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Abstract

The ectoparasitic mite Varroa destructor has become one of the major threats
for apiculture worldwide. Varroa destructor attacks the honey bee Apis mellifera
weakening its host by sucking hemolymph. However, the damage to bee colonies
is not strictly related to parasitic action of the mite but it derives, above all,
from the increased trasmission of many viral diseases vectored by it. In this
thesis an analysis of this phenomenon is carried out by approaching it in two
ways: the first is a study from the point of view of population dynamics, while
the second is a statistical analysis.

The data used were collected during an experiment aimed at Ciriè (TO)
from the Cooperative DSP. For the reproduction period of the bees, eleven
beehives were observed, in which initially adult varroa were introduced, taking
samples about every 15 days. These hives were treated with oxalic acid, the
most common treatment used nowaday to combat varroa, that is not harmless
for the life of the bees. In the first part of this Thesis a dynamics model is
developed that describes the growth of four populations that coexist within a
beehive: adult bees, larvae (closed bees in the cells undergoing growth), varroa
in phoretic phase (parasite for adult bees) and the varroa in the reproduction
phase in the cells occupied by the larvae. The final model was conceived start-
ing from growth, death, SIS and Lotka-Volterra models and it depends on ten
parameters. Seven of these parameters were taken from the literature while the
remaining three (varroa growth rate and varroa transition rates from reproduc-
tive to phoretic phase and from phoretic to reproductive phase) were estimated
using data at the disposition.

In the second part a statistical analysis of the phenomenon is performed.
In addition to data sets about bees, climatic data collected by surveyors in the
locality of Caselle Torinese (TO) were added to study the effect of climate vari-
ables on the growth of the parasite. Varroa are studied in both the reproductive
and the foretic phases. Initially, linear models with interactions, structured vari-
ances and random effects were used, and zero-inflated mellows to manage the
presence of a large number of zeros in the response variable, most probably due
to experimental limits.

In the final part of this Thesis, we compare the results obtained from these
two approaches, i.e. deterministic and stochastic, giving an interpretation of
the results that can be used to improve the beekeeping activity.
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...Sara, Monica, anche se il nostro concetto di famiglia è un modello che i
nostri modelli avrebbero tanto dovuto seguire, questa pagina non è per voi...
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Chapter 1

Introduction

The life on the planet will end if the bees disappeare. Plants need to receive the
pollen from similar plants to reproduce, a function that is carried out mainly by
the bees, the principal pollinator. This relationship is as old as their existence,
as for the egg and for the hen we can’t ask who was born before: the plants,
in their extensive biodiversity or the bees pollinators. The humid secretion
that the plants emit is used to attract bees and to be fertilized with the pollen
that the bees are carry from on the flowers of the same variety. The bees are
responsible for about 70% of the pollination of all living plant species on the
planet, guaranteeing about 35% of global food production, so we must protect
this small insect, threatened today along with many other pollinating insects.
The beekeepers saw, year by year, their breeding and the production of honey
beeing reduced.

“If the bee disappeared off the surface
of the globe then man would only have
four years of life left. No more bees,
no more pollination, no more plants, no
more animals, no more man.

If the bee disappears from the surface of
the earth, man would have no more than
four years to live”

Albert Einstein

Recent studies have reported an epidemic presence of some viruses in many
species of bees and this increase is due to the presence of a new transmission
vector: the varroa destructor, also called varroa ([1], [2]). The varroa is a par-
asite that has as its natural host the oriental apis cerana which is not hardly
damaged by it. In the 40s, however, the European cousin apis mellifera was
introduced in Southeast Asia to increase honey production and something un-
expected happened: in 1958 the first cases of varroa aggression to this species of
bees were reported in China. Subsequently due to the uncontrolled trade of the
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mellifera queens, the varroa spread practically all over the world. In Italy the
fight began in 1981. The difference between the oriental and European species
is that the second one leads to mite populations much larger. Therefore, this
fact accelerates the spread of some viruses that often causes the death of the
colony.

Given the vastness of the problem, the scientific community that has been
conducting research on this parasite for many years is not limited only to biol-
ogists. It includes also mathematicians who try to model the evolution of this
parasitic population to optimize human intervention to rescue the bees.

This Thesis is based on experimental activity followed by beekeepers and
biologists in Ciriè, Torino. This experiment consisted in monitoring for the
bee activity season the presence of the varroa in different artificial hives. The
interest of beekeepers is to find a way to have the better result of treatment,
which for now is done based on oxalic acid. Obviously this remains exclusively
an ideal goal.

Using the data collected in the experience, two different approaches were
adopted: one deterministic and one statistical. The goal of the deterministic
approach is to develope a mathematical model able to describe the dynamic of
the evolution of the varroa. This is possible due to the fact that the model is
able to estimate different parameters from the data experimentally collected.
Instead the statistical approach is finalized to the development of a predictive
model that describes the varroa growth over time and furthermore analyses the
climatic influence on this phenomenon.

For this Thesis R programming language [23] was used for both the deter-
ministic and the statistical part. R is a programming language and free software
environment for statistical computing and graphics that is widely used among
statisticians and data miners for developing statistical software and data anal-
ysis. The capabilities of R are extended through user-created packages, which
allow specialized statistical techniques, graphical devices, import/export capa-
bilities, reporting tools, etc. These packages are developed primarily in R, and
sometimes in Java, C, C++, and Fortran. All R packages used for this project
are shown in the dedicated appendix part, including those used for solving dif-
ferential equation systems.

To better understand the subject of this study the following chapter, a bio-
logical introduction, is splitted in two parts. The first one is about the so called
host, the bee specie; the second part presents the vector of pathogen agents, the
acarus.
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Chapter 2

Biological background

2.1 Host: the honey bee Apis mellifera

Apis mellifera.

Called Apis mellifica from Carl Nilsson Lin-
naeus in 1758, the Apis mellifera is the most
widepread species of bee in the world. Orig-
inally widespread in Europe, Africa and part
of Asia, this species was introduced on every
continent for business. Usually in a beehive
live a queen, the only fertile female, from 40
to 100 thousand workers, sterile females des-
tined to the maintenance and to the defense
of the colony, and between April and July (in
Europe) from 500 to 2000 males (also called
drones or pigeons), which are destined exclu-
sively for reproduction. The species is polymorphic because the three castes
have different morphological conformations.

Male pupae.

The queen can live up to 4 years and it
is fertilized once in her whole life by about
8 drones. In the period in which the harvest
of nectar is abundant, a queen arrives to de-
posit up to 3 thousand eggs a day, which if
are fertilized they will generate worker bees
or more rarely queens, otherwise they will
become drones. Once the egg is attached
to the bottom of a cell, it opens up later
about 3 days from the deposition and emerges
a tiny vermiform larva, apoda and anoph-
thalma (without compound eyes). The pupa
suffers one complete metamorphosis, and fi-
nally cut the operculum of the cell with its

own jaws to flicker like a young bee. Development time for each caste it is
standardized, thanks to the thermoregulation in the hive. In the Table 2.1 are
shown the times estimated for each phase of life of each caste of this species.
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Prima del taglio dell’opercolo Sfarfallamento
Uovo Larva Pupa Totale Adulto

Regina 3 5.5 7.5 16 3.5 anni
Operaia 3 6 12 21 30-45
Fuco 3 6.5 14.5 24 -

Table 2.1: Time estimatesare are expressed in day if not specified.

2.2 Vector: the mite Varroa destructor

The varroa mite can reproduce only in the apis mellifera colonies. It has two
life stages, phoretic and reproductive.

Bee with Varroa Mite.
Credit: Bayer Bee Health.

The phoretic stage is when a mature var-
roa mite is attached to an adult bee and sur-
vives taking hemolymph from it. During this
stage the mite may change hosts often trans-
mitting viruses by picking up the virus on one
infected individual and injecting it to another
during feeding. Phoretic mites may fall off
the host for its grooming activity or be bitten
by another bee. This mites and those dead
due to natural causes rest in a bottom plate
under the hive and they are called the natural
mite drop.

Reproduction activity of varroa
in the hive.

The reproductive life stage of Varroa be-
gins when an adult female mite is ready to lay
eggs and moves from an adult bee into the cell
of a developing larval bee. After the brood
cell is capped and the larva begins pupating,
the mite begins to feed. After about three
days from capping, the mite lays its eggs, one
unfertilized egg (male) and more or less 4 fer-
tilized (female) eggs. After the eggs hatch,
the female mites feed on the pupa, mate with
the male mite and the surviving mature fe-
male mites stay attached to the host bee when
it emerges as an adult. The varroe perform up
to 7 reproductive cycles so they die because
old.

The hemolymph suction causes lacera-
tions in which pathogens can penetrate caus-
ing clinical effects to the bee as well as its
anomalous development so that sometimes
the bee is already deformed. The symptoms
occur more in the period in which the drones
are no longer raised because they attract the
varroa more tha the female bees. The symptoms are:

• reduction of the number of bees, bees with flight difficulties, substitution
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of the queen, abandonment of the hive;

• irregular brood, larvae out of place in the cell and liquefied, brown-colored
larvae.

The infestation spreads from one hive to another with drifts, looting, trade
in swarms and queens, gathering swarms, etc. Field operations can also con-
tribute to spread the disease, even if the beekeeping equipment is not a source
of contagion because the varroe survive shortly in the absence of the bees. The
disease is widespread in 100% of the hives, so the diagnosis of the disease has no
sense, but it is needed estimating the degree of the infestation during the year.

2.3 Viral pathogens: DWV e ABPV

Most of honey bee viruses commonly causes covert infections, namely the virus
can be detected at low titers within the honey bee population in the absence of
obvious symptoms in infected individuals or colonies. However, when injected
into the open circulatory system, these diseases are extremely virulent with
only few viral particles per bee required to cause death within a few days.
The most serious problem caused by Varroa destructor. On one hand, when a
mite carrying virus attach to a healthy bee, it can transmit the virus to the bee.
Further, viral diseases are also transmitted among bees through food, feces, from
queen to egg, and from drone to queen. On the other hand, a virus free phoretic
mite can begin carrying a virus when it moves from an uninfected to an infected
bee but it can also acquire it horizontally from other infected mites. Therefore,
the management of varroa activities in a hive will control the associated viruses
because often presence of viral symptoms diseases is indicative of an invasion of
varroa in the colony.

Since 1963, year of isolation of the first virus (CPV) to date, they have been
identified and characterized no less of 21 viruses. Among all these viruses many
are associated with pathogens, specifically DWV and ABPV are the two most
associated with varroa [5].

2.3.1 Deformed wing virus (DWV)

The virus was first isolated from a sample of symptomatic honeybees from Japan
in the early 1980s and is currently distributed worldwide. It is found also in
pollen baskets and commercially reared bumblebees. Deformed wing virus is
suspected of causing the wing and abdominal deformities often found on adult
honeybees in colonies infested with Varroa mites [6]. These symptoms include
damaged appendages, particularly stubby, useless wings, shortened, rounded
abdomens, miscoloring and paralysis of the legs and wings. Symptomatic bees
have severely reduced life-span (less than 48 hours usually) and are typically
expelled from the hive. In the absence of mites the virus is thought to persist
in the bee populations as a covert infection, transmitted orally between adults
(nurse bees) since the virus can be detected in hypo-pharyngeal secretions (royal
jelly) and brood-food and also vertically through the queen’s ovaries and through
drone sperm. The virus may replicate in the mite but this is not certain.
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2.3.2 Acute paralysis virus (ABPV) [3]

For many years on, ABPV was shown to exist in low concentrations as a covert
infection in adult bees, never producing outbreaks of paralysis. Shortly after
the establishment of varroa in Europe, the virus was then isolated from healthy
adult from most regions all over the world: France, Italy, Canada, China, the
USA, New-Zealand. ABPV is known today to have a geographical distribution
similar to that of A. mellifera. Bees affected by this virus tremble uncontrollably.
The virus has been suggested to be a primary cause of bee mortality. Infected
pupae and adults suffer rapid death.

2.4 Treatment: oxalic acid [7]

Oxalic acid is a colorless crystalline solid that forms a colorless solution in
water. It occurs naturally in many foods, but excessive ingestion of oxalic acid
or prolonged skin contact can be dangerous. Oxalic acid is used against varroa,
because it is the most convenient: it leaves no residue in honey, it is well tolerated
by bees in any way it is propelled in the hive, it is considered a ”natural”
active ingredient, currently it is not yet contemplated from the EC Regulation
2377/90 on MRLs (maximum residual limits). The oxalic acid solution should
be prepared before use by stirring the distilled water, dissolving the oxalate
inside and then adding the sugar. The suspension acts by contact and currently
it is administered to the bees by dripping and spraying. Considering that during
the bee season the number of varroe has been estimated for about 2/3 in the
brood and for a 1/3 on the adult bees, the application of the above techniques
is limited to the autumn and winter period or in absence of brood. Waiting a
new brood cycle, a second antivarroa cleaning operation is done.

The autumn treatment is defined as ”radical cleaning” and reaches an effi-
cacy even higher than 95%, provided that in the colonies treated at least one
month has elapsed since the last solid feeding, since the absorption of candied
fruit, which occurs slowly from part of the bees, causes the queen to stimulate
the deposition.

It is possible to treat the colonies even when they are fed with a very con-
centrated syrup, in large quantities and for a short period, because the nutrition
concentrated for a short cycle does not stimulate the queen to lay down but has
the function of integrating only the stocks.

The fall of the varroe, after treatment, occurs approximately after 24-48
hours. During the treatments always remain on the bees a variable percentage
of varroe, the important thing is to know how much. To ascertain the percentage
of varroe in the phoretic phase, a control treatment must be carried out with a
tested formula: the percentage of fallen varroe is (AC/(AC+AT ))×100, where
AC is the mites fallen into followed by treatment with oxalic acid and AT is
the mites fallen after treatment of a tested product.

The monitoring of the fall rate, in the absence of brood, allows to ascertain
in time the increase in the number of mites and to adopt the necessary fighting
subtleties. When it is not possible with two treatments to arrive at a high
percentage of fall, greater than 95%, one must change the product because one
is in the presence of the addiction of the varroa.
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Chapter 3

Collected data

For this project two different datasets are used and in this chapter they are
showed separatly. The first one are measuremets about hives, bees and varroe,
instead the second one are data about weather conditions.

3.1 Varroa data

The first part of data used in this project come from an experiment started on
May 30, 2016 in Cirié (TO) and for this in twelve hives, emptied and sterilized,
bee colonies were introduced for the creation of a beehive. Furthermore, after
treating all the hives with oxalic acid so as to consider the presence of the varroa
equal to zero, in each beehive a different quantity of adult varroa specimens was
introduced (inoculum), to create a characterization of each hive (table 3.1).

Hive code 01 02 03 04 05 06 07 08 09 10 11 12
Inoculum 9 11 15 10 18 9 22 37 12 15 18 10

Table 3.1: Initial number of varroa in phoretic phase per hive.

During the experiment, about every fifteen days the biologists took two type
of measurements. The first one consisted of a small part of the hive, extracting
from it 100 cells and, after friezed them, to count how many varroa are in each
one. The second measurement, instead, was made by taking a certain number
of bees, freezing them and subsequently detecting the presence or absence of
varroa.

Figure 3.1 shows all measurements dates but the data present some problems:

• in hives 5 and 8 there are two outsider dates that will not be considered;

• in hives 8, 9, 11 and 12 some dates are missing but these hives will be
considered equally;

• in hives 10 three dates are missing and, at the start of the experiment, the
queen died, so this hive will not be considered.

So after these adjustments seven measurements dates and eleven hives will be
available for the analysis.
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Figure 3.2: For each hive this plot shows the trend of the average number of
varroa found in the 100 cells taken on the measurement date. The plotted values
are obtained by adding together all the varroa found in the sample and dividing
by 100.

Hive code 01 02 03 04 05 06 07 08 09 11 12
Dead varroa 682 1204 974 127 1899 1679 496 1872 112 2276 583
Dead hive N N N N Y N Y Y N N N

Table 3.2: This Table shows the initial number of varroa per hive and if an hive
is dead or not.

Another type of measurement was made: the treatment of oxalic acid has
been done in autumn and a debris collector was placed under the hive to collect
the varroa once dead. After having carried out the treatment against the varroa,
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Figure 3.3: For each hive this plot shows the trend of the percentage of cells
infested on the 100 cells taken.
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Figure 3.4: For each hive this plot shows the trend of the percentage of varroa
in the phoretic phase on the number of bees in circulation in the hive.

at the end of the experiment the mites found in this collector were counted.
Table 3.2 shows the data about the final dead varroa and if the hive is dead or
not.

Figures 3.2, 3.3, 3.4 e 3.5 shows the other principal outputs from the exper-
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Figure 3.5: For each hive this plot shows the trend of the average number of
varroa but it is calculated only on the found infested cells and not on the total
of 100.

iments. An infested cell means that at least one varroa has been found in it.
The increasing trend of infested cells (Figure 3.3) in almost all hives is a very
important fact that shows how over time the mite increases its impact on the
brood. From Figure 3.3 we see that the percentage of varroa in phoretic stage
was obtained by taking a variable number of bees at each measurement date,
which were frozen and then for each sample the total number of mites attached
to the body of these bees was counted. In Figure 3.5 no growing trend is ob-
served and this fact shows how the reproduction of a single varroa inside the
operculated cell is a phenomenon independent of the dynamics of populations
outside the cell.

3.2 Climatic data

To analyse the climatic effect on the varroa growth, we need data about the
weather during the experiment. In this section we speak about data concerning
this.

The second part of data used in this project comes from a weather website
[11]. The data were collected by the Torino Caselle weather station, a locality
close to Ciriè (about 7 km); we assume they are a good approximation of the
weather of Ciriè. They consist in a dataset with the following attributes:

• DATE (YYYY-MM-DD) is the day to which the measurements refer;

• AV RG TEMP (◦C) is the average temperature during the day;

• MIN TEMP (◦C) is the minimum temperature during the day;

• MAX TEMP (◦C) is the maximum temperature during the day;
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• INT TEMP = MAX TEMP - MIN TEMP (◦C);

• DEW POINT (◦C) is the thermodynamic state in which a two-phase
liquid-vapor mixture becomes saturated with vapor, or rather above the
dew point there is only the presence of steam;

• HUMIDITY (%) is the average percentage of humidity during the day;

• V ISIBILITY (km) is the average visibility during the day;

• AV RG WIND (km/h) is the wind average speed during the day;

• MAX WIND (km/h) is the wind maximum speed during the day;

• GUST (km/h) shows the presence of a gust of wind during the day, that
means an instant of time in which the wind speed reaches a peak respect
the rest of the day;

• PRESS OSL (mb) is the average daily pressure referred to a zero alti-
tude, i.e. the sea level;

• AV RG PRESS (mb) is the average daily pressure referred to the altitude
of the place.

3.3 Final data frame

A general single data frame was obtained from the previous two, after making
the following changes:

• the variables AVRG PRESS and GUST have been deleted because they
are almost always null;

• only the 7 dates referring to the measurements concerning the hives were
considered;

• the varible MIN TEMP referred to a certain date now represents the
minimum value that this variable assumes in the previous 15 days;

• the varibles AVRG TEMP, DEW POINT, HUMIDITY, VISIBIL-
ITY, AVRG WIND and PRESS OSL referred to a certain date now
represents the mean value that this variables assume in the previous 15
days;

• the varibles MAX TEMP and MAX WIND referred to a certain date
now represents the maximum value that this variables assume in the pre-
vious 15 days;

• the variable t is an alternative way to show the time: in the start data of
experiment (”2016 − 5 − 30”) the value of it is t = 0 and t = n indicates
the n-th day since the beginning of experiment.
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Chapter 4

Deterministic model

4.1 Stable and symptotically stable equilibrium
points

A good place to start analyzing the nonlinear system

ẋ = f(x), with x ∈ Ω,

is to determine the equilibrium points of 4.1. Equilibrium points represent the
simplest solutions to differential equations.

Definition 4.1.1 Suppose an autonomous system of ordinary differential equa-
tions, that is a system of the form 4.1 in which the right side does not contain the
independent variable t and Ω ⊆ R is the domain of x. An equilibrium point
of the differential equation system 4.3 is a point x∞ such that f(x∞) = 0.

In addition, an equilibrium point x∞ is feasible if and only if x∞ ∈ Ω. In
this way x∞ is a solution for all t.

It is often important to know whether an equilibrium point is stable, i.e.
whether it persists essentially unchanged on the infinite interval [0,∞] under
small changes in the initial data. This is particularly important in applications,
where the initial data are often known imperfectly.

Definition 4.1.2 An equilibrium x∞ is said to be stable if for every ε > 0
there exists δ > 0 such that

|x(0)− x∞| < δ implies |x(t)− x∞| < ε, ∀t > 0.

It is implicit in definition 4.1 that the existence of the solution x(t) is required
for 0 ≤ t ≤ ∞. The definition is restricted to Lyapunov stability, wherein
only perturbations of the initial data are contemplated, and thereby exclude
consideration of structural stability, in which one considers perturbations of the
vector field.
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Definition 4.1.3 An equilibrium x∞ is said to be asymptotically stable if it
is stable and if in addition

|x(0)− x∞| < δ implies lim
t→∞

x(t) = x∞.

Thus, stability means roughly that a small change in initial value produces
only a small effect on the solution, and this condition is a natural requirement for
an equilibrium to be biologically meaningful. In biological equations the asymp-
totic stability rather than stability is usually required, both because asymptotic
stability can be determined from the linearization technique while stability can-
not, and because an asymptotically stable equilibrium is not disturbed greatly
by a perturbation of the differential equation.

If a system of n ODE

ẋ = f(x) x ∈ Ω ⊆ Rn, f ∈ Rn

is linearized about the equilibrium point x∞ ∈ Ω, with perturbation variable
z = x− x∞, then the linear system of differential equation is

ż = Jz,

where J is the Jacobian matrix of the system 4.1 evaluated at the equilibrium
x∞. That is

J = (Jij) =

(
∂fi
∂xj

(x∞

)
. (4.1)

Trough the linearization technique, the stability of an equilibrium x∞ can
be determined from the eigenvalues of the Jacobian matrix evaluated at the
equilibrium. It follows from the next results.

Theorem 4.1.4 For the linear first order constant coefficient system of ODE

ż = Az, z ∈ Rn, A ∈ Rn×n,

the zero vector z ≡ 0 is stable or unstable as follows:

• if all eigenvalues of A have not positive real parts and all those with zero
real parts are simple, the z ≡ 0 is stable;

• if and only if all eigenvalues of A have negative real parts, then z ≡ 0 is
asymptotically stable;

• if one or more eigenvalues of A have a positive real parts, then z ≡ 0 is
unstable.

For the general autonomous ODE system 4.1, the analysis of the stability of
an equilibrium point x∞ reduces to the study of stability of the corresponding
linearized system in the neighborhood of the equilibrium point, as stated in the
theorem 4.1.5.

Theorem 4.1.5 (Lyapunov theorem) An equilibrium point x∞ of the ODE
system 4.1 is stable if all the eigenvalues of J (Jacobian matrix evaluated in
x∞) have negative real parts. The equilibrium point is unstable if at least one
of the eigenvalues has a positive real part.
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In order to determine the eigenvalues of (4.1), it is necessary to find the roots
of the characteristic equation (4.2).

det(J − λI) = 0. (4.2)

However, the characteristic equation for an n-dimensional system is a poly-
nomial equation of degree n for witch it may be difficult or impossible to find
all root explicitly. In this regard, the theorem 4.1.6 is a general criterion for
determining whether all roots of a polynomial equation have negative real part.

Theorem 4.1.6 (Routh-Hurwitz criterion) Given the polynomial

P (λ) = λn + a1λ
n−1 + · · ·+ an−1λ+ an = 0,

where the coefficients ai are real constants ∀i = 1, . . . , n. The n Hurwitz
matrices are defined using the coefficients ai of the characteristic polynomial:

H1 = (a1), H2 =

(
a1 a3

1 a2

)
, H3 =

a1 a3 a5

1 a2 a4

0 a1 a3

 ,

Hk =


a1 a3 a5 · · ·
1 a2 a4 · · ·
0 a1 a3 · · ·
0 1 a2 · · ·
· · · · · ·
0 0 · · · ak

 , k = 1, · · · , n.

All of the roots of the polynomial P (λ) are negative or have a negative real part
if and only if the determinants of all Hurwitz matrices are positive:

det(Hj) > 0, ∀j = 1, · · · , n.

A remark is that for n = 2, the criterion 4.1.6 simplify to

det(H1) = a1 > 0, det(H2) = a1a2 > 0,

that is a1 > 0 and a2 > 0.
For the stability analysis, we can equivalently require that the trace of the

matrix J be negative and the determinant of the same matrix be positive. In
fact, in this case the characteristic polynomial can be written as

P (λ) = λ2 − tr(J)λ+ det(J).

Similarly, when n = 3 we get the following Routh-Hurwitz conditions:

a3 > 0, a1 > 0, a1a2 > a3.

4.2 The model

Varroa destructor attacks the honey bee Apis mellifera sucking hemolymph from
both the adult bees and the brood. However, the honey bee mortality induced
by the subtraction of hemolymph and tearing of tissues in the act of sucking
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is very insignificant. Therefore, the damage to bee colonies derives from the
parasitic action of the mite but, above all, from its action of vector for many
viral diseases even seriously harmful.

In this work discusses an SI model that describes how the presence of the
mite varroa affects the epidemiology of these viruses on adult bees and larvae.
Let B denotes the number of bees, L the number of larvae (bees in growth
phase), R the mites in reproductive stage and P the mites in the phoretic stage.
The model reads as follows:

L̇ = b B2

k2+B2 − cL
Ḃ = cL−mB − µP
Ṙ = raP − gcRL
Ṗ = gcRL− nP − ePB − aP.

In the model each term has a precise meaning for the description of the dynamics
of the three populations. Precisely:

• bB2(k2 +B2)−1 is the growth term for bees. It is such that for a enough
large population compared to the parameter k, a linear growth with coef-
ficient b is obtained. It does not depend from L because the queen deposes
eggs and the worker bees bring them to the cells still to be operculated;

• the term cL models the birth of bees, i.e. the larvae that leave the cells
(−cL) because now they are adult bees (+cL);

• the term mB represents the natural death of the bees;

• the term µP models the death of the bees due to the vector action of the
parasite;

• daily, a portion of mites in the phoretic phase, aP , is introduced into the
unoperculated cells to begin the reproduction activity;

• this portions of varroa reproduces with a rate r;

• therefore the varroa leave the cell with rate g, according to a term propor-
tional to both how many varroa are in the reproductive phase and to the
birth term of the bees: so the term gcRL is subtracted from the dynamics
of the varroa in reproduction and added to the phoretic one;

• the varroa in phoretic stage die naturally with rate n;

• finally the term ePB is related to the grooming behavior that occurs at
rate e in bees.

Note that all parameters of the model are positive.

4.3 Equilibrium points of the model

The beginning is the research of the constant solutions of the model 4.2. From
definition 4.1.1 we deduce that to find the equilibrium points it is necessary
to solve the system 4.3. In order to simplify the analysis of the solutions, we
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
L 0 ∗ 0 0 0 ∗ ∗ ∗ 0 0 0 ∗ ∗ ∗ 0 ∗
B 0 0 ∗ 0 0 ∗ 0 0 ∗ ∗ 0 ∗ ∗ 0 ∗ ∗
R 0 0 0 ∗ 0 0 ∗ 0 ∗ 0 ∗ ∗ 0 ∗ ∗ ∗
P 0 0 0 0 ∗ 0 0 ∗ 0 ∗ ∗ 0 ∗ ∗ ∗ ∗

Table 4.1: The symbol ∗ denotes a population not necessairly equal to zero.

discuss, one by one, all the possible configurations of the three populations,
shown in Table 4.1. 

b B2

k2+B2 − cL = 0

cL−mB − µP = 0

raP − gcRL = 0

gcRL− nP − ePB − aP = 0.

1. (L, B, R, P) = (0, 0, 0, 0)
The solution

E1 = (0, 0, 0)

is an equilibrium point and it is feasible.

2. (L, B, R, P) = (L, 0, 0, 0)
From the first equation of 4.3 we found L = 0 and so for L > 0 there are
not any equilibrium points.

3. (L, B, R, P) = (0, B, 0, 0)
From the first equation of 4.3 we found B = 0 and so for B > 0 there are
not any equilibrium points.

4. (L, B, R, P) = (0, 0, R, 0)
From the third equation of 4.3 we found R = 0 and so for R > 0 there are
not any equilibrium points.

5. (L, B, R, P) = (0, 0, 0, P)
From the first equation of 4.3 we found P = 0 and so for P > 0 there are
not any equilibrium points.

6. (L, B, R, P) = (L, B, 0, 0)
The first equation of 4.3 becomes

cL = b
B2

k2 +B2
,

so the second one becomes

b
B2

k2 +B2
= mB,

that is
mB3 − bB2 +mk2B = 0.
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Since B = 0 is a case already considered, we consider B > 0 and divide
both members by B, obtaining

mB2 − bB +mk2 = 0.

So we have three cases corresponding to cases in which ∆ = b2 − 4m2k2

is positive, null or negative:

• if b > 2mk then there are two equilibrium points (not considering
(0, 0, 0, 0)): (

b±
√
b2 − 4m2k2

2m
,
b±
√
b2 − 4m2k2

2c
, 0, 0

)
and both cases are feasible;

• if b = 2mk then there is an only equilibrium point (not considering
(0, 0, 0, 0)): (

b

2m
,
b

2c
, 0, 0

)
;

• if b < 2mk then there are not any equilibrium points (not considering
(0, 0, 0, 0)).

So the solutions

E2 =

(
b+
√
b2 − 4m2k2

2m
,
b+
√
b2 − 4m2k2

2c
, 0, 0

)

and

E3 =

(
b−
√
b2 − 4m2k2

2m
,
b−
√
b2 − 4m2k2

2c
, 0, 0

)

are equilibrium points and for the positivity of parameters they are feasible
for b > 2mk (the solution E3 is always positive), while for b = 2mk they
degenerate in a single feasible solution: E2 = E3.

7. (L, B, R, P) = (L, 0, R, 0)
From the first equation of 4.3 we found L = 0 and so for L > 0 there are
not any equilibrium points.

8. (L, B, R, P) = (L, 0, 0, P)
From the first equation of 4.3 we found L = 0 and so for L > 0 there are
not any equilibrium points.

9. (L, B, R, P) = (0, B, R, 0)
From the first equation of 4.3 we found B = 0 and so for B > 0 there are
not any equilibrium points.

10. (L, B, R, P) = (0, B, 0, P)
From the first equation of 4.3 we found B = 0 and so for B > 0 there are
not any equilibrium points.
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Equilibrium L B R P Feasibility conditions
1 E1 0 0 0 0 always
6 E2 ∗ ∗ 0 0 b ≥ 2mk
6 E3 ∗ ∗ 0 0 b ≥ 2mk
8 E∗ ∗ ∗ ∗ ∗

Table 4.2: Summering table of equilibria and existence conditions (the symbol
∗ denotes a population not necessarily equal to zero).

11. (L, B, R, P) = (0, 0, R, P)
From the second equation of 4.3 we found P = 0 and so for P > 0 there
are not any equilibrium points.

12. (L, B, R, P) = (L, B, R, 0)
From the second equation of 4.3 we found P = 0 and so for P > 0 there
are not any equilibrium points.

13. (L, B, R, P) = (L, B, 0, P)
From the fourth equation of 4.3 we found R = 0 or L = 0, so for R > 0 or
L > 0 there are not any equilibrium points.

14. (L, B, R, P) = (L, 0, R, P)
From the first equation of 4.3 we found L = 0 and so for L > 0 there are
not any equilibrium points.

15. (L, B, R, P) = (0, B, R, P)
From the first equation of 4.3 we found B = 0 and so for B > 0 there are
not any equilibrium points.

16. (L, B, R, P) = (L, B, R, P)
Finally, we consider the case for which all populations do not vanish,
namely the system exhibits coexistence. However, we are unable to find
this equilibrium analytically by solving 4.3. This equilibrium will be not
study in this Thesis.

Table 4.2 lists the result obtained. In particular, we summarize all the
possible equilibrium points with their feasibility conditions.

4.4 Stability of equilibrium points

The aim now is to verify the stability of equilibria determined in the previous
section (the structure of this part is taken from [3]).

We proceed with the analysis of the stability for each equilibrium point. In
the following part stability means asymptotically stability.

The Jacobian matrix for the system 4.2 at a generic point is the equation
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4.4.

J =



−c 2bk2B
(k2+B2)2 0 0

c −m 0 −µ

−gcR 0 −gcL ra

gcR −eP gcL −n− a− eB


.

4.4.1 Stability analysis for E1

For the equilibrium point E1 = (0, 0, 0, 0), the Jacobian matrix is

J(E1) =



−c 0 0 0

c −m 0 −µ

0 0 0 ra

0 0 0 −n− a


.

Given the property in A.1, the eigenvalues of 4.4.1 are the diagonal elements.
These are:

λ1 = −c,
λ2 = −m,
λ3 = 0,

λ4 = −n− a.

Because lambda3 = 0, there is an eigenvalue with no real negative part and
so, according to the Lyapunov theorem, the equilibrium E1 is not stable.

4.4.2 Stability analysis for E2 and E3

From the second equation of the system 4.3 for the equilibrium points, we have
that cL = mB, so from the first equation of 4.3 we have

b2B4

(k2 +B2)2
= c2L2 = c2B2 so

2bk2B

(k2 +B2)2
=

2k2m2

bB
,

and the Jacobian becomes

J2 =



−c 2k2m2

bB 0 0

c −m 0 −µ

−gcR 0 −gcL ra

gcR −eP gcL −n− a− eB


.

For the equilibrium points (ω±/m, ω±/c, 0, 0), such that

ω± =
1

2

(
b±

√
b2 − 4m2k2

)
,
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the new Jacobian matrix J2, without explaining ω, is

J2(ω±/m, ω±/c, 0, 0) =



−c 2k2m3

bω±
0 0

c −m 0 −µ

0 0 −gω± ra

0 0 gω± −n− a− e
mω±


.

The matrix 4.4.2 is a block triangular matrix and so for A.1 the eigenvalues of
the Jacobian are the eigenvalues of the two square matrices A and B.

A =

−c 2k2m3

bω±

c −m


B =

−gω± ra

gω± −n− a− e
mω±


Considering the matrix A, for the theorem 4.1.6 it has two eigenvalues with

negative real part if and only if

tr(A) = −m− c < 0 and det(A) = cm− 2ck2m3

bω±
> 0.

While the first one is verified for the positivity of parameters, the second ex-
pression is equivalent to

ω± >
2k2m2

b
.

In the case of E2 the relation 4.4.2 becomes

1

2

(
b+

√
b2 − 4m2k2

)
>

2k2m2

b
.

from that the following expression is obtained

b2 > 4k2m2,

that is the condition for existence of E2.
In the case of E3 the relation 4.4.2 becomes

1

2

(
b−

√
b2 − 4m2k2

)
>

2k2m2

b
.

from that the following expression is obtained

b2 < 4k2m2,

that is in contrast with the condition for existence of E3 and so it is not a stable
equilibrium.

The remaining candidate E2 = (ω+/m, ω+/c, 0, 0) is stable if B has two
eigenvalues with negative real part. Because we have tr(B) < 0, E2 is stable if
and only if

det(B) = gω+

(
n+ a+

e

m
ω+

)
− graω+ = gω+

(
n+ a+

e

m
ω+ − ra

)
> 0,

26



Expression Feasibility Stability
E1 (0, 0, 0, 0) always never

E2

(
b+
√
b2−4m2k2

2m , b+
√
b2−4m2k2

2c , 0, 0
)

b ≥ 2mk ω+ > m(ra− n− a)/e

E3

(
b−
√
b2−4m2k2

2m , b−
√
b2−4m2k2

2c , 0, 0
)

b ≥ 2mk never

E∗ (L∗, B∗, R∗, P∗)

Table 4.3: Summaring Table of equilibria: existence and stability conditions.
Remember that ω+ = (b±

√
b2 − 4m2k2)/2.

that is {
ω+ > 0

ω+ > m
e (ra− n− a)

or

{
ω+ < 0

ω+ < m
e (ra− n− a).

Because for E2 we have ω+ > 0, the stability condition began

ω+ > m(ra− n− a)/e.

4.4.3 Stability analysis for E∗

As we have seen in the previous section, the coexistence equilibrium E∗ is not
analytically tractable.

Finally, the Table 4.3 summarizes the feasibility and stability conditions of
the equilibrium points.

4.5 Model parameters: assumptions and esti-
mates

Some parameters of the model are taken from literature, like shown in Table
4.4, and the remaining ones are estimated using the experimental data.

The birth rate of larvae, specified as the number of larvae born per day, is
proposed being b = 2500, while the bee maturation rate, specified as the number
of bees that come out of the cells every day, is c = 0.05, equivalent to a 20-day
growth cycle. The bee natural mortality rate m = 0.04 is equivalent to choose
25 days as life expectancy. Another bee mortality term is due to the varroa
action and it is µ = 10−7.

Always in [18] the bees growth is modeled with a sigmoidal Hill function (in
our case N = 2), i.e.

g(B) =
BN

kN +BN
,

where the parameter k is the size of the bee colony at which the birth rate is
half of the maximum possible rate and the integer exponent N > 1. If k = 0
is chosen, then the brood is always reared at maximum capacity, independent
of the actual bee population size, because g(B) ≡ 1. In [18] the value of this
parameter is k = 0.000075 for spring and autumn and k = 0.00003125 for
summer, so we choose the value linked to the summer period.
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Parameter meaning Value Unit Ref.
b Bee daily birth rate 2500 day−1 [13]
c Bee maturation rate 0.05 day−1 [13]
m Bee natural mortality rate 0.04 day−1 [14]
µ Bee mortality rate for varroa action 10−7 day−1 [15]
r Varroa growth rate to be estimated day−1 -

n
Varroa natural mortality rate

in phoretic phase
0.007 day−1 [17]

e Grooming rate of bee 5× 10−6 day−1 [13]

g
Varroa transition rate

from reproductive to phoretic phase
to be estimated day−1 -

a
Varroa transition rate

from phoretic to reproductive phase
to be estimated day−1 -

k
Bees minimum number index
for which bee growth is linear

3.1255× 10−5 - [18]

Table 4.4: Model parameters. The parameters r, a and g will be estimate like
an optimization problem.
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Figure 4.1: The top function represents the percentage of varroa in the cells
trend, instead the lower one is the percentage of varroa in phoretic stage trend.

Note that with this parameters values, the equilibrium feasibility condition
b ≥ 2mk is satisfied.

The literature does not provide a precise value corresponding to the grooming
behavior, but from [13] we have a range of reasonable values for this parameter
from 10−6 to 10−5, so for the simulations we choose e = 5 × 10−6. From [17]
varroa natural mortality rate n is taken equal to 0.007.

For parameters estimation we use the data concerning the average situation
in the eleven hives, i.e. the average percentages trend shown in Figure 4.1
and the average inoculum 15.54545 for the eleven hives. Obviously to compare
experimental data with model data, we can not consider our model populations
L, B, R nd P , but their ratio R/L and P/B.

For an optimization problem the initial conditions are necessary and they
have been chosen from literature, experiment and considerations on the problem.
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Variable meaning Value Initial value meaning

L(0)
Number of larvae,

i.e of opercolated cells
1

To not have an indeterminate
form for R/L

B(0) Number of adult bees 60000
Average value of estimated range

for population dimension

R(0)
Varroa in

reproductive stage
0

Imagine to have
0 opercolated cells

P (0)
Varroa in

phoretic stage
15.54545

Mean value of the
inoculants in hives

Table 4.5: Initial values of the populations in the optimization problem.

The initial number of larvae is supposed equal to 0, but this could cause an unde-
termined form for the quantity R/L, so we choose conventionally L(0) = 1. The
choice B(0) = 60000 is the average value in the estimated range [40000, 80000],
in which the number of apis mellifera in a colony is estimated to move. The
initial value of the number of varroa in reproductive stage is 0, for the idea used
in the choice of L(0), and for the number of varroa in phoretic stage we use the
average inoculum, so P (0) = 15.54545. This values are shown in Table 4.5.

The parameters r, a and g will be estimate, but we can calculate relative
intervals in which we expect to find their values. The varroa growth rate in
the bee cells, r, is a net growth value, i.e. with it the number of varroa that
will exit infested cells is modeled. From [18] we know that for the competition
within the cell on average each mother varroa produces 1.3− 1.45 descendants
in the female brood and 2.2 − 2.6 from the drone brood, and as mentioned in
2.1, usually in a beehive there are from 40 to 100 thousand females and between
April and July from 500 to 2000 males. For r range we make a weighted average
based on the sex of the larva, first considering the minimum reproduction values
and then the maximum ones (shown in 4.5).

rlow =
40000 · 1.3 + 500 · 2.2

40500
' 1.311 and rsup ' 1.4725.

This means that r ∈ [2.311, 2.4725] because considering the mother that enter
the cell and then exit, we must add 1 to the values found. Regarding the number
of varroa that from phoretic stage enter the cells, we know from [18] that the
phoretic phase lasts 4 − 10 days in the presence of brood. Obviously, in the
absence of brood conditions, the mites are forced to remain phoretic. For this
reason we estimate that this parameter is from 1÷ 10 = 0.1 to 1÷ 4 = 0.25, i.e.
a ∈ [0.1, 0.25].

Regarding the optimization problem, the data on the percentages of varroa in
cells and in the phoretic phase are used to calculate the quadratic errors respect
our model, and to minimize them to obtain the estimate of the parameters. To
minimize them, we us an implementation of the method of Nelder and Mead
(1965, defined in A.2), that uses only function values and is robust but relatively
slow. It will work reasonably well for non-differentiable functions.

Table 4.6 shows the results of the optimization problem. Note that the a
parameter is in the expected range, while r is slightly higher than the expected
maximum value.

The Figure 4.2 shows the populations trend with new estimated parameters
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Parameter meaning Value Unit
r Varroa growth rate 2.77 day−1

g
Varroa transition rate

from reproductive to phoretic phase
1.723× 10−4 day−1

a
Varroa transition rate

from phoretic to reproductive phase
0.2463 day−1

Table 4.6: Estimated model parameters values.

B

L

P

R

0

20000

40000

60000

80000

0 50 100 150
time

va
lu

e

L B R P

Figure 4.2: The top function represents the percentage of varroa in the cells
trend, insted the lower one is the percentage of varroa in phoretic stage trend.

in Table 4.6. The initial negative trend of the number of bees is due to the low
number of larvae, that once reached values around 30000 ago, the numbers of
bees starts an increasing trend.

Figure 4.3 shows the different between experiment and model values for
the average number of varroa per opercolated cell. Almost everywhere the
model underestimates the experimental data, even if the last measurement is
overestimated.

Figure 4.4 shows the different between experiment and model values for the
average number of varroa in phoretic stage per bee. This quantity is much
better fitted from the theoretical model, in fact there is a good alternation of
positive and negative errors.
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Figure 4.3: The line - - - shows the experimental values for the average number
of varroa per opercolated cell, insted the line — is for the theoretical model
values.
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Figure 4.4: The line - - - shows the experimental values for the average number
of varroa in phoretic stage per bee, insted the line — is for the theoretical model
values.
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It is clear that our model works very well for the determination of values in
the first 2 months of experiment, and worsens for evaluations from 3 months
onwards, even if in the case of the size R/L from 4 months onwards the two
curves they rejoin perfectly. Note that the robustness of the model was tested
using different initial conditions and the values of the parameters emerging from
the optimization method were always the same.

32



Chapter 5

Statistical background and
considerations

Before the introduction of the model, we want to recall that:

• AV RGhi is the percentage of infested cells on general cells, of hth hive at
ith time point;

• PERC PHO V ARRhi is the number of varroa in phoretic stage on 100
bees, of hth hive at ith time point;

• DEAD HIV Eh is a boolean variable that says if the infestation caused
the dead of the hth hive;

• INOCULUMh is the initial inoculum of hth hive;

• ti is the time of ith measurement,

where i = 1, · · · 7, h = 1, · · · , 12 (h 6= 10) and k = 1, · · · , 100.
The purpose of the statistical analysis is to choose which statistical models

to use to model AV RG and PERC PHO V ARR, that are the same quantiy
modeled in the Chapter 4. In this chaper there are some theoretical backgrounds
used to model our response variables.

Before continuing, we wish to underline the fact that most of the statistical
approach are based on [4].

5.1 Linear model and GLM

In this section we present the simplest statistical model, i.e. the linear model,
that is a particular case of GLM (Generalized Linear Model). But before in-
troducing this family of model, we define the family of distributions used by
GLMs: the exponential family.
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5.1.1 Exponential family

Definition 5.1.1 Given a measure η, a distribution falls into the exponential
family if its distribution function can be written as

f(Y | θ) = h(Y )exp{θTT (Y )−A(θ)},

for a parameter vector θ, often referred to as the canonical parameter, and
for given functions T and h. The statistic T (Y ) is referred to as a sufficient
statistic. The function A(θ) is known as the cumulant function.

Integrating equation 5.1.1 with respect to the measure ν, we have:

A(θ) = log

∫
h(Y )exp{θTT (Y )}ν(dY )

where we see that the cumulant function cab be viewed as the logarithm of a
normalization factor. This shows that A(θ) is not a degree of freedom but it is
determined once ν, T (Y ) and h(Y ) are determined.

Let us now consider computing the first derivative of A(θ) for a general
exponential family distribution. The computation begins as follows:

∂A

∂θT
=

∂

∂θT

{
log

∫
h(Y )exp{θTT (Y )}ν(dY )

}
To proceed we need to move the gradient past the integral sign. In general
derivates can not be moved past integral signs. However, in this case the move
is justified but we don’t prove it here. Thus we continue our computation:

∂A

∂θT
=

∫
T (Y )h(Y )exp{θTT (Y )}ν(dY )∫
h(Y )exp{θTT (Y )}ν(dY )

=

=

∫
T (Y )exp{θTT (Y )−A(θ)}h(Y )ν(dY ) =

= E[T (Y )].

We see that the first derivative of A(θ) is equal to the mean of the sufficient
statistic. Let us now take the second derivative:

∂2A

∂θ∂θT
=

∫
T (Y )

(
T (Y )− ∂

∂θT
A(θ)

)T
exp{θTT (Y )−A(θ)}h(Y )ν(dY ) =

=

∫
T (Y ) (T (Y )− E[T (Y )])

T
exp{θTT (Y )−A(θ)}h(Y )ν(dY ) =

= E[T (Y )T (Y )T ]− E[T (Y )]E[T (Y )]T =

= V ar[T (Y )].

and thus we see that the second derivative of A(θ) is equal to the variance (i.e.
the covariance matrix) of the sufficient statistic.

In the following part we present three distributions that we use in our models:
normal, Poisson and negative binomial.
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Normal distribution Every normal distribution is a particular distribution
of the exponential family in which:

• θ = [ µσ2 ,− 1
2σ2 ]T ;

• T (Y ) = [Y, Y 2]T ;

• A(θ) = µ2

2σ2 + log(σ);

• h(Y ) = 1√
2π

.

Infact a normal variable, Y ∼ N(µ, σ2), is described by this probability density
function:

f(Y | µ, σ2) =
1√

2πσ2
exp

{
− (Y − µ)2

2σ2

}
=

=
1√
2π
exp

{
µY

σ2
− Y 2

2σ2
− µ2

2σ2
− log(σ)

}
.

5.1.2 Linear model and GLM

The Generalized Linear Model was originally formulated by John Nelder and
Robert Wedderburn as a way of unifying various other statistical models, in-
cluding linear regression, logistic regression and Poisson regression [22].

Definition 5.1.2 Given a univariate response variable Y and some predictor
Xi with i ∈ {1, · · · , p}, a GLM chooses an exponential family distribution for
Y and a link function g(·) relating the expected value of Y to the predictor
variables via a structure such as

g(E(Y )) = η(X) = β0 + β1X1 + · · ·+ βpXp.

A GLM consists of two steps:

• an assumption on the distribution of the response variable Y ;, that
defines its mean and variance;

• specification of the link function, that is the specification of the rela-
tionship between the mean value of Y and the systematic part.

Definition 5.1.3 A linear model is a particula GLM in which:

• Y is assumed to be normally distributed;

• g(·) is the identity function;

• E(Y ) = η(X) = β0 + β1X1 + · · ·+ βpXp.

Without doubt the linear regression model is the mother of all models. [4]
The model is based on a series of assumptions: normality, homogeneity, fixed X,
independence and correct model specification. In ecology, the data are seldom
modelled adequately by linear regression models. To apply a linear regression
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model on data, they must be all verificated and this verification process is called
the model validation process.

We now introduce the hypothesis of the linear model: normality, Heteroscedas-
ticy, fixed predictors and independence.

Several authors argue that violation of normality is not a serious problem
[8] as a consequence of the central limit theory. Normality at each X value
should be checked by making a histogram of all observations at that particular
X value. Very often, we don’t have multiple observations (sub-samples) at each
X value. In that case, the best we can do is to pool all residuals and make a
histogram of the pooled residuals; normality of the pooled residuals is reassuring.
The residuals represent the information that is left over after removing the effect
of the explanatory variables. However, the raw data Y contains the effects of
the explanatory variables. To assess normality of the Y data, it is therefore
misleading to base your judgement purely on a histogram of all the Y data.

Heteroscedasticy can be checked by the comparison of the spread of the
residuals with respect to the different X and fitted values. The only thing to
analyze is to pool all the residuals and plot them against fitted values. The
spread should be roughly the same across the range of fitted values and predic-
tors. The easiest option to deal with Heterogeneity is a data transformation.
The assessment of the homogeneity purely based on a graphical inspection of
the residuals is generally preferred.

Fixed X is an assumption implying that the explanatory variables are de-
terministic. The values at each sample are know in advance.

Violation of independence is the most serious problem as it invalidates
important tests such as the F-test and the t-test. A key question is then how do
we identify a lack of independence and how do deal with it. You have violation
of independence if the Yi value is influenced by an other one Yj [9]. In fact, there
are two ways that this can happen: either an improper model or dependence
structure due to the nature of the data itself. Other causes for violation of
independence are due to the nature of the data itself. If it rains at 100m in the
air, it will also rain at 200m in the air. This type of violation of independence
can be taken care of by incorporating a temporal or spatial dependence structure
between the observations (or residuals) in the model.

Standard model validation graphs are versus fitted values, i.e. plotting resid-
uals respect the fitted values, to verify homogeneity, a Q-Q plot or histogram
of the residuals for normality, and residuals versus each explanatory variable to
check independence.

5.1.3 Interaction factors [20]

The typical treatment of interactions in linear models is to consider the interac-
tion as a product term of the main effect variables. This takes the form of the
equation (5.1).

E[Yi|X] = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2. (5.1)

The complete product term is called a first-order interaction, where for obviuous
reason the order is one less the number of factors. Subject to mild assumpions
[19], the sampling distribution of β3 over its standard error is student’s-t with
N − k − 1 degrees of freedom.
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The meaning of interaction in the linear model is actually easier to interpret
if equation (5.1) is rearranged as follows:

E[Yi|X] = β0 + β1Xi1 + (β2 + β3Xi1)Xi2. (5.2)

If one is interested in the consequence from changes in the explanatory variable
Xi2 on the outcome variable, it is necessary to take the first derivate of equation
(5.2) with respect to this variable in order to obtain the marginal effect as a
composite coefficient estimate.

∂

∂Xi2
E[Yi|X] = β2 + β3Xi1

This is useful because it demonstrates that the effect of levels of Xi2 on the
outcome variable is intrinsically tied to specific levels of Xi1: the marginal
contribution of Xi2 is conditional on Xi1.

Interaction effects are more complicated in generalized linear models due to
the link function between the systematic component and the outcome variable.
From definition 5.1.2, we know that in GLM’s the systematic component is
related to the mean of the outcome variable by a smooth, invertible function,
g(·), according to (5.3) (writed in matrix form).

g(µ) = Xβ where µ = E[Y |X] = g−1(Xβ) (5.3)

Using the link function, it is possible to change equation (5.3) to the more
general form expressed by (5.4):

E[Yi|X] = g−1(β0 + β1Xi1 + (β2 + β3Xi1)Xi2). (5.4)

A less well-understood ramification of interactions in generalized linear mod-
els is that by including a link function, the model automatically specifies inter-
actions on the natural scale of the linear predictor (though not necessarily on
the transformed scale of the linear predictor). To see that this is true, revisit the
calculation of the marginal effect of a single coefficient by taking the derivative
of equation (5.4) but without an explicitly specified multiplicative term for the
interaction. If the form of the model implied no interactions, then this calcula-
tion would produce a marginal effect free of other variables, but this is clearly
not so:

∂

∂Xi2
E[Yi|X] =

∂

∂Xi2
g−1(β0 +β1Xi1 +β2Xi2) = (g−1)′(β0 +β1Xi1 +β2Xi2)β2.

From this discussion it is clear that interactions are naturally produced in
GLM’s, regardless of whether they are recognized or desired. Yet this observa-
tion does not really help in testing for the existence and statistical reliability
of hypothesized interactions, or in determining overall model quality in the ac-
knowledged presence of such terms.

5.1.4 Structural variance models

In this part some models are presented in which the variance of the residuals is
not supposed constant, but dependent on some variables used in the model. An
explanatory variable used to model the variance of residuals is called variance
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covariate. The trick is to find the appropriate structure for the variance of
residuals. The easiest approach to choosing the best variance structure is to
apply the well knows structures and compare them using the AIC or using
biological knowledge combined with some informative plots. The AIC is defined
in A.4: lower values are better. Some of the variance functions are nested, and
a likelihood ratio test can be applied to judge which one performs better for
your data.

Fixed variance structure The first option is called fixed variance and it
assumes that

V ar(εi) = σ2Xk, i = 1, · · · , n, k = 1, · · · , p,

for k taken in {1, · · · , n} and so Xk is a particular predictor chosen among those
chosen in the model.

VarIdent variance structure The second one option is called varIdent vari-
ance. This variance structure is used in specific cases, such as longitudinal data
(defined in 5.2), where the modeling variable is Yit, where t indicates the mea-
surement date made on the i-th subject. In this case it is assumed that the
error variance is different per subject, i.e.:

εit ∼ N(0, σ2
i ), i = 1, · · · , n.

VarPower variance structure Then we look at the power of the covariate
variance structure, that is

εi ∼ N(0, σ2|Xi|2δ), i = 1, · · · , n.

The variance of the residuals is modelled as σ2 multiplied with the power of the
absolute value of the variance covariate X. The parameter δ is unknown and
needs to be estimated. If δ = 0, we obtain the simple linear regression model,
so this model is nested with the simple linear one, and therefore the likelihood
ratio test can be applied to judge which one is better. If the variance covariate
has values equal to 0, the variance of the residuals is 0 as well. This causes
problems in the numerical estimation process, and if the variance covariate has
values equal to zero, the varPower should not be used.

It is also possible to allow multiple variables in the form argument. This
extension makes it possible to model a case like longitudinal data (defined in
5.2), infact this structure model an increase in spread for larger t values, but
only in certain subjects. The structure for the residuals is now the following
one:

εit ∼ N(0, σ2|Xit|2δ), i = 1, · · · , n, t = 1, · · · , T.

VarExp variance structure If the variance covariate can take the value of
zero, the exponential variance structure is a better option. In this case the
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residual variance takes the following form:

εit ∼ N
(
0, σ2e2δXit

)
, i = 1, · · · , n, t = 1, · · · , T.

VarConstPower variance structure Getting to the point, the model is

εit ∼ N
(
0, σ2(δ1 + |Xit|δ2)2

)
, i = 1, · · · , n, t = 1, · · · , T.

VarComb variance structure With this last variance structure, we can
allow for both an increase in residual spread for larger t values as well as a
different spread per subject. This variance structure is of the form:

εit ∼ N
(
0, σ2

i e
2δXit

)
, i = 1, · · · , n, t = 1, · · · , T.

Note that σ has an index i like subject. This is a combination of varIdent and
varExp.

5.2 Mixed models and longitudinal data

In this section the longitudinal data are introduced and after a part that speaks
about the mixed model, i.e. the model used in cases of longitudinal data.

Longitudinal data Longitudinal data, sometimes referred to as panel data,
track the same sample at different points in time. The sample can consist
of individuals, households, establishments, and so on. They are often used
in social-personality and clinical psychology, in developmental psychology (to
study developmental trends across the life span), in sociology, in medicine (to
uncover predictors of certain diseases), in advertising (to identify the changes
that advertising has produced in the attitudes and behaviors of people). The
reason for this is that unlike cross-sectional studies, in which different individ-
uals with the same characteristics are compared, longitudinal studies track the
same individuals and so the differences observed in them are less likely to be the
result of particular characteristics between two indivisuals. Longitudinal stud-
ies thus make observing changes more accurate. When longitudinal studies are
observational, in the sense that they observe the state of the world without ma-
nipulating it, it has been argued that they may have less power to detect causal
relationships than experiments. However, because of the repeated observation
at the individual level, they have more power than cross-sectional observational
studies, by virtue of being able to exclude time-invariant unobserved individual
differences and also of observing the temporal order of events. Types of longitu-
dinal studies include cohort studies, which sample a cohort (a group of people
who share a defining characteristic, typically who experienced a common event
in a selected period) and perform cross-section observations at intervals through
time.

Repeated measures data consist of measurements of a response on several
experimental (or observational) units. Considering the case of experiment about
varroa, the response variables are the varroa in the cells and the percentage
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of varroa in phoretic stage, and the observational units are the measurements
in the same beehives around the time. This has already been shown by the
Figures 3.2, 3.3, 3.4 and 3.5 in the chapter where data are presented. Even if
some measurement is missing, these data are balanced in that each subject is
measured the same number of times and on the same occasions.

Mixed-effects models Longitudinal data generally result in the correlated
errors that are explicitly forbidden by regression models. Mixed model analysis
provides a general, flexible approach for correlated data, because it allows a wide
variety of correlation patterns (or variance- covariance structures) to be explic-
itly modeled. The term mixed model refers to the use of both fixed and random
effects in the same analysis. These repeated measures approaches discard all
results on any subject with even a single missing measurement, while mixed
models allow other data on such subjects to be used as long as the missing data
meets the so-called missing-at-random definition. Another advantage of mixed
models is that they naturally handle uneven spacing of repeated measurements,
whether intentional or unintentional. Also important is the fact that mixed
model analysis is often more interpretable than classical repeated measures.

In a random effects model, the unobserved variables are assumed to be un-
correlated with (or, more strongly, statistically independent of) all the observed
variables. An effect is classified as a random effect when you want to make
inferences on an entire population, and the levels in your experiment represent
only a sample from that population and for this for some coefficients you want
different values for each levels values. .

Definition 5.2.1 A random intercept model has the form

Yhi = β0 + β1Xhi + vh + εhi,

where

• h = 1, · · · , H with H that indicates the number of subjects (beehives in
our case);

• i = 1, · · · , N indicates the ith measurement;

• Yhi ∈ R is the response for ith measurement of hth subject;

• β0 ∈ R is the fixed intercept for the regression model;

• β1 ∈ R is the fixed slope for the regression model;

• Xhi ∈ R is the predictor for ith measurement of hth subject;

• vh
iid∼ N(0, σ2

v) is the random intercept for the hth subject;

• εhi
iid∼ N(0, σ2

ε ) is the normal error term.

Note that vh allows each subject to have unique regression intercept and (Yhi|Xhi) ∼
N(β0 + β1Xhi, σ

2
v + σ2

ε ) is an assumption.
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The covariance between any two observations is another thing to note. Taken
two different observations of the same subject in different times, the covariance
is

Cov(Yhi, Yhj) = E [(Yhi − E[Yhi])(Yhj − E[Yhj ])] =

= E [(vh + εhi)(vh + εhj)] =

= E[v2
h] + E[vh]E[εhj ] + E[vh]E[εhi] + E[εhi]E[εhj ] =

= E[v2
h] = σ2

v ,

while, for two different observations of different subjects in different times,

Cov(Yh1i, Yh2j) = E [(Yh1i − E[Yh1i])(Yh2j − E[Yh2j ])] =

= E [(vh1
+ εh1i)(vh2

+ εh2j)] =

= E[vh1
vh2

] + E[vh1
]E[εh2j ] + E[vh2

]E[εh1i] + E[εh1i]E[εh2j ] = 0.

For equations 5.2 and 5.2 note that E[vh] = E[εhi] = 0, ∀h, i for definiton, and
vh ∼ N(0, σ2

v), so v2
h ∼ σ2

vχ
2(1) = Gamma(1/2, 2σ2

v), that has expected value
equal to σ2

v .
Finally the covariance between any two observations is

Cov(Yh1i, Yh2j) =


1 if h1 = h2, i = j

σ2
v if h1 = h2, i 6= j

0 if h1 6= h2.

Definition 5.2.2 A random intercept and slope model has the form

Yhi = β0 + β1Xhi + vh0 + vh1Xhi + εhi,

where

• vh0
iid∼ N(0, σ2

0) is the random intercept for the hth subject;

• vh1
iid∼ N(0, σ2

1) is the random slope for the hth subject.

The fundamental assumptions of the random intercept and slope model are:

• (vh0, vh1)
iid∼ N(0,Σ) where

Σ =

(
σ2

0 σ01

σ01 σ2
1

)
,

where vh0 and vh1 can be independents (σ01 = 0);

• (Yhi|Xhi) ∼ N(β0 + β1Xhi, σ
2
0 + 2σ01Xhi + σ2

1X
2
hiσ

2
ε ).

Now, without showing calculus, the covariance between any two observations
is

Cov(Yh1i, Yh2j) =


1 if h1 = h2, i = j

σ2
0 + σ01(Xh1i +Xh2j) + σ2

1Xh1iXh2j if h1 = h2, i 6= j

0 if h1 6= h2.

Now we give the general definition of a linear mixed effects model.
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Definition 5.2.3 A linear mixed effects model has the form

Yhi = β0 +

p∑
k=1

βkXhik + vh0 +

q∑
k=1

vhkZhik + εhi,

where

• βk ∈ R is the fixed slope for the kth predictor;

• Xhik ∈ R is the ith measurement of kth fixed predictor for hth subject;

• vhk
iid∼ N(0, σ2

k) is the random slope for kth predictor of hth subject;

• Zhik ∈ R is the ith measurement of kth random predictor for hth subject.

Note that a predictor can be used both fixed and random predictor and using
matrix notation, we can write the mixed effects model as

Yh = Xhβ + Zhvh + εh.

The covariance between any two observations is

Cov(Yh1i, Yh2j) =


1 if h1 = h2, i = j

σ2
0 + σ01(Xh1i +Xh2j) + σ2

1Xh1iXh2j if h1 = h2, i 6= j

0 if h1 6= h2.

5.3 Hurdle-at-zero models

In ecological research, most count data are zero inflated. This means that
the response variable contains more zeros than expected, based on a particular
distribution. For example, if we suppose we want to model Nhi, that is the
number of varroa in a cell taken at time ti from the h-th hive, we will find
ourselves in front of an almost always zero variable, as shown by the Figure
5.1. Ignoring zero inflation can have two consequences: firstly, the estimated
parameters and standard errors may be biased, and secondly, the excessive
number of zeros can cause overdispersion. Before discussing the technique that
can cope with all these zeros, we need to ask the question: why do we have all
these zeros? Basically the data are divided in two imaginary group:

• zero mass observations that contain only zeros;

• positive obsevations that contain values larger than zero.

Let H a stochastic variable that we model with an hurdle-at-zero model.
The probability to have a zero count is

P (Hi = 0) = πi,

where we assume that the probability that H assumes a zero value is Bernoulli
distributed with probability πi, and automatically 1 − πi is the probability to
have a true zero, i.e. a zero that comes out of the principal phenomenon and
not of the phenomenon that generates only zeros.
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Figure 5.1: Most cells taken in the experiment are healthy, i.e. they do not
count varroa (Nhi = 0).

Instead probabilities that H assumes positive values are give by

P (Hi = n | n > 0) = (1− πi)P (count process gives no-zero).

If we suppose that the main process for positive values of H follows a normal
distribution, we have a normal hurdle-at-zero model (NHZ).

Let us assume that the positive values of H follows a normal distribution
with density function fN (·), so we have

P [Hi = n] =

{
(1− πhi)fN (n) if n > 0

πhi if n = 0
.

The last step we need is to introduce covariates, that are used in GLMs. To
model the probability of having a false zero, πi, the easiest approach is to use a
logistic regression with covariates:

πi =
eα0+α1Qi1+···+α1Qiq

1 + eα0+α1Qi1+···+α1Qiq
,

where the symbol Q for the covariates as these may be different to the covariates
that influence the positive counts, and α are regression coefficients.
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Chapter 6

Model REP: relationship
between varroa in
reproductive stage and
larvae

In this section, relationship between varroa in reproductive stage and larvae is
modeled. For each hive in each time we know the number of varroa founded
in one hundred operculated cells. One hundred operculated cells means one
hundred larvae, for this if we divide this number by hundred, we have exactly
the ratio between varroa and larvae. This ratio is expressed by the variable
AV RG of our data frame and this variable is the one that we want to model.

6.1 Multicollinearity analysis

The aim of this section is to reduce the number of variables take in account in
the models. This work is useful for understanding what kind of data we have,
but it is a fundamental step before using a statistical regressive model. This
work can be done before the choice of the model because it is independent of it.
To reach this aim, the first step is to do a check for the multicollinearity, that is
when two or more predictor variables in a multiple regression model are highly
correlated, this means that one can be linearly predicted from the others with
a substantial degree of accuracy. The concept of linear regression will then be
presented in depth in the following chapters.

Definition 6.1.1 Two variables are perfectly collinear if there is an exact
linear relationship between them:

X2i = β0 + β1X1i.

A set of variables is perfectly multi-collinear if there are one or more exact
linear relationships among some of the variables

β0 + β1X1i + · · ·+ βkXki = 0.
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There are two types of multicollinearity (not necessarily perfect):

• structural multicollinearity that is a mathematical artifact caused by cre-
ating new predictors from other predictors;

• data-based multicollinearity that is a result of a poorly designed experi-
ment, reliance on purely observational data, or the inability to manipulate
the system on which the data are collected.

In the case of structural multicollinearity, the multicollinearity is induced by
what you have done. Data-based multicollinearity is the more troublesome of
the two types of multicollinearity. Unfortunately it is the type that researchers
encounter most often.

The effects of multicollinearity on the regression analyses are:

• the estimated regression coefficient of any one variable depends on which
other predictor variables are included in the model;

• the precision of the estimated regression coefficients decreases as more
predictor variables are added to the model;

• the marginal contribution of any one predictor variable in reducing the
error sum of squares varies depending on which other variables are already
in the model;

• hypothesis tests for βk = 0 may yield different conclusions depending on
which predictor variables are in the model (this effect is a direct conse-
quence of the three previous effects).

Firstly, to study the collinearity, the correlation matrix of predictor variables
is considered and shown in the Figure 6.1. The high correlations among some
of the predictors suggest that multicollinearity exists. This matrix is usefull to
delete from the model the variables that are strongly correlated. In this way
the high correlation couples are:

• Corr(DEW POINT, AVRG TEMP) = 0.97;

• Corr(MAX TEMP, AVRG TEMP) = 0.94;

• Corr(MAX TEMP, DEW POINT) = 0.97;

• Corr(MAX TEMP, AVRG WIND) = 0.95.

Depend on this consideration, the variables AVRG TEMP, DEW POINT and
AVRG WIND are candidates to be not used in the model. They will be analyzed
in descending order of correlation by observing the Variation Inflation Factor
(VIF ), defined by 6.1.2.

Let (X1, · · · , Xp) the predictors sample for the response variable Y . For the
model with only the predictor Xk

Ŷ = β0 + βkXk, k = 1, · · · , p,

the variance of the estimated coefficient βk is

V ar(βk)min =
σ2∑n

i=1(xik − x̄k)2
,
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Figure 6.1: Correlation matrix of the predictor variables.

where the subscript min denotes that it is the smallest the variance can be.
Now let’s consider that the predictors are correlated. In the model

Ŷ = β0 +

p∑
j=1

βjXj , i = 1, · · · , n.

if some of the predictors are correlated with Xk, then the variance of βk is
inflated. This can be shown by the fact that the variance of βk is

V ar(βk) = V ar(βk)min
1

1−R2
k

,

where R2
k is the R2 value (it is defined in A.3.1) obtained by regressing the

kth predictor on the remaining predictors. Of course, the greater the linear
dependence among the predictor Xk and the other predictors, the larger the R2

k

value. And, as the above formula suggests, the larger the R2
k value, the larger

the variance of βk.
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Definition 6.1.2 Given

Ŷ = β0 +

p∑
j=1

βjXj , i = 1, · · · , n,

the variation inflation factor is what is deemed the variance inflation factor
for the kth predictor, that is

V IFk =
V ar(βk)

V ar(βk)min
=
V ar(βk)min

1
1−R2

k

V ar(βk)min
=

1

1−R2
k

,

where R2
k is the R2 value obtained by regressing the kth predictor on the remain-

ing predictors.

Note that a variance inflation factor exists for each of the k predictors in a
multiple regression model.

The V IFk values were calculated by considering the linear model

Xk = α0 +
∑
j 6=k

αjXj , i = 1, · · · , n,

where Xk is the variable most correlated in module (the values nearest ±1with
with another variable Xj . If the value of V IFk is infinity, this variable is no
longer considered in the regression model and the calculation of the V IFj rel-
ative to the second most correlated variable is carried out, without considering
the variable considered previously. The values of V IFj are:

• V IFAV RG TEMP =∞;

• V IFDEW POINT =∞;

• V IFAV RG WIND =∞;

• V IFPRESS OSL =∞;

• V IFMIN TEMP =∞;

• V IFMAX WIND = 4.32074.

Therefore the variablesAV RG TEMP , DEW POINT , AV RG WIND, PRESS OSL
and MIN TEMP will no longer be considered in any future model.

Finally, INOCULUM is another variable to be not considered, because it
obviously explains a percentage of variance of the response variable, already
explained by the HIV E variable.

6.2 Linear model: normal assumption

Our variable, AV RG, is a ratio that takes value in R2. More precisely we know
that in our data frame AV RG ∈ [0, 1.24] and Figure 6.2 shows the experiment
distribution.
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Figure 6.2: This Figure shows the distribution of AV RG, the ration between
varroa in reproductive stage and larvae. The vertical line represents the median
value.

After analyzing the Figure 6.2, to model our response variable: we assume
that the transformation of our response variable log(AV RG) is normally dis-
tributed and consequently AV RG is log-normal distribuited, with logarithmic
link function.

One last consideration is missing. For AV RG = 0 the value of the loga-
rithmic link function is not defined. Since at the beginning of the experiment
in each hive was inserted a population of varroa definitely active from the re-
productive point of view, the null values of AV RG could be linked to the fact
that, especially in the first measurements, it was very likely to take a healthy
sample, taking only one hundred cells from the whole hive. We then define
AV RGm := minhi{AV RGhi > 0}, where h = 1, · · · , 9, 11, 12 indicates the h-th
hive and i = 1, · · · , 7 indicates the value DATEi. The new response variable is

Zhi =

AV RGm if AV RGhi = 0

AV RGhi otherwise.

We try to model Z using the variables HUMIDITY , INT TEMP , DATE,
MAX TEMP , HIV E, V ISIBILITY and MAX WIND. The variables se-
lection is made, as a first step, through the stepwise procedure by AIC, defined
in A.4. It is know that not always the stepwise produce the real better model
then after it, we try to adjust it incorporating what we think are important
variables.

The model found after the stepwise selection is

log(Zhi) = β0 + β1DATEi + β2INT TEMPi + εhi, (6.1)

and the estimates are shown in Table 6.1. A parameter to evaluate the goodness
of the model is the adjusted R-squared defined in A.3.2.

The model (6.1) predicts only seven values, as the Figure 6.3 shows, that
correspond to the seven measurements date. But we want to see if there are any
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Variable Estimate p-value
β0 -344.8 0.0033
β1 0.0204 0.0028
β2 -0.2537253. 0.0143

Table 6.1: Results of (6.1). The residual standard error is 1.091 on 69 degrees
of freedom. The adjusted R-squared is 0.5091 and the p-value of the model is
8.144e− 12. AIC is 221.8223.
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Figure 6.3: This plot shows fitted values for the model (6.1). Each vertical line
refers to a single value predicted by the model.

Variable Estimate p-value Variable Estimate p-value
β0 201.9 0.3770 β2,1 -0.0117 0.3799
β1,2 -750.1 0.0146 β2,2 0.0323 0.0184
β1,3 -537.3 0.0760 β2,3 0.0199 0.1407
β1,4 -920.5 0.7574 β2,4 -0.0064 0.6335
β1,5 -659.8 0.0306 β2,5 0.0270 0.0469
β1,6 -667.2 0.0289 β2,6 0.0274 0.0439
β1,7 -607.2 0.0458 β2,7 0.0239 0.0774
β1,8 -421.3 0.1652 β2,8 0.0130 0.3347
β1,9 -734.6 0.0177 β2,9 0.0314 0.0231
β1,11 -936.1 0.0040 β2,11 0.0433 0.0040
β1,12 -609.5 0.0550 β2,12 0.0241 0.0991

β3 -0.2659 0.0073

Table 6.2: Results of (6.2). The residual standard error is 1.024 on 49 degrees
of freedom. The p-value of the model is 7.154e− 07. AIC is 227.9793

differences between hives. For this reason, we consider all predictors, as done
before, and the interaction factor DATE ×HIV E and we perform a variables
selection. DATE ×HIV E, DATE, HIV E, INT TEMP , HUMIDITY and
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MAX WIND are chosen by the algorithm of variables selection, but since
observing the p-values we realize that not all these variables are significant.
The model we consider is the following one:

log(Zhi) = β0 + β1hHIV Eh + β2hDATEi ×HIV Eh+

+ β3INT TEMPi + εhi. (6.2)

Note that every HIV E or DATE×HIV E predictors has a different β1 and β2

coefficients. This is because HIV E is a factor and not numeric variable, so the
model finds a single parameter for each value of HIV E. The model is set such
that the intercept is β0 +β1h, with β11 = 0. Table 6.2 shows the output of (6.2)
and the Figure 6.4 shows plots to test normality of residuals and heterogeneity.
The Figure 6.4(a) shows that the residual distribution is similarly normal and
it is confirmed by the Figure 6.4(a) that is a normal Q-Q plot that says that a
quantity is normally distributed if the points follow the bisector. We consider
this last one model, also if its AIC value is greater than the previous simple
linear model. However the model (6.2) has an high adjusted R-squared (defined
in A.3.2) value, that is 0.568.

However, heterogeneity remains a problem and in the first predictions some
residuals have a predictable behavior, see the points highlighted by a dotted line
in Figure 6.4(c). This is caused by the model that is not able to handle AV RG
values close to zero, which are very negative Z values. We will try to resolve
this issue with a hurdle-at-zero model in Section 6.5 and modeling the variance
in the next section.

6.3 Model with structural variance

In this section we model the variance of GLM. We do this to deal with hetero-
geneity shown in Figure 6.4. We try and compare all structural variance model
described in Section 5.1.4. Firstly from Figure 6.4(c) we see that the residual
spread increases for higher fitted values, so for this we suppose that time plays
a fundamental role for residual variance. Figure 7.3 shows that in addition to
time, even belonging to a particular hive can explain a different variance. To
compare structural variance models between them we use the AIC.

After comparing all the models, including that of the equation (6.2), the
following fixed variance structure model is the one with lower AIC values:

log(Zhi) = β0 + β1hHIV Eh + β2hDATEi ×HIV Eh + β3INT TEMPi + εhi

with V ar(εhi) = σ2DATEi. (6.3)

Table 6.3 shows the results for the model (6.3). Figure 6.6 shows that problems
about heterogeneity are not solved.

6.4 Mixed effect model

Another way to introduce the HIV E variable is like a random effect in a mixed
model for intercept and time. We do this also because we hypothesize that ob-
servations in the same hive are correlated. We hypothesize that this correlation
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Figure 6.4: Plot analysis for the model (6.2). In this plots the X vs Y title
indicates which quantities are on the axis. 6.4(a) and 6.4(b) show the normal
distribution of residuals. Furthermore in 6.4(a) the zero mean is plotted. 6.4(c)
shows the trend of residuals according to the predicted values. 6.4(d) shows
fitted values compared to experimental values.
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Figure 6.6: Plot results for model (6.3).

Variable Estimate p-value Variable Estimate p-value
β0 2.7731 0.1312 β2,1 -0.0174 0.1539
β1,2 -3.5834 0.0033 β2,2 0.0376 0.0029
β1,3 -1.1261 0.3364 β2,3 0.0112 0.3581
β1,4 -0.5591 0.6319 β2,4 -0.0136 0.2623
β1,5 -3.3922 0.0052 β2,5 0.0347 0.0058
β1,6 -3.5445 0.0036 β2,6 0.0287 0.0210
β1,7 -3.0806 0.0106 β2,7 0.0255 0.0388
β1,8 -2.3237 0.0524 β2,8 0.0107 0.3781
β1,9 -3.3849 0.0056 β2,9 0.0366 0.0065
β1,11 -4.1721 0.0010 β2,11 0.0445 0.0016
β1,12 -3.3983 0.0061 β2,12 0.0302 0.0281

β3 -0.2451 0.0017

Table 6.3: Results of (6.3). The residual standard error is 0.118086 on 49 degrees
of freedom. AIC is 225.9793

is due in part to the different quantities of varroa introduced in the hives at the
beginning of the experiment: a different initial condition generates a different
growth trend. We consider all predictors except HIV E because it is introduced
like a random effect and after a variables selection we find the following model:

log(Zhi) = β0 + v0h + (β1 + v1h)DATEi + β2INT TEMPi + εhi. (6.4)

Since HIV E is used as a random effect, for every h-th hive there is a different
intercept β0+v0h, where also vh is assumed normally distributed, and a different
coefficient β1 + v1h for DATE, where v1h is the random effect.

6.7(a) and 6.7(b) show the normal distribution of residuals (in a normal
Q-Q plot a quantity is normally distributed if the points follow the bisector).
Furthermore in 6.7(a) the zero mean is plotted. 6.7(c) shows the expected
heterogeneity behavior of the residuals, highlighted by the oblique line. 6.7(d)
shows good fitted values compared to experimental values. Figures 6.7(e) and
6.7(f) show the residuals distribution on time and per hive. Table 6.4 shows the
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Figure 6.7: Plot analysis for the model (6.4). In this plots the X vs Y title
indicates which quantities are on the axis.

results for (6.4) and we see that it has the clearly lower value of AIC found so
far, but Figure 6.7 shows that the problem of heterogeneity is not solved and
for this we try with a zero-inflated model.

6.5 NHZ model

In this section we hypothesize that there are two distinct processes that we have
to consider to explain the phenomenon related to varroa: one that generates
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Fixed effects Random effects
Variable Estimate p-value Variable Std.Dev.
β0 0.4191 0.8384 v0h 0.6162
β1 0.0205 0.0046 v1h 0.0115
β2 -0.2577 0.0053

Table 6.4: Results of (6.4). AIC is 222.9723.

Fixed effects Random effects
Variable Estimate p-value Variable Std.Dev.
α0 10.9073 0.0116 α0h 2.1012
α1 -0.4752 0.0254 α1h 0.0315

Table 6.5: Results of (6.5). AIC is 69.89667.

zeros (AV RG = 0, that is the situation without the slightest infestation) and
ones (AV RG > 0), while another one that explains the proportion of infected
cells. To do this, we use an hurdle-at-zero log-normal model. In this way, model
Z is equivalent to model B and (Z|B = 1) (Z in the space where AV RG > 0),
where

Bhi =

{
0 if AV RGhi = 0

1 otherwise
,

with Bhi ∼ Bin(πhi) is supposed Bernoulli distributed with π = P [AV RGhi =
0].

We start from the regression of B, where the Bernoulli probability πhi is
modeled with a GLM with the binomial distribution and the logit link function,
that is

logit(πhi) = log

(
πhi

1− πhi

)
After testing various models like simple linear model, linear model with inter-
action factors, models with structural variance and the mixed effects ones, and
after variables selections on them, we have two significant candidates:

logit(πhi) = α0 + α1hDATEi ×HIV Eh + εhi

and the mixed effect one

logit(πhi) = α0 + u0h + α1INT TEMPi + u2hDATEi + εhi, (6.5)

where there are a random (u0h) and a fixed (α0) intercept and only a random
coefficient (u2h) for DATE and the random effects are linked to HIV E values.

From this two model the best one, i.e. the one with minor AIC, is the model
(6.5) and Table 6.5 shows the results.

For the variable (Z|B = 1), that is Z restricted to the subsets of positive
values of AV RG, i.e. B = 1, we have to choose from three groups of model:

• linear models (also with interactions) of which the best one, highest AIC,
is

log(Z1ih|Bih = 1) = β0 + β1DATEi + β2INT TEMPi + εih; (6.6)
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Model AIC
(6.6) 172.0292
(6.7) 173.8240
(6.8) 186.5028

Table 6.6: AIC values for model (6.6), (6.7) and (6.8)

• mixed models of which the best one is

log(Z1ih|Bih = 1) = β0 + v0h +β1DATEi +β2INT TEMPi + εih, (6.7)

where there is a random intercept v0h dependent from HIV E values;

• models with structural variance of which the best one is

log(Z1ih|Bih = 1) = β0 + β1DATEi + εih with V ar(εih) = σ2
i . (6.8)

Table 6.6 shows the AIC values for this three best models.
Even if in the model (6.6) HIV E is not used, to predict differently for each

hive we can choose it because HIV E is significant for the estimation of the
probability πhi. The final zero-inflated model is

Zhi = Bhi × exp{β0 + β1DATEi + β2INT TEMPi + εih} where

Bhi ∼ Bin(πhi) and

πhi =
exp(α0 + u0h + α1MAX TEMPi + u2hDATEi + εhi)

1 + exp(α0 + u0h + α1MAX TEMPi + u2hDATEi + εhi)

(6.9)

Table 6.7 shows the results for (6.9). Note that the global AIC value is obtained
adding the single AIC values of the normal and Bernoulli regression. In fact
from A.4 we know that the definition of AIC is

AIC = 2p− 2log(L).

where p is the number of parameters of the model plus one and L is the maximum
estimated value for the likelihood function L(µ, σ2, π; ·), with µ, σ2 and π that
are the parameters of our distributions. The likelihood function is a function
of the parameters µ, σ2 and π, equal to the density of the observed data. Let
fµ,σ2,π(·) be the hurdle distribution of our sample, then the likelihood function
is

L(µ, σ2, π; z1, z2, · · · ) =
∏
i

fµ,σ2,π(zi).

Because we want pay attention to the zero values, we have to consider bi values∏
i

fµ,σ2,π(zi) =
∏
i

fµ,σ2,π(bi)×
∏
bi=1

fµ,σ2,π(zi|bi = 1)
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Normal regression Bernoulli regression
AIC 172.0292 AIC 67.1

Fixed effects Fixed effects
Variable Estimate p-value Variable Estimate p-value
β0 -319 0.0098 α0 10.9073 0.0116
β1 0.0189 0.0085 α1 -0.4752 0.0254
β2 -0.2486 0.0276

Random effects
Variable Std.Dev.
u0h 2.1012
u2h 0.0316

Table 6.7: Results of (6.9). AIC is 239, 1292.

and so the total AIC value of our model is

AIC = 2p− 2log

[∏
i

fµ,σ2,π(zi)

]
=

= 2p− 2log

[∏
i

fµ,σ2,π(bi)×
∏
bi=1

fµ,σ2,π(zi|bi = 1)

]
=

= 2(pb + pz|b=1)− 2log

[∏
i

fµ,σ2,π(bi)

]
− 2log

[∏
bi=1

fµ,σ2,π(zi|bi = 1)

]
=

=

{
2pb − 2log

[∏
i

fµ,σ2,π(bi)

]}
+

{
2pz|b=1 − 2log

[∏
bi=1

fµ,σ2,π(zi|bi = 1)

]}
=

= AICb +AICz|b=1,

where pb is the number of parameters in the model B and pz|b=1 is the number
of parameters used to model (Z|B = 1).

However the mixed effects model is the best one, i.e. the one with lower
AIC.

6.6 Discussion of the chosen model

Finally, the best model found in the previous section is the (6.4) We expected
the mixed model as the better model, in fact our experimental data respect the
definition of longitudinal data for which mixed models are ideal. The hurdle-
at-zero model is not so performing and it may seem strange considering the
presence of a large amount of zeros and of over-dispersion (variation greater
than predicted by model). A reason to explain this is simply that not always
a high presence of zeros means that in the phenomenon under study there is
some sub-phenomenon that generates zeros (such as those generated by the
limited accuracy of the experiment). Most likely, above all, in experimental
data describing a growth over time, we often find many zeros, mainly for small
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h (HIV E) β0 + v0h β1 + v1h β2

1 1.2602 0.0048 -0.2577
2 -0.0070 0.0285 ′′

3 0.0517 0.0274 ′′

4 1.2845 0.0043 ′′

5 0.1220 0.0260 ′′

6 0.4301 0.0203 ′′

7 0.3909 0.0210 ′′

8 0.8155 0.0131 ′′

9 0.01542 0.0280 ′′

11 -0.1312 0.0308 ′′

12 0.3784 0.0213 ′′

Table 6.8: Results of (6.4). AIC is 222.9723. For β2 the symbol ′′ is used to
indicate that this coefficient is constant.

times, but this could simply be caused by a slow or even null growth of the
population under investigation.

Using HIV E as a random effect, the interpretation of all the coefficients
drastically changes. In fact the model (6.4) gives an intercept for each hive
β0 + v0h. The same thing is for DATE. Table 6.8 show all coefficients for the
model (6.4). The intercept and the coefficient of DATE are different for each
hive and they comes from the formulas βintercept,h = β0 + v0h and βDATE,h =
β1 + v1h.

From Table 6.8 we can get some information. Obviously all βDATE,h > 0,
in fact over time the number of varroa in the cells grows, proof of the fact that
the varroa finds in the apis mellifera the perfect host to reproduce. To analyze
the effect of the time we consider the quantity

β̄DATE =
1

11

∑
h

βDATE,h ' 0.02050,

that is the mean of coefficients for DATE and expresses the effect of time on
average between all the hives. This means that at with increase of DATE of
one unite, that is “after a day”, corresponds an increase in the percentage of
phoretic varroa compared to adult bees of 2.07%. To calculate this percentage
we suppose to have a fixed values for predictors for h = h0 and i = i0 and
consequently we obtain a value for Z:

Z0 = Zh0,i0 = exp{β0 + v0,h0
+ (β1 + v1,h0

)DATEi0 + β2INT TEMPi0},

and we call the linear part inside the exponential

η0 = β0 + v0,h0
+ (β1 + v1,h0

)DATEi0 + β2INT TEMPi0 ,

and so Z0 = eη0 . Now we suppose an increase of one day for date and the new
value of Z is (remember that we used the mean value of the time coefficients)

Z1 = eη0+β̄DATE×1 = eη0+0.0205 = 1.0207eη0 = (1 + 2.07%)Z0.
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Figure 6.8: Fitted values compared to experimental values for the model (6.4).
Each plot is referred to the h-th hive and in brackets the initial inoculum quan-
tity is indicated. The points dimension in the measurement dates are propor-
tionally to the value of residual in that date.

β2 < 0 means that in the reproductive season (spring and summer) a high
daily temperature range disinhibit the growth of varroa. Quantitatively this
means that if the range between maximum and minimum temperature increases
by 1◦C, than the percentage of varroa decreases of 22.7%.

Figure 6.8 shows fitted values trend respect experimental values for hive.
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Chapter 7

Model PHO: relationship
between varroa in phoretic
stage and adult bees

In this section, relationship between varroa in phoretic stage and adult bees
is modeled. For each hive in each time we have a number of taken bees
from the hive and the number of varroa attached to them (parasitic activity).
The ratio between phoretic varroa and adult bees is expressed by the variable
PERC PHO V ARR of our data frame and this variable is the one that we
want to model in this section. In this chapter we follow steps similare to those
used in Chapter 6 for the variable AV RG. For this we omit the explanations of
various passages already explained in Chapter 6.

7.1 Linear model: normal assumption

Our variable, PERC PHO V ARR, is a ratio that takes value in R2. More
precisely we know that in our data frame PERC PHO V ARR ∈ [0, 0.7343]
and Figure 7.1 shows the experiment distribution.

After analyzing the Figure 7.1, to model our response variable we use the
same hypothesis for the response variable AV RG. Also PERC PHO V ARR
takes null values where the logarithmic function is not defined. We then de-
fine PERC PHO V ARRm := minhi{PERC PHO V ARRhi > 0}, where h =
1, · · · , 9, 11, 12 indicates the h-th hive and i = 1, · · · , 7 indicates the value
DATEi. The new response variable is

Whi =

PERC PHO V ARRm if PERC PHO V ARRhi = 0

PERC PHO V ARRhi otherwise.

To model W we use directly a linear model with V ISIBILITY , DATE,
INT TEMP , MAX TEMP , HIV E, HUMIDITY and MAX WIND, plus
an interaction factor between DATE and HIV E. The variables selection is
made, as a first step, through the stepwise procedure by AIC, defined in A.4.
DATE×HIV E, DATE, HIV E, MAX TEMP and V ISIBILITY are chosen
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Figure 7.1: This Figure shows the distribution of PERC PHO V ARR, the
ratio between the number of varroa in phoretic stage and the number of adult
bees. The vertical line represents the median value.

by the algorithm of variables selection and all have significant p-values. The
model we consider is the following one:

Whi = exp{β0 + β1hHIV Eh + β2hDATEi ×HIV Eh + β3DATEi+

+ β4MAX TEMPi + β5V ISIBILITYi + εhi}. (7.1)

Note that every HIV E or DATE × HIV E predictor has a different β1 and
β2 coefficients. This is because HIV E is a factor and not numeric variable,
so the model finds a single parameter for each value of HIV E. The model
is set such that the intercept is β0 + β1h, with β11 = 0. Table 7.1 shows the
output of (7.1). The Figure 7.2 shows graphical tests for the residuals. Figure
7.2(a) shows that the density distribution of the residual follows the bell trend
of the normal distribution even if the Figure 7.2(b) shows that residuals are not
concentrated on the mean value (in a normal Q-Q plot a quantity is perfectly
normally distributed if the points follow the bisector).

Having inserted an interaction factor, we have solved the problem of pre-
dicting only a different number of values equal to the number of experimental
measurements. Unfortunately heterogeneity is the problem of the model (7.1)
(Figure 7.2(c)). 7.2(a) and 7.2(b) show the normal distribution of residuals.
Furthermore in 7.2(a) the zero mean is plotted. 7.2(c) puts the fitted values
on the x axis and the residuals on the y axis. 7.2(d) shows good fitted values
compared to experimental values. Figures 7.2(e) and 7.2(f) show the residuals
distribution on time and per hive. As done in the previous chapter, we try
to solve this problem by trying new models, aware of the fact that the results
obtained are already acceptable.

To compare the results obtained for Z with those for now obtained for W , we
can not use the AIC value, as obviously the response variable changes. Surely it
is worth noting the very high value of the adjusted R2 of the model (7.1): 0.8146.
This value tells us that already with the first attempt we managed to explain
more than 80% of the deviance of our experimental data. Another little problem
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Figure 7.2: Plot analysis for the model (7.1). In this plots the X vs Y title
indicates which quantities are on the axis.

of this model, shown by the Figure 7.2(b), is that the normal distribution of the
residuals is a fat-tailed distribution: in this case, this property, already seen in
a minor way for the models referred to Z, is shown by the kurtosis phenomenon
and is due to the high variance of the experimental data. However from the
Figure 7.2(d) we notice that our model estimates very well the experimental
values.

Figure 7.3 shows that maybe there is a strong variability of the variance
linked to the different hives. For this a structural variance model based on
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Variable Estimate p-value Variable Estimate p-value
β0 -592.5 0.0003 β2,2 -0.0065 0.5751
β3 0.0474 0.0002 β2,3 -0.0005 0.9655
β1,2 111.4 0.5725 β2,4 -0.0237 0.0452
β1,3 8.609 0.9651 β2,5 0.0136 0.2441
β1,4 401.9 0.0458 β2,6 -0.0093 0.4222
β1,5 -230.8 0.2447 β2,7 0.0078 0.4996
β1,6 158.7 0.4221 β2,8 0.0016 0.8940
β1,7 -132.6 0.5019 β2,9 -0.0278 0.0207
β1,8 -27.20 0.8912 β2,11 0.0162 0.1861
β1,9 472.4 0.0210 β2,12 -0.0115 0.3474
β1,11 -275.8 0.1860 β4 -0.1463 0.0414
β1,12 195.1 0.3473 β5 0.0998 0.0391

Table 7.1: Results of (7.1). The residual standard error is 0.6769 on 48 degrees
of freedom. The adjusted R-squared is 0.8146 (defined in A.3.2) and the p-value
of the model is 1.395e− 14. AIC is 168.9445
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Figure 7.3: Box-plots for the response variable W , respect HIV E and DATE.

HIV E might seem like the solution, but by trying out various models and
comparing them we find that in this case, as for Z, a structured variance model
is useless. Now we pass directly to a mixed model.

7.2 Mixed effect model

Another way to introduce the HIV E variable is like a random effect in a mixed
model for intercept and time. We consider all predictors except HIV E because
it is introduced like a random effect. The choice of random on intercept is linked
to the different quantities of varroa introduced in the hives at the beginning of
the experiment. We perform a variables selection and we find the following
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Fixed effects Random effects
Variable Estimate p-value Variable Std.Dev.
β0 -3.3573 0.1015 u0h 0.3831
β1 0.0308 <3e-06 u1h 0.0104
β2 -0.1509 0.0319
β3 0.1080 0.0229

Table 7.2: Results of (7.2). AIC is 186.4597.
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Figure 7.4: The Figure shows result for model (7.2).

model:

Whi = exp{β0 + u0h + (β1 + u1h)DATEi+

+ β2MAX TEMPi + β3V ISIBILITY + εhi}. (7.2)

Since HIV E is treated as random effect, for every h-th hive there is a different
intercept β0+u0h, where also uh is assumed normally distributed, and a different
coefficient β1 + u1h for DATE.

Table 7.2 shows the results for (7.2) and we see that it has the clearly lower
value of AIC found so far, but Figure 7.4 shows that the problem of heterogeneity
is not solved and for this we try with a zero-inflated model.

This time, however, we obtain a higher AIC value than the linear model.

7.3 NHZ model

We consider in this section that considering two distinct processes can help
us to explain the phenomenon related to varroa: one that generates zeros
(PERC PHO V ARR = 0) and ones (PERC PHO V ARR > 0), while an-
other one that explains the proportion of phoretic varroa and bees. To do this,
we use an hurdle-at-zero log-normal model and we consider the following new
variable:

Chi =

{
0 ifPERC PHO V ARRhi = 0

1 otherwise
,
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Fixed effects Random effects
Variable Estimate p-value Variable Std.Dev.
α0 164.65 <2e-16 u0h 908.76
α1 -7.0055 <2e-16 u1h 19.58

Table 7.3: Results of (7.3). AIC is 26.27603.

where C ∼ Bin(π̄) is supposed Bernoulli distributed with π̄ that is the proba-
bility of finding zero varroa.

We start from the regression of C, or better, we use a GLM with a binomial
distribution and the logit link function. After considering various models and
the variables selections on them, we have two significant candidates:

π̄hi =
exp{α0 + α1hDATEi ×HIV Eh}

1 + exp{α0 + α1hDATEi ×HIV Eh}

and the mixed effect one

π̄hi =
exp{α0 + u0h + α1INT TEMPi + u2hDATEi + εhi}

1 + exp{α0 + u0h + α1INT TEMPi + u2hDATEi + εhi}
, (7.3)

where there are a random (u0h) and a fixed (α0) intercept and only a random
coefficient (u2h) for DATE and the random effects are linked to HIV E values.

From this two model the best one, i.e. the one with minor AIC, is the model
(7.3) and in Table 7.3 we show the results.

For the variable (W |C = 1), that is W restricted to the subsets of positive
values of PERC PHO V ARR, i.e. C = 1, we have to choose from three groups
of model:

• linear models (also with interactions) of which the best one, highest AIC,
is

(W |C = 1)ih = exp{β0 + β1hDATEi ×HIV Eh + εih}; (7.4)

• mixed models of which the best one is

(W |C = 1)ih = exp{β0 + v0h + (β1 + v1h)DATEi + εih}, (7.5)

where there is a random intercept v0h and a random coefficient v1h for
DATE dependent from HIV E values;

• models with structural variance of which the best one is

(W |C = 1)ih = exp{β0 + β1hDATEi ×HIV Eh + εih}
with V ar(εih) = σ2DATEi. (7.6)

Table 7.4 shows the AIC values for this three best models.
We choose the model (7.4) and the final zero-inflated model is

Whi = Chi × exp{β0 + β1hDATEi ×HIV Eh + εih} where

Chi =
exp{α0 + u0h + α1INT TEMPi + u2hDATEi + εhi}

1− exp{α0 + u0h + α1INT TEMPi + u2hDATEi + εhi}
.

(7.7)
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Model AIC
(7.4) 165.7393
(7.5) 169.2767
(7.6) 255.0070

Table 7.4: AIC values for model (7.4), (7.5) and (7.6)

Normal regression (AIC: 165.7393)
Variable Estimate p-value Variable Estimate p-value
β0 -597 <2e-15 β1,6 0.0348 <2e-15
β1,1 0.0348 <2e-15 β1,7 0.0349 <2e-15
β1,2 0.0349 <2e-15 β1,8 0.0348 <2e-15
β1,3 0.0348 <2e-15 β1,9 0.0347 <2e-15
β1,4 0.0348 <2e-15 β1,11 0.0349 <2e-15
β1,5 0.0349 <2e-15 β1,12 0.0349 <2e-15

Bernoulli regression (AIC: 26.27603)
Fixed effects Random effects

Variable Estimate p-value Variable Std.Dev.
α0 164.6524 <2e-16 u0h 908.76
α1 -7.0055 <2e-16 u2h 19.58

Table 7.5: Results of (7.7). AIC is 192.0153.

Table 7.5 shows the results for (7.7). Note that the global AIC value is obtained
adding the single AIC values of the normal and Bernoulli regression.

However the linear model is the best one, i.e. the one with lower AIC.

7.4 Discussion of the chosen model

In this case the best model is the simple linear model with interactions, i.e. the
model (7.1). Adding an interaction term to a model drastically changes the
interpretation of all the coefficients. For example, if there were no interaction
term, β3 would be interpreted as the unique effect of DATE on W . But the
interaction means that the effect of DATE on W is different for different values
of HIV E. So the unique effect of DATE on W is not limited to β3 but also
depends on the values of β2h and HIV E. The unique effect of DATE is repre-
sented by everything that is multiplied by DATE in the model: β3+β2hHIV Eh.
Instead for HIV E we know that in the case in which we have a particular hive,
for example the H-hive (HIV Eh = H) the model (7.1) becomes

Zhi = exp{(β0 + β1H) + (β3 + β2H)DATEi+

+ β4MAX TEMPi + β5V ISIBILITYi + εhi},

where β11 = β21 = 0, that is that in the case of the first hive the hive and
interaction coefficients are null. This is shown in the Table 7.1 where there are
not β11 and β21.

65



Now we consider Table 7.1 and we calculate the correlation between inital
inoculum per hive, β1h and β2h:

• Corr(INOCULUMh, β1h) ' −0.17 demonstrates a low correlation be-
tween initial inoculum and varroa growth which in any case is negative
and therefore means that at high initial inoculum values correspond to
lower coefficients and therefore lower intercept of the model. But a priori
we hypothesized that this correlations was very high, testifying that the
initial inoculum influences the varroa growth through the factor variable
HIV E. This fact, in contrast with our hypothesis, that a greater inter-
cept correspond to a minor inoculum is most likely due to the fact that
initial quantities of varroa in the phoretic phase per hive were too smalls
compared to the final mite population and therefore not significants;

• Corr(INOCULUMh, β2h) ' 0.17 is ever small compared to expectations
but in this case the correlation is positive and it means that the effect of
time on the varroa growth it is larger in hives with larger initial inocula-
tions.

From Table 7.1 we can get more information. Obviously β3 > 0, meaning
that the presence of varroa grows, proving the fact that the varroa finds in the
apis mellifera the perfect host to reproduce.

To analyse the effect of the time we consider the quantity

β̄2 =
1

11

∑
h

β2h ' −0.00365,

that is the mean of interaction coefficients between HIV E and DATE, consid-
ering that β21 = 0. In this way, the coefficient that expresses the effect of time
is on average between all the hives β̄DATE = β̄2 + β3 ' 0.0311. This means
that at an increase of DATE of one unite, that is “after a day”, corresponds a
increase in the percentage of phoretic varroa compared to adult bees of 3.16%.
This is very interesting and gives the possibility of a numerical comparison with
the population dynamics approach done in the Chapter 4. From literature, spe-
cially from [16], we know that during the bee season, i.e. spring and summer,
the mite population doubles every month. This means that if we hypothesize
a simple model of exponential growth for varroa like V̇ = rV , where V is the
generical number of varroa in the hive, we find that r = 30−1log2 = 0.023, that
corresponds to a daily percentage rate of 2, 34%. Even if this daily growth rate
is not comparable with our rate found with a statistical model, the fact that
they are so similar is a proof of the coherence of our model with respect to the
rest of literature.

β4 < 0 means that in the reproductive season (spring and summer) high
temperature peaks disinhibit the growth of varroa. Assuming to keep other pre-
dictors fixed (of course we do not consider the correlation between the climatic
predictors that minimally remains even after the multicollinearity analysis), at
an increase of 1◦C of the maximum temperature corresponds a decrease in the
percentage of phoretic varroa compared to adult bees of 13.61%.

Instead β5 ' 0.1 means that at an increase of 1m of the visibility corresponds
an increase in the percentage of varroa of 10.5%. However, this increase is to
be considered overestimated, as for the decrease generated by the maximum
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Figure 7.5: Fitted values compared to experimental values for the model (7.1).
Each plot is referred to the h-th hive and in brackets the initial inoculum quan-
tity is indicated. The points dimension in the measurement dates are propor-
tionally to the value of residual in that date.

temperature. Infact this two predictors have a positive correlation of about 50%
and this means that the effect of the increase in the percentage of varroa due to
the increase in visibility is attenuated by the correlated increase in temperature
which negatively affects the growth of the varroa.

Figure 7.5 shows fitted values trend respec experimental values for hive. The
results are satisfactory and the model estimates very well the different growth
in each hive. The only two cases in which experimental data deviate from those
modeled are in the second hive, where, however, there is probably an anomaly
in experimental measurements, and in the seventh one, where the model can
not estimate the final peak. The anomalies are referred to human errors or to
outliers.
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Chapter 8

Models compared and
conclusions

In this Thesis two quantities about the same experiment are been modeled:
the percentage of varroa in growth phase that infest the operculated cells of
apis mellifera (the number of operculated cells is been assumed equal to the
number of larvae in the hive) and the percentage of adult varroa in parasitic
activity respect the number of workers bees (and drones). This was done with
two approaches: population dynamics and statistical analysis.

In the first case four population have been modeled. From two-to-two ra-
tio between them we obtain the two quantities under exam. The differential
equation system founded is the following one:

L̇ = b B2

k2+B2 − cL
Ḃ = cL−mB − µP
Ṙ = raP − gcRL
Ṗ = gcRL− nP − ePB − aP,

(8.1)

where L is the number of larvae, B is the number of adult bees, R is the number
of varroa in reproductive phase and P is the number of varroa in phoretic phase.
All the parameters in this model have been taken from the literature, except r,
g and a, that are respectively the varroa growth rate, the varroa transition rate
from reproductive to phoretic phase and the varroa transition rate from phoretic
to reproductive phase. Therefore the first result of this thesis is the estimation of
this three parameters (Table 4.6). The model (8.1) describes the varroa growth
in hives under natural condition. In fact in the experiment held in Ciriè, the
oxalic acid treatment was done only after the experimental measurements. This
parameters estimate was done on a hypothetical hive, called “mean hive”, that
is the mean of all data values available for each hive.

In the case of statistical analysis two new considerations have been intro-
duced. The first one is that the climatic conditions can be significant to un-
derstand the varroa growth. To analyze this, the climatic data about a locality
closed to Ciriè were taken. This location is so close to the experiment location
to assume that climatic data are valid for the our model. Subsequently this
data have been introduced in statistical modeling to test their meaningfulness.
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The second consideration is the hypothesis that also the hive play an important
role in the parasite growth. This hypothesis is born mainly from the choice
to introduce different quantities of adult varroa in each hive (we have different
values for inoculum). Therefore we are interested in what quantity of phoretic
varroa at the beginning of the reproductive season of the bees can lead to a
level of infestation to be considered dangerous for the hive. In addition we have
not introduced the inoculum values in the model, but we have considered the
factor hive variable. In this way if this predictor result significant, comparing
the results with inoculum values we can understand if there are other unknown
properties of the hives that characterize the varroa growth.

After a primary analysis and a management of data, we have found two
models that describe our quantities. This models were considered the best
using the AIC value and biological consideration about the phenomenon as
comparison criterion. The models are as follows:

Zhi = exp{β0 + v0h + (β1 + v1h)DATEi + β2INT TEMPi + εhi} and

Whi = exp{β0 + β1hHIV Eh + β2hDATEi ×HIV Eh + β3DATEi+

+ β4MAX TEMPi + β5V ISIBILITYi + εhi},
(8.2)

where

Zhi =

AV RGm if AV RGhi = 0

AV RGhi otherwise

is the percentage of varroa in reproductive phase after the assumption that it
can not assume the zero value and

Whi =

PERC PHO V ARRm if PERC PHO V ARRhi = 0

PERC PHO V ARRhi otherwise.

is the percentage of varroa in phoretic phase after the same assumption of Z.
The coefficients of HIV E have h has subscript because HIV E is a factor predic-
tor and for this each HIV Eh has a different coefficient. Instead other coefficients
with h has subscript are random effects that take values based on the hives.

In both models described in (8.2), HIV E and at least one represents cli-
matic factors are significant. For this reason we expect, even before comparing
them, that the statistical model is more accurate than the populations dynamic
analysis, simply because it considers more factors. Obviously, introducing the
effect of the climate into a system of differential equations like the one described
in (8.1) would complicate the model too much, i.e. the model contains too many
parameters that could also generate overfitting.

8.1 Results

Figure 8.1 and 8.3 show the results of all this thesis. Three curves (experimental
data and statistical and differential fitted values) are shown for each of the eleven
hives and also for the average hive. The “virtual” mean hive is the hive whose
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Figure 8.1: This figure shows the results of modeling the percentage of varroa
in the cells. The gray dashed line represents the experimental data, the black
dashed lines the fitted values by the statistical model (8.2) and the black simple
line the fitted values by the differential system (8.1). These three curves are
shown for each of the eleven hives and more the average hive is shown.
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Figure 8.2: This figure shows the quadratic errors in each hive and in each
time about modeling the percentage of varroa in the cells for the differential
and statistical models. On the left the black bars represents errors for the
differential system (8.1) while, on the right, the grey bars represents errors for
the statistical model (8.2).
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characteristic properties (inoculum and response variable) are the averages of
all characteristics of the other hives. This is the hive that we have used for
the estimation of parameters in the model (8.1). But in this way the statistical
and differential model are not comparable. For this we use statistical models
(trained with the real hives) to predict the values related to the mean hive. And
in the same way we use the differential model to generate values concerning the
real hives: in other words we use the same model but with different initial
conditions (the inoculum quantity). From a first observation that the best is
the statistical model is already clear.

Figure 8.1 shows the trend of the fitted values with statistical and differential
approaches respect the real experimental data about the percentage of varroa in
the operculated cells. We remember that curves relating the differential system
is obtained considering the ratio in each time between R and L from the system
(8.1), i.e. number of varroa in the cells on the number of larvae, that corresponds
to the number of operculated cells. Figure 8.2 shows per each hive the trend
of the quadratic errors. Regarding the second, the third and the ninth hives,
we can see the very irregular trend of the experimental data far away from
expectations that varroa trend is a non-decreasing curves in normal conditions.
This violation of expectations is most likely caused by the small sample size used
for measurements or other factors unknown to us. We also use these hives for
the validation of our models, while taking this consideration into account, and
we refer to them by calling them “HFE hives”(Hives Far from Expectations).

Considering all hives (also the mean hive) we see that the models fit data
very well except for the eleventh hive, where they both fail, for the eighth hive,
where the differential model really overestimates the data, for the fourth hive,
where the statistical model underestimates the data and for the HFE hives.
Particularly we can see how the statistical model well done for a hive not used
for training. Although this fact is not reliable because we are talking about a
“virtual” beehive dependent on buildings from hives used for training. Obvi-
ously having more beehive available, this validation should be done on a small
group of real hives. The same goes for the adaptation of the differential model
to the other eleven hives. But from Figure 8.2 we can conclude by saying that
the statistical model works better than the differential one. To confirm this,
Figure 8.5 shows for each time the average of the quadratic errors for each hive
and in this way that the statistical approach is the best is clear. A fundamental
cause of this is the fact that model (8.1) is constrained to estimate both ex-
perimental quantities at the same time. This because we have create a general
model that describe completely the phenomenon, considering interactions be-
tween larvae, bees, phoretic varroa and varroa in the reproductive phase. This
is not a problem for the statistical analysis.

Regarding the modeling of the percentage of varroa in the phoretic phase,
from Figure 8.3 we see that the second and third hives can considerated HFE
hives. We remember that in Figure 8.3 curves relating the differential system is
obtained considering the ratio in each time between P and B from the system
(8.1), i.e. number of phoretic varroa on the number of bees. As before, Figure
8.4 shows per each hive the trend of the quadratic errors. Figure 8.4 we see
that for deterministic model the worst hives are the second, the eleventh and
the eighth hive. By 8.3 we add also the fourth, fifth and seventh hives between
the ones that not are fitted very well. The statistical model doesn’t work well
for the first, the second, the third and the eleventh hives. In this way the
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Figure 8.3: This figure shows the results of modeling the percentage of varroa
in phoretic action respect the number of bees. The gray dashed line represents
the experimental data, the black dashed lines the fitted values by the statistical
model (8.2) and the black simple line the fitted values by the differential system
(8.1). These three curves are shown for each of the eleven hives and more over
the average hive is shown.
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Figure 8.4: This figure shows the quadratic errors in each hive and in each time
about modeling the percentage of varroa in phoretic stage for the differential
and statistical models. On the left the black bars represents errors for the
differential system (8.1) while, on the right, the grey bars represents errors for
the statistical model (8.2).
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Figure 8.5: This figure shows the average quadratic errors in each time about
modeling the percentage of varroa in the cells and in phoretic stage. The values
in each time are the average of quadratic errors per hive in each time. On the
left the black bars represents errors for the differential system (8.1) while, on
the right, the grey bars represents errors for the statistical model (8.2).
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Figure 8.6: This figure shows cumulative functions for average quadratic errors
about modeling the percentage of varroa in the cells and in phoretic stage.
The black area is referred to the differential system (8.1) while the grey area is
referred to the statistical model (8.2).

statistical model works better than the differential model, with an acceptable
fitting percentage of 67% against an acceptable fitting percentage of 42% of the
differential model. This is clear from Figure 8.4, where we can see immediately
how the bars relative to the differential model are much wider than those of
the statistical one. We see that also in the eighth hive the performance of the
differential model is very low.

Figure 8.5 generally shows the best predictive ability of the statistical model.
This figure shows for each measurement date the average of the square errors
committed in each hive.
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The last instrument to compare our models is Figure 8.6. It shows the
cumulative functions for the average square errors over time. We can see that
with time the cumulative error of the differential model increases quickly than
the cumulative error of the statistical one and more the final values of the
differential error are very higher than the statistical one, especially in the case
of the percentage of varroa in phoretic stage. In the end we can conclude by
saying that the statistical model works better than the differential one also for
the percentage of phoretic varroa.

8.2 Biological consideration

We have found that belonging to a particular beehive plays an important role
to model the varroa growth but we can not say if this is due to the different
quantity of inoculum. The problem is that this different quantities are very
small and similar and they don’t represent a discriminant data to have a very
infested hive or not. The estimation of the parameters for the model (8.1) could
be an important biological result but now we can not discuss this because in
literature there are estimations for simpler growth models that don’t consider
most phenomena that occur during the life cycle of varroa. Our estimations are
additional comparison values for future models.

From [3] we know that during the bee season, i.e. spring and summer, the
mite population doubles every month, so a fast estimate for the growth rate rlit is
rlit ≈ 30−1ln2 = 0.02. This quantity is considered as the rate with which adult
varroa are born, i.e. the rate with which adult varroa go out from the cells. In
our differential system (8.1) we don’t have a comparable parameter because we
consider more factors that influence the varroa growth. However we can compare
this parameter form literature with the result obtain from the statistical model
that consider the increase of phoretic varroa and varroa in reproductive stage
separately. As we have seen in discussion parts of Chapters 6 and 7, we can
consider two mean parameters: β̄REP ' 0.0205, that describes the growth of
varroa in the cells over time, and β̄PHO ' 0.0311, that describes the phoretic
varroa growth over time. These two parameters say that in reproductive phase
varroa, during the bee season, duplicate their number in almost 34 days, instead
the phoretic varroa, that more precisely is the population to which rlit refers,
duplicate their number in less than 23 days. For this, our work says that the
phenomenon of varroa growth in phoretic activity is underestimated.

Another important consideration, already presented in Chapters 6 and 7,
is the climatic influence for the varroa growth. As we have seen an high daily
temperature range disinhibit the growth of varroa in the cells and this could be
a first indication for beekeepers: if an year shows particularly low temperature
ranges, anticipating the date of administration of the treatment based on oxalic
acid could be necessary. The problem is that this consideration is valid for the
varroa growth in the cells, so if the treatment is inefficient for operculated cells
this consideration is wrong. But from Chapter 7 we know that high temperature
peaks disinhibit the growth of phoretic varroa. For this pay attention to the
daily temperature range remains a good advice. A last climatic consideration
is about the visibility. We know that to an increase of visibility corresponds an
increase in the percentage of varroa. But probably this is not an useful fact.
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8.3 Problems and possible future works

The largest limitation of this thesis is the small number of measurements taken
in the hives (unfortunately we know that biological data is the most difficult data
to collect), so the analysis could be redone taking measurements at least every
two weeks, in way to duplicate the number of time data. An other consideration
to understand better the climatic effect on varroa is to position hives in different
localities. In fact in our thesis the climatic data, in addition to not being
referred precisely to the location of the experiment, are the same for each hive.
In this way we don’t have a diversification of the data that remain related to
the time: obviously in the same locality the temperature has a predictive trend
over time. This diversification of hives helps to solve the third problem: low
characterization of hives. The only different data from an hive and an other
is the inoculum quantities. Also if in this experiment these quantities are not
so decisive in the models, the predictor HIV E plays a fundamental role. This
means that there are other characteristics of the hives that influence the varroa
growth. A way to capture this information is to characterize better the hives:
position of the hive, if this position influences the exposure to climate factors, if
the hives are closed or not (obviously, the more two hives are close together, the
higher the number of bees they exchange). These ideas are simple examples of a
more careful characterization of hives. A obvious consideration is that a larger
number of hives helps the accuracy of the model and above all it allows to be
able to carry out inocula with a greater variance, ranging from not introducing
phoretic varroa to insert a really high quantity of them.
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Appendix A

Definitions and methods

A.1 Properties of eigenvalues

The relationships that bind the coefficients and roots of an algebraic equation
and the definition of characteristic polynomial imply that

n∑
i=1

λi = tr(A) and

n∏
i=1

λi = det(A),

where λi are the eigenvalues of A.
The eigenvalues of a matrix A diagonal or triangular (upper or lower) are

equal to the main elements, i.e. the elements on the diagonal. In fact, the
matrix A− λI still diagonal or triangular and then

det(A− λI) =

n∏
i=1

(aii − λ), with aii = (A)ii.

A block matrix or a partitioned matrix is a matrix that is interpreted as hav-
ing been broken into sections called blocks or submatrices. A block triangular
matrix (upper case) is a matrix in the form

A =


A1 ∗ · · · ∗
0 A2 · · · ∗
...

...
. . .

...
0 0 · · · Ar

 ,
where Ai are square matrices and the symbol ∗ is for matrices not necessairly
equal to zero. For the determinant and trace, the following properties hold:

tr(A) =

r∑
i=1

tr(Ai) and det(A) =

r∏
i=1

det(Ai).

For even though A is a block triangular matrix, A − λI is so, from what has
been said, it is clear that

det(A− λI) =

r∏
i=1

det(Ai − λiI),
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and so that the eigenvalues of a block triangular matrix are the eigenvalues of
all its blocks.

A.2 Downhill simplex method, i.e. Nelder–Mead
method [21]

The Nelder–Mead method or downhill simplex method is a commonly applied nu-
merical method used to find the minimum or maximum of an objective function
in a multidimensional space. It is applied to nonlinear optimization problems for
which derivatives may not be known. However, the Nelder–Mead technique is a
heuristic search method that can converge to non-stationary points on problems
that can be solved by alternative methods.

To define this method we consider the case in which we have only two vari-
ables, where a simplex is a triangle and the method is a pattern search that
compares function values at the three vertices of a triangle. The worst vertex,
where the function is largest, is rejected and replaced with a new vertex. A new
triangle is formed and the search is continued. The process generates a sequence
of triangles (which might have different shapes), for which the function values
at the vertices get smaller and smaller. The size of the triangles is reduced and
the coordinates of the minimum point are found.

Let f(x, y) be the function that is to be minimized. To start, we are given
three vertices of a triangle: Vk = (xk, yk) with k = 1, 2, 3. The function f(x, y)
is then evaluated at each of the three points: zk = f(xk, yk) for k = 1, 2, 3. The
subscripts are then reordered so that z1 ≤ z2 ≤ z3. We use the notation

B = (x1, y1), N = (x2, y2), W = (x3, y3),

to help remember that B is the best vertex, N is good (next to best) and W is
the worst vertex.

The construction process uses the midpoint of the line segment joining B
and N . It is found by averaging the coordinates:

M =
B +N

2
=

(
x1 + x2

2
,
y1 + y2

2

)
.

The function decreases as we move along the side of the triangle from W
to B, and it decreases as we move along the side from W to G. Hence it is
feasible that f(x, y) takes on smaller values at points that lie away from W on
the opposite side of the line between B and G. We choose a test point R that is
obtained by “reflecting” the triangle through the side BG. To determine R, we
first find the midpoint M of the side BG. Then draw the line segment from W
to M and call its length d. This last segment is extended a distance d through
M to locate the point R. The vector formula for R is

R = M + (M −W ) = 2M −W.

Now there are two cases:

1. If the function value at R is smaller than the function value at W , then
we have moved in the correct direction toward the minimum. Perhaps
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Figure A.1: Illustration of the downhill simplex method of with the Rosenbrock
function f(x, y) = (1−x)2 +10(y−x2)2. The minimum of this function is at the
point of coordinate (1, 1), represented by the grey point on the Figures. Here,
the convergence is reached in 85 iterations.

the minimum is just a bit farther than the point R. So we extend the
line segment through M and R to the point E. This forms an expanded
triangle BGE. The point E is found by moving an additional distance d
along the line joining M and R. If the function value at E is less than
the function value at R, then we have found a better vertex than R. The
vector formula for E is

E = R+ (R−M) = 2R−M.

2. If the function values at R and W are the same, another point must be
tested. Perhaps the function is smaller at M , but we cannot replace W
with M because we must have a triangle. Consider the two midpoints
C1 and C2 of the line segments WM and MR, respectively. The point
with the smaller function value is called C, and the new triangle is BGC.
Note that the choice between C1 and C2 might seem inappropriate for
the two-dimensional case, but it is important in higher dimensions. If the
function value at C is not less than the value at W , the points G and W
must be shrunk toward B. The point G is replaced with M , and W is
replaced with S, which is the midpoint of the line segment joining B with
W .

A computationally efficient algorithm should perform function evaluations
only if needed. In each step, a new vertex is found, which replaces W . As
soon as it is found, further investigation is not needed, and the iteration step is
completed.
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A.3 R2 and R2
adj

The coefficient of determination, denoted R2 and pronounced “R squared”, is
the proportion of the variance in the dependent variable that is predictable from
the independent variable(s).

Definition A.3.1 A data set has n values marked y1, · · · , yn, each associated
with a predicted (or modeled) value ŷ1, · · · , ŷn. Define the residuals as ei =
yi − ŷi. If ȳ is the mean of the observed data:

ȳ =
1

n

n∑
i=1

yi,

then the variability of the data set can be measured using three sums of squares
formulas:

• the total sum of squares (proportional to the variance of the data):

TSS =

n∑
i=1

(yi − ȳi)2;

• the regression sum of squares, also called the explained sum of squares:

ESS =

n∑
i=1

(ŷi − ȳi)2;

• the sum of squares of residuals, also called the residual sum of squares:

RSS =

n∑
i=1

(yi − ŷi)2 =

n∑
i=1

e2
i .

The most general definition of the coefficient of determination is

R2 =
ESS

TSS
= 1− RSS

TSS
.

R2 shows how well terms fit a curve or line. Adjusted R2, one common
notation is R2

adj , also indicates how well terms fit a curve or line, but adjusts for
the number of terms in a model. If you add more and more useless variables to
a model, R2

adj will decrease. If you add more useful variables, R2
adj will increase.

Definition A.3.2 The adjusted R2 is defined as

R2
adj = 1− (1−R2)

n− 1

n− p− 1
,

where p is the total number of explanatory variables in the model (not including
the constant term), and n is the sample size. Adjusted R2 can also be written
as

R2
adj = 1− RSS/(n− p− 1)

TSS/(n− 1)
.

R2
adj will always be less than or equal to R2.
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A.4 Variables selection: stepwise model by AIC

Stepwise regression is a method of choicing a subset of predictive variables by
an automatic procedure. In each step, a variable is considered for addition to
or subtraction from the set of explanatory variables based on some prespecified
criterion. Usually, this takes the form of a sequence of F -tests or t-tests, but
other techniques are possible, such as adjusted R2, Akaike information criterion
(AIC), Bayesian information criterion (BIC), Mallows’s Cp, PRESS, or false
discovery rate.

Definition A.4.1 The backward elimination method follows the following
procedure:

1. start with all the predictors in the model;

2. remove the predictor with highest p-value greather than αcritc;

3. refit the model and goto point 2;

4. stop when all p-values are less than αcritc.

Definition A.4.2 The forward selection method follows the following proce-
dure (it just reverses the backward method):

1. start with no predictors in the model;

2. for all predictors not in the model, check their p-value if they are added to
the model anf choose the one with lowest p-value less than αcritc;

3. continue until no new predictors can be added.

The Akaike information criterion (AIC) is an estimator of the relative
quality of statistical models for a given set of data. Given a collection of models
for the data, AIC estimates the quality of each model, relative to each of the
other models. Thus, AIC provides a means for model selection. AIC offers an
estimate of the relative information lost when a given model is used to represent
the process that generated the data. It does not provide a test of a model in the
sense of testing a null hypothesis. It tells nothing about the absolute quality of
a model, only the quality relative to other models. Thus, if all the candidate
models fit poorly, AIC will not give any warning of that.

Definition A.4.3 Suppose that we have a statistical model of some data. Let
p be the number of estimated parameters in the model. Let L̂ be the maximum
value of the likelihood function for the model. Then the AIC value of the model
is

AIC = 2p− 2log(L̂).

Given a set of candidate models for the data, the preferred model is the one
with the minimum AIC value. Thus, AIC rewards goodness of fit (as assessed
by the likelihood function), but it also includes a penalty that is an increas-
ing function of the number of estimated parameters. The penalty discourages
overfitting, because increasing the number of parameters in the model almost
always improves the goodness of the fit.
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The stepwise regression is a combination of backward elimination and
forward selection. This addresses the situation where variables are added or
removed early in the process and we want to change our mind about them
later. At each stage a variable may be added or removed and there are several
variations on exactly how this is done. The stepwise regression using in this
thesis does not use the p-value like criterium to chosen the variables, but thee
AIC.
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Appendix B

R packages

In this part all packages used in thesis are fastly presented.

• dplyr: a grammar of data manipulation, providing a consistent set of
verbs that help you solve the most common data manipulation challenges;

• stringr: a tool to easily manage string objects;

• openxlsx: it simplifies the creation of Excel .xlsx files by providing a high
level interface to writing, styling and editing worksheets;

• ggplot2: a system for “declaratively” creating graphics, based on “The
Grammar of Graphics”: you provide the data, tell ’ggplot2’ how to map
variables to aesthetics, what graphical primitives to use, and it takes care
of the details;

• corrplot: it is a graphical display of a correlation matrix or general matrix
and it also contains some algorithms to do matrix reordering;

• lme4: fit linear and generalized linear mixed-effects models;

• fmsb: several utility functions for the book entitled “Practices of Medical
and Health Data Analysis using R” (Pearson Education Japan, 2007)
with Japanese demographic data and some demographic analysis related
functions;

• mgcv: it provides functions for GAM and generalized additive mixed
modelling (GAMM);

• nlme: fit and compare Gaussian linear and nonlinear mixed-effects mod-
els;

• ggpubr: it provides some easy-to-use functions for creating and customiz-
ing “ggplot2”, based publication ready plots;

• MASS: functions and datasets to support Venables and Ripley, “Modern
Applied Statistics with S” (4th edition, 2002);

• car: functions to accompany J. Fox and S. Weisberg, “An R Companion
to Applied Regression”;
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• lmerTest: different kinds of tests for linear mixed effects models as im-
plemented in “lme4“ package are provided: the package provides the cal-
culation of population means for fixed factors with confidence intervals
and corresponding plots and the backward elimination of non-significant
effects is implemented;

• pscl: bayesian analysis of item-response theory (IRT) models, roll call
analysis; computing highest density regions; maximum likelihood estima-
tion of zero-inflated and hurdle models for count data; goodness-of-fit
measures for GLMs; data sets used in writing and teaching at the Politi-
cal Science Computational Laboratory; seats-votes curves;

• glmm: approximates the likelihood of a generalized linear mixed model
using Monte Carlo likelihood approximation, then maximizes the likeli-
hood approximation to return maximum likelihood estimates, observed
Fisher information, and other model information;

• lubridate: functions to work with date-times and time-spans: fast and
user friendly parsing of date-time data, extraction and updating of compo-
nents of a date-time (years, months, days, hours, minutes, and seconds),
algebraic manipulation on date-time and time-span objects;

• deSolve: functions that solve initial value problems of a system of first-
order ordinary differential equations (ODE), of partial differential equa-
tions (PDE), of differential algebraic equations (DAE), and of delay dif-
ferential equations;

• minpack.lm: the nls.lm function provides an R interface to lmder and
lmdif from the MINPACK library, for solving nonlinear least-squares prob-
lems by a modification of the Levenberg-Marquardt algorithm, with sup-
port for lower and upper parameter bounds;

• directlabels: an extensible framework for automatically placing direct
labels onto multicolor lattice or ggplot2 plots: label positions are described
using Positioning Methods which can be re-used across several different
plots and there are heuristics for examining trellis and ggplot objects and
inferring an appropriate Positioning Method;

• reshape2: flexibly restructure and aggregate data.
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