetic system made by the precursor concen-
tration equations (3.1) and the time-dependent transport equation (2.1), where the fission
operator is expanded as in (3.2). As it is customary in literature ([10], for instance), we
translate this system into one where precursors are only distinguished on a “family” base
and not on their isotopic nature. To handle isotope-independent precursor concentrations
we consider

Cip~r, tq �
¸
j

Cji p~r, tq. (3.11)

In order to apply the sum over fissile isotopes to all terms of (3.1) and to modify the
delayed part of the fission operator, suitable definitions of the average per-family decay
constants and delayed spectra are needed. The former can be written as

λ̄ip~r, tq �

°
j λ

j
iC

j
i p~r, tq°

j C
j
i p~r, tq

� λi, (3.12)

where the approximation is made that decay constants are only functions of the family
of delayed neutrons, not of the isotope: the 8-group delayed family definition, used in
this work, amply justifies this assumption [9]. Hence, from now on only λi will be used.
The same simplification cannot be made for delayed spectra:

χ̄Di p~r,E, tq �

°
j χ

D
i,jpEqλ

j
iC

j
i p~r, tq°

j λ
j
iC

j
i p~r, tq

�

°
j χ

D
i,jpEqC

j
i p~r, tq°

j C
j
i p~r, tq

. (3.13)
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Although (3.13) exploits the approximation (3.12), χ̄Di inherits a parasitic spatial and
temporal dependence which cannot be neglected. Therefore, in the fission operator the
delayed part now reads¸

j

¸
i

χDi,jpEqλ
j
iC

j
i p~r, tq �

¸
i

χ̄Di p~r,E, tqλiCip~r, tq. (3.14)

Using the formalism of nuclear data one can write delayed-neutron fractions as

βji pEq � wjd,iP
j
edpEq, (3.15)

separating the dependencies on energy and family with the use of the terms wd and Ped.
Our system is then composed by the following equations:�

1

v
Bt � ~Ω �∇� Σtp~r,E, tq



ψp~r, ~Ω, E, tq �»

E
dE1

»
S~Ω

dΩ1 Σsp~r, ~Ω
1 � ~Ω, E1 Ñ E, tqψp~r, ~Ω1, E1, tq�

�
¸
j

χPj pEq

4π

»
E
dE1

�
1� P jedpE

1q
¸
i

wjd,i



νΣf,jp~r,E

1, tqφp~r,E1, tq�

�
¸
i

χ̄Di p~r,E, tq

4π
λiCip~r, tq, (3.16)

BtCip~r, tq � �λiCip~r, tq �
¸
j

»
E
dE1 wjd,iP

j
edpE

1qνΣf,jp~r,E
1, tqφp~r,E1, tq,

i � 1, 8. (3.17)

To construct the oscillation a set of static configurations is studied and their number has
to match that of the time intervals in which the period is subdivided. However, not all
kinetic parameters are recomputed for each state: we start considering the critical system
not affected by the oscillation (for geometrical reasons, discussed in 3.3, we refer to it as
“central static”). The self-shielding procedure treated in 2.3 is then performed only on
this configuration, yielding the multi-group per-region cross sections to be used for the
rest of the calculation. Moreover, the scalar flux φ8, solution of the stationary equation�

~Ω �∇� Σtp~r,Eq
	
ψ8p~r, ~Ω, Eq �»

E
dE1

»
S~Ω

dΩ1 Σsp~r, ~Ω
1 � ~Ω, E1 Ñ Eqψ8p~r, ~Ω1, E1q�

�
χjpEq

4π

»
E
dE1 νΣf,jp~r,E

1qφ8p~r,E1q (3.18)

relative to the central static, is used to evaluate the delayed spectra to be adopted for
all the static configurations, according to (3.13). For this scope stationary values of the
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precursor concentrations Cj,8i are used, defined accordingly with the steady-state version
of eq. (3.1):

Cj,8i p~rq �

³
E dE

1 wjd,iP
j
edpE

1qνΣf,jp~r,E
1qφ8p~r,E1q

λi
. (3.19)

This strategy could be further improved by computing for each static case its own delayed
spectra, but it is already more refined than common practice: usually, pre-tabulated
spectra are used, result of weighting with model fluxes relative to infinite homogeneous
media; on the contrary, our approach uses the real flux of the problem, although of the
central static only.

It is good to specify that per-medium values are considered for the calculation: in fact,
since different spatial regions may share the same medium1, it is convenient to forget the
region dependence by homogenizing over the medium volume. Therefore, per-medium
and -family delayed spectra can be expressed as

χ̄Di,M pEq �

³
VM

d~r χ̄Di p~r,Eq

VM
, (3.20)

M being the medium index and VM the medium volume, made by the volumes of all the
regions with the same medium. Moreover, the time dependence appearing in (3.13) does
not figure anymore, because the value obtained from the central static is used throughout
the calculation, as already said.

The static calculations are meant to compute fission spectra and initialize flux values
for the following dynamic simulation. The latter demands a specific treatment for the
delayed fission source (3.14) which leads us to consider, for each temporal point of the
period, contributions due to all other instants. The next paragraph aims to show this
aspect.

3.2.1 Delayed-term treatment

In section 3.1 we said that the frequency model is based on the hypothesis that
criticality is preserved during the perturbation. This assumption is not present in our
work, but the solution sought is still an asymptotic dynamic equilibrium and deviations
from the initial criticality are to be taken into account to guarantee this equilibrium; how
this is made is explained in 3.2.4, whereas here we discuss about the implications of this
strategy on the delayed term.

In condition of asymptotic equilibrium, if our system undergoes a periodic oscillation
of cross sections due to physical shifts of structural components, per-family precursor
concentrations are also periodic, with period T equal to the oscillation period. In order

1Here we mean by “medium” each set of different cross-section values. This difference can be due
to material composition, but also to numerical and modelization reasons such as the subdivision of fuel
regions in different shielding zones.
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to take advantage of this periodicity, eq. (3.17) is firstly integrated over time, yielding

Cip~r, tq � Cip~r, 0q e
�λit �

» t
0
dt1 e�λipt�t

1q
¸
j

»
E
dE1 wjd,iP

j
edpE

1qνΣf,jp~r,E
1, t1qφp~r,E1, t1q.

(3.21)

Solving (3.21) for t � T , one obtains an expression for Cip~r, 0q which can be substituted
in the same equation. This leads to the final version of our precursor equation:

Cip~r, tq �

» T
0
dt1
�

e�λiT

1� e�λiT
� θr0,ts



e�λipt�t

1q

¸
j

»
E
dE1 wjd,iP

j
edpE

1qνΣf,jp~r,E
1, t1qφp~r,E1, t1q, (3.22)

where θr0,ts is equal to 1 if t1 P r0, ts, to 0 otherwise. Therefore, the delayed source (3.14)
can be rewritten as ¸

i

χ̄Di p~r,EqλiCip~r, tq �

¸
i

χ̄Di p~r,Eqλi

» T
0
dt1
�

e�λiT

1� e�λiT
� θr0,ts



e�λipt�t

1q

¸
j

»
E
dE1 wjd,iP

j
edpE

1qνΣf,jp~r,E
1, t1qφp~r,E1, t1q. (3.23)

As anticipated above, the solution of the problem at time t clearly depends on the system
behaviour during an entire period, because of the integral over time present in the last
formula. This also permits to consider, instead of the original coupled kinetic system
made by (3.16) and (3.17), just the transport equation where no variable appears apart
from the flux. To implement (3.23) into the right-hand side of (2.18) that is, at the
outer-iteration level of the algorithm discussed in 2.4, a quadrature formula is needed
that translates the time integral into a weighted sum.

3.2.2 Quadrature formula for the delayed source

In order to translate in a numerical form the fission source, the time period is
discretized in N uniform sub-intervals, each one identified by the index k and centred
around the instant tk � pk � 1{2q TN . The chosen value for N is 8 for both cases that will
be described in 3.3. The delayed fission source is therefore approximated by a quadrature
formula of the kind

¸
i

χ̄Di p~r,Eqλi

Ņ

k1�1

wi,kptk1q
¸
j

»
E
dE1 wjd,iP

j
edpE

1qνΣf,jp~r,E
1, tk1qφp~r,E

1, tk1q (3.24)

wi,kptk1q being the k1-th weighting coefficient for delayed family i at time tk; this means
that for each pair pi, tkq a new set of weights has to be computed, corresponding to all the
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points of the period. For consistency, from the hypothesis we have made about precursor
concentrations it follows that also the flux has to be a T -periodic function. Therefore,
the sum over fissile isotopes

°
j present in (3.24) is also T -periodic. Taking into account

this fact we want our weights to preserve the analytical value of the integral with any
T -periodic function in place of the sum, up to a given order of approximation. This can
be done up to a certain frequency, depending on the available time steps. The integrals
we want to conserve are therefore the following:

» T
0
dt1
�

e�λiT

1� e�λiT
� θr0,ts



e�λipt�t

1qeiu
2πn
T
t1 , n � 0, N{2, (3.25)

whose analytical solutions are

λicos
�

2πn
T t
�
� 2πn

T sin
�

2πn
T t
�

λ2
i �

4π2n2

T 2

� iu
λisin

�
2πn
T t
�
� 2πn

T cos
�

2πn
T t
�

λ2
i �

4π2n2

T 2

, n � 0, N{2.

(3.26)

iu is again the imaginary unit and n an integer number determining the frequency
n{T of the periodic function that appears in the integral. Since eiu

2πn
T
t1 � cosp2πn

T t1q �
iusinp

2πn
T t1q, it follows that the real part of (3.26) is due to the cosine contribution,

while the imaginary part to the sine one. For this reason and to obtain one and only
one solution for the weighting coefficients, an equation for sines and one for cosines
are to be considered for each value of n apart from 0 and N{2; for the latter we have
decided to write a sine equation, whereas the former leads to an equation with unit
coefficients. Globally, the number of equation for weights is equal to that of time steps.
An A~wi,k � ~bi,k system has to be solved, where ~wi,k is the unknown vector of the N
weights for the pair pi, tkq, matrix A is constructed as

A �

�
�����������������������������
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and ~bi,k contains the analytic values of the integrals, arranged as follows:

~bi,k �
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�������������������������������������
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Computing the weights in this way is equivalent to say that, if our periodic function were

equal to
°N{2�1
n�0

�
c2,ncos

�
2πn
T t
�
� c1,nsin

�
2πn
T t
��
� c1,N{2sin

�2πN{2
T t

�
, with c1,n and c2,n

arbitrary constant values, our approximation would be exact.

3.2.3 Adiabatic approximation

Differently from the frequency approach, our method does not need to make any
assumption on the magnitude of the oscillations: a priori, cross sections may undergo
variations of any entity and frequency, without compromising the method. As for the
oscillation frequency, we always consider the value 1Hz, in order to remain within the
framework of mechanical vibrations [13]. In light of this, something can be said about
the time-derivative term figuring in (3.16): the classical numerical strategy to deal with
derivatives is the Finite Difference Method, which translates the derivative into a ratio of
finite terms. With a central difference scheme, the approximation reads

1

vpEq

Bψp~r, ~Ω, E, tq

Bt
�
N
�
ψp~r, ~Ω, E, tk�1q � ψp~r, ~Ω, E, tk�1q

�
2TvpEq

. (3.27)

Since the neutron velocity v takes quite high values also in the thermal domain (about
220 000 cm/s for 0.025 eV neutrons), for relatively long periods one may think of neglecting
this term: this strategy is adopted in our work.
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3.2.4 Eigenvalue update

Provided that no external source is present, all the terms of Boltzmann equation are
operators acting on the flux, constituting therefore a homogeneous problem. As such, it
is certainly satisfied by the trivial null solution. The existence of other solutions requires
the total operator applied to the flux to be singular: to this aim, we re-write eq. (3.16)
by inserting a keff parameter to force dynamic criticality. Our new problem will be�

Lptq �Hptq


ψptq �

1

keff
Fptqφptq (3.28)

and the keff will be searched on the base of the condition that»
T
dt   Fptqφptq ¡� const, (3.29)

where “  � � � ¡” denotes the integration over phase spaces. That is to say that the fission
integral along the period will be constant over time.

The eigenvalue problem produces a stationary solution for the flux which does not
describe reality; however, by considering the keff value one can infer which the system
behaviour would be. If the eigenvalue is not equal to 1 (that is, if the system is not
critical) feedback effects can be introduced to establish criticality and make the flux
solution the real one. In this sense, an eigenvalue different from 1 can be seen as a
fictitious feedback acting on the system to maintain the dynamic equilibrium between
neutron production and removal.

Even if starting from a critical condition, neutron noise may be responsible for more
or less relevant insertions of reactivity, alternately positive and negative. This may
lead the number of fission reactions to diverge or to decrease progressively up to be
negligible, depending on the value of the average reactivity along a period; however, even
if this latter is equal to 0, the presence of delayed neutrons may be promoter of system
divergence, as described for a point reactor in [11]. In our case, in order to preserve an
asymptotic periodic behaviour, any deviation from an average 0 value for the reactivity
is compensated with the eigenvalue by which the fission source is divided. In the light
of what said in section 3.2.1 and considering how the keff is updated after each outer
iteration (2.21), our eigenvalue takes into account the entire evolution of the system
during the period and is therefore suitable for this task. Fig. 3.2 shows the algorithm
we have adopted for computing and updating until convergence the dynamic keff and
the fission source values over time. For the former, the relative error between successive
iterates has to be less or equal to 1.0 10�5, whereas for the latter the maximum acceptable
value for the relative error over the period has been set to 2.0 10�4.

3.3 Description of studied systems

The described method has been implemented for two different 2-D geometries; the
oscillation motions, however similar, required a specific modelling for each of them, due
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Central static calculation: eval-
uation of delayed spectra χ̄Di .

N static calculations, whose
eigenvalues are initialized by the

central static one. Converged
keff values are then used to

initialize dynamic outer iterations.

Dynamic iterations: N outer
cycles are performed, pro-

ducing N eigenvalues. The
dynamic keff is evaluated as

the average of these eigenvalues.

εk ¤ 1.0 10�5

^
maxtεfsptqu ¤ 2.0 10�4

The dynamic keff is used
as initial value for all the
successive N calculations.

no

yes

Figure 3.2: Algorithm for noise iterations. εk and εfs are the relative errors between
successive iterations of the dynamic keff and of the fission sources   Fptqφptq ¡,

respectively. For the latter, the maximum value over the period is considered to check
convergence.
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Table 3.2: Values of relevant dimensions for the two cases. Shift amplitudes are
referred to the centre of mass of the moving components.

Dimensions cm

Cell side 1.26502
Fuel cladding outer radius 4.75988 10�1

Control-rod cladding radius 4.86125 10�1

Detector

shift amplitude 5.80000 10�1

anode radius 1.50000 10�1

cathode outer radius 2.00000 10�1

envelope outer radius 2.80000 10�1

Rod assembly shift amplitude 2.32016 10�1

to the different structural components involved. Their most relevant dimensions can
be found in Tab. 3.2. The conditions imposed at the boundary are pure reflective for
both cases: this is equivalent to have an infinite system and to study only a portion of
it, since this latter repeats an infinite number of times to constitute the global system.
As already said, this kind of boundary condition is used for fine lattice calculations and
it is a good assumption if a power reactor sub-system like a fuel cell or an assembly
is considered, because it is actually surrounded by a large number of similar, if not
equal, elements. Unfortunately, the same cannot be said in our case: imposing that the
oscillation takes place in a sub-system implies the symmetric oscillation of infinite other
sub-systems, which is clearly unrealistic. A way to limit the problem would be to consider
larger sub-systems, so that the effects of the neighbours on the one studied would be
minimized (at least in the zone close to the noise source); of course, this would require
much higher simulation performances, certainly excessive compared to those available
during the internship. Therefore, for these first uses of our noise method we have decided
to still adopt reflective conditions. Possible consequences of this choice on our results
will be discussed in chapter 5.

Figure 3.3: Simulation of the oscillation. The geometries are linked in order to
represent the period of motion. The example considers N � 4 (in our cases we used 8

time intervals) and shows only one of the cells where the oscillation takes place.
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Figure 3.4: Case study 1 - detector. The oscillating component is in the central cell
(the first row down for the halved domain).

Before considering the two case studies individually, it is necessary to specify how
the sequence of geometries constituting the oscillation period is generated: each of the
N sub-intervals is associated to a distinct geometry, that is, to a different position of
the component. The oscillation is therefore constructed linking properly these static
geometries, as shown in Fig. 3.3 for N � 4.

In both cases temperatures are considered as fixed and equal to 841.00 K in the fuel
and to 579.55 K in all the other components.

3.3.1 Case 1: detector

The first case considered is shown in Fig. 3.4: it is a 17x17 fuel assembly with
boron control rods inserted containing, inside the water tube at its centre, a three-layer
cylinder constituting a fission chamber, that is, a detector useful to obtain in-core flux
measurements. The three layers are the following, from the outside in:

envelope the shielding component preventing the radiations from reaching the coolant;

cathode containing uranium (only 235 in our case); here fission reactions take place with
the aim of generating charged particles through radioactive decay and ionizations;

anode needed to establish a current between it and the cathode by applying a potential
difference. This current should be proportional to the reaction rates and, therefore,
to the flux.

They are all made of an iron-nickel-chromium alloy containing also manganese, silicon
and cobalt; uranium oxide is present only in the cathode. In PWRs (Pressurized Water
Reactors) this instrument is usually inserted from above, by means of a structure which
is only fixed at the top; it follows that the detector is left free to move, potentially
swinging in its available space. Such an oscillation is what has been simulated, with the
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(a) (b)

Figure 3.5: Detector oscillation. The central static (a) and the leftmost position (b)
are shown. The motion takes place along the entire diameter of the water tube.

fission chamber moving along the diameter of the water tube section. The scope of our
procedure is to highlight the effects of this motion on the fission rate inside the detector,
as it is the key phenomenon for its operation. Since we only deal with 2-D configurations,
this analysis is based on the assumption that the detector is actually made by a cylinder
of infinite height; hence, any relevant effect on fission rates of neighbouring fuel rods may
be due to this hypothesis.

In Fig. 3.4 it is apparent that only half of the domain is shown; this is not a casual
choice, but a direct consequence of the studied motion, shown in Fig. 3.5: a horizontal
oscillation determines an identical behaviour in the upper and lower halves, and this
implies that the portion of the system shown is sufficient for its complete description. In
the same figure one can also see that the detector is not surrounded by any water tube,
as in reality would be: in fact, it has been removed to simplify the simulation, and the
elements of which it is composed have been dissolved in the water around the detector.
Moreover, this latter is considered to move within the space which would be available if
the tube were actually present.

The nuclear fuel contained in all fuel cells (not in the detector) is 1.8% enriched
uranium.

3.3.2 Case 2: control-rod assembly

The other system analysed is a cluster of 9 fuel assemblies, arranged on a 3x3 grid,
where in the central one control rods are inserted (Fig. 3.6). Each assembly is, as in
the previous case, composed of 289 cells. Considering again PWRs, it is well-known
that control assemblies are inserted from the top of the core and that, during normal
operation, are always partially inserted. Our 2-D study, however, is more similar to the
behaviour of a mid-height section of the core when rods are fully inserted, because, as
already said, it supposes that we are in an infinite axially extruded geometry.

Due to the turbulent motion of the coolant flowing across the core, one may hypothesize
that control rods move too. This movement may occur in several ways, but in this work
simply a coherent oscillation of the entire control assembly, composed of 24 rods, is
assumed to take place: this means that at the same time all the control rods move
leftwards and rightwards alternately. This is shown in Fig. 3.7.
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Figure 3.6: Case study 2 - control-rod assembly. The halved domain is shown rotated
90 degrees with respect to the oscillation direction. The moving control rods are in the

central assembly.
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(a)

(b)

Figure 3.7: Control-rod oscillation. The central static (a) and the leftmost position (b)
are shown. The motion takes place along the entire diameter of guide tubes.
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Analogously to what done for case 1, only half of the domain has been considered.
Moreover, around each rod a guide tube is present in real systems, preventing the contact
with the fuel (especially in accidental situations, when structural deformations may hinder
control-rod insertion); here again the guide tubes are dissolved in the water surrounding
the rods.

Each of the four fuel assemblies sharing one side with the central one contains 9 pyrex
rods, made of borosilicate burnable absorber material. In these assemblies 2.4% enriched
uranium is employed, while for the others the enrichment is 1.8%. The other control rods
are made of natural boron.

3.4 A model for neutron leakage

To conclude this chapter dedicated to the description of our method we illustrate the
leakage model. In order to increase the representativeness of our approach we have in
fact used this traditional tool to simulate the impact of the finite reactor size over lattice
calculations. The model described in this section is based on [15].

Starting from any heterogeneous domain, in order to have keff � 1 one may think of
modifying the streaming term of the transport equation accordingly, either increasing
or lowering neutron leakages from the system. This task is simplified by considering a
homogeneous medium, equivalent to the initial heterogeneous one, for which a leakage
coefficient is computed assuming that it remains valid for the heterogeneous case. This
strategy is called “homogeneous leakage approximation”, and the assumption it is based
on is reasonable if the system anisotropy is not too pronounced: for instance, in PWRs
there are for sure anisotropic effects due to the vertical disposition of the fuel, but they
are traditionally neglected in 2-D models.

First, we want to show how the leakage coefficient appears for an infinite homogeneous
and isotropic critical medium. In this case, the transport equation reads

p~Ω �∇� Σtqψ � q, (3.30)

where

qp~r, ~Ω, Eq �

»
E
dE1

»
S~Ω

dΩ1 Σsp ~Ω1 � ~Ω, E1 Ñ Eqψp~r, ~Ω1, E1q �
1

4π
pFφqp~r,Eq,

pFφqp~r,Eq �
¸
j

χjpEq

»
E
dE1 pνΣf,jqpE

1qφp~r,E1q. (3.31)

The flux solution is to be found in the form

ψp~r, ~Ω, Eq � ψp ~B, ~Ω, Eqe�iu
~B�~r, (3.32)

~B being the buckling vector. Hence, eq. 3.30 translates into�
ΣtpEq � iu ~B � ~Ω

�
ψp ~B, ~Ω, Eq � qp ~B, ~Ω, Eq. (3.33)
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Some comments can be made about the relation between ~B, ψ and the current ~J : the
isotropy of the medium implies that the flux and the module of the current depend
only on the module of ~B (because they do not vary if ~B and ~Ω rotate simultaneously).
Moreover, it follows from (3.33) that ~B and ~JpB,Eq have the same direction, since the
dependency of the angular flux on ~B is limited to the product ~B � ~Ω. According to these
considerations, by integrating eq. (3.33) over angles the conservation equation is obtained
in the form

iuBJpB,Eq � ΣtpEqφpB,Eq �QpB,Eq � 0. (3.34)

Defining now a coefficient D as

DpB,Eq � �
iuJpB,Eq

BφpB,Eq
, (3.35)

from (3.34) the real flux φp~r,Eq turns out to be solution of the multi-group diffusion
equation �

DpB,Eq∇2 � ΣtpEq
�
φp~r,Eq �Qp~r,Eq � 0 (3.36)

having (3.35) as diffusion coefficient.
Considering now the original heterogeneous problem, we would like to introduce a

leakage coefficient defined as D for the homogeneous case. To do that the following
factorization for the flux ψR is adopted:

ψRp~r, ~Ω, Eq � fp~rqψp~r, ~Ω, Eq, (3.37)

f being the macroscopic flux, result of the material balance over the entire core, and ψ
the local one, affected by variations of cross sections on a local scale (fuel cell, assembly
or cluster). Therefore, the transport equation can be written as�

~Ω �

�
∇� ∇f

f



� Σt

�
ψ � q (3.38)

which, integrated over angles, reads�
∇� ∇f

f



� ~Jp~r,Eq � Σtφp~r,Eq � Qp~r,Eq, (3.39)

where only the dependencies of the new terms are shown. At this point, the homogeneous
leakage approximation is introduced: first, the macroscopic flux is assumed of the form

e�iu
~B�~r, as in an infinite homogeneous medium, so that ∇f

f � �iu ~B; then, one supposes
that the r.h.s. of this last relation can be expressed by means of (3.35), that is, using a
coefficient independent of the spatial position (hence the name of “homogeneous” leakages)
and of the angle. The approximation, reading

∇f
f

� ~J � DB2φ, (3.40)
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can therefore be substituted in (3.39). This latter is integrated over the chosen “local”
spatial domain of volume VD to give its homogenized version:

p�DB2 � Σt,DqφDpEq �QDpEq � V �1
D

»
δD
d~S � ~Jp~r,Eq. (3.41)

The subscript D refers to average volumetric values and Σt,D results from the homoge-
nization made by the flux. Considering that the current is null on a perfectly reflective
boundary, Eq. (3.41) acquires the same form of (3.36): it therefore describes the be-
haviour of a homogeneous medium equivalent to the real one. As can be seen, DB2,
that is the product of the leakage coefficient and the critical buckling, modifies the total
cross section in order to have a critical system (it can be thought of as an additional
absorption section).

The procedure to implement this model in our code is iterative, because the ho-
mogenized cross sections, needed to evaluate the leakage coefficient, depend on the
heterogenous flux, which in turn depends on the leakages. The required steps can be
summarized as follows:

1 update of homogenized cross sections relative to the equivalent homogeneous medium;

2 evaluation of the homogenous leakage coefficient;

3 evaluation of the critical buckling;

4 introduction of DB2 into the cross sections (total or scattering);

5 update of the heterogeneous flux.

This cycle has to be repeated until keff converges to the unit value.
The leakage coefficient and the critical buckling are computed only for the central

static configuration, to ensure that noise actually starts from a critical condition, and
are therefore used for all temporal points.



Chapter 4

Acceleration method

The iteration scheme described in 2.4, usually referred to as “free iterations” [1], may
converge to the solution rather slowly: there is therefore a need to adopt acceleration
techniques that reduce the computational time. For this purpose, two different strategies
have been used at the same time: firstly, a special treatment is reserved to the fission
source, due to its expression in our temporal noise problem; secondly, a DPN synthetic
acceleration is implemented. It has to be noted that these techniques apply to each time
step of the noise period: the acceleration of our method is achieved by accelerating the
convergence of single period points.

This chapter deals with the description of the two tools mentioned and aims to show
the acceleration performance (and need) by comparing simulation times for a simpler
noise problem.

4.1 Wielandt scheme for outer iterations

The starting point is eq. (3.16) which, in the light of our manipulations and hypotheses,
can be compactly expressed as

�
L�H

�
ψptq �

1

keff

�
FPφptq �

�
FD~φ

�
ptq

�
, (4.1)

where the dependence of the delayed term on the values of the flux over the period is
highlighted by the vector notation. The meaning of the eigenvalue keff for our kinetic
problem has been discussed in 3.2.4; from now on, it will be referred to simply as k.
Considering the eigenvalue problem

Aφ � pM�1Fqφ � kφ ðñ Mφ �
1

k
Fφ, (4.2)

having exactly the same form as (4.1), the number of power iterations to reach the
convergence of the fundamental eigenvector depends on the so-called “dominance ratio”
σ, equal to the ratio k2

k1
of the two highest eigenvalues k2 and k1 of matrix M�1F (k1

being the fundamental one). In particular, the smaller σ and the faster the convergence.

43
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As proposed for example in [23], the value of the dominance ratio can be reduced by
means of an eigenvalue shift, modifying the original problem as follows:�

M�
1

ks
F


φ �

�
1

k
�

1

ks



Fφ. (4.3)

This procedure is called Wielandt shift method, and in order for the shift to be effective
ks must be greater than k1: in this way the new dominance ratio, given by

σ1 �
k12
k11

�

1
k11
1
k12

�
1
k1
� 1

ks
1
k2
� 1

ks

, (4.4)

is surely smaller than the initial one. In our work a sort of Wielandt scheme has been
implemented by subtracting the prompt source to both sides of (4.1): the resulting
iterative equation is therefore

�
L�H

�
ψoptkq �

1

ko�1
FPφoptkq �

1

ko�1

�
FD~φo�1

�
ptkq, k � 1, N. (4.5)

Comparing the previous equation with (4.3), clearly 1
ks
FφÑ 1

kFPφ. It follows that

k

ks
�
FPφ
Fφ

, (4.6)

where the right-hand side is equal to the fraction of prompt neutrons (� 99.4% for
thermal systems). If the reactivity oscillation due to noise is small compared to the 600
pcm of difference between total and thermal sources, our fictitious ks is always greater
than the dynamic eigenvalue. As this is the case, our procedure reduces the dominance
ratio, leading to a faster convergence. To update the eigenvalue the condition is to
re-scale the delayed emission with the help of the estimated eigenvalue as

ko � ko�1 }FD~φo}
}FD~φo�1}

, (4.7)

the norm indicating the integral over the phase space.

4.2 DPN synthetic acceleration

According to the Wielandt scheme just described, each outer iteration contains within
it a further level of fixed-source iterations, like:

�
L�H

�
ψs�f ptkq �

1

ko�1
Fpφs�1ptkq � So�1ptkq, k � 1, N, (4.8)

where the index s denotes the nested iteration level. Provided the initial criticality
and because of the prompt-delayed separation, eq. (4.8) identifies a sub-critical source
problem for all time steps: a physical result is therefore expected to be found. For a
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(a) (b) (c)

Figure 4.1: Small case for performance comparison. The control rod oscillates along
the diagonal of the cell. (a) and (c) are the most distant positions from the centre, which

is shown in (b).

full transport solution f in the left-hand side is equal to 0, but to further accelerate our
procedure we have coupled it with the synthetic acceleration method implemented in
TDT: the DPN scheme. Initially proposed by Sanchez and Chetaine in [14], it is meant
to solve a problem derived from the original one considering also the converged solution,
denoted by “8”:

�
L�H

�
ψ8ptkq �

1

ko�1
Fpφ8ptkq � So�1ptkq, k � 1, N. (4.9)

By indicating with 1
2 the value of f for the latest transport solution, ψs�

1
2 , and with

δφs�
1
2 � φ8 � φs�

1
2 the error affecting the

�
s� 1

2

�th
transport iteration (δψs�

1
2 for the

angular flux),

∆φ � φs�
1
2 � φs�1 the difference between the current transport solution and the iterate

relative to the previous step,

one can subtract eq. (4.8) to (4.9) to obtain

�
L�H

�
δψs�

1
2 ptkq �

1

ko�1
Fpδφs�

1
2 ptkq �

1

ko�1
Fp∆φptkq, k � 1, N. (4.10)

The aim is to compute δφ and to add it to the latest transport solution in order for the
next iterate φs � φs�

1
2 � δφs�

1
2 to be a better estimation of the real solution. However,

problem (4.10) is as difficult as the original one: as it is, this strategy would not lead
to any advantage. The acceleration is therefore made on a simplified problem, where
the transport operator L is replaced by a low-order one, LDPN . According to [17], this
substitution is based on two approximations: the former regards the number of angular
moments considered, which is here reduced; the latter treats the region boundary as
a set of surfaces, and for the boundary fluxes of each surface only surface-averaged
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Table 4.1: Comparison free-accelerated. The eigenvalues and the times required by the
simulations are shown.

Iterations
free accelerated

Eigenvalue 0.73827 0.73820
CPU time [s] 22621 4978

(hence spatially constant) angular moments are used. In this way the chord dependence
of the MOC, assuming constant angular fluxes over the cross-sectional area of each
trajectory, is lost to the advantage of computational cost. On both surface sides the
angular dependence is expressed by means of a PN spherical-harmonic expansion: hence,
a “Double PN” expansion is adopted, giving the name to the acceleration method.

4.3 Performance comparison

In order to show the effectiveness of the acceleration a small case is considered, whose
domain is composed of a 3x3 grid of cells. In the central cell a control rod is present which
oscillates as shown in Fig. 4.1, while the other cells contain fuel. As for the detector and
the control-assembly cases, the rod is made of natural boron; the fuel is 1.8% enriched
uranium. The side of each cell is 1.28885 cm and the movement of the control rod, which
takes place along the diagonal of the cell with a period of 0.2 s, has an amplitude of
0.66178 cm.

In Tab. 4.1 one can see the converged eigenvalues and the computation times relative
to the case of “free iterations” and to the accelerated one. The former differ by less than
10 pcm, which is a rather acceptable quantity, especially considering that the acceleration
reduces the simulation time by 78%.

Time Fission
interval integral

1 0.73302
2 1.12530
3 1.34575
4 1.12978
5 0.73304
6 1.12398
7 1.34570
8 1.12855

Table 4.2: Fission integrals over time.

# static Eigenvalue

1 0.73572
2 0.73839
3 0.73918
4 0.73839
5 0.73572
6 0.73839
7 0.73918
8 0.73839

Table 4.3: Static eigenvalues.
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Figure 4.2: Fission integral oscillation along the period. The red points correspond to
the measured values of Tab. 4.2, which are interpolated by the cubic blue line.

Another interesting aspect of this simple case is to see how the fission integral over
the whole domain D, given by

IF ptq �
¸

j�1,Nisotopes

»
D
d~r

»
E
dE νΣf,jp~r,E, tqφp~r,E, tq, (4.11)

oscillates along the period: the values are reported in Tab. 4.2 and plotted in Fig. 4.2.
The amplitude of this variation reaches 56.57% of the average value. However, such a
high oscillation is very different from what we have obtained for the two main case studies
(see chapter 5): this can be due to the big difference among the eigenvalues of the static
configurations of this case, which alternately produces a relevant insertion of positive and
negative reactivity. Tab. 4.3 contains these values: clearly, the leakage model discussed
in 3.4 has not been adopted here.





Chapter 5

Results

In this chapter we will show the effects of the oscillation, that is to say, the neutron
noise itself, on a fundamental quantity for nuclear engineering: the number of fission
reactions occurring per unit time in a certain spatial domain. Thanks to the fission rates
we can compute the power density, by taking into account the energy released by each
fission reaction.

Before looking at fission rates, we intend to show the extent of the oscillation with
respect to the effective multiplication factor. Given an initial critical condition (the
central static), Tab. 5.3 contains keff values of the 8 static configurations studied (shown
in Tab. 5.1 and 5.2) alongside with the dynamic one, for each case. The period starts from
the non-oscillation position and develops up to the leftmost position first and then to
the rightmost one, before returning to the centre. These two most distant configurations
correspond to the highest keff -variation. The static values allow us to predict the effect
of the noise on the average behaviour of the system along the period (indicated by the
dynamic keff q: considering the smallness of the fluctuation for both cases, we were
expecting the dynamic values not to be far from criticality, as indeed they are.

Such a small oscillation was a desirable result for the detector case: the unavoidable
movement of the fission chamber must not affect the surrounding system, as long as a
significative measurement is to be performed. In this sense, although limited to a 2-D
infinite geometry, our simulation confirms the validity of using this kind of instrument for
in-core detection (this point will be discussed again later, when fission rates are involved).
On the other hand, unexpectedly the shift of a whole control assembly modifies quite
weakly the global state, as the keff amplitude of oscillation is no more than 3 pcm of
the central static value. A possible explanation may be linked to the domain structure:
the purely reflective boundary generates an infinite heterogeneous system where one
assembly every 9 contains moving control rods, and this may lead to a compensation effect
between neighbouring assemblies. In future works following our strategy, to compute
more realistically the neutron noise for such cases we suggest to reduce or even to exclude
these kinds of effects: to that end, huge computational resources would be needed that
we did not have available for the present thesis.
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Table 5.1: Positions of the detector along the period. ∆x is referred to the centre of the
cell.

Sub-interval Position ∆x rcms

1 0

2 �1.45 10�1

3 �2.90 10�1

4 �1.45 10�1

5 0

6 �1.45 10�1

7 �2.90 10�1

8 �1.45 10�1
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Table 5.2: Positions of each control rod of the central assembly along the period. ∆x is
referred to the centre of the cell.

Sub-interval Position ∆x rcms

1 0

2 �5.80 10�2

3 �1.16 10�1

4 �5.80 10�2

5 0

6 �5.80 10�2

7 �1.16 10�1

8 �5.80 10�2
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Table 5.3: keff values and number of noise iterations (see Fig. 3.2) for the two cases.

keff

detector control rods

central static 1.00000 1.00000

statics

1 1.00001 1.00001
2 1.00002 0.99999
3 1.00003 0.99998
4 1.00002 0.99999
5 1.00001 1.00001
6 1.00002 0.99999
7 1.00003 0.99998
8 1.00002 0.99999

dynamic 1.00005 0.99996
# noise iterations 2 4
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Figure 5.1: Fission rates for the detector case described in 3.3.1.

5.1 Fission-rate analysis

We focus now on fission rates which are, at least from an industrial point of view, a
more interesting quantity. Denoting by Vi the volume of the general fuel cell i, the fission
rate τi relative to the same cell can be expressed, as a function of time, as

τiptq �

»
Vi

d~r

»
E
dE Σf p~r,E, tqφp~r,E, tq. (5.1)

Some comments have to be made about the flux dependency in (5.1): for an infinite
medium the value of the flux cannot be determined unequivocally as the eigenfunctions
of the transport problem, but it depends on an arbitrary normalization. It follows that,
without this last operation, fission rates may assume any value (maintaining the proper
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Figure 5.2: Fission rates for the cluster case described in 3.3.2.

proportions between different spatial positions), even far from realistic results. This
is shown in Fig. 5.1 and 5.2. Luckily enough, it does not prevent us from making an
analysis in relative terms, which is what interests in the noise field.

Due to the structural periodic shifts of the detector and the control assembly, fission
rates acquire a periodic behaviour with the same period, attributable to local variations
in the moderating ratio (defined as the ratio between moderator and fuel volumes). We
are interested in studying deviations with respect to the average value over the period for
each cell: identifying it as τ̄i and as τmaxi and τmini the maximum and minimum values
over the period, respectively, one can define a maximum relative deviation as�

δτ

τ



i

�
1

τ̄i
maxtpτmaxi � τ̄iq; pτ̄i � τmini qu. (5.2)

In the following the distribution of this quantity over the domain will be shown for our
two cases. In order to better highlight the noise effect, a very small concentration of
fissile material (uranium 235) is dissolved in the water. This leads us to measure the
highest relative deviations in the cells containing the moving structures. It must be said
that the occurrence of fission reactions within the coolant is surely unphysical and that
this is only useful for graphic purposes.

5.1.1 Detector

For the first case the maximum amplitude of oscillation is in the central cell, as
predictable, where the detector is inserted. As shown in Fig. 5.3 and 5.4, the peak
corresponds to 0.983% of the average fission rate. While in the direction perpendicular
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Figure 5.3: Detector relative delta tau. The entire domain, symmetric with respect to
the x-axis, is plotted to better show the result. The central peak corresponds clearly to the

detector cell, for which the relative delta tau is equal to 0.983%.
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Figure 5.4: Detector relative delta tau along the x-axis (above) and y-axis (below).
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Figure 5.5: Cluster relative delta tau. As in Fig. 5.3, the whole domain is considered.
It is apparent how the most external control rods are the most perturbed, together with

the neighbouring fuel cells.

to the detector motion the amplitude is soon attenuated (it is already equal to 0.033% in
the fuel cells next to the detector), the same cannot be said for the parallel direction:
an attenuation occurs, but only to 0.643% on the right and on the left of the detector.
This value denies in part what said with respect to the keff variation, since one cannot
accept such a high perturbation during an in-core measurement. However, this may be
due to the approximation we have adopted for the detector dimensions: in fact, the 2-D
model entails an infinite height of the detector, which may be the reason why excessive
amplitudes are obtained. Our results thus show the need for a 3-D model for a correct
study of the noise generated by the detector insertion.

5.1.2 Control-rod assembly

As long as neutron noise is regarded, the cluster case is much more interesting: the
movement of the control rods along the whole diameter of the guide tubes causes in
fact an oscillation of considerable amplitude. This can be seen in Fig. 5.5, 5.6 and 5.7,
where the highest values correspond to the cells containing the moving rods (as already
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Figure 5.6: From top to bottom, cluster relative delta tau along the x-axis and rows 26,
24 and 23. The two red values correspond to the most perturbed fuel cells, while dashed

green lines are used to mark the separation between different assemblies.

said, their noise is fictitious). As in the previous case, the system is mostly perturbed
along the direction of the rod motion: exiting the central assembly in the perpendicular
direction no cell has an amplitude higher than 1%. The region enclosed by the moving
rods shows generally remarkable levels of noise, reaching 2.720% along the x-axis (this
latter is also the symmetry axis, with respect to which our halved domain can be doubled
to retrieve the original cluster). However, the highest amplitudes are obtained outside
the rods, in the two (four in the real domain) fuel cells of coordinates (22,26) and (36,26).
Here the maximum relative variation of the fission rate reaches 3.719%, which can be
regarded as the most relevant result of the present work.

Notwithstanding the values obtained for the assembly containing the moving rods,
the effect of the noise is clearly limited to this same assembly: the perturbation in the left
and right assemblies exceeds 1%, but only in the first row of cells. As it is apparent from
Fig. 5.5, the attenuation is so strong that the six assemblies above and below the central
one are practically unaffected by the oscillation. As said for the keff behaviour, this
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Figure 5.7: Cluster relative delta tau along the y-axis (top-left) and columns 26
(top-right), 24 (bottom-left) and 23 (bottom-right). The dashed green lines have the same

purpose as those in Fig. 5.6, that is, to signal assembly separation.

result may be due to the boundary conditions: the infinite heterogeneous medium can be
imagined as composed of infinite rows, perpendicular to the rod shifting, where for each
couple of adjacent rows the control rods move in phase but in the opposite direction.
Therefore, the further we move away from the rods of a cluster the stronger the effect of
those of the next cluster is. This attenuation and/or compensation also prevents us from
any attempt of performing a phase shift analysis: in fact, moving away from the noise
source one would expect to obtain little changes in the oscillation phase, but in our case
this is hindered by the very low noise measured far from the moving rods (to the point
that neutron noise gets confused with the numerical one).

In any case, the computed fluctuation of the rod assembly is interesting twofold: on
one side, the absence of macroscopic effects of the oscillation on reactivity is coherent
with the observed behaviour of real systems; on the other side our calculation shows
the presence of measurable and important local flux fluctuations that can impact on the
thermo-mechanical system response.





Chapter 6

Conclusions

In this work we have conceived and implemented in the reactor code system APOLLO3 R©

a noise model which simulates the oscillation of structural components and analyses its
effects on reactivity and fission rates. Under the hypothesis of periodicity, the positions
over time of the detector and of the control rods are identified by different geometries,
which are then linked in the proper order to construct the oscillation period. Following
this procedure, noise is studied within the real temporal domain, without the need of
Fourier transforming and of the small-perturbation hypothesis used in the traditional
frequency-based approach.

The fission source of delayed neutrons required a specific treatment, which led us to
express it as a function of the flux values over all the period and, by discretizing the
latter in a finite number of sub-intervals, to evaluate the time integral by a quadrature
formula suitable for periodic functions.

Each noise iteration is made by a set of outer iterations (one per temporal sub-interval)
and updates the dynamic eigenvalue relative to the whole period as the average of the
instantaneous values, until the convergence of this value and of each fission source over
the period.

Two acceleration strategies, the Wielandt shift scheme and the DPN synthetic
acceleration, are combined to achieve a faster convergence of the noise iterations, which
is obtained accelerating the outer iterations relative to each temporal point. Applied to a
small case, this strategy proved to be effective in significantly reducing the computation
time.

Looking at our results, the oscillations produce a relevant noise with regard to fission
rates: in particular, for the control-rod case the amplitude reaches 3.719% of the period
average value (much higher values are found in the cells containing the oscillating rods,
suggesting greater local flux variations). The reactivity is much less affected, as the
deviation of the dynamic eigenvalue from the static situation is practically insignificant,
at least to nuclear engineering. This is somehow a reassuring result, since field experience
has never shown evident effects on reactivity due to vibrating components. On the other
hand, the limits of our computational resources inevitably impact the likelihood of our
model: the 2-D domains hardly resemble reality, especially for the detector case, where
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an object of some centimetres is inserted in a system a few meters high. The control
assembly model is instead more realistic, as long as the rods are assumed as fully inserted.
The boundary conditions constitute probably an even worse issue: reflectivity produces
infinite domains that oscillate in phase, so that our noise source actually repeats over
and over. This may be the reason why our noise looks so attenuated in so little space,
that is, because of a compensation effect among neighbouring assemblies.

In conclusion, the temporal noise model shows significative fluctuations of per-cell
fission rates, suggesting the possibility of detecting structure vibrations by analyzing
variations of the local flux. Better and more realistic results could be obtained in future
works by considering larger and even 3-D geometries, which would make it possible to
simulate the effect of the oscillation in a single cell or assembly on a relevant portion of a
reactor and, potentially, on its totality.



Appendix A

Complex and real spherical
harmonics

The dependence on the angular variable is traditionally addressed by expanding the
terms of Boltzmann equation over spherical harmonics, which are complex functions
defined as follows [3]:

Y m
k p~Ωq �

d
2k � 1

4π

pk �mq!

pk �mq!
Pmk pµq e

imϕ, (A.1)

i being the imaginary unit, k � 0, 1, . . . ,�8 and m P r�k, ks. The other terms call for
more explanation:

• ~Ω is the direction vector (shown in Fig. A.1) which can be expressed as a function
of the polar angle θ P r�π

2 ,
π
2 s and the azimuthal angle ϕ P r0, 2πq:

~Ω �
a

1� µ2 cosϕ êx �
a

1� µ2 sinϕ êy � µ êz, (A.2)

where µ is equal to cos θ and êx, êy and êz are the unit vectors of cartesian
coordinates;

• Pmk pµq is the associated Legendre function, defined as 1,

Pmk pµq �
�a

1� µ2
	m dmPkpµq

dµm
, (A.3)

Pkpµq being the kth Legendre polynomial, whose definition is

Pkpµq �
1

2kk!

dk

dµk
�
µ2 � 1

�k
. (A.4)

1Here we have followed the convention, adopted for instance in [6], which does not insert the phase
factor p�1qm. This term is however present in [3], that is the classical text this appendix is based on.

61



62 APPENDIX A. COMPLEX AND REAL SPHERICAL HARMONICS

Figure A.1: The direction vector ~Ω. The dependence of the angular variable on polar
and azimuthal angles is here shown.

It can be shown that (A.3) and (A.4) imply the following relation for P�m
k :

P�m
k pµq �

pk �mq!

pk �mq!
Pmk pµq, (A.5)

from which it follows that Y �m
k � Y m�

k , where � denotes the complex conjugate.

The complex spherical harmonics are orthonormal, since»
S~Ω

dΩ Y m
k p~Ωq Y m1�

k1 p~Ωq � δkk1δmm1 , (A.6)

δkk1 and δmm1 being Kronecker deltas, and complete, because any function fp~Ωq can be
expanded into an infinite sum of terms as

fp~Ωq �
�8̧

k�0

m̧

k��m

fmk Y
m
k p~Ωq, (A.7)

with

fmk �

»
S~Ω

dΩ fp~Ωq Y m�
k p~Ωq. (A.8)

They constitute therefore an orthonormal base in S~Ω (whereas Legendre polynomials are
an orthonormal base in [-1,1]).
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According to the addition theorem, valid for spherical harmonics,

Pkp~Ω
1 � ~Ωq �

4π

2k � 1

ķ

m��k

Y m�
k p~Ω1q Y m

k p~Ωq. (A.9)

This gives us the opportunity to introduce the real spherical harmonics. Thanks to (A.5),
the last relation can in fact be re-written as

Pkp~Ω
1 � ~Ωq �

ķ

m��k

Amk p
~Ω1q Amk p

~Ωq, (A.10)

by defining the real spherical harmonics Amk :

Amk p
~Ωq �

$''&
''%

b
p2� δomq

pk�mq!
pk�mq! P

m
k pµq cospmϕq m ¥ 0

b
2 pk�mq!
pk�mq! P

m
k pµq sinpmϕq m   0

(A.11)

These functions are preferred to the complex ones because they are of course simpler to
handle; as the former, they represent a complete base in S~Ω, but are “only” orthogonal,
since »

S~Ω

dΩ Amk p
~Ωq Am

1

k1 p
~Ωq �

4π

2k � 1
δkk1δmm1 . (A.12)

Similarly to (A.7), one can write

fp~Ωq �
�8̧

k�0

m̧

k��m

fmk A
m
k p
~Ωq, (A.13)

where

fmk �
2k � 1

4π

»
S~Ω

dΩ fp~Ωq Amk p
~Ωq. (A.14)
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