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Drivers’ comfort zone boundaries when overtaking pedestrians
Analysis of naturalistic driving and field test data
GABRIELE PANERO

Abstract

In the European Union, while pedestrian fatalities decreased over the past decade, their
relative percentage in respect to all traffic fatalities slightly increased. Worldwide, the share
of the pedestrian problem, in road accident injury, has not shown any significant change or
improvement in the last few years. Furthermore, considering the constantly increasing tendency
towards vehicle automation, it is even more important to understand, quantify, and model road
users comfort zone boundaries. Comfort zone boundaries turn out to be relevant regions for
enabling automated vehicles to drive in such a way that users feel both safe and comfortable.

Considering that safety research has thus far been focused on the interaction between
drivers and pedestrian in the intersection scenario, the aim of this project has been to provide
information about relevant safety metrics in the longitudinal scenario, i.e. when pedestrians
are overtaken by a vehicle.

Thus, the work described in this thesis involved quantifying the comfort zone boundaries
when drivers overtake a pedestrian, both from the driver and the pedestrian’s perspective. Driver
comfort zone boundaries were estimated from naturalistic data in the UDRIVE database. As
well drivers’ behaviour was observed from a pedestrian viewpoint using a wearable data logger,
which has been set up and employed in an experiment performed on the road. The analysis of
68 events from the UDRIVE naturalistic driving study and 481 overtaking manoeuvres from
the road experiment has allowed to estimate the comfort zone boundaries, by mean of the
application of Bayesian regression models.

Driver behaviour was shown to be influenced by the presence of oncoming vehicles, as well
as by the walking direction of the pedestrian. Also, the steering input for the last phase of the
overtaking manoeuvre, was surprisingly performed by drivers before the vehicle had passed the
pedestrian.

Overtaking maneuvers are complicated events, resulting usually in outcomes that cannot
easily be predicted and are sometimes completely unexpected. However, this study showed
how specific factors influence drivers’ comfort zone boundaries while overtaking a pedestrian.
The two data sets investigated resulted to be complementary, allowing to have a complete
understanding of the event. Findings are relevant for active system development, and Euro
NCAP safety features assessment related to the collision pedestrian longitudinal adult (CPLA)
scenario. Safety factors have been compared with previous study related to bicycle overtaking
events.

Keywords: Driver behaviour, Active Safety, Human factors, Comfort Zone Boundaries, Field
of safe travel, Driver – Pedestrian interaction, Euro NCAP, Naturalistic Driving Data, ROS,
LiDAR
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Nomenclature

Nomenclature

Abbreviations

ADAS Advanced driver assistance systems

AEB Automated emergency braking

CAD Computed aided design

CAN Controller area network

CPLA Collision pedestrian longitudinal adult

CZB Comfort zone boundaries

DAS Data acquisition system

DATMO Detection and tracking of moving objects

DBM Driver behavior modeling

FCW Forward collision warning

FoST Field of safe travel

FT Field test

GPS Global positioning system

IMU Inertial measurement unit

LiDAR Light detection and ranging

ME MobilEye

NCAP New car assessment program

NDS Naturalistic driving study

pcl Point cloud library

PCW Pedestrian collision warning

RANSAC Random sample consensus

ROI Region of interest

ROS Robotic operative system

RPi Raspberry Pi

SALSA Smart automation for large data sets analysis

STRADA Swedish traffic accident data acquisition

UDRIVE European naturalistic Driving and Riding for Infrastructure & Vehicle safety
and Environment

VRU Vulnerable road user
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Overtaking scenario specific variables

LC Lateral clearance

mAG Minimum approaching gap

mC Minimum clearance between driver and pedestrian

mDS Minimum distance steering

mRG Minimum returning gap

T2P Time to pedestrian

THW Time headway

TTC Time to collision
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1 Introduction

Since the automobile transportation is still increasing in all countries all over around the world,
cyclists, pedestrians and motorcyclists, also called vulnerable road users (VRUs) will be more
exposed to traffic crashes. Actually, over 400.000 pedestrians die every year, and half of these
deaths occur in low income countries [1].

Concerning the location of pedestrian crashes, some studies show that this type of crash
occurs often in areas with higher population density such as large towns. In fact, in 2007
approximately 73% of pedestrian fatalities occurred in urban areas due to the high amount of
pedestrians. On the other hand, some others studies report that the fatality rate of pedestrian
crashes in rural areas, with lower population density, was higher than the fatality rate in urban
areas. Indeed pedestrians are more than 2.3 times more likely to die from a pedestrian crash
in a rural area than in an urban area [1]. Reasons for this phenomenon are related to the fact
that vehicles move more likely with higher speeds in rural areas. Also, less pedestrian facilities,
such as sidewalks, are available to prevent possible collision in a longitudinal driver-pedestrian
scenario. Moreover the quality of emergency services in these areas is lower than in urban
areas.

Furthermore, considering the constantly increasing tendency towards car automation, there
is an ever more importance to understand and quantify road users comfort zone boundaries [2].
These are defined as a spatiotemporal region surrounding the vehicle, in which no discomfort
is felt or predict while driving [3]. Comfort zones result to be relevant variables for enabling
automated vehicles and active safety features to perform in such a way that users feel both safe
and satisfied. In this context, independent organizations (e.g. Euro NCAP) are encouraging
significant safety improvements to new car design and, at the same time, they are providing
independent assessment of safety performances of vehicles available on the market. Hence,
a detailed quantification of the factors influencing motorist’s behaviour in the particular
scenario of pedestrian overtaking has the potential benefit of indicating which are the physical
parameters that need to be evaluated during a testing protocol.

1.1 Purpose

The objectives of this activity aim to understand how to identify and analyze overtaking
manoeuvres of pedestrians from the UDRIVE database, which refers to a naturalistic driving
data collection in the European union. Moreover, with the intention of quantifying the driver
behaviour with a complementary data set, a field data measurements has been performed in
the road traffic. The field data collection activity has also been focused on the development of
a logger platform, which could enable data recording also for future studies. Comfort zone
boundaries are evaluated and a driver model has been devised, in order to estimate the influence
of specific factors (characterizing the scene) on drivers’ performance.

1.1.1 Research questions and hypotheses

The overall activity of driver behaviour quantification has been based on the following research
questions:
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Q1 - Does the lateral position of a pedestrian influence the lateral distance (leeway) a
car is giving to him/her, while passing?

Q2 -Do drivers perform the steering-away phase even if a pedestrian is perceived out of
the lane (i.e. on the curb)?

Q3 - Does the “eye-contact” influence driver behaviour?

Q4 - Does the oncoming traffic presence reduce the leeway between a motorized vehicle
and a pedestrian?

Q5 - Is the overtaking speed influenced by the presence of oncoming vehicles?

In order to answer to the research questions some hypotheses have been formulated:

H1 - “If a pedestrian is closer to the middle of the lane, the clearance decreases”

H2 - “If a pedestrian is outside of the lane, drivers do not perform the steer away phase”

H3 - “If a pedestrian is facing the traffic, the “eye-contact” reduces the lateral clearance”

H4 - “If oncoming traffic is present, the lateral clearance is reduced”

H5 - “If oncoming traffic is present, drivers reduce vehicle speed”

The results and discussion section of this thesis have been structured based on these
hypotheses. Those are associated to three main factors characterizing the overtaking event.
Hypotheses one and two relate to the pedestrian walking position. Hypothesis three is related
to the pedestrian walking direction, while hypotheses four and five refer to the oncoming traffic
factor.

1.2 Credibility and restrictions

The naturalistic data set offers a unique opportunity in analyzing the driver behaviour thanks
to the unobtrusive way of its data collection. Hence, drivers behave in a natural manner,
providing information about their usual driving style. As well, the field test data collection
allowed to record data associated to drivers’ natural way of performing the manoeuvre, since
no driver was previously informed about the collection. Therefore the ecological validity of the
events analyzed is quite relevant.

However, restrictions are present. These are mainly related to the accuracy of the pedestrian
position measurement sensor available in UDRIVE. The MobilEye system (implemented on
the car data logger for object detection and tracking) has been prone to lots of miss-detection
(traffic-sign classified as pedestrians), hence manual annotation needed to be performed. Indeed
the annotation procedure could be source of subjectivity, even though both annotators adopted
an objective approach. Concerning the field data-collection, limitation of results could be
related to the equipment used by the pedestrian, who was wearing a reflective vest during the
collection. As well, the human body motion while walking had a relevant impact in the phases
individuation of the overtaking manoeuvre.

2



1.3 Outline

Chapter two - Background A overall review is presented about pedestrian crash
statistic, human factors, ADAS systems and naturalistic driving studies.

Chapter three - Approach and Methodology A detailed description of the activity
is presented. Two specific sections are adopted: in the first it is described the analysis
performed on the naturalistic data set; while in the second section it is presented the
activity associated to a field test experiment. Eventually, the implementation of a comfort
boundary regression model is specified in a dedicated section.

Chapter four - Results Main findings are grouped with respect to the three activities
carried out in this project as stated in the methodology. An overview of the results is
given through tables and figures.

Chapter five - Discussion Results are discussed considering answers to the research
questions. Relevant implications on safety systems are given. Also, advantages and
disadvantages are outlined related to each part of the adopted methodology.

Chapter six - Conclusion and future work A summary of the activity is given, with
a special mention to possible future projects linked to driver VRU interaction in the
longitudinal scenario.
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2 Background

In this chapter it is given a quite comprehensive overview on different topics analyzed in
this thesis project. This includes terminology definition as well as description of the data
collections available and the theoretical background of some technologies there implemented.
This could help the reader to get acquainted with several areas of research covered hereafter.
The chapter starts with the presentation of general crash statistics concerning mainly the
pedestrian category between road users. Moreover, it will be outlined a general description of
the specific manoeuvre analyzed in this thesis project, together with basic principles of driver-
pedestrian interaction. The literature discussed provides a general insight into why overtaking
manoeuvres of VRUs are interesting and what variables in such overtaking manoeuvres need
to be kept under review. Lastly, it will be given a description of the safety features rating
systems currently in force.

2.1 Crash statistics

According to World Bank estimates [4], about 1.2 million people are annually killed in road
accidents around the world, of whom one third are pedestrians, where typically pedestrians
account for the major proportion of road-traffic injuries and fatalities in low- and medium-
income countries. To be more precise, worldwide over 400,000 pedestrians die every year, with
over half of these deaths occurring in low-income countries [5]. It stands out that with greater
wealth comes greater motorization and that fatal pedestrian crashes are higher in low-income
countries, despite the fact that overall fatal motor vehicles crashes are higher in high-income
countries [1]. In the United States in 2015 there were 5,376 pedestrians killed in traffic crashes,
a 9.5 percent increase with respect to the previous year. This figure accounts for the 15%
of all traffic fatalities. Furthermore 90% of pedestrians were killed in traffic crashes that
involved single vehicles [6]. It is worth to mention that 71% of pedestrian fatalities occurred at
non-intersections while only 19% took place at intersections. This percentage had also been
reported by Clifton et al. in [7]. These researchers state that nearly 60% of the VRU involved
in a crash and just under 70% of those killed in a crash were not in crosswalks, suggesting the
importance of pedestrian compliance to traffic laws as well as availability of marked crossing
in promoting pedestrian safety. Moreover, in USA approximately 73% of pedestrian fatalities
occurred in urban areas, largely because of the greater number of pedestrian trips in urbanized
areas [8]; in Europe it is shown the same trend [9].

Concerning the European Union a deeper analysis reveals that almost 6000 pedestrians
(5730 in 2016 CARE records) and 2000 bicyclists are killed annually, which is approximately
27% of all fatalities [10]. In Sweden, approximately 45 pedestrians (and 20 bicyclists) are killed
annually [11] which account for 15% (and 9%) of all road fatalities respectively. Out of all
pedestrians and bicyclists admitted to hospital in Sweden in 2013, 262 pedestrians and 2155
bicyclists were estimated to suffer from long term disability [11]. It is worth noting that during
the decade 2005-2014,in the European Union, pedestrian fatalities were reduced by 35%, while
the total number of fatalities was reduced by almost 42%.

In the following a detailed description of pedestrian fatalities based on different parameters
[12] is outlined:

• fatalities based on AGE-group and GENDER:
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The percentage of pedestrian fatalities is higher for children and the elderly than for
other age groups. Although a high percentage of child fatalities were pedestrians, they
only represent 4% of the total pedestrian fatalities. Moreover, more than one third of
pedestrian fatalities (36%) were female, compared with less than one quarter (24%) when
all traffic fatalities are considered.

• fatalities based on DAY of the Week and TIME of the day:
More than 50% of all pedestrian fatalities occurred between 4pm and midnight. Pedestrian
and total road fatality distributions by day of the week and time of the day are quite
similar. However, relatively more pedestrians are killed in road accidents between 6pm
and 9pm during the whole week and between midnight and 5am on Sundays.

• fatalities based on LIGHT CONDITION:
45% of pedestrian fatalities in the EU occurred in darkness, whilst 36% of pedestrian
fatalities was also recorded in daylight. Remaining 19% has been reported as unknown.

A detailed analysis of the Swedish traffic accident data acquisition (STRADA) has shown a
decreasing trend of pedestrian injuries and fatalities over the decade 2006-2016. As depicted in
Figure 2.1 and 2.2, the larger amount of events happened in urban areas. Moreover more than
40% of pedestrian fatalities were female, which is a higher value compared with the average
percentage of all female fatally involved around Europe (36%). The amount of male involved
as pedestrians is increased over a decade, however this trend is much more visible for bicycle
users.
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Figure 2.1: Pedestrian injuries in decade 2006-2016, (left) number of events, (right) percentage
per area. Data from STRADA
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Figure 2.2: Pedestrian fatalities in decade 2006-2016, (left) number of events, (right) percentage
per area. Data from STRADA

It is worth mentioning, that the higher percentage of people killed in rural areas (36% in
2016) compared to the percentage (12% in 2016) of people injured in the same area is consistent
with what it has already been stated by Zegeer et al. [1]. It has been highlighted that although
fewer pedestrian fatalities usually occur in rural areas, pedestrians are more than 2.3 times
more likely to die from a crash in rural areas than in urban areas. This can be mainly due to
the higher vehicle speed in non-urban environments. As a matter of fact, speed plays a critical
role for pedestrian safety. Pedestrian injury severity is usually based on speed: the probability
for a pedestrian to die is 85% when the striking vehicle is travelling at 40 mph (64.4 km/h).
Probability drops to about 45% for a 30 mph (48.3 km/h) and if the speed is 20 mph (32.2
km/h) the percentage drops to a value of 5% [13].
However, that causes of such events are multiple and diverse. Not only the interaction between
driver and pedestrian is crucial, but also the built environment plays an important role. In
[14] it has been shown that more pedestrian crashes occur in areas with educational facilities
and higher percentages of commercial land use.
An investigation in the Swedish database has allowed to analyze the trend of injured and
killed pedestrians over the period 2003-2010 for the specific longitudinal scenario of pedestrian
walking on the right side of the road. Data are represented in the column graph in Figure 2.3.
This specific scenario accounts roughly for the 8% of all pedestrian injuries recorded in the
database in the previously described 8 years period.

To summarize, the overall number of VRU involved (both for pedestrians and bicyclist)
has decreased over years. However, as represented in Figure 2.4 considering the rate between
the pedestrian casualties and the overall fatalities in Sweden, this value has increased over
the past ten years. A steadily increasing rate from 12,4% (in 2006) to a peak of 19,6% (in
2014) highlights that even if lots of improvements have been done on general vehicle safety, the
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Figure 2.3: Pedestrian events, both injured and killed, while walking in right side of the road.
Data from STRADA

interaction between motorists and pedestrian should be investigated to enhance road users’
safety.

It has to be noted that the slightly increasing trend of the of pedestrian fatality rate over
all traffic casualties is observed also in the whole Europe [12].

The aforementioned facts and figures bring out that, even if an important progress has
been made over the last decades, there is still need of advancement in the VRU’s safety. This
with the purpose of promoting safety in the car to pedestrian interaction on a par with other
scenarios. Accordingly, the purpose of this thesis work is focused on the quantification of
human behaviour and comfort zone boundaries which may help the development of future
Advanced Driver Assistance Systems (ADAS), which are supposed to predictively help drivers
in a safer accomplishment of their task, hence reducing pedestrian casualties.

2.2 Overtaking manoeuvre

In the Cambridge dictionary [15] overtaking is defined as “to come from behind another vehicle
or a person and move in front of them”. With reference to the English Royal Society for the
prevention of accidents, overtaking is defined as “one of the highest risk manoeuvres for both
drivers and riders because it can put the overtaking vehicle into the path of oncoming traffic,
often at high speeds. If there is a head-on collision, the speed of both vehicles combines to
create a much more severe impact” [16]. It is worth considering that overtaking manoeuvres
are usually dissimilar each other, mainly on the account of multiple road user present in the
scene (e.g. oncoming traffic, leading vehicles) as well as environmental condition present while
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the overtaking is performed (e.g. nigh-time, lane width). Hence it is important to refer to
definition and categorization of overtaking manoeuvres suggested in the literature.

2.2.1 Overtaking strategies

Overtaking manoeuvres are usually categorized in different strategies as follows [17] [18] [19]
[20]:

• Flying

• Accelerative

• Piggy backing

• 2+

In the flying strategy a driver overtakes at a relatively constant speed. In the accelerative
manoeuvre, a driver decelerates and/or adapts the vehicle’s speed to the velocity of the leading
road user; the overtaking occurs only when the driver has followed the leading road user for
some time before passing. The piggy backing strategy is adopted by drivers who follow a lead
overtaking vehicle, so that two or more cars in a row are involved in the overtaking of the
same vehicles or VRU. In this scenario the lead driver may have selected either a flying or
accelerative strategy. The 2+ manoeuvre occurs when the over-taker catches up with multiple
road users, hence the minimal number of overtaken users is two.
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2.2.2 Overtaking phases

The overtaking is a long, complex and diverse manoeuvre. Thus, different authors proposed
various classification procedures segmenting the manoeuvre in three phases [21], four phases [19]
or five phases [20] based on consideration related also to driver’s intentions and actions. When
reference is made to car overtaking another car three main driver actions may be identified
[22]:

• Diverting from the lane

• Driving straight in the adjacent lane

• Returning to the lane

Hageman et al. in [20] extended the three phases approach to five phases when it is
considered the overtaking of another vehicle. These are:

• Decision (based on driver behavioural state and environmental factors)

• Preparation (related to driver’s perception and reaction time)

• Lane change (based on steering action and vehicle acceleration)

• Passing (influenced by presence of oncoming vehicles)

• Return to original lane

When the focus is made to a vehicle overtaking a bicyclist, the phases classification has
been investigated and elaborated by Dozza and colleagues [19] [23] based on previous Master’s
thesis [24]. The former study evaluated the manoeuvre using an instrumented bicycle, while
the latter analyzed the overtaking from a car perspective, utilizing NDS data. Thus, when it is
considered an overtaken wheeled VRU four phases can be outlined:

• Approaching

• Steering away

• Passing

• Returning

It is worthwhile clarify the phases listed above.
Phase one – The approaching phase occurs when a vehicle reaches the bicycle, within the

reading range of measurement sensors adopted in previous study, until the start of the next
stage of the overtaking manoeuvre. In [25] the start of the first phase has been defined based
on the time-stamp in which the bicycle was visible in the video-feed provided from a camera
installed in the vehicle.

Phase two – It begins when the driver steers away/pull out the vehicle from its collision
course to the VRU. In [24] the start of this phase was annotated whenever the car side was
detected by the used measurement sensor (LiDAR) and it was expected to finish whenever the
vehicle’s front was at a longitudinal distance of 2 m behind the rear of the bicycle.
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Phase three – the passing phase refers to the area behind and in front of the VRU in which
the car is passing and overcoming the slower road user. For this phase two different definition
have been established. Dozza et al. considered a zone which stretches from -2 m behind the
bicycle rear wheel till +2 m in front of the bicycle front wheel. Considering naturalistic driving
data Kovaceva et al. considered the same approach but using a longitudinal distance of ±3 m.

Phase four – the returning phase occurs by the time stamp in which the phase three ends
to the extend that the vehicle returns to the same lane position it had before the overtaking
maneuver [19]; while in [25] the end of phase four was considered when the distance driven
since the start (of the same phase) reached 50 meters.

2.2.3 Overtaking terminology adopted in this study

In the current study, the classification elaborated in previous research studies would be
considered. As far as the overtaking strategies it is concerned, hereafter it will be made
reference to:

• Flying: overtaking performed with somewhat constant speed, with no brake intervention
by the driver.

• Accelerative: overtaking in which the driver slowed down either by releasing the accelerator
pedal or by braking.

• Piggy backing: overtaking in which multiple vehicles overtook the VRU. When it is
analyzed the manoeuvre from a car perspective, the event is considered piggybacking
whenever there is a leading vehicle, with respect to the EGO vehicle, at a time headway
of 3 seconds. On the other hand, from a pedestrian point of view, vehicles were annotated
as piggy backers whenever the manoeuvre was performed in succession following a leading
vehicle. Also, in the automated annotation algorithm a vehicle was defined as piggy
backer if its driver was passing the pedestrian with a time headway lower than 3 seconds
with respect to the leading vehicle.

• 2+: whenever a driver was overtaking multiple VRU present in the scene.

However, it is important mentioning that, in the literature, no previous study has been
executed concentrating on the driver interaction with a pedestrian while performing an
overtaking manoeuvre. Therefore a definition of overtaking phases suitable for this specific
scenario would be provided (see Section 3.1.3), since it rarely occurs that overtaking vehicles
are driven straight, being completely in the adjacent lane, as proposed by Petrov et al. in [22]
or by Hegeman et al in [20] for car overtaking another vehicle.

2.3 Human factors

In the following it will be presented a brief description of which parameters are influential
in the driver-pedestrian interaction, considering mainly the notion of perception as well as a
general introduction of the concept of the cortical mechanism of action-selection, which has
the potential of describing the joint driver-vehicle system. Moreover, a general description of
both field of safe travel (FoST) as well as comfort zone boundaries (CZB) will be reported.
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2.3.1 What is behaviour?

Considering that the scope of this thesis project refers to quantifying driver’s behaviour, a
definition of behaviour is paramount. The definition of behaviour in a dictionary [26] states:
“The way in which one acts or conducts oneself, especially towards others”. Another lexicon
[27] expresses the term as “a specific response of a certain organism to a specific stimulus or
group of stimuli”. Therefore, behaviour concerns actions and reactions triggered by the aim
and goal of a person, and his adaptation to disturbances from the outside world [28]. From an
automotive perspective, driver behaviour is a set of operations a driver performs in order to
reach his targeted location. As well, behaviour refers to the set of action a motorist takes to
cope with environmental factors interfering with the achievement of a pre-planned destination,
in an appropriate and pleasant way.

2.3.2 Driver’s perception of pedestrians

In a driver to pedestrian interrelation it is primary importance the detection. This refers
mainly to driver perception of the scene around the road, together with its users. In virtue
of the human vision system, drivers are enabled to detect traffic participants on the road, in
a dynamic, constantly changing environment. However, pedestrian behaviour can influence
driver’s perception as well. In [29], it has been shown that pedestrians may increase their own
safety by using appropriate nonverbal signals toward drivers. In a research study presented
in [30] authors demonstrated that motorists drive more slowly after receiving a smile from a
pedestrian who is at a pedestrian crossing. Those results are consistent with a mood-inducing
explanation: more slowly behaviour can be linked to a better mood phenomenon given by a
smile. Moreover, pedestrian appearance also plays an important role. In [31] while enhancing
the difference between form perception and motion perception, authors show a significant
interaction between clothing configuration and pedestrian motion. By mean of a synergistic
relationship between reflective markings and pedestrian movements, benefits of highlighting
the pedestrian’s form are greater when the pedestrian is walking (e.g. pedestrians can be made
both visible and conspicuous if some of the retro reflective material is shifted from the torso to
the limbs).
Another important factor in the VRU detection, considering the pedestrian side, is related to an
overestimation of their visibility, especially at night. In [32] it has been found that pedestrians
wearing black clothing estimated that drivers would have seen them at a distance that was
7.06 times greater than the distance at which the drivers actually responded. Underestimation
occurred only when the pedestrians wore bio-motion markings. The latter confirms that the
reason why pedestrians under-use an effective intervention (the bio-motion configuration) is
due to the fact that they do not realize and do not appreciate the actual benefit of reflective
vests [33]. Considering driver’s side, in [34] 95% of drivers in a common, but challenging,
visual condition (due to low beams and oncoming glare present) failed to detect a pedestrian
wearing dark clothing, despite knowing that there were pedestrians along the roadway and
that their ability to respond to the pedestrians was being monitored. This suggests that under
low visibility conditions drivers are frequently unable to recognize and respond to pedestrians
from a safe distance. This highlights the criticality of the driver interaction with vulnerable
road users in darkness.
However, not only daytime is influential in pedestrian perception, but also, as stated in [7], the
traffic environment and driving experience are two dominant factors that affect the identification
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of pedestrians. Thus, in non-urban environments, drivers focus more on pedestrians when they
are on the road. Pedestrians on the curb are common in non-urban/rural environments and
possibly, drivers effectively filter them out and focus primarily on pedestrians who are about
to cross the road or stand in close proximity to the driven vehicle.
Furthermore, pedestrian detection could, in principle, be influenced by the age of the driver.
In [35] the author shows that elderly drivers have a narrower useful field of view (UFV), thus
influencing the hazard perception. Even if, identification of hazards by elderly experienced
drivers came, in some cases, later than among experienced-drivers, the elderly drivers attempt
to cope with hazards by controlling their driving speed. Hence, although the way in which
they attend to elements in traffic is more restricted than the ones of younger drivers, reducing
the vehicle speed to a more comfortable level is enabling the elderly drivers to have more time
to process information, detect hazards, and respond to them.
Additionally, in [36] a detailed analysis of the time to collision (TTC) occurring in a pedestrian
fatality has been performed. Steward et al. proposed that when drivers of road vehicles are in
potential collision with pedestrians their perception of distance is based primarily on familiar
size, resulting in overestimation of size and therefore of time-to-collision with child pedestrians.
Hence, authors proposed a new definition of TTC without considering the optic flow τ = θ

θ̇

where θ refers to the visual angle and θ̇ refers to its rate of change. Following the notion of
explosion of optic flow when a collision is imminent [37], it has been claimed that the dynamic
characteristic of an explosion (just as much as a crash) is not speed but acceleration. Therefore,

the proposed expression TTC = 2θ̇
θ̈

has the potential to be used also in the condition in which
an object would be accelerating. This has to be considered as a suggestion that perception of
imminent collision is far more sophisticated than previously understood. Even a brief view of
an object could provide the necessary θ̇ and θ̈ to judge time-to-collision. It is worth mentioning
also that distance to a pedestrian is primarily based on apparent and familiar size (familiar size
is the actual size as recollected from previous experience). Therefore [36] proved that if a child
is misperceived as a larger person at a greater distance, time to collision will be overestimated.
Hence, according to the authors, this perceptual error has to be considered the main reason
that children have a much higher pedestrian accident rate than adults.

2.3.3 Driver behaviour modelling

The joint system composed by driver and vehicle needs to be quantified and qualified by
means of models. The main objectives of driver behaviour modeling (DBM) are related
to the prediction of driving maneuvers, driver intent, vehicle and driver state to improve
transportation safety and the driving experience as a whole. The principal benefit of these
models is related to the design of ADAS in vehicles; likewise DBM can help safety rating
committees to objectively evaluate car safety systems. Broadly speaking the driving task can
be decomposed in a subsequent action of navigation, guidance and control. Control can be
generally defined as the ability to direct and manage the development of events [38] or, more
specifically, the maintenance of a goal state in the face of disturbances [39].

However, in the literature, several models have been proposed; examples of these models are
the hierarchical control model [40], the GADGET-Matrix model [41], and the DRIVABILITY
[42] model. The former expresses the driver control of a vehicle as operational (actions
performed over less than a second primarily in order to remain safe), tactical (manoeuvres,
which lasts for several seconds, intended to achieve a short-term goal such as lane changes,
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overtaking manoeuvres, and stops), and strategical (actions are triggered by the long-term
goals of the driver, e.g. destination and route). The GADGET-Matrix extends the three
previous levels, introducing a forth behavioural stance based on driver’s general goals for
life and skills for living. The DRIVABILITY is mainly focusing on the strategical level, as
defined by Michon in the hierarchy of controls. Bekiaris defined five permanent and temporary
contributors, which affect a driver’s attitude:

• Individual Resources.

• Knowledge and Skills.

• Environmental Factors.

• Workload

• Risk Awareness.

Furthermore, within the framework of driver modelling a distinction needs to be performed
between reactive and predictive models. The former refers to an observation after the action
has been conducted, while the latter are required in order to identify driver’s action on the
onset of the behaviour in real time.

In addition, in the last decade a new trend based on the principle of competition between
affordances [43], allow researchers to model driver behaviour with layered control architectures
and optimal control motor primitives. Thus, proposed methods [44], [45] seeks to explain
human sensorimotor behaviours in terms of models of the underlying brain architectures and
processing.

The aforementioned list of driver model is quite comprehensive, to ensure that the reader
has sufficient information to understand the aims and scope of this work.

Nevertheless, the overtaking manoeuvre has the potentiality to be related to a control
analogy. As expressed in [46], the dynamic control properties of driver while steering are
expressed by mean of an anticipatory and compensatory control. Also in pedestrian overtaking
operation the driver-vehicle system has the potentiality to be associated to a feed-forward
control. By definition feed-forward driven controllers use awareness of the environment as well
as previous experience with the system, which a driver is supposed to control, to act directly on
it, anticipating changes. In these conditions, the control is successful if the controller manages
to perform a task in accordance with the desired goal. When this fails, it is made reference to
deviation. According to [47] a deviation is the classification of a systems variable when the
variable takes a value that falls outside a norm. With the notion of norm, which is always some
kind of desired state, although the definition of these states can be of many different kinds, like
a discrete state or a performance envelope. Thus, drivers are used to gather information about
the system variable/variables in order to judge whether or not the system’s performances are
within the desired state and and expected conditions.

2.3.4 Field of safe travel

In order to relate driver’s behaviour to the perceptual task required while driving, one of the
main driver’s activity is to conceive the imminent projected spatial FoST. As expressed by
Gibson et al. in 1938 the “field of safe travel is a spatial field that is not fixed in a physical
space [. . . ] phenomenally, it is a sort of tongue protruding forward along the road, consisting,
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at any given moment, the field of safe paths which the car may take unimpeded”[48]. More
recently researchers in [49] proposed a FoST framework suggesting that at any moment a
motorist is creating a mental viable field by integrating two perceptual entities:

• the possible available spatial fields for locomotion and

• the driver’s mental image of ego-vehicle outer-line and motion dynamics.

Authors in [49] argue that the FoST framework may be used to explain as well as predict
drivers’ behaviour in different traffic/situation environments based on their prioritization
between the above two perceptual entities, comparing the driving task to a locomotion guided
chiefly by vision. However, is worth noting that it is critical to study the way in which drivers
usually prioritize perceptual cues, due to the high interplay among these optical variables and
motorist’s expectancy.

2.3.5 Comfort zone boundaries

A different framework with respect to the previously introduced FoST has been proposed in
[3]. Authors express the situational control framework, as the degree of control jointly exerted
by a driver and a vehicle over the development of specific traffic condition. By reference to the
principle of adaptive behaviour, driving task has been described as the selection of goal states
as balance between excitatory and inhibitory forces [50]. The driver behaviour to a large extent
is governed by physiological reactions to threatening situations, e.g. emotions, experienced
by the driver in terms of unpleasant feelings. Somatic markers are emotional signals that
link positive or negative values to opportunities for action and their outcomes. According
to [51], the driver seek to maintain a state of zero discomfort. Discomfort includes feelings
of immediate risk or threat (e.g. in a critical traffic condition), but could also be related to
an excessive task demands. In [51], together with a comfort zone it is also laid out a safety
zone. This can be defined as the region of driver-vehicle-environment (DVE) that contains
all states that result in a successful outcome (i.e. control is maintained). The region of DVE
space that overcomes the safety zone contains all states that result in a crash or some other
non-recoverable loss of control. The safety zone boundary thus divides all possible states in the
DVE space into two categories: those that result in successful outcome (control is maintained)
and those that do not (control is lost beyond recovery). Furthermore, to preserve the state of
zero discomfort suggested by [52], drivers generally escape goal states close to the boundary
of the safety zone. Rather, they prefer goal states that have a certain minimum distance, or
safety margin, to the boundary. Hence, the definition of comfort zone can be expressed as
follow: “The region of DVE space for which no discomfort is felt or predicted by the driver
and which the driver therefore prefers to stay within” [3]. The comfort zone thus represent the
zone of comfortable action as sensed by the driver. Every time the comfort zone boundary is
exceeded, a feeling of discomfort is experienced, resulting in adaptive behaviour in terms of
corrective actions. Therefore, driver’s adaptive behaviour can be conceptualized as a trajectory
in the DVE space. The trajectory represents the outcome of the driving control process, where
driver and vehicle, in the face of changing driving conditions, adapt the goal state in order to
maintain a sufficient safety margin to the safety zone boundary. This process is clearly and
objectively present every time a driver come across a pedestrian overtaking scenario involving
oncoming vehicle. As represented in Figure 2.5 drivers need to maintain a lateral distance
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while overtaking a pedestrian, and this can mainly be influenced by the presence of other road
users.

Figure 2.5: Comfort and safety zone boundaries. LC represents the lateral clearance between
the car and the pedestrian, who is represented as walking on the line

2.3.6 Safety metrics

In order to quantify the specific driving scenario of pedestrian overtaking, with the purpose
of devising an exploratory study for this driver-pedestrian interaction, it has to be outlined
which are the main safety variables that have to be taken into account. Considering that in
the literature no previous study has been carried out for this specific overtaking manoeuvre, in
the following is outlined and presented the main metrics adopted in the context of overtaking
of another vulnerable road user: the bicyclists. As described in previous studies [53] [19]
[54] the main safety metrics adopted are the lateral clearance of the car to the cyclist and
speed difference between car and cyclist. However, other variables could be considered to
describe CZB during overtaking manoeuvres: lateral or longitudinal distances, velocities and
accelerations maintained by the parties involved in the manoeuvre. Moreover, in more recent
study related to naturalistic driving data three distance-metrics have been defined: minimum
approaching gap (mAG), minimum distance steering (mDS) and minimum distance returning
(mDR) [23].

From a driver perspective, the acceleration and the speed of the vehicle, together with
the time at which a driver starts to brake when encountering the pedestrian, can be seen as
an indicator of drivers’ comfort before and during the overtaking maneuver. On the other
hand, the lateral offset to the curb could be an indicator of the comfort zone boundary for the
pedestrian during the overtaking maneuver. In this case, the pedestrian will try to maintain
his/her position based on a trade-off between the assumed lateral clearance which might
be given by the car and the practicability and surface condition of the curb. Also, from a
pedestrian perspective, a component related to his/her level of comfort can be related to the
direction of his/her walking. As a matter of fact, it usually recommended to walk on the
opposite direction of overtaking vehicles (facing the traffic), so to directly perceive the presence
of vehicles.
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However, due to the large relative speed between the motorist and the pedestrian involved
in the scenario, as well as the location of the pedestrian on the sidelines of the lane, it results
to be difficult to adapt in whole the quantities of driver’s decision to overtake mapped out for
the event of a car overtaking another car [55]. Although the basic quantities of gap time (or
distance) separating the overtaking and oncoming vehicle (when present) and driver’s estimate,
of this gap available, are crucial also in a pedestrian overtaking; the time (or distance) required
by the driver-car combination to perform the maneuver, and driver’s estimate of this time
(or distance), expressed by Gordon for a car overtaking another car, are difficult to assess
when a pedestrian is involved. Hence, a safety metric parameter adopted to combine together
car’s speed and driver’s reaction distance, is the time in which the driver start to perform the
overtaking manoeuvre [23]. This has been defined, in the following of this report, as time to
collision (TTC), since refers to the time in which a driver deviates the vehicle from its collision
path to the pedestrian.

It is worth mentioning that is an especially important aspect to single out which are the
main safety metrics also for the purpose of designing proper ADAS, which could warn and alert
a driver of an imminent collision, assumed that the driver had not detected the pedestrian. As
expressed by [56] a high level of satisfaction and trust of alert and warning systems is reached
whenever system’s designers and driver’s perception of the situation match, i.e. when a safety
feature has been designed with the same definition of user’s comfort zone boundaries. Hence,
these boundaries define a zone beneath and above which drivers have a sense of discomfort.
Whenever this is experienced a driver will take action to leave the situation perceived as risky
(giving a larger distance or reducing speed) to return to normal driving [51]. However, risky
situations for a VRU might not only be related to a misjudgment of the necessary-predicted
lateral distance from a driver, but also to the drivers’ intention to achieve a smooth ride, to
comply with traffic rules and presence and other driving objectives.

To sum up, there are some research gaps regarding the comfort zone boundaries during
the overtaking maneuver of a pedestrian as well as other safety metrics that can quantify the
scenario. Previous study have considered mainly other VRUs, especially bicyclist. However, in
this study a consistency with metrics adopted in investigations of interaction with other VRUs
has been maintained. Hence, with the purpose of quantifying the metrics involved, the driver
interaction with pedestrians has been considered from both drivers’ perspective (equipping
vehicles) and from a pedestrian perspective (equipping the VRU).

2.4 Advanced driver assistance systems

Considering that the main reason for the occurrence of crashes is the inability of road users to
detect and perceive oncoming dangers before a sufficient amount of time [57], this does not
mean it is obvious to design, develop and deploy an autonomous perception-control system that
performs better than the average driver [58]. The main challenge, for the machine perception
at the current state of technology, is related to the assignation of a correct semantic meaning
to the sensed environment, which is a task that humans are able to fulfill very quickly and
nearly without errors [59]. However, in recent years industry and academic projects have been
evolved with the purpose of reaching a high level of accuracy and precision in the detection
and tracking of moving objects (DATMO). In detail, ADAS and built-in safety systems are
developed to detect, among other road users, pedestrians and predict the possibility of collision.
This has been achieved mainly using computer vision together with sensor fusion techniques.
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In the following of this section an introduction to pedestrian detection in broad terms will
be presented. This is mainly useful, for the reader, to get acquainted with computer vision
technology associated to “MobilEye” pedestrian detection system adopted in this study, by
mean of the naturalistic driving study (NDS) data. Currently there are two main technology
related to pedestrian detection from images: one based on images of the visible spectrum, and
the second related to thermal infrared. Main pedestrian protection systems associated with
these technologies usually follow a step-wise approach characterized by six different modules
[60]:

1. Pre-processing

2. Foreground segmentation

3. Object classification and silhouette matching

4. Verification/Refinement

5. Tracking

6. Applications

According to the co-founder of MobilEye [61] the appearance of pedestrians in the scene
can be divided into a number of categories:

• Pedestrian moving laterally

• Stationary pedestrian in primary host vehicle-path

• Pedestrian moving longitudinally

• Stationary pedestrian out-of-path.

It is worth mentioning that main computer vision techniques for object classification uses
approach for fitting objects that are purely 2D, hence they only use the 2D information of the
Region of Interest (ROI) given by the foreground segmentation.

Once a ROI has been classified (by mean of either holist or part based approaches) through
different machine learning techniques, each labeled ROIs (with multiple defections on one single
pedestrians actually present on the scene, and False Positives (FP) miss-classifications) needs
to be approved by a proper algorithm. In [61], Shashua et al. propose a multi–frame approval
process, which consists in validating the pedestrian–classified ROIs by collecting information
from several frames: gait pattern, inward motion, confidence of the single–frame classification,
etc. Moreover, between different frames each ROI classified as pedestrian needs to be tracked
to reject bogus detection and with the purpose of estimating pedestrian trajectories. To
accomplish this module, Kalman filters are used to maintain pedestrian estimates and Bayesian
probability to provide an estimate of pedestrian classification certainty over time and a targets’
trajectory and speed. However, the major challenge is the development of reliable on-line
pedestrian detection systems. Due to the varying appearance of pedestrians (e.g., different
clothes, changing size, aspect ratio, and dynamic shape) and the unstructured environment, it
is very difficult to cope with the demanded robustness of this kind of system.

Hence, to put in a nutshell, the step-wise approach of computer vision approach adopted by
MobilEye pedestrian detection system is the following:
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1. Generation of candidate ROI

2. Single frame classification based on a two-stage classification algorithm

3. Multiframe approval process

4. Range measurement and pedestrian BoundingBoxes (BB) tracking

In addition, pedestrian detection from images is a high relevant area of research in which
other techniques are applied further to the above. In [62] a cascade detection algorithm based
on Harris corner detection algorithm [63] is applied for getting the features of pedestrian’s
contour. Moreover such a system implements optical flow algorithms to estimate motion vector
of pedestrian and Grey theory [64] is used to predict the future driving path of vehicle. Based
on estimated pedestrian and vehicle future paths the warning system represents an example of
a complete ADAS based on camera images.

2.5 Naturalistic driving data

Naturalistic driving is a traffic research methods which refers to an unobtrusive observation
when driving is performed in a natural and usual context. Expressed in other words, naturalistic
data is a collection of big data, by mean of instrumented vehicles, which are driven in real
traffic by users in their daily commuting activities. A relevant point to consider is that even if
drivers are aware of the in-board presence of a data logger system, they become progressively
unmindful of the observation system. This mainly because of the collection system being
designed as discreet as possible. Each participants’ vehicle is equipped with several sensors and
small cameras, which continuously record vehicle state (e.g. speed, steering action and position),
driver behaviour (e.g. eye gaze, distraction), environment and infrastructure conditions (e.g.
weather characteristics, lane width). Capabilities related to these collections are manifold:
from the study of human behaviour while driving to the test (a priori) of intelligent vehicle
systems, from the understanding of accident causation to counter factual simulations (also
know in literature as what-if analysis [65]), from analysis of traffic efficiency to the evaluation
of eco-driving [66]. With the enabling greater number of naturalistic driving studies [67], it is
possible to study in detail not only the behaviours of different drivers but also the conduct of
VRUs. Moreover even the specific evolution of safety critical events (SCE) can be analyzed,
with the goal of providing additional information for designers, for the development of safety
systems to reduce traffic injuries and fatalities.

It is within this framework that the eUropean naturalistic Driving and Riding study on
Infrastructure, Vehicle safety, and Environment (UDRIVE) has been performed over a time
span of 4.5 year. Data collection took place between October 2015 and May 2017. In this
period, well over 53,000 hours of vehicle data was collected on 192 cars drivers (total of 38,157
h and 152970 trips), 46 truck drivers (total of 14,503 h) and 39 scooters riders (total of 497 h)
[68].

Limiting the focus on the car data, collected signals includes GPS , speed data and CAN
data, as well as video data from a number of views including the driver’s face, hands and
feet, and covering both inside and outside the vehicle. Furthermore, as represented in figure
2.6, the data acquisition system (DAS) recorded continuous signals from a MobilEye smart
camera, including the presence of vulnerable road users (cyclists and pedestrians) and the
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distance between the car and the other road users. This camera offers the opportunity to find
events wherein a pedestrian is present, as well partial measurements of pedestrian location
within the scene. Furthermore, it is worth mentioning that the main challenge in naturalistic

Figure 2.6: Data acquisition system in UDRIVE

studies, following data collection, is to inspect the data for meaningful events. This procedure
is still far from automatic, although a lot of effort has been currently devoted to it and some
operational and effective procedures have been developed and implemented [58]. Hence, with
a view of detecting useful events, in which a pedestrian was overtaken, in this study it has
been made reference to previous study performed and available within the database [25], [23].
These followed a common approach within ND data sets, that is to generate triggers that serve
as indicators to detect the relevant information and then manually or automatically scan the
data around the time-stamps suggested by the triggers. Those triggers are related to kinematic
data representing the vehicle state.

With the intention of helping analysis in this study, the UDRIVE project encompassed the
development of a dedicated software tool: Smart Automation for Large data Sets Analysis,
SALSA, designed by non-profit organization Centre European studies safety and analysis des
risques, CEESAR, based near Paris in France. Thus, SALSA has been mainly used in this
project together with MATLAB in order to perform raw data enrichment. This imply: filter
and query for data, visualize data, calculate new measures based on the acquired data, add
annotations to data, missing data estimation and evaluation of performance indicators.

2.6 Euro NCAP

The European new car assessment program (NCAP) is a voluntary vehicle safety rating system,
which publish safety reports on new cars, and confer “star ratings” based on the performance
of the vehicles in a variety of crash tests, including front, side and pole impacts, and impacts
with pedestrians. Moreover, due to the huge safety benefit of active safety features, since 2014
Euro NCAP added crash avoidance systems such as automated emergency braking (AEB) and
lane keep assist/lane departure warning (LKA/LDW) tests to the overall star rating. As a side
note, Euro NCAP requirements are not legislation, but they can highly influence customer
demand and they are used as a decisive factor for fleet car selection. Furthermore, since one of
the main goal of this independent assessment organization is to encourage significant safety
improvements to new car design, they are emphasizing not only the car safety (strictly speaking
with respect to the chassis) but also on “how it might assist other road users” [69]. Thence,
since 2016 it has been introduced a scenario for the evaluation of AEB car-to-pedestrian, which
was updated in 2018 considering also a longitudinal scenario. The latter is identified with the
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acronym CPLA, which stands for car-to-pedestrian longitudinal adult. The testing scenario are
based on the assessment methodologies for forward looking integrated pedestrian safety systems
[70]. In detail, based on the pre-crash assessment performed within ASPECSS European
projects [71] 3 accident scenarios were found as the most important for car-to-pedestrian crash
configurations. These are in order of occurrence:

1. Crossing of straight road from near-side

2. Crossing of straight road from off-side

3. Along carriageway on a straight-road

Noteworthy, the scenario studied in this thesis project can be directly related to the third
of the above-mentioned events, which accounts for 22.9 % of killed pedestrians [71]. In point
of fact, if a driver goes wrong in the execution of a pedestrian overtaking manoeuvre (due to
miss-detection, miss-perception or misjudgment of the scene) , he/she will run over a pedestrian
if also the VRU cannot evade from a collision event. Thus the CPLA assumes that a pedestrian
(represented with an adult dummy) is walking in the same direction of the vehicle with two
different overlapping settings. These are 25 % and 50 % overlap, as depicted in the Figure 2.7,
and are expected to be performed both with daylight and with no artificial light on the test
track. The choice of the last setting is related to the casualty rate associated to this scenario,
with 73.6% events happening in darkness. As expressed in the Euro NCAP VRU-AEB test

Figure 2.7: Scenario representation of Euro NCAP CPLA safety feature assessment. Rating
tests and assessment are described in the Vulnerable Road User Protection Protocol [72]

protocol [73] the first scenario (CPLA-25) has to be used mainly for the evaluation of a Forward
Collision Warning (FCW) system, with a car speed between 50 and 80 km/h, and a target
speed of 5 km/h. The assessment criteria adopted for the FCW is the time to collision (TTC).
Points are awarded when the warning is issued at TTC ≥ 1.7s [74]. As far as the assessment
of the AEB system the criteria selected is the relative impact speed of the vehicle toward the
pedestrian, if the vehicle was not able to avoid the collision; for CPLA-50 speeds of the vehicle
under test are between 20 and 60 km/h, while the VRU is constantly walking at 5 km/h .
Moreover to be eligible for scoring points an active safety systems has to be, by default, ON at
the start of every journey and it has not to be possible to switch off the system with a simple
push on a button. Also, a pedestrian-dummy has to be detected even if it is moving as low as
3 km/h and the system has to be active also when travelling at a higher speed than 80 km/h.
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3 Approach and Methodology

Driver pedestrian interactions have been analyzed following two main approaches. The first is
related to the understanding of driver behaviour considering data available within the database
of the naturalistic driving project UDRIVE (see Section 2.5). On the other hand, the second
method of study has been based on a data collection performed from a pedestrian in the
suburban area of the city of Göteborg, Sweden. In the following the useful events extraction
procedure from the naturalistic date sets has been described in Section 3.1. In Section 3.2
the procedure related to the field data experiments is described starting from equipment
preparation until experimental protocol execution and sensor data processing. Lastly, the
methodology to devise a driver model in the overtaking manoeuvre is presented in Section 3.3.

3.1 Naturalistic driving study

One of the main demanding effort related to a naturalist data collection is to detect and
identify useful time stamps linked to a specific event under investigation. In UDRIVE data are
collected based on trips; hence each trip associated to a car gives rise to a Record. To each
record it is assigned an unique identification number, which allows the user to query for a
specific trip, if needed. In the database, specific attributes are assigned to a record in addition
to the unique ID. The attributes related to a “full record” can be the driver identification
code, collection country, car identification number, date and time, to mention a few. Moreover,
to each record it is associated a list of signals grouped in different time series, based on the
frequency characteristics of sensor’s message updating rate. To perform the above mentioned
database querying process the tools employed have been SALSA (see Section 2.5) implemented
in MATLAB.

With the purpose of tracking down specific events (like the overtaking manoeuvre), each
record needs to be split in multiple “data-segments”. Thus, a Segment refers to a fragment
of a Full record and it comprehend a certain type of event within a begin and end time. For
each scenario under investigation, a data analysts needs to design a proper segment generation
script. Segments that are generated by the same code (in UDRIVE nomenclature Node) cannot
overlap, and can be identified (within the same record) by an unique Subscript index, as well as
by a begin and end time. Furthermore, within each segment new time series can be generated,
containing post processing signals, like the TTC to a leading vehicle or a VRU location in the
scene. Therefore a Segment is characterized by its own Signals (clustered in Time series) along
with its own Attributes. The last-mentioned refer to user-defined properties of the segment
itself, for example the weather condition, mean speed, minimum distance to a pedestrian.

In a nutshell:

• Record – recording session related to each driver trip, characterized by full-record
properties, like attributes and CAN time series.

• Segment – portion of a record, categorized by segment properties, like scenario-specific
attributes and post-processing signals. Segments differ from each other based on the
scope of their generation, which in turn depends on the research topic under investigation.

• Attribute – either full-record or segment property specified by the user, expressed
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by means of Boolean values, strings or numerical quantity, representing e.g. scenario
performance indicators.

• Time series – grouping system composed by a time vector and signal values synchronized
according to the mentioned time. Time vectors differ based on associated signals frequency.

• Signal – time dependent vector of data linked either to CAN-bus recorded information
or to post-processing data augmentation process.

• Node – MATLAB script used to perform segment generation, as well as event post
processing.

The graphical user interface available to the user is represented in Figure 3.1. However, for
a detailed description about database architecture, along with SALSA tool description, the
reader needs to relate to the EU project deliverable [75].

Figure 3.1: SALSA visualization tool. Within the red border the video feed is represented.
MobilEye object detection visualization panel is shown within the blue box. The green boundary
includes multiple CAN signals’ plots. Image credit to Clément Val, CEESAR [76]

3.1.1 Raw data exploited

For each record a large amount of signals are available, these can be grouped in:

• CAN-bus data – signals recorded from the controller network in the vehicle, such as
vehicle speed, vehicle inertial measurement unit (acceleration, gyro, magnetometer),
turning indicator signal, to mention a few.

• MobilEye (ME) data – signals related to object location, object speed, width of the
object detected by means of image processing technology (Section 2.4).
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• GPS data – signals related not only to position (longitude, latitude), but also data
associated to the map-matching process. This made available speed limit, road type
(highway e.g.), road location (i.e. urban, rural).

• Video – video feed recorded by different cameras installed in the vehicles, which made it
available the manual annotation process (see Figure 2.6).

3.1.2 Pedestrian overtaking identification

The pedestrian overtaking event identification process has been based on the approach adopted
in previous study [25]. The method can be summarized in four main steps, as depicted in
Figure 3.2:

1. Segment Generation - For each full-record segments have been generated based on specific
criteria. These were related to events in which MobilEye sensor detected a VRU in the
scene, the VRU was a pedestrian, the car kinematic behaviour showed a change in the
lateral acceleration.

2. Data reduction and batch processing - Tuning and refinement of filtering variables, in
order to avoid MobilEye sensor miss detection, by mean of batch processing on limited
amount of records contained in the database.

3. Segment Annotation - Verification of pedestrian overtaking event by manual annotation.

4. Overtaking attribute definition - Annotation of overtaking specific characteristics, like
phase definition based on steering signal, pedestrian direction or pedestrian location with
respect to the lane.

Segment generation

The process of generating a segment associated to the specific event of “driver overtaking a
pedestrian” has been based on previous segments presents in the database. For a detailed
description refer to Nero’s project [25]. First and foremost a segment characterized by the
event “VRU disappear” was generated. The output was a Boolean signal (in the database
it has was named “SC VRUDisappear”) directly dependent from MobilEye object detection
sensor. Whenever the last detection of the VRU (i.e. it disappeared from the scene) took
place within 50 m and the speed of the EGO vehicle was above 20 km/h, a state-change
was created. The segment was therefore created with an offset of 10 s before the detection
of the road user and 10 s after the last detection (the threshold of 10 s was set assuming
the worst case event for which a car moving at 20 km/h would have at least reached the
pedestrian located at 50 m in that time period). When multiple road users where detected
the multiple segment generated were merged in a single one. These aforementioned thresholds
allows to remove instances in which vehicles were travelling too slow or when the VRU was
disappearing from the scene too far ahead compared to the car. The generated segment
within the database was named “SEG whenVRUDisappear”, and the reference MATLAB
script used was “ALY SC VRUDisappearATTRIBUTES”. The latter was used to generate
a Boolean signal “dVRU OT context” in the database, which was utilized as input in a new
segment generation procedure. With the purpose of detecting the specific scenario analyzed in
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Figure 3.2: Representation of overtaking manoeuvre segments detection, from full records to
single event annotation. The process is performed for all different records corresponding to
trips performed in different dates, with different duration (represented on the top of the image).
In each event segments are generated and the manual annotation allows to discard (red crossed
segment) or confirm (green segment) the overtaking event

this project a new Segment has been generated. This has been used to perform a step wise
action filtering process using kinematic characteristics of the vehicles within the begin-end
time interval of the segment itself. The node, associated to the segment, allowed the user to
manually query for specific attributes (generated as output from the node selfsame), like the
last pedestrian detection distance for example.

It is worth mentioning that the ME system is providing information about four different
obstacles that can be present in the scene and detected within the available FOV (approximately
50 degrees). Data that refer to the same obstacle-property (e.g. Obstacle longitudinal position)
are available in four different signals, each one associated to the fours objects. Hence, a “by
object” data storing system is adopted. When multiple obstacles are detected simultaneously,
it occurs that an obstacle detected as “obstacle 1” in the previous time stamp is detected as
“obstacle 2” in the following. Nonetheless, for each object detected the ME system is assigning
a unique identifier number (ID).Therefore it has been of primary importance to keep track of
the same road user detected over time, this by means of a matrix containing obstacle properties
which refer to the same ID. Following the same nomenclature presented in [25], in each segment
a mask object has been created. The term mask refers to a vector containing Boolean data,
whose value were assigned, for each of the four objects, based on certain criteria. These criteria
were dependent on the filtering action to be applied to the data. To clarify, whenever the
detected road user was a pedestrian, and the road type was non urban the Boolean value was
set to true. The exclusion of urban areas was necessary to avoid interaction between driver
and pedestrian in the crossing scenario (very common in a city environment), which was out
of the scope of this project. When multiple VRU appeared in the scene only data related to
the closest VRU were considered to fulfill the previous criteria, for the mask generation. The
masks generated for each of the four ME-detection obstacles were used to get the longitudinal
and lateral positions in the car reference frame, limited to the scenario under investigation.
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It is worth highlighting that due to the different collection sites involved in the UDRIVE
project, differences were present between left-handed and right-handed countries. In order to
develop an algorithm that could have been used for all Records, the same scenario definition was
essential whatever collection site it was considered. Therefore a data adjustment was necessary
since MobilEye was adopting the same reference frame without regard to the collection country.
For the data collected in Great Britain (GB) ME was referring a pedestrian located next to
the road shoulder, as it occurs for an overtaking manoeuvre, with a positive lateral distance.
On the contrary, for a right-handed traffic country a pedestrian located next to the road curb
was measured with a negative lateral distance. Therefore, as depicted in Figure 3.3 the sign
of the lateral distance measurement has been corrected. The same process has been applied
to the signal related to the ME detection of the lane edges. With reference to Figure 3.4
the “distance to lane” (continue line) and “distance to adjacent lane” (dashed line) signals
for a left-handed traffic vehicle were characterized by an opposite sign when compared to a
right-handed traffic vehicle. Therefore signals have been corrected in order keep consistency in
the approach adopted in the event filtering process.

Figure 3.3: Pedestrian lateral position sign correction. The obstacle lateral position has been
adjusted keeping a positive value for the pedestrian located next to road curb. The blue vehicle
represents the scenario of a left-handed traffic country, which has been used as reference. The
grey vehicle refers to a right-handed traffic vehicle, for which the original ME detection sign
(red representation) has been reverted and corrected (green representation), to keep a consistent
approach

Figure 3.4: Signal related to left and right lane edges. Original (red) sign and corrected (green)
sign for left-handed traffic vehicle (blue) and right-handed traffic vehicle(grey)
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Data reduction and batch processing

Once all the signals showed consistent values independently from the record’s collection site,
the aforementioned mask has been used to find the pedestrian lateral position while the car
was approaching the VRU. To promote events in which the pedestrian was present in the
lane, a comparison between distance to the road shoulder and the pedestrian lateral position
was performed. If the latter was lower than the former the pedestrian detection segment
was flagged as “in lane”. Moreover, due to limited ME sensor performances pedestrians were
detected usually for a time period of one and a half seconds. In parallel ME sensor was prone
to miss detection, i.e. traffic sign classified as pedestrians or bicyclist qualified as pedestrian at
longer distances. Therefore, to reduce the amount of miss-detected events a threshold of 15
data points was defined, since wrong detection in the ME-data rarely lasted for longer then a
dozen of time samples. At the same time, to cope with ME miss classification of bicyclist as
pedestrians, the following approach was undertaken. Since the miss classification was prone
to happen usually at a longer distance, if in the last ME detection (who resulted to be more
accurate) the VRU was detected as bicyclist, the event was discarded, even if initially listed as
“candidate” to the overtaking event identification. Furthermore, to tackle sensor miss detection
that lasted for more than 15 time samples, it was observed that these happened at a significant
longitudinal distance with respect to the car reference frame. Therefore, to be considered as
overtaking-manoeuvre candidate a segment VRU detection had to show an average longitudinal
distance, within the last two detection, lower than 10 m.
At the same time, a data quality check related to the amount of available data within each
segment was performed. Only segments with a number of invalid data lower than 32% were
considered for further filtering operation.
In the process of sorting out only segments containing an overtaking manoeuvre, a closer
look was given to the transverse acceleration signal. The identification of peaks in the lateral
acceleration was associated to the VRU lateral position. In detail, the mean lateral distance of
the VRU over six time instances during the occurrence of the peak (tpeak − 5 : 2 : tpeak + 5) has
been computed. This had to be greater than the lateral distance of the VRU during the whole
event. The threshold of six time stamps was adopted according to the approach followed in
previous study regarding bicycle overtaking events.
To be considered as an overtaking candidate, the absolute value of a steering wheel angle signal
needed not to overcome a threshold of 200 deg. This because it was necessary to filter out
events in which a pedestrian was standing at a traffic light and a car passed by him/her before
turning at the intersection.
No filtering action was possible with respect to the ME signal of the relative speed between
VRU and car, since the signal resulted to be unreliable and not accurate. Moreover, in order
to be classified as event candidates for the manual annotation, segments needed to have a
pedestrian detected within 4 meter (average of lateral distance).

The script (or Node) adopted for this segment generation was tested and tuned by means of
a batch processing. This process allowed to test the script on a subset of the database (i.e.
1000 records) allowing to evaluate the performances of the code itself whenever a threshold was
modified. This method was applied multiple times during the first part of the time allotted for
this project.

Eventually, once the script proved to offer an accurate enough performance it was pushed
into the UDRIVE database allowing it to be run over the complete data set.
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Segment annotation

The output given from the overtaking segment querying process was giving to the user a list of
overtaking manoeuvres, fulfilling the above mentioned filtering criteria. However, to address
residual ME miss detection each segment needed to be verified. The verification process was
enabled by video feed data. Watching front and front-right camera’s images at each time stamp
stated as “overtaking candidate”, allowed to find out real overtaking events. By means of this
activity it was possible to get a early estimate about the availability of pedestrian overtaking
manoeuvres within the database and therefore the usability of data set.

Overtaking attribute definition

Once the segment verification process allowed to get a number of events which could allow a
driver behaviour quantification, the last step of the event identification process was performed.
An annotation panel has been designed, in order to help the annotators in the segment attributes
definition. The factors considered in this process are summarized in the following:

• overtaking type (categorical: accelerative, flying, piggybacking)

• oncoming traffic presence in the scene (Boolean)

• leading vehicle presence in the scene (Boolean)

• event occurred in a straight road (Boolean)

• event took place in rural road (Boolean)

• pedestrian walking in the same direction of the EGO vehicle (Boolean)

• multiple people overtaken (Boolean)

• pedestrian action type (categorical: standing, walking, running)

• pedestrian position (categorical: in lane, walking above lane marking, walking in the
curb)

Moreover, by mean of a joint analysis of video and signal data it was annotated also the
begin and end time of each phase of the overtaking manoeuvre (for a detailed definition of
each phase please refer to the following chapter).

It worth noting that annotators had to select every single one of the previous attributes in
order to consider the annotation process as completed.

3.1.3 Overtaking phases definition

As remarked in the literature review (Section 2.2.2), researchers followed different approaches
in order to classify and breaking down the overtaking event into multiple phases. The method
presented hereafter has been founded on phases definition introduced by Dozza et al. [19][24]
and adjusted by Jordanka et al. [23] [25] for a NDS data set (see Section 2.2.2. The main
reason for this approach has been to get results that could allow a comparison between driver
behaviour in the interaction with bicycles and with pedestrians. In order to relate the phase
definition to the event annotation process, as described in [25] only the start of phase one
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(when the VRU was visible in the video-feed) and the start of phase two (when the driver
performs the steer-away input to the vehicle, in order to change vehicle heading angle) needed
to be manually annotated.

However, the approach adopted in this study proposes a manual annotation of all the phases,
according to driver’s input to control the vehicle path. This because the motion is controlled
through the actions of the driver who observes the vehicle’s handling responses and carries out
suitable steering to achieve the intended path. This annotation procedure has been possible
since steering wheel angle signal, together with the video of the dashboard in the passenger
compartment were available to the annotator. It is worth highlighting that when video and
signal happened to be asynchronized, the annotation process relied only on the time stamp
related to the steering wheel angle signal.

Therefore, during the annotation process the time stamp of the start of all phases, and the
end of the overall manoeuvre has been manually annotated ensuing the following definition:

• Phase One - Approaching phase
Begins when the VRU is visible in the video-feed and ends when phase two begins.

As represented in Figure 3.5 the vehicle is approaching the pedestrian from behind. The
main variables that may be used to describe this phase are the distance between the
vehicle and the pedestrian (referred as minimum approaching gap mAG), and the TTC
or the time headway (THW) in which the phases ends. The annotated time, however, is
dependent mainly on the camera sensor performance and the annotator possibility of
detection the pedestrian in the video feed.

Figure 3.5: Approaching phase

• Phase Two - Steering Away/Pull Out phase
Begins when the driver start to steer away from the collision path to the pedestrian and
ends when phase three begins.

As represented in Figure 3.6 the phase begins when the motorist inputs a steering
control and the vehicle diverges from its possible collision course to the pedestrian. The
variables describing this phase might adopt different values depending on the driver
and the situation. The result of steering actions is represented by the increased lateral
distance to the curb and for accelerative manoeuvre, the phase may be accompanied by
an acceleration or deceleration of the vehicle. Also, the driver could use the indicator to
show its intention to possible following vehicles.
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Figure 3.6: Steering away

• Phase Three - Course adjustment
Begins when the driver performs a steering action in order to correct the path of the
vehicle. This allows to prevent the vehicle from overrunning into the adjacent lane for
example. The safety metrics that has been analyzed in this phase has been the minimum
distance steering (mDS), which represent the end of the previous phase and the start of
the third phase. The phase ends when the last phase begins. Figure 3.7

Figure 3.7: Course adjustment

• Phase Four - Returning phase
Begins when driver performs a steering action in order to return back to the original
position in the lane. This results to be one of the most important phases, since it includes
the passing of the pedestrian, and therefore the lowest distance a car is keeping from
the VRU during the manoeuvre (“mC” in Figure 3.8). The phase ends when the vehicle

Figure 3.8: Returning phase

return back in the original lane position, approximately keeping a lateral distance to the
curb similar to the one in the approaching phase. The leeway that the drivers leave for
the pedestrian when returning in the lane can be characterized by the minimum returning
gap (mRG in Figure 3.9). In this phase the indicators could be used by the drivers to
inform other users about their intention.

3.1.4 Extrapolation of position and velocity of the VRU

Since the pedestrian location was dependent on the possibility of ME sensor to detect obstacle
located only in front of the vehicle, it has been necessary to extrapolate the pedestrian position
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Figure 3.9: Manoeuvre completed

during the whole duration of the overtaking. As can be depicted in Figure 3.10 the detection
of the pedestrian was highly dependent by the change of vehicle heading angle ψ during the
second and third phases.

Figure 3.10: Representation of the scene in which the pedestrian gets out of the FOV of
MobilEye sensor. Inertial reference frame is represented with blue X-Y, while the car-fixed
frame is represented with x-y

Hence, the extrapolation process has been necessary for all events, since once the pedestrian
was out of the field of view of ME (represented by the blue triangular area) no information
were provided about pedestrian position in the scene.

In order to reconstruct pedestrian’s position it has been necessary to find a proper measure
available for the entire duration of the scenario under investigation. In a previous study [25]
the signal provided by ME of the distance to the road edges and or line markings have been
used to perform the extrapolation. However the signal has noted to be unreliable: “ the raw
ME signal [. . . ]seemed to function a bit unreliable, namely that the lateral distance to VRU
was greater than the lateral distance to the lane edge, effectively placing the VRU outside of
the lane for instances despite the video-feed showing the VRU being located in the middle of
the lane.” [25] Furthermore since the overtaking event identified in the querying process were
mainly occurring in secondary roads, without central and side lane markings, the signal of the
lane boundaries was affected by missing or default data. Therefore, a new approach had to be
adopted.

Car trajectory

In the attempt of retracing the car path from the begin time until the end time of the segment
the kinematic model of the vehicle has been adopted. In the kinematic bicycle model, the two
front wheels (respectively the two rear wheels) are lumped into a unique wheel located at the
center of the front axle (resp. of the rear axle) such as illustrated on Figure 3.11

In [77] the kinematic equations are expressed by:

Ẋ = V cos(ψ + β(δ)) (3.1)
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Figure 3.11: Kinematic model adopted in order to convert car trajectory in the inertial reference
frame X-Y

Ẏ = V sin(ψ + β(δ)) (3.2)

ψ̇ =
V

lr
sin(β(δ)) (3.3)

where β(δ) is the vehicle slip angle in the center of gravity, δ is the front wheel steering

angle, ~V is the vehicle speed in the center of gravity, while ψ is the yaw angle (also known as
heading of the vehicle).

From the database it has been considered both the signal related to the “yaw rate” as well
as the raw signal of the IMU. Moreover, it has been neglected the vehicle side-slip angle (β)
since the speed available (v) was considered recorded by the rear-wheel odometer. Thus the
vehicle position (x,y coordinates) was computed in the global reference frame as:

x =

∫ e

s

v cos(ψ) dt

y =

∫ e

s

v sin(ψ) dt

being “s” and “e” the start and end time stamp of the segment.
It is worth highlighting that in the attempt to get a good result in the trajectory estimation

a Kalman filter characterized by state vector [GPS latitude, GPS longitude, GPS heading,
vehicle speed, yaw rate, longitudinal acceleration] has been set up.

However, since the kinematic model was giving results (when the trajectory was superimposed
to the actual map of the road) as reliable as the Kalman filter trajectory estimation, the
bicycle model has been adopted. A reason for this choice was also based on the difficulty in
the definition of a general setting for the Kalman filter for the multiple car models present in
the data set.

Once the trajectory have been computed a representation panel of the 2D scene was designed
to provide to the annotator a direct result of the trajectory. Hence, in the overtaking attribute
definition process each trajectory has also been verified by the annotator.
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Pedestrian path

Pedestrian position was evaluated starting from the data points given by ME sensor and
therefore expressed in the car reference frame. Once the car trajectory (in the global frame)
was available, also the pedestrian position was converted into a fixed/inertial reference frame.
The transformation matrix (globalRlocal) between the reference frames can be expressed by a
rotation matrix, in which the angle ψ corresponds to the vehicle yaw angle.

globalRlocal =

[
cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)

]
(3.4)

With the assumption that during the manoeuvre the pedestrian was walking along a straight
path, it has been necessary to detect which was the direction and position of this assumed
path. It has to be considered that the average detection time was roughly 2.0 seconds (20
data points at 10 Hz), while the total time over which the position needed to be extrapolated
was roughly 10 seconds. Therefore, in order to get accurate results for the overall path it was
crucial to detect outliers within the 20 ME detection.
To perform this operation a specific algorithm has been used: RANSAC. The acronym stands
for RANdom SAmple Consensus. This is considered as the state of the art for the detection
of outliers and it offers an high degree of reliability also with noisy measurements. The main
assumption at the root of RANSAC is that, given a set of inliers, there exists always a model
that optimally explains or fits this data [78]. The key reason for the adoption of this method is
that it has an higher level of performance when compared to a simple least squared method.
This is related to RANSAC’s attempt to exclude outliers (during an iterative process) before
the evaluation of the model fitting to the data. This is done by fitting lines to several random
subsets of the data; consequently a random subset consisting entirely of inliers will have the
best model fit. The larger the number of iteration, the higher the possibility of correct inlier
identification. An important input parameter to the model is the threshold distance, which
represent the maximum value of the norm between the line (that needs to be fitted to the
data) and a point to be considered as inlier. Furthermore it is relevant the threshold of the
number of inliers. This needs to be tuned adaptively to get the best line fit.

The output first-order model given by RANSAC has been represented by the variable , also
referred as pedestrian trajectory slope with respect to the inertial frame, as depicted in Figure
3.12.

Figure 3.12: Representation of the RANSAC fit (red line) of the pedestrian detection

Once the pedestrian walking direction has been evaluated, it has been assigned a pedestrian
position (along the path mentioned above) at each time stamp.

To perform this operation the pedestrian motion was firstly evaluated in pedestrian’s
reference frame and eventually converted to an global reference frame. It has to be noted that
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the pedestrian was assumed to walk at a constant speed and without any lateral movement
while the overtaking was occurring. Therefore the position of the VRU at the time instant
tkhas been set equal to:

xV RU tk = xV RU tk−1
+ VV RU(tk−1 − tk) (3.5)

A first evaluation of VV RU has been based on ME signal of the relative speed between vehicle
and pedestrian:

±VV RU = VCAR + ∆V (3.6)

Where ± is related to the walking direction of the pedestrian, being the same direction of
the vehicle or the opposite. However, since ME signal related to the relative speed between
the vehicle and the VRU has been proven to provide often unreasonable results (speed higher
than common walking/running speed: eg. above 15-20 km/h), the speed of the pedestrian
has been evaluated using a second approach. This was relying on the signal given by ME
of the longitudinal distance between the VRU and the vehicle. The first degree term of the
polynomial fit to this signal (over time) was considered to give the relative velocity, RV with
dimension-unit meters per second. The velocity of the pedestrian was thus derived in kilometers
in the form of:

±VV RU = RV 3.6 + VCAR (3.7)

However, as it has already been noted in previous study following this approach [25], the
speed of the VRU resulted to be sometimes overestimated.

Therefore, based on the annotation process, a third method was adopted when previous
results revealed to be inaccurate. The annotator had to choose between three pedestrians
motion based on available information of the VRU from the video-feed. VV RU = 0km/h,
when the pedestrian was standing during the event, VV RU = 5km/h for a walking pedestrian,
VV RU = 9km/h in the condition in which the VRU was running.

For those event in which the speed evaluation from ME differed of ± 2km/h from the
annotated speed, the latter has been assumed as the actual pedestrian speed, and therefore it
has been used for pedestrian position extrapolation.

Eventually, pedestrian’s displacement has been extrapolated starting from the mean position
of the inliers (from RANSAC) within the last five detection of ME (considered to be the more
accurate). Thus at each time stamp, following the equation 3.5, the position was updated
backward in time and forward in time. The former refer to pedestrian position during the
annotated phase one, two and three, while the latter refer to the VRU position when the car is
in the returning phase. The process was performed considering the direction of the pedestrian
as described in the annotation process.

The last step has been the transformation of the VRU positions from the pedestrian reference
frame to the global reference frame, which served as link between the car motion and the
pedestrian motion over time. This has been done by mean of a rotation matrix, as expressed
in equation 3.4, with angle .

3.1.5 Comfort zone boundaries

The minimum approaching gap (mAG), minimum distance steering (mDS) and minimum
returning gap (mRG), where computed as actual distance in the global reference frame between
vehicle’s closest corner to the VRU and the pedestrian side. To perform this operation each
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vehicle model present in the data set was considered as a rectangular shape from a bird-eye
view of the scene. Therefore before having passed the pedestrian it has been considered
the front-right corner, while in the returning phase it has been considered the rear corner
of the vehicle. It has also to be considered that a specific metric was computed while the
vehicle was passing the pedestrian. This metric has been defined as minimum clearance (mC),
being the minimum distance of the right-side of the car and the pedestrian. In a nutshell:
mC = min(DistFront, DistRear).

The time headway (THW) has been derived using the safety metric minimum approaching
gap (mAG between the car position and the pedestrian) and the vehicle speed via

THW =
mAG

VCAR
(3.8)

while the TTC was evaluated in the form:

TTC =
mAG

∆V
(3.9)

Moreover, a reference time was defined in order to compare different manoeuvres performed
by different drivers. This has been named time to pedestrian, and it has a value T2P = 0 in
the time stamp in which the car and the pedestrian were aligned orthogonally with respect to
the road, as represented in Figure 3.13. This time stamp was identified when the front of the
vehicle was reaching the minimum distance to the pedestrian, while passing. Therefore this
parameter has been considered to evaluate the time history within and between overtaking
manoeuvres, for example: the time in which the phase four was starting has been reported
with respect to the T2P described above.

Figure 3.13: Visualization of the variable time to pedestrian. T2P=0 when the front of the
vehicle reaches the lower distance to the pedestrian

3.2 Field data collection

Within this project a parallel activity to the NDS analysis has been carried out. If the UDRIVE
data allowed to have an understanding of the driver behaviour, the field data collection has
made it possible to evaluate safety metrics from a pedestrian point of observation. In the
following it will be described the hardware adopted together with the software platform. The
experimental protocol adopted in the real traffic data collection and the data post processing
will be presented subsequently.
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3.2.1 Tools

The main requisites for the data logger were related to its wearability as well as to the
availability of electronic systems within the department of Mechanical and Maritime science.
Specifically, a LiDAR sensor, together with a 9 degree of freedom (DOF) inertial measurement
unit (IMU), a web-cam (720 pixels) and a GPS receiver have been adopted in the set up of the
data logger system. A description in broad terms related to the working principle of the main
adopted sensors will be presented in the next sections.

LiDAR

The name LiDAR is used as acronym of light detection and ranging, sometimes such a sensor
is also referred to laser range-finder. As the acronym suggests, this sensor allows users to get
distance measurement of objects present within the field of view of the sensor. Hence a LiDAR
sensor continuously fires off beams of laser light, and then measures how long it takes for the
light to return to the sensor. This is based on the principle of the time of flight of the light
beam, which gives the actual distance of a detected target. It is worth highlighting that no
direct speed measurement is possible from this sensor as opposed to the available Doppler
effect in radio assisted detection and ranging (RADAR) systems. However, speed computation
is possible in LiDAR with point to point derivative measurement. Different types of this
sensor exist in the market, and their performances in terms of post processing possibilities are
mainly related to the number of light-beams which characterize the sensor itself. Nowadays
it is possible to find not only static single beam LiDAR sensor with a limited field of view
(FOV), but also 360 deg multiple beams sensors. Moreover, it is right for the reader to bear in
mind that such devices only gives to the user a point-cloud measurement of the surrounding
scene, that is a set of data points at a certain distance with respect to the reference frame
of the sensor itself. However to properly understand the environment from the raw sensor
information (like the point cloud) it is necessary to extract and classify that information in
order to portray what the device is seeing and which kind of objects are present in the scene.
Therefore a necessary step presented in the data analysis (see Section 3.2.3) is the classification
and clustering of the point clouds measured by the sensor. The laser rangefinder adopted in
this project has been the single beam Hokuyo UXM-30LAH-EWA.

IMU

An inertial measurement unit is an electronic device designed to measure accelerations, angular
rates, and the magnetic field surrounding the body equipped with the sensor itself. This is
achieved using a combination of 3 DOF accelerometers, gyroscopes and magnetometers. Its
potentials are related to possible sensor fusion together with a GPS receiver, as well as the
calculation of attitude (i.e. body’s orientation in 3D space), velocity and position of a given
object in space. Typical implementations of IMU occurs by mean of Strapdown inertial system
approach, which integrates angular rate from the gyroscope to calculate angular position. The
attitude estimate is used to transform acceleration measurements into an inertial reference
frame (hence the term inertial navigation) where they are integrated once to get linear velocity,
and twice to get linear position [79]. The same evaluation of attitude and heading reference
systems (AHRS) has been shared as open source Madgwick filter [80], which has also been
adopted in this study. This allows the user to get reliable estimation of the three Euler angles
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(roll, pitch and yaw). The Madgwick filter is considered an accurate ARHS algorithms since it
is integrating both the approach of computation of the orientation from gyroscopes as well as
the estimation of the orientation from accelerometer and magnetometer into a fused solution
taking into account the benefits of each source of information. Within this project the 9 DOF
PhidgetSpatial Precision 3/3/3 High Resolution has been adopted.

ROS

The Robot Operative System (ROS) is defined as “an open-source, meta-operating system for
your robot. It provides the services you would expect from an operating system, including
hardware abstraction, low-level device control, implementation of commonly-used functionality,
message-passing between processes, and package management. It also provides tools and
libraries for obtaining, building, writing, and running code across multiple computers”[81].
Being classified as meta-operating system means that ROS shares characteristics with some
middleware systems and frameworks (message callback), but it also has features that are typical
of OS systems, like hardware abstraction, package management, developer toolchain. It is
worth to give details about a conceivable definition of middleware system. Within a distributed
network the middleware is a software layer that stands between the operating system and
the application side [82]. Hence, as a middleware, ROS allows the user to integrate different
systems and let them work together in an homogeneous environment . Furthermore, ROS has
some specific attributes [83]:

• plumbing: ROS is characterized by a dedicated publish-subscribe messaging infrastructure,
which allows to support a quick and easy distributed computing systems.

• tools: ROS provides a widespread set of tools for configuring, debugging, visualizing,
logging, testing, and stopping distributed computing systems.

• capabilities: ROS run a broad collection of libraries that implement useful robot func-
tionality, with emphasis on manipulation, mobility and perception.

• ecosystem: ROS is maintained, sustained and improved by a large community, with
a strong focus on integration and documentation. Online blogs and forums, as well
as shared projects (on github) allow the user in finding and learning about the ROS
packages, which are made accessible from developers around the world.

In the next sections of this report it will be used a specific terminology associated to ROS,
therefore a concise description of the vocabulary used there is assumed to be useful for the
reader.

• Nodes: a node is process that perform computation; it is an executable. Each node
performs a specific processing part, usually a part of the algorithm. Thus, each node has
a specific script associated to it. In other words, a node is a process that executes a ROS
program. For the sake of clarity, considering an unmanned ground vehicle, each sensor
has an associated control node, another node may be used to regulate vehicle wheels,
one dedicated node may perform the localization and a further node could combine all
these information to run a path planning algorithm.
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• Messages: nodes communicate with each other by passing messages. A message is
nothing but a data structure, characterized by specific fields. Each message description
can be found in the msg/ sub-directory of each ROS package.

• Topics: each message in ROS is routed via a transport system that has a pub-
lish/subscribe semantic. A node sends out a message by publishing it to a given topic.
Therefore, each topic has to be associated to a specific “name” that is used to identify the
content of the specific message. Specifically, a node that is interested in a certain kind of
data will subscribe to the appropriate topic. A topic can be associated to a message bus,
this has a name, and anyone can connect to it with the purpose of sending or receiving
messages [84].

• Services: a service allow to perform a request / reply interaction, which is needed is
such a distribution system. There are two sets of services: one for the request and one
for the reply. A specific node, that is making available a certain message, provides a
service under a dedicated name; at the same time, a client is sending a request message
and it is waiting for the reply in order to use the node content.

• Bags: *.bag is a format for saving and playing back ROS message data. Bags are an
important mechanism for storing data, such as sensor data, allowing a synchronization of
measurements.

Embedded system

The device adopted in order to merge together different sensors has been the Raspberry Pi 3
model B. On this single board computer it has been installed the Ubuntu 16.04.4 operative
system (OS). As well the version “kinetic” of ROS has been implemented. Metaphorically
speaking the Raspberry Pi (RPi) has allowed to get an “intersection” point between different
sensors, allowing to perform visualization, management and recording from the same device.

Within the project it has been developed an open source package (available on github) by
which the drivers related to each sensor has been grouped together. It has to be considered
that each driver acts as translator between a sensor and the data logger that is using this
sensor. To accomplish this goal a specific node (see terminology in subsection 3.2.1) has been
implemented. The script associated to this node is allowing the user to request for three data
logger status: idle (only visualization of data), rec (recording), shtdn (shutdown of the system).
As soon as the data logger is booted up, a launch file is run by the Raspberry Pi, allowing
the system to receive information from each sensor. Launch files provide a convenient way to
start up multiple sensor-nodes as well as initialization of specific requirements (e.g. frame rate)
associated to the system.

As previously described the way in which sensors communicate with the master is through
messages grouped in topics. The Table 3.1 summarizes each sensor characteristics and associated
topics for each sensor message, also a list of the associated connection type to the Raspberry
Pi is presented.

A specific node has been developed also for the flag button listed above. The purpose of
such a device is to allow the user to flag, by mean of a Boolean signal, some interesting events.
In other words, looking at the system usage, as soon as the scene (observed by the sensors)
represents an overtaking manoeuvre, this can be highlighted by mean of a click. The button has
been connected by mean of the General Input General Output port available in the Raspberry
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Table 3.1: Sensor typology and connection type

Sensor Model ROS Topic Message content
Update rate

[Hz]

Connection
Type

LiDAR
Hokuyo

UXM-30LAH-EWA
\scan

Range and Angle for 1520
points

20 Ethernet

IMU PhidgetSpatial 1044 0 \imu\data imu
acceleration-x-y-z,yaw-

pitch-roll,magnetic
field

250 USB

Camera
Creative Live! Cam

Sync HD
\cv camera\image raw rgb images 25 USB

GPS Globalsat BU-353S4 \vel \fix position and speed 1 USB

Flag
Button

- \flagbutton pressed Boolean 10 GPIO

computer board. From a software perspective, the node is adopting the “wiringpi” library
and it is started up as soon as the RPi is booted. A specific message “div datalogger.msg” is
published with an update rate of 10 Hz. The default value (false) is upgraded to a “true” value
whenever the button is pressed.

In order to control the data logger status a web app has been adopted. In detail, the
Raspberry Pi has been set as an access point, allowing to have a wireless network accessible
to whichever client connected to it. The browser user interface has been based on a previous
activity performed by the supervisor of this project, allowing the user to have two possible
selections: data visualization and data management. In the visualization mode real time sensor
measurement are displayed to the user. LiDAR data, IMU orientation and camera images are
showed in three different web pages. Considering the data management mode, the user can
benefit of a window showing terminal logged messages (information messages, warning messages
and error messages). Moreover, from this interface the user can start and stop the recording of
all sensor messages storing them in a bag file. Furthermore a “shutdown” button allows to close
down the complete system. It is worth mentioning that the computer communication protocol
adopted for the graphical user interface is the websocket, which provides full duplex real-time
data transfer between a “client” (whichever browser connected to the wireless network) and
the Raspberry Pi “server”.

Figure 3.14 represents how the graphical user interface has allowed sensor measurement
visualization and management.

Necessary step for a proper event recording has been the “zeroing” of the gyroscope,
associated to the IMU. This activity needs to be performed every time the system is restarted,
keeping the sensor static for a couple of seconds.

To allow data synchronization while recording, it has been necessary to provide a time clock
to the system. Considering that no internet connection where available (the wi-fi has been
used as access point) the Raspberry Pi has been equipped by a real time clock (RTC) Adafruit
DS1307 RTC [85].

All the data have been stored on a standard USB pen drive (64GB), which was always
connected to the logger. A Yuasa NP7-12 (12 V, 7000 mAh) battery has been used for the
LiDAR system power management; while the RPi has been powered by a standard portable
charger (5 V, 6000 mA) via micro-USB.
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(a) Index (b) Visualization LiDAR

(c) Visualization IMU (d) Manager page

Figure 3.14: Web interface for sensor equipment visualization

Hardware assembly: 3D printing

The measurement sensors needed to be arranged in a specific way that allowed the logger to
be wearable. To achieve this goal the hardware has been designed and manufactured using a
3D printer. On account of completeness, a general overview of the working principle of this
additive manufacturing technique would be delineated in the following.

The making of a 3D printed entity is achieved using additive processes. In this process an
object is created by laying down successive layers of material until the object is completed.
Each of these slabs can be seen as a thinly sliced horizontal cross-section of the ultimate object.
This printing method is known as fused deposition modelling (FDM) [86] also known as fused
filament fabrication (FFF). The 3D printer used in this project (Dagoma discoeasy 200) is
based on robotized Cartesian structure characterized by three prismatic joints, which allow a
complete motion of the printer extruder-head in the 3D space. The material which is extruded
is PLA (polylactic acid), while the extrusion process encompass a cold end and a hot end.
The former is composed by a gear- or roller-based system, which pulls and feed the material
towards the hot end. The latter hosts the liquefier of the 3D printer that melts the filament. It
allows the molten plastic to exit from a small nozzle to form a thin and tacky bead of plastic
that will adhere to the material it is laid on [87].

The work flow necessary to print an object is the following:
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1. design of the object model by mean of a computed aided design (CAD) software

2. conversion of the CAD file into *.stl file

3. preparation of the g-code, which sets all necessary slices of the model

4. loading of the coil of plastic material

5. uploading of the proper 3D file in the printer control system

The software tools adopted for this process have been: Autodesk Inventor 2018 for the
design of digital element; Cura by Dagoma for the g-code generation.

In Figure 3.15 the step-wise approach mentioned above is represented, from digital 3D model
to final printed device.

(a) CAD model (b) Printing

(c) Final object

Figure 3.15: Web interface for sensor equipment visualization

In detail, the 3D parts designed for this activity have been:

• Camera case

• IMU case

• Raspberry Pi case

• Battery pack case

• Overall sensor equipment holder
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The camera case was designed to have a pivoting point which allows angle adjustment. The
IMU case is taking advantages of the specific shape of the LiDAR in order to place the IMU
sensor just under the LiDAR axis (the LiDAR is sweeping the scene with respect to a fixed
axis). As well, the LiDAR shape has been considered for the holder. The latter has been split
in two elements which can be used to adjust sensor’s location with respect to user’s waist.
Thus, the holder allows the user to wear the equipment as if it was a strapdown device. For a
closer look to CAD files please refer to the online github repository.

3.2.2 Experimental protocol

The experiment was conducted on two different days in a collection site located in Tuve area
in Göteborg. The road choice was based on previous collection for driver-bicyclist interaction
studies. It was necessary to avoid roads with pavement or dedicated pedestrian lanes on the
road or close to it. The road had to have a single lane per each direction, since the overtaking
manoeuvres may different on roads significantly when multiple lanes.

It has to be considered that the protocol was designed in order to answer to the five
research questions at the root of this thesis activity (see Section 1.1.1). Thus, the protocol was
implemented in such a way to get two main factor under analysis. These were:

• pedestrian walking direction

• pedestrian lateral position

The former has allowed to investigate possible difference in road users interaction when
the pedestrian was either walking in the same direction of the traffic or facing the traffic.
The experimental question related to this factor was: “does the eye-contact influence human
behaviour in the execution of the manoeuvre?”. The second factor was associated to the
pedestrian location on the road, being he walking either on the line marking at the edges of
the road or on the curb (namely with a shift of 40-50 cm away from the lane center).

It is worth highlighting that a single pedestrian was wearing the data logger for the complete
duration of the collection. Having a single person walking along the street has allowed to avoid
the introduction of a potential factor related to pedestrian appearance in driver’s perception
of the scene. The reader has to consider that to increase safety the pedestrian was wearing a
reflective vest, however this outfit was not deemed to be abnormal for drivers in Sweden.

During the experiment a round trip path was followed by the pedestrian starting from the
scenario in which he was walking on the line markings and in the same direction of the traffic.
Once the scenario in which he was walking on the curb was performed, the planned protocol
was completed repeating the previously mentioned settings walking in the opposite direction of
the traffic.

The selected area is represented in Figure 3.16, where the extremity points of the walking
path are delimited with red markers. While recording data, the pedestrian was expected to
reach again the starting position in order to consider the scenario as completed.

Figure 3.17 depicts the equipment worn during the field data collection, a representation
of the field test scene is given as well. It has to be noticed that the batteries for the power
management of the embedded system were fitted into a backpack carried by the pedestrian.
During the collection an equipped vehicle (LiDAR, GPS, IMU, Figure3.17b) was available on
the granting of Autoliv AB. However, data of the equipped car have not been analyzed within
this thesis work.
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Figure 3.16: Aerial view of the scene. Credits to google.com

(a) Equipment (b) Pedestrian observed from car’s perspective

(c) Pedestrian walking on line marking

Figure 3.17: Experimental data collection
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3.2.3 Experimental data – post processing

In order to answer to the research questions associated to the field experiment, measured
data needed to be post processed. The reader has to keep in mind that, while walking, the
data logger (which was strapped to the pedestrian waist) was affected by a motion in the 3D
space. In detail the roll and pitch rotations caused the detection of the ground every step of
the pedestrian’s way. In order to detect the CZB for different overtaking vehicles from the
complete (190 degrees) LiDAR scanned area three main steps have been necessary:

• equipment 3D motion estimation

• road extraction and ground detections removal

• car clusters detection, extraction and tracking

The overall process from 2D raw data to car tracking is summarized in the Figure 3.18.

Figure 3.18: Step-wise approach followed for field experiment data

Equipment 3D motion estimation

The first data post processing activity has been devoted to get a 3D pointclod from the available
2D LiDAR data fused together with the IMU data. The application of the Madgwick filter has
allowed to get a direct information about the orientation of the sensors equipment assembly in
3D space. By mean of a chain of reference frames transformation it has been possible to apply
the IMU orientation at each time stamp of the LiDAR data.
Ideally speaking, while walking the waist was following a sinusoidal motion (due to step by step
movement in the walk) and the 2D LiDAR scan plane was tangent to this harmonic pattern.
Hence at each time stamp the LiDAR was detecting different zones in the environment, due to
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the variation of its location. From an optimal position in which the scan plane was parallel to
the ground (e.g. while standing) the 2D scan beams were either detecting the ground in front
of the pedestrian, or due to this tilt the LiDAR was detecting the ground behind the pedestrian.
These front-rear ground detections were thus repeated in a periodic way for the whole duration
of the record. The IMU data have been used in order to evaluate the aforementioned 3D
motion allowing to get information in a 3D space. Thus, the LiDAR data was enriched and
converted into a 3D pointcloud.

Road extraction and ground detection removal

The second main step in the field test data analysis has been related to a pointclod filtering
action. In other words, the detected area outside the road boundary as well as the aforemen-
tioned ground lines have been removed. The goal of this process has been to include in the final
pointclouds only data related to vehicles travelling on the road. A 3D box with dimensions
([-100,+100],[-0.5,9],[-0.4,2]) in the Cartesian ([x],[y],[z]) space has been determined, being x
aligned along the road, y perpendicular to the road and z up with center in pedestrian waist.
Thus laser points outside of this box were discarded.
Since some ground detections were still present it has been adopted the “RANSAC” algorithm
in order to detect such lines outliers. This algorithm was adopted to fit lines through points
in the 3D space. Given that the ground appeared as a straight line in each LiDAR frame,
every point that was inlier in the line fit was assumed as outlier of the overall pointcloud and
therefore these points have been removed. In detail only lines with a slope within the interval
15 - 75 deg were considered as ground, to avoid the removal of front car bumper points, who
appeared also in the form of line at a long distance from the pedestrian.

Car cluster detection, extraction and tracking

After the pointcloud filtering process, mainly car detection datapoints were present in the
pointcloud. In the following step, laser points that were related to the same vehicle have
been detected and differentiated from noise datapoints (still present in the scene) or from
other vehicles sensed by the LiDAR in the same time instant. Thus, if multiple vehicles (e.g
an overtaking vehicle and an oncoming vehicle) were simultaneously present in the scene,
each vehicle was clustered as a standalone object and the process was repeated for the whole
duration of the field test data. To accomplish this task the “Euclidean cluster extraction”
class available in the Point Cloud Library (pcl) has been implemented. In the literature this
approach is defined as “Graph based methods”, which consider the pointcloud as if it was a
graph. Therefore each point is considered as an edge connected to a pair of neighboring points.
The algorithm is creating a graph of the minimum spanning tree, where weights are based on
distances between points. In other words, all points that are present in the scene within a
defined radial distance are grouped in a single common cluster.

It is worth mentioning that the cluster shape detected by the LiDAR was changing over time.
With reference to the Figure 3.19 from left to right (positive x-axis direction) it is represented
the overall vehicle cluster shape at different time instants. In the first detection the front of
the car appears as a straight line, secondly the vehicle front-right corner is also detected; while
passing the pedestrian (located in the origin of the reference frame) only the side of the vehicle
is sensed by the LiDAR. The second to last cluster refers to the rear corner of the vehicle, and
eventually the rear bumper of the car is detected.
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Figure 3.19: Bird-eye view of the cluster shape time-evolution during the manoeuvre.
Observation are represented in the LiDAR reference frame, with associated field of view.
From the left side, blue points represent the vehicle’s front, orange points are related to the
simultaneous front-side detection of the vehicle (with their intersection corner available), green
dots represent the unique detection of vehicle side, light-blue colors represent rear-side of the
vehicle, and the red points are related to rear bumper detection at larger distances

Since the output of the previous process had been related to the vehicle shape detection at
each time stamp, the subsequent step, in the post process activity, has been the car tracking
over multiple time stamps. To each vehicle present in each frame it was assigned an Identifier
number (ID) that was either a new ID or the ID of the previous vehicle depending on some
tracking criteria. These criteria were the vehicle position in the lane, and the vehicle speed
computed between the cluster position in the previous frame and the position in the actual
frame.

Thus, each frame belonging to the same vehicle has been grouped allowing to get a time
series of vehicle position and speed over the whole duration of the manoeuvre.

As well an automatic annotation algorithm was implemented so to assign some attributes
to the grouped vehicle-ID. First of all a vehicle was annotated either as overtaking vehicle or
oncoming vehicle depending on its travelling direction.

Moreover, to each overtaking event the vehicle was characterized either as overtaking with
oncoming traffic or without oncoming traffic. Following previous studies [19], the oncoming
traffic was considered as “present” whenever a vehicle was detected in the scene in the opposite
lane, travelling with opposite direction of the overtaking vehicle, within -20 – +120 m along
the road direction. It is worth highlighting that the first detection occurred usually at a lower
distance, therefore it has been necessary to extrapolate the time in which each vehicle was
entering and exiting the zone of -20 – +120 m. The extrapolation process assumed a vehicle
speed constant over time, starting from the mean vehicle speed evaluated for both overtaking
and oncoming vehicles.

The vehicle speed evaluation was computed starting from the relative speed (∆VV−p) between
vehicle and pedestrian evaluated from the LiDAR position data. Thus, ∆VV−p was considered
equal to the rate of change of the longitudinal position of the front of the car (for detections
before it had passed the pedestrian) and the rear of the car (for detections after it had passed
the pedestrian). Since the LiDAR data were affected by some noise in the measurements, some
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position outliers needed to be detected. In detail in each frame the maximum longitudinal point
(red axis in Figure 3.18) of the cluster was considered for the front of the vehicle (negative
dimension), while the minimum longitudinal point was considered to be related to the rear of
the car, once the car had overcome the pedestrian (returning phase). Since it was assumed
a constant car speed over the passing phase, the RANSAC algorithm was adopted to detect
outliers. It was necessary to get rid of maximum (minimum) points when they were considered
not to be related to the front (rear) of the overtaking vehicle.

With reference to Figure 3.20 a representation of the process associated to the vehicle speed
estimation is given. The relative speed was computed for both the front and rear points of
the car as the slope of the first order model fitted through the inliers. Eventually the ∆VV−p
was computed as a weighted average between speed of front/rear and number of inliers in the
front/rear data points.

To evaluate the absolute speed of the vehicle the GPS data related to the pedestrian
walking speed (Vped) has been taken into account. Therefore, assuming a constant speed of the
pedestrian over the duration of each scenario, the overtaking vehicle speed as been computed as
V = ∆VV−p ± Vped, where ± refers to pedestrian walking direction with respect to the traffic.

Figure 3.20: Cluster min-max points, length-width over time. The yellow and green lines refer
to the RANSAC inliers detection for the front and rear of the vehicle respectively. The slope of
the line fitted through the inliers represents the relative speed between vehicle and pedestrian
(∆VV−p)
The time evolution of the cluster shape in terms of length and width is also represented

Furthermore, whenever the overtaking vehicle was following a leading vehicle during the
overtaking manoeuvre with a time headway of less than 3 s, it was classified by the algorithm
as piggy backer (Section2.2.1).

It has to be considered that the cluster dimension was different for different vehicle types.
Within the overall overtaking duration, for each vehicle the length and width has been observed
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allowing to automatically categorize vehicles typology based on the cluster length. Three
categories have been selected, with specific cluster length each:

• small vehicle type – cluster length ≤ 5m (namely a car)

• medium vehicle type – 5m < cluster length ≤ 10m (namely a Light Duty Vehicle)

• long vehicle type – cluster length > 10m (namely a bus/truck)

In Figure3.20 an example of how the cluster shape is changing over time (in terms of length
and width) is represented for the specific scenario of Truck overtaking.

3.2.4 Comfort Zone Boundaries

The detection tool described in the previous section allowed to detect two main safety indicator
variables: the minimum clearance at which a car driver performs the manoeuvre and the
associated speed during the event.

The minimum clearance was evaluated as the minimum distance between the car clustered
points and the pedestrian, during the full duration of each event.

No other safety metrics were possible to be evaluated from the collected data.

3.3 Driver model

With the objective to understand which factors are influencing drivers’ choice of the CZB,
a driver model has been devised. This model has direct implications on which variables a
vehicle safety system should consider and how tests in assessment protocols could be designed.
To achieve these objectives a Bayesian linear regression model has been implemented. The
Bayesian linear modelling attempts to apply Bayesian inference instead of the frequentist
approach. For the sake of completeness a broad introduction to regression models is presented.
In linear regression modelling it is assumed that a response variable (y) is combination of
weights (β) multiplied by each predictor variable (x), with the inclusion of an error term which
accounts for random sampling noise (ε). Assuming three predictors the model equation is:

y = β0 + β1x+ β2x2 + β3x3 + ε (3.10)

βn is also defined as model parameter, with β0 known as model intercept, while β1...3 are the
regression coefficients and represent the influence of each variable to the response. The output
of a linear regression is a single estimate for each model parameter, based on the collected
data. This single parameter is evaluated through the maximum likelihood estimation. On the
other hand, in the Bayesian viewpoint the linear regression is expressed in terms of probability
distribution instead of punctual estimates. Hence the output (estimate) is not a single value but
a distribution characterized by a mean and variance. As well, the Bayesian regression model
(BRM) approach allows to have not only responses generated from a probability distribution
but also the model parameters. Thus, the main reason behind the adoption of a BRM, in this
project, has been the possibility of getting a posterior distribution of the model parameters.
Applying the Bayes theorem [88], it stands out that:

Posterior =
Likelihood · Prior
Normalization

(3.11)
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The Prior P(β) represents previous knowledge of the model, or a guess associated to how the
model parameters should be. This differs to the frequentist approach, which assumes that the
model is only related to the data.

The likelihood function P(y|β) represents the observed evidence, by means of the data.

The Posterior distribution P(β|y) uses the data (likelihood) to weight the previous knowledge
(prior): this allows to obtain the distribution representing the parameter values. Since the
posterior is expressed in form of distribution, to approximate the posterior the sampling method
is adopted in order to draw samples from the posterior. This is performed by means of a
Markov Chain Monte Carlo (MCMC) method.

The normalization parameter represents the marginal distribution of the data. However,
since the main interest is related to the parameter values, the normalization (P (y)) does not
have any reference to them. In fact, it is just a number which makes sure that the resulting
posterior distribution is a true probability distribution.
Usually the normalization parameter is not considered and and the model for is expressed by

P (β|y) ∝ P (y|β) · P (β) (3.12)

The model is fitted to the actual data (y) considering the Bayesian approach of improving
the initial estimate as more data are gathered in the BRM.

Hence the overall work flow for the model fitting has been:

• Specification of the prior model parameters, if known.

• State the formula mapping inputs and output

• Perform MCMC to draw samples from the posterior distribution for the model parameters

In the formula definition many factor (or predictor variables of the regression model) have
been considered, trying to understand the effect of each one of them on drivers’ manoeuvre
execution.

Moreover, three models have been implemented to evaluate three different response variable
(y). One has been related to the NDS data analysis, for which the TTC has been considered
as response of the model. Instead, the second model has been related to the lateral clearance
(mC) between vehicle and pedestrian, and the third model has been related to the vehicle
passing speed.

A dedicated consideration about the family distribution of the data has been made. It has
to be considered that both the variable time to collision and mC could never reach a negative
value. The former because no negative or null TTC has been expected from the NDS data
since no crash occurred; the latter because cars where always passing the pedestrian with a
certain margin. Hence the family of both the TTC and mC responses has been set equal to a
lognormal distribution. This resulted also as the best distribution fitting the actual data.

In the model defined in this project, any estimates ahead of time are assumed for the
UDRIVE collection , hence a non-informative prior has been adopted.
However, for the data collected with the LiDAR equipment, the lateral clearance model has
been set adopting as prior distribution the distribution of the UDRIVE data set.
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The software package adopted for this analysis has been brms, which provides an interface
to fit Bayesian generalized linear models using Stan, which is a C++ package for performing
full Bayesian inference in R.

It has to be considered that the core of the brms package is the brm function, for which a
dedicated formula needs to be specified: it contains information on the response variable as
well as on predictors at different levels of the model.

The formula is usually expressed as response ∼ predictors. In order to separate each
predictor effect from each other the + is used, while group levels are defined by mean of
(coef |group). The main formula that have been considered are:

NDS

TTC ∼ oncomingTraffic+ pedestrianDirection+ (1|DriverID) (3.13)

TTC ∼ oncomingTraffic+ pedestrianDirection+ vehicleSpeed+ (1|DriverID)
(3.14)

FT

mC ∼ oncomingTraffic+ pedestrianDirection (3.15)

mC ∼ oncomingTraffic+ pedestrianDirection+ vehicleSpeed (3.16)

vehicleSpeed ∼ oncomingTraffic+ pedestrianDirection (3.17)

In the NDS data it was possible to keep track of the participants, hence data have been
grouped by driver ID, to take into account the disparity (in the number of events) between
different drivers.

Different model formula have been evaluated considering the leave one out (LOO) information
criterion (lower LOOs indicate better model fit).

Furthermore, the brm package allowed to perform inference about the predicted values. This
process has been achieved simulating the posterior predictive distribution of an hypothetical
replication of the experiment. The stimulated hypothetical data set has been defined with
yrep = (yrep1 , ..., yrepj ), where each yrepj is drawn from a distribution with mean and standard
deviation expressed by the model.

The evaluation of a model has been based also on posterior predictive checks (ppc). These
allow to compare the replicated data under the fitted model (yrep) to the observed data (y).
These posterior predictive analyses allow to “look for discrepancies between real and simulated
data” [89]. In other words, the ppc have been considered to assess whether the model gives
valid predictions about the reality.

Moreover, to show and test how the model was fitting the data, the posterior predictive
distributions (yrep) were examined for four test statistics [89]: the largest of the observed
outcomes (max(yj)), the smallest (min(yj)), the average (mean(yj)) and the sample standard
deviation (sd(yj)). Each of the four test statistic is represented by the histograms of the
posterior predictive distributions, which are compared to the observed data. For a proper
model, the predicted data distribution has to contain the actual data elements.

Eventually, to assess if a factor is providing effective influence on the driver choice of the
CZB, the difference (or “delta”) between distributions (with and without a specific factor) has
been evaluated. Hence, in the result chapter a dedicated Section will be given to highlight the
contrast between factor in the scene (i.e. oncoming traffic present vs absent).
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3.4 Comparative analysis

The two data sets analyzed in this activity (NDS and FT) have been compared. The statistical
test has been implemented in order to evaluate possible differences between the data gathered
in terms of leeway and vehicle speed. Adopting the frequentist inference a two-sample t-test
has been run in order to compute the p-values.

In the t-test the null hypothesis considers that, for each respective data set, the mean of
the measures have the same average value and equal but unknown variances. Conversely, the
alternative hypothesis states that populations have unequal means.

The t-test has the purpose of accepting or rejecting the null hypothesis for the scenario of
the overtaking manoeuvre performed in the naturalistic or in the field test data. Furthermore,
the p-values represent at which significance level the rejection of the null hypothesis still holds.
The significance level (alpha) was set to 5% based on previous study approach [25].
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4 Results

This chapter presents the results associated to both the NDS data analysis and the FT
experiment. Moreover, general observations about driver behaviour as well as an analysis of
the sensor performance will be outlined. Finally a driver model will be presented.

4.1 Naturalistic driving study

From a data set of 300’000 full-record trips, available for the analysis in the UDRIVE database
6842 segments approximately were appointed as events for a longitudinal driver-pedestrian
interaction. Of these, 1362 events were listed as possible pedestrian overtaking . These refers
to the number of events in which a pedestrian was identified under the (right) conditions by
the “segment generation” and “data reduction” processes (Section 3.1.2). Since by definition,
a segment refers only to a section of a complete record, one car record could be responsible
for more than one segment listed as possible overtaking event. Out of the 6000 segments
roughly 400 have been annotated during this project. Within these, 138 have been considered
as overtaking manoeuvre events, while 42 have been grouped under as “passing” events, being
the pedestrian located either on a dedicated pavement or far away from the lane edge. For
those events, no manoeuvre was identifiable; in other words, no steering wheel action (or other
change in the vehicle control) was applied by the driver. The overall number of overtaking
manoeuvres available grouped by country is represented in Table 4.1.

Table 4.1: Summary of the event identification process

Country N. total events N. useful events percentage
France 84 68 63%

United Kingdom 34 27 25%
Germany 9 5 5%
Poland 6 4 3.5%

Netherlands 4 4 3.5%

Of the 140 overtaking manoeuvres annotated 14 were related to scenario in which the road
was curved, or there were other factor in the scene (15 events). Hence, these were excluded
from analysis. As well a couple of records needed to be excluded due to missing data from the
CAN bus, for example the steering-wheel angle being set at a constant default value for the
whole duration of the record.

Due to the limited amount of time allotted for this project, a subset of the 68 events
belonging to France have been chosen for a detailed phase and event annotation process.

4.1.1 Qualitative results

From a general point of view, some qualitative observations can be made regarding the analyzed
overtaking maneuvers.

It has to be considered that 17 different participants were driving the vehicles during the
detected overtaking manoeuvres, with a non equal partitioning between the number of events
per driver ID. Also it has to be highlighted that a single driver was responsible for 25% of the
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events.

In Figure 4.1 a general picture of “where” the detected events took place is given.

200 km

Figure 4.1: Map distribution of overtaking events in France

Considering the closest lateral clearance between the car and the pedestrian, its value is
highly influenced by multiple factors, like the road characteristics which are however difficult to
assess. As a matter of fact, it has to be considered that only a smaller subset of events had a
ME signal associated to road edges that was not showing default or NaN (not a number) data.

Furthermore, in order to relate the results to the research questions of this project, the
main effects of each factor will be compared by mean of box plots. Box and whisker plots

—also called a box plots—displays the five-number summary of a set of data. The five-number
summary is the minimum, first quartile, median, third quartile, and maximum.

Results will be presented considering two main factors: the pedestrian walking direction
and the presence of oncoming traffic. Table 4.2 summarizes the number of events available in
each scenario.

Table 4.2: Number of events available, grouped by pedestrian walking direction and oncoming
traffic presence

Oncoming traffic Pedestrian walking direction Events available

present
same N = 19

opposite N = 10

absent
same N = 23

opposite N = 16

Also, it has to considered that the overtaking strategy, namely accelerative and flying, will
be considered as grouping factor in the following.
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4.1.2 Time related results

First and foremost an evaluation of the overall event duration is displayed in Figure 4.2. A
detailed representation of the duration of each phase is depicted in Figure 4.3. Each phase
duration is listed in Table 4.3. It represents results in the form of mean and standard deviation,
with data grouped based on the typology of overtaking manoeuvre, and by presence of single
or multiple pedestrians in the scene. A detailed description of the safety metric TTC is

N=30

N=32

Complete event

6 7 8 9 10 11 12 13 14 15 16 17 18 19
Duration [s]

Strategy accelerative flying

Figure 4.2: Duration of the complete overtaking manoeuvre. Data are grouped by manoeuvre
strategy, which is named overtaking strategy
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Figure 4.3: Duration of each overtaking phase. Data refer to the complete data set with no
grouping factor adopted

summarized in Table 4.4 and Table 4.5 in which results of the THW are also reported. A
representation of the results is given in Figure 4.4a. Data are grouped by oncoming traffic factor
(“present”,“absent”), with dedicated consideration about the pedestrian walking direction. A
cumulative distribution is presented in Figure 4.4b, where the oncoming traffic factor has been
considered for each pedestrian walking direction. The reader has to consider the test protocol
for active safety system (Euro NCAP CPLA, see Section 2.7) which suggest a TTC ≥ 1.7s.
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Table 4.3: Manoeuvre duration grouped by strategy (Top) and by number of VRU (bottom)

Phase 1 Phase 2 Phase 3 Phase 4 Total
Mean [s] 3.6 2 1.1 4.4 11Accelerative

N = 30 std ± 2 ± 0.9 ± 1.8 ± 1.3 ± 2.9
Mean [s] 2.5 2.3 1.1 4.6 10.6Flying

N = 32 std ± 1.4 ± 1.2 ± 0.8 ± 2.2 ± 3.4

Mean [s] 2.9 2.2 1 4.5 10.6Single VRU
N = 55 std ± 2 ± 1.1 ± 1.4 ± 2.0 ± 3.3

Mean [s] 2.6 2.1 1.3 4.2 10.2Multiple VRU
N = 13 std ± 1.9 ± 1 ± 1.3 ± 1.9 ± 2.9

Table 4.4: Time to collision and time headway grouped by strategy and oncoming traffic factor

TTC THW
Mean [s] 2.8 2.6Oncoming traffic present

N =17 std ± 1.4 ± 1.4
Mean [s] 3.7 3.5

Accelerative
Oncoming traffic absent

N =13 std ± 1.7 ± 1.8

Mean [s] 3.5 3.3Oncoming traffic present
N =20 std ± 1.4 ± 1.3

Mean [s] 4.2 4.3
Flying

Oncoming traffic absent
N =12 std ± 2.0 ± 2.3

Table 4.5: Time to collision and time headway grouped by strategy and pedestrian walking
direction

TTC THW
Mean [s] 3.3 3Same walking direction

N =23 std ±1.5 ±1.4
Mean [s] 3.5 3.8

Accelerative
Opposite walking direction

N =7 std ±2.2 ±2.3

Mean [s] 3.5 3.1Same walking direction
N =18 std ±1.4 ±1.3

Mean [s] 4.5 4.9
Flying

Opposite walking direction
N =14 std 2.2 ±2.4
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(a) TTC at start of steering away (Phase two). (I): TTC grouped by oncoming traffic presence (II):
TTC grouped by pedestrian walking direction within the oncoming traffic factor. White dot refer to
mean value
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(b) Cumulative density function of the TTC at start of steering away (Phase two), data are grouped
by pedestrian walking direction and oncoming traffic presence

Figure 4.4: Time to collision
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The start of the returning phase has been noticed to be performed before the vehicle has
actually passed the pedestrian. Referring to the defined variable of time to pedestrian (T2P),
Figure 4.5 represents the time at which drivers performed the steering input for the start of
phase four.

Steering input at returning phase

-3 -2 -1 0 1
T2P [s]

Figure 4.5: Start of returning phase in term of T2P. Time instant in which the front of the car
is closer to the pedestrian is represented by the dashed line

4.1.3 Distance related results

In the following it will be given a general presentation of the CZB in terms of distances. Each
phase has been characterized by specific metrics as described in 3.1.3.
Table 4.6 contains information about the comfort zone boundaries with data expressed in form
of mean and standard deviation.

Table 4.6: Summary of CZB[m] grouped by overtaking strategy and oncoming traffic presence

mAG mDS mC mRG
Mean [m] 32.9 15.3 0.9 45.5Oncoming Traffic Present

N =17 std ±22.6 ±15.2 ±0.34 ±34.0
Mean [s] 49.5 21.4 1.2 42.3

Accelerative
Oncoming Traffic Absent

N =13 std ±31.0 ±17.9 ±0.54 ±24.3

Mean [s] 50.0 22.2 1.00 55.0Oncoming Traffic Present
N =20 std ±22.6 ±18.7 ±0.53 ±30.3

Mean [s] 74.7 31.1 0.96 58.8
Flying

Oncoming Traffic Absent
N =12 std ±49.5 ±19.9 ±0.32 ±39.5

The metric mAG has been described in Figure 4.6a, which depicts the CZB considering
the oncoming traffic, with the pedestrian walking direction as nested factor. The cumulative
distribution of this comfort metric is represented in Figure 4.6b, in which the oncoming traffic
presence is evaluated for each pedestrian walking direction. Another comfort-safety metric of
relevance is the leeway (mC) adopted by different drivers while passing the pedestrian.
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(a) Distance between car and pedestrian at start of steering away: minimum approaching gap (mAG).
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(b) Cumulative density function of the minimum approaching gap (mAG) at start of steering away
(Phase two), data are grouped by pedestrian walking direction and oncoming traffic presence

Figure 4.6: minimum approaching gap
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(b) Cumulative density function of the minimum clearance (mC) while passing, data are grouped by
pedestrian walking direction and oncoming traffic presence

Figure 4.7: minimum clearance

Data are graphically displayed following the aforementioned approach.
Box-plots in Figure 4.7a consider the oncoming traffic influence and the pedestrian walking
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direction as nested factor. The cumulative density in Figure 4.7b allows to understand which
is the leeway between car and pedestrian for each walking direction.

Another variable considered important to have a complete picture of the manoeuvre is the
minimum returning distance (mRG) at which the event has been annotated as complete. Data
are represented by mean of box plots in Figure 4.8, following the same grouping factors and
color scheme previously adopted.
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Figure 4.8: Distance between car and pedestrian at the end of the manoeuvre, in the returning
phase (mRG). (I): mRG grouped by oncoming traffic presence (II): mRG grouped by pedestrian
walking direction within the oncoming traffic factor. White dot refer to mean value

4.1.4 Speed related results

The vehicle speed plays an important role in driver’s interaction with other users. It essential
to evaluate both driver comfort and safety. Thus, the vehicle speed is paramount in the
driver decision about manoeuvre phases, and distance to other road users. Since the speed
is uncommonly constant for the whole duration of the event, in Table 4.7 data are listed
considering the speed reduction performed by the driver during the approaching phase ∆Vph1,
the vehicle speed at the steer-away Vph2, the average speed of the car within ±3m from the
VRU position, while passing the pedestrian Vpassing. Eventually the speed increase during the
returning phase ∆Vph4 is also given. Table 4.8 represents the same variables but considering
the pedestrian walking direction instead of the oncoming traffic presence.

The vehicle speed while passing the pedestrian is strongly related by the overtaking strategy,
as represented in Figure 4.9.

A closer look to the vehicle speed before having passed the pedestrian (phases 1-2) allows to
estimate driver speed reduction, especially in accelerative events. Since in Euro NCAP safety
systems are rated based on vehicle speed reduction, the average driver behaviour to perform
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Table 4.7: Summary of Speed reduction during approaching phase (∆Vph1) and returning phase
(∆Vph4), Vehicle speed at steering away-start of phase two (Vph2), vehicle speed while passing
the pedestrian (Vpassing)average value within ±3m from the pedestrian position. Data are
grouped by overtaking strategy and oncoming traffic presence

∆Vph1 Vph2 Vpassing ∆Vph4
Mean [km/h] -14.2 43.1 42.9 11.1Oncoming Traffic Present

N =17 std ±17.3 ±15.9 ±14.0 ±9.9
Mean [km/h] -8.4 48.3 43.7 8.3

Accelerative
Oncoming Traffic Absent

N =13 std ±8.8 ±13.4 ±10.7 ±4.4

Mean [km/h] 1.1 54.0 51.8 0.5Oncoming Traffic Present
N =20 std ±6.4 ±14.9 ±15.1 ±5.0

Mean [km/h] 0.4 60.6 59.9 -1.3
Flying

Oncoming Traffic Absent
N =12 std ±4.0 ±15.0 ±16.2 ±7.6

Table 4.8: Summary of Speed reduction during approaching phase (∆Vph1) and returning phase
(∆Vph4), Vehicle speed at steering away-start of phase two (Vph2), vehicle speed while passing
the pedestrian (Vpassing)average value within ±3m from the pedestrian position. Data are
grouped by overtaking strategy and pedestrian walking direction

∆Vph1 Vph2 Vpassing ∆Vph4
Mean [km/h] -11.6 46.7 44.6 9.7Same walking direction

N =23 std ±14.2 ±13.5 ±11.6 ±8.3
Mean [km/h] -8.6 44.0 39.4 8.8

Accelerative
Opposite walking direction

N =7 std ±10.0 ±18.4 ±13.4 ±2.6

Mean [km/h] -1.4 54.3 52.6 0.5Same walking direction
N =18 std ±5.5 ±13.5 ±14.2 ±7.4

Mean [km/h] 1.4 63.0 62.4 -2.1
Flying

Opposite walking direction
N =4 std ±3.8 ±16.1 ±17.1 ±5.7
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this task is represented in Figure 4.10. In detail the speed change is evaluated in each phase,
showing a null speed variation as average, for flying manoeuvres.
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Figure 4.9: Vehicle speed while passing the pedestrian, average value within ±3m from the
pedestrian position. Speed grouped by overtaking manoeuvre
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Figure 4.10: Speed reduction in each phase, grouped by overtaking manoeuvre strategy

Considering exclusively the accelerative events, the speed reduction in the main phases is
evaluated giving particular attention to the pedestrian walking direction. Data are represented
in Figure 4.11.

Moreover, it has been evaluated a possible relationship between vehicle speed and different
metrics, being those related to safety or to driving comfort.

Figure 4.12 represent data distribution of the TTC and the corresponding vehicle speed
at the steer away. At higher speed drivers are willing to anticipate the manoeuvre. Data are
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Figure 4.11: Speed reduction in Approaching (phase 1), steering away (phase 2), returning
(phase 4). Data, related to the accelerative events, are grouped based on pedestrian walking
direction (pedDirection)

grouped by overtaking strategy, while in Figure 4.13 the grouping factor considered is related
to the presence of oncoming traffic.
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Figure 4.12: Time to collision and corresponding vehicle speed at the steering away. Data are
grouped by overtaking manoeuvre strategy. Box plots refer to the TTC (on the side) and to the
vehicle speed (on top). Scattered point shapes are associated to the oncoming traffic presence
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Figure 4.13: Time to collision (TTC) and corresponding vehicle speed at the steering away.
Data are grouped by the oncoming traffic factor. Box plots refer to the mC (on the side) and to
the vehicle speed (on top). Scattered point shapes are associated to the overtaking strategy

A relationship between the vehicle speed and the phase two duration is depicted in Figure
4.14. Grouping the data by the oncoming traffic factor allows to highlight that an high speed
not only influences the steer away in terms of TTC (Figure 4.13) but also the complete phase
duration.

A relationship between the minimum lateral clearance and the corresponding vehicle speed
while passing the pedestrian is represented in Figure 4.15. Due to lower vehicle speed in
accelerative events, no clear trend can be noticed between speed and clearance for such events.
However, for flying events a trend can be appreciated: the higher the speed, the higher appear
to be the leeway to the VRU. The same interrelation is represented in Figure 4.16, with
grouping factor the oncoming traffic presence.

4.1.5 Vehicle trajectories

In Figure 4.17 it is represented the vehicle trajectory during the overtaking manoeuvre for
multiple events, which are normalized with a T2P = 0 s. Hence, the reference frame represents
the position of the pedestrian when the front of the car reaches the lowest distance to the
pedestrian. The mean vehicle trajectory is represented with the corresponding vehicle’s left
and right side (black dotted lines), evaluated for the data acquisition vehicles in UDRIVE. The
vehicle position is shown within one standard deviation in the highlighted blue area. Focus
is given to a distance of 60 m, being 30 m before the vehicles reached the pedestrian and 30
m after the vehicle passed the pedestrian longitudinally. Lateral distance to the pedestrian
is represented along the vertical-green axis, which has a different axis scale compared to the
horizontal-red axis.
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Figure 4.14: Phase two duration and corresponding vehicle speed. Data are grouped by the
oncoming traffic factor. Box plots refer to the duration (on the side) and to the vehicle speed
(on top). Scattered point shapes are associated to the overtaking strategy
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Figure 4.15: Minimum clearance (mC) and corresponding vehicle speed. Data are grouped by
the overtaking strategy. Box plots refer to leeway mC (on the side) and to the vehicle speed (on
top). Scattered point shapes are associated to the oncoming traffic factor
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Figure 4.16: Minimum clearance (mC) and corresponding vehicle speed. Data are grouped by
the oncoming traffic factor. Box plots refer to leeway mC (on the side) and to the vehicle speed
(on top). Scattered point shapes are associated to the overtaking strategy
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Figure 4.17: Vehicle trajectories for multiple overtaking events. The black dotted lines represent
the vehicle side in the condition of mean trajectory (represented in blue). The light blue area
represents the 68% (1σ) of values related to the mean vehicle trajectory. The red and green
segments represent the x and y axis respectively. The dashed blue shape, centered in the reference
frame origin, represents the pedestrian in the scene. Aspect ration between axis is not equal, to
emphasize the vehicle’s lateral displacement
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4.1.6 ADAS pedestrian detection

The ADAS system providing information about pedestrian position in the longitudinal scenario
has been considered in terms of operation. The system has never triggered a warning signal
during the events analyzed. This warning signal is associated to the system capability of
pedestrian collision warning (PCW). MobilEye detection of the pedestrian in the scene occurred
with an average duration of 2.3 s (std 1 s). The detailed duration of the detection is represented
in Figure 4.18, in which data are grouped with respect to the pedestrian position. Moreover,

MobilEye detection

1 2 3 4
Duration [s]

Position curb inLane line

Figure 4.18: MobilEye pedestrian detection duration for different VRU positions

it has been noticed a significant dependency between the detection duration and the vehicle
speed. The higher the vehicle speed was, the lower the detection duration, as represented in
Figure 4.19. Results are not directly related to driver behaviour, however they emphasize the
challenges that the driver assistance systems need to overcome.
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Figure 4.19: ADAS system measurements in terms of detection duration and vehicle speed.
Box plot refer to the detection duration (on the side) and to the vehicle speed (on the top)

66



4.2 Field data collection

The data collection has been performed in two different dates, for a time duration of approxi-
mately 2 hours, which have been needed to set up and follow the experimental protocol. The
effective recording time has been roughly 3.5 hours overall. Over this data recording time, 630
overtaking events have been manually annotated, however the automatic annotation tool has
provided results related to 481 events. Thus in the following results will be presented with
respect to this overall amount of manoeuvres.

4.2.1 Qualitative results

One of the main findings related to the field test has been the performance of the data collection
platform implemented during this project. This suggests a reliability of the embedded system
implemented for the specific use of data collection. However, results have been affected by the
limited LiDAR possibilities in the detection of vehicles at long distances, due to the significant
motion of the sensor equipment while walking.

In general terms, some observations could be made regarding the analysis “on the road”. A
large number of drivers seem to feel comfortable and safe enough overtaking the pedestrian
also with oncoming traffic. This was expected and comprehensible since the pedestrian was
not located in the lane. Therefore his presence on the road was rarely perceived as a threat,
leading to events that were always classified as flying, when the manoeuvre strategy is taken
into account.

However, drivers left more lateral clearance than the generally recommended 1.5 m only for
44% of events when the pedestrian was walking on the line, while the rate increases to 75%
when the VRU was walking on the curb. Especially in maneuvers with oncoming traffic, many
violations of this recommendation were observed. Those situations were very uncomfortable
for the pedestrian, as vehicles passed very close to the VRU, often less than a meter away. The
closest maneuver was at a distance of 28 cm.

4.2.2 Vehicle type related results

Different vehicles types have been observed during the data collection. Figure 4.20 represents
the distribution of data with respect to the two different experimental settings (pedestrian
walking on line line marking or curb). Data are represented also considering the factor of the
oncoming vehicle present in the scene.

It has to be considered that the “long” vehicle types refers to both bus-drivers and truck
drivers. These two categories are usually behaving in a different way (after a manual annotation
of the events), thus the clearance’s value should be considered keeping in mind such possible
nested difference in drivers behaviour.

It is worth highlighting that, in the following, the results will be related solely to the small
vehicle category, being this the larger subset available.

4.2.3 Distance related results

The safety metric that has been analyzed is the minimum clearance (leeway) at which a car is
passing the pedestrian during the overtaking manoeuvre. Two main factor has been proved to
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Figure 4.20: Field test data grouped by pedestrian walking position, representing the minimum
lateral clearance (mC) between vehicle and pedestrian. The factor related to the oncoming
traffic is also considered.
Boxplots represent also the mean values with a colored dot sign. The total number of events in
each scenario is also reported

influence the driver behaviour, with a confidence interval (C.I.) of 95%.
These are:

• oncoming traffic presence

• pedestrian walking direction

Whenever an oncoming vehicle is present in the scene, drivers need to squeeze the comfort
boundary with the pedestrian, keeping a distance, within a comfortable level, also with respect
to the oncoming vehicle. Conversely drivers are willing to increase the lateral distance to the
pedestrian. Data are displayed in Figure 4.21.

In Figure 4.22 data are factorized based on the pedestrian walking direction. Distinction is
given for the pedestrian walking position.
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Figure 4.21: Minimum lateral distance between car and pedestrian while passing (mC). Data
refers to “small” overtaking vehicles, showing the influence of the oncoming traffic factor. Data
are split up based on the pedestrian walking position. The mean value is represented by a circle
shape

N=80

N=44

N=170

N=103

curb line

opposite same opposite same

0

1

2

3

m
C

[m
]

pedDirection opposite same

Figure 4.22: Minimum lateral distance between car and pedestrian while passing (mC). Data
refers to “small” overtaking vehicles, showing the influence of the pedestrian walking direction
factor. Data are split up based on the pedestrian walking position. The mean value is represented
by a larger circle shape
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Figure 4.23: Minimum lateral distance between car and pedestrian while passing (mC). Data
refers to “small” overtaking vehicles with the VRU walking on the painted road markings.
(I) Data are grouped based on the factor of the oncoming traffic. (II) The influence of the
pedestrian walking direction given the oncoming traffic presence or absence is displayed. The
mean value is represented by a larger circle

It stands out that drivers are used to reduce the comfort zones if an oncoming vehicle is
present in the scene and if a pedestrian is walking in the opposite direction of the car, facing
the traffic.

Since the scenario in which the pedestrian was walking on the line markings highlights a
lower comfort boundary (mC) kept by the car while passing, a closer look to this subset of
data is provided.

In Figure 4.23 boxplots represents mC for drivers when overtaking a VRU walking on the
lane edge (painted line). The oncoming factor and the nested factor of the pedestrian walking
direction are considered.

A cumulative distribution of the minimum clearance (mC) for the small vehicle type and for
the pedestrian walking closer to the road center are represented in Figure 4.24 and Figure 4.25.

Thus far, CZB has been reported mainly related to the scenario in which the pedestrian was
walking on the “line” considering “small” vehicles. However, in order to understand whether
the perceived pedestrian position (line or curb) could influence driver’s decision about the
lateral distance with respect to the road edge, in Figure 4.26 it is displayed at which distance
different vehicles were located during the manoeuvre. Being the lane width 3.5 m and the
pedestrian shift (out of the lane when walking on the curb) of 0.5 m, all measurement have
been normalized with respect to the road line marking. Hence, given the vehicle width it has
been possible to evaluate which vehicles were reaching and overstepping the road center line
during the event.
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Figure 4.24: Cumulative density function of the minimum clearance (mC) while passing the
pedestrian, data are grouped by pedestrian walking direction and oncoming traffic presence in
each direction. Data refer to “small” vehicle type and “on line” pedestrian position

N=69

N=78

N=34

N=92

absent present

0 1 2 3 0 1 2 3

0.00

0.25

0.50

0.75

1.00

mC [m]

C
u

m
u

la
ti

ve
D

en
si

ty

pedDirection
opposite

same

Figure 4.25: Cumulative density function of the minimum clearance (mC) while passing the
pedestrian, data are grouped by oncoming traffic presence and pedestrian walking direction being
the oncoming traffic “present” or “absent”. Data refer to “small” vehicle type and “on line”
pedestrian position
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Figure 4.26: Representation of the distance of the vehicle side (next to the driver) with respect
to the road line marking. Dashed line represents the lane width.A distance below the lane width
threshold represents a vehicle that performed the manoeuvre remaining in the lane. Conversely
distances represents vehicles that overcome the center line during the event. Data are referred
to all vehicle types and all measures are expressed in a reference frame fixed to the road painted
markings
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4.2.4 Speed related results

In Table 4.9 “small” vehicle type data are summarized for both vehicle passing speed and
lateral clearance.

Table 4.9: Minimum clearance (mC) and passing speed Vpassing, data are grouped by oncoming
traffic and pedestrian walking direction factors

mC Vpassing
Mean [m-km/h] 1.48 57.66Same walking direction

N =34 std ±0.35 ±9.53
Mean [m-km/h] 1.31 55.96

Oncoming traffic present
Opposite walking direction

N =92 std ±0.35 ±7.47

Mean [m-km/h] 1.77 60.11Same walking direction
N =69 std ±0.46 ±8.92

Mean [m-km/h] 1.55 58.19
Oncoming traffic absent

Opposite walking direction
N =78 std 0.43 ±8.90

Following the same factorization approach of the safety metric “mC” the vehicles speed
distribution are represented hereafter. However data are displayed in order to highlight possible
relationships between the vehicle speed and the clearance while passing the pedestrian.

In Figure 4.27 data are grouped considering the oncoming traffic presence, while in Figure
4.28 the grouping factor is the pedestrian walking direction. Data refer to events in which the
pedestrian was walking on the line markings. While Figure 4.29 and 4.30 refer to VRU walking
on the curb.
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Figure 4.27: Minimum clearance (mC) related to the vehicle speed while passing. Data are
grouped by the oncoming traffic factor. Box plots refer to the mC (on the side) and to the
vehicle speed (on top). Scattered point shapes are associated to the pedestrian walking direction.
The event represented related to the pedestrian walking on the “line”

73



1

2

3

30 40 50 60 70 80 90

Vehicle Speed [km/h]

m
C

[m
]

oncoming traffic absent present pedDirection opposite same

Figure 4.28: Minimum clearance (mC) related to the vehicle speed while passing. Data are
grouped by the pedestrian walking direction factor. Box plots refer to the mC (on the side)
and to the vehicle speed (on top). Scattered point shapes are associated to the oncoming traffic
presence. The event represented related to the pedestrian walking on the “line”
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Figure 4.29: Minimum clearance (mC) related to the vehicle speed while passing. Data are
grouped by the oncoming traffic factor. Box plots refer to the mC (on the side) and to the
vehicle speed (on top). Scattered point shapes are associated to the pedestrian walking direction.
The event represented related to the pedestrian walking on the “curb”
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Figure 4.30: Minimum clearance (mC) related to the vehicle speed while passing. Data are
grouped by the pedestrian walking direction factor. Box plots refer to the mC (on the side)
and to the vehicle speed (on top). Scattered point shapes are associated to the oncoming traffic
presence. The event represented related to the pedestrian walking on the “curb”

4.3 Driver model

The application of the Bayesian regression theory has allowed to get three main driver models.
Results are presented in the following subsections, considering that the naturalistic driving
study provides a model for TTC and the field test collection has been adopted to evaluate a
model of the mC and the vehicle passing speed.

4.3.1 Time to collision

The results will be presented by mean of a predictive check of the model fit to the data, and
through a four test statistic approach. The best formula to fit the model has been:

TTC ∼ oncomingTraffic+ pedestrianDirection+ vehicleSpeed+ (1|DriverID) (4.1)

The representation of the actual data and the posterior distribution are presented in Figure
4.31. It has to be considered that the adopted data refer only to the “flying” strategy, in which
driver react solely by steering control (for data visualization refer to Figure 4.12). Accelerative
manoeuvres are not considered since drivers are adjusting the vehicle speed during the phase
one; thus reacting to the pedestrian presence before the steer-away is performed.

In order to show how the model is actually fitting the data, four test statistics (min, max,
mean and standard deviation) are analyzed for the posterior predictive distribution and the
observed data gathered from the UDRIVE database, as represented in Figure 4.32.

In detail, the model has been utilized in order to perform a comparison between corpora, to
evaluate which factor could influence the driver behaviour. It has to be considered that the
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Figure 4.31: Cumulative density of the actual data (y) together with 200 samples of the posterior
predictive distribution (yrep). The vertical dashed-line represents the vale TTC=1.7 adopted by
Euro NCAP CPLA 25 test
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Figure 4.32: Statistical test of min (top left), max (top right), average (bottom left) and s
(bottom right). The observed data are represented by the dark blue bin (Ty) and the distribution
of the predicted values from the model are represented by light blue bins (T (yrep))
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factor “oncoming traffic” was showing a relevant effect in the time at which driver are used to
start the steering manoeuvre, as represented in the distribution of median in Figure 4.33.
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Figure 4.33: Grouped distributions by oncoming traffic. Statistical test of the median value of
the observed data (Ty) and posterior predictive distribution of the media value (T (yrep))

Hence a specific comparison of this effect in the data distribution has been evaluated. This
has been done looking at the difference between distributions in which the oncoming traffic was
present or absent. The histogram representation of the difference between oncoming present
and oncoming absent is depicted in Figure 4.34a. Hence the model allows to state that the
most credible time delay at which driver are starting the manoeuvre when an oncoming vehicle
is present in the scene is -0.61 s 95% CI [-2.14,0.80], compared to the condition in which no
oncoming vehicle is present in the scene. In other words: it is likely for drivers to anticipate
the start of the steer away when no oncoming is present in the scene.

As well the pedestrian walking direction has been evaluated; the difference between distri-
bution of the median value associated to the posterior is represented in Figure 4.34b. It is
displayed that the time at which driver perform the steer away (to avoid a possible collision)
is not actually influenced by the pedestrian walking direction. In other words, the Bayesian
model allows to state that no change in behaviour is shown based on walking direction (0.04
s[-1.63 1.43]).
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Figure 4.34: Factor influence on driver behaviour CZB [s]. The highlighted area represents the
95% credible interval

4.3.2 Minimum lateral clearance

Considering the data collected on the Swedish road, in order to compute the driver model of
the lateral clearance, the scenario has been limited to the condition in which the vehicle was a
car and the pedestrian was walking on the road line.

The model that resulted to give the best fit has been characterized by the equation:

mC ∼ oncomingTraffic+ pedestrianDirection+ vehicleSpeed (4.2)

In order to exploit the benefit of the adoption of the Bayesian approach, it has been possible
to adopt as prior distribution the model fitted to the mC values related to the NDS data.
Hence, this is used to suggest to the model the prior knowledge related to the driver CZB
while passing.

The fit of the model to the actual data is represented by a cumulative distribution in Figure
4.35a. In the figure it is possible to appreciate which is the distribution with marked the 90th

and 10th percentile.
The model fit has been evaluated following the same approach presented in the Figure

4.32 for the TTC variable, and it has been proved to be suitable in representing the actual
observations.
Moreover the influence of the oncoming traffic factor and pedestrian direction are evaluated,
following the same approach presented for the NDS model.

The analysis shows that compared to the scenario in which no oncoming is detected in
the scene, drivers are more likely to stay closer to the pedestrian of about -0.285 m (95% CI
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(a) Cumulative density of the actual data (y) together with 200 samples of the posterior predictive
distribution (yrep). Observation refer to small vehicle type, with a pedestrian walking on the line
marking
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Figure 4.35: Factor influence on driver behaviour CZB [m]. The highlighted area represents the
95% credible interval. Observation refer to small vehicle type, with a pedestrian walking on the
line marking
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[-0.47,-0.11]) when an oncoming vehicle is approaching. This result is represented by the data
comparison between corpora in Figure 4.35b.
In Figure 4.35c the comparison between the pedestrian walking direction is represented. When
the VRU was facing the traffic drivers were passing at a lower distance of about -0.30 m (95%
CI [-0.49,-0.12]).

4.3.3 Vehicle speed

To get a descriptive model of factor influencing driver behaviour while passing a pedestrian,
data have been separated for pedestrian walking on line marking and for pedestrian being out
of the road.

The models that resulted to give the best fit has been characterized by the equation:

vehicleSpeed ∼ oncomingTraffic+ pedestrianDirection (4.3)

Representation for the scenario in which a pedestrian is walking on the line is given in Figure
4.36
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Figure 4.36: Cumulative density of the actual data (y) together with 200 samples of the posterior
predictive distribution (yrep). Observation refer to small vehicle type, with a pedestrian walking
on the line marking

Results related to factor’s influence on driver behaviour are represented in Figure 4.37 for
both pedestrian walking scenarios. Figure 4.37a shows how the oncoming traffic forces drivers
to reduce the speed. The speed reduction is about -2.8 km/h 95% CI [-6.3,0.6] (see Figure
4.37a). On the contrary, when the VRU is walking in the same direction of the vehicle driver
are used to pass with a slightly higher speed: 1.6 km/h 95% CI [-1.8,5.1] (see Figure 4.37b).
The factors’ influence on driver choice of the passing speed are more marked for the condition
in which a pedestrian is detected on the road curb. The oncoming traffic presence makes driver
to reduce the speed of -4.4 km/h 95% CI [-9.0,-0.1], as represented in Figure 4.37c. As well,
drivers are used to reduce the speed of -2.9 km/h 95% CI [-7.3,1.6], when a pedestrian is going
in the same direction of the car (see Figure 4.37d).
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Figure 4.37: Factor influence on driver behaviour. The highlighted area represents the 95%
credible interval. Observation refer to small vehicle type, with a pedestrian walking on the line
marking (top) and curb (bottom)
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4.4 Comparative analysis

This section aims to present results comparisons between safety metrics evaluated by means
of the two data sets gathered in this study. In the Table 4.10 the minimum lateral clearance
(mC) is compared between the pedestrian overtaking events in the NDS and FT. The p-values
acquired via two-sample t-test on the data gathered in this study is also listed. The t-test
rejects the null hypothesis for all different factors characterizing the scenario of the overtaking
manoeuvre. Confidence intervals (c.i.) of the difference of the population means are listed in
the table. It is worth highlighting that in the t-test the null hypothesis considers that, for
each respective data set, the mean of the measures have the same average value and equal but
unknown variances. figure 2

Table 4.10: Comparison of the minimum clearance (mC) between naturalistic data (NDS) and
field test experiment (FT). Samples dimension are provided by mean of NDataset.Significant
p-values are bold in the table

mCNDS mCFT p c.i.
Mean [m] 0.91 1.35Oncoming traffic present

NNDS = 22 NFT = 99 std ±0.33 ±0.35
<0.001 [-0.61;-0.28]

Mean [m] 1.04 1.65Oncoming traffic absent
NNDS = 35 NFT = 109 std ±0.42 ±0.45

<0.001 [-0.78;-0.44]

Mean [m] 1.01 1.68Same walking direction
NNDS = 37 NFT = 82 std ±0.43 ±0.42

<0.001 [-0.85;-0.51]

Mean [m] 0.95 1.40

in road
position

Opposite walking direction
NNDS = 20 NFT = 126 std ±0.31 ±0.41

<0.001 [-0.63;-0.26]
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Figure 4.38: Minimum clearance (mC) and vehicle speed while passing the pedestrian. Data
refer to the specific scenario in which an oncoming vehicle was present in the scene.
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5 Discussion

In this chapter, implications of the research activity are presented considering the complemen-
tarity of the two data sets analyzed (NDS and FT). The results will be discussed in the Section
5.1. Driver behaviour comparison for the driver interaction with different VRUs (bicyclists
and pedestrians) will be outlined in Section 5.2 for the two distinct data sets. Bicycle data
were gathered during previously conducted studies [24][25]. In Section 5.4 general remarks
associated to each one of the two data sets (NDS and FT) will be presented. Eventually
limitations of the project will be outlined (Section 5.4.3).

5.1 Answer to research questions

This thesis project has been based on five main research questions (see Section 1.1.1), for which
some hypotheses have been formulated. Thus, the following paragraphs aim at presenting the
main findings related to each one of these hypothesis associated to a specific factor of the
overtaking scenario.

5.1.1 Hypothesis one

As hypothesized in Section 1.1.1, the factor related to the pedestrian walking position has
been assumed influencing the clearance given by the car while performing the manoeuvre.
Actually the hypothesis has been verified considering results of the field test data collection,
as represented in Figure 4.20, Figure 4.21, Figure 4.22. The main reason for this evidence
has been associated to the physical shift of the pedestrian, being he walking away from the
road edge (Line marking). Therefore safety can be considered as increased since the leeway is
significantly (C.I. = 95%) larger.

The same trend is represented also by the UDRIVE data set. Drivers give a lower clearance
to pedestrians that are walking along the road edge. However due to low amount of events in
which a driver has been annotated as walking on the curb (N = 6) no actual dependency can
be highlighted.

5.1.2 Hypothesis two

The factor related to the pedestrian walking position has been assumed to affect the steering
away phase (phase two) during the overtaking manoeuvre. In particular it has been hypothesized
that when the pedestrian was walking outside of the road boundaries (which are limited by
the line markings) drivers would have not performed any steering away.

From the UDRIVE analysis the steering away phase has been observed for all events. Hence,
showing a behaviour that is not consistent with the hypothesis. However the end of the phase
two (mDS) was influenced by the pedestrian lateral position with strong evidence, suggesting
that the phase two is influenced by this factor (see Table 4.6). With regard to the collection
on the Swedish road, no direct evaluation of the overtaking phases has been possible. However,
it has to be considered that during the phase two, a driver is deciding which has to be the
vehicle position in the lane with respect to the road line markings. Therefore the pedestrian
position influence on this driver choice has been evaluated.

83



When a pedestrian is closer to the center, motorists are driving closer to the road center line,
meaning that the perceived position is playing an important role on the trajectory planning
(See Figure 4.26). Thus, when a pedestrian is outside the road, walking on the curb, drivers
are keeping a lower distance to the road line marking. Therefore this implies that the steering
away phase is influenced, having an impact on the driver path planning.

Moreover, the pedestrian position is playing an important influence on the driver’s choice of
the overtaking speed, with an higher speed for pedestrian located away from the road center.
As well, in this second scenario, a clear trend can be noticed between the lateral clearance
and the vehicle (small and medium) speed, with a larger clearance at higher speed (see Figure
4.29).

Therefore, as answer to the research question it has to be said that drivers still perform the
steering away phase, but the pedestrian walking position is playing a prominent role in the
vehicle position in the road with a tendency of having higher speed when the pedestrian is
outside the lane.

5.1.3 Hypothesis three

The pedestrian walking direction has been linked to the possibility of having an “eye-contact”
during the overtaking event. It has been assumed that the visual contact during the interaction
would have affected the minimum clearance while passing the pedestrian. Results related to the
field test experiment show that a pedestrian walking in the opposite direction of the vehicle is
influencing the driver behaviour with a strong evidence. This is verified only in the scenario in
which the pedestrian was walking on the line marking (see Figure 4.35c), and therefore directly
present on the road. When the VRU is facing the traffic the leeway decreases, supporting the
hypothesis. On the other hand, when a driver perceives that the pedestrian is walking in the
same direction, he/she is willing to keep a larger passing distance (Figure 4.22 and Figure4.25).
The same trend is observed also in UDRIVE (Figure 4.7a), only for the condition in which
no oncoming traffic was present in the scene. This could be associated to the low number of
events analyzed.

This behaviour alteration in the driver manoeuvre could be associated to driver intention in
keeping a larger comfort boundary for the pedestrian when he/she cannot directly perceive the
approaching vehicle. This with the purpose of increasing the comfort felt by the pedestrian in
this scenario. The eye contact influence on drivers’ comfort boundary has been shown to play
an important role also in intersection scenario by Ren et al. in [90]. In the crossing scenario
eye-contact influences the drivers’ reaction with an higher TTC, thus giving drivers more
time to react. In the longitudinal scenario (here analyzed) it is the lack of eye-contact that
makes drivers to keep a larger passing distance to the pedestrian. Moreover, the pedestrian
walking direction seems to influence also the speed reduction during the approaching phase, as
suggested by Figure 4.11.

It is normal recommendation to face the traffic when no dedicated lane is available for
pedestrians, and therefore driver could be influenced by the event not being very usual. However,
in the French data analysis (associated to the naturalistic database) more than 60% of events
occurred with pedestrian going in the same direction of the car.

It has to be noticed, also, that the scenario in which the VRU was walking in the same
direction of the car was felt really uncomfortable by the pedestrian during the experiment.
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5.1.4 Hypothesis four

In previous studies the oncoming traffic has been shown to be one of the main important factor
in drivers’ performance [19] [23]. In line with prior findings, it has been hypothesized that the
traffic travelling in the opposite direction with respect to the overtaking vehicle would have
affected the driver behaviour in the longitudinal interaction with pedestrian as well.

Results reveal that when the oncoming traffic is present, drivers are more likely to reduce
the lateral clearance between the EGO vehicle and the VRU (see Figure 4.7b and Figure 4.7a
for NDS; see Figure 4.23 and Figure 4.24 for FT). Drivers need to find a trade-off between the
distance to the pedestrian and the distance to the oncoming traffic. Considering the field test
results, distributions are strongly affected by the oncoming traffic factor (see Figure 4.35b).
Considering UDRIVE a clear trend is present in accordance to the field test data.

5.1.5 Hypothesis five

As a response to the fifth research question it has been assumed that the oncoming traffic
presence would have affected drivers’ choice about the overtaking speed. The influence on the
passing speed has been shown influenced by the oncoming traffic, with a lower speed whenever
an oncoming vehicle was present in the scene (see Figure 4.37a) The behaviour revealed to be
more marked when a pedestrian was walking on the curb (see Figure 4.37c).

As well, the oncoming traffic is shown to affect drivers’ decision of the steering away time
instant, with a trend characterized by a lower TTC when a vehicle is present in the scene
in the opposite lane and approaching the EGO vehicle (see Figure 4.4a). The driver model
confirms this trend (see Figure 4.34a).

Furthermore it has to be considered that other factors, like the number of VRUs present in
the scene (available in UDRIVE) or the road characteristics could play a significant role on the
driver manoeuvre performance. Results associated to the number of VRU overtaken highlight
a trend in drivers lateral distance selection (mC). The presence of more than one pedestrian in
the scene makes driver choose a larger lateral distance as average tendency (mean = 1.29 m)
compared to the events of a single VRU overtaken (mean = 0.98 m). However no influence on
the driver behaviour has been associated to this factor.

5.2 Comparative analysis

In this section a comparison between safety metrics evaluated within this project is given.
Analogies and contrasts with similar activities carried out in previous studies are provided,
focusing on the discussion of possible influencing factors related to different VRUs.

5.2.1 Data comparison within this study

As represented in the Table 4.10, the t-test rejects the null hypothesis for all different factors
characterizing the scenario of the overtaking manoeuvre.

Since the tests confirms the alternative hypothesis (populations with different means), it
has to be stated that the two data sets contain populations with unequal means. Reasons for
this could be related to differences in driver behaviour between the two countries, in which the
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data were recorded. However, regarding the UDRIVE data, during the annotation process and
video images evaluation it has been noticed that overtaking events were usually happening in
secondary rural roads. Namely roads with a single lane for both traffic direction with rarely
well define/painted line markings. These roads were characterized by a narrower lane width
compared to the data collection performed in Sweden; nonetheless for French data it has not
been possible to get reliable measurements of the lane width from vehicle sensor.

Moreover, it has to be considered that this dissimilarity is noticed also in the different speed
at which car drivers overtook the VRUs. In UDRIVE data set the average vehicle speed was
lower than the speed in the field test collection, with a statistical significance (p<0.001 from
double t-test). Thus, the two data sets differ both in minimum lateral clearance (see Table
4.10) and in passing speed (mean VNDS = 50.2km/h and mean VFT = 58.1km/h) during the
overtaking event. Figure 4.38 illustrate previous statements.

The road characteristics could be considered as the main factor causing this difference in
behaviour. On the other hand, such a difference could also be related to a possible habit of
drivers in UDRIVE in meeting pedestrian on the roads in which the event occurred.

5.2.2 Data comparison with previous studies

This thesis project can be related to previous activities which analyzed driver interaction with
a different road user. Therefore, in the following a comparison between driver interrelation
with pedestrians and bicyclists is proposed.

Data comparison with NDS bicycle study

Considering that a previous study has been performed over the same NDS database by Nero in
[25] a CZB comparison is represented in Table 5.1. This shows a comparison of safety relevant
metrics, when a driver is in interaction with a pedestrian or a cyclist. In detail the minimum
distance at which drivers start the steer-away phase and the minim clearance during the event
are represented.

It stands out that drivers are used to perform the steering control at a larger distance when
overtaking a bicycle, especially when no oncoming traffic is present. This could be related
to the lower relative speed between car and cyclist, with drivers willing to anticipate the
manoeuvre when no other road user is present in the scene. As well, this anticipation of the
manoeuvre could be associated to the fact that drivers do not expect the bikes to move much
laterally, compared to a pedestrian that can have an erratic behaviour. A similar behaviour is
instead shown when the oncoming vehicle is considered in the scenario.

Considering the minimum lateral clearance between drivers and VRUs, results are similar
for both interactions when the oncoming traffic is present in the scene. On the other hand,
drivers are used to pass at a larger clearance cyclist when no oncoming traffic is detected. Also,
as average value, drivers reduce the clearance when they perform flying manoeuvres, behaving
in the same way when interacting both with pedestrians and bicyclist.
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Table 5.1: Comparison of the comfort zone boundaries between pedestrian an bicyclist evaluated
from UDRIVE database. Data refers to the distance at which driver start to steer away (mAG
at end of phase one) and minimum lateral clearance while passing (mC)
Bicycle data from Table C.6 in [25]

mAGped mAGbic mCped mCbic
Mean [m] 39.8 39.9 0.90 1.04Oncoming Traffic Present

Nped = 17 Nbic = 17 std ±24.0 ±33.7 ±0.34 ±0.73
Mean [m] 50.6 64.7 1.20 2.00

Accelerative
Oncoming Traffic Absent

Nped = 13 Nbic = 15 std ±41.3 ±56.7 ±0.54 ±0.71
Mean [m] 46.5 42.0 1.00 0.97Oncoming Traffic Present

Nped = 20 Nbic = 8 std ±20.9 ±36.1 ±0.53 ±0.69
Mean [m] 89.86 117.8 0.96 1.88

Flying
Oncoming Traffic Absent

Nped = 12 Nbic = 39 std ±52.6 ±104.4 ±7.6 ±0.64

With reference to the variable of the TTC a comparison with the bicycle study is summarized
in Table 5.2. It stands out that driver steering reaction to avoid a possible collision with a
pedestrian occurs before (higher TTC) than in the scenario in which a bicycle is present in
the scene. In both driver-VRUs interaction it can be noticed an increase of the TTC when no
oncoming vehicle is present.

Table 5.2: Comparison of the time to collision (TTC) between pedestrian an bicyclist evaluated
from UDRIVE database.
Bicycle data from Table C.1 in [25]

TTCped TTCbic
Mean [s] 2.8 2.0Oncoming Traffic Present

Nped = 17 Nbic = 17 std ±1.4 ±1.6
Mean [s] 3.7 2.5

Accelerative
Oncoming Traffic Absent

Nped = 13 Nbic = 15 std ±1.7 ±2.0
Mean [s] 3.5 1.2Oncoming Traffic Present

Nped = 20 Nbic = 8 std ±1.4 ±0.6
Mean [s] 4.2 3.0

Flying
Oncoming Traffic Absent

Nped = 12 Nbic = 39 std ±2.0 ±2.8

Data comparison with FT bicycle study

Considering that the same LiDAR used in this study was adopted in a previous data collection
by Schindler and Bast [24], results associated to the minimum clearance are evaluated and
discussed. Since for the pedestrian data collection all vehicles have been considered performing
a flying manoeuvre, bicycle results are limited to this strategy. Moreover, given that the
pedestrian walking direction has been shown likely to influence driver behaviour, the Table 5.3
is limited to the scenario in which a VRU is travelling in the same direction of the overtaking
vehicle.

The leeway between the car side at the VRU is slightly higher for the pedestrian considering
however that the influence of the oncoming traffic is nested in the results. In both conditions
however the average distance is consistent with the recommended distance of 1.5 m. However,
it has to be considered that the standard deviation is roughly a 0.5 m. This figure points out
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that often drivers are prone not to respect such a recommendation, underestimating the severe
consequences of a potential collision with both pedestrians and bicyclist.

Table 5.3: Comparison of the comfort zone boundaries between pedestrian an bicyclist evaluated
from field data collection. Data refers to minimum lateral clearance while passing (mC).
Pedestrian data refers to “small vehicle”, with pedestrian walking on the line marking and in
the same direction of the traffic. Bicycle data refer to “car” vehicle, cycling next to the road
line mearking and in the same direction of the traffic

mCped mCbic
Mean [m] 1.67 1.60Flying

Nped = 103 Nbic = 127 std ±0.44 ±0.49

5.3 Implication on ADAS

The safety metrics that have been evaluated in this project could be associated to safety system
assessment protocols, performed by independent organizations like Euro NCAP.

The TTC evaluated in this project (See Table 4.4 and Figure 4.4b) could suggest that
the actual value of 1.7 s for CPLA 25 appears appropriate. Considering flying overtaking
manoeuvres, in more than 95% of events drivers reacted by a steering control at a TTC ≥ 1.7s
.

Furthermore, with respect to the minimum clearance in the manoeuvre, a future autonomous
steering system could be assessed bearing in mind that only 75% of drivers are used to give at
least 1 m to the road user even if the recommend value is usually 1.5 m (see Figure 4.7b) even
tough the road characteristic plays also an important role.

The annotated distance at which drivers start the steer away phase reached values above
150 m (see Figure 4.6a) suggesting possible challenges associated to object detection at such a
long distance. As well, the correlation between the detection duration of the MobilEye ADAS
system and the car speed highlight that sensor performances are strongly associated to vehicle
kinematics (see Figure 4.19). Hence, possible system assessment at higher speed, than the
actual present in CPLA, could be introduced.

The average speed reduction evaluated for accelerative events (Figure 4.11)could give
information useful for self-driving vehicle path planning. As well the speed increase in the
returning phase could suggest an expected level of acceleration by car occupant. The large
amount of the recorded events as well as the flexible scenario setting during the collection have
allowed to quantify the actual influence of a different factors on the driver behaviour.

Considering a possible assistance systems, aimed at supporting the driver in the longitudinal
interaction with a pedestrian, some specific factor might be taken into account. First of all, the
system should consider the actual position of the pedestrian in the scene. Drivers are used to
go faster if a pedestrian is out of the road (on the curb), seldom overstepping the road center
line (see Figure 4.26).

Moreover, supposing to have a warning system for lateral passing position of the car with
respect to the pedestrian, the triggering threshold could be set differently for each one of the
pedestrian walking direction. Larger distance should be set for a VRU detected walking in the
same direction of the vehicle (see Figure 4.25) since drivers are likely to give less margin when
a pedestrian is facing the vehicle (see Figure 4.35c). This system should also consider in its
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algorithm the strong influence of the oncoming traffic presence (see Figure 4.35b), which has
proved to affect both drivers’ selection of passing distance and vehicle speed (see Figure 4.29).

Furthermore, the mean vehicle trajectory (see Figure 4.17) provides relevant useful informa-
tion which could be suitable for automated vehicles path-planning, since it represents actual
driver behaviour in a natural and non obtrusive driving setting.

5.4 Methodological considerations

As overall consideration it has to be outlined that the evaluation of human behaviour in driving
is a complicated task, which can be influenced not only by physical parameters (CZB), but also
by the drivers’ psychological state. However, the project has been focused on the individuation
of the overtaking manoeuvre and their classification using a Naturalistic study like UDRIVE as
well as the implementation of a data collection platform that could be used for other purposes,
and for which some improvements are suggested.

5.4.1 Naturalistic driving study

The UDRIVE data set has been an important source of information, allowing to have a general
understanding of human behaviour while driving in a natural settings. However, if on one side
the ecological validity of such data is unquestionable, on the other hand implications arise due
to a non complete (360 deg) available observation of the scene.

Event individuation

Considering that UDRIVE is one of the largest data set available in Europe, the detection of
the specific scenario under analysis has been a challenging activity. However, the approach
that has been adopted resulted to be efficient albeit not optimal. Finding a number of events
in the order of hundreds has allowed to highlight that the European database can be suitable
also for investigation of the driver-pedestrian interaction in the longitudinal scenario.

The reason behind the choice of the analysis of simply the French data was mainly due to
the limited amount of time allotted for this activity. Moreover, to avoid the introduction of
possible variability in driver behaviour between different countries, the larger subset of events
has been analyzed. However, the post-processing methodology has been implemented so to be
applicable for both left-handed and right-handed traffic.

The disparity of event detection between different countries shall be deemed to need an
explanatory statement. The main reason could be imputable to the participant selection
process within the UDRIVE project. Namely, a larger number of French drivers were living in
rural areas compared to other countries. Hence, they were subjected to meet more pedestrians
while commuting. Therefore, this has not to be considered as an effect of the data reduction
process adopted in this study. In this respect, the same trend has been noticed in previous
study devoted to the analysis of the longitudinal scenario involving bicycles. Nevertheless, the
disparity between different countries can be related also to different infrastructures available,
since events in which a pedestrian was considered on a dedicated area (pavement or pedestrian
lane) have been excluded.

Furthermore, within the subset of French overtaking events, a discrepancy associated to
single driver manoeuvres has been noticed, with a single driver responsible for a considerable
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number of events.

Annotations

Manual annotation has been a necessary step in the data analysis. Several reasons underlay the
importance of annotations; first and foremost the manual verification of each event was used
to check whether the filtering threshold functioned somewhat accurately (i.e. there were false
positives and they should be removed). The second reason was related to the phase definitions:
phase one was considered to start when the VRU appeared in the video feed and he/she was
detectable by the annotator. As well each event needed to be analyzed combining together
on-board camera images and steering wheel signal, which was highly affected by road curvature
change in the scenario. In that regards it has to be highlighted that during the activity it
has not proven efficient an automatic implementation of the start-end of the different phases.
However different phases were recognized matching together the visual information of the video
and the signal properties. Therefore results could be slightly affected by annotator’s perception
of the scene, even though a common annotation approach has been followed by both authors
of this activity. The annotation process has been used for evaluation of ME detection, since
the sensor was classifying as pedestrian also other road users or traffic signs. For example
motorists riding a bike or people riding horses were classified as pedestrian. Moreover, the
annotation process has been considered crucial in order to enrich the data about some specific
scene factors, like the number of pedestrian overtaken, the position of the pedestrian on the
road, the walking direction of the VRU to mention a few.

Overtaking phases

The implemented approach has been an attempt to evaluate drivers behaviour by a direct
analysis of which is the driver steering control during the event. The previously defined [19]
four phases approach needed to be reviewed since drivers were observed to start the returning
phase before having actually passed the pedestrian (see Figure 4.5; however the car-pedestrian
lateral distances have been analyzed within an area of ±3m, which was considered to be the
passing phase for bicycle studies [23]. The tendency to start the returning phase before getting
past the pedestrian longitudinally has been detected for the majority of drivers (see Figure 4.5).
This could be related to the high relative speed between road users, but another factor could
also be considered. Due to their experience in time, drivers could have become aware of the
response delay of the mechanical system from driver’s hand to the front wheels. As a matter
of fact a transfer function between front-wheel steering angle on the ground and driver’s input
to the steering wheel is considered in vehicle dynamics modelling [91]. Therefore, based on
observation related to the general trend between drivers, the organization of the manoeuvre
could be summarized in: perception, decision making and execution. The perception could be
associated to the phase one – approaching. The decision making could be associated to the
start of phase two. The execution could then be grouped in two single phases: steering-out
(phase two) and steering-in (phase four or returning). Therefore the phase three, as defined in
the annotation process (see Section 3.1.3) could be included in the steering-out phase leading
to an overall model of three phases altogether.
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Pedestrian position extrapolation

In the post processing, the pedestrian position extrapolation has been characterized by multiple
assumptions. First and foremost, constant speed and constant walking direction. These were
considered possible even though not a complete faithful picture of the scene. It is worth
mentioning that no ground truth have been available neither for car trajectory evaluation, nor
for pedestrian position estimation in the scene. However, a group of events was selected and
for those a map matching between car trajectory and actual road has been executed. Once
proved to be reliable, the car trajectory estimation as well as the pedestrian position is space
have been analyzed for each event, mainly with the purpose of verifying the pedestrian path
fitted through the inliers of ME detection. Thus, a supervised approach has been selected
to avoid possible errors in results associated to wrong pedestrian position when transformed
into the global reference frame. It is worth highlighting once more that the adoption of the
proposed methodology (implementing the scene in a global reference frame) has been necessary
in order to evaluate pedestrian position once he/she was out of ME field of view or detection
range. This because no other information related to the environment were available for both
phases one or two (when pedestrian is detected) and the returning phase (when the VRU is
behind the car, and therefore out of sensor detection possibilities).

5.4.2 Field data collection

Three main activities associated to the field data collection are worth to be examined. These
are the experimental protocol selection, the equipment performance and data post processing.
Referring to the experimental protocol selection, it has to be highlighted the correct hypothesis
associated to the pedestrian walking direction. Hence the scenario design could be adopted as
well in future studies, also considering test truck experiments.

Sensors and equipment performance

The overall collection platform, implemented using ROS has proved to be reliable in sensor
data recording, and therefore its application is suggested also for future implementations. The
LiDAR has shown itself to be a convenient device to capture distances in the proximity of the
pedestrian. Compared to other sensors such as ultrasonic sensors, it has a wider field of view
and higher range. However, in addition to the high cost, some other issues have been identified
that need to be taken into account for future experiments. Even if LiDAR specification states
that the maximum scanning distance is 80 m, its performances were mainly affected by the
relevant motion of the sensor equipment device. Its location over the waist seems not to be
optimal and therefore other solutions are encouraged. However, besides equipment motion that
was forcing the LiDAR to the detect the ground, other factors are noticed to affect LiDAR
detection:

• Road geometry: the LiDAR detection is highly affected by the relative position of the
car. Slight changes in height (e.g. hilltops or depressions), drastically decrease detection
range. It has to be said that the road selected for the data collection was not perfectly
flat, and therefore this could have partially influenced ground removal in the post process
activity.
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• LiDAR shadow area: every time a surface is detected a shadow area is created behind,
avoiding the possibility of detecting other objects at a larger distance. For example
multiple overtaking vehicles (piggy backers), could have prevented the detection of the
oncoming traffic.

The IMU has provided effective observations, even if a reduced frame rate could be suggested
for later studies.

The Camera image has provided useful information as far as vehicle manual annotation is
concerned. Best setting angle has been 80 - 90 deg allowing to observe the scene for the whole
approaching phase. A possible implementation of computer vision could be applied in order
to get an automatic annotation of different vehicle types. However, due to the same motion
which has affected LiDAR performances, the camera images should be stabilized (by means of
IMU sensor information) in order to get possible estimates of vehicle distances to the road line
markings.

The GPS with a rate of 1 Hz, seems not to be very accurate especially in the presence of
environmental disturbances, like vegetation next to the road for example. To get a reliable
pedestrian tracking over time (by means of sensor fusion with IMU data) an higher GPS rate
could be suggested. Overall, GPS data related to the speed over time have been considered
to compute the mean pedestrian walking speed in each test scenario. Such a speed has been
considered in the vehicle speed computation.

Data post processing

In order to detect vehicle shape and its actual position over time, it has been necessary to fuse
IMU and LiDAR data in order to extract pointcloud solely related to the road. Furthermore,
one of the main activities in the LiDAR data reduction has been based on the individuation
and elimination of ground detection. Due to a possible non proper definition of the reference
frame transformation between LiDAR and IMU, ground detection were considered with a
positive “z” coordinate in Cartesian 3D space, while the ground itself was assumed to have a
“z” value equal zero. Elimination of such ground detections could have caused also the removal
of vehicle front-bumper points simultaneously detected in the scene.

Nonetheless the vehicle cluster identification and tracking has proven to be effective also in
the classification of events as occurring with oncoming vehicle presence or being the vehicle a
piggy backer.

The complete reconstruction of the car side during the overtaking manoeuvre has noticed to
be unfeasible due to sensor equipment displacement (in the direction perpendicular to the road)
over time. As a matter of fact, the hip motion has been characterized not only by rotations
over time (estimated through Madgwick filter) but also by small translations in the direction
transverse to the pedestrian body and along the aforementioned “z” axis. Therefore, between
frames the vehicle’s cluster was affected not only by its longitudinal motion, but also by a
slight transverse motion, which has made it impossible to evaluate change in vehicle heading
during the manoeuvre.

Furthermore, it has to be considered that during the event the detected area was changing
not only related to the front or rear of the vehicle, but also related to the side. Being the 2D
laser plane changing over time according to pedestrian walking motion.

As a consequence of all the aforementioned challenges associated to the LiDAR data analysis,
the main variable that has been considered is the minimum distance at which the driver is
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overtaking the pedestrian. Hence no other evaluation associated to phases definition or related
to overtaking strategy have been possible. In other words, to accomplish this task, a self
stabilizing gimbal could be adopted allowing the LiDAR to remain as parallel as possible to
the road, thus avoiding ground detections while walking.

5.4.3 Limitations

As summary, the reader has to consider that the following activity could have influenced the
thesis results:

• Manual annotation - due to possible subjectivity of annotators (NDS)

• Car trajectory reconstruction - due to heading angle estimation in an inertial reference
frame (NDS)

• Pedestrian path extrapolation - due to the object detection sensor performance (NDS)

• Vehicle speed while passing - being the speed a derived measure and not a direct sensor
measurement (FT)

• Vehicle length and width evaluation - due to a possible not complete shape detection by
the LiDAR (FT)
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6 Conclusion and future work

6.1 Conclusion

In the recent years, researchers are emphasizing the importance of vulnerable road users safety
to reach Vision Zero in Europe. Despite the increased interest and the strong promotion of
the interaction between drivers and cyclists in crossing and longitudinal scenario, as well as
driver-pedestrian interrelation in crossing scenarios, some research areas still have not yet been
analyzed.

Specifically, no research study has been found in the literature related to the longitudinal
interaction between drivers and pedestrians. Neither the lateral clearance between pedestrian
and vehicle during an overtaking manoeuvre, nor a comprehensive analysis of driver behaviour
based on NDS, for such event, have been investigated before.

Achievements can be grouped in term of influencing factors in drivers selection of their
comfort zone boundaries. As well relevance has to be given to implications on active system
development (AEB) and safety feature assessment.

The driver model developed has shown how drivers’ behaviour is influenced by specific
factors related to the characteristic of the scenario in which the overtaking manoeuvre needs
to be performed. In detail:

• Pedestrian walking position affects driver behaviour. Lateral clearance decreases as a
pedestrian walks more toward the middle of the lane.

• Pedestrian walking position affects driver selection of the vehicle position in the lane,
with more vehicles overstepping the center line when the pedestrian is closer to the road
center. However the behaviour is highly influenced by vehicle’s dimensions. As average
behaviour, car drivers are used not to reach the road center line (with the vehicle’s
outermost side) both for a pedestrian walking in the road and out of the road.

• Pedestrian walking direction influences the phase two of the overtaking maneuver. Drivers
overtake keeping a larger distance to the pedestrian when no eye-contact is possible.

• Presence of oncoming traffic has a great impact in the performance of the manoeuvre.
Drivers are shown to be affected in the selection of the vehicle speed as well as the leeway
between car-side and pedestrian, with lower speed and a reduced clearance with the
presence of oncoming vehicles. Also, this factor marginally influences the time at which
drivers perform the steer away manoeuvre, with manoeuvre carried out earlier when no
oncoming traffic is present in the scene.

Implication of these findings have to be related to the Euro NCAP assessment protocol
(CPLA) as well as active system development. The TTC ≥ 1.7s adopted nowadays in the test
protocol CPLA-25 has shown to be consistent with drivers performances. If the road map of
Euro NCAP is considered, Automatic Emergency Steering (AES) systems are planned to be
tested. A possible future assessment protocol testing AES for the interaction with pedestrians,
should consider the influence of specific factors on the driver behaviour, as presented above.
As well, the presented vehicle trajectories could be considered for path planning purposes of
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automated vehicles. Among the achievements of this project some methodological contributions

can be highlighted. Referring to the NDS, this project outlined the identification process as
well as event data extrapolation and CZB evaluation. This was performed by a step wise
approach based on the context in which a VRU went out of the field of view/detection range
of the ME-system and then determining the VRUs position using the inertial reference frame
for data extrapolation. All phases were manually annotated and an area extending from 3 m
in front of the pedestrian to -3m behind the VRU was automatically derived. Furthermore,
comfort zone measures for each of the four phases were extracted. Additionally, event data
enrichment has been applied to each event related to the French country. The main signals
that were used in the reduction of the data in this study were the longitudinal and lateral
distance to the VRU, both signals from the ME-system. Also lateral acceleration, yaw rate and
vehicle speed, from CAN data have been used for segment classification as possible overtaking
events. Overall, this work shows the potential of using naturalistic driving data for analysis of
vehicles’ interaction with pedestrians. Mainly, driver’s control of the vehicle has been analyzed
suggesting a phase definition based on driver input to the vehicle by mean of the steering
action.

Regarding the field test instrumentation, the development of the data collection platform
applicable for multiple purposes, has to be considered among the achievements of this thesis.
The measurement equipment has proved to be reliable in the recording of synchronized data
between different sensors at different rates.

Furthermore a data processing platform for LiDAR data post processing has allowed to
detect and track vehicle’ clusters over time. This methodology has been applied for the analysis
of 481 overtaking maneuvers, allowing to have a detailed evaluation of the minimum lateral
clearance.

6.2 Future prospects and research

From the analysis related to the UDRIVE data set, it stood out that drivers are used to
have a very short or absent phase three. This suggests that drivers usually are not willing
to get parallel to the pedestrian trajectory for a long time, suggesting to split the overtaking
manoeuvre in three phases for the overtaking of pedestrians, although previous literature on
drivers overtaking vehicles or bicycles proposed four or more phases [19] [23]. This is mainly
due to the large relative speed between the vehicle and the road user. The proposal of a
three-phase vehicle control strategy could be based on:

• Approaching phase – driver detects the pedestrian in the scene

• Steering out – driver change vehicle’s course to avoid a possible collision to the pedestrian

• Steering in – driver returns back to the original position in the lane

This proposal could be consistent with a previous trend noticed in drivers’ behaviour classifi-
cation. When the overtaking manoeuvre of a vehicle has been analyzed, Hegeman suggested
the definition of five overtaking phases [20]. Considering the overtaking event of a bicycle
Dozza et al. suggested a four phase approach [19]. Hence, it can be reasonable to observe a
behavioural modification in driver’s control execution when a pedestrian is present in the scene.
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The dominant variable which differs among the aforementioned scenarios is the relative speed
between the EGO vehicle and the road user that needs to be overtaken. However, a parameter
that plays a significant role is the different position of the road user in the lane.

While overtaking a pedestrian, drivers appear to behave as feed forward controllers. Feed
forward driven controllers use knowledge of the system it is supposed to control to act directly
on it, anticipating changes. Through the analysis of the cabin video in the NDS data set, it was
noticed that, if no other threats were present in the scene, drivers comfortably performed the
overtaking manoeuvre by mean of a slight steering wheel rotation, usually gazing at the rear
view mirror once the manoeuvre has been completed. With reference to an idealized scenario
represented in Figure 6.1, this behaviour is considered to be different from the overtaking
of another vehicle, where drivers need to properly estimate the leading vehicle speed, and
therefore for such events the steering wheel angle is expected to be more marked. Furthermore,
the relative speed between road users seems to play an important role in the driver selection of
the distances to the pedestrian, leading to a start of the returning phase quite in advance with
respect to a car overtaking manoeuvre. Thus, considering driver’s main control through steering

Figure 6.1: Representation of the overtaking scenario involving two different road user. The
representation of the steering wheel signal is given. Difference in the vehicle trajectory is
presented for the overtaking of a pedestrian (top) and for overtaking of a vehicle (bottom)

wheel action, it is proposed an investigation of driver interaction with different road users by
mean of an analysis of how the steering control is applied in different events. Furthermore,
an analogy with control theory can be investigated in future studies. Since the control action
performed by a human controller while overtaking a pedestrian appears to be without much
workload, with reference to previous study about transfer functions of human controller [91],
the control action is expected to be mainly a proportional action, with very weak derivative
action or an integral one (in a proportional, integral, derivative PID control). The development
of an accurate driver model associated to the steering wheel action performed by drivers during
the overtaking of different road user could be helpful for active safety systems. In detail, such
devices could be adopted as driver assistance systems aimed at predict and understand possible
driver intentions, and eventually take action in the condition in which no driver expected input
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to the vehicle would be noticed. Therefore, an in deep investigation and classification of different
behaviour with different user is suggested. This should be done not only in term of comfort
zones boundaries, but also in term of trajectory and driver intentions in the path planning.
Moreover, in order to properly understand driver’s vehicle control and lateral distances to
pedestrians, a field test with spontaneous participant driving an equipped vehicle is suggested
for further investigations. Indeed, using a LiDAR equipped car together with a CAN-data
logger, could provide behavioural information of the driver for the complete duration of the
field test. Withal, limitation on the possible number of participants (drivers) and multiple
vehicles type would be introduced. As a general recommendation,since the 2D LiDAR installed
over pedestrian waist has proven to be not suitable to recognize the four defined phases of
an overtaking maneuver, the utilization of a self stabilizing gimbal could be suggested for an
improvement in the hardware components. Alternatively, in order to provide the best results,
the adoption of a 3D LiDAR for the observation of the scene from a pedestrian point of view
could be helpful.
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