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Abstract
In order to develop and optimize a liquid rocket engine, the combustion process of the
propellents combination GOX/CH4 and GOX/H2 are experimentally and numerically in-
vestigated at the Technical University of Munich to have a better understanding about
performance for this propellent pair. The combustion processes are studied by means of an
optical technique, called Chemiluminescence, that allows to detect the hydroxyl radicals
OH∗ emission spontaneously producted in the combustion chamber and use it as a flame
reaction zone marker.
Because this optical diagnostics technique is a line-of-sight technique, in which each mea-
sured quantity is an integrated emission along each line-of-sight, emission local measure-
ments are not directly possible but require a post-processing deconvolution of the measured
intensities to obtain spatial information. One of the existing deconvolution techniques
is the Inverse Abel Transform, applicable only in case the object under examination is
axysimmetric and solvable only in approximate way. An overview of some methods of
problem resolution is presented, including the Fourier Method presented by G. Pretzel
(1991) choosen for this thesis. Based on it a Matlab algorithm for the Inverse Abel Trans-
form has been developed. It has been tested with the known radial distribution functions
taken from the literature. Once the algorithm was checked, it has been applied to images
recorded from an ICCD camera to recover the emission radial distribution. Finally, the
deducted results about the combustion process are to be discussed and validated finding
confirmation in the literature and previous studies, demonstrating the validity of the code
itself.
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Chapter 1

Introduction

1.1 Optical diagnostics
In order to develop and to optimize a liquid rocket engine, objective of test campaign is
study the combustion process of the propellants combination oxygen/methane and oxy-
gen/hydrogen. Referring to [1] "this objective demand not only detailed understanding
of all physical phenomena that determine performance but also validation of numerical
tools. Since there is still insufficient knowledge about performance and heat release for this
propellent pair, the Technical University of Munich has experimentally and numerically
investigated the combustion process and heat transfer of rocket combustion chamber".
More details about the choice of this propellents are explained in the P. Difficile’s Master
thesis [2] and G. Laera’s Master thesis [3]. The investigation of combustion process often
does not allow the use of the conventional measurement techniques, so different techniques
are required, one of these can be an optical technique in combustion diagnostics.
The use of the optical diagnostics is suitable to study the combustion because with their
systems that have a non-intrusive nature allows to recover data during the combustion
process without the insert of a measure instrument inside the combustion chamber that is
hostile because of the high temperatures. However they have the disadvantage to be sen-
sitive to the system perturbation, thus an appropriate optical technique must be choosen
to provide benefit of accessibility and safety with accurate results.

1



Chapter 1. Introduction

Different measuring techniques exist depending to the characteristics of these and the
quantities that want be measured.
They can be categorized in table 1.1

Measuring technique Characteristics Measurement results
PLIF Flame radicals in reaction zone Concentration of OH and CH
PLIF Flame pollutant analysis Concentration of NO, CO and SO2

LII Soot analysis in flame Concentration profile of soot
LRS Flame temperature Profile of temperature
PIV Flame velocity and mixing Velocity field in flame
PDPA Flame velocity and propagation Velocity and size of particulates

Chemiluminescence Flame radicals in reaction zone Concentration of OH and CH

Table 1.1: Measuring techniques for flame characterization [4]

All this method are based on the fact that the radiation of the flames originates from the
excited species that can be produced by three reactions: thermal collision with another
molecule, chemical reaction of substances that form some species in the excited state and,
finally, the absorption of a photon.

1.1.1 Emission Method
Referring to [5], in cold flames (below 2500 K) the radiation from excited molecules is
observed to be much larger than the equilibrium radiation at that temperature. Such
radiation is due to chemical excitation and Chemiluminescence. It consists in a production
of light in a chemical reaction in which two substances A and B react to form the species
M in the excited state:

A+B �M∗

This excited radicals or molecule can be deexcited by means of collision with another
molecule:

M∗ +Q −→M +Q

or spontaneous emission of photon

M∗ −→M + hv

2



Chapter 1. Introduction

The latter case corresponds just to Chemiluminescence and the emission occurs in the UV
or visible range. It can occur in many processes which present unstable and intermediate
species like combustion processes, hence for the current study the Chemiluminescence
method is used to study the flame. It is used as a combustion diagnostic because the
detected radiation is generated directly in the combustion chamber and the diagnostic
does not have the necessity of expensive and laser instruments whose require maintenance
[6]. There are various radicals that are generated in combustion process in which it is
used the propellant combination oxygen/hydrogen, such as OH∗, and oxygen/methane,
such as OH∗ and CH∗. In this study only excited hydroxyl radical will be investigated.
The reason is that "its radiation is the most distinct radiation of flames in the UV and is
often used as a flame marker because its spectrum around 310 nm is so far in the UV that
thermal background radiation does not influence the measured signal" [5].
The OH radicals detection offers a diagnostic for flame and combustion analysis due to
its simplicity and non-intrusive nature.

1.1.2 Optical setup
The experimental setup used for the test campaign analyzed is based on the use of a
modular single-element combustion chamber, consisting of two chamber segments of the
174 mm and 145 mm respectively and one nozzle with 20 mm of length. A shear coaxial
injector element is present in which the fuel jet, respectively GCH4 and GH2, envelops
the oxygen jet GOX. The combustion chamber section is reported in fig. 1.1

Figure 1.1: Combustion chamber configuration [1]

3



Chapter 1. Introduction

Where can be noted that, in the context of the optical diagnostics of the flame interaction
in the near injection area the combustion chamber, is optically accessible by means of a
quartz optical window of dimension 12 x 40 mm2.
The combustion chamber geometric features are reported in table 1.2

Length 290 [mm]
Width 12 [mm]
Height 12 [mm]

Throat height 4.8 [mm]
Contraction Ratio 2.5 [-]

Table 1.2: Combustion chamber geometry [1]

It is possible to see that it has a square cross section of 12 x 12 mm2, so the optical window
is able to cover all combustion chamber height from wall to wall.
More details about the hardware description and the experiment setup can be found in P.
Difficile’s Master thesis [2] and in the paper of F.Winter et al. [1].
To detect the OH∗ emission, a typical system consisted of an optical window, previously
described, an ICCD (Intensified Charge Coupled Device) camera, a synchronization unit,
a control software and a narrow band-pass filter placed in front of the lens to recover only
the OH∗ emission in a specific wave length.
The image 1.2 shows a optical setup pattern in which the camera is positioned on an
optical test bench next to the test bench and the images of the flame passing through the
optical window in the combustion chamber are reflected into the camera sensor by means
of a planar mirror, which is positioned above optical window with a 45-degree angle to
protect the camera from damage.

Figure 1.2: Optical setup for emission imaging

4



Chapter 1. Introduction

The chemiluminescence method is a line-of-sight technique, which measures the integrated
light intensities, including signal contributions from both in front of and behind the focal
plane of the lens. Because one of key requirements of the post-processing procedure as
the Abel transform is that the lines of sight are single, non interfering lines, forming a
parallel projection of the object under investigation, it can be obtained experimentally by
ensuring that the camera is far away from the object. Considering a horizontal slice of the
flame, the Fig. 1.3 represents the case of a camera infinitely far away from the flame, thus
recording a beam of parallel rays and each pixel of the camera is associated with a single
ray [5].

Figure 1.3: Parallel rays collected by the camera [5]

The camera record in every pixel the radiation integrated along the line-of-sight emitted
from the chemically or thermally excited OH∗ when they return to deexcited state, and
because every pixel of the camera captures such quantity, a data matrix is obtained from
each image in which the rows contain the integrated intensities for fixed lateral position in
the flame to the change of axial position and the columns contain the integrated intensities
for fixed axial direction position in the flame to the change of lateral position
This data acquisition method is faster and more resolutive than existing techniques, which
require a separate measurement at each axial and lateral position. However, there are many
disadvantages in the use of the measurements of flame radiation, as the fact that it is a
line-of-sight integrated measurement and local measurements are not directly possible but
require post-processing procedure, including a deconvolution in order to obtain spatially
information. So an algorithm have to be developed to provide spatial representation of
the OH∗ emission measurements [7].

5



Chapter 1. Introduction

1.2 Comparison between numerical and
experimental data issues

As well as with the optical diagnostic the flame is computed using a computational fluid
dynamics (CFD) simulation performed by means of the commercial program Ansys Fluent
[5]. However, referring to [1], because "the numerical simulation is performed in 2D whereas
the experimental quantities are measured along 3D lines of sight" the comparison between
experimental and numerical results is not possible. "However, by means of a mathematical
transformations, equivalent spatial profiles can be generated from each set of data. The
conversion from the radial to the line-of-sight integrated quantities is commonly achieved
by a so-called Direct Abel transform, while the reverse process by which the radial
quantities are reconstructed from the line-of-sight integrated ones is known as Inverse
Abel transform ".
So, the experimental line-of-sight integrated quantities must undergo a deconvolution by
application of the Inverse Abel Transform to recover the radial distribution of the emission
and so to be able to compare with numerical simulation or the numerical results must be
integrate to compare with experimental results.

6



Chapter 2

Abel transform

2.1 General explanation
The problem of reconstructing a two-dimensional radial distribution from measured pro-
jections or line integrals occurs in many different disciplines of science, physics and engi-
neering such as plasma diagnostics. To have an estimation of the emission from a plane
when an unknown function f(r) cannot be measured directly but only the integrated
quantities along lines of sight h(y) are known, some inversion schemes can be used, one of
these is the Abel Transform.
The necessary conditions to apply the Abel Transform is that the object under the obser-
vation has axial symmetry, e.g the axisymmetric distribution, and the value at the outer
boundary and its derivative are zero [8].
Mathematically, the Direct Abel Transform of a radial quantity f(r) in the line-of-sight
integrated quantity h(y) as a function of the distance y from the center line is given by:

h(y) = 2
∫ ∞
y

f(r)r√
r2 − y2dr (2.1)

while the Inverse Abel Transform is defined as:

f(r) = − 1
π

∫ ∞
r

dh(y)
dy

1√
y2 − r2dr (2.2)

In flame and plasma diagnostics the Abel’s equation relates the radial distribution of the
emission coefficient ε(r) and the measured intensity I(y), as can be seen in fig. 2.1, and

7



Chapter 2. Abel transform

can be interpreted as a projection of a circularly simmetric function along a set of parallel
lines of sight which are at distance y from the origin [9] .

Figure 2.1: Abel transform procedure [10]

Because the Inverse Abel Transform contains the first derivative of measured data I(y)
with respect to y, but the measurements provide only a discrete set of data points, and
because the singularity in the integral at the lower limit y = r, the process of estimation
of the radial distribution ε(r) becomes ill-posed because small errors in the data can cause
large errors in the reconstruction [9].
Furthermore, it means that the equation can only be solved in an approximate manner.
Many methods and algorithms have been developed for solving the problem of Abel In-
version discretization whose, referring to [11], can be gruped into two principal categories:

• Analytical methods, whose fit the experimental data to an analytical function, which
allows direct integration of the Abel inversion and avoids the discretization problem

• Numerical methods, whose transform the Abel inversion equation into a summation
to allow processing of discrete sets of data.

Also, there are some methods whose combine the advantages of numerical and analytical
methods.
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2.2 Reconstruction errors
All these methods suffer of the same problems that can be produce in the inversion method
the propagation of the errors and then some uncertainties in the determination of radial
distribution from the measured data. The sources of errors can be:

• uncertainties in the Abel inversion

• uncertainties in geometrical factors

• uncertainties in input data

The Abel inversion errors arise from the fact that the radial distribution given by the Abel
inversion differs from the real distribution, difference due both from the pretreatment and
from the Abel inversion itself [11].
About geometrical factors, if the path length estimation in terms of determination of major
radius and minus radius is incorrect, it introduces another errors in the inversion process,
but definitely these errors can be neglected [12].
About the uncertainties in the input data, they require an post-processing procedure
and can be classified in two main categories: measurement errors and errors due to data
preparation.

2.2.1 Measurement errors
The main sources of error affecting the final results can be classified in:

• Data noise: Data noise and dynamics fluctuations of the flame can distort the radial
distribution profile because of the dependence on the first derivative of integrated
intensity data in the Abel inversion. To reduce this error, to smooth partially the
noise and to have a better knowledge of what happens in the cumbustion, it can be
taken each measurement after averaging over a large number of camera images. To
obtain this average image, each recorded image in form of a matrix D(i,j) is taken
and for each (i,j) location is calculated the mean pixel intensity value between all
the images. In this way, it is possible to obtain an average matrix of intensities.
This procedure does not totally eliminate data noise, so generally a technique to
smooth the data must be included in the data treatment. There is a variety of
techniques that can be used for smoothing, for example based on least-squares fitting,
optical filtering of the noisy signal or smoothing with adjacent points [11]. However,
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it can not be useful to smooth the measured profiles because one never knows whether
that only reduces statistical noise or also changes the real information, and often the
latter case is what happens. Furthermore, the error caused by incorrect smoothing
cannot be estimated, so it is prenot even the order of magnitude, therefore it is
preferable to use the unchanged measured profiles for the numerical reconstruction
[13]

• Calibration errors: these are systematic errors that have the same effect on every
measurement, the most contribution of whose are due to the absolute response cali-
bration. These errors are due to the incorrect calibration during the image capture
that produces distortions and non real values of flame emission.
These distortions are principally due to fact that there are many factors which in-
fluences the captured emission of the image, as lights and shadows caused by the
external environment and the different sensitivity of each pixel that captures the
light in different way.
To avoid these problems in the reconstruction, if the acquisition system is non cor-
rectly calibrated, it is necessary in a post-processing phase to apply to the image
some corrections, such as the Background correction or the Shading correction.
The Background correction considers the acquisition of a certain number of images
by the ICCD camera with OH∗ filter installed. These background images are then
averaged by calculating the mean pixel intensity value across the set of images at
each pixel location. Subsequently, the method requires the subtraction of the average
background image from each of the individual images and then taking the average
of the corrected images [7].
The Shading correction considers an image acquisition of the combustion chamber
without the flame in way to have the brightness due to the external environment.
Then the light inhomogeneity of this background image can be corrected and applied
to the average image. In the experimental post-processing it was choosen to apply
this last correction as presentend in the G. Laera’s Master thesis [3]. However it
was not obtained in time for the completion of this thesis so the images will be used
without it.
To detect the brightness due to non uniform sensitivity of the ICCD camera sensor ,
an another technique can be considered which consists of the acquisition of an image
with the lens covered, so the differences in the pixels response are only due to the
sensitivity problem. Once obtained these corrections, they can be subtracted to the
images.
Another possible distortion can be caused due to non correct position of the mirror
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over the combustion chamber and the camera lens, which can happen by an un-
wanted movement of the optical bench or an inclination of the mirror. The last one
can be corrected with the by post-processing. More details about these corrections
are presented in the P. Difficile [2] and G. Laera’s Master thesis [3].

2.2.2 Data preparation
Regarding to the uncertainties due to data preparation, they are mainly linked to the
asymmetries in the flame image, incorrect dectection of the center of flame and boundary
estimation.

• Influence of Asymmetries
It should be noted that all the methods for numerical Abel inversion are capable to
reconstruct only radially simmetrical function f(r), but no one can be sure in practice
if an arbitrary distribution is really radially symmetrical. In fact, the asymmetry can
arise from the emission source or the detection process. When the asymmetry is due
to the detection process, there is a constant source of asymmetry, e.g. experimental
noise and difference in pixel response, which is not completely eliminated by pre-
calibration of acquisition system or post-processing corrections and affects the two
halves of measured projection h(y) in a different way. The influence of this effect is
more important for a small number of datapoints and the Abel inversion is highly
sensitive to this asymmetry. An average profile have to be calculated summing for
example the datapoints equidistant from the center of the distribution and dividing
by 2 [11]. There is thus an influence of asymmetries on the reconstruction, but,
although asymmetries by definition of Abel transform cannot be reconstructed, they
do not introduce nonsense to the results.
However, they can be used to estimate the accuracy of results and so find a limit for
the reconstruction errors. More details are expressed in [13].

• Position of the flame center
For accurate use of this symmetrization or if the assumption of axysimmetry is sat-
isfied, the correct center of the flame must be detect to apply the Abel transform.
The incorrect assumed central point has an influence on the quality of the reconstruc-
tion and its effects are much more severe in case of distribution with very pronounced
peaks. Therefore can be advantageous to have a method to determine the approxi-
mately flame center.
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One of these methods is reported by Pretzler [14] that calculates the y-coordinate
of the center yc as:

yc =
∑

y y · h(y)∑
y h(y) (2.3)

e.g. as the ratio between the sum of all y-coordinates multiplied by the relative
intensities and the sum of all intensities. This equation allows to yield the centre of
the distribution with an accuracy better than 2% for all the simulated noisy profiles
( 1% for profiles with "realistic" noise ), which is good enough for a satisfactory
reconstruction.
This as other possible procedure are valid in the 1D case and must be extended to
the 2D case of the image, e.g. must be applicated to the intensities profiles for each
station along the axial direction, so a center line is finally found and can be used to
symmetrize the image.

• Influence of the boundary position
Since the measured data, although symmetrical, are often subject to noise, the outer
limits for the reconstruction procedure cannot be determined unambiguously. Re-
ferring again to [13], if the Abel condition at the outer boundary is satisfied, too
narrow limits lead to too small values of the complete function that results beacuse
the measured profile h(y) is setted to 0 at the limiting points, so the f(r) give too
small values if the h(y) at the limiting points are greater than 0. On the other hand,
too wide limits do not have any obvious effect. Then, to avoid errors of this kind
the limits for the reconstruction should always be choosen too wide rather than too
narrow.
However, because in the images the projection h(y,z) has a non-zero value at the
outer boundary due to a relatively small view field of ICCD camera and to the
reflection on the mirror edge also in presence of correct calibration correction, the
necessary condition to apply the Abel transform at this radius is not satisfied and
then there is a deviation of the reconstrued results.
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2.3 Methods
Several methods to solve numerically the Abel transform problem have been proposed in
the years and are present in the literature.
Purpose of this section is to present the most used ones, the their limitations and explain
the reasons that led to the choice of a well-defined method.

Matrix Method

Referring to Pretzler et al. [13], "The oldest methods developed for numerically inverting
the Abel equation (2.1) transform the measured data h(y) linearly into the unknown dis-
tribution f(r) using tabulated matrix. These matrices are calculated by discretizing either
2. 1 or 2. 2."
There are different ways to calculate matrices which connect the measured data h(y) to
the local distribution f(r). One of these is the onion peeling method, which assumes that
the value of the local function f(r) is constant in each of N rings around the simmetry
axis. In this case the local data can be calculated iteratively from the outside to the inside
via the equation 2.4:

f(r) = fk = const, ∀Rk−1 > r ≥ Rk (k = 1,. . . ,N) (2.4)

By simple geometrical considerations one obtains N different values hk of the projection
h(y):

hk =
k∑
i=l

2(
√
R2

i−1 −R2
k −

√
R2

i −R2
k)fi (2.5)

where M is the number of measured points and

aj,i = 2
√
r2

i − y2
j (2.6)

All quantities in the summatory are the matrix aik which is triangular and can easily be
inverted to obtain the values fk out of the measured data points hk [13]
However, this method calculating the local data going from outside to the inside does
not work well with the noise images, because in the reconstructed image it increases
progressively towards the center.
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Fourier-Hankel Method

This method commonly used for calculation of the inverse Abel transform is based on the
Fourier trasform of the projection data and then on the inverse Hankel transform of them.
Referring to [15] taking the Fourier transform of intensity and changing the variable of
the integration to polar coordinates, it can be proved that such Fourier transform of I(y)
is equal to the zero-order Hankel transform of ε(r). So, the emission coefficient can be
recovered from the inverse Hankel transform

ε(r) = 1
2π

∫ ∞
0

G(ω)ωJ0(ωr)dω (2.7)

where G(ω) is the continuous Fourier transform of the intensities and

J0(ωr) = 2
π

∫ ∞
r

(x2 − r2)−1/2sin(ωx)dx (2.8)

is the zero-order Bessel function of the first kind. Indicating with ∆ω = απ/R, the
equation which expresses the emission coefficient can be discretized as :

ε(r) = α2π

2nR

n∑
k=1

kG(αk)J0(αikπ
n

) (2.9)

in which:
G(αk) =

n−1∑
j=−n

I(xj)cos(
ajkπ

n
) (2.10)

More details are presented in [15] This method can greatly reduce the computation time
using the fast Fourier transform (FFT) and avoid the singularity in the inverse Abel
transform. However, in accordance with Dribinski and all. [16] this method however
magnifies the experimental noise and also produces arificial structures when reconstructing
images with high-intensity sharp features that extend through the entire reconstructed
image, causing a reduction in resolution and in signal-to-noise ratio. Furthermore the
Fourier-Hankel method cannot yield reasonable results for small sets of data [10].
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Convolution method

This method is what normally used for asymmetrical geometry, but can be extended to
the case of asymmetrical distribution.
An asymmetrical distribution f(r,φ) can be obtained utilizing light transmission if the
projections h(l,Θ) is known for different directions Θ [13].
The analytical relationship between them is given by the inverse Radon transformation

f(r,φ) = 1
2π2

∫ π
0

( ∫ +∞

−∞

1
rcos(θ − φ)− l

dh(l,Θ)
dl

)
dΘ (2.11)

which is a general form of Inverse Abel transformation.
There are several methods known as computer tomography to solve numerically this equa-
tion, one of these is the convolution method.
It is possible to extend and adapt the concepts of such successful method to the case of
radial symmetry.
It can be shown that for asymmetrical distributions, the f(r,φ) can be transformed into

f(r,φ) =
∫ π
0

( ∫ +∞

−∞
h(l,Θ)qA(rcos(Θ− φ)− l)dl

)
dΘ (2.12)

which is a convolution of the measured data h(l,Θ) with the convolving function [13] :

qA(s) = −2
∫ A/2

0
FA(u)sin(2πus)du (2.13)

In the case of radial symmetry can be simplified as:

f(r,φ) =
∫ π
0

( ∫ +∞

−∞
h(y)qA(rcosΘ− y)dy

)
dΘ (2.14)

More details about the method are contained in literature and in the work of Preztler et
al. [13]. Finally they have concluded that the convolution method for the case of radial
symmetry gives bad results, worse than those of the other methods proposed here, and it
has longer calculation times.
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Interpolating Method

Most of the methods are based on an interpolation of either the measured data I(y) or the
unknown local function f(r). In the latter case the unknown function is then integrated
and compared to measured data [8]

• h-interpolation Method

Many methods to solve the inverse Abel transform problem are based on smooth
the noise or interpolate the measured function h(y) by means of simple functions
which allow the differentiation and the integration in the Inverse Abel transform to
be performed analytically.
One of these methods is for example using a cubic spline interpolation. According
to Pretzler et al. [13], every two adjacent data points are connected by a polynomial
of the third degree with the same first and second derivative of the next polynomial
for the next interval at the connecting point. With this four conditions for each
polynomial, it is possible to calculate the four coefficients whose allow to represent
the measured function h(y) with N measured points by (N-1) polynomials:

h(y) = Pk(y) =
3∑

j=0
cj,ky

j (2.15)

∀y : yk ≤ y ≤ yk+1 , k = 0,. . . ,N − 2

In this form the measured function can be derived analytically and insert into radial
distribution equation:

f(Ri) = − 1
π

N−2∑
n=i

2∑
j=0

αj,n

∫ Rn+1

Rn

yj√
y2 −R2

i

dy (2.16)

The integrals are solved analytically, allowing to calculate the function f(r) at N
discrete points r = Ri.
More details are described by Pretzler et al. [13] , who have shown that in the case
of profiles with "many" data points this method is not suited and should not be used.
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• f-interpolation Method

It is possible to interpolate the unknown radial distribution f(r) and not the mea-
sured projection h(y) with functions that have an analytical solution of the direct
Abel transform. Choosen such set of functions, he f − interpolation method sug-
gested by Pretzler et al. [13] allows to interpolate the local distribution f(r) with
polynomials of third degree:

f(r) = Pi(r) = Air
3 +Bir

2 + Cir +Di (2.17)

with:

Ri ≥ r ≥ Ri+1

where Ri is the radius at the position i and 1 ≤ i < M , with M number of polyno-
mials.
The axysimmetric zone is divided in some rings, for each of them a polynomial Pi(r)
is introduced to describe the radial distribution f(r)

Some boundary conditions have to be imposed to recover the unknown coefficients
Ai, Bi, Ci, Di and they are that Pi(Ri+1) = Pi+1(Ri+1) and Pi(Ri+2) = Pi+1(Ri+2),
e.g. that every polynomial is assumed to have the same value of the near polyno-
mials at limiting points r = Ri and r = Ri+1. Another two conditions are imposed
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at the outer boundary, e.g. that PM(RM+1) = 0 and P ′
M(RM+1) = 0 and one at the

center, e.g. P ′
1(0) = 0. In this way it is possible to calculate all coefficients for every

polynomial with a least squares criterion and hence the complete function f(r).
The f -interpolating method shows good results and is very efficiently programmable.
More detail about this method are presented in [13] and [8]

• Fourier Method

The problem with many methods of numerical Abel inversion is that they work
gradually from the periphery to the centre of the flame, and thus the errors of
measurements of the outer parts have an influence on the results in the central
region and make these uncertain. So, we look for numerical methods that perform
the calculation in one step, e.g. non iterative calculation [13].
One of these is the Fourier Method based on the work of Georg Pretzler [14] is
what it has been decided to use. In an approach of this type, very different from
the previous, referring to [14], the unknown radial distribution f(r) is expanded in
a series similar to a Fourier series:

f(r) =
Nu∑
n=Nl

Anfn(r) (2.18)

with unknown amplitudes An, where fn(r) is a set of cosine functions, e.g.

f0(r) = 1 (2.19)

fn(r) = 1− (−1)n cos(nπ r
R

) (2.20)

The direct Abel transform of the equation 2.18 is:

H(y) = 2
Nu∑
n=Nl

An

∫ R
y
fn(r) rdr√

r2 − y2 (2.21)

In this equation, each integral

hn(y) =
∫ R
y
fn(r) rdr√

r2 − y2 (2.22)

cannot be solved analytically but are calculated numerically and stored in a specific
file. Through the amplitudes An are unknown, it can consider that at each of the
N points y = yk the function H(y,An) should approximate the measured data h(yk).
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This declaration can be written as a least squares criterion:

N∑
k=1

(H(yk)− h(yk))2 −→ min (2.23)

The insertion of the expression of H(y) in this equation and the resolution with
respect to the unknown amplitudes An leads to

Nu∑
n=Nl

An

N∑
k=1

(hn(yk)hm(yk)) =
N∑
k=1

(h(yk)hm(yk)) (2.24)

∀m : Nl ≤ m ≤ Nu

The equation system yields the amplitudes An which inserted in the expression of
f(r) return the resulting radial distribution.

Referring to [13], the Fourier method has some advantages over the other numerical
processes. They can be schematized as:

– this method do not work from the periphery to the centre, so the errors of
measurements of the outer parts do not have an influence on the results in the
central region.

– it is derivative-free because of the transformation of the whole problem from
the r- to the y-space

– neither smoothing or any other kind of pre-treating of the measured data h(y) is
necessary. Following this method, the numerical inversion can be used as a noise
filter by choosing the lower and upper frequency limits Nl, and Nu. This can
be supported by adaption of the exact form of the model functions fn(r) to the
given physical conditions. Then the upper limit Nu can be chosen low enough
for an efficient low-pass filtering because the reconstruction almost entirely
depends on the low-frequency components: a higher upper limit translates in a
better reconstruction, but it is not possible to go too far with the Nu because
the method low-pass filtering is lost.

– Because of these characteristics, it give the best results between the proposed
method, even better than the f -interpolating method. It was also chosen be-
cause it is easily programmable

– Furthermore, the number of expansion cosine affects also the computation time:
low upper frequency translates into low computational time
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Code

3.1 Code description
Based on the Abel inversion method described by George Pretzler and partially on the
Carsten Killer’s work [17] a Matlab-algorithm was developed .
The goal of this chapter is the description of the code and its functionality. First note
that the Fourier Method choosen allows to recover the one-dimensional radial distribution
f(r) once avaible the one-dimensional projection h(y).
However, the images recovered by the CCD camera are represented by 2D matrices, in
whose every column represents a lateral projection for a well-defined station along the
flame axial direction, therefore this procedure has to be applied to every station along the
axial direction, extending the method to a 2D case.
Based on what has been said, in the first part of the code the intensity values are extracted
from the image of the CCD camera as 2D matrix, in which at each index i,j corresponds
the intensity captured from a well-defined pixel i,j.
Identifying with z the coordinate along the image axial direction, that coincides with the
flame axial direction, and with y the coordinate along the image radial direction, in such
matrix every rows contain the integrated intensities for a fixed pixel radial position y to
change of the pixel axial position z in the flame and every columns contain the integrated
intensities for a fixed pixel axial position z to change the pixel lateral position y.
Note that such intensity values are captured from the ICCD camera pixels on all optical
window of dimensions 40 mm x 12 mm, that in lateral direction cover the entire height of
the combustion chamber, and contain the contributions of both the upper and lower part
of the flame.
The vector y, which identify the radial pixels coordinates, is defined as equidistant values
ranging from 0 to 12, where 0 mm is the down wall of the combustion chamber and 12
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mm is the distance of the upper combustion chamber wall from the down one. Instead
the vector z represents the axial pixels coordinates, varying from 0 to 40, where 0 mm is
the injection plane and 40 mm is the length of the optical field. Both this vectors are in
number equal to a pixels number respectively in radial and axial direction
However, since the Abel transform can only be applied if the object under observation
has cylindrical axisymmetry, only half of the image in radial direction has to be taken in
consideration. Because of the asymmetries that are inevitably present in the upper and
lower half of image, an average image must be calculated using the intensity datapoints
equidistant from the flame center.
To make this symmetrization, the flame center should be detected and it should be per-
formed station by station along the axial direction with one of the possible techniques
from the literature. However, in the code, it has been assumed that the center is located
exactly at half of the image height and that it is constant along the axial direction.
Consequently, a radius vector r is defined as a vector of equidistant values in radial direc-
tion, in number equal to intensity values number of this average image in radial direction
and associated to them, ranging from 0 to 6, where 0 mm corrisponds to the flame center
and 6 mm to the combustion chamber wall distance from the flame center, that is theo-
retically also equal to the maximum radius.
However, computationally the effective maximum radius will be posed equal to a slightly
bigger value, R = 6. 001 mm, to avoid the Not-a-Number value when the limits of Abel
transform integral are the same, e.g. y = R.
With the known z coordinates along the flame axial direction and the known r coordinates
along the flame radial direction, the Fourier method is implemented in the code central
part and extended to the 2D case applying it by means of a Matlab cycle for to every
intensity profile along lateral direction to change of the station along the axial direction.
In this way every radial distribution profile is individually recovered and the overall radial
distribution image is obtained.
Finally, once it is recovered, the direct Abel transform is reapplied to check the code and
the goodness of the reconstruction for looking if the new projection image is equal or
similar to the recorded image from ICCD camera.
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3.2 Test case

3.2.1 1D Case
Once written, to check the code it is always desiderable to use some test cases from liter-
ature for whose the therotical radial profiles f(r) and the corresponding lateral emission
profiles h(y) are known.
Such function are reported for example in the work of M.J. Buie et al. [18], H. Fulge et
al. [8], George Chan et al. [19]. Three test cases are been considered because they are of
particular interest both for the flame shape and for the reconstruction difficulties.

Test case 1
Referring to [8], the first taken test case is an off centered Gauss function, due to the fact
that most local distributions in plasma facilities are expected to have a Gaussian shape.
Such function can be writed as:

f(r) = 1
σ
√

2π
(exp(−1/2((r − µ)

σ
)2) + exp(−1/2((−r − µ)

σ
)2)) (3.1)

The mean or expectation of the distribution µ and the standard deviation σ are chosen
to be µ = 0. 3 and σ = 0. 2 to obtain an off centered function, while r is a vector of
equidistant values taken from 0 to 1.
The forward Abel transform of this function can only be calculated numerically.
The theoretical radial and its numerical lateral profiles are presented in the figures 3.1 and
3.2

Figure 3.1: Gaussian function radial
distribution

Figure 3.2: Forward Abel of Gaussian
function
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Now it is possible to apply the code to the lateral emission profile and check if the theoret-
ical radial distribution is recovered quantifying the differences between such note function
and the resulting radial distribution after the code application. The results obtained with
an upf = 10 are shown in figs. 3.3 and 3.4

Figure 3.3: Gaussian function:
comparison between theoretical and

reconstrued radial distribution

Figure 3.4: Gaussian function: relative
error between theoretical and
reconstrued radial distribution

How it can be seen, the radial distributions are pratically coincident with an relative error
of the order of 10−4, which is evalued as:

err = |foriginal − fmethod|
max(foriginal)

(3.2)

Test case 1 with noise

Since in the experiments can be present noise in the data, that can be generated for
example from the detection device, e.g. CCD sensor, it is considerable to see how this
method works in the noise presence.
The noise originated from the CCD sensor can be adequately described by white Gaussian
noise and normally the signal-to-noise ratio (SNR) allows to describe the power of noise
in a projection [20]. Therefore, such noise can be superimposed to the projection of the
known radial distribution of test case 1. When applying the code to this function with
noise, it can be seen if such radial distribution is recovered.
To generate the noise, it has been used the following Matlab-function which add a white
Gaussian noise to signal:

awgn(in,snr,sigpower,s)
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in which the vector in is the projection that must be inverted, snr is the signal-to-noise
ratio per sample in dB of ICCD camera which characterizes the quality of a measurement
and determines the ultimate performance of the system, the sigpower is the power of in
in dBW and will be posed egual to 0 and s is a random stream handle which permits to
generate repeateable noise samples and will be posed equal to 2.
Assuming to have for example a SNR = 5, the theoretical radial distribution and the
projection without and with noise can be reported in the figs. 3.5 and 3.6

Figure 3.5: Gaussian function radial
distribution

Figure 3.6: Gaussian function
projection with and without noise

The results of the code application to the projection with a white Gaussian noise with an
upper frequency choosen equal to 4 are represented in figs. 3.7 and 3.8

Figure 3.7: Comparison between
theoretical radial and reconstrued radial

distribution for SNR=5

Figure 3.8: Relative error between
theoretical radial and reconstrued radial

distribution for SNR=5
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Note that the theoretical radial distribution has been almost obtained, confirming that
the code based on Fourier method works well also in presence of unavoidable noise. It is
possible because the method is able to smooth the noise with a correct choice of upper
frequency upf which allows an efficient low-pass filtering. However, note that the noise
presence has reduced the quality of the reconstruction with a relative error of the order of
10−1, higher than the case of test function 1 without the noise.
To see pratically as what has been said, once again the Gaussian function lateral projection
of test case 1 can be considered with the same white Gaussian noise, corrisponding to
SNR = 5, for different values of the upper frequency upf . The results are represented
in the figs. 3.9, 3.10, 3.11 and 3.12 where note that a higher frequency translates in a
better reconstruction, but it is not possible to go too far with the upf because the method
low-pass filtering of the noise is lost.

Figure 3.9: Comparison between
theoretical and reconstrued radial

distribution for SNR=5 and upf = 2

Figure 3.10: Comparison between
theoretical and reconstrued radial

distribution for SNR=5 and upf = 3
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Figure 3.11: Comparison between
theoretical and reconstrued radial

distribution for SNR=5 and upf = 4

Figure 3.12: Comparison between
theoretical and reconstrued radial

distribution for SNR=5 and upf = 5

It is possible to see better what has been seen by the comparison between relative errors
in fig. 3.13 where it decreases with increasing of upper frequency until for an upf = 5 the
reconstruction is worse than that for an upf = 4. It is the reason why it was not possible
to choose an upf = 10 as in the case without noise, selecting an upf = 4.

Figure 3.13: Comparison between relative errors for different upf

Furthermore, in the choice of this upper frequency it is important to note that the noise
is present at the high frequencies and that the amount of present noise, e.g. the signal-
to-noise ratio SNR, affects the quality of the reconstruction : an greater ratio, which it
is equivalent to a lower noise at higher frequencies, allows to have a better reconstruction
for the same upf .
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Equally, four different white Gaussian noises, corresponding to SNR = 5,10,15,20 can be
considered superimposed to the Gaussian function lateral projection of case test 1 and
these four different projection can be processed with the same upper frequency upf = 4.
The reconstructed radial distributions for the different noises compared to the theoretical
radial distribution are represented in figs. 3.14, 3.15, 3.16 and 3.17

Figure 3.14: Comparison between
theoretical and reconstrued radial

distribution for SNR=5 and upf = 4

Figure 3.15: Comparison between
theoretical and reconstrued radial

distribution for SNR=10 and upf = 4

Figure 3.16: Comparison between
theoretical and reconstrued radial

distribution for SNR=15 and upf = 4

Figure 3.17: Comparison between
theoretical and reconstrued radial

distribution for SNR=20 and upf = 4

Note that, as anticipated, the reconstruction is better for the same upper frequency when
the noise decreases as it is possible to see by the comparison between relative errors in fig.
3.18

27



Chapter 3. Code

Figure 3.18: Comparison between relative errors for different SNR

Test case 2
As second test case referring to H. Fulge et al. [8] a single cubic function has been choosen
expressed as :

f(r) = ar3 + br2 + cr + d (3.3)

in which r is a vector of equidistant values taken from 0 to 1, while the parameters a, b, c, d
are chosen from the necessary boundary conditions:

f(0) = 3

f(1) = 0

f ′(0) = 0

f ′(1) = 0

The function of the equation 3.3 is forward Abel transformable analytically to:

F (y) = 1
12(
√

(r2 − y2)(24d+ 12cr + 8br2 + 6ar3 + 16by2 + 9ary2)+
+3(4cy2 + 3ay4)log(r +

√
(r2 − y2))) |r=1

r=y

(3.4)
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The original radial distribution and its forward Abel transformed are shown in the figs.
3.19 and 3.20

Figure 3.19: Cubic function radial
distribution

Figure 3.20: Forward Abel of Cubic
function

Once again, it is possible to apply the inverse Abel transform to the lateral emission profile
to see the differences between the original radial distribution and the reconstrued radial
distribution. The results obtained with an upf = 10 are shown in figs. 3.21 and 3.22

Figure 3.21: Cubic function:
comparison between therotical and
reconstrued radial distribution

Figure 3.22: Cubic function: relative
error between theretical and reconstrued

radial distribution

Also in this case, the Fourier method give good results, with the radial distributions
substantially coincident with an error of the order of 10−3.
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Test case 2 with noise
It can be considered also the presence of a noise described by a white Gaussian noise
superimposed to the lateral projection profile of test case 2.
The theoretical radial distribution and the relative lateral projection with and without the
noise are represented in the figs. 3.23 and 3.24

Figure 3.23: Cubic function radial
distribution

Figure 3.24: Cubic function projection
with and without a white Gaussian noise

The obtained results applying the code for an upf = 4 to the projection with a superim-
posed white Gaussian noise for SNR=5 are reported in figs. 3.25 and 3.26

Figure 3.25: Cubic function:
comparison between theoretical and

reconstrued radial distribution

Figure 3.26: Cubic function: relative
error between theoretical and
reconstrued radial distribution

Note that also in this case, although the noise presence, the code returns almost the
theoretical radial distribution. However, once again the noise affects the reconstruction
with an error of the order of 10−1 that results to be higher than the case of test function
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2 without noise.
It is possible also in this case evaluate what upper frequency upf allows to get the best
reconstruction with the minimum relative error for fixed signal to noise ratio.
Considering still an signal to noise ratio SNR = 5, it has be tried to recover the radial
distribution with four different upper frequencies upf = 2,3,4,5. The results are reported
in figs. 3.27, 3.28, 3.29, 3.30

Figure 3.27: Cubic function:
comparison between theoretical and
reconstrued radial distribution for

SNR=5 and upf=2

Figure 3.28: Cubic function:
comparison between theoretical and
reconstrued radial distribution for

SNR=5 and upf=3

Figure 3.29: Cubic function:
comparison between theoretical and
reconstrued radial distribution for

SNR=5 and upf=4

Figure 3.30: Cubic function:
comparison between theoretical and
reconstrued radial distribution for

SNR=5 and upf=5

Once again, it can be seen that an increase in upper frequency upf allows to obtain a
better reconstruction, but go too far may result in a loss of the low-pass filter properties.
What has been said can be seen considering the relative error to change of the upper
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frequency in fig. 3.31 , where an upf = 5 give results worse than upf = 4. Furthermore,
it can be noted that the reconstructions with upf = 3 and upf = 4 are practically
superimposed with results slightly better at the centre for this last frequency. So, it
confirms that a right choice can be to consider an upper frequency upf = 4.

Figure 3.31: Comparison between relative error for different upf

Test case 3
The third test function considered with the known Abel inversion lateral distribution is
taken from [18]:

f(r) = 1− 3r2 + 2r3 0 ≤ r ≤ 1 (3.5)

F (y) =
√

(1− y2)(1− 2. 5y2) + 1. 5y4ln(1 +
√

1− y2

y
) 0 ≤ y ≤ 1 (3.6)

In reality, since in some measured profiles there is the presence of zero emissivity in the
centre, it can be useful to consider a test function with such characteristic. So a new test
function for the radial emissivity is obtained subtracting the test function 3 with 100 data
points from the same function evaluated with 200 data points. Furthermore, it is possibile
to apply the same procedure to the lateral distribution. It will be the Abel direct of the
new radial emissivity because the Abel transform of the sum of two profiles is equal to the
sum of the Abel transform of two profiles [21].
In figs. 3.32, 3.33, 3.34, 3.35 are represented the test function, its therotical lateral distri-
bution and the results of the Abel inversion code obtained with upf=10.
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Figure 3.32: New test function radial
distribution

Figure 3.33: Lateral projection of test
function

Figure 3.34: New test function:
comparison between theoretical and

reconstrued radial distribution

Figure 3.35: New test function: relative
error between theoretical and
reconstrued radial distribution

How is it possible to see, the theoretical radial profile and the profile obtained from the
inversion Abel algorithm are almost identical with a relative error of the order of 10−3.

Test case 3 with noise
Again, the noise in the experimental measurements can be simulated in order to study the
impact on the measurement also for this profile.
A white Gaussian noise can be considered superimposed to the lateral profile and the Abel
inversion is applied to the resultant profile with noise.
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An SNR=20 has been choosen in this case and the reconstruction has been done with an
upper frequency upf = 4. The results are represented in figs. 3.36, 3.37, 3.38, 3.39, where
it can be seen that the theoretical radial distribution is recovered with a relative error of
order of 10−1. Once again note that this error is higher than the case of function 3 without
noise.

Figure 3.36: New test function radial
distribution

Figure 3.37: Lateral projection with
and without a white Gaussian noise

Figure 3.38: New test function:
comparison between theoretical and
reconstrued radial distribution for

SNR=20 and upf=4

Figure 3.39: New test function: relative
error between theoretical and

reconstrued radial distribution for
SNR=20 and upf=4

Note that the noise presence involves that to obtain a good reconstruction the expansion
number results to be lower than the case without noise to have the correct low-pass filter.
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Furthermore, for this function and for a SNR=20, an upper frequency upf is once again
choosen equal to 4 because it has be seen that the noise high frequencies do not look to
change with the SNR, that affects only the amount of the noise.
In fact it is possible to report the different reconstruction profiles obtained by means of
different upf with the relative errors in figs. 3.40, 3.41, 3.42, 3.43, 3.44 and to see that
the best results are still obtained with such upf.

Figure 3.40: Comparison between
theoretical and reconstrued radial
distribution for SNR=20 and upf=2

Figure 3.41: Comparison between
theoretical and reconstrued radial
distribution for SNR=20 and upf=3

Figure 3.42: Comparison between
theoretical and reconstrued radial
distribution for SNR=20 and upf=4

Figure 3.43: Comparison between
theoretical and reconstrued radial
distribution for SNR=20 and upf=5
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Figure 3.44: Comparison between relative error for different upf

3.2.2 2D Case
Once tested the code with the known radial distribution functions taken from the litera-
ture, some 2D radial distribution or images can be considered and the code can be applied
to them to verify if it works properly also in this case.
However, the literature does not provide the know radial distribution functions in 2D case,
so in an alternative way it has been choosen to apply the code to the recorded images that
was recorded with ICCD camera.
Since the radial distribution f(r,z) of these images are not known because it is what must
be obtained, to check the code the images data, e.g. the projection, are first inverted and
after numerically forward Abel transformed, so the images and the calculated projections
can be compared.
Considering for example the experimental test case Methane pressure 20 bar ROF=2.2,
2.6, 3.0, 3.4 represented in fig. 3.45, in which the upper half corrisponds to the original
flame image and the down half corrisponds to the image generated with the code, it has
to be pointed out that the pictures agree well.
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Figure 3.45: Recorded and recovered intensity images for Methane pressure 20 bar ROF =
2.2, 2.6, 3.0, 3.4

As a better confirmation of the goodness of the results for each test a specific column of
both images, e.g. a specific radial profile for a fixel axial position, can be choosen to do
a comparison between the intensities. Considering for example a station along the axial
direction z = 30 mm, the radial profiles are represented in fig. 3.46 where it is possible to
see that the intensity shape is well recovered.

37



Chapter 3. Code

(a) (b)

(c) (d)

Figure 3.46: Comparison between the image and calculated intensity values for the axial
position z=30 mm for ROF (a)2.2, (b) 2.6, (c) 3.0, (d) 3.4

The unique substantial differencies are visible at the outer boundary, due to the fact that
the reflection of the window and not application of the shading correction the intensity
values in this position are not equal to zero. Because the Abel transform is really sensitive
to these problems, it returns wrong emission values.
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Experimental data

The test campaign concerned the study of the combustion process of the propellents com-
bination GOX/GCH4 and GOX/GH2. A certain number of test were conducted with
these propellents at different test conditions in terms of combustion chamber pressure Pcc

and mixture ratio ROF represented in table 4.1

Propellent CH4 H2

Pcc 10 bar 20 bar 10 bar 20 bar
ROF 2.2 2.2 4.4 4.4
ROF 2.6 2.6 5.2 5.2
ROF 3.0 3.0 6.0 6.0
ROF 3.4 3.4 6.8 /

Table 4.1: Load points

Note that for the test case 20 bar ROF 6.8 was not carried out for Hydrogen because of
high temperatures which could have lead to combustion chamber damages.
In order to have the flame stable phase only the instantaneous images of the three seconds
of burning time have been considered for each test, neglecting those corresponding to
the start-up and shut-down. The images for every test are then averaging, obtaining an
average image, to smooth the noise and the flame fluctuations.
The used experimental images refer to those published in the P. Difficile [2] and G. Laera’s
[3] Masterthesis, to whose reference is made for further details.
Because of the problems in the experimental post-processing phase for the application of
shading correction, it was chosen to use the images without this correction.
Furthermore, to satisfy the Abel transform assumption of axisimmetry, these images are
processed and an axisimmetric image is obtained averaging the values at same distance
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from the flame center of the upper and down half of average image.
An overall flame image can be obtained mirroring the average image about the axis of
simmetry.
The images used fot the application of inverse Abel transform are reported in fig. 4.1, 4.2,
4.3, 4.4

Hydrogen

• Pcc = 10 bar

(a)

(b)

(c)

(d)

Figure 4.1: Hydrogen ROF (a) 4.4 (b) 5.2 (c) 6.0 (d) 6.8
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• Pcc = 20 bar

(a)

(b)

(c)

Figure 4.2: Hydrogen ROF (a) 4.4 (b) 5.2 (c) 6.0
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Methane

• Pcc = 10 bar

(a)

(b)

(c)

(d)

Figure 4.3: Methane ROF (a) 2.2 (b) 2.6 (c) 3.0 (d) 3.4
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• Pcc = 20 bar

(a)

(b)

(c)

(d)

Figure 4.4: Methane ROF (a) 2.2 (b) 2.6 (c) 3.0 (d) 3.4
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Results

Once identified the images that have to be used, it is possible to apply the inverse Abel
transform to the experimental data to recover the local emission radial distribution. Since
it has been seen by the considered test function that the best value to smooth the noise
at high frequencies is an upf = 4, corresponding to a number of cosine for the expansion
equal to 5, the results are obtained with this upper frequency. Note that the number of
expansion cosine affects both the filtering effects and computation time.
Because of an incorrect determination of the center, the asymmetry and the noise filtering
there is the presence of negative emission values as results of the algorithm application.
Such not physical values are then set to zero.
Futhermore, to make the flame shape and anchoring more visible the flame shape and an-
choring, both for GOX/GH2 and for GOX/GCH4 the emission intensities are normalized
to the maximum emission detected for all ROF cases.
Such maximum values are reported in table 5.1

GOX/GH2 GOX/GCH4

Pcc = 10 bar 361.8503 218.3529
Pcc = 20 bar 787.9613 679.0374

Table 5.1: Maximum Emission Intensity to change of pressure and propellent pair
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5.1 Hydrogen

The reconstrued radial distributions for the GOX/GH2 for pressure Pcc equal to 10 and
20 bar to ROF variation are represented in figs. 5.1 and 5.2

• Pcc = 10 bar

(a)

(b)

(c)

(d)

Figure 5.1: Test Hydrogen 10 bar (a) ROF=4.4 (b) 5.2 (c) 6.0 (d) 6.8
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• Pcc = 20 bar

(a)

(b)

(c)

Figure 5.2: Test Hydrogen 20 bar (a) ROF=4.4 (b) 5.2 (c) 6.0

Note that in all cases the flame is attached and incloses the oxygen jet and shows the
familiar crescent shape, with little emission at the flame base and higher emission at the
end of the image.
This is in agreement with Fiala that the mostly emission is located at the tip of the flame,
not visible in this experiment [5]. The flame follows the oxidizer jet near the injector
in the first part and after an axial distance of about 3-4 times the GOX inlet internal
diameter di, the flame slightly expands radially and diverges towards the combustion
chamber walls. This characteristic flame expansion can be explained by the decrease
of shear forces between the flows at a certain distance from the injector face, and is in
agreement with Lux et al. [22].
This expansion seems to be insensitive to ROF variation, according with Winter et al.
[1], but the OH∗ is a function of it, as well as pressure.
From a preliminary study the results in terms of flame shape and anchoring seem to be
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correct, presenting the typical development found in the GOX/H2 flames and reported in
literature.
Nevertheless, to prove the correctness of the reconstruction it is necessary a comparison
between the different results to the pressure Pcc and ROF variation, checking if they are
according to the results of the literature and the previous studies about these propellent
combination.
What has been said includes the identification of parameters which affect the combustion
process in the area of interest and discussion about the their effect.
It has already been demonstred that the parameters which influence the near injection in a
coaxial injector are the reduced pressure Pr, defined by the ratio between the combustion
chamber pressure Pcc and the thermodynamic critical pressure of oxygen Pc,O2 = 50,43 bar
, the mixture ratio ROF , the velocity ratio VR and the momentum flux ratio J [23]

Pr = Pcc

Pc,O2

ROF = ṁGOX

ṁg

V R = vg

vGOX

J = (ρv2)g

(ρv2)GOX

These parameters are linked, so a variation of pressure or ROF, that are the operating
conditions changed in the test campaign, involves a variation in the other parameters.
In order to understand the their effect and to compare the different cases to provide an
explanation of the results, it is necessary to normalize the deconvoluted emission images
obtained from the Inverse Abel transform with respect to the maximum emission intensity
obtained in all test cases carried out with the corresponding propellant pair.
For the GOX/GH2, the maximum emission value with which the emission radial distri-
butions are normalized has been detected for pressure 20 bar and ROF=4.4, and is equal
to the value for these operating conditions reported in table 5.1
With such normalized distribution, a first important consideration can be done about the
pressure effect on the emission.
In fact, considering for example the normalized emission radial distribution for the test
cases with ROF = 4. 4 and pressures 10 bar and 20 bar reported in fig. 5.3 can be seen
that a pressure increase translates into an higher emission. This effect occurs for all cases
of ROF variation.
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(a)

(b)

Figure 5.3: Hydrogen: ROF=4.4 (a) Pcc=10 bar, (b)Pcc=20 bar

To better compare, one can consider for the same test cases the development of the emission
along the axial direction for the fixed distance r = 3 mm from the flame center [fig. 5.4]

Figure 5.4: Hydrogen : normalized emission development for ROF = 4. 4 and
Pcc = 10 bar/ 20 bar along the axial direction for r = 3mm

This results are in agreement with the studies of Fiala [5] in which has been shown that
for the oxygen/hydrogen flames the overall integrated OH∗ radiance shows to have an
approximately linear increase up to a pressure of 17 bar, remaining then constant up to
30 bar.
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Figure 5.5: Total OH∗ radiance to change of pressure [5]

The reason for this behavior can be found mainly in the fact that, at almost constant
temperature, the radiation is directly proportional to the overall OH concentration. This
concentration is equal to the flame thickness multiplied by the density of OH, which is
directly proportional to the pressure [5].
Also, according to Fiala, the flame thickness decreases only slightly up to 17 bar, so the
behavior of the overall radiation at low pressures is approximately linear.
Furthermore, at low pressure the OH∗ radiation increases further due to the increase in
temperature with the pressure, which has an exponential impact on the radiation [24].
About the ROF effect it is possible to consider the OH∗ emission radial distribution for
pressure 20 bar and different ROF = 4. 4, 5. 2, 6. 0 reported in fig. 5.6. The flame results
have a similar development for a ROF variation also for a combustion chamber pressure
equal to 10 bar.
Note that up to a certain distance from the GOX injection the emission for the case
ROF=4.4 is higher than that for the case ROF = 6. 0, although the latter is closer to the
stoichiometric value, equal to 8.
What has been said can be seen better taking the development of the emission along the
axial direction z for a fixed distance from the flame center r = 3 mm for the ROF = 4. 4
and ROF = 6. 0 reported in fig. 5.7
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(a)

(b)

(c)

Figure 5.6: Hydrogen: Pcc=20 bar, ROF (a) 4.4 (b) 5.2 (c) 6.0

Figure 5.7: Normalized emission development for Pcc = 20 bar and ROF = 4. 4 , 6. 0 along the
axial direction for r = 3 mm
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The explanation can be found considering the different velocities of H2 in the different
cases. In fact, reference may be made to the velocity ratio VR and the momentum flux
ratio J for the test cases, taken from G. Laera’s Masterthesis [3] and reported in table 5.2.
It can be seen that the VR and J, and then the hydrogen velocity, are higher for the case
ROF = 4. 4 than that for the case ROF = 6. 0, e.g. increases to the ROF decrease.

VR J
ROF=4.4 5.158 1.680
ROF=5.2 4.691 1.379
ROF=6.0 4.138 1.078

Table 5.2: Velocity ratio VR and flux ratio for different ROF and Hydrogen case

According to Lux et al. [23], an increase of velocity ratio V R and the momentum flux
ratio J at costant chamber pressure involves an increase of OH emission intensity near the
injection because of an increase in the shear force between the flows, with a consequent
improvement in the mixing.
This is also in agreement with the results of Smith et al. [25] who have seen that for three
different relative pressures Pr exists a relationship between the OH emission intensity and
the injection velocity ratio V R. Particularly, for the Pr < 1, as for the pressure 10 and 20
bar, corresponding to the phase 3 of their tests, such relationship is linear

Figure 5.8: Flame relative OH emission intensity as a function of injection velocity ratio and
operating phase [25]
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However it can be seen that at a certain distance from the injection plane the emission for
ROF = 6. 0 increases more than ROF = 4. 4 and in some points along the axial direction
overcomes it.
Because of the restricted size of the optical window it is not possible determine in what
position the overcoming will definitely take place, but it is expected that it will happen
because the ROF = 6. 0 is closer to stoichiometric ratio.
Another effect of the ROF variation, and then of VR and J, can be seen considering the
comparison between the radial profiles for example for test case ROF 4.4 and 6.0 at a fixed
axial position z=30 mm, reported in fig. 5.9

Figure 5.9: Hydrogen: emission radial profiles comparison for Pcc=20bar between test case
ROF=4.4 and 6.0 at fixed axial position z=30 mm

Omitting the wrong values at outer boundary due to the problems already explained in
section page 39, a decrease of the flame thickness and the spreading angle can be seen for
test case ROF=6.0 respect to ROF=4.4
This trend is again explained considering that an ROF increase involves a decrease of
Hydrogen velocity which is pulled inward by faster oxygen, leading to a constriction of the
flame and a decrease of the spreading angle.
This result is in agreement with the results of J.J. Smith et al. [26] which have observed
that for pressure below the critical point, as is the case, a VR and J decrease, as well as
reducing the emission in the near injection area, involves a decrease of the flame thickness.
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5.2 Methane

About the GOX/GCH4 the reconstrued emission radial distributions to the change of Pcc

and ROF are represented in figs. 5.10 and 5.11
As already said, to highlight the flame shape and anchoring the emission intensities are
normalized with the maximum value detecte for all ROF test cases and reported in 5.1

• Pcc = 10 bar

(a)

(b)

(c)

(d)

Figure 5.10: Methane Pcc=10 bar (a) ROF=2.2 (b) 2.6 (c) 3.0 (d) 3.4
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• Pcc = 20 bar

(a)

(b)

(c)

(d)

Figure 5.11: Methane Pcc=20 bar (a) ROF=2.2 (b) 2.6 (c) 3.0 (d) 3.4

Note that the decrease of the emission in the end of the window for the test case Pcc=20
bar and ROF=3.4 case is due to a crack during the experiment.
The deconvolution of OH∗ emission permits to have an idea of the dimension of the
reacting shear layer between the gaseous oxygen and the methane, which is seen to grow
continuously with the distance from the GOX injection, according to [22].
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Compared with those of propellent combination GOX/GH2, these results show similar
characteristics: in all cases the flame is attached and incloses the oxygen jet and shows
the familiar crescent shape, with little emission at the flame base and higher emission at
the end of the image.
This is in agreement with the studies performed by Lux and Haidn [22] and Candel et
al. [27], for which both for GOH/GCH4 and for GOX/GH2 the flame anchors near the
GOX post tip, follows the oxygen jet and the flame shows similar development in a more
downstream position.
Similarly to GOX/GH2 flames, the GOX/GCH4 flame envelops the gaseous oxygen jet
immediatelly after the injection and at an axial distance of about 4-5 times the GOX inlet
internal diameter di expands radially and moves towards the combustion chamber walls,
in agreement with Winter et al. [1]. This can be again explained by the decrease of shear
forces between methane and oxygen jet at a certain distance from the injector, according
to Lux et al. [22].
This expansion seems to be insensitive to ROF variation, according with the study of
Winter et al. [1] and Lux et al. [28], but the OH∗ is a function of it.
To make a comparison between different test cases, the emission radial distribution must
to be normalized with respect to the maximum value for the Methane test cases which
has been seen to occur in the test case 20 bar ROF=2.6 and it is equal to 679.0374.
Considering for example the development for the test case ROF=2.6 for the pressures 10
bar and 20 bar reported in fig 5.12 it is possible to see the pressure effect on the emission

(a)

(b)

Figure 5.12: Test Methane ROF=2.6 (a) 10 bar, (b) 20 bar
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Similarly to the GOX/GH2, it can be note that higher pressure translates into an higher
emission. To better observe this effect, it can also be considered for the same case the
development of the emission along the axial direction for the fixed distance from the flame
center r = 3 mm represented in fig. 5.13.

Figure 5.13: Methane : normalized emission development for ROF = 2. 6 and
Pcc = 10 bar/ 20 bar along the axial direction for r = 3mm

The emission increase with the pressure is according to Johannes Lux and Oskar Haidn
[22] whose have studied the flame emission LOX/CH4 combustion during several steady-
state operating points for three pressure levels expressed in terms of the reduced pressure
Pr.
They have seen that the emission intensity relates to the combustion chamber pressure
and particularly that an increase of pressure is reflected in an increase of emission.
Furthermore, in agreement with the results of Lux et al. [23], an pressure increase at
constant VR (and J) results in a constriction of the flame and a slight decrease of the
spreading angle. This can be seen in the comparison of emission lateral profile for the
fixed axial position z = 33 mm for the Methane test case ROF=2.6 pressure 10 bar
and 20 bar reported in fig. 5.14. Each profile has been normalized with the respective
maximum value to enable the comparison.
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Figure 5.14: Methane: comparison of radial normalized emission for axial position z = 33mm
and ROF = 2. 6 for Pcc=10 bar/ 20 bar

About the ROF effect on the emission, it is possible to consider the normalized deconvo-
luted OH∗ emission images for a pressure of 20 bar and different ROF , reported in Fig.
5.15.
Note that, similarly to GOX/GH2 flames, the GOX/GCH4 flame emission intensities val-
ues within a certain distance from the GOX injector are higher for the case with lower
ROF , particularly ROF = 2. 6, with respect to the case ROF = 3. 4, also if the latter is
closer to the ROF stoichiometric value. This can be noted better in fig. 5.16, in which is
reported the normalized emission development along the axial direction for a fixed radial
position r = 3 mm for the ROF = 2. 6 and ROF = 3. 4 cases.
It can be explained considering that the velocity of the methane jet for the 3.4 case is
lower than 2.6 case, particularly is the lowest between the four cases as it is possibile to
see in table 5.3, where are represented the VR and J values taken by Pasquale Difficile’s
Masterthesis [2]

VR J
ROF=2.2 1.268 0.855
ROF=2.6 1.087 0.619
ROF=3.0 0.91 0.433
ROF=3.4 0.83 0.361

Table 5.3: Methane: Velocity ratio VR and momentum flux ratio J for different ROF
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(a)

(b)

(c)

(d)

Figure 5.15: Test Methane 20 bar ROF (a) 2.2 (b) 2.6 (c) 3.0 (d) 3.4
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Figure 5.16: Methane: comparison normalized emission along axial direction for fixed lateral
position r = 3 mm, Pcc=20 bar and ROF=2.6, 3.4

According with Lux et al. [23] an higher injection velocity ratio V R and the momentum
flux ratio J at constant chamber pressure increases the OH emission because implies a
more effective mixing. However, it can be seen that along the combustion chamber the
emission for 3.4 case tends to increase more than 2.6 case and exceed it in some positions.
This is due to the fact the ROF=3.4 case is closer to the stoichiometric ratio, therefore
it is expected that at a certain position along the combustion chamber its emission will
be finally higher than that of ROF=2.6 case, but because of restricted size of the window
and the noise presence it is no to possible determine in what position.
To confirm this, it is possible to refer at the work of Perakis et al. [29] in which a study
of ROF effect on the heat release trend is evalueted considering the its development at
1 mm distance from the wall and along all the combustion chamber. Such results can
be used because it has been seen that the heat release and the emission have the same
development when varying the ROF. In such study the heat release, represented in Fig.
5.17, for the first 60 mm after the injector plate are higher for the 2.6 case and the lowest
for the 3.4 case. This is due again to the fact that the velocity of the methane for 3.4
case is the lowest, but the reasons are different, because in this case the annular CH4 jet
is pulled inward by the faster O2 jet due to shear forces, while the flame fluctuations are
predominated in the shear layer between the propellants, increasing then the distance of
the flame front from the wall. For the case 2.6 the fact that the methane jet has the highest
velocity, higher than the oxygen jet, means that the inner oxygen jet is pulled outward,
while the flame fluctuations are more pronounced than the 3.4 case. Downstream where
the initial mixing effect is dumped, the emission values rise and become the highest for
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the 3.4 case because it is closer to the stoichiometric ratio.

Figure 5.17: Profile of average heat flux at 1 mm distance from the hot gas wall along the
axial position

Furthermore, the differencies in the velocities and relative flame fluctuations make that
the flame is slightly thicker for ROF=2.6 compared to ROF=3.4. It is possible to see what
was said considering the shape of the flame varying the radius at a fixed axial position
z = 30 mm in fig. 5.18

Figure 5.18: Methane: emission radial profiles comparison for Pcc=20 bar between test cases
ROF=2.6 and 3.4 at fixed axial position z=30 mm
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5.3 Experimental data vs numerical data
Additionally, the radial profiles obtained with the inverse Abel transform can directly be
compared with the flame computational fluid dynamics simulation performed in the same
near injection area to validate the results.
Note that the OH∗ emission is not a common numerical simulation result, so the compar-
ison between them is limited, but neverthless the OH∗ experimental emission was often
compared with simulated OH molar concentration or mass fractions as an approximation
[30].
According to Fiala, it can be seen that in flames typical to rocket combustion, if exists
a thermal equilibrium between OH∗ and OH, it is possible to compute the OH∗ molar
concentration and therefore OH∗ radiation.
This is due to the fact that if the gas is assumed to be optically thin, the OH∗ radiation
is proportional to the molar concentration of OH∗.
What has been said allows to compare the experimentally obtained OH∗ radiation with a
numerical OH∗ molar concentration, therefore the comparison for the test case Methane
pressure 20 bar and ROF=2.6 in Fig. 5.19 can be considered.
More detail about the numerical simulation and how it was obtained are provided by
Philipp Burggraf’s Semester thesis [31], which has performed it.
To allow the comparison between the images, a different colormap was used respect to the
image previously presented and each of them has been normalized respect to the relative
maximum value that occurs in the numerical simulation and radial distribution recon-
struction.
Because in the experiment only some pixels record a certain maximum emission value, if
such value is used for the normalization, the resulting flame appears to be not uniform
compared to that of numerical simulation. Then, it was thought to introduce a cutoff
emission value equal to 0. 8 of maximum emission value found in the recovered radial dis-
tribution in order to have a more uniform flame comparable with the simulation flame.
Furthermore, because of the window reflection non zero emission values are present at
the boundary in the experimental reconstruction with respect to the numerical simulation
because such problems obviously are not present .
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Figure 5.19: Comparison numerical vs experimental

From the image can be seen that the assumption of an optically thin gas appears justified,
then the OH∗ radiation is proportional to the molar concentration of OH∗.
This can be seen from the images where at an increase in the normalized OH∗ molar
concentration is associated an increase of the normalized OH∗ emission.
Furthermore, note that both the flames have a similar typical trend already discussed:
they are attached, inclose the oxygen jet and at an axial distance of about 5-6 times the
GOX injector diameter the flame expands radially showing a crescent shape with a little
emission at the flame base and higher at the end.
For what has been said, the experimental radiation data seem to be in agreement with the
numerical data. The unique substantial differences concern the fact that the maximum
value of OH∗ molar concentration for the numerical simulation is shown to be achieved
much further downstream and the flame is thinner with respect to the OH∗ experimental
emission.
However, these differences can be due substantially to the fact that the numerical model
unpredict the flame thickness and therefore improvements in the OH∗ emission prediction
are necessary.
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Conclusions & Outlook

In the context of the optical diagnostics, the Chemiluminescence method has been used to
study the combustion process by means of the detection of the spontaneous OH∗ radiation.
To have local informations about it, an Inverse Abel transform code has been implemented
to recover the emission radial distribution. The code has been checked with known radial
distribution and lateral distribution functions and has been applied to the experimental
intensity images recorded by an ICCD camera. The results seem to be in agreement
with the typical combustion process behavior of the propellant pair GOX/GCH4 and
GOX/GH2, already widely studied in the literature, and this confirms the correctness of
the code. Furthermore, such results match well with also the numerical simulations data,
and therefore the code is further validated.
Nevertheless, it was observed that in the reconstruction some negative emission values
are present probably due to asymmetries and not correct flame center detection. So an
appropriate symmetrization and flame center detection techniques are required to be added
to the code in the future works.
To reinforce further the code and improve the results, greater attention can be given to the
identification of the frequencies to which the experimental noise is localized. Furthermore,
an improvement of the post-processing phase is required to get better results from the
inverse Abel transform.
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Appendix

A.1 Inverse Abel Transform code

1 %% INVERSE ABEL TRANSFORM CODE
2
3 %% The code is based on Fourier Method , described in
4 %% "A New Method for Numeric Abel -Inversion", Georg Pretzler ,
5 %% Z. Naturforsch. 46a, 639 - 641 (1991);
6
7 clc ; clear all ; close all ;
8
9 %% Loading image and data extraction
10
11 % METHANE
12
13 % open(' AverageWindowed_Met_10bar_2 .2.fig '); % Open Image
14 % open(' AverageWindowed_Met_10bar_2 .6.fig '); % Open Image
15 % open(' AverageWindowed_Met_10bar_3 .0.fig '); % Open Image
16 % open(' AverageWindowed_Met_10bar_3 .4.fig '); % Open Image
17 % open(' AverageWindowed_Met_20bar_2 .2.fig '); % Open Image
18 open('AverageWindowed_Met_20bar_2 .6. fig '); % Open Image
19 % open(' AverageWindowed_Met_20bar_3 .0.fig '); % Open Image
20 % open(' AverageWindowed_Met_20bar_3 .4.fig '); % Open Image
21
22 % HYDROGEN
23
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24 % open(' AverageWindowed_Hyd_10bar_4 .4.fig '); % Open Image
25 % open(' AverageWindowed_Hyd_10bar_5 .2.fig '); % Open Image
26 % open(' AverageWindowed_Hyd_10bar_6 .0.fig '); % Open Image
27 % open(' AverageWindowed_Hyd_10bar_6 .8.fig '); % Open Image
28 % open(' AverageWindowed_Hyd_20bar_4 .4.fig '); % Open Image
29 % open(' AverageWindowed_Hyd_20bar_5 .2.fig '); % Open Image
30 % open(' AverageWindowed_Hyd_20bar_6 .0.fig '); % Open Image
31
32 % Allocation of loaded image in the figure h
33 h=gcf;
34
35 % Extraction data from the figure h:
36 % Image axes and values are allocated in the data0bjs cell
37 axes0bjs =get(h,'Children ');
38 data0bjs =get(axes0bjs ,'Children ');
39
40 % Extraction of the pixels/values number of the image along
41 % axial direction from the data vector
42 xdata=get( data0bjs {2},'XData ');
43
44 % Extraction of the pixels/values number of the image along
45 % lateral direction from the data vector
46 ydata=get( data0bjs {2},'YData ');
47
48 % Extraction of the intensities matrix from the data vector
49 zdata=get( data0bjs {2},'CData ');
50
51 % Mesh costruction along the axial direction of the image:
52 % the z-vector goes from 0 mm to 40 mm and the points number
53 % will be equal to the pixels number in that direction
54 z= linspace (0,40, xdata(end));
55
56 % Mesh costruction along the lateral direction of the image:
57 % the y-vector goes from 0 mm to 12 mm and the points number
58 % will be equal to the pixels number in that direction
59 y= linspace (0,12, ydata(end));
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60
61 % The normalized images are provided from the experimental

part
62 % Each image have to be multiplied by the value of

normalization
63 zdata=zdata *5289.4; % 5289.4 Methane % 5723 Hydrogen
64 zdata=fliplr(zdata);
65
66 % Creation of the 2D mesh
67 [Z,Y]= meshgrid (z,y);
68
69 % Plot of the intensity image
70 figure (1)
71 surf(Z,Y,zdata)
72 colormap (jet)
73 xlabel('z [mm]')
74 ylabel('y [mm]')
75 shading interp
76 axis equal
77 axis ([0 40 0 12])
78 title('Intensity ')
79
80 %% Construction of average image
81
82 % Since different images can have odd or even pixels number
83 % in lateral direction , it is necessary differentiate the
84 % two cases to obtain the average image by means of an if -
85 % else command
86
87 % if the vector y has an odd number of values
88 if mod(length(y) ,2) ~ 0
89
90 % The intensity values on the flame center for each station
91 % along the axial direction
92 fcentro = zdata(ceil(length(y)/2) ,:);
93
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94 % The intensity values of image upper half
95 fupper=zdata(ceil(length(y)/2) +1:end ,:);
96
97 % The intensity values of image down half
98 fdown=zdata (1: ceil(length(y)/2) -1,:);
99
100 % Rotation of the down of the image to add the upper half and
101 % the down half values equidistant from the flame center and
102 % obtain the average image
103
104 for j=1: length(zdata (1 ,:))
105
106 fdown (:,j)=fliplr(fdown (:,j) ');
107
108 end
109
110 % if instead the vector y has an even number of values , the
111 % intensity values on the flame center is not present , but
112 % it is possible to obtain it with an linear interpolation
113 % between the neighboring values. This interpolation is
114 % extended to every position along axial direction
115
116 else
117
118 for j=1: length(z)
119
120 % Linear interpolation to calculate the intensity values on
121 % the flame center
122 s= polyfit ([y(end /2) y(end /2+1) ],[ zdata(end/2,j)

zdata(end /2+1 ,j)],1);
123 fcentro (j)= polyval (s,(y(end /2)+ y(end /2+1))/2);
124
125 end
126
127 % The intensity values of image upper half
128 fupper=zdata(ceil(length(y)/2) +1:end ,:);
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129
130 % The intensity values of image down half
131 fdown =zdata (1: ceil(length(y)/2) ,:);
132
133 % Rotation of the down half of the image to average the upper
134 % half and the down half values equidistant from the flame
135 % center and obtain the average image
136
137 for j=1: length(zdata (1 ,:))
138
139 fdown (:,j)=fliplr(fdown (:,j) ');
140
141 end
142
143 end
144
145 % Construction of the average image by means the average
146 % profiles at each station along axial direction . The
147 % calculation is valid both even and odd pixels number
148
149 for j=1: length(z)
150
151 fMedia (:,j)=[ fcentro (j); (fdown (:,j)+fupper (:,j))/2];
152
153 end
154
155 % Definition of the radius vector r by means of mesh
156 % construction along the lateral direction : the radius
157 % goes from the flame center 0 mm to the upper combustion
158 % chamber wall , distant 6 mm from the flame center , and
159 % the values number of it is equal to values number of
160 % average image along the lateral direction
161 r= linspace (0,6, length(fMedia (: ,1)));
162
163
164 figure (2)
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165 surf(z,r,fMedia)
166 colormap (jet)
167 xlabel('z [mm]')
168 ylabel('r [mm]')
169 shading interp
170 axis equal
171 axis ([0 40 0 6])
172 title('Average image ')
173
174
175 % The maximum radius will be posed higher than the last
176 % value of r to avoid the singularity in the Abel transform
177 % integral when y=r
178 R =6+0.001;
179
180 %% Application of G.Pretzler procedure
181
182 % Definition of expansion frequencies
183 lof =1; % Lower frequency of expansion
184 upf =4; % Upper frequency of expansion
185
186 % Definition of the fnM cosine - functions set. The rows are
187 % the y-values columns are the number of expansion elements ,
188 % equal n+1 since we start with n=0
189 fnM=zeros(length(r),upf +1);
190
191 % Definition of the hnM quantities obtained by means of the
192 % direct Abel transform applicated to fnM
193 hnM=zeros(length(r),upf +1);
194
195 %% Calculation of the fnM and hnM matrices
196
197 % Particular case : for expansion number n=0, fn_0 =1
198 fnM (: ,1) =1;
199
200 for c=1: length(r);

73



Chapter A. Appendix

201
202 yy=r(c);
203
204 % Definition of the function that must be integrated in the
205 % direct Abel transform for n=0
206 funM = @(t) 2.*t./ sqrt(t.^2-yy .^2);
207
208 % Application of the direct Abel transform to the funM
209 hnM(c ,1) = integral (funM ,yy ,R);
210
211 end
212
213
214 % For all other columns , e.g. for all other expansion numbers
215 for n=1: upf
216
217 for c=1: length(r)
218
219 yy=r(c);
220
221 % Calculation of the cosine function fnM
222 fnM(c,n+1) = (1 - (-1)^n*cos(n*pi*yy/R));
223
224 % Definition of the function that must be integrated in the
225 % direct Abel transform for n different from zero
226 funM= @(t) 2.*(1 - (-1)^n*cos(n*pi.*t/R)).*t./ sqrt(t

.^2-yy .^2);
227
228 % Application of the direct Abel transform to the funM
229 hnM(c,n+1) = integral (funM ,yy ,R);
230
231 end
232
233 end
234
235 %% Calculation of the unknown amplitudines matrix AM
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236
237 % In the 1D case the H vector is the Abel transform
238 % applicated to f(r)= sum_{n=lof }^{ upf} ( A_n* f_n(r) ) ,
239 % while the h(y) is the real data vector.
240 % Using the least squares method to fit H(y) to the real
241 % data h(y) :
242 % sum_{k=1}^{N} (H(y_k)-h(y_k))^2 = min
243 % where N is the number of points used along the lateral
244 % direction y , it leads to:
245
246 % sum_{n=lof }^{ upf} A_n * sum_{k=1}^N (hnM_n(y_k)*hnM_m(y_k))
247 % = sum_{k=1}^N ( h(y_k)*hnM_m(y_k))
248 % for each m: lof < = m < = upf
249
250 % AM * CM = BM ------> AM = BM * inv(CM)
251 % that solved allows to obtain the AM amplitudines .
252 % The AM and BM quantities are vectors in the 1D case ,
253 % while they are matrices in the 2D case because station
254 % by station along the axial direction different radial
255 % distributions are present . Similarly the vector of real
256 % data h(y) is replaced by the data matrix extracted from
257 % the projection /image fMedia
258
259 % Definition of the emission radial distribution matrix
260 f_recM=zeros(length(r),length(z));
261 % Definition of the amplitudines matrix AM
262 AM=zeros(length(z),upf +1);
263 % Definition of the matrix BM
264 BM = zeros(length(z),upf +1);
265 % Definition of the matrix CM
266 CM= zeros(upf+1,upf +1);
267
268 % Triple for cycle extended to the stations number
269 % along the axial direction and frequencies number
270 % to calculate CM , BM and AM matrix
271
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272 for j=1: length(z)
273
274 for k=1: upf +1
275
276 for l=1: upf +1
277
278 CM(l,k)=sum(hnM(:,k).* hnM(:,l));
279
280 end
281
282 BM(j,k)= sum(fMedia (:,j).* hnM(:,k));
283
284 end
285 % Inversion of the equation AM * LM = BM
286 AM(j ,:)=BM(j ,:)*inv(CM);
287
288 end
289
290 %% Radial distribution calculation
291
292 % In the 1D case f(r)= sum_{n=lof }^{ upf} (A_n * f_n(r)),
293 % In the 2D case the radial distribution will be
294 % f(r,z)= sum_{n=lof }^{ upf} ( A_n(z) * f_n(r,z) )
295 % so it is possible to apply the sum valid in the 1D case
296 % to each position along axial direction z by means
297 % a for cycle
298
299 for j=1: length(z)
300 % for the particular case n=0 , fn_0 =1
301 f_recM (:,j)= f_recM (:,j) + AM(j ,1) *1;
302 % for the other n
303 for c=2: upf +1
304
305 f_recM (:,j) = f_recM (:,j)+ AM(j,c).* fnM(:,c);
306
307 end
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308
309 end
310
311 %% Direct Abel transform
312 % Application of direct Abel transform to the radial

distribution to
313 % calculate the projection and compare with initial image
314
315 % Allocation of radius vector and radial distribution
316
317 fine=length(r);
318 for j=1: length(z)
319 for i=1: fine
320
321 hhh(i,j)=r(1,i);
322 fff(i,j)=f_recM(i,j);
323
324 end
325 end
326
327 % Interpolation of radial distribution . The interpolating

polynomial is calculated
328 % at each station along the flame axis obtaining a matrix
329
330 ord =2; % Initial choice of interpolation order
331
332 for j=1: length(z)
333
334 h= polyfit (hhh(:,j),fff(:,j),ord);
335 fpol (:,j)= polyval (h,r); % Interpolating polynomial

valued at each radius
336
337 end
338
339 % Increase of interpolation order by means of while cycle

assuring that the
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340 % relative error between the interpolating polynomial and the
radial

341 % distribution is below a certain value
342
343 for j=1: length(z)
344 ord =2;
345 while abs(max(fpol (:,j)-f_recM (:,j))./ max(f_recM (:,j)))>

0.1
346
347 ord=ord +1;
348 h= polyfit (hhh(:,j),fff(:,j),ord);
349 fpol (:,j)= polyval (h,r);
350 end
351
352 % Creation of continue function by means of interpolating

polynomial
353 % in order to apply the direct Abel transform .
354
355 tt =@(t,i) t.^i;
356 somma =@(t) h(end).*t.^0;
357 ss=ord;
358
359 for i=1: ord
360
361 funzione =@(t) h(i)*tt(t,ss);
362 somma =@(t) somma(t) + funzione (t);
363 ss=ss -1;
364
365 end
366
367
368 for i=1: length(r)
369
370 xx=r(i);
371 f=@(t) 2.* somma(t).*t./ sqrt(t.^2 - xx ^2); % function

in the Abel integral
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372 pro(i,j)= integral (f,xx ,R); % direct Abel transform
in order to have the projection

373
374 end
375 end
376
377
378 % Because of the negative values presence in the emission
379 % radial distribution whose are not physical , such values
380 % are setted to a value close to zero
381
382 f_recMff =( f_recM);
383 f_recMff (f_recMff <0) = 1e -20;
384
385
386 %% Plot
387
388 % Radial distribution
389 figure (3)
390 surf(z,r, f_recMff )
391 colormap (jet)
392 xlabel('z [mm]')
393 ylabel('r [mm]')
394 shading interp
395 axis equal
396 axis ([0 40 0 6])
397 title('Radial distribution ')
398
399 % For the comparison between different test cases , an
400 % normalized emission radial distribution is obtained
401 % dividing by the maximum value between the same test cases.
402 % For the Methane propellent the maximum value 679.0374 is
403 % obtained in test case 20 bar ROF =2.6 , for the Hydrogen
404 % propellent the maximum value 787.9613 is obtained in test
405 % case 20 bar ROF =4.4
406
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407
408 % Normalized radial distribution
409 figure (4)
410 fnorm= f_recMff /679.0374; % Methane 679.0374 , Hydrogen

787.9613
411 surf(z,r,fnorm)
412 colormap (jet)
413 xlabel('z [mm]')
414 ylabel('r [mm]')
415 shading interp
416 axis equal
417 axis ([0 40 0 6])
418 caxis ([0 1])
419 title('Normalized radial distribution ')
420
421
422 % Normalized radial distribution for comparison with

numerical simulation
423 figure (5)
424 load('Rainbow_colormap .mat ')
425 f_recMfff =( f_recM);
426 f_recMfff (f_recMfff <0) = 1e -20;
427
428 f_recMfff (f_recMfff >0.8* max(max( f_recMfff ))) = 0.8* max(max(

f_recMfff )); % Application of a cut off value
429 f_recMfff = f_recMfff /(679.0374.*0.8) ;% Methane 679.0374 ,

Hydrogen 787.9613
430
431 zz=z/1000;
432 rr=r/1000;
433 surf(zz ,rr , f_recMfff )
434 colormap ( rainbow_map )
435 xlabel('z [m]')
436 ylabel('y [m]')
437 shading interp
438 axis equal
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439 axis ([0 0.04 0 0.006])
440 title('Normalized radial distribution for comparison with

numerical simulation ')
441 caxis ([0 1])
442
443 % Comparison between original projection and reconstrued

projection
444 figure (6)
445 surf(z,r,pro)
446 xlabel('z')
447 ylabel('x')
448 hold on
449 surf(z,r,fMedia)
450 legend('Reconstrued projection ','Initial projection ')
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