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Summary

In this Thesis it is showed a study about the effects that a poor quality mesh has in
the solution of a computational simulation. There are many problems in Fluid Dynam-
ics that can not be solved analytically. So, Computational Fluid Dynamics allows us
to have a numerical result. The wide range of applications, and its lower cost in com-
parison with the experimental process are examples of advantages of CFD, so that the
non-existent limit to the structural dimensions of what we would like to simulate and
the time of computation that is related to the computers. However, disadvantages are
present. We could make mistakes about setting parameters, building physical models in
wrong way. Moreover we could make wrong interpretation of the results if we don’t have
real perspectives about what we are simulating. So, it is very important to verify the
appropriate definition of all parameters and variables of our problem in order to get a
suitable solution, and finally, we have to correctly interpret the results so that we could
make correct decisions in our application.

The present Thesis investigates the effect of the mesh quality because of its influences
in the result. There are many types of error with several effects in the solution. In par-
ticular, grid quality error needs to be explained. The study consists to compare seven
different types of meshes in a fluid flow around a square cylinder. All seven grids are very
similar, except on the near region where the boundary layer is present. So, each mesh
has a concrete and distinct value of grid quality. After the simulation, we will discuss
the results of the various cases between them. It has been demonstrated that the error
propagated by an inadequate definition of the parameters of the grid quality is significant.
The real magnitude of this effect is relative to the force modulus and its application. For
example, in the field of Civil Engineering, an error in the calculation of the structure of
a building could have catastrophic consequences.

Finally, the outline of this Thesis gives a concrete idea what each chapter is about and
shows schematically the evolutionary process which has taken place during its develop-
ment.

Chapter 1 introduces the Computational Wind Engineering, field in which this study
is involved. In particular, the problem of the square cylinder is shown.

Chapter 2 is an overview about several articles in which some CWE or CFD simula-
tions about flow around a square cylinder, or similar problems, are studied and compared
with the bibliography, giving us some references to our results.
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Chapter 3 numerical methods in CWE are introduced. The base concepts of Fluid
Dynamics are explained in order to comprehend the physical concepts of a simulation
problem.

Chapter 4 explains the methodology to grid generation. In particularly, notions of
grid quality errors and their relation to the solution are clarified.

Chapter 5 describes the steps in order build the model in the program and run the
simulation. In addition, there are described the seven cases of study.

Chapter 6 discuss all results obtained after the simulation for each case. The effects
of the mesh quality will be verified analyzing the change on the solutions for each grid
type.

Finally, Chapter 7 summarizes the main result of this Thesis after discussing the solu-
tions for each different grids. Moreover, new problems for future works and applications
of these results are explained.

In conclusion, this Thesis provides a systematic study about the effects of mesh quality
in the numerical solutions, that can be a wide application in the Computational Wind
Engineering.
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Chapter 1

Introduction

In physics, Computational Fluid Dynamics (CFD) is the branch of Fluid Fynamics that
provides a cost-effective means of simulating real flows by the numerical solution of the
governing equations, that for Newtonian fluid dynamics are named the Navier-Stokes
equations. However, the development of reduced forms of these equations is still an ac-
tive field of research. In particular, the turbulent closure problem of the Reynold-average
Navier-Stokes equations.

The most reliable information about physical phenomena is usually given by measure-
ments. However, in many situations, measuring equipment can have significant errors.
So, the need for reliable computational models is of great importance, and required val-
idation using experimental data before they can be put to a validation. In this Thesis,
we focus on using the Computational Fluid Dynamics for wind engineering applications,
Computational Wind Engineering (CWE). The main objective of this study is to show a
direct relation between the solution errors and a bad quality mesh. However, it is needed
to learn about the interaction between the fluid and the square cylinder.

The square cylinder, or also the rectangular cylinder where, in particular, there is
an intensive literature named ”Benchmark on the Aerodynamics of a Rectangular 5:1
Cylinder” (BARC), is of great interest in the Civil Engineering due to of its similarity
with the cross-section of skyscrapers (Fig. 1.1). In aerodynamics, this type of section
is called bluff body. The study of bluff body wakes is important for applications in

(a) (b)

Figure 1.1: Skyscraper cross-section
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1. Introduction

Figure 1.2: Aerodynamic classification of sections

aerodynamics, wind engineering, and electronics cooling. Bluff body cross sections that
are often analyzed in the literature are circular and rectangular, and, overall, square. The
flow features depend on Reynolds number and free stream turbulence. In particular, for
square/rectangular cross section geometries, the orientation respect to the mean flow is
another important parameter. In addition, the separation points are fixed for the square
cylinder and they are depending on the Reynolds number. Moreover, the reattachment
of the flow relies on the value of the ratio between the length and the height of the
section, B/D, Fig. 1.2. On the opposite of the bluff body, the streamlined section has
the boundary layer totally attached, so that the flux is laminar and the aerodymanics
forces are steady. For example, the viscous effect is the principal contribution to the drag
forcesd. The semi-streamlined section is a mix of the two previous sections.

Moreover, the square cylinder has a characteristic flow topology, as it is shown in the
figure 1.3. In the present figure, we can differentiate three main regions: Frontal region,
where the stagnation point is present in this zone. At this point, there is not velocity
in the flow. In addition, across the frontal wall, the flow is affected by the viscous and
turbulent stresses. In Lateral region the instability is generated. In fact, it is where the
transition from laminar to turbulent regime take place. In addition, the flow becomes
rotational and a reattatchment point could appear. Finally, in the Base region, the flow
is moved by convective effectes and the vortical wake is located in this zone.

14



1. Introduction

Figure 1.3: Flow topology using horizontal velocity contours

In order to quantify the complete effects of the flow in the structures, it is useful to
calculate the time-averaged and maximum values of the aerodynamic coefficients, i.e.
drag and lift. In addition, computing vorticity and streamlines could help to reveal some
feature of the flux, as well as the velocity profiles.

Finally, an overview of the literature is useful to comprehend the theoretical concepts
and to compare our results, so that we can have an idea about the influences of quality
grids.
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Chapter 2

Literature Review: Benchmark
computations for flows around a
stationary cylinder

In the literature, the study of the flow around a square or circular cylinder has strongly
been analysed and developed. In this chapter, we will present a general overview of
studies about cylinder simulations, so that the essential aspects of this subject and the
correct construction of the model can suggest us how to determine accurate solution close
to the bibliography.

2.1 General problem

A typical problem for cylinder is shown in Fig. 2.1 from Rosetti and Vaz [9], where
a rectangular domain is used for the simulation of the flow. It presents the boundary
conditions. It is confirmed that ”it is appropriate to set the inlet and lateral boundaries
10D away from the cylinder axis whereas the outlet boundary can be located 20D away
from the cylinder”[9]. The boundary conditions generally applied in this kind of problems
are the Non-slip condition on the wall boundary, a periodic condition on the lateral regions
and a inlet and outlet boundary conditions.

17



2. Literature Review: Benchmark computations for flows around a stationary cylinder

Figure 2.1: General grid and domain.

In order to solve these problems, an efficient mesh needs to be defined. It is well known
that the quality of grid has a great influence on the numerical solutions. Several studies
have shown that high quality structured grids can be generated easily to study the flows
around a stationary cylinder. For example, in Ye and Wan [8], a general type of mesh
is shown. In Fig.2.2 it can be noticed the grid layout and the size of the computational
domain, in which N is the number of grid nodes. Three grid components are used,
which are a block around the cylinder, a transition block and a background block. The
transition and background blocks are completely orthogonal. In order to have accurate
solutions of the flow near the cylinder and in the wake, the block around the cylinder and
the transition block are refined. The background block is coarsened, so that the amount
of grid cells are not much higher and the computational cost is decreased. In this Thesis,
a similar layout will be constructed.

18



2. Literature Review: Benchmark computations for flows around a stationary cylinder

(a) Global layout

(b) Layout near the cylider

(c) Layout without overset

Figure 2.2: Layout grid

However, although in Ye and Wan [8] we can see a general problem with a general
grid layout, their study is not focused on a grid investigation and they work on a circular
cylinder. Then, in Hu, Tse, Kwok and Zhang [13], we can see a study about a cylinder
nested in a square prism. A hybrid grid style was adopted. The main feature of the grid
scheme is that the grid near the cylinder is fine enough while it is coarser in the far field.
In addition, the grid is unstructured inside the square prism whereas structured outside
the prism. In Fig.2.3 it is shown the mesh for the whole computational domain. As we
can see in Fig. 2.3(c), there is a viscous boundary layer with 20 grid layers next to the

19



2. Literature Review: Benchmark computations for flows around a stationary cylinder
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Figure 2.3: Views of the grids for a vertical cylinder: (a) top view of the grid, (b) local
sectional in xy plane, (c) local sectional view in xz plane

surfaces of the cylinder. However, this study is about inclination angle on the cylinder.
In the next section, we will see several studies about comparison between different grids.

2.2 Previous grid study

2.2.1 Grid comparison

In this section, we will see several previous studies about different meshes. Firstly, a
Large-Eddy Simulation, LES, model applied to a structured or unstructured mesh is de-
scribed in Cao and Tamura [15]. The model is a flow with Re = 2.2 · 104 on a square
culinder. The computational domain size is 28D x 24D x 4D. As shown the Fig.2.4(c), the
corners of the square cylinder are rounded with D/100 radius of curvature. Aerodynamic
features are not so much affected by these corners.
In this article, between the objectives, meshing strategies and effects of spanwise reso-
lution and length are investigated. So, several computational meshes have been set up
to be studied in order to improve the accuracy. Firstly, a structured grid refined near
the cylinder is named CR, while WR and CWR have hybrid grids where, respectively,
are wake refined and wake and cylinder refined. Finally, the CWR has been selected
as the optimal mesh. Furthermore, using meshing strategy of CWR, effects of spanwise
resolution and length is investigated. Two cases are evalutated: CWR2k, in which the
spanwise resolution is twice refined and CWR14D, where the spanwise length is increased
to 14D. Moreover, CWR is 30− 50% cheaper than CR, while CWR2k and CWR14D are
2.5 and 4.4 times as expensive as CWR. After all of this, comparison of interest quanti-

20



2. Literature Review: Benchmark computations for flows around a stationary cylinder

Figure 2.4: Computational domain size in a generalized coordinates. (a) Total grid
system; (b) Near the square cylinder; (c) Near the corner of the square cylinder with its
radius of curvature

Figure 2.5: Distribution of pressure on the cylinder surface: (a) time-averaged pressure;
(b) fluctuating pressure

ties are shown. We can see in following figures (2.5-2.6-2.7-2.8) comparison of pressure
distribution, of wake flow, of shear layer flow, where in particularly we see profiles of ve-
locity along the vertical direction, x/D = −0.25, x/D = 0, x/D = 0.25 and x/D = 0.5.
x/D = 0 is the vertical line that intersects the cylinder in two equal parts. Even in this
Thesis, we will see a comparation of velocity profiles in this way. Moreover, even com-
parison about lift and drag coefficient are shown. All of this quantities will be analyzed
even in this Thesis. In fact, we can see from graphics substantial differences between
the several grids. However, a study between orthogonal and non-orthogonal meshes is
not present in this study. Of consequence, it is necessary to make a systematic study
about grids, to see better the differences on the result between different types of mesh:
structured or unstructured, orthogonal or non-orthogonal, etc.

2.2.2 Grid quality index

In Kallinderis and Kontzialis [10], we can see an application of a grid quality index on
mesh construction. It is based on a priori evaluation of the shape and topology of grid.
This measure has several properties as the simple mathematical form and accuracy to
capture distortions in any direction. It has a direct relations with the truncation error
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2. Literature Review: Benchmark computations for flows around a stationary cylinder

Figure 2.6: (a) Time-averaged stream-wise velocity; (b) Fluctuation of stream-wise ve-
locity; (c) Fluctuation of the vertical velocity

Figure 2.7: Streamlines of time-averaged velocity in the cases: (a) Structured; (b) CWR

Figure 2.8: Velocity profiles along the vertical direction in the shear-layer region. (e)
Time-averaged stream-wise velocity when x/D = −0.25, x/D = 0, x/D = 0.25, x/D =
0.5
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2. Literature Review: Benchmark computations for flows around a stationary cylinder
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Figure 2.10: Structured mesh around a cylinder: (a) mesh geometry, (b) index q and (c)
index Q

and can detect relatively small distortions where there are larger ones. Finally, the index
have to be independent of the local size of the grid.

Powered by TCPDF (www.tcpdf.org)

(a)
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(b)

Figure 2.9: In (a) stretching for unstructured mesh, in (b) skewed mesh

In this study, we have two mesh quality index Qx: for (1) the stretched unstructured
mesh (Fig.2.9(a)) and for (2) the skewed mesh (Fig.2.9(b)). There is another index q
that uses both the first and the second order terms, while index Q only first order. Both
indices are evaluated in cylinder mesh, that has mild distortion away from the body
surface. Then it is convenient at the farfield to check the performance of the quality
indices. As we can see in Fig. 2.10, skewness is shown along lines off the surface that
are diagonal. Both indices suggest that we have a good grid quality close to the cylinder.
However, the index Q capture better the fou skewness lines than the other index. On
the other hand, for the hybrid grid shown in Fig.2.11, between the quadrilaterals and the
triangles, where we have strong distortions in the farfields, it can be noticed irregularity
of the interface. So, both types of distortions are well recognized by these indices. In
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Figure 2.11: Hybrid mesh around a cylinder: (a) mesh geometry, (b) index q and (c)
index Q.
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Figure 2.12: 3-D cylinder: (a) Hybrid grid fieldcut, and (b) the corresponding distribution
of the mesh quality index (Q)

conclusion, index Q is recommended because of its simple calculation. A disadvantage
of Q is that has not second order accurate computation of the gradient, so that can not
capture the related quality of distorted grids.

Another work using quality index is from Fotia and Kallinderis [11]. In this study we
can see in Fig.2.12, an application of the mesh quality index in a hybrid mesh around
a 3-D cylinder. At the boundary layer, the quality index is close to zero, i.e. have its
optimal value, beacuse it is composed by uniform hexahedra. It can be noticed in the
interface and in the farfield an increase of index Q, that indicates a poor grid quality.

In conclusion, all of this works we suggest how to construct a mesh on a square cylinder.
The grid quality error is partially examined, but an exhaustive literature in CFD and
CWE applications are not still present. The aim of this Thesis is to show a computational
and systematic study between several grids which present grid quality errors. So, in the
following chapters it is shown CFD methodology and a theoric explanation about grid
quality error in general. Finally, in the last chapters, the study will be explained and the
results will be discussed, verifying the effects of the mesh quality.
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2.2.3 Grid quality studies

An important study of Ichiro Nakane [21] proves the validity of grid orthogonality on two-
dimensional calculation for the flow around a circular cylinder. Five kinds of calculation
grids (one non-orthogonal and four orthogonal grids) are generated. However, Nakane
used body fitted curvilinear coordinate systems (”BFC”) method to generate the mesh.
Usually the coordinate lines of this BFC grid are non-orthogonal. Of consequence, there
is a possibility that the calculation accuracy with non-orthogonal body-fitted curvilinear
coordinate systems (”NBFC”), as we can see in Fig.2.13, is low compared to orthogonal
ones (”OBFC”).

Figure 2.13: Scheme of NBFC grid

So, the four kinds of OBFC grids around a circular cylinder are generated from a
NBFC grid by an integral method, where the orthogonal regions from the cylindrical wall
are different as follows: first 5-lines (ξ0 = 5), 15-lines (ξ0 = 15), 25-lines (ξ0 = 25) and
35-lines (ξ0 = 35).
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Figure 2.14: Comparison between OBFC Grid ξ0 = 35, (left) and NBFC grid (right).

Figure 2.15: (OBFC grid ξ0 = 15)

The OBFC grids generated using this method is shown in Fig.2.14 and Fig.2.15 In
particular, Fig.2.14 shows the comparison of the original NBFC grid and the OBFC
(ξ0 = 35), in which we can see each quarter circle cut out and connected. In addition,
from Fig.2.15 it can also be verified that the coordinate lines for the coordinate lines
for the orthogonal region and the non-orthogonal region join up smoothly. Moreover,
coordinate lines are generated without changing these ones along the flow direction and
the boundary point positions. By this means, the effectiveness of the orthogonal grid
could be investigated. The results shown from this study indicate that the calculation
results agree better with the visualization and the analysis for a wider orthogonal region
in the coordinate system. It is confirmed in Fig.2.16, where the calculated wall pressure
coefficient Cp is compared with the analysis result of Collins and Dennis. The result
calculated by the NBFC grid has larger difference with the analysis of Dennis, and the
result by the ξ0 = 35 OBFC grid has smaller difference with it. In other words, it is verified
that the orthogonal grid is important in the numerical simulation and the proposed
straightforward orthogonal grid generation method is sufficiently effective. Finally, it is
demonstrated, as we can see in Fig.2.17 that the effect of this orthogonal grid is greater
with Reynolds number Re larger.
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Figure 2.16: Wall pressure coefficient calculated by the orthogonal and non-orthogonal
grids (Re = 550,t∗ = 1.4)

(a) Re = 31 (b) Re = 1200

Figure 2.17: Wake length calculated by the orthogonal and non-orthogonal grids

When Re is small, the merits of the orthogonal grid are not readily reflected in the
calculated results. But usually, in CFD applications, Re is very big. Although these
value of Re are too small in our applications, it is well known that the orthogonality of a
mesh is very important on the effects of numerical solutions, and in this Thesis will prove
this issue.

Moreover, another interesting study is about the correlation between a grid quality
metric and the accuracy of the solution. This work is provided by Fattah, Angland and
Zhang [14]. Finite Difference Method is used and it is explained the methodology to
obtain the grid quality metric for a 1D case. From the wave equation in the generalized
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coordinates,
∂f

∂t
+ U

∂f

∂ξ

∂ξ

∂x
= 0 (2.1)

where f is a scalar variable, t is time, U the convection speed in x-direction and ξ the
generalized coordinate, several numerical errors are generated. In particular, the term ∂ξ

∂x

is known as the metric of the grid transformation. If the function ξ is not well resolved
along the x-coordinate, the truncation error will be greater. So, a mesh refinement should
be done in order to reduce it, but it is not necessary to know a posteriori the results of
the function f . In this article, the main reason of truncation error the metrics of the grid
transformations. So, the aim of this study will be to define a grid quality metric related
to the truncation errors of ∂ξ

∂x
.

In addition, the grid quality metric is generated with the objective of identifying the
regions of the grid where the truncation errors are more important.

So, the grid quality metric, Q, is defined in 3D case as

Q =

√(∆̂ξ

∆ξ

)2

+
(∆̂η

∆η

)2

+
(∆̂ζ

∆ζ

)2

(2.2)

where

∆̂ξ =

√
∆̂x2

i + ∆̂y2
i + ∆̂z2

i (2.3)

and

∆ξ =
√
x2
ξ + y2

ξ + z2
ξ (2.4)

is defined to normalize the quantity of 2.3. If values of Q is larger, it will mean that the
value of the truncation error is greater, so that the grid has less quality. The grid quality
metric can be computed for all grid points.

Then, with the numerical and analytical solutions, it can be computed the grid quality
metric integrating values for the whole domain.

E =
(ρ− ρexact
ρexact

(2.5)

QI =

∫ ∫
S

Qdxdy (2.6)

EI =

∫ ∫
S

|E|dxdy (2.7)

So, now the problem is to solve for an uniform and other different grids in order to
determine a correlation between the grid quality metric and inaccurate solutions.

• Uniform Grid:

This is the ideal case that it will be used as reference to compute the solution error.
In fact, the integrated values of the grid quality metric and the solution error are,
respectively, QI = O(10−9) and EI = O(10−5). Then, the truncation error for this
grid is very small, so that we can consider this grid as a reference for the following
meshes.
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Figure 2.18: The effect on the grid quality metric when the grid spacing is modified at
x = 0. Ax = 1.25 (left), Ax = 2 (right).

• Abrupt changes in the grid spacing:

Applying the following expression to the grid coordinates of the uniform grid,

x∗(ξ, η) = x(ξ, η)AxH(x) (2.8)

an abrupt change in the grid spacing is obtained. H(x) is the Heaviside function
and Ax is a constant related to the grid spacing size.

From the Fig.2.18, it can be noticed that if the amount grid spacing size is higher,
the grid quality metric Q increases, so that it is obtained a poor grid quality.

• Abrupt change in the grid line direction:

Insted, this following function imposed to the uniform grid leads to an abrupt change
in the grid direction.

y∗(ξ, η) = y(ξ, η) +H(x)Ayx(ξ, η) (2.9)

The grid line gradient is dependent from the constant Ay.

As we can see in Fig.2.19, the solution accuracy is reduced if Ay has greater value.
In fact, the amount term Q is higher.

• Uniformly skewed grids:

To get an uniformly skewed grid, the following function is provided.

x∗(ξ, η) = x(ξ, η) + Asy(ξ, η) (2.10)

The grid line gradient across the entire domain is described by the term AS. In the
Fig.2.20, the skew angle does not influence the error.

• Non-uniformly skewed grids:
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Figure 2.19: The effect on the grid quality metric when the grid line direction is modified
at x = 0. Ay = 0.25 (left), Ay = 0.875 (right)

Figure 2.20: The effect on the solution error when the uniform cell skew is modified at
x = 0. As = 0.25 (thick line), As = 1 (thin line)
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Figure 2.21: The effect on the grid quality metric when the At is changed at x = 0.
At = 1 (left), At = 1.5 (right)

Applying trigonometric functions, we will obtain a non-uniformly skewed grid.

x∗(ξ, η) = x(ξ, η) +Atsin
(2πy(ξ, η)

L

)
y∗(ξ, η) = y(ξ, η) +Atsin

(2πx(ξ, η)

L

)
(2.11)

where At is the amplitude and it is changing, while L is the wavelength set to
L = 10m.

From the Fig.2.21 we can see that the largest value of the grid quality metric Q is
located where the variations on the grid direction are higher. So, the quality of the
grid is lowest.

• Grid stretching:

In order to increase the grid resolution to a specific region, grid stretching is typically
used. In this case, the y-direction is constant (∆y = 0.1), while the following
transformations define the stream-wise spaces.

x∗(ξ) = Ahx̃(ξ)x∗(ξ) = Ah

[
1 +

ξ −max(ξ)

ξBL − 1
(x̃(ξBL − x̃(ξBL − 1))

]
(2.12)

Ah indicates the amount of stretching in the range 0 ≤ x ≤ Ah. Outside this region,
the stream-grid spacing is uniform. Then, the number f points in the stretched
region is defind by ξBL. The equations above are implemented when 1 ≤ ξ ≤ ξBL
and ξ > ξBL. x̃ is the normalized grid point distribution function. As we can see
in the Fig.2.22, a lower grid quality metric and the consequent higher numerical
errors are due to an amount of the grid stretching.

Finally, in order to demonstrate quantitatively a relation between the grid quality
metric and the solution error, a correlation coefficient CQE can be defined as

CQE =
< QIEI >

[< Q2
I >< E2

I >]1/2
(2.13)

31



2. Literature Review: Benchmark computations for flows around a stationary cylinder

Figure 2.22: The effect on the solution accuracy when the grid stretching is changed at
x = 0. α = 0.5 (left), α = 3.5 (right)

In the table 2.1, we have the results of correlation coefficients has been collected for
each case of study. First of all, it can be seen that the uniform skewness grid does not
affect the results.. On the other hand, a higher correlation coefficient are collected in the
other cases with values over 0.9. So, a strong correlation is provided for these grids.

Grid Features Explicit filter Implicit filters

Grid spacing discontinuity 0.971 0.970

Grid direction discontinuity 0.955 0.954

Uniform skewness 0.427 0.128

Non-uniform skewness 0.921 0.921

Grid stretching 0.932 0.913

Table 2.1: Correlation coefficient for each case

In conclusion, Nakane [21] has confirmed the great influence that a non-orthogonal
mesh on results. However, his study is different from what we aim to search. First,
we will study a square cylinder, not circular. Then, we will analyze other important
quantities used in CFD and CWE applications like lift and drag coefficients, etc. So, his
work has suggested ulterior motivation to elaborate this argument of research. Last, but
not least, Fattah, Angland and Zhang [14] have provided a strong correlation between
grid quality metric and the solution error. Even in this Thesis, although in a different
way, we will compute a correlation coefficient between a grid quality measure and solution
errors.
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Chapter 3

Numerical methods in CWE:
Introduction

Computational Wind Engineering, CWE, is the application of Computational Fluid Dy-
namics, CFD, in wind engineering. In this field, the kind of problem of this Thesis, is of
great interest, specially in the field of structural engineering, due to it is very important
to obtain accurate results.

There are many codes, but we are going to use ANSYS: Fluent/CFX software to
complete this Thesis. In general, in CWE simulations, the basic scheme could be defined
as:

1. Turbulent flux models

2. Discretization models of the equations

3. Computation grid generation

These issues are often in relation in their formulation, are closely dependent in calculation
model definition and their effects are difficult to distinguish. In this chapter we analyze
the first two issues. Computation grid generation will be discuss in the next chapter.

3.1 Turbulent flux models

3.1.1 The governing equations

In Fluid Dynamics, we approximate the fluid as a continuum. It implies that even an
infinitesimally small element of the fluid still contains a sufficient number of particles,
so that we mean velocity and mean kinetic energy can be defined. In addition, velocity,
pressure, temperature, density and other important quantities at each point of the fluid
can be computed.
Defining a finite control volume, a certain flow quantity is transported across the bound-
ary. The amount of the quantity crossing the boundary is called flux. The flux can be in
general decomposed into two different parts: one due to the convective transport and the
other one due to the diffusive nature, that it is dependent to the gradient of the quantity
considered.
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The derivation of the principal equations of fluid dynamics is based on the fact that the
dynamical behaviour of a fluid is determined by the following conservation laws, namely:

1. The conservation of mass : the Continuity Equation is derived from this law. The
mass can not be created in such a fluid system and can not disappear from it.
Since for a fluid at rest, any variation of mass would imply a displacement of fluid
particles, in the continuity equations no diffusive flux takes part. In order to derive
the continuity equation, considering a finite control volume fixed in space, we have
the integral conservative form of this equation equation:

∂

∂t

∫
V

ρdV +

∮
∂V

ρ(v̄ · n̄)dS = 0 (3.1)

Using Gauss theorem, we obtain differential form of the 3.1:

∂ρ

∂t
+∇ · (ρv̄) = 0 (3.2)

2. The conservation of momentum: the Momentum Equation is build recalling the
Newton’s law, i.e. the variation of momentum is caused by the net force acting on
an mass element. So, we obtain the integral form,

∂

∂t

∫
V

ρv̄dV +

∮
∂V

ρv̄(v̄ · n̄)dS +

∮
∂V

ρn̄dS −
∮
∂V

(τ · n̄)dS =

∫
V

ρf̄edV (3.3)

where τ is viscous stress tensor, proportional to the velocity gradient. The differ-
ential form of the 3.3 is:

∂ρv̄

∂t
+∇ · (ρv̄v̄) +∇p−∇ · τ̄ = ρf (3.4)

3. The conservation of energy : from the First Law of Thermodynamics, the Energy
Equation is derived. Applied to the control volume, the total energy per unit mass
E of a fluid is composed by internal energy per unit mass e and kinetic energy

|v̄|2 /2. Then, the total energy is written as E = e+ |v̄|2
2

. The integral conservative
form is

∂

∂t

∫
V

ρEdV+

∮
∂V

ρE(v̄·n̄)dS =

∮
∂V

k(∇T ·n̄)dS+

∫
V

(ρf̄e·v̄+q̇k)dV−
∮
∂V

p(v̄·n̄dS)+

∮
∂V

(τ ·v̄)·n̄dS

(3.5)
The differential conservative form of the balance equation is

∂

∂t
ρE +∇ · ρEv̄ = ∇ · k(∇T + ρf̄e · v̄ + q̇h −∇ · pv̄ +∇ · (τ · v̄) (3.6)

The Navier-Stokes equations represent in three dimensions a system of five equations
for the five conservative variables,ρ,ρu,ρv,ρw,ρe. But they contain seven unknown
flow field variables, ρ,u,v,w,e,p, and T . Then, two additional equations are needed.
We can impose thermodynamic relations between the states variable, like the in-
ternal energy as a function of pressure and temperature e = f(p, T ). In general, a
fluid can be considered as a perfect gas, so that the equation of state takes the form
p = ρRT , where R is the specific gas constant. Now we have all the equations to
compute all the variables.
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Figure 3.1: Energy spectrum vs. wave number space (log-log scales)

3.1.2 Turbulence modelling

Turbulence is a natural phenomenon in fluids that occurs when velocity gradients are
high, in particular when high Mach numbers and high Reynolds numbers are character-
istics of a flow. In addition, turbulent flows grows in contact with walls or in between
two neighboring layers. Due to velocity gradients increasing, the flow becomes rota-
tional, leading to a vigorous stretching of vortex lines, which cannot be supported in two
dimensions. Then, turbulent flows are physically three-dimensional, typical of random
fluctuations.
In turbulent flows, large and small scales of continuous energy spectrum are merged.
There are defined eddies, i.e. different vortex structures, that are overlapping in space,
with large ones carrying small ones. Beacuse of the presence of different scales in the
flow, turbulent Reynolds numbers can be defined as

Reλ =
λvλ
ν

(3.7)

where λ is the dimension of the spatial scale. If λ is large, the amount of Reλ leads to an
insignificant viscous diffusion. On the other hand, the viscosity is more important at the
smallest scales, Reλ ∼ 1. These scales are known as Kolmogorov scales and the spatial
dimension is represented with η. The energy is transported from largest to smallest scales
by the intermediate scales, better known as inertial scales. Then, from larger to smaller
eddies the kinetic energy is transfered, and the dissipation into heat occurs in the smallest
eddies. This phenomena is called Turbulent energy cascade, In the fig.3.1 we can see this
process.
The computation of turbulent flows is much difficult beacuse of the time scales have a

big range of length. All this even if the flow variables are of deterministic nature. So,
several numerical methods are provided to compute these types of flows.

1. Direct Numerical Simulation, DNS
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Figure 3.2: Comparison between LES and DNS methods

In Direct Numerical Simulation, all the turbulence scales, even the Kolmogrov mi-
croscale, are computed, so that we can totally resolve the Navier-Stokes system of
equations. However, we need a very refined mesh with high computational cost. To
have an idea, starting with

η = (ν3/ε)1/4 (3.8)

, we know that the turbulence scales have values from the large energy-containing
eddies to the dissipation scales, i.e. 0.1 ≤ kη ≤ 1, where k, wave number, is
computed. So, the number of grid points N required for a mesh is proportional to
L/η ≈ Re3/4, where L is the characteristic length. Finally, this leads to the number
of grid points in 3-D proportional to

N = Re9/4 (3.9)

and the CPU-time as Re3. Of consequence, although the results are very accurate,
DNS is only used in simple geometries and low Reynolds numbers.

2. Reynolds-Averaged Navier-Stokes, RANS
In this method, every variable φ can be approximated statistically with a mean
component φ̄ and a fluctuating component φ′:

φ(xi, t) = φ̄(xi, y) + φ′(xi, t) (3.10)

where the mean component in an unsteady flow can be written as

¯φ(xi, t) = lim
N→∞

1

N

N∑
n=1

φ(xi, t) (3.11)
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Figure 3.3: Instantaneous and average velocity in turbulent velocity

where N is the number of members in the sum great as well as the effect of the
fluctuations are eliminated. Then, we obtain the Reynolds-averaged Navier-Stokes
equations, that, written for incompressible flows, are

∂(ρūi)

∂t
+

∂

∂xj
(ρūiūj + ρ ¯u′iu

′
j) = − ∂p̄

∂xi
+
∂τ̄ij
∂xj

(3.12)

where Rij = ¯u′iu
′
j is called Reynolds-stress tensor. Moreover, ūiūj is known as the

scalar flux and τ̄ij are the mean viscous stress tensor components:

τ̄ij = µ
(∂ūi
∂xj

+
∂ūj
∂xi

)
(3.13)

However, if the Reynolds averaging is applied to the mass and energy balance
equations, we obtain a system of equations which is not closed. Closure requires
use of some approximations, which take from prescribing the Reunolds-stress tensor
and the turbulent scalar flux. Examples of RANS model are the K − ε STD and
K − ε RNG model.

In essence, turbulence can be characterized by its kinetic energy (k) or velocity
(q =

√
2k) and a length scale (L). The turbulent kinetic energy is defined by the

following expression:

k =
1

2
u′iu
′
i =

1

2
(u′xu

′
x + u′yu

′
y + u′zu

′
z) (3.14)
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Due to the complexity related to the description of the turbulence quantities sug-
gests that one might use partial differential equations to compute them. The equa-
tion for the turbulent kinetic energy, k, is written as

∂(ρk)

∂t
+
∂(ρūjk)

∂xj
=

∂

∂xj

(
µ
∂k

∂xj

)
− ∂

∂xj

(ρ
2
u

′
ju

′
iu

′
i + p′u

′
j

)
− ρu′

iu
′
j

∂ūi
∂xj
− µ ∂u

′
i

∂xk

∂u
′
i

∂xk
(3.15)

The last term represents the product of the density (ρ) and the dissipation (ε),
when the turbulence energy is converted into internal energy. The second term on
the right-hand side of the expression 3.15 is known as turbulent diffusion, which
can be modeled like

−
(ρ

2
u′ju

′
iu
′
i + p′u′j

)
≈ µt
σk

∂k

∂xj
(3.16)

where σk is the turbulent Prandtl number and its value approaches unity.
The third term of the right-hand side represents the rate of production of turbulent
kinetic energy by the mean flow. If we estimate the Reynolds stress using the eddy
viscosity, the equation results

Pk = −ρu′iu′j
∂ui
∂xj
≈ µt

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

. (3.17)

As mentioned above, two equations are required to close the set of equations. In
turbulence, it is widely known that energy is tranferred from the largest scales to
the smallest until it is dissipated. This relationship can be formulated.

ε ≈ k3/2

L
(3.18)

So, the equation of the dissipation (3.19) allows us to complete the model.

∂(ρε)

∂t
+
∂(ρujε)

∂xj
= Cε1Pk

ε

k
− ρCε2

ε2

k
+

∂

∂xj

(
µt
σε

∂ε

∂xj

)
(3.19)

In this model, the eddy viscosity is defined like

µt = ρCµ
√
kL = ρCµ

k2

ε
(3.20)

The commonly values of the parameters are: Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92,
σk = 1.0 and σepsilon = 1.3.

To be exact, we use the RNG k− ε model, which is derived from the instantaneous
Navier-Stokes equations, but applying a rigorous technique, known as renormaliza-
tion group theory. It results similar to the k − ε equations explained before, but
with different constants and additional terms. Also, non equilibrium wall functions
are imposed as a condition near the wall.
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3. Large Eddy Simulations, LES
A compromise between DNS and RANS is the large eddy simulations. While large-
scale eddies are exactly computed, small scales are modeled instead. So, the compu-
tational cost of a mesh much higher than in RANS, while, beacuse of the modeled
small-scale turbulence, it is cheaper than DNS.
The velocity field is filtered to have only the large scale components of the total
field. Then, it is defined as

ūi(x) =

∫
G(x, x′)ui(x

′)dx′ (3.21)

where G(x, x′) is the filter kernel and it is a localized function.
When the Navier-Stokes equations are filtered, one obtains:

∂(ρūi)

∂t
+
∂(ρ ¯uiuj)

∂xj
= − ∂p̄

∂xi
+

∂

∂xj

[
µ
(∂ūj
∂xj

+
∂ūj
∂xi

)]
(3.22)

However, ¯uiuj 6= ūiūj. So, a modeling approximation of the difference between these
quantities is needed to be introduced. Then, we define the subgrid-scale Reynolds
stress as

τ sij = −ρ( ¯uiuj − īj̄) (3.23)

. It can be interpretated as the phenomena related to the momentum flux that in
the large scales is affected by the action of the small scales.

3.1.3 Boundary conditions

Despite of the numerical methodology chosen to solve the governing equations, we have
to impose suitable initial and boundary conditions. The initial conditions determine the
state of the fluid at the time t = 0. However, it is needed that the governing equations
are satisfied by the initial condition.
Furthermore, the computational domain creates itself artificial boundaries. So, the phys-
ical quantities are needed to be defined. In order to avoid non-physical phenomena in the
flow field. boundary conditions are applied in the inlet, outlet and periodic boundary.
Finally, there is a laste type of boundary condition. It is related to the interactions be-
tween the surface of a body and the fluid. It is imposed the no slip boundary condition
u = v = w = 0 at the surface, that means no relative velocity between the surface and
the fluid immediately at the surface is assumed.
Boundary condition affects not only the accuracy of the solution, but also the robustness
and the convergence speed.

3.2 Discretization methods of the equations

The first step is the spatial discretization of the Navier-Stokes equations, which consists
in the numerical approximation of the convective and the viscous fluxes, as well as of the
source term. The spatial discretization schemes can be divided into the following three
main categories: finite difference, finite volume, and finite element. All these methods
rely on some kind of grid in order to discretize the governing equations.
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3.2.1 Finite Difference Method

The basic idea of finite difference methods is simple: derivatives in differential equations
are written in terms of discrete quantities of dependent and independent variables, result-
ing in simultaneous algebraic equations with all unknowns prescribed at discrete mesh
points for the entire domain.
In Fluid Dynamics applications, in order to conform to the nature of the flows, different
forms of the finite difference equations are written.
Consider a function u(x) and its derivative at point x.

∂u(x)

∂x
= lim

∆x→0

u(x+ ∆x)− u(x)

∆x
(3.24)

If u(x+ ∆x) is expanded in Taylor series about u(x), we obtain

u(x+ ∆x) = u(x) + ∆x
∂u(x)

∂x
+

(∆x)2

2

∂2u(x)

∂x2
+

(∆x)3

3!

∂3u(x)

∂x3
+ ... (3.25)

So, we derive

u(x+ ∆x)− u(x)

∆x
=
∂u(x)

∂x
+

∆x

2

∂2u(x)

∂x2
+ ... =

∂u(x)

∂x
+O(∆x) (3.26)

The derivative ∂u(x)
∂x

in 3.26 is of first order in ∆x. This means that the truncation error
O(∆x) goes to zero like the first power in ∆x. This is the starter point to construct finite
difference schemes. The main examples are, respectively, the forward difference scheme
3.27, the backward difference scheme 3.28, and the central difference scheme 3.29.(∂u

∂x

)
i
=
ui+1 − ui

∆x
+O(∆x) (3.27)

(∂u
∂x

)
i
=
ui +−ui−1

∆x
+O(∆x) (3.28)(∂u

∂x

)
i
=
ui+1 − ui−1

2∆x
+O(∆x2) (3.29)

It can be noticed that the truncation errors for the forward and backward differences are
of first order, while the central difference yields a second order truncation error. Finally,
we can derive the finite difference formula for the second derivative with second order
accuracy, (∂2u

∂x2

)
i

=
ui+1 − 2ui + ui− 1

∆x2
+O(∆x2) (3.30)

In general, finite difference equations may be generated for any order derivative with any
number of points involved if the solution is enough regular.

There are FDM schemes for typical elliptic, parabolic, and hyperbolic partial differen-
tial equations. Several physical conditions, for example viscosity, incompressibility and
compressibility of the flow, affect the computational schemes. For incompressible flows
the pressure-based formulation is provided, in order to keep from instability the pressure
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field. This instability is due to the difficulties in preserving the balance equation when
the sound speed becomes much higher than convection velocity components.

Furthermore, the incompressible flows, due to the difficulty to compute correct solution
for pressure, are treated by two approaches: the primitive variable methods including,
for example, the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) and the
Pressure Implicit with Splitting of Operators (PISO). The other approach is the vortex
methods. It consists to eliminate from the momentum equations the pressure terms,
which are computed by the vorticity transport equations.

3.2.2 Finite Volume Method

The finite volume method directly uses the conservation laws. Firstly, the space is divided
into a number of control volumes.

∂

∂t

∫
Vi

ρφdV +

∫
Si

f c · ndS =

∫
Si

fd · ndS +

∫
Vi

qedV (3.31)

Then, the surface integrals of equation 3.31 are approximated by the sum of the fluxes
crossing the face of the control volume. However, they are impossible to compute exactly.
So, two approximation levels are provided: quadrature rules and interplotion. The scheme
with which the flux is computed affects the accuracy of the spatial discretization.

Furthermore, there are two approaches in the definition of the shape and position of the
control volume. As it is shown in Fig.3.4, in the cell-centred scheme the flow quantities
are stored at the centroids of the grid cells, while in cell-vertex scheme at the grid points.
For the first case the control volume is exactly equal to the grid cell. On the other hand,
the union of cells sharing the grid point or some volume centred around the grid point
determine the control volume in the cell-vertex scheme.

Figure 3.4: Control volume of cell-centred (a) and cell-vertex (b) scheme

There are several types of interpolation schemes, introduced in this Thesis in 1D:

• Upwind Difference Scheme (UDS)

Upwind is a scheme that is more compatible with the advection process, i.e. depen-
dent on the flow direction schematically displayed in Fig.3.5. The cell face values
for the configuration are given by

φe =

{
φP if v · ne > 0
φE if v · ne < 0

(3.32)

This is equivalent to using a backward or forward difference for the first derivative.
Because of its numerical diffusivity, this method never yield oscillatory solutions.
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Figure 3.5: The upwind scheme profile

• Linear Interpolation (CDS)

The value of φ at a face center is obtained performing a linear interpolation between
the two nearest nodes.

φe = φEλe + φP (1− λe) (3.33)

where

λe =
xe − xP
xE − xP

(3.34)

Figure 3.6: The CDS scheme profile

This scheme, displayed in Fig.3.6), is useful for non-directional problems, because
it gives equal weights to the two nodes sharing the face.

• Quadratic Upwind Interpolation (QUICK)

The Quadratic Upstream Interpolation for Convective Kinematics scheme, is based
on interpolating the value of the dependent variable at each face of the element
by using a quadratic polynomial biased toward the upstream direction, as shown
in Fig.3.7. The interpolated value is used to calculate the convective term in the
governing equations for the dependent variable.

Figure 3.7: The QUICK scheme profile

Differently from the other cases, the variable φ is approximated by a parabola
and one more point is needed to interpolate. This point depends on the upstream
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direction. In fact, we will take W if the flow is from P to E (ux > 0), EE if ux < 0.
The formula is

φe = φU + f1(φD − φU) + f2(φU − φUU) (3.35)

where D,U and UU are the downstream, the first upstream and the second upstream
node, respectively. The coefficients f1 and f2 are defined as

f1 =
(xe − xU)(xe − xUU)

(xD − xU)(xD − xUU)
(3.36)

f2 =
(xe − xU)(xD − xe)

(xU − xUU)(xD − xUU)
(3.37)

3.2.3 Finite Elements Method

In Finite Elements Method (FEM) the domain is discretized in ”elements”, that are of
various shapes. This leads us to generate irregular grids useful for complex geometries.
Each element is composed by the connection of a defined number of nodes, depending
on the type of the element and interpolation function. The main characteristic of the
method, based on the so called ”Method of Weighted Residuals”, is that a weight function
is used in the equations before being integrated over the whole domain. In general, the
functions used to approximate the solution within each element are polynomial, because
of their facility in integrations and derivatives. For example, a FEM solution can be
approximated by a linear function, so that the continuity is guaranteed in each element.
There are many possibilities for the approximated function and the weighted function.
For example, in the Galerkin Method, the weight functions has the same form of the
approximated function.

Figure 3.8: Typical two-dimensional Finite Element grid

3.2.4 Temporal discretization

For transient simulations, the governing equations are discretized even in time. In the
temporal discretization we set up a time coordinate along which the derivative (for the
finite difference method) or the integral (for the finite volume method) of the transient
term is evaluated.

In general, a variable φ is expressed by an equation of the form

∂(ρφ)

∂t
+ L(φ) = 0 (3.38)

where the function L(φ) is a function that includes all non-stationary terms.
There are two basical methods to discretize the derivatives in time.
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1. Explicit Method

The transient first order explicit Euler scheme (Eq.3.39) is obtained by using a first-
order ”downwind” interpolation profile, where the new time is t+ ∆t and that the
functions of Eq.3.39 is computed at time t. Then, without solving linear systems,
it is possible to evaluate the right hand side completely.

(ρCφC)t+∆t − (ρCφC)t

∆t
VC + L(φtC) = 0 (3.39)

2. Implicit Method

Even the implicit Euler scheme is obtained by using a first-order ”upwind” inter-
polation,.

(ρCφC)t − (ρCφC)t−∆t

∆t
VC + L(φtC) = 0 (3.40)

So, it seems that this method is not efficient as the Explicit method beacuse a
linear system for each time step is needed to solved. However, in opposite with
the explicit method, the Implicit one is the unconditional stability of the temporal
scheme. On the other hand, the explicit method is unconditionally unstable. This
leads to impose restrictions on the time step to guarantee the stability. This feature
is well explained by the Courant number, a dimensionless parameter defined as the
ratio between the time step, ∆t, and the characteristic convection time, u/∆x.
Then, in order to guarantee the stability, we can obtain the Courant-Friedrichs-
Lewy condition (CFL),

∆t <
∆x

|u|
(3.41)

where u is the flow speed, ∆t the time step and ∆x the spatial length
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Chapter 4

Numerical methods in CWE:
Computation grid generation

At this point, it is needed to define the geometry. Usin ANSYS Workbench it is possible
to realize a simple geometry or to import this with a CAD program. In order to obtain
correct results, it is important to generate correctly the calculation domain.

4.1 Mesh Types

One of the most important characteristics in CWE simulations is to generate the mesh.
It means to discretize the spatial domain in small cells connected between them, so that
we can compute the variables with numerical methods. A fine mesh can be related to the
computational cost, the accuracy and convergence of the solution. Generally, there are
three types of meshes (Fig.4.1):

Figure 4.1: Types of grids

• Structured mesh
It is identified by regular connectivity between the elements and it is composed by
elements like quadrilateral in 2D and hexahedra in 3D. A good characteristic is that
space is divided with such efficiency. In fact each point can be defined by indexes
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(i,k,k) in the cartesian coordinate system, so that the neighborhood relationships
are defined by storage arrangement. In addition, we can have an orthogonal or
non-orthogonal mesh. A structural mesh will be non orthogonal if the lines do
not intersect perpendicularly, in opposit with the orthogonal grid. However, a
disadvantage is that in complex geometries it is difficult the implementation of this
types of mesh.

• Unstructured mesh
On the other hand, the characteristic of unstructured mesh the irregular connectiv-
ities between the elements. It is easy to generate from an algorithm of the program.
Of consequence, the nodes are not ordered and we can not identify these by indexes.
A mix of quadrilaterals and triangles elements are generally used in 2D simulations,
while tetrahedra and hexahedrons in 3D problems. Then, the main advantage of
unstructered grids is that the complex geometry can be easily discretized. However,
we have to be careful to get a suitable mesh beacuse it is easy to generate a bad
quality grid. In addition, a large amount of space can take up in the memory of
the computer.

• Hybrid mesh
As the name suggests, this type of mesh is a efficiently combination between struc-
tured and unstructured meshes. It is adapt in an irregular domain, so that the
structured grids can be used regular region, while in complex areas it is convenient
to use unstructured meshes.
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Figure 4.2: Structured, orthogonal and equi-spaced grid

Figure 4.3: Structured, orthogonal and non equi-spaced grid

In application of a square cylinder domain, we can see examples of type grids explained
above. In Fig.4.2 the grid is structured, orthogonal and equi-spaced. It conduce to poor
accurate simulation in zones with high gradients, but computational cost are reduced
(only 2396 CV). In opposite, in Fig.4.3, we have a structured, orthogonal, but non equi-
spaced grid. In the wake and in wall zone the simulation is accurate. However, the
discretization is exaggeratedly fitted in regions less important. Moreover, computational
cost are very high. (28800 CV generated).

So, in order to provide a better simulation with computational cost contained, in Fig.4.4
we have a boundary-fitted, structured, non-orthogonal and non equi-spaced grid (only
3840 CV). It is used in aerodynamics on profiled body. However, this grid is poor precise
in the wake, and quality grid is reduced, because of non-orthogonality, skewness and high
factors of grid stretching. Then, a boundary-fitted, unstructured, non-orthogonal, and
non equi-spaced grid shown in Fig.4.5 is the best grid with high resolution in regions with
elevate gradients and coarse in less critical regions. It leads to limit the computational
cost (20672 CV). Also, grid stretching is reduced. However, it is necessary to generate
automatically the grid with robust algorithm, that have to pay attention to the quality
grid.

In the next section, grid induced errors are introduced including non-orthogonal, skew-
ness and grid stretching errors mentioned above.
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Figure 4.4: Boundary-fitted, structured, non-orthogonal and non equi-spaced grid

Figure 4.5: Boundary-fitted, unstructured, non-orthogonal and non equi-spaced grid

4.2 Grid induced errors

Grid induced errors are dependent on two main factors: mesh resolution and grid quality.

Insufficient mesh resolution can lead to lose effectively the shape of the solution, in
particularly if the solution changes rapidly in some regions of the domain and the local
number of computational points is not sufficient to describe that change. Moreover, it
should be note that must exist a balance between the size of the cells and the computa-
tional cost of the simulation.

Discretization of complex geometries can lead to let down the grid quality. Mesh quality
is a property of the mesh, independent from the particular problem to solve. Grid quality
errors can be higher than errors derived from the model and interpolation. On the other
hand, a better quality mesh can reduce discretization error of the same order, or greater,
than a refinement grid. So, the improvement of a mesh grow drastically computational
efficiency in rapport to accuracy and cost. Finally, the quality of the mesh is judged by
the level of grid induced errors caused by the aspect ratio, non-orthogonality and mesh
skewness.

• Aspect Ratio

The aspect ratio is known as a measure of the stretching because it is defined as the
ratio of the maximum distance between the cell and face centroids to the minimum
distance between the nodes of the cell. Ideally, it should be equal to 1 to ensure the
best results. Moreover, the local variation in cell size should be minimal, it means
the adjacent cell should not have an increase of aspect ratio higher than 20%.
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(a) (b)

Figure 4.6: Gradient grid on x (a) and y (b) direction

• Orthogonality

It is referred to the angle, θ, between the line which connects the nodes of adjacent
cells and the normal vector of the face dividing these relative cells. In 1D, the
orthogonality of the grid is always verified but in 2D, it could not be. To obtain
good results, this angle θ should approach to zero.

Figure 4.7: Orthogonality (on the left) and Non-orthogonality (on the right) on the face.

• Skewness

The distance m, Fig. 4.8, between the middle point of the face and the line which
joins the nods of the two adjacent cells is defined as skewness.

49



4. Numerical methods in CWE: Computation grid generation

Powered by TCPDF (www.tcpdf.org)

Figure 4.8: Skewness error on the face.

4.2.1 Grid stretching error

Grid stretching error is strongly correlated with grid gradients. In the evaluation of the
diffusion term with CDS, we have grid gradient along x, where the approximation of first
order of the derivative along x on quadrature point is(∂φ

∂x

)
e

=
φE − φP
xE − xP

+
(xe − xp)2 − (xE − xe)2

2(xE − xp)

(∂2φ

∂x2

)
e

+H (4.1)

while grid gradient along y leads to an approximation of second order. In addition we
have errors on flux at the w and e faces (Sw < Se) that are not compensated.

Fd,x =

∫
Sw

Γ
(∂φ
∂x

)
w
nwdSw +

∫
Se

Γ
(∂φ
∂x

)
e
nedSe (4.2)

4.2.2 Non-orthogonal error

The diffusion term is strictly affected by grid induced errors. Discretizing the diffusion
term, it follows:

F d
CV =

n∑
f=1

ΓS(∇φ)f (4.3)

where

S(∇φ) ≈ |S|φN − φP
|d|

(4.4)

in the case of orthogonal grid.
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Figure 4.9: Vectors d and S on a non-orthogonal mesh

If the grid is not orthogonal, S can be written as

S(∇φ) = ∆(∇φ)f + k(∇φ)f (4.5)

where

∆(∇φ)f = |∆|φN − φP
|d|

(4.6)

is the orthogonal term, and

k(∇φ)f = k(λ(∇φ)P + (1− λ)(∇φ)N) (4.7)

is the non-orthogonal correction. From the several possibile decomposition, the minimum
correction approach keep the non-orthogonal correction as small as possible. So, ∆ and
k are orthogonal:

∆ =
dS

dd
d (4.8)

. Then, greater is the non orthogonality, lower is the orthogonal term.

4.2.3 Skewness error

Skewness error is a numerical diffusion-type error. In Fig. 4.8 it is shown a general
situation causing the skewness error. However, skewness grid is not necessarily related
to the non-orthogonality. The computations of face integrals requires the value of the
variable in the middle of the face (point f in Fig. 4.8):∫

f

dSφ = Sφf (4.9)
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The linear interpolation of the value from the point P and N around the face gives φf .
However, the value of φ refers to the point of f1, which is not necessarily in the middle
of the face. So, the face integral, from the second order, reduces to first order accuracy.
For the convection term, for a generic CV we have

F c
CV = ∇(ρUρ) =

n∑
f=1

S(ρUρ)f (4.10)

in no skewness case,

F c
CV = ∇(ρUρ) =

n∑
f=1

S(ρUρ)fsk (4.11)

in skewness case. These leads to the error term

Ec
V =

n∑
f=1

S(ρUδρ)f (4.12)

with δφf = δf − δfsk = m(∇φ)f . It can be written

Ec
V = ∇(Γsk∇φ) (4.13)

where Γ = (ρU)fm is skewness diffusive coefficient. This coefficient is proportional to the
m value. It means that if m is greater, even Γsk is bigger. So, the skewness error have
diffusive type. In this Thesis, this error will be deeply study to prove a relation to the
inaccurate solutions.

4.2.4 Quality index

Quality grid error is reducible by refinement. As shown in Fig. 4.10(a), we can see how
the skewness error is dropped.

Another method to reduce quality grid error is to grow quality mesh (CV type, geo-
metric characteristic) as shown in Fig. 4.10(b)-(c). So, it is useful to define a metric in
order to evaluate a grid.
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(a) Reduction of skewness error by
refinement

Powered by TCPDF (www.tcpdf.org)

(b) Example of a better grid quality

(c) Reduction of non-orthogonality error with hy-
brid grid (quad and tri)

Figure 4.10: Example of reduction of grid quality error

Generally, for all elements and for all geometric characteristic, there are no significant
quality indicators. However, we can define some metric. For example, as shown in Fig.
4.11(a), a good measure for orthogonality is

QAR =
1

2

R

r
≥ 1 (4.14)

where if QAR = 1 we have an equilateral triangle. But it is useful only for triangle grids.
So, an alternative would be

QER =
max(s1, s2, ..., sn)

min(s1, s2, ..., sn)
≥ 1 (4.15)

where si is shown in Fig. 4.11(b). As in QAR, if QER = 1 the cell is equilateral.
A metric that can be associated with the skewness, even it is not rigorous, is the equi
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angle skewness, Fig. 4.11(c) defined as:

QEAS = max
(θmax − θeq

180− θeq
,
θeq − θmin

θeq

)
(4.16)

where
0 ≤ QEAS ≤ 1 (4.17)

and θ = 60◦ for triangles and θeq = 90◦ for quadrilateral grids. However, if QEAS=0 we
have an equi-angle triangle.
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(b)
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(c)

Figure 4.11: Aspect ratio (a), edge ratio (b) and cell equiangle skewness (c)

This measure is provided by commercial software as Fluent, so that we can easily
compute this index for each different mesh. On the other hand, we have to keep in mind
that this measure is not totally reliable. It doesn’t capture as well the skewness. For
example, we can see in Fig. 4.10(b) a non-orthogonal grid with no skewness. Nevertheless,
cell equiangle skewness is not 1 as it should be an ideal metric. So, cell equiangle skewness
involves even cells with no skewness error. This is important because we will use this
measure in order to find a correlation between this metric and gradients velocity. The
results could not be efficient as we except.

54



Chapter 5

Building the model

In this chapter, we will explain the necessary steps to define and solve computationally
the problem investigated in this Thesis.

5.1 Physical and computational descroption

As we have already mentioned, the flow past a square cylinder has been chosen beacuse
of its importance in some fields. In fact, there are many literato so that we can compare
the results. Finally, its computational set-up is not too difficult. In this section, we show
the main parameters defined and, in the next one, we will be focused only in the central
part of this Thesis, the mesh.

5.1.1 Geometry

DesignModeler tool, included in ANSYS leads us to define the geometry shown in the
Fig. 5.1, where the dimensions of the different domains are included. Moreover, it is
symmetric respect to x-axis.

3
0
D

20D 30D

1
3
D

10D4,5D

3
D

3D

Figure 5.1: Geometry model

55



4. Building the model

Furthermore, in the Fig. 5.2 the domains are defined from out to inside as outer ring,
middle C, wake and inner ring. In this last region, we will analyze the flow simulation.

1

2

3

4

Figure 5.2: Domains

At this point, it should be built the mesh, that in the next section will be discussed.

5.1.2 Model and boundary conditions

In order to solve the problem, the RANS k− ε model, described in the Chapter 3, is used
in this Thesis, where k is the kinetic energy and ε the dissipation, both parameters of the
turbulence.

In addition, we will work with a transient air flow, which is transfered with a high
Reynolds number (Re = 2.2 · 104). This flow moves in a 2D space and its dimensionless
properties are defined as:

ρ = 1

ν =
1

Re
≈ 4.54 · 10−5

Furthermore, the boundary conditions are so defined in Fluent:
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Boundary condition Type Characteristics

Cylinder Wall Non-slip condition.

Inlet Velocity inlet It is defined only the x-component of velocity
at the inlet. Turbulent intensity and length
scale are, respectively, set to 2% and 0.5

Lateral Symmetry and
Periodic

Within periodic type, we impose a trasla-
tional motion.

Outlet Pressure outlet Dirichlet condition: prel = 0 and the direc-
tion of the flow normal to the boundary. This
boundary condition should be imposed far
enough from the cylinder so that the flow so-
lution across the cylinder is not affected by
the outlet condition. In addition, turbulence
intensity and length scale has equal to those
defined in the inlet boundary condition.

Table 5.1: Boundary conditions

5.1.3 Solution Methods

In order to discretize and resolve this problem, in the following we have imposed these
numerical methods and solver:

• Solver: Pressure-Based.

• Pressure-Velocity coupling: PISO with Skewness Correction and Neighbor Cor-
rection both equal to 2 only in the non-orthogonal grids, while set to 1 in the others.

• Spatial discretization

– Gradient: Least Squares Cell Based.

– Pressure: Second Order.

– Momentum: QUICK.

– Turbulent Kinetic Energy: QUICK.

– Turbulent Dissipation Rate: QUICK.

• Transient Formulation: Second Order Implicit (Euler method).

Finally, the Residuals define the convergence ratio. Normally, to avoid errors induced
by the solver, this value is small enough, 0.001.
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Moreover, aerodynamics coefficients, i.e. lift and drag, are stored in different files for
each grid type. So, it is useful to save correctly the results of the simulations defining the
number of time steps.

5.2 Mesh description

In this section, there are described the steps to build the mesh necessarly to solve our
simulation. In particular, the Inner ring-grid will be deeply analyzed.

After the creation of the geometry, the mesh can be generated. Next, we can define
the turbulence model. We use the tool Meshing included in ANSYS. Four regions divide
the simulation domain (Fig. 5.2). Then, for each part, a distinct type of mesh has been
defined: firstly, the Outer ring-grid is generally structured but unstructured in the rear
part, across the wake. Secondly, a triangular unstructured mesh define the Middle C-
grid. Thirdly, the Wake grid is totally structured orthognal. Last, but not least, Inner
ring-grid is the most important zone in this study. We have generated seven typres of
grids for this region (Fig. 5.5) in order to analyze deeply the inaccurate solution affected
by a low quality mesh.

Figure 5.3: Mesh

In order to generate these seven grids, we have to define several conditions that are
stored in the table 5.2. As it is shown in the Fig. 5.4, each line of the domain is referred
by a letter. Next, we divide the edge defining the number of divisions and the bias type.
This last option, if it is active, means that we should impose a bias factor that is defined
as the total expansion ratio of the cells in this side. On the other hand, a hard behavior
option leads to fixed the size or number of divisions. This is imposed in all the cases.
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Figure 5.4: References to create the meshes

Label Bias type Number of elements
a no 94
b no 15
c no 150
d no 27
e no 66
f no 30
g ... .. . .. ... fct = 3 40
h no 40
i no 36
j no 48
k no 72
l . .. ... fct = 3.5 30

m ... .. . fct = 3.5 30
n no 160
o no 24

Table 5.2: Characteristics of each edge

The different types of mesh generated in the Inner ring is shown in the Fig. 5.5. We
have the structured orthogonal, structured non orthogonal, structured/unstructured, un-
structured, structured downwind non orthogonal, structured upwind non orthogonal and
structured top non orthogonal mesh. The grids of the others sections are equal. So, the
results for the different cases can be compared only in the inner ring.
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Firstly, in the structured orthogonal mesh, eight surfaces divide the Inner ring. The
number of divisions imposed to each edge of these surfaces are 24.

Secondly, in the structured non orthogonal, the Inner ring is always divided into eight
surfaces, but the features are different. In order to keep a structured mesh in the wake,
we have to define the number of elements on the left and right sides are equal to 72.
Furthermore, on the diagonal edges, we impose a number of divisions equal to 24.

Thirdly, the structured/unstructured mesh has the same procedure as in the structured
mesh, but and four zones are unstructured. To generate these regions, 24 elements divide
each edge, but no mapped face are imposed.

Next, the unstructured mesh is built. In this case, the external edges of the Inner ring
are divided into 72 elements and, in the cylinder sides, we impose a number of elements
equal to 24. In order to keep the mesh symmetric respect to x-axis, we have imposed
this number of divisions even in the diagonal edges. As in the unstructured zones of the
structured/unstructured mesh, no mapped face are set up.

Finally, the last three grids are combination of the first two ones. However, the Inner
ring is divided into nine surfaces in order to keep the non-orthogonal zone in one half
part of the inner grid. Structured upwind non orthogonal mesh has non-orthogonal region
in the upwind zone, while structured downwind non orthogonal mesh in the downwind
zone. On the top of the inner grid, structured top non orthogonal has the non-orthogonal
region there. These localization of the non-orthogonal region could be suggest us which
zone has a critical impact on the solution.
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(a) Structured orthogonal (b) Structured non orthogonal

(c) Structured/Unstructured
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(d) Unstructured

(e) Structured downwind
non orthogonal

(f) Structured upwind non
orthogonal

(g) Structured top non or-
thogonal

Figure 5.5: Inner ring grids

5.3 Mesh quality

In this section we are going to show the quality parameters, explained in Chapter 4, of the
seven types of grids defined before: Aspect Ratio, Non-orthogonality and Cell Equiangle
Skewness.
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Mesh Max. Aspect Ratio Min. Orthogonality Max. Skewness
Structured Orthogonal 4.85855 4.81664e-01 3.23771e-01

Structured Non Orthogonal 6.81491 4.81664e-01 4.04156e-01
Structured/Unstructured 5.19822 4.81664e-01 3.50503e-01

Unstructured 9.66749 2.87338e-01 8.082429e-01
Structured Downwind Non Orthogonal 7.21231 4.02806e-01 8.082429e-01

Structured Upwind Non Orthogonal 7.79483 2.59453e-01 7.235305e-01
Structured Top Non Orthogonal 1.13426e+01 3.36381e-01 7.584536e-01

Table 5.3: Mesh quality

The table 5.3 collects the aspect ratio, the minimum orthogonality and maximum skew-
ness values of the parameters related to mesh quality. Both orthogonality and skewness
values goes from 0 to 1. On the one hand, if the value is near to zero, it means that
the mesh has a low quality. On the other hand, the values near to 0 correspond to a
high quality in the skewness case. In general, for the aspect ratio, where the flow field
exhibit strong gradients, it is better to avoid sudden changes. We can see in table 5.3
high maximum value of aspect ratio in all the meshes. This is probably due to the abrupt
change of the cell size between the wake and the rear part of the outer ring. Furthermore,
in order to not lose the main information, we have generated the wake domain sufficiently
long. So, the effect of aspect ratio can be considered negligible in the solution. Finally,
if we look into to the orthogonality values, we can see they are similar. This leads us to
think that the non-orthogonality has an effect in the error of the solution, but it probably
will be the same in all meshes and we can not consider it. The only parameter which is
different for each grid is the skewness.
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Figure 5.6: Skewness contours

In the Fig. 5.6, the various skewness contours have been shown, where we can see the
scale of colors used with the corresponding values. Blue color is referred to low value
of cell equiangle skewness, while red color to highest values. The structured meshes ap-
pear completely colored blue as we expect. In all the non-orthogonal mesh, we observe
a variation of colors from navy blue to yellow. In particular yellow color are present on
the diagonal where the distortion of non-orthogonal grids is much higher. Moreover, the
unstructured mesh have almost all colors in a distributed way.

To define which mesh has a larger skewness factor, the percentage data have been col-
lected for each part of the domain in all cases and they have been plotted in the following
histograms.
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(a) Outer Ring (b) Middle C

(c) Wake (d) Inner Ring

Figure 5.7: Histograms

As we can see in the figures 5.7 (a), (b) and (c), generally, the skewness values concide
approximately for the four cases, as we expected. Theoretically, the outer ring, mid-
dle C and wake grids should be the same for all cases. However, some variances can
appear according to the direction in which FLUENT generates the mesh. Finally, the
value of the skewness for the structured orthogonal, structured non orthogonal, struc-
tured/unstructured and unstructured mesh is different, as it is shown in the figure 5.6
(d). The worst results are obtained for the structured non orthogonal grid. It is because
its higher values of skewness (∼ 0.4) are related to the largest percentage value of total
elements (∼ 20%). In the second place, the unstructured grid is located. The highest
percentage of elements near to 20% has a skewness value of 0.1. In the case of the struc-
tured/unstructured mesh, most of the elements have a skewness value approximate to
0.05 because of the effect of the structured meshes. Last but not least, the structured
mesh have all the elements with the minimum skewness.
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Chapter 6

Postprocessing: Results Analysis

In this chapter, we will discuss all the results of interest that can be obtained in the
Postprocessing. The main objective of this Thesis is to show that the quality grid can be
affect the solution.

6.1 Aerodynamic Coefficients

The first quantities of interest are the Aerodynamics Coefficients as Lift and Drag coef-
ficients. They can be expressed, respectively, as

CL =
L

1
2
ρV 2D

(6.1)

CD =
D

1
2
ρV 2D

(6.2)

where D is the reference length of the square cylinder.

In Fluent, these coefficients can be easily calculated. After we have defined the same
time step in all grids, ∆t = 0.02, and a number of iterations equal to 12000 so that we
make sure to have in all cases a steady flow, we can plot each aerodynamic coefficient for
all the seven mesh and compare them.

First of all, the mesh that gives the most accurate solutions according with the lit-
erature is the structured orthogonal mesh with a CL value near to 1.5 So, it can be
considered as a reference for the other grids that we analyze. For a better visualization
we have chosen to show the results dividing in two groups. In the first group, as we can
see in the Fig. 6.1 and 6.3, there are the reference grid (structured orthogonal), structured
non orthogonal, structured/unstructured and unstructured meshes. In the other group,
as shown in Fig. 6.2 and 6.4 the reference grid too, structured downwind non orthogonal,
structured upwind non orthogonl and structured top non orthogonal meshes. Even in
the next figures we will use this visualization.
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5. Postprocessing: Results Analysis

Figure 6.1: Lift coefficient for structured orthogonal, structured non orthogonal, struc-
tured/unstructured and unstructured

Figure 6.2: Lift coefficient for structured orthogonal, downwind, upwind and top non
orthogonal
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Figure 6.3: Drag coefficient for structured orthogonal, structured non orthogonal, struc-
tured/unstructured and unstructured

Figure 6.4: Drag coefficient for structured orthogonal, downwind, upwind and top non
orthogonal

As we can see in the previous figures, the meshes that have results nearer to the ref-
erence grid are the structured/unstructered, unstructured and structured downwind non
orthogonal. While the unstructured mesh underestimate the results of CL and CD, the
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Figure 6.5: Representation of a period, average and maximum lift

Mesh CL C̃L CD C̃D T St

Structured Orthogonal 0 1.4664 1.900 1.9616 7.22 0.139

Structured Non Orthogonal 0 0.1455 1.0916 1.0945 5.28 0.189

Structured/Unstructured -0.002 1.4989 1.9035 1.9709 7.26 0.138

Unstructured -0.003 1.2762 1.7631 1.8090 7.74 0.130

Structured Downwind Non Orthogonal 0 1.6519 1.9612 2.0426 7.26 0.138

Structured Upwind Non Orthogonal 0 0.1267 1.0656 1.0688 5.24 0.191

Structured Top Non Orthogonal 0.15 0.5286 1.3849 1.4244 6.62 0.151

Table 6.1: Maximum and averaged coefficients

downwind non orthogonal mesh overestimate these quantities. Moreover, in these meshes
the flow becomes faster steady rather than the reference grid. On the other hand, struc-
tured non orthogonal and upwind non orthogonal grids have a stationary flow very later
rather than the other meshes. Furthermore, the last two grids provide a completely wrong
result with a CL value near to 0.15, an order of magnitude under the correct value. Even
the top non orthogonal grid has a lower value of both aerodynamic coefficients. However,
the mean CL is not 0 as the other grids, beacuse the mesh is not symmetric. For drag
coefficient, we can see in unstructured case a non-periodic feature.

In addition, in the following table (6.1) there are collected the maximum (C̃L) and
average (C̄L) aerodynamic coefficients. There are also in the table the period T , repre-
sented in Fig. 6.5 and the Strouhal number St. In a dimensionless model St = 1/T . As
it was observed before, the average value of the lift coefficient is different from zero when
the mesh is top non orthogonal. The average drag coefficient is not zero in all cases. The
reference grid have mean drag coefficient equal to 1.9, and this is near to the experimental
data.
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Figure 6.6: Maximum aerodynamic coefficients

Furthermor, in a histogram we plot the maximum values of lift and drag coefficients for
all grids. In this figure (6.6), it is easier to see the differences between the meshes. As we
have said before, structured orthogonal and structured/unstructured mesh obtain a very
similar solutions. On the other hand, structured non orthogonal, upwind non orthogonal
and top non orthogonal, which get a lower results. Unstructured grid have instead an
acceptable result, even it is a little lower than the reference mesh.

Finally, we compute the relative error committed in the maximum values of the lift
coefficient. For each case in the table 6.2, we store the percentage value of the relative
error. Around 90% is the percentage error committed by the structured non orthogonal
and upwind non orthogonal. A very high value which can not be neglected. observe
that the unstructured mesh has the highest value of the relative error, followed by the
structured non orthogonal mesh. Even the top non orthogonal grid have a high value
(around 64%) of relative error, while the other grids have acceptable estimation.

ε(%) =
|C̃L(orthogonal)− C̃L(gridi)|

C̃L(orthogonal)
· 100 (6.3)
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Mesh ε(%)
Structured Orthogonal -

Structured Non orthogonal 90.08
Structured/Unstructured 2.22

Unstructured 12.97
Structured Downwind Non orthogonal 12.65

Structured Upwind Non orthogonal 91.36
Structured Top Non orthogonal 63.95

Table 6.2: Relative error of lift coefficient

6.2 Pressure distributions

The pressure coefficient is another important variable that can be evaluated. It is related
to the aerodynamic forces. As it is shown in Fig. 6.7, around the top half of the cylinder
surface, we analyze the variations of mean pressure coefficient and RMSE static pressure
coefficient, respectively, C̄p and Cprms .

D

Figure 6.7: Cylinder surface scheme

To get the results of these variables, only one period is simulated, making sure of start
in CL = 0 and ∂CL/∂t > 0. Keeping the same time step, ∆t = 0.02, the number of
iterations are modified beacuse the period T , for each case, changes.
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Figure 6.8: Mean pressure coefficient, C̄p

Figure 6.9: Mean pressure coefficient, C̄p
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Figure 6.10: RMSE static pressure coefficient, Cprms

Figure 6.11: RMSE static pressure coefficient, Cprms
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In the Fig. 6.8 and 6.9, it can be noticed that the mean preassure coefficient for the
structured/unstructured, unstructured and downwind non orthogonal mesh is very sim-
ilar to the results obtained from the reference mesh, the structured orthogonal grid. In
addition, these results are near enough to the experimental data gathered from the lit-
erature. On the other hand, the structured non orthogonal and upwind non orthogonal
meshes underestimate the mean pressure coefficient before s/D = 0.5, while after this
positions, the results are overestimated. However, we can see two different values about
the top non orthogonal mesh, beacuse the grid is not symmetric. This leads to have
different results in the upper and down zones of the cylinder. The results for the upper
cylinder, where the grid is not orthogonal (in legend top non orthogonal 1), is similar to
the structured non orthogonal and upwind non orthogonal. While the results obtained
for the down case are similar to the bibliography data before s/D = 0.5, but after this
position overestimate the experimental data. In all cases, in the stagnation point, located
in the frontal face, the maximum C̄p is gained, i.e. 1, while it is obtained negative values
of mean pressure coefficient.

Finally, the RMSE static pressure coefficient, i.e. the root-mean-square error of Cp, is
analyzed. As in the mean pressure coefficients case, in the Fig. 6.10 and 6.11, it can be
noticed that the results of Cprms about the structured/unstructured, unstructured and
downwind non orthogonal meshes are close enough to the solutions of the structured
mesh and literature data. On the other hand, the structured non orthogonal, upwind
non orthogonal and both cases about the top non orthogonal grids underestimate a lot
the values of Cprms on the total half cylinder surface.

6.3 Wake flow

In this section we will analyze the mean velocity in the x direction, ūx, along the line
y = 0, which divides the square cylinder into two equal parts. Next, we will plot the
stremlines and the instantaneous vorticity when lift coefficient has maximum value
and, last but not least, the mean velocity in the y direction along lines x = −0.25, x = 0,
x = 0.25 and x = 0.5. This last quantity is inspired by Fig. 2.8 from Cao and Tamura,
[15].
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Figure 6.12: Mean velocity in the x direction, ūx

Figure 6.13: Mean velocity in the x direction, ūx
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In Fig. 6.12 and 6.13 there are plotted the data of mean velocity in the x direction about
each grid. In addition, the data, included the bibliography, are saved until x/D = 10. As
it was shown in all previous figures, the results provided by the structured/unstructured,
unstructured and downwind non orthogonal meshes are very similar to the reference grid
(structured orthogonal mesh) and literature data. In all cases, it can be noticed that the
curves firstly decrease to increase later until a maximum. However, for each mesh, this
evolution occurs in different points. One of the discrepancies that stands out is in the
portion of space where the velocity is negative. In practical terms, the regions where the
flow is reversed are completely different between the group of structured non orthogonal,
upwind non orthogonal and top non orthogonal meshes and the other grids. In addition,
the maximum value of ūx for the first group of grids is lower too than the others. All of
this could lead to wrong conclusion about the physics of the simulated problem. This is
also confirmed by the velocity profiles at vertical lines, Fig. 6.14-6.15, the same type of
pictures from Cao and Tamura (Fig. 2.8), [15]. We can see that, at the line x = 0.25 and
x/D = 0.5, no negative values are present in the flow about structured non orthogonal,
upwind non orthogonal and top non orthogonal meshes. Moreover, at line x/D = 0, a
strange behaviour affects this bad group of grids: the amount of mean velocity is totally
different from the other meshes in the beginning of the vertical position. We can suppose
that this is due to the non separation of the boundary layer, which leads to have still
high values at the proximity top of the cylinder. This is also prove by the two different
features of the top non orthogonal mesh. The flow at the negative y position, which is
not affected by the skewness error, is rebaltated in positive position in order to reveal
the asymmetry of the grid. In fact, the mean velocity is similar to the ”good” meshes.
Finally, at line x/D = −0.25, all grids have similar features instead.
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(a) (b)

(c) (d)

Figure 6.14: Mean velocity profiles along the vertical when x/D = −0.25 (a), x/D = 0
(b), 0.25 (c), 0.5 (d) for structured orthogonal, non orthogonal, structured/unstructured
and unstructured grid
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(a) (b)

(c) (d)

Figure 6.15: Mean velocity profiles along the vertical when x/D = −0.25 (a), x/D = 0
(b), 0.25 (c), 0.5 (d) for structured orthogonal, downwind non orthogonal, upwind non
orthogonal and top non orthogonal grid

At this point, the suspect that the boundary layer is not well separated for structured
non orthogonal, upwind non orthogonal and top non orthogonal is plausible. So, it is
useful to analyze the streamlines and the instantaneous vorticity when lift coefficients
value is maximum for each grid. In Fig. 6.16 we have plotted these results for each grid.
Then, our considerations are confirmed: the flux is not separate at the boundary layer for
these grids. From the vorticity contours, it can be noticed that the intensity of this value
are much lower than other grids. Moreover, for top non orthogonal mesh, in the down
zone of the cylinder, the flux is separated instead, while in the upper region of the cylinder
is not separated. The only difference between the two zones is the mesh orthogonal and
not orthogonal. Another demonstration that can be a correlation between a quality mesh
and accurate solutions.
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(a) Structured orthogonal (b) Structured non orthogonal

(c) Structured/Unstructured (d) Unstructured

(e) Structured downwind non orthogonal (f) Structured upwind non orthogonal

(g) Structured top non orthogonal

Figure 6.16: Streamlines and vorticity contours

6.4 Correlation Coefficients

In order to estimate a direct relation between skewness and error, we are going to compue
a correlation coefficient and prove that this value is significant.

Firstly, we have to choose two grids to confrontate. A fine grid, in this case Structured
Orthogonal, and a coarser grid that can be Structured Non Orthogonal, Upwind Non
Orthogonal or Top Non Orthogonal. These are the grids in which the results are so many
different from the others.

Secondly, we have to compute in the Inner Grid region the difference between the two
grid chosen of the cell equiangle skewness and the gradients of flow field of velocity. With
Fluent we can be easily obtain the values of these quantities in each grid. However, we
can not calculate the differences between the two grid chosen beacuse the nodes of each
grid are different. So, with Matlab, we interpolate the values of cell equiangle skewness
and grandients velocity in the same equispaced grid. In this way, the computation of the
differences is provided.
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Thirdly, a measure of a quantity that describe the gradients velocity is needed to
calculate. In fact, the gradients velocity are four, ∂vx

∂x
, ∂vx
∂y

, ∂vy
∂x

, ∂vy
∂y

. These values describe
a Jacobian matrix of the flow field velocity. We choose the euclidean norm of this matrix
as measure to represent the gradients velocity.

Then, we have all ingredients in order to calculate a correlation coefficient. However,
the first results are not so fine. In fact, the data are so many noisy (6.17) and the
linear correlation coefficient are near to zero. This is not what we expect. There are
several reason for this fact. First, the cell equiangle skewness are not a reliable metric
for the skewness. Another reason is that the inner ring is a region too big to capture
a direct relation between skeness and error. The noisy data can be produced beacuse
the error is propagate from the convective flux in zones where the skewness differences
are small. Hence, we can try to localize only the region in which the skewness difference
are higher. So, we choose the top part of the upwind zone of the inner ring to compute
a correlation coefficient. This time the results are much better than before. With the
help of the logaritmic transformations, the correlation is now near to 0.35, a moderate
correlation between the skewness and the error. However, as we have already explained
in section 4.1, we have to keep in mind that this measure is not reliable. In addition,
we compute linear correlation coefficients while the data features are not linear. It is
needed a rigorous statistical method to compute correctly a correlation coefficient. So,
due to all the approximations both in the model and in the logical steps taken, it could
not be considered a real statistical correlation, but more a kind of bulk measure of the
link between the involved variables.

(a) (b)

Figure 6.17: Scatterplot of cell equiangle skewness and gradients (a), with absolute value
in (b)
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Figure 6.18: Scatterplot of cell equiangle skewness and gradients in absolute value
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Chapter 7

Conclusion

Computational Wind Engineering has improved a lot in the last decades. There are
many advantages in terms of time and cost of the simulations rather than expensive
experiments. However, we should pay attention during the building of the model. An
inappropriate definitions of the turbulence model, or the wrong numerical scheme chosen
can have a strong impact on the solution. Overall, the construction of an inappropiate
mesh is one of the most common errors. So, there are many methods to improve the
mesh quality in order to avoid errors due to the inappropriate grids.

In this Thesis, the aim is to investigate about the effect of a poor mesh quality on the
result. The local differences in quality between the grids used to run the same simulation
can have a strong impact on the results. Starting from a local analysis of the involved
forces, in terms of CL, CD and Cp, a local source of error has been highlighted. Then,
analyzing the streamlines and the vorticity contours, we have noticed that the flux is
not separated at the boundary layer in cases of structured non orthogonal, upwind non
orthogonal and top non orthogonal. In addition, inspection of velocity in the wake has
shown that the error due to poor grid quality, that was supposed to be local, affects the
quality of the solution even far away downstream from the body.
After some logical steps, a moderate correlation between skewness and variation of ve-
locity has been founded. However, we recall that cell equiangle skewness is not a reliable
measure of skewness. So, our estimation of linear correlation coefficient is not rigorously
computed, but it is undeniable that a local error has been introduced by the difference
between the several grids. For future works we suggest to find a reliable measure of
skewness that can be computed, so that a rigorous correlation can be found in order to
prove a direct relation between skewness and inaccurate solutions.

In conclusion, all that has been discussed in this Thesis is not just theoretical, but
can have a wide range of applications. A typical subject of interest in computational
wind engineering is the simulation of the wind flow behind a tall building. If a wrong
simulation is run, then two kind of errors are introduced. The mistaken estimate of the
CD can lead to underestimate the structural response of the building, and consequences
in terms of safety are obvious. On the other hand, the misleading results on the nature of
the flux, as we have seen in mean velocity in the x direction values along line y = 0, can
have unpleasant consequences in terms of urban comfort. If the flow is actually reverse,
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while simulation suggests the opposite, then a pollutant dispersed in the wake could
be directed towards the rear face of the building, causing a discomfort not predicted by
the model, or a waste of money for an urban comfort installation built in the wrong place.
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