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CHAPTER 1. ABSTRACT



Angelo Scacciavillani

Over the years it is getting more present the use of machine learning techniques
applied to many different disciplines. In aeronautic field they are used as a substi-
tute or as an enrichment of flight systems in order to have a better production of
flight data.

The main three aspects studied in neural networks, which are one of the many
machine learning techniques and the one used in this thesis, are the network archi-
tecture, the training phase and the testing phase. There are other very important
aspects such as the various methods for carrying out these operations. The knowl-
edge of the latter is very important in order to obtain very precise networks in the
purpose that is set. This thesis is in fact aimed at finding a method for the improve-
ment of one of these aspects.

The focus of this project is on the analysis of input data, that is the training and,
in a small part, which impact they do have on neural network quality, that is the
testing phase, which constitutes the output.

In this specific case the neural network is used to simulate an angle of attack sen-
sor. The main advantage of a NN is that it is possible to model, even if having an
approximation, the complex behavior of a given system, without knowing equations
and relations which govern the system. In this case the advantage is quite clear:
knowing some flight data it is possible to find others. In this case the plane, which is
a system in which the many caracteristics (ie. accelerations or rotation rates along
the axes) are embedded inside the neural network.

This techinque is opposed to the complete modeling of flight dynamics equations
for the given aircraft. This thechinque involves the knowledge of every characteris-
tics of the plane. A novel approach as Neural Network modeling gives a fast tool to
avoid complex modeling with a fast and reliable method to be implemented

Characteristics of the input data will be evaluated via statistics and a data reduc-
tion technique will be used in order to select only meaningful data points with the
usage of k-means clustering algorithm. In previous studies an encouraging method
was found to exploit neural networks in order to simulate the angle of attack sensor.
However, certain of the complexity of neural networks, it is an improvable method.
Therefore this thesis has the role of proposing an improvement of a previously used
method.

This study has been done as a sequence of studies previously carried on Ing. Nando
Groppo ULM aircrafts, and flight data utilized in this thesis are from a Groppo G70.



CHAPTER 1. ABSTRACT



Contents

1 Abstract

2 Introduction

2.1
2.2
2.3

Air Data perspective . . . . . . . ...
Machine learning perspective . . . . . . .. ... oL
Previous approaches . . . . . .. . ... ... .. .. ... . ... .

3 Mathematics

3.1
3.2

3.3

Feed Forward Neural Networks . . . . . ... ... ... .. .....
Probability and Statistics . . . . .. ... ... L.
3.2.1 Probability distributions . . . . . ... ... 000
3.2.2 Kernel Density Estimation . . . .. ... ... ... .....
3.2.3 Geometrical aspects . . . .. ... L Lo
K means clustering . . . . . . ... ... ... ...

4 Data Analysis

4.1

4.2
4.3

4.4
4.5

4.6
4.7

4.8

Data Acquisition . . . . . . . . .. ...
4.1.1 RIg. . . . e
4.1.2 Overview of samples . . . . . . .. .. ... ...
Maneuvers . . . . . . . .. e e e e e e
Analysis Environment . . . . .. .. ... . L
4.3.1 Computational Performace . ... .. ... ... .......
4.3.2 Analysisdomain . . ... ...
Statistical approach . . . . ... ... ... ... ... ...
Clustering Strategy . . . . . . . . . . . ..o
4.5.1 Brutal approach . . ... ... ... .. oo
4.5.2 Standard approach . . . . . . ... ... ... ..
4.5.3 Genetic Algorithms approach . . . . . ... ... ... ....
4.5.4 Optimized approach . . . . . . .. ... ... ..
4.5.,5 Chosen Method . . . . . . .. .. . . oo
Analysis Workflow . . . .. ... oo
Quality Check . . . . . . . ...
4.7.1 Failed Check . .. ... ... ... .. ... ... ... ...
4.7.2 Quality Ranking . . . . .. .. ... oo o
Data Visualization . . . . .. .. .. ... .. ... ..

5 Comparative Analysis

5.1
5.2

Cluster Dimensions choice . . . . . . .. ... .. ... .. ......
Cluster Processing . . . . . . . . . . .. . .. .. .. .. ..

13
15
17
18

21
23
25
25
25
27
28

32
34
34
35
36
36
37
37
37
38
42
42
43
43
43
44
45
45
46
47



Neural networks data analysis

5.3 Cluster Post-processing . . . . . . ... ... L. 54
5.3.1 Failed Clusters checking . . . . .. ... ... ... ...... 54

5.3.2 Cluster Quality checking . . . . . .. ... ... ... ..... 55

5.3.3 Clusters Content evaluation . . . . . ... ... ... ..... 56

5.4 Conclusions for comparative analysis . . . . . . ... ... ... ... 65

6 Neural Network Training 66
6.1 Neural Network Architecture . . . .. ... ... ... ........ 68
6.2 Neural Network Training . . . . . . . .. .. .. ... ... .. 68
6.3 Neural Network Testing . . . . . ... ... ... ... .. ..... 69
6.4 Analysischoice . . . . . . . . .. ... 70
6.5 Test Results . . . . . . . . .. 71

7 Conclusions and Future Developments 74

10






12

CONTENTS



Chapter 2

Introduction



14

CHAPTER 2. INTRODUCTION



Angelo Scacciavillani

2.1 Air Data perspective

The air data computer (ADC) is an avionic device that is deputed to determine
several flight characteristics. This system can determine:

e angle of attack

o sideslip angle

indicated, calibrated or equivalent air speed
e Mach number
e altitude
e altitude variation
The ADC has several inputs coming from respective sensors:
e static pressure - static pressure port
e dynamic pressure - total pressure port
e temperature - thermometer
e angle of attack/side slip - differential ports, multiple holed probes, angle vanes

These air data sensors are connected together with an Air Data Computer (ADC)
which elaborates signals ad enroute them to a Flight Control System (FCS).

All the knowledge for the calculation of the quantities listed above were already
known in the second half of past century. Analog systems were used for those mea-
surement on every kind of plane and they are already used in a great variety of
airplanes. Just in the past ten years a big evolution has been witnessed in these
techniques due to the digital revolution. Today the state of the art in air data eva-
lution are digital instruments which compute sensors signals.

The transition from analog to digital was particularly favourable considering that,
to complex and unmaneageable analog systems, electronic boards and codes were
replaced to extract data from the measurements of different sensors or ”sensors
fusion”. This is even more important considering the possibility of implementing
redundant and precise systems at a very low cost and with a reasonable weight and
size. In fact, many more markets are now opened to these complex systems such
as the ultralight (ULM), as in this thesis, or that of autonomous aircrafts (UAV),
where these systems are of primary importance for navigation.

As previously expressed, this thesis focuses on the not easy aim of measuring the
angle of attack of the aircraft. This measurement is commonly performed by ”vanes”
for both subsonic and supersonic applications, or with differential pressure taps on
the sides of a Pitot tube.

The AOA vane or alpha vane, a name due to the Greek letter generally used to
indicate the angle of attack, consists of a vane of various shapes and dimensions,
connected to a rotary position sensor. This kind of sensors has very high angular
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resolutions and allows a very accurate measurement of the angle of attack. This
method is also very simple since there is a direct measurement of the angle.

This kind of sensor is affected by two main errors. The first is due to the non-
instantiation of the measurement, that is, there are some inertial effects that put
the alignment of the wind vane with the current slightly delayed. The second is a
position error. The aerodynamics of the aircraft can in fact influence the relative
direction of the current in the position of the sensor. There are two main types of
installation.

The first possibility is an installation on an air data boom. This air data boom
includes static and total pressure and two ninety degrees offset vanes: one for mea-
suring the angle of attack and one for measuring the angle of skidding. This type
of installation is typical of several applications such as many fighter aircrafts and
the air data boom is placed on the nose of the aircraft, where it lays in an aero-
dynamically undisturbed position. The main problem in this case is the flexibility
of the boom that protrudes for several centimetres forward. The oscillations and
resonance phenomena can in some way disturb the measurement of the angles.

The second type of installation is typical of the liner. The AOA vanes are in fact
installed on the side of the nose, because an installation on the tip of the nose would
be impossible given the radar behind it. The installation on the side of the nose
causes the wind vane to be in an aerodynamically disturbed area from the surface
of the aircraft itself. Generally, with an accurate study, it is possible to generate
corrective coeflicients that can bind local angle of attack with the real angle of attack.

The second technique is the use of multi-hole pressure taps. Generally they are
presented as Pitot tubes with a truncated-conical head. On the flat front side there
is a total pressure intake which, together with the static pressure taps on the tube
shank, provide the indication of the speed. In the intermediate area, on the other
hand, there are a certain number of holes (typically three to seven) connected to
single pressure transducers. With a current offset with respect to the axis of the
socket, a different pressure is obtained on these holes, typically a greater pressure in
those oriented in the direction of the current and lower in those in the shade. It is
possible to bind pressure measurements on these holes through non-linear relation-
ships in order to obtain information on the angles of attack and the drift.

The non-linearity of the relationships and the fact that it isn’t a direct measure-
ment has been one of the major obstacles to the use of these probes and an approx-
imation factor (in fact these relationships are found experimentally during probe
calibration). A second demerit factor is the delay of the pressure signal that crosses
the pneumatic line that leads from the holes to the pressure transducers. In the
last applications this problem has been solved by inserting miniaturized transducers
directly into the holes, in order to have instantaneous measurements.

The installation of these probes takes place on a boom generally on the nose of the
aircraft. As in the previous case, the stiffness of the boom is a crucial factor for
measurement accuracy. We must consider how this system is sensitive and with a
considerable cost, both as regards the probe, which must have a very high produc-
tion precision, and both with regard to the transducers.
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The third method is the one dealt with in this thesis that is a completely indi-
rect method. Knowing the dynamic characteristics of the aircraft it is possible to
obtain the angle of attack by knowing other parameters that are easier to measure.
The greatest difficulty in applying this method lies in the influence that many factors
(such as the payload position, for example) have on the knowledge of the dynamic
characteristics of the aircraft. Other problems lie in the difficulty of a quick calcula-
tion with the on-board computers and the approximation that one would have with
this method. On the other hand, the advantages are obvious: greater aerodynamic
cleanliness can be achieved compared to the two previous systems, and an absence
of radar track. Furthermore redundant systems can be implemented simply by dou-
bling the calculation system and / or the sensors. Lastly, this system would be based
on sensors that are very accurate and, at the same time, cheaper like accelerometers,
therefore with considerable savings [10].

2.2 Machine learning perspective

The aim set by computer science is, from the early days, to allow machines to easily
solve complex problems for humans. Generally, this type of problem is mathemat-
ical or logical, based on mathematical rules. The machine learning disciplines offer
a solution to this kind of problem. Machine learning is closer to the way of human
reasoning, meaning machines can literally learn how a system works. The defini-
tion given in 1959 by Arthur Samuel of ”machine learning” is: ”Machine learning is
a field of computer science that gives computer systems the ability to ”learn” (ie,
progressively improve performance on a specific task) with data, without being ex-
plicitly programmed. ” Generally, machine learning is applied when the definition of
specific problem modeling algorithms is difficult or impossible [21]. This is done by
studying how a complex problem can be divided into smaller and simpler problems.
The most important power of machine learning is the fact that the operator does
not have to know in advance the equations that govern the complex system but the
machine itself will determine them.

There are numerous approaches to machine learning. The one used in this the-
sis are the artificial neural networks or ANN. The name derives from the fact that
this kind of technique is vaguely inspired by the functioning of the brain, that has
neurons as ”centres of calculation” of the brain, and of the synapses, or the con-
nections between the latter. It is understandable how, the greater the number of
neurons and the greater the complexity that can be modeled. This kind of tech-
niques has in fact developed considerably in recent years thanks to the lower costs
of very powerful computers.

As previously mentioned, there are usually two phases in the use of machine learn-
ing: a training phase and a testing phase. The training phase is the phase in which
the data is fed to the network and on those the network will learn, that is, it will find
linear or non-linear relationships that link the incoming data. The second phase,
that one of testing, consists instead of inserting data other than training data and
evaluating the output of the network. By comparing this output with reference data
it is possible to find the error coming from the extimation made from neural net-
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work, so it is possible to understand how the network is able to model that given
problem.

The first step in creating today’s neural networks was the creation of a network
model based on the threshold logic by Warren McCulloch and Walter Pitts [12].
The second step was that of Dr. Hebb [6] in which he considered the hypothesis
that the brain was plastic and it could be improved. This type of approach, unsu-
pervised, is called Hebbian learning.

In 1958, Rosenblatt [19] created an algorithm for pattern recognition called per-
ceptron. The first multi-layer network was created by Lapa and Ivakhnenko in 1965
[7].

Some research in 1969 [13] focused on two major problems in one of the neural
networks. The first was the inability of a network to replicate the truth table of the
xor and the second that there were no available computational resources sufficient
for this purpose. Because of these problems, research in these areas experienced a
period of stagnation.

In 1975 the research resumed actively following the invention by Werbro [27] of
the backpropagation algorithm, which led, not only to the resolution of the xor
problem, but also to a significant improvement in the training phase.

In 1992 there were the first applications of neural networks for object recognition.
[24] [25] [26]

From the early 2000s to today, neural networks are being studied to fulfil increas-
ingly complex tasks of object recognition, data analysis and more.

In 2010, Ciresan [3] demonstrated the feasibility of a hardware-based neural net-
work. The reason for this choice lies in the speed of calculation, which for very large
networks is enormously advantageous.

2.3 Previous approaches

The approach of using virtual sensors as a replacement for physical ones is not new.
This has already been used in the past in order to manage redundancies. Normally
these systems are based on "model based techinques” or modeling the system in
advance. The difficulties encountered have always been those of making the sys-
tems sufficiently robust and immune to external disturbances. As early as 2000,
Napolitano et al. [14], Oosterom and Babuska [16] studied systems useful for failure
management using soft computing techniques.

In particular, the object of this thesis is the use of neural networks in place of
model based techniques to model these virtual sensors. The use of neural networks
for this purpose is not entirely new. In fact Rohloff et al. [28] , Samy and Green [22]
have already described the modeling of virtual systems based on neural networks.



Angelo Scacciavillani

These techniques consist of the reconstruction of some data using only static pres-
sure taps on the surface of the aircraft.

Neural networks have been applied on several different problems involving flight.
One of them is to control the plane autonomously by using the neural network to
convert navigation instructions into control surfaces actuators inputs [2] [23] [9].

Estimation of attitude coefficients from flight data has been made in previous ap-
plication using machine learning. In a way, this application is much similar to the
one treated in this thesis, as it starts from flight data acquisition. These practices
started as early as 1993 demonstrating that, with modest computational resources,
it is possible to find a solution to an otherwise complex problem [33] [11].

Regarding the measurement of the angles of attack and sideslip, mention must be
made of the application on the Boeing X45A of a model-based system patented by
Wise [29]. This makes use of inertial data and a Kalman filter, that is used to reduce
the error in angles estimation.

Regarding other hypersonic airplanes, many studies have been made by chinese
professor B Xu which recently worked on guidance, and sideslip control of a generic
hypersonic plane [31] [32] [30].

This thesis is linked to the work carried out as a doctoral thesis by Angelo Lerro
[10], who was involved in studying the application of neural networks for the esti-
mation of angles of attack and sideslip for the Alenia Sky-Y drone. This work was
the forefather of various other studies on the topic led by Professor Piero Gili. The
following works mainly dealt with improving the accuracy of the network.

The innovative factor of this thesis is the quest for a system to select flight data
to be used as network training. In this way it is possible to have less input data,
and gaining performance on the training side, as will be seen below. Furthermore,
it is also possible to study how samples quality can negatively influence network
performance. In particular, data reduction and data analysis work has been carried
out using k-means clustering, which is another machine learning technique and a
common statistical application.
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In this chapter theoretical aspects of this thesis are introduced in order to give
the reader a solid background suitable for understanding further evaluations.

3.1 Feed Forward Neural Networks

An artificial neural network is composed of a set of artificial neurons (simplified
models of biological neurons) and artificial synapses (simplified models of biological
synapses). Each artificial neuron is composed of the following parts [34]

input: the input signal to the neuron (generally a real number)

activation function: a function that activates the neuron only if the input signal
is sufficiently large

weight: how much the output signal is increased if the neuron is active

bias: a quantity, generally negative, which describes how the content
of the neuron must be activated so that it is activated

output: the resulting output signal

As for the interconnections between neurons, artificial neural networks are organized
in layers, ie the outputs of a series of non-communicating neurons are given as input
to a series of other neurons not connected to each other. All the neurons except
from input layer are called hidden layers. As for connections or synapses, these are
the connections between the neurons of a layer and, generally, all the neurons of
the previous or next layer. This complex system can be expressed mathematically
simply as a multiplication between matrices. Considering a generic neuron of a layer
of a network one can write:

a(l) = a(wo,oa(()o) + w071a§0) + ...+ womag)) + bo)

Where:
a: they represent the various signals coming from the neurons of the previous layer

w: they are the weights that multiply the output values of the neurons of the pre-
vious layer

b: it is the bias that is added to the sum of the inputs for the weight and sets the
threshold of activation of the neuron

o it is the activation function that multiplies to every single element of the sum-
mation.

Matrix-wise, for the complex of all the neurons of a layer one can write [5] :

O
wo,0 wWo,1 .- Won (OO) 0
w w e w a b
- 1,0 1,1 1n i
Wpo Wpil ... Wpn a%o) bn
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or, in compact form [5] :

oV = oc(Wa® +b)

Here it is possible to analyse some very important aspects of the training phase.
The first aspect is to understand how the network generates the error committed
with respect to the desired output. What is used is a cost function. This specific
function depends on the difference between the output value from the output nodes
to the network and the expected value, more specifically it is the sum of the squares
of all the differences in the single output neurons.

The cost function therefore depends indirectly on the web weights and biases. By
varying the latter it is possible to reduce the cost function.

This is represented by the following graph where the cost function, dependent on
the weight and bias vector, is decreased using a given method. The represented one
is a ”gradient based” method that is dependent on the gradient of the function cost
function in the multidimensional space of the weight and bias.

w

Figure 3.1: Typical gradient based minimum search, here represented in a two dimensional
space.

Please notice how the weight vector tends to converge to a local minimum of the
cost function and not to the absolute minimum. This depends on the way in which
the vector ”w” is initialized. Generally this operation happens by inserting random
numbers in the vector.

The cost function minimization method is called the ”learning rule” [15].

There are different learning rules or learning algorithms and they are summarized
in three types: supervised, reinforcement, unsupervised and has been recently in-
troduced the semi-supervised, a mixture of the first and the latter. In supervised
learning, you have information about the quality of the network, which is a perfor-
mance index on which the learning process is based. The network then compares the
real output to the desired output and modifies the weights by following the backward
error in the network, that is from the output layer to the input layer and modifies
the weight and bias accordingly. The classic learning algorithm is Backpropagation
(BP) [10].

In some cases, however, there is no detailed information on the quality of the output
and therefore supervised learning can not be used. Reinforcement learning is used
instead. Reinforcement learning gets feedback from the surrounding environment.
More formally, the environment is modeled through an instantaneous cost distribu-
tion, an observation distribution and a transition. Together they form a Markov
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chain (MC). The aim is to find a policy that minimizes the cost function.

In unsupervised learning, however, there is no feedback. The network must learn
itself to correlate incoming data. The cost function therefore depends on the work
that the network has to perform and every a priori assumption performed, as im-
plicit properties of the model or of the observed variables.

Depending on the case, one of the three methods mentioned is used. In the present
case, supervised learning is used, as there are specific information on the target angle
of attack. Regarding the learning algorithms of supervise learning, there are three
main categories that are based on as many mathematical methods:

conjugate gradient: Levenberg-Marquardt, Fletcher-Reeve, Polak-Ribiére, Powell-
Beale, scaled conjugate gradient

quasi-Newton: Broyden-Fletcher-Goldfarb-Shanno, one step secant

steepest descent: variable learning rate and momentum, backpropagation

3.2 Probability and Statistics

This section illustrates a base of probability theory and statistics. Through this
probability theory it is then possible to derive a series of statistical concepts useful
for data analysis. The usefulness of a statistical approach in the case of the analysis
of flight data is to be found in the fact that, for a large number of data, it is necessary
to capture collective, and not just specific, aspects [5].

3.2.1 Probability distributions

Given a sample of data, it is useful to study the probability, or reorganize the data
based on the frequency with which a data is found. This method will give rise to a
function called probability distribution (of data ”x”). There are several probability
distributions, denoted by different control functions such as Bernoulli, Categorical,
Gaussian and Laplace distributions [5].

However, these functions restitute a trend of the probability function as a curve
with a single-mode. Using these functions means that there is only one peak in the
probability distribution. This causes a large loss of information in the event that
there is a multimodal trend in the distribution. This type of performance greatly
precludes the performance of the network, rather it constitutes a discriminant in
the process of data analysis, and therefore must be considered. In fact, it should be
noted that, when the probability distribution chosen varies, the different aspects of
the sample under analysis are highlighted.

3.2.2 Kernel Density Estimation

The analysis method chosen to characterize the probability distribution is the kernel
density estimation. It was created by statisticians Manuel Parzen and Murray Rosen-
blatt [17] [18] [20]. This is a non-parametric method used for pattern recognition
and classification through a density estimate. The algorithm allows the calculation
of the probability of belonging to a class for each element, considering the density
of the class in a neighborhood of the value to be classified. This neighborhood is of
fixed size and is calculated based on the number of observations.

25
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Figure 3.2: Kernel Search distribution as the sum of normal distribution for the variable

9,0
X",

A method of classification by proximity (parzen windows or k-nearest neighbors),
proposes to calculate the conditional probability at a point x with the following
density estimation:

P(z|C) = K/NV

where:

N is the number of estimations in the data set;
V is the volume around a certain point x

K are the elements around V, belonging to the class C.

The density kernel estimation algorithm is conceived in order to minimze the size of
region V near x, depending on observations quantity N. This method is based on the
idea of effectively reduce the region V, so that it is possible to have an approximation
of the real estimate of the point P. At the same time it does not consider a region
so minimal as to have K=0.

It is worth to evaluate a function like K (h, P). It depends on the parameter h that
is the scale, Py and its distance P. This function is must have integral equal to one
on P. The method previousy described consists in assigning P(x|C') in point x using
the formula below:

P(z|C) = %P(m]C) _ %&K(h, d(w, i)

That is, the density at point x is obtained by considering the contribution as the sum
of the contributions provided by the observations in the sample spread according to
the law K (h, P), normalized to N.

The evaluation of h is a problem quite complex as it generally depends on the
problem under examination. A thumbrule is to use the following relation: h =
O(n=1/%).

A problem with this method is due to the fixed choice of the K function. In the
end, if a very small window is used, the risk of overfitting is introduced. If you use
a window that is too big, you have more errors in the denser areas. For this reason
a dynamic window (Algorithm k-nn) sometimes gives better results. The complete
algorithm used is included in Matlab function "ksdensity” [8].



Angelo Scacciavillani

3.2.3 Geometrical aspects

Some important features of these probability distributions can be studied by some
parameters:

Mean The arithmetic mean is used to resume an ensable of data with a single
number. It is calculated by summing all the data set and dividing the result
by the data set dimension. Mean formula is shown below:

1 n
Ma: nzll'z
1=

The arithmetic mean can be calculated in this way if the frequency distribution
is available:
1 k
M, =— Tin;
a= 0 ;_1: 3Ty

where x; represents the j-th mode of x, K is the number of modes assumed by
the set of data x, and n; the frequency which corresponds to data x. Being
then %] = fj, it follows that:

k
Mo =) ;f;
=1

where f; is the frequency of the j-th modality of x.

The weighted average is calculated by summing the data set values, each mul-
tiplied by weight and divided by the sum of weights. Considering this specific
definition, it is possible to consider the arithmetic mean as a special weighted
mean where al the weights are equal. It means that all the data have the same
importance. The general formula for the weighted mean is therefore:

Z?:1 fz

Arithmetic mean does not provide robust statistical data because it is signifi-
cantly affected by outliers, even though it is used very often. For this reason,
other geometrical indice such as the median, are also often considered. These
indices are less prone to accept anomalous values. A way to reduce the ef-
fect of wrong values in the calculation of the arithmetic mean is considered
in the trimmed mean. This type of average is a specific way of considering
the average in which only a certain quantity of the most feasible values are
considered.

n
Y xi fs
Ma,w — Zz_l ’sz

Mode In statistics, the mode of a frequency distribution is the value with the
highest frequency, that means, it occurs more frequently. A distribution is
unimodal if it has a single modal value, it is bimodal if there are two of them.
The presence of many modes could be a symptom of non-homogeneus data
sets. In the particular case of the normal distribution, also called Gaussian,
mode coincides with the mean and the median.

The mode formula is:
_ n(xi, Ti1)

Lit1 — X4

hiyi+1)
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where n(x;, z;+1) the number of elements which falls in the class z;, z;11 and
h(i,i + 1) is the height. The mode is a valuable characteristics because it
is the only one of the central tendency indices able to synthesize qualitative
characters..

Skewness The skewness index of a distribution is a value that measures its lack
of symmetry. There are several different asymmetry indices. There are dis-
tributions with skewness equal to 0, therefore skewness is a sufficient but not
necessary condition to symmetry. All symmetric distributions have null skew-
ness. The commonly used asymmetry indices are based on some properties of
symmetric distributions or, in particular, of the normal distribution.

The skewness is defined as:
=3 2
my

through central moments my, = E[X k], that is, the expected values of the
powers of the centered variable X = X — F[X].

It is now possible to consider central moments values. The first central moment
is always null, the second central moment, that is the variance is null only for
the distributions concentrated on a single value. The third central moment
mg is the lowest one that can measure the asymmetry of a distribution. In
certain cases the index (1 is used instead of ~;:

m3

2
51:71:73
my

In statistics the skewness calculated on a data set is: {1, ..., 2, } of mean Z It
follow the formula: -
Zi:l E(“f'i - 53)3

g1 =
1 _\\3/2
(i (i — 7))
The next central moment my4 is instead used to calculate the kurtosis, which
measures the deviation of the distribution from the normal distribution.

Through these indices it is therefore possible to evaluate different qualities of the
statistical samples considered.

3.3 K means clustering

In data science, clustering is the task of grouping the data by choosing them respect-
ing some rules of similarity between them. Data clustering is the general activity
and not a specific algorithm. Clustering is a machine learning activity as it is the
ability of the machine to understand what relationships exist between the data and
how to group them. There are many different methods for data clustering. The
method used in this thesis to find significant flight data compared to others is called
k-means clustering. K-means clustering was invented by Stuart Lloyd in 1957 for
Bell, but, for reason of secrecy, it was published in 1982. The term k-means was
first coined by McQueen in 1967. It is worth to mention how the same method
was used independently by Forgy in 1965 therefore, sometimes k-means clustering
is cited as the combination of two data scientists names, that is Lloyd-Forgy method.
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The task this method operates is that of subdividing the n samples into k sub-
groups. For each subgroup or cluster it creates a centroid, and the elements of the
subgroups are subdivided into those having a mean lower than its centroid, hence
the name of the method. This can be described as the ability of the algorithm to
minimize the total variance in the clusters by correctly grouping of the data. This
method is iterative, and computes the initial clusters with heuristic methods, that
is in a casual fashion and calculates the centroids and the variance, and then starts
the cycle again, until it converges.

his sort of problems is generally computationally difficult, even though there are
efficient algorithms that are generally convergent. These algorithms are based on
the expectation-maximization algorithm. K-means clustering has the very impor-
tant characteristic that it finds clustering that have similar shapes and dimensions.
Due to the speed of convergence,this algorithm is one of the most used. It has
been noted that the number of iterations it takes to converge is almost every time
lower than the dimension of the data set. Arthur and Vassilvitskii studied k-means
clustering in hard problems. They showed how k-means clustering takes a super-
nominal time to converge. Instead, Vattani has shown that the algorithm takes an
exponential time to converge in the worst case. One of the main disadvantages of
the algorithm is that it doesn’t reach the global minimum of the problem.

The quality of the solution depends on the initial data and the number of choosen
clusters. A second problem is that, in the case of naturally partitioned data, if a
different number of clusters than the natural one is chosen the algorithm will gen-
erate an wrong partition. It will be necessary to manually adjust the number of
clusters in order to obtain the best result. Finally, the algorithm works effectively
only when n-dimensional planar clusters are detectable, where n is the size of the
input data. Data N objects with attributes, modeled as vectors in an i-dimensional
vector space, we define X = X, Xs, ..., X, as the ensemble of the other objects.

The number of searched clusters must be less than the number of data: 1 < K < N;
otherwise they would have empty clusters. It is indicated with M = My, Mo, ..., M,
the set of K centroids. Each subdivision is identified with a matrix U € N5?N | with
each element j belonging to the cluster i ie u;; = {0,1}. The objective function is
now defined as:

V(U,M) = E”;‘:lzl’jeljjuwj - Msz
At this point we calculate the minimum of the objective function as follows:
1. U, and C, are casually generated
2. U, is calculated that minimizes V (U, M,)
3. M, is calculated that minimizes V(U,, M)

4. If the algorithm is converged the cycle is interrupted, otherwise U, = U, ,
M, = M, and it goes back to second step

Typical convergence criteria are:

e No change in matrix U
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o the difference between the values of the objective function in two successive
iterations does not exceed a predetermined threshold

As described above, there is a need for some method to initialize the calculation.
The quality of the partition will depend on this initialization.

There are two commonly used methods. The first is called the Forgy method and
chooses random data from the input data and uses it as the starting center of the
algorithm. The second method is that of the Random Partition in which each data
is assigned randomly to one of the k clusters and this condition is used as a starting
point. Generally, the first initialization is used for the standard k-means. A study
by Fayyad and Bradley [1] compares a good number of initialization methods and
evaluates the results.

For this work a modified method of the original k-means called k-means ++ was
used. This improved form was invented in 2007 by Arthur and Vassilvitskii and aims
to improve the seeding phase of the algorithm in order to ensure a faster conver-
gence in the case of NP-hard problems. The basis of this new algorithm is the idea
spreading the centroids it is bossible to get the best results. The algorithm in fact
computes the initial centroids randomly, and then the following are chosen from the
data with probabilities proportional to the square of the distance with the nearest
centroid. The steps are listed below:

1. The algorithm choses a centroid randomly from the data
2. For each point it calculates the distance between it and the nearest centroid

3. It chooses a new centroid from the data, using a probability distribution where
a proportional probability is associated with the point

4. The intermediate steps are repeated until the centroids are good quality ones
5. Then it continues as the k-means previously described

Regarding the timing of execution, this algorithm, although having a longer initial
phase for the choice of centroids to start with, converges more quickly than the
classical k-means, and therefore there is an overall containment of the execution
time.



3.3. K MEANS CLUSTERING

31



Chapter 4

Data Analysis
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4.1 Data Acquisition

4.1.1 Rig

As explained before data sampling has been done on a Groppo G70. The method
used was to apply an air data boom near the junction between wing and wing brac-
ing. This position is favourable as it is a structurally rigid point. It is worth to
mention that measurements quality is influenced by the loss of rigidity in the acqui-
sition system, and it is out of propeller wake, that is another source of perturbation.

Figure 4.1: The picture shows the air data boom mounted outboard.

The air data boom arrangement is as follows:

e a total pressure port is located on boom top that allows total pressure mea-
surement
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e on port stem flush holes are present, for static pressure measurement

e going to the back there is a vane, on the side of the boom, for angle of attack
measurement

e on boom stem there is another vane, 90 degrees out of phase from the previous
one, for side slip angle measurement

On board an inertial platform is located right down the seats, close to the center of
gravity for acceleration measurement, a gps for altitude and geographic coordinates
recording and a barometer for altitude evaluation.

Figure 4.2: The picture shows the Inertial Measurement Unit in place between the seats.

The complete list of signal sampled is the following:

from GPS: Viorths Veasts Vdown, altitudegps, latitude, longitude
from clock: time
gyroscopes: P, q,r

from barometer: altitudepgrometer
from Pitot probe: qc

from o and S vanes: «, 8

from accelerometers: n;, n,, n.

from magnetometer: Roll, Pitch, Yaw

4.1.2 Overview of samples

As a training set for the neural network 7 samplings have been chosen test maneu-
vers. Samplings have been runt during 10th, 11th, and 17th of june 2017.

35



Neural networks data analysis

36

Data Hour | Sampling duration
10 June 2017 | 8:50 2220s
10 June 2017 | 9:54 1970s
10 June 2017 | 14:35 420s
10 June 2017 | 15:37 1900s
10 June 2017 | 16:41 480s
11 June 2017 | 16:35 900s
17 June 2017 | 10:11 2010s

4.2 Maneuvers
Numerous aircraft testing maneuvers have been carried out to ensure that all as-
pects of the flight are covered, whether they are maneuvers or conditions, and for
the completion of the flight envelope. The flight tests were carried out by several
pilots who reported, for each flight, take-off and landing times, take-off weights,
consumption and finally the maneuvers carried out with detailed descriptions.
These maneuvers are typical of the testing of an aircraft, according to well-defined
procedures, which however are not the subject of this study, and therefore the mo-
tivations inherent to the use of such maneuvers will not be explored.
The maneuvers performed were as follows:

e Sawtooth glide at various speeds

e Sawtooth climb at various speeds

e Dutch roll triggering at various speeds

e Phugoid triggering with both fixed and free stick

e Longitudinal static stability testing at various altitudes

e Equilibrator doublet

o Stall idle

e Speed stability at different speeds

e Wind speed triangle

e Steady handling sideslip
The data coming from the maneuvers indicated and the remaining parts of the flight
are contained in the acquired data which will then be used for this study.

4.3 Analysis Environment

It is appropriate now to describe the environment in which data analysis has been
done.
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4.3.1 Computational Performace

The analysis has been performed on MATLAB@®)program from MathWorks, for the
pre- and post-processing phase on a pc and for the processing phase, which requires
consistent computational resources, it has been runt on Hactar HPC, the supercom-
puter of Politecnico di Torino. First topic to face is just the one afore mentioned:
the computational resources needed for the analysis. Pre-processing phase mainly
consists of signals re-sampling all to the same frequency, as the sensors outputs have
typically different sampling frequencies.

After that re-sampled and re-synchronized data are saved into a suitable data struc-
ture, ready for further analysis. It must be written as this part has been developed
using scripts written by Alberto Brandl, who coordinated this thesis, for his PhD
work. This first phase doesn’t need neither big temporary storage space (RAM),
nor long time for computing: the PC can handle these operations on large data
structures (in the order of 10° matrix rows) in less than a minute.

The second phase, that is processing, is the most demanding from a computational
point of view. It needs indeed a large amount of calculations, whom time depends
on CPU performances. So, even if K means Clustering is meant to be a fast and
practical method for data partitioning, it must be considered that for this activity
a specific infrastructure is needed.

Third phase, that is post-processing, is partially an onerous phase, in which detailed
plots are built as a main computational activity.

4.3.2 Analysis domain

A second aspect of analysis are the troubles on data interpretation. Man lives in a
three-dimensional space in time domain, and so we tend to refer to an analysis that
is in some degree amenable to these conditions. This specific analysis is done in a
multidimensional non-time dependent space instead. Neural Network training data
haven’t got a temporal logic, as the order in which they are used doesn’t affects
training.

Another abstraction factor is the large multidimensionality. This factor is of special
importance in data visualization. A big problem that is generally found in this dis-
cipline is to manage data belonging to a n-dimensional space with n bigger than 3,
and to manage a very large amount of data. If we add that in computer graphics
third dimension is simulated and not real, it is possible to understand how shrinked
is a computer screen for this sort of job. As a matter of facts a great attention
has been paid to data visualization, in order to obtain easy to read and meaningful
plots.

4.4 Statistical approach

Due to the large number of data managed an approach that evaluates data individ-
ually is completely not feasible. So the need arises of using a statistical approach.
First it must be considered flight data as a set of samples all referred to a coordinate
of interest that is flight angle of attack. According to this quantity it is possible to
calculate the probability distribution (PDF) for all cluster population or evaluating
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the most likely value or mode inside the cluster regarding Aa.
This analysis gives important qualitative informations on cluster.
Following parameters have been evaluated.

Multimodality The multimodality of the PDF was computed using the deriva-
tive centred and evaluating the number of maxima present. In
a early analysis the PDF on clusters was evaluated and it has
been noticed how a large number of clusters had a multimodal
trend. It is a clear sign that the cluster itself tends to de-
scribe more than a da state. This factor can be considered as
an marker of how ”good” the cluster is. From a mathematical
point of view, a number of peaks greater than one means the
cluster is constituted of two different points of accumulation
for the minimization of the variance in the cluster, index of an
incorrect partitioning of the data.

Variance The variance reflects how the population of a cluster is dis-
tributed in a small or large neighbourhood of the centroid. An
ideal cluster would be the one with the whole population close
to the centroid, that is with a low variance. This means that
the centroid "resumes” the state of the population it represents

properly.

Skewness Skewness is an indication of how much the probability function
is symmetric, that is that data points with values bigger or
lower than the centroid must have the same distribution around
it.

The order in which these features have been illustrated is not accidental: they have
in fact been placed in order of importance for the analysis. The most important
feature is indeed the multimodality of the PDF. A high-quality cluster must only
describe one da state at a time. Secondly, there’s the distribution of the population,
even if in this case a quality cluster does not have a scattered population. Finally
there is a second indication on how the clusters are centralized towards the centroid.
Clustering on flight data proved to be of poor quality immediately, so the second
and third aspects are secondary to the first.

In theory we should consider a ”0” aspect, which disregards all the others, that
is the number of data in the cluster. If a cluster has a small population, a statistical
approach would not be correct. The population of the clusters is therefore another
aspect evaluated in the analysis.

4.5 Clustering Strategy

As explained in the previous chapter, the algorithm of K-means clustering works by
giving the desired number of clusters as inputs. This factor is particularly disadvan-
tageous in the case of naturally partitioned data. For example, imagine throwing
a deck of cards on a table. A chart is created for illustrating how cards faces are
oriented on the table: the possible states are clearly 2: with the back up or with the
back down.
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However, if K-means clustering is used to partition the deck of cards with respect to
the orientation of the faces in three clusters, this would obviously generate an error.
More specifically, in the case in question, it is necessary to consider that the number
of accumulation points is not known a priori by the algorithm, that is the number of
minima for the variance of distances from centroids. This is a considerable difficulty
in deciding the number of clusters to choose from. However,it is possible to identify
the first discriminating factor for a raw skimming of the number of suitable clusters.

On the one hand it is not suitable to use a low number of clusters since this would
not be descriptive of the various possible states identified during the flight. At the
extreme opposite of the spectrum having a large number of clusters is not feasible
because it would have too low data populations and therefore it could not carry out
a statistical analysis on the data. It is also evident that a cluster contending a small
population of data represents a very specific aspect of the flight, if not even of the
wrong data of the acquisition.

The average number of peaks in the clusters was chosen as the cost function to
be minimized for analysis. Conceptually the variance of the PDF on clusters could
also be considered, since this is the variable resolved by the K means, but a greater
amplitude of the data immediately appears as a secondary factor with respect to
the description of several states simultaneously. Since the complete calculation of
all possible partitions would be very time-consuming, two separate analysis of the
cost function were carried out. The first is from a macroscopic point of view of its
trend and a second from a microscopic point of view. Clustering from 100 to 50100
clusters every 500 clusters (ie 100, 600, ..., 49600, 50100) has noticed a very evident
behavior:

Cost function behavior
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Figure 4.3: Average peak numbers for clustering between 100 and 50100 Clusters every
500 clusters.

Where average multimodality is defined as:

> > number of peaks in each centroid

average multimodality = number of centroids

In figure 4.3 the cost function has a left side having a very high slope. Note that
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this, however, is not a true vertical asymptote: for a partition with a single cluster,
the average number of peaks, which corresponds to the number of peaks in the PDF
of the single cluster, depends on the distribution of the points. Having a series of
data distributed appropriately, it would be possible to obtain a single-mode PDF,
obtaining a value of the exact function of zero.

In theory in the zero point, that is, not partitioning the data it would be possi-
ble to find a number of infinite peaks in the PDF, as there are infinite distances
between the points and therefore infinite peaks in the distributions. In reality this
case is not possible therefore the calculation inevitably starts from 1. The right
branch decreases instead with a sublinear slope. The gradient here is about -0.232.

Because of the excessively high computational requests, the complete mapping of
the cost function was not possible. With a macroscopic observation of this kind one
could think that, with a simple algorithm of descent we can identify the minimum
of the function, being monotonically decreasing, at least for the considered interval.

One observation that has been carried out is one with a reduced sample of data.
In this way it was possible to carry out a large number of observations in a rather
easy way. The clustering of the first 4000 data points has therefore been evaluated.
Mean multimodality and variance were observed. The test was repeated for other
samples of data points and the results were similar, so they were not reported.

The first graph that is shown is the one related to the variance.
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Figure 4.4: Average variance for clustering between 1 and 4000 for reduced dataset.

In figure 4.4 it is possible to immediately observe a noisy trend of the function.
There are numerous spurious peaks due to clusters that have extremely high vari-
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ances. However, the trends described by the peaks are quite clearly recognizable.
These trends are like 1 / x. This is due to the mediation that is made of the variances
of the various clusters, which are on the x of the graph. Therefore these changes
are due to this factor. The fact that they are different is due to the population
with respect to the data vertical position, they are divided into zones with similar
variances. Less evident is the trend of the minima.

In fact there is a trend that approaches zero for some cases with a low number
of clusters, which is maximized in the middle of the interval and then returns to
minimum values towards a unit subdivision, ie with a cluster number close to or
equal to the number of data points. This trend is very different from what was
expected, as it was expected a minimum value for a number of clusters different
from the minimum or maximum.

The average multimodality of the clusters is now analyzed.

Multimodality for clustering of first 4000 data points
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Figure 4.5: Average multimodality for clustering between 1 and 4000 for reduced dataset.

Also figure 4.5 presents a very noisy trend with a noise that decreases with in-
creasing the partitioning. In this case one would have expected to find a minimum
value along the interval, instead it has a monotone trend.

Since there are no particular minima in theory all types of research of the global min-
imum would be useless. However, it might be that with different flight data there are
cases in which a minimization of a characteristic is necessary or useful. Therefore we
continue in research independently of this discovery. Furthermore, it is not certain
that the overall trend of data clustering is exactly equal to a part of it. By the way
this observation is still indicative of some specific behavior and so it is worth to do it.

By carrying out a more detailed analysis in a small range of clusters it was possible
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to observe what is the real obstacle in the analysis. Clustering has been performed
for every cluster number from 490 to 510 clusters in order to understand better the
local morphology of the cost function chosen. Calculating the average number of
peaks for each partition from 490 to 510 clusters a trend has been noticed:

Average maxima on Clustering
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Figure 4.6: Average peak numbers for clustering between 490 and 510 Clusters.

Note in figure 4.6 how this trend is strongly discontinuous and how a small
number of partitions have been used in order to reduce calculation time. Here we
highlight a notable problem: it is analytically complex to find the minimum of the
cost function. Notice how there is a large number of minima even for a few partition
values (in this case 21). Therefore, various possibilities for approaching the problem
arise.

4.5.1 Brutal approach

The first possible approach is to evaluate the cost function for each of the possible
cases, taken in a range of reasonable values. This approach is what guarantees
the possibility of finding the absolute minimum of the problem in 100% of cases.
However, this approach is enormously expensive from a temporal and computational
point of view. In fact, consider that the algorithm of K means clustering takes time
and RAM superlinearly, which means that for a partition with many clusters it is
possible to experience a very high calculation time. This approach proves to be
infeasible because one of the secondary purposes of this research is to find a quick
and effective method to find the network training points.

4.5.2 Standard approach

A second type of approach could be to evaluate a certain quantity (to say 20) of
data partitions in a given reasonable range. This method has the advantage of being
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able to give an overview of how the partitioning affects the cost function, but we
can not know if, for a given partition, there is not a much lower value of the cost
function in the adjacent partitions, given the jagged trend of the cost function when
the partition changes. This approach is also not recommended.

4.5.3 Genetic Algorithms approach

At this point it could be imposed to use some algorithm to find the absolute minimum
of the cost function. One of the possible methods to find the minimum of a non-
smooth function is genetic algorithms. This type of approach has been tested by
the author but it has proved to be very slow since it requires a considerable number
of evaluations of the function, albeit a smaller number than the brutal approach.

4.5.4 Optimized approach

Now a compromise could be evaluated. It is possible to evaluate a standard ap-
proach, but somehow find the local minimum close to the various initial assump-
tions. This guarantees to have a computationally light method but at the same time
more accurate than the standard approach. This constitutes the method chosen.

4.5.5 Chosen Method

In this subsection the chosen method is described in more detail. In order to find
the local minimum, a simple gradient descent algorithm has been implemented in
the MATLAB@code. This was written in order to guarantee a restricted amount
of function evaluations and to work on functions from N to R. The code is as follows:

x=n_cluster; %first guess partition
i=0; %counter initialization
max_-it=10; Y%number of maximum iterations
sx=FastClustering (x—1); Y%evaluation of left point
cx=FastClustering (x); Y%evaluation of initial guess
dx=FastClustering (x+1); %evaluation of right point
d_dx=dx—cx; %right derivative calculation
d_sx=cx—sx; %left derivative calculation
d=dx—sx; %centered derivative calculation

while i<max_it

i=i+1;
if dodxxd-sx<0 && d_-dx>0 %evaluates if current point is a minimum
minimum=x ;
break
else Y%evaluates direction of descent
if d>0
x=x—1;
dx=cx;

CX=SX ;
sx=FastClustering (x—1);
d_dx=dx—cx;
d_sx=cx—sx;

elseif d<O
x=x+1;
SX=cCX ;
cx=dx;
dx=FastClustering (x+41);
d_dx=dx—cx;
d_sx=cx—sx;
d=dx—sx;

else
minimum=x ;
break
end
end
end

Clusters=KmeansClustering (minimum ); %evaluates full clustering for local minimum

In the code it is possible to notice how, at the beginning of it, there are three eval-
uations of the Fast Clustering function. This is the minimum cost that this method
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has for the optimization of the number of clusters. The computational cost of this
optimization algorithm for the search of the local minimum is therefore at least 3
times higher than that of the Standard Approach. Also note how this function dif-
fers from the final function K means Clustering: the first one only calculates the
information necessary for the evaluation of the cost function, while the second one
calculates a whole series of parameters that will be illustrated in the next section.
This was done in order to lighten the code and make the Fast Clustering function
faster to perform. From subsequent tests it was found that the number of maximum
iterations set was never reached. As the algorithm is written there is also only one
other function evaluation per cycle.

After the first function evaluations in order to find the right, left and centered deriva-
tives of the cost function, one enters the cycle. The first ”if” evaluates if it already
starts in a minimum, that is if the right and left derivatives differ in sign and if
the right derivative is less than zero (without this second condition it isn’t possible
to distinguish the minima from the maxima). If this condition is not verified, it
continues. The sign of the centered derivative is evaluated and the ”slope descent”
direction is then evaluated. It moves one unit left or right and reassign the deriva-
tives of the previous step and calculate the missing extreme derivative.

At this point the cycle repeats itself.

4.6 Analysis Workflow

Here are listed all the operations done in MATLAB®)code which resumes the work-
flow used in the analysis. It must be said that optimization loop is not described. In
optimization loop K-means fast does not include all the features listed below. This
following workflow is the basic one, valid for a single evaluation.

Clustering K means clustering ++ algorithm is performed given the num-
ber of partitions desired.

Main Calculations Raw data are assigned to a data structure which holds all
data in analysis. Cluster populations and cluster coordinates
are assigned to proper structure sites.

A« Calculations Aq« is calculated for each data point and it is also calculated
for each cluter by integral averaging A« of cluster population.

Radii Calculation Euclidean distance centroid and its population is computed.
Minimum, medium and maximum radii are stored in the struc-
ture.

Statistics Calculations normal PDF of each cluster is computed and several dif-
ferent aspects of it are evaluated:
e multimodality
e mode
e position of most likely value
e skewness

e variance
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These data are saved in the data structure.

Statistics check Values pertaining to the statistical analysis are evaluated and
it is noted which clusters exceed the thresholds present on mul-
timodality, variance, skewness and cluster size.

Failed check Clusters that exceed in all previous cases are reported as ”failed
clusters”.
Quality Check Evaluates quality of the entire partition and stores indices of

clusters in order of ascending quality.

Position plotting The population of the failed cluster data for each dimension is
plotted.

PDF plotting The probability density function of the failed clusters is plotted.

Radii plotting All information relating to the rays of the data present in the
failed clusters is plotted.

Quality check A quality function is used to compute quality for each cluster,
then they are sorted in order of quality.

Data Storing The data are saved in different structures. These structures
are in the input format to the neural network. Cluster-failed
coordinates are saved separately. The coordinates of healthy
clusters are saved.

Training network Training of the network with chosen clusters takes place.

Testing network Network is tested both on training and on test data.

4.7 Quality Check

Once a data partition has been generated, it is necessary to find a selective method
for evaluating the obtained clusters. Based on the previously obtained statistical
evaluations it was possible to have a basis on which to compare the clusters.

4.7.1 Failed Check

A first check is to evaluate some aspects and to set thresholds such that, if all are
exceeded, the cluster is marked as ’failed’. In this way it will be then possible to
carry out the analysis of these to understand how they could influence the training
of the neural network. The aspects considered with the relative thresholds are:

Multimodality 1 (expresses whether or not the cluster is multimodal)
Dimension of cluster Population 10% of maximum cluster

Variance 0.01

Skewness 0.01

This means that all clusters with Variance and Skewness above 0.01 are marked. All
the clusters smaller than 10% compared to the average population of the clusters,
calculated as the total population normalized on the number of clusters, is marked.
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4.7.2 Quality Ranking

For a high partition it has been noted that there are no clusters marked as 'failed’, so
a secondary mechanism of choosing low quality clusters is needed. This mechanism
is always based on the evaluation of the statistical qualities of the various clusters,
but without indicating the thresholds.

First, the variance, multimodality, population and symmetry of each cluster are
collected. The first three are ordered from top to bottom, as having for example
a high variance is a demerit factor for the cluster, while the last one is ordered in
ascending order, since a high cluster population is a factor of about. The trend
of one minus the quantities collected in the previous step was then plotted. For
example, there is a trend like this:

Trend for normalized Components of Quality function
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Figure 4.7: Blue: variance, Red: Skewness, Yellow: Multimodality, Purple: Population.

Here follows the explanation of figure 4.7. First of all, note the variance curve
with just a few clusters with high variance (on the graph are those on the left) and
then a whole series of clusters with low variance values on the rest of the blue curve.
Bear in mind that the curves represents the reciprocal of the defined normalized
variance. Also remember how variance is the factor minimized by the k-means
algorithm. This means that there are a whole series of well-characterized clusters and
a small part of clusters with scattered data. Skewness has a less steep macroscopic
pattern than variance. Notice how the line is less marked. This is because, by
enlarging the curve, it is characterized by a broken pattern. Once again, skewness
is a secondary aspect of the analysis. Being characterized by natural numbers,
multimodality is presented as a stepped function. Finally there is the population of
clusters that has a different course from all those previously considered. In fact, there
is a very flat trend for low quality clusters, which means that many clusters have
low and similar populations and few clusters have high populations. The stepped
character is also surprising, since the number of points per cluster is in all natural
numbers, but it is also true that the possible range is very high. At this point, a
function appropriately called ”Quality Function” is created, given by the sum of
these four factors analyzed and then normalized again.
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Below it is possible to see what form it takes:

Quality function

1 T T T

Normalized quantities

D — 1 ’ 1 1 1 1 |
02 04 06 08 1 12 14 16 18 2

Reordered clusters %10%

Figure 4.8: Quality function shown in black

This quality function is calculated for each cluster. The quality funtion is for-
mulation is shown below:

Q= (1 ~ WW) (1 _ ZS’%WSS) <1 _ ZMultimodalz‘ty) (ZPopuZam'on>

n.clusters n.clusters n.clusters n.clusters

The ’S’ shape of the Quality Function in figure 4.8 allows to find clusters of the
highest quality (those present at the right side of the graph) and clusters of low
quality (those present at the left side of the graph). In the middle, instead, there
are medium quality clusters. For simplicity of analysis, if there were no failed clus-
ters, the 10 clusters with the worst quality are analyzed. We must also consider
how the ’failed’ clusters are not necessarily those with the worst quality. This is
mainly due to the fact that the calculation methods are different. As explained
previously, the ’Quality function’ is built giving equal importance to all the factors
while the thresholds are fixed bounds. This means that a cluster having three very
bad characteristics, for example Population, Skewness and Multimodality, but hav-
ing an excellent Variance means that the cluster is not considered ”failed” but has a
very low quality. These differences must be kept in mind in the subsequent analysis.

4.8 Data Visualization

As explained above, the visualization of data for this kind of problems is particularly
difficult. In the course of the thesis work, the typology of the plots has been changed
several times in order to contain the salient information and to be easy to read.
Finally we chose to plot only the data related to the clusters marked as ”failed” so
as not to accumulate a disproportionate amount of plots to be analysed. In fact, we
are interested in investigating only the characteristics of the clusters to be improved
rather than those of the valid clusters, which however we would like to be.
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PDF visualization The plotting of the normal probability distribution is the basis

of the post-processing analysis and it serves to evaluate the number of peaks
and the shape of the distribution. On the plot there is the curve of the PDF in
red with the probability on the y axis and the A« on the x axis. In addition
there are the remaining important information related to the cluster, that is
the cluster population, the skewness and the variance.

Normal Probability Distribution of 104 cluster

Cluster popfilatipn: 14
3F Skewness:J1.69
Variance: §.886

- N
- o N o
T T T T

Normal Probability Distribution

o
(%}
T

1.9 2 21 22 23 24 25 2.6 2.7
delta alpha

Figure 4.9: Probability Distribution plot for Cluster 104 in 1000 clusters partitioning
(failed cluster).

Position Visualization Another important aspect to display is the geometric po-

sition of the clusters. Since the multidimensional space is the only way to
display is to display one dimension at a time compared to the reference co-
ordinate which is the Aa. What you see is a cloud of points. The cluster
population is highlighted in red while the centroid coordinate is represented
by a blue circle. In this way it is possible to have an idea of the positioning of
the cluster. Note that numerically this display could also be made numerically,
evaluating the ranges with respect to the dimension to be analysed.

50 - Position of Cluster 104 data points for roll variable
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Figure 4.10: Roll data cloud plot for Cluster 104 in 1000 clusters partitioning (failed
cluster).
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Radii Visualization The radii display is the last type of plot that is used for
this analysis. It is a circular-shaped plot in which the maximum radius and
the minimum radius of the data are indicated by two black circles, while the
medium radius is indicated by a red circle. The cluster population is then
ordered from the datum with minimum radius to the datum with maximum
radius. Remember that by radius the Euclidean distance in the multidimen-
sional data space is indicated.

The n-dimensional Euclidean distance is computed as follows:

where p; and ¢ are the coordinates of the points in the k-th dimension out
of n dimensions. The maximum, average and minimum radii are also written
literally.

Data radii for Cluster 104

Viaximum Radius: 4.357

Figure 4.11: Radii plot for Cluster 104 in 1000 clusters partitioning (failed cluster).
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In this chapter a comprehensive discussion of clustering quality will be illustrated.

The previously explained tools are now used to perform an analysis of the acquired
flight data. The analysis is comparative in that it needs to be evaluated the differ-
ences between a subdivision in a few and in many clusters and how these differences
affect the training of the neural network.

In this way it is possible to cover partially all the different possibilities of clus-
ters dimension. It is importanto to notice that, not having a unique and solid way
to determine which nuber of clusters to choose, both ways would be possible.

Fist of all choice of clusters dimension will be discussed. It will follow a description
of population characteristics and then a final review of what found.

5.1 Cluster Dimensions choice

The initial points chosen for the optimized method are 20000 and 200 clusters. This
choice is not random. Below a graph pictures where the two cases are positioned
and which value they have with respect to the cost function.

Cost function behavior
28 T T T T T T T T

i |

24 .

221 -

Average Multimodality
=
T
|

0.8 | | | | | | | | |
0 0.5 1 15 2 25 3 35 4 45 5

Number of clusters x10*

Figure 5.1: Two case choiched indicated on cost function behavior curve.

20000 clusters is placed at the value of the cost function, as can be seen in figure
5.1. Then 200 clusters had been chosen because it is exactly two orders of magnitude
from the first one.

The simple choice is one of the may possibilities however it well represent two oppo-
site conditions. In the study will follow a first part of the analysis on the 200 clusters
and its comparison with the 20,000, which we will call respectively: case 1 and case 2.
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5.2 Cluster Processing

First we analyze how the optimized method is performed on the 200 clusters. In
the figure it is possible to observe how, with only 4 evaluations of the function, it
reaches the desired result, that is the search for the nearest local minimum.

Optimized method clustering time

23 3.3
22 3.25
o 21 32 S
o S
£ c
= S
22 315 G
@ S
@ L
= ?
O 19 31 8
18 3.05
17 Il Il Il Il Il 3
199 199.5 200 200.5 201 201.5 202

Number of Clusters

Figure 5.2: Optimized method starting from 200 clusters.

In figure 5.2 it is interesting to note that, at a lower value of the cost function,
a lower calculation time is also associated. It would have been expected that the
calculation time would scale as the number of clusters required. This trend, how-
ever, could be explained as the fact that the k-means algorithm, which was set on
Matlab in order to have a maximum of 1000 iterations to improve the cluster po-
sition, converges well before the maximum limit in the case of the minimum local.
The minimum local reached is 201 clusters.

However it is worth to mention that k-means clustering uses an heuristic method
for initializing clusters, as explained in chapter 3. So to be completely sure that
201 represents a proper minimum the process of clustering should be done numer-
ous times in order to ensure a valid selection. As this approach is computationally
demanding for this study the authore preferred not to investigate how initialization
affected local cost function behavior.

Again it needs to be considered that a different initialization of clusers could lead to
a different local situazion. It can be estimated that the global condition would rest

similar.

For case 2, there is a different situation.
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Optimized method clustering time
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Figure 5.3: Optimized method starting from 20000 clusters.

In figure 5.3 the number of function evaluations required is always 4 but the time
spent on the account is unexpected. The calculation time is inversely proportional to
the number of clusters. However, this could only be a local condition or dependent
on the scheduling of the supercomputer used rather than by a particular condition.

The local minimum stands at 20001 clusters.

It should be noted by comparison how much the difference between case 1 and
2 is: there is a difference of more than one order of magnitude in the calculation
time with the same computational conditions. Also note how the cost function is

equally fragmented for both a small and a large subdivision.

5.3 Cluster Post-processing

The post-processing of the two cases begins with the evaluation of the quality of the

computed clusters.

5.3.1 Failed Clusters checking

Regarding case 1, the results of the failed cluster analysis are as follows:

Failed Variance: 103 (51%)
Failed Skewness: 198 (98%)
Multimodal: 173 (86%)
Unconformal Dimension: 5 (2.5%)
Failed Clusters: 2 (1%)

As far as case 2 is concerned, the situation is as follows:

Cost Function Value
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Failed Variance: 19241 (96%)
Failed Skewness: 19772 (98%)
Multimodal: 8157 (40%)
Unconformal Dimension: 580 (3%)
Failed Clusters: 0

At this point it is very important to carry out an analysis of these collected data.
First of all, note how, in case 1, there are high percentages of clusters with three of
the four high characteristics and the fourth the most restrictive one. In fact, out of
5 clusters with non-compliant dimensions, only two are defective overall.

Notice how the percentage of non-compliant dimensions between the two cases is
almost the same. In the second case it is particularly interesting how, despite the
high number of clusters with non-conforming features, there is not an intersection
of all four sets. It is also important to note that the percentage of multimodality
is halved but Variance and Skewness worsen considerably. This could be the first
visible effect of the choice of multimodality as a cost function.

Another thing ti say is that flight data were acquired with high quality instrumenta-
tion, so it was expectable how the number of failed clusters, which is directly linked
to data acquisition. This is also a good feedback on data quality and resampling
itself.

5.3.2 Cluster Quality checking

The secondary method for evaluating clusters is by observing quality and its func-
tion.

First of all, the low quality clusters were selected and below are the identifiers of the
10 clusters with the lowest quality and the respective quality for the two cases:

CASE 1 CASE 2
Cluster ID | quality | Cluster ID | quality
127 0.2616 10922 0.3877
5 0.2902 7844 0.4253
52 0.4614 4046 0.4460
120 0.4987 10922 0.3877
132 0.5261 5835 0.4520
19 0.5500 4619 0.4598
74 0.5562 16613 0.4662
149 0.5612 18154 0.4666
148 0.5614 13039 0.4785
111 0.5689 4876 0.4797

Being difficult to interpret below is presented a chart containing the quality values
compared:
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Worst ten clusters quality
T

Figure 5.4: Worst clusters ranking confrontation for case 1 and 2.

In figure 5.4 it is interesting to note that the minimum quality is half for the
first case but immediately the quality goes up, while in the second case it remains
higher, but also more constant. This is primarily due to the complete distribution
of the Quality Function. Being less clusters in the first case, there will certainly be
a faster growth.

The comparison between the two Quality Functions is shown below:

Quality Functions Confrontation

0.9

Case 1
Case 2

0.3

Clusters Ranking
Figure 5.5: Quality function confrontation for case 1 and 2.

In figure 5.5 notice how the global trend remembers the local trend. In case
2, there is a greater discrepancy between the three cases of high, low and medium
quality clusters. In case 1, also note how there are more fluctuations in the value.
This trend is mainly due to the reduced number of clusters compared to case 2.

5.3.3 Clusters Content evaluation

At this point it is possible to carry out the actual analysis of the clusters marked
as ’'failed’. The graphs generated automatically as a report from the Matlab script
used are analyzed. In this section three cases will be compared: one of the two
clusters ’failed’ for the first case, the worst cluster in the ranking of the second case
and then the cluster with higher quality of the first and second case.
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Probability Distribution The graphs below show the distribution of the Prob-
ability Desity Function or PDF. From the three graphs we can see that in general
the trend is multimodal, just as it can be found in the cost function, which is more
than 0. Not exceeding any of the cases the multimodal distribution, is considered a
good cluster one with as few peaks as possible , with them very close together and
with a good coverage of the cases contained among the maximums.

Normal Probability Distribution of 191 cluster

Cluster population: 73
0.7 sSkewness: 1.179
Variance: 0.051
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Cluster 191 is small and has a bimodal
distribution. However, one of the two

peaks is higher than the other.

Normal Probability Distribution of 58 cluster

Cluster population: 3882
Skewness: 1.168
Variance: 0.006

025

015

011

Normal Probability Distribution
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2 s 6 5 0 12
delta alpha
Again a bimodal trend, however the
curve is rather narrow and the two
peaks are quite similar. The popula-
tion of this cluster is very high (almost
four thousand points).

Normal Probability Distribution of 10922 cluster

8[| Cluster popuiation: 17
Skewness: 7.067
|| Vvariance: 0.910
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The cluster consists of a population of
only 17 points and poorly distributed.
Notice how there are as many as 6
peaks in the graph. This trend cer-
tainly denotes a problematic cluster.

Normal Probability Distribution of 3256 cluster
Cluster population: 126
0.9 Skewness:0.179
Variance: 0.149
081
0.7
0.6
051
0.4

0.3

Normal Probability Distribution

0.2

011

52 54 56 5.8 6 6.2
delta alpha

The 3256 cluster has a bimodal trend
but with very close peaks and a well-
matched function between them. The
bell is also sufficiently narrow. The
population is sufficiently high.
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Distances between points and centroids he graphs below show the distribu-
tion of distances between the cluster population and its centroid. It is to be consid-
ered a good cluster that having the population contained in a well-circumscribed and
small area, which would therefore have rays not exceeding a certain small amount.

Data radii for Cluster 191

laximum Radius: 23.32"

In this graph it is clear to note, for
cluster 191, that there are two dis-
tinct series of radii and that both the
medium radius and the maximum ra-
dius are very high.

Data radii for Cluster 58

\Waximum Radius: 36.18(

Vlean Radius: 8.865
Radius: 1.413

For cluster 58 there is a fairly unequal
distribution of rays. This cluster also
has lower average harness than clus-
ter 191. Note also that the maximum
radius is only high due to the fact
that one point is more distant from
the centroid than the others.

Data radii for Cluster 10922

Maximum Radius: 3.078

\lean Radius: 1.765

As in the previous case there are rays
divided into two blocks. Notice how,
compared to the adjacent case, how
the radii are smaller. This is due
to the fact that having more clusters
there are distances from the lower cen-
troid.

Data radii for Cluster 3256

\iaximum Radius: 1.044

In this case there is an extremely com-
pact distribution of the population
and, in fact, the average radius is re-
markably low. This represents quite
well what one would expect from an
ideal cluster.



Roll angle

Position of Cluster 191 data points for roll variable
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Notice how there are two groups of
points equidistant from the center but
very separate from each other. This
behavior divided into two groups is
also evident in other plots of the same
cluster.

Position of Cluster 58 data points for roll variable
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o
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You can immediately see the remark-
able extension of this cluster that cov-
ers a large part of the graph. The pop-
ulation is sufficiently well distributed.
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Position of Cluster 10922 data points for roll variable
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In this plot you immediately notice
how small the cluster population is.
The cluster is also positioned in a very
dense area of points.

80 Position of Cluster 3256 data points for roll variable
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The graph does not notice how much
the population of this cluster is con-
centrated, at least for this coordinate
in a very narrow area.
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Pitch angle

Position of Cluster 191 data points for pitch variable
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Here a noticeable vertical dispersion
of the points can be noted. This
means that the centroid of this cluster
is attempting to represent many pitch
values with a single A« value. This is
not necessarily a sign of poor cluster
quality.

Position of Cluster 58 data points for pitch variable
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The dispersion of the points in the
graph should not be misleading as the
population of this cluster is very high.

Position of Cluster 10922 data points for pitch variable
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The horizontal dispersion presented in
the plot is instead a sign of poor qual-
ity of the cluster as it seeks to sum-
marize many A« values with a single
value.

Position of Cluster 3256 data points for pitch variable
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Once again the 3256 cluster has a very
compact population.



Longitudinal acceleration
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In this plot we notice a high vertical
scatter of the points and once again a
sharp division into two groups.

Position of Cluster 58 data points for nx variable

o

Al

ol

2

£

o

ol

ol

A .

-40 -30 -20 -10 deltaoalpha 10 20 30 40
No particular specific trends are
noted.
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Position of Cluster 10922 data points for nx variable
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or this plot an extremely high disper-
sion of the points is observable.

nx
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Position of Cluster 3256 data points for nx variable
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Strangely enough, for the 3256 cluster
there is a slight verifiable dispersion.
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Lateral acceleration

15 Position of Cluster 191 data points for ny variable 5. Position of Cluster 10922 data points for ny variable
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As in the previous plots, we note the Also in this plot we notice a fairly dis-
division into two groups. tinct subdivision into two groups.
150 Position of Cluster 58 data points for ny variable
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ous trend, or a fair number of points . e . .
. ’ P A slightly elongated distribution is
with the same value of Aa (8 degrees) tod
noted.

but with very different lateral acceler-
ation.

62



Dynamic pressure

1600 Position of Cluster 191 data points for qc variable
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Dynamic pressure contains speed in-
formation. In this case cluster 191
represents a fair speed range for a
fairly small alpha delta.

1600 Position of Cluster 58 data points for qc variable
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For cluster 58 there is an extremely
strong trend, ie all points are part of
maneuvers carried out in not very nar-
row range of speeds (low). This clus-
ter proves to be well characterized as
it summarizes the behavior of a series
of well-defined states.
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1600 Position of Cluster 10922 data points for qc variable
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A horizontal scatter is observed in the
cluster population distribution.

1600 Position of Cluster 3256 data points for qc variable
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No particular specific trends are
noted.
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Vertical speed

Position of Cluster 191 data points for Vdown variable
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Once again the cluster 191 is divided
into two distinct and extremely dis-
tant two zones.

Position of Cluster 58 data points for Vdown variable
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Cluster 58 has an extremely large
population distribution with regard to
vertical speed.
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Position of Cluster 10922 data points for Vdown variable
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A scatter is present in the points.

Position of Cluster 3256 data points for Vdown variable
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No particular specific trends are
noted.
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5.4 Conclusions for comparative analysis

The comparative analysis showed interesting differences between a clustering with
few and many centroids. These differences are not limited to low-quality clusters,
but are also evident in high-quality clusters.

However, the choice of the strategy to follow is not trivial. Surely the number
of clusters has a significant influence on the speed of the analysis of the latter and in
the calculation. We must not forget how the centroids are used to train the neural
network. A large number of clusters can give overfitting problems and does not allow
the use of training methods like Levenberg-Marquardt which are more computation-
ally more expensive. A low number of clusters may fail to correctly summarize all
phases of the flight.

Since the discrepancies in the number of clusters are not the source of enormous
overall differences, a useful method could be that of clustering with a few indicated
clusters and discarding the failed ones, carefully adjusting the thresholds used for
selection. However, the complete answer to the problem must be amened to testing
results. The next chapter is about studying how these strategies influence clustering.
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Once the data to be inserted in the network has been analyzed, it is now necessary
to take care of the training and testing of the neural network. First of all, the
characteristics of the network will be illustrated.

6.1 Neural Network Architecture

The chosen neural network presents only one hidden layer with 11 neurons each.
Notice how the input contains exactly 11 inputs. The output layer instead consists
of only 1 neuron. The network will convert incoming signals (which are p, q, r, Roll,
Pitch, Yaw, Nx, Ny, Nz, qc and Vdown) in an estimated Aca.

The type of network is of the ”Feed Forward” type. This type of networks consists of
one or more layers connected in a single direction. Each layer only has connections
with the next layer.

The universal approximation theorem for neural networks says that each continuous
function can be approximated with a feed forward network having only one layer
providing enough hidden units. [4] Another variable in neural network architecture
is the activation function. Precisely in compliance with this law, and wishing to
carry out tests on a very simple network to minimize the calculation time, a single
layer architecture was chosen. Even in a possible future view of the use of the on-
board network, it is important to have a very simple network, which has very short
calculation times and which can be performed with simple and light systems. In
this regard, the hyperbolic tangent sigmoid is used as an activation function in this
neural network.

Figure 6.1: Hyperbolic Tangent sigmoid function and its derivative.

The transfer function is:

_ 2
Clte

tanhsig(x) = tanh(x)

6.2 Neural Network Training

The methodology chosen for the training is that of Levenberg-Marquardt as it is the
one that allows the minimization of the objective function in a smaller number of
steps. A drawback is that it might be computationally more demanding than other
methods.

The maximum number of iterations in the training is 1000. The maximum number
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of validations is 10.

It was also decided to re-train the same network 100 times because the quality of
the network is strongly dependent on the initial conditions chosen. In fact, at the
beginning of the training there is an heuristic initialization of neurons. It is therefore
a good practice to re-run the training in order to obtain a good fitting on the data
provided. We must consider how the training performed by MATLAB®)follows a
very precise algorithm according to which not all the data related to the training
are used for this purpose but some are used for checking the quality of the network.
In fact, it is good practice to divide the input data into three subset.

The first is the training set, with which the real training of the network takes place.
The second is the validation set and the error committed in evaluating this subset is
monitored. In the first iterations of the process of calculating weight and bias this
error drops. However when the network starts to overfit the data this error increases.
The structure of the network is then saved to iteration with the minimum of this
error. The last subset is that of the test. Normally, during the training the testing
error is also calculated. This error is not used for training but is used to calculate
the error to compare different models. If this error does not reach a minimum during
validation, this may indicate a bad characterization of the network. The division of
data between training and testing presents different strategies, including the random
one used by default.

The standard Matlab settings are:

e Training set: 75% of the data
e Test set: 25% of the data
e Validation set: 25% of the data

Compared to the work carried out it would be conceptually wrong not to consider
part of the clusters in the training phase as they are subtracting the salient infor-
mation of the flight to the network. It would therefore be better to cancel both the
validation and the test during the training phase in order to also consider overfitting.
On the other hand, using MATLAB(@®)’s training algorithm it could be possible to
find better networks than those evaluated in this test. Another one could be cross-
validation, that will be tested in future studies. A third strategy could be to alter
the selection of data to be inserted in the validation and in the test set in order to
effectively carry out the testing of the network in one step.

6.3 Neural Network Testing

Network testing was carried out both on the same sample of data used for training,
which is here called self-test, and on a sample of flight data not used for training.
Flight data not belonging to the training are data acquisition carried out together
with data from the testing data. From these data the data belonging to taxiing on
the runway, take-offs and landings have been subtracted.
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6.4 Analysis choice

For this analysis 9 neural networks were instructed starting from different input
data.

As a benchmark, a network was drawn up, always of the architecture described
above, with all the data related to the training. This is clearly the simplest method
of network instruction. Two negative factors of considerable importance must be
considered in this methodology. The first is that the time and the computational
resources necessary for training starting from complete data are very large. And
this is precisely the reason for the thesis: that is to find a method of data reduction
to make the training phase practicable.

The second reason, always connected to the fundamental reason of the thesis, is
that of underfitting: that is when too much data is given to the network and this
produces a underfitting error, ie the network is not able to estimate the behavior of
cases for which has not been instructed. Also in this case a data reduction should be
able to reduce this problem. Starting from clustering for 201 and 20001 clusters, the
coordinates of the centroids have been extrapolated according to the following logic:
the quality function has been divided into three zones, respectively low, medium and
high quality, and the clusters have been used to train the network. An analysis was
then carried out with all the clusters. The two failed clusters were removed from
the partition with 201 clusters.

Of each network have been recorded, as previously written, 100 workouts, being 9
networks has reached a total of 900 workouts. Of these the average value of the error
in the test and in the self-test and the best network was evaluated. Schematically:

Benchmark All data from flight recordings
201-all All clusters centroids
201-best Best quality centroids
201-medium Medium quality centroids
201-worst Worst quality centroids
20001-all All clusters centroids
20001-best Best quality centroids

20001-medium Medium quality centroids
20001-worst Worst quality centroids

The complete test was performed once again on the HPC Hactar of the Polytechnic
University of Turin. It must be said that the only true calculation that needs such
computational resources is the "benchmark”.

The comparison of the networks is done by calculating the error in the case of
the self-test in the following way:

> (|training data — net output|)

Errorontraining = — -
number of training points
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While in the case of the actual test the formula used is the following:

> (|test data — net output|)
number of testing points

Errorontest =

Notice how to calculate the absolute value: this is due to the fact that it does not
matter if the network error is due to excess or defect.

6.5 Test Results

Average error values are presented for the nine networks analyzed and the minimum
errors committed by the networks. The first table contains errors on the network
test on training data, while the second table contains those related to errors during
testing.

The numbers that are read in the table are actually the average errors on the Ac.
The table is therefore to be read as: the Benchmark network makes a mean error of
0.3769 degrees on the delta alpha.

Auto-test
NN Name Best Res. [deg] | Average Res. [deg]
Benchmark 0.3712 0.3769
201-all 0.7028 2.695
201-best 1.1667 1.5684
201-medium 1.4385 2.2195
201-worst 1.6939 2.7384
20001-all 0.3876 0.3966
20001-best 0.3936 0.4061
20001-medium 0.3910 0.4024
20001-worst 0.3953 0.4064

The benchmark stands at the lowest values in this test. The obvious conclusion
is that the network trained with all data has a minimal error on the test based on
the data itself. Notice how there is very little difference between the best network
and the average of the error on the 100 networks tested. Another important con-
sideration is to notice that clusters-trained networks have errors in the tenth grade
order compared to the non-clustered network. This is to be considered a small con-
firmation of the validity of the method. That is, starting from summary data it is
possible to analyse many different network architectures with much lighter compu-
tational training, without encountering considerable errors.

As for the data coming from the 201 clusters, there are very marked differences
between the four cases. The difference between the average values and the best
networks is very important compared to the best one. The network trained with
the highest quality clusters presents the best data. Also note how training with all
clusters approximates the data set better. This may be due to the fact that, being
few clusters, eliminating two thirds at a time of these are lost vital information to
a good training of the network. As for the data coming from the 20001 clusters,
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one immediately notices how the results are rather compact around similar values.
In general this can be explained by the fact that all the networks, including that of
Benchmark, have undergone all the same degree of overfitting.

It is interesting to note that the network including all the clusters is better in this
test than the others belonging to the 20001 clusters. However, we must consider
how the difference is not so important as to suggest specific conclusions. Comparing
the data from the 201 and 20001 clusters, it is immediately clear how the latter
obtained the best overall results in the analysis phase on the training data.

Test
NN Name Best Res. [deg] | Average Res. [deg]
Benchmark 1.6456 2.0835
201-all 1.7157 4.2266
201-best 1.7730 2.3142
201-medium 2.0267 2.8691
201-worst 2.2223 3.1811
20001-all 1.7610 2.1821
20001-best 1.5812 1.9644
20001-medium 1.6424 1.9308
20001-worst 1.7565 2.1756

For the test, it is observed that the benchmark network stands on an average error
of about 2 deg on the delta alpha and about 1.6 deg as the best result. From now
on, we can see how this is a noticeable difference between the best result and the
average result.

As for the 201 clusters, we note that the differences are rather limited compared to
the 20001 clusters. The average values are very high, however the minimum values
are comparable. Notice how the 7201 all” network has an average error value much
higher than the others, in the order of double.

As for the networks trained on the 20001 clusters, it is noted that the error on the
average of the 100 trainings knows minimal regarding the ”medium” network, that
is the one with the clusters with quality media. As for the results of the best net-
works there is a minimum error of 1.58 degrees for the "best” network. This is a
confirmation of how the method is right, that is, the division into clusters and the
use of only the best clusters makes the results slightly better. The gap between the
best network of 201 and the best of 20001 is contained in the tenth of a degree.
bviously another aspect to consider are the timing. Consider how for the training of
a single network with all the input data it takes about 4 minutes, while for a network
deriving from the 20001 clusters just under 1 and, lastly, about 10 seconds for the
201 clusters network. Obviously these times are completely reasonable compared to
the clustering phase, but we must consider how the training was carried out on very
simple networks. In the case of more complex networks and a greater amount of
data, the times will be much longer.
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First, a recapitulation of the method presented and discussed in this thesis is
presented.

e The flight data are taken, the outputs of the various sensors are synchronized
and resampled.

e The data created are treated with the k-means clustering algorithm in order
to extract the salient points of the flight data.

o A 7"steepest descent” optimization method is used to find the local minimum
of the cost function.

e The clusters found by means of statistics are processed in order to evaluate
their quality.

e These clusters are used for the training of the neural network responsible for
finding the angle of attack.

Looking back over the analysis presented in this text, an assessment of the work
must be done and the differences between expected data and data found. First of
all, the computational resources necessary to carry out the clustering of the sam-
ple are very large and must be taken into account for a possible future application
of the method. Secondly, the use of k-means clustering also has considerable dis-
advantages, for example that of having to impose a priori the number of sample
clusters. A possible evaluation of other clustering methods such as the ”Gaussian
Mixture”, where the number of clusters is determined by the method could be con-
sidered. Note how much of the work done is due to the choice of the number of
clusters and the census of their quality. Unfortunately, in order to test the validity
of the method, the author had to face the whole pipeline from raw data to network
testing, leaving little room to evaluate alternatives to the method. It reserves to
those who will continue the research on the processing of input data in a neural net-
work for the processing of flight data to deepen the possibility of finding alternatives.

As written, multimodality as a cost function was used to find the best clustering.
Unfortunately, the strong irregularity of the function has been very decisive and un-
expected in the search for the local minimum. Probably the study of a more refined
cost function, which takes into account several factors, could have a smoother trend
and therefore could facilitate the search for the appropriate number of clusters. It
needs to be considered how the flight data are a particularly complex problem to
analyse and, at least from the theoretical point of view, there may not exist a par-
tition that can effectively summarize the various flight states.

Going forward in the analysis one must consider how the quality function has influ-
enced the selection of the clusters. Also in this case the quality function has been
elaborated in a very simple way so as to alter the result of the analysis as little as
possible. A more refined selection of clusters could greatly improve the overall result
of the network. The division of clusters for training in three sections is also a notable
simplification to the method, which could provide a more complex methodology for
the extraction of quality clusters for training.

In retrospect, the author probably would have given greater importance to the pop-
ulation of individual clusters, as this is a real watershed in the analysis. From the
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training and testing of the networks it has come out how the networks trained with
the best quality clusters, which are almost always the ones with bigger dimensions,
have the best behavior on the others, albeit only slightly. It also must be considered
how a defect that underlies this procedure, namely the fact that clustering causes
the network to reach centroids that represent different populations, this means that
a cluster with hundreds of points and a cluster with some points have the same
weight in training. This is conceptually incorrect. A clustering with a high number
of points allows to limit this problem as there are no clusters with excessively high
populations.

Finally there is the neural network, which is the heart of this analysis. First of
all it needs to be shown how this is initialized with a heuristic method, just like the
centroides of k-means clustering. A good practice in these cases is to train differ-
ent networks from different data in order to find the absolute minimum, or at least
a very low local minimum. The same procedure should have been carried out for
clustering. However, being an extremely expensive procedure from a computational
point of view, it was not possible to carry out the analysis more than once. Not
being the data of the networks trained with 201 and with 20001 clusters enormously
different, probably choose a number of clusters not very high. It therefore allows the
repeatability of the operation for a number of times to comfort those who perform
it on reaching a local minimum consistent, or the absolute minimum of the problem,
it could lead to important overall results.

The architecture of the network itself also affects the overall result. A mean error
on the delta alpha of one and a half degrees for the best network is a disappointing
result, considering that this network should replace or perform a back-up of a sensor
with the precision in the order of tenths of a degree . By testing different network
architectures, it is possible to reduce the error made by the network.

The method of calculating the error is not a Mean Square Error, as is usually done
by expressing the error committed by a network. The fact of not carrying out the
square means that the differences between the networks are rather small. Using the
MSE could have more substantial discrepancies between the networks.

The merits of this method are certainly the speed in data reduction, and the possi-
bility of having an extra control variable or data reduction, in the improvement of a
network. As mentioned, this method is not complete and tested in all its variables,
as it would have been a job well above the possibilities of a master thesis. This work
as a possible forerunner for a technique that certainly has a promising future. In
addition, the work has been set up from the point of view of the implemented MAT-
LAB@®)scripts, so as to be easy to use to deepen all the aspects discussed. Also in
terms of definition of the procedure, of the data structures and of the nomenclature,
this work stands as a solid base from which to start.

Lastly, the author is extremely satisfied with the progress made on understand-
ing the functioning of neural networks, on data analysis and visualization abilities,
and on the use of software. These last aspects are not absolutly of secondary im-
portance, as the thesis develops, in the life of a university student, a moment of
semi-guided study that is important for providing tools in working life.

77



78 CHAPTER 7. CONCLUSIONS AND FUTURE DEVELOPMENTS



Bibliography

[1] Bradley, P. S. and Fayyad, U. M. (1998). Refining initial points for k-means
clustering. In ICML, volume 98, pages 91-99. Citeseer.

[2] Calise, A. J. and Rysdyk, R. T. (1998). Nonlinear adaptive flight control using
neural networks. IEEE control systems, 18(6):14-25.

[3] Ciresan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2010).
Deep, big, simple neural nets for handwritten digit recognition. Neural computa-
tion, 22(12):3207-3220.

[4] Cs4ji, B. C. (2001). Approximation with artificial neural networks. Faculty of
Sciences, Ftvs Lornd University, Hungary, 24:48.

[5] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning, volume 1.
MIT press Cambridge.

[6] Hebb, D. O. (2005). The organization of behavior: A neuropsychological theory.
Psychology Press.

[7] Ivakhnenko, A. G. and Lapa, V. G. (1967). Cybernetics and forecasting tech-
niques. North-Holland.

[8] Ivanka, H., Jan, K., and Jiri, Z. (2012). Kernel Smoothing in MATLAB: theory
and practice of kernel smoothing. World scientific.

[9] Lee, T. and Kim, Y. (2001). Nonlinear adaptive flight control using backstepping
and neural networks controller. Journal of Guidance, Control, and Dynamics,
24(4):675—682.

[10] Lerro, A. (2012). Development and Evaluation of Neural Network-Based Virtual
Air Data Sensor for Estimation of Aerodynamic Angles. PhD thesis, Politecnico
di Torino.

[11] Linse, D. J. and Stengel, R. F. (1993). Identification of aerodynamic coeffi-
cients using computational neural networks. Journal of Guidance, Control, and
Dynamics, 16(6):1018-1025.

[12] McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115-133.

[13] Minsky, M., Papert, S. A., and Bottou, L. (2017). Perceptrons: An introduction
to computational geometry. MIT press.

79



Neural networks data analysis

80

[14] Napolitano, M. R., An, Y., and Seanor, B. A. (2000). A fault tolerant flight
control system for sensor and actuator failures using neural networks. Aircraft
Design, 3(2):103-128.

[15] Ojha, V. K., Abraham, A., and Snasel, V. (2017). Metaheuristic design of
feedforward neural networks: A review of two decades of research. Engineering
Applications of Artificial Intelligence, 60:97-116.

[16] Oosterom, M. and Babuska, R. (2000). Virtual sensor for fault detection and iso-
lation in flight control systems-fuzzy modeling approach. In Decision and Control,
2000. Proceedings of the 39th IEEE Conference on, volume 3, pages 2645-2650.
IEEE.

[17] Parzen, E. (1960). Modern probability theory and its applications. John Wiley
& Sons, Incorporated.

[18] Parzen, E. (1962). On estimation of a probability density function and mode.
The annals of mathematical statistics, 33(3):1065-1076.

[19] Rosenblatt, F. (1958). The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386.

[20] Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density
function. The Annals of Mathematical Statistics, pages 832-837.

[21] Samuel, A. L. (1959). Some studies in machine learning using the game of
checkers. IBM Journal of research and development, 3(3):210-229.

[22] Samy, I., Postlethwaite, I., Gu, D.-W., and Green, J. (2010). Neural-network-
based flush air data sensing system demonstrated on a mini air vehicle. Journal
of aircraft, 47(1):18-31.

[23] Shin, D.-H. and Kim, Y. (2004). Reconfigurable flight control system design us-
ing adaptive neural networks. IEEE Transactions on Control Systems Technology,
12(1):87-100.

[24] Weng, J., Ahuja, N., and Huang, T. S. (1992). Cresceptron: a self-organizing
neural network which grows adaptively. In Neural Networks, 1992. IJCNN., In-
ternational Joint Conference on, volume 1, pages 576-581. IEEE.

[25] Weng, J. J., Ahuja, N., and Huang, T. S. (1993). Learning recognition and
segmentation of 3-d objects from 2-d images. In Computer Vision, 1993. Proceed-
ings., Fourth International Conference on, pages 121-128. IEEE.

[26] Weng, J. J., Ahuja, N., and Huang, T. S. (1997). Learning recognition and
segmentation using the cresceptron. International Journal of Computer Vision,
25(2):109-143.

[27] Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in
the behavior science. Unpublished Doctoral Dissertation, Harvard University.

[28] Whitmore, S. A. and Ellsworth, J. C. (2008). Simulation of a flush air-data sys-
tem for transatmospheric vehicles. Journal of Spacecraft and Rockets, 45(4):716—
732.



Angelo Scacciavillani

[29] Wise, K. A. (2005). Computational air data system for angle-of-attack and
angle-of-sideslip. US Patent 6,928,341.

[30] Xu, B., Gao, D., and Wang, S. (2011a). Adaptive neural control based on hgo
for hypersonic flight vehicles. Science China Information Sciences, 54(3):511-520.

[31] Xu, B., Sun, F., Yang, C., Gao, D., and Ren, J. (2011b). Adaptive discrete-
time controller design with neural network for hypersonic flight vehicle via back-
stepping. International Journal of Control, 84(9):1543-1552.

[32] Xu, H., Mirmirani, M. D., and Ioannou, P. A. (2004). Adaptive sliding mode
control design for a hypersonic flight vehicle. Journal of guidance, control, and
dynamics, 27(5):829-838.

[33] Youssef, H. and Juang, J.-C. (1993). Estimation of aerodynamic coefficients
using neural networks. Flight Simulation and Technologies, page 3639.

[34] Zell, A. (1994). Simulation neuronaler netze, volume 1. Addison-Wesley Bonn.

Computational resources provided by hpc@polito,which is a project of Academic
Computing within the Department of Control and Computer Engineering at the
Politecnico di Torino (http://hpc.polito.it).

81



		Politecnico di Torino
	2018-07-13T08:42:13+0000
	Politecnico di Torino
	Piero Gili
	S




