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1 Introduction

Abstract

The field of Topological Data Analysis is a recent approach to the task of extracting

information from especially troublesome datasets. The rationale of applying topological

methods lies in the essentiality of the concept of topological shape, which only accounts

for the effective structure of data and is blind to the dimensionality and particular metric,

features that in some cases convey more noise than information. The main tool to have

been employed in this endeavor is persistent homology, a concept in algebraic topology

which extends the homological group representation of a space X to a discrete filtration

of subspaces of X. In particular, we assume to have a chain of gradually more refined

simplicial complexes over a given set of data points, with the corresponding inclusion maps

between them: homology provides a computable method to count the holes, while persis-

tence is applied to analyze their evolution as connectivity grows [12].

In the present work we introduce a minimality constraint and focus on computing the

shortest possible basis of the first homology group H1 of a weighted simplicial complex.

The task is proved to be an NP-hard problem for Hk with k > 1 [7], but the k=1 case

is subject of recent research. Taking the lead from the recent work of Dey [6], which

borrows ideas from previous studies ([8],[9]) to improve computational complexity, I have

implemented a polynomial-time algorithm for the shortest homology basis of a simplicial

complex over Z2 coefficients and extended it to compute persistence over a family of its

refinements. The final objective is to experiment with existing datasets of neuroscientific

measurements, in the light of the framework proposed by [14], where a new topological

object called homological scaffold is introduced to evaluate brain neuron activity correla-

tions at a mesoscopic level, interpreting holes as inhomogeneities in the network structure.

The algorithm has been tested on real-world examples concerning neural activity of a

model organism, the nematode worm C. Elegans. The foreseeable developments include

incorporating the method in the pipeline of the scaffold computation, as an effort to shed

light on challenging questions in neuroscience.

Motivation

It is a well-established fact that the modern era of data calls for increasingly
refined approaches to obtain knowledge out of the unprecedented amount of
information at our disposal. Machine-gathered data is cheap and abundant,
but its processing has from the beginning had to pay the price of its sheer
size; besides the obvious expenses of dealing with a higher-than-ever volume
of records, along with the Big Data come new challenges that are tied to
the very structure (or lack thereof) of the information management process:
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for example, information is not always reliable, invariably noisy, often un-
structured and intractably high-dimensional, and sometimes it is even hard
to compute a metric on data points. Classic approaches to the problem
broadly involve some kind of dimensionality reduction, and various meth-
ods both deterministic and stochastic have been proposed to project data
on smaller-dimensional subspaces. Their focus is on finding an efficient and
sensible way of doing so while maintaining a sufficient sense of distance and
the most possible amount of variance. Another recent approach which has
gained momentum in the last decade tackles the problem in a novel and
somehow radical way: geometric relations in a datasets can approximately
be represented as closeness relations through manifold sampling techniques.
Consequently, a purely topological method can arise, concerned solely with
the continuous shape of data, which is blind altogether to the dimension of
the feature space; as such it avoids the curse of dimensionality while at the
same time providing robustness against noise, outliers and lack of structure.
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2 Background

2.1 Simplicial Complexes

The essential topological tool we shall utilize to encode relationships between
objects is a generalization of the concept of graph. A graph is usually de-
scribed by a pair of sets, one of vertices and one of edges: which is, a group of
objects and some binary relations between them. In general we need to de-
scribe higher-order relations between more than two entities, such as triplets
and so on. This can be formally encoded by the following definition:

Definition 2.2. Simplicial Complex
Let S be a non-empty discrete set. An abstract simplicial complex is a
collection X of finite subsets of S, closed under restriction.

In words a simplicial complex X is a subset of the power set of S, with the
additional property that every element of X must be made up of other ele-
ments of X. These elements are called simplices, more precisely a k-simplex
is an element of X of cardinality k + 1. The subsets of a simplex are called
faces, and are of course simplices themselves by definition.
If we consider the elements of S to be geometrical points (which is not nec-
essarily the case), we therefore see that a 0-simplex is a single point. A
1-simplex is an (undirected) edge between two points, whose 0-faces are the
points. A 2-simplex is a triangle, whose faces are the 3 edges and the 3
points. A 3-simplex is a tetrahedron, subdivided in 4 triangular 2-faces, 6
linear 1-faces and 4 0-simplices, the points.

a

b

c d

X = {{a}, {b}, {c}, {d}, {a, b}, {c, d}, {a, c}, {b, c}, {a, b, c}}

Figure 1: An example of a simplicial complex and its graphical representa-
tion.

In this frame of reference, we see that a graph is a simplicial complex
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containing at most 1-simplices, i.e. G = (V,E) where V ⊂ X contains the
0-simplices and E ⊂ X the 1-simplices.

Example 2.3. Consider an undirected graph, defined in the classic sense as
G = (V,E), and say for example V = {a, b, c} and E = {{a, b}, {a, c}}

a

b c

Figure 2: The graph in example 2.3

It is easy to interpret G as a simplicial complex X by defining

X := V ∪ E = {{a, b}, {a, c}, {a}, {b}, {c}}

which clearly follows definition 2.2.

Topology of Simplicial Complexes

In order to discuss the shape of an object, it is necessary to at least provide
it with a topology. We therefore set forth to construct a suitable open set
structure. Let us begin by defining the standard k-simplex

Definition 2.4. We call the standard k-simplex the subset of Rn

∆k := { x ∈ [0,+∞)k+1 :
k
∑

i=0

xi = 1 }

Therefore, the standard 0-simplex is the point 1 ∈ R, the 1-simplex is
a line segment connecting points (0, 1) and (1, 0) in R

2, and so on. One
sees that the (k − 1)-faces of ∆k are k+1 copies of ∆k−1, and in general
faces of ∆k are standard j-simplices, with j < k. The construction of a
topological structure for a generic value of k is performed inductively via a
procedure of attaching maps, which connect faces along the boundary of a
higher-dimensional simplex. Define the k-skeleton of a complex X as the
quotient

X(k) :=

(

X(k−1)
⋃ ∐

σ : dimσ=k

∆k

)/

∼ (2.4.1)

where:
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• X(0) = S

•
∐

represents disjoint union.

• ∼ is an equivalence relation that identifies the faces of a standard sim-
plex with the corresponding subsets in the lower dimensional j-skeleton.

The full union X :=
∞
⋃

k=0

X(k) defines the simplicial complex as a topological

space (note the same symbol denotes the actual set-theoretic object as well).
The natural choice is to give this space the weak topology : a set U ∈ X is
open iff all of its projections onto the subspaces X(k) are continuous, i.e. iff
U ∩X(k) is open ∀k.
For completeness, notice that other structure can arise through the recursive
relation (2.4.1) modifying its base component from the standard simplex to,
for example, the k-cube [0, 1]k, or modifying the attaching mechanism from
the simple identification between borders of a simplex and one-step-smaller
simplices, to a very general continuous map between the two. In the first case,
the reasonably tame cubical complexes appear, whereas the second case gives
rise to some of the most flexible (and complicated) topological spaces, known
as CW complexes.
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2.5 Complexes with a Metric

The set-theoretic notion of simplicial complex is especially suitable for topo-
logical applications, because it only relies onto inclusion. In most real-world
application, however, topology is only obtained as a byproduct of the metric,
as most phenomena are measured in some kind of metric space. It is there-
fore only natural that there exist ways to construct a simplicial complex from
data points that lie in R

n, defining relations on the basis of distance. Let us
first provide some useful constructions, and later show how these relate to
the concept of metric.

Definition 2.6. Flag, or Clique Complex: We define a flag complex or
clique complex as the maximal simplicial complex having any given graph as
its 1-skeleton.

In practise, a clique complex introduces some sort of constraint on the
presence of high-dimensional simplices: requiring it to be maximal, every
time the underlying graph contains three edges in the form of a triangle, the
corresponding 2-simplex must belong to the complex. By the same token,
every four triangles that form a tetrahedron must be ”filled”, and so on: a
clique complex is said to fill a frame.

Definition 2.7. Nerve of a covering: Let U = {Uα} be a family of subsets
of a topological space. The nerve of U is a simplicial complex such that its
k-simplices are the non-empty intersections of k + 1 elements of U .

The 0-skeleton of this complex is made up of the subsets, its 1-skeleton
are the pairs of subsets that intersect on nonempty sets, etc. Notice that this
is indeed a well-defined simplicial complex, because if a family of sets has
nonempty intersection, all its sub-families do as well.
Notice that a clique complex is remarkably efficient in terms of the input one
needs to define it: once the 0- and 1- skeletons are provided, the full complex
can be determined uniquely. Conversely, a nerve complex, which lacks the
maximality condition, must be explicitly specified in full, with a noticeable
increase in complexity.
Let us now see two important classes of simplicial complexes, defined from
a point cloud, i.e. a set of points in a normed vector space and therefore
intrinsically metric, that implement the aforementioned schemes.
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Definition 2.8. Vietoris-Rips Complex: Let Q ⊂ R
n be a discrete subset,

whose elements we regard as data points, and let ε > 0. VRε(Q) is the
simplicial complex over the discrete set Q whose simplices are all the finite
collections of points of Q whose pairwise distance is less than or equal to ε.

In words, the Vietoris-Rips complex of radius ε is built by computing
the pairwise distance of points and generating the 1-skeleton accordingly.
Then, higher-dimensional simplices are simply built by grouping together
sets of points such that all relative distances are within the ε threshold. This
amounts to computing only n(n − 1)/2 distances (keep in mind that, for
high-dimensional spaces, computing a distance is not inexpensive).
We can easily see that VRε is the metric counterpart of a clique complex: if
three edges exist and form a triangle, the corresponding 2-simplex satisfies
the definition and hence belongs to the complex. This is equivalent to im-
posing the maximality condition, and therefore the Vietoris-Rips complex is
built solely on the basis of the 1-skeleton. Hence it is clique.
Let S : VR → R

n be the projection map which sends singletons in VR to
the corresponding points in R

n, and sends any k-simplex into its correspond-
ing convex hull. We define the shadow Sh of the complex as the image of
projection S. It is easy to see that, tweaking ε and the cardinality of Q, it
is possible to obtain simplices in VR of dimension (potentially much) higher
than n: this is a clear limitation if one intends to employ the VR complex to
approximate an unknown geometric structure, usually a differentiable mani-
fold, of which the point cloud is supposedly a sample. Indeed we can make
this statement formal by observing that, given the suitable algebraic and
topological structures, VR and Sh cannot be homeomorphic due to the dif-
ference in their dimensions ([23]). A well-known effort to overcome this flaw
is given by a different kind of metric realization of a simplicial complex.

Definition 2.9. C̆ech Complex: Let Q ⊂ R
n be a discrete subset as above,

we define Cε(Q) as a simplicial complex whose k-simplices are sets of k + 1
points of Q such that the intersection of ε-balls centered in those points is not
empty.

The difference with VR lies in the fact that one does just check pair-
wise distances, but requires a k + 1-fold intersection to be nonempty in
order to introduce a k-simplex. This more stringent condition obviously
implies C̆ε(Q) ⊆ VRε(Q), thus maximality is not satisfied in general and
C̆ε is not clique. Moreover, checking for all k + 1-fold intersections, where
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k = 1, ..., |Q| − 1 is vastly more expensive than simply computing the 1-
skeleton, and requires more memory to store.
On the other hand the nerve lemma ensures that a such complex comes with
a useful property:

Property 2.10. C̆ε(Q) is homotopic to the ε-hull around Q.

This is due to the fact that C̆ε is a particular case of a nerve complex: in
particular, a nerve complex with the subsets Uα being the ε-balls centered
in points of Q. Therefore, the C̆ech complex is topologically superior in its
ability to mimic the structure of the data points that it comes from.
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2.11 The Free Group and the Fundamental Group

The Free Group

In order to give a proper theoretical grounding to the concept of homology
to follow, let us briefly introduce the concept of free group. Given a set of
groups G = {Gα}, consider the set of words (strings of objects) g1g2...gm
with finite m, such that all gi’s belong to some group in G, they are not
its identity, and no two adjacent letters belong to the same group. Such a
word is called reduced. It is clearly always possible to obtain a reduced word
from any string of gi’s, by applying group operations and canceling out the
identities, repeating if necessary. Since m is finite this procedure terminates
until a reduced word (potentially the empty string) is obtained. It is not too
simple to verify that

Property 2.12. There exists only one reduced form of any word.

An important consequence of this fact is the following lemma

Property 2.13.
(

x ∼ y iff x, y have the same reduced form
)

is an equiva-
lence relation

So now we can consider the set of finite-length words, modulo the equiv-
alence relation induced by reduction.
Let us add to the set of words an operation: given two words, they can
be concatenated. Then the empty word functions as the identity element.
Concatenation also has another important characteristic:

Property 2.14. String concatenation and reduction commute.

I.e., it is the same to reduce two words and then concatenate them, or
to first join them and then reduce the resulting string. Therefore, the con-
catenation operation can be lifted to the quotient set (modulo reduction),
yielding a well-defined operation on equivalence classes of words. The class
of the empty word still functions as the identity element, and it is easy to
produce the general construction of the inverse: given any (reduced) word
g := g1...gm, due to the group structure of the Gα’s one can form the word
h := g−1

m ...g−1
1 (which is still reduced). It clearly holds that gh = hg = 0,

where 0 identifies the identity of the quotient set, i.e. the equivalence class
of the empty word.
In order to conclude that this algebraic object is indeed a group, one finally
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needs to prove that concatenation is also associative. To prove it directly
would be rather complicated and tedious: instead, one can build a map from
the quotient set to a known associative group, and show that this map is
also a homomorphism. Then we have indirectly proven associativity, and
can conclude the final result

Property 2.15. The set of words modulo reduction, equipped with the con-
catenation operation, is a group, and is called the Free Group.

Sometimes, one can specify a nonempty set S to work as an alphabet,
and build a set of symbols W = S ∪ S−1 made up of letters of S and their
inverses S−1, instead of giving groups Gα explicitly. In that case, we say that
F is the Free Group on S.

Example 2.16. Consider the simple alphabet S := {1}. Let us, in this
case, denote its inverse by −1. The free group F (S) is, up to isomorphism
and some ingenuity, the group of integers equipped with the sum (Z,+).
Indeed, elements of F ({1}) are reduced strings of 1’s and -1’s, which is to
say they are either empty or entirely made of either 1’s or -1’s. Consider the
function on F ({1}) which computes the sum of the elements of the reduced
representative of a word class. It holds that (indicating concatenation as ◦)

s : (F ({1}), ◦) → (Z,+)

is a group homomorphism, as

s(h ◦ g) = s(h) + s(g)

Furthermore, ∀z ∈ Z there exists exactly one reduced word g such that
s(g) = z, and therefore s is an isomorphism.
On the other hand, it is rather involved to give a description of the free group
on two generators.

Knowledge of the free group will prove handy in the construction of sim-
plicial homology, as a source of the algebraic structure of the k-chains that
is the core of the subject.

The Fundamental Group Let (X, x0) be a pointed topological space. We
call a loop a closed continuous curve γ : I → X such that γ(0) = γ(1) = x0.
Consider homotopy equivalence: if there exists a continuous map of maps
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f : I × I → X (continuous in both arguments) such that for two loops
γ, γ′ it holds that f(I, 0) = γ and f(I, 1) = γ′, then the loops are said to be
homotopical. Homotopy is clearly an equivalence relation on the set of loops
with base x0, and we shall at some point perform its quotient. First, though,
we can bring more algebraic structure into play.
Consider any two loops γ, γ′. Define the concatenation γ ◦ γ′ : I → X =
γ(2t)I[0, 1

2
) + γ′(2t − 1)I[ 1

2
,1]. The resulting curve is still a loop with base x0,

obtained by following the two paths in succession at double speed.
Next, consider a constant curve e(t) = x0. The products e ◦ γ and γ ◦ e are
both strictly speaking different curves than γ. Nevertheless, there exists a
change of parameter, i.e. a bijection ϕ of I onto I, such that γ = (e ◦ γ)(ϕ)
and γ = (e ◦ γ)(ϕ−1). In other words, e ◦ γ and γ ◦ e are both homotopical
to γ.
By the same argument, the two products of loops (f ◦ g) ◦ h and f ◦ (g ◦ h)
only differ by a change of parameter, and are thus homotopical too.
It is slightly more elaborate to prove that for any loop γ(t), the loop γ(1−t) is
an inverse modulo homotopy. It suffices to produce such homotopy explicitly:
consider ∀t ∈ [0, 1] the path γt(s) = γ(s)Is∈[0,1−t] + γ(1 − t)Is∈[1−t,1]. Then
defining ηt as the inverse path of γt, a direct calculation shows that γt ◦ ηt
is a homotopy of loops connecting smoothly γ(s) ◦ γ(1 − s) to the constant
path e, and its inverse (γt ◦ ηt)(1− s) connects smoothly γ(1− s) ◦ γ(s) to e.
Hence we have explicitly built an inverse modulo homotopy.
It remains to prove that concatenation of loops preserves the homotopy class:
indeed if ft and gt are homotopies connecting f0 to f1 and g0 to g1 respectively,
then the concatenation of the two ft ◦gt (as functions of s) connects f0 ◦g0 to
f1◦g1. So denoting by [f ] the homotopy class of f , it holds that [f ]◦[g] = [f◦g]
and therefore the operation lifts properly to the quotient set. By now we
can safely call the concatenation of loops a product, as it is evident that it
represent a group operation modulo homotopy:

Definition 2.17. The quotient set of loops with basepoint x0 modulo homo-
topy equivalence is a group with respect to the concatenation operation, and
is denoted π1(X, x0). We call it the Fundamental Group of X at basepoint
x0.

We may add as a final remark that the dependency on the choice of
basepoint x0 is not as relevant as it may appear: if the space X is path-
connected, one can prove that there exists an isomorphism between π1(X, x0)
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and π1(X, x1), ∀x0, x1 ∈ X. Therefore, for path-connected spaces the fun-
damental group is unique up to isomorphism, and is sometimes denoted as
simply π1X.

π1X in action

While the construction of π1(X) is relatively straightforward, it is not so
simple to get a sense of its meaning. In particular, one may wonder under
what circumstance a topological space has a non-trivial fundamental group:
this means proving that a homotopy between two paths does not exist, or
equivalently that it is necessary to break continuity to deform one path into
another.
Clearly, the constant loop belongs to the fundamental group of any space:
therefore, ifX is path-connected π1X is trivial if and only if every loop can be
smoothly deformed to the constant loop. Intuitively, this means that a space
cannot have holes. It is easy to accept that for a space with a hole, loops
that wind around the hole and loops that do not cannot be homotopical:
in some specific sense, every hole in X adds a generator of group π1. It
is therefore not surprising that the fundamental group of the circle is, up
to isomorpism, the group of the integers Z: its loops are, up to homotopy,
parametrizations of the unit circumference, travelled clockwise or counter-
clockwise, at multiple speeds k ∈ Z. Its unit element is the constant loop at
the (arbitrary) basepoint x0, which clearly cannot be smoothly deformed into
a path that winds around the circle. On the other hand, the fundamental
group of the 2-ball is the trivial one, as any closed path is homotopic to the
constant one.
It is useful to consider the fundamental group of some complexes (intended as
topological spaces), and more importantly understand the dependency of π1

from the complex structure. Since it is built onto maps from low-dimensional
spaces into X, namely loops I → X and homotopies of them I × I → X, it
is not surprising that π1 of a complex depends only on its low-dimensional
structure. In fact, when X is a CW complex, π1(X) only depends on its
2-skeleton. This is useful on the one hand for simplicity of understanding,
but constitutes a serious limitation in the ability to tell higher-dimensional
structures apart: for example, on the n-sphere it happens that

π1(S
n) = π1(S

m) ∀m,n ≥ 2

The fundamental group is essentially blind to high-dimensional features. A
workaround to this is given by a higher-dimensional equivalent of the funda-
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mental group: index 1 in π1 indicates that the quotient is performed with
respect to loops and homotopies of loops. One can compute it with respect
to a more complex map equivalence, given by surfaces and their homotopies
I2 → X and I2 × I → X, yielding π2(X), and in general the n-th homo-
topy group πn(X) computed through maps In → X and their homotopies
In×I → X (where In denotes the n-cube). In this case, the above problem is
solved: when X is a CW complex, πn(X) only depends on the n+1 skeleton
of X and it holds

πi(S
n) = 0 ∀i < n , πn(S

n) ' Z

This solution is hindered by a practical reason: computing higher-order ho-
motopy groups is extremely complicated, even for such simple cases as the
sphere. In general πi(S

n) for i > n displays a surprisingly complex behaviour,
and at present much remains unknown of these objects. This provides the
main motivation for the development of the alternative concept of homol-
ogy. We shall see in the following that, again, the homology group, denoted
by Hn(X), only depends on the n+1-skeleton when X is a CW complex.
Furthermore

∀ 1 ≤ i ≤ n Hi(S
n) ' πi(S

n) but Hi(S
n) = 0 ∀i > n
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2.18 Simplicial Homology

We now come to the fundamental concept that underpins most of Topological
Data Analysis. The first introduction of homology-like concepts dates back
to the definition of Euler characteristic, the genus of a surface, and Poincaré’s
studies of the topological properties of manifolds in dynamical systems. The
modern concept of homology has been given a remarkably theoretical fram-
ing, essentially rooted in category theory, which provides a common ground
for a number of different theories. All these variants, however, share the es-
sential property that homology is a method to associate an algebraic object,
sometimes a structure of algebraic objects, to other mathematical entities,
and most notably topological spaces.
For the sake of the present work, we shall limit ourselves to introducing a
homology theory that is especially tailored to apply to simplicial complexes,
hence named simplicial homology. Consider a simplicial complex X, and
suppose it is given an orientation. An orientation of a k-simplex is an equiv-
alence class of orderings of the vertices modulo even permutations. Hence,
given an ordering on the set of vertices, one can fix an orientation for every
k-simplex in X, up to parity. Therefore, there exist only two orientations for
each simplex.

Chain Complex

Consider an oriented simplicial complex, and the formal sum
∑

i

ciσi , ci ∈ Z (2.18.1)

i.e. the space of linear combination of k-simplices with integer coefficients.
The inverse of a simplex is intended as the simplex with the opposite orien-
tation. The intuition behind this result is as follows: concatenating the same
path in two opposite directions amounts to the identity element, that is not
moving at all.

Definition 2.19. K-Chain We call the kth chain group Ck of X the free
Abelian group on the set of its oriented k-simplices.

As per the insight given above, we can build ”strings” of k-simplices and
cancel out occurrences with different orientation. Keeping in mind that the
group is Abelian, we can reorder words so as to build consecutive ”paths”.
Taking linear combinations of simplices as in (2.18.1) with coefficients in
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the ring of the integers yields a module structure. We will show in the
following that it is of paramount importance for computational reasons for
this structure to be, instead, a vector space. Consider, this time, the linear
combinations of the form (2.18.1) with coefficients in the finite field Z2. The
field structure, namely the existence of the multiplicative inverse, entails that
the k-chain with Z2 coefficients is a vector space, and as such can be given a
basis from a linearly independent set of vectors.

Boundary Operator

Consider, again, the k-chain with integer coefficients. Let us define a
boundary operator ∂k as follows

Definition 2.20.

∂k : Ck → Ck−1

∂k : σ = [v0, ..., vk] ∈ Ck 7−→
k
∑

i=0

(−1)i [v0, ..., v̂i, .., vk]

where v̂i denotes that the i-th component has been removed.

It is easy to see that ∂k is a group homomorphism between Ck and Ck−1.
To understand why it is called boundary operator, let us first notice that it
associates to elements of dimension k elements of the previous dimension,
obtained by removing one vertex at a time. As such, its image is a linear
combination of faces of σ. Its action on low-dimensional simplices is illumi-
nating:

Example 2.21. Consider simplices {a, b} and {a, b, c}, oriented according
to alphabetical order. The boundary of an edge is

∂1 ({a, b}) = +{b} − {a}

The boundary of a triangle, instead, is

∂2 ({a, b, c}) = +{b, c} − {a, c}+ {a, b}

That is, edges ab and edge bc forward, and edge ac backwards, yielding the
closed sequence a → b → c → a

18



It is worth noting that

∂1∂2 ({a, b, c}) = ∂1{b, c} − ∂1{a, c}+ ∂1{a, b} =

= {c} − {b} − {c}+ {a}+ {b} − {a} = 0

This is true in general

Property 2.22. The boundary operator is nihilpotent

∂k∂k+1 = 0 ∀k (2.22.1)

This lemma has a rather deep meaning: the image of the boundary op-
erator on a k-simplex is a closed cycle of (k − 1)-simplices. These closed
cycles are, in particular, borders of higher-dimensional simplices. Borders
themselves form a subgroup of Ck−1

Bk := Im ∂k+1 ⊆ Ck

Another statement of property (2.22.1) is

Property 2.23.

Im ∂k+1 ⊆ ker ∂k

But what is ker ∂k ? As we have just seen, the kernel certainly contains the
borders of all the (k+1)-simplices in X. But not all closed concatenations of
k-simplices come from borders of k+1-simplices. Indeed, one can concatenate
three edges that form a triangle, even if the corresponding triangular 2-
simplex does not belong to X. In general, ker ∂k is the subgroup of Ck

formed of all possible closed cycles of k-simplices, be they borders or not.

Zk := ker ∂k ⊆ Ck

Hence we have a group inclusion

Bk ⊆ Zk ⊆ Ck

Remark Notice that the exact same line of reasoning works if we consider
k-chains with coefficients in Z2, if we take care to redefine the border operator
as
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Definition 2.24.

∂k : Ck → Ck−1

∂k : σ = [v0, ..., vk] ∈ Ck 7−→

k
∑

i=0

[v0, ..., v̂i, .., vk]

Indeed, in Z2 sum and subtraction coincide, +σ = −σ and 2σ = 0, so
only simplices that are taken odd times are not zero.
We can now proceed to the main definition of the section

Definition 2.25. k-th Homology Group
We call the kth Homology Group Hk the quotient

Hk :=
ker ∂k
Im ∂k+1

=
Zk

Bk

The concept of homology classes is the following: we identify with the
null element every cycle that is a border of a higher-dimensional simplex, or
that can be built as a linear combination of borders of simplices. Therefore,
the only non-zero elements (more precisely, the only non-trivial homology
classes) are represented by those cycles which do not come from borders.
Two cycles are homologous (i.e. they belong to the same class in H1, i.e.
they are equal modulo borders) if they differ by a sum of null cycles, namely
in dimension 1 if they differ by a triangulated path.

Graded modules, vector spaces and basis of H1

As we have introduced above, the k-chains groups, equipped with a linear
combination with coefficients in an Abelian unitary ring (usually Z), form a
module structure. It is well-known that, if the ring is also a field, the module
is in fact a vector space. So it holds that the group H1 with finite field Z2

coefficient, quotient of two vector spaces, is itself a vector space; conversely,
as a quotient of two modules, it is a module.
The structure of these algebraic objects can be made clearer by employing a
known result.

Definition 2.26. Graded Ring
We call a graded ring R a ring for which there exists a direct sum decompo-
sition into groups Ri

R =
⊕

i

Ri
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which respects multiplication, i.e.

RhRk ⊆ Rh+k

The typical example of a graded ring is the ring of polynomials, where
the grading is given by the degree. Specifically, over R[x] it holds that
R[x] = ⊕nR xn, namely each polynomial over R can be expressed as a sum
of homogeneous terms on degree n for n ∈ N.
The concept extends naturally to a module

Definition 2.27. Graded Module
We call a graded module M a module over a graded ring R such that

M =
⊕

i

Mi

as well and multiplication follows

RhMk ⊆ Mh+k

Let us state the standard structure theorem for graded modules over a
principal ideal domain.

Property 2.28. Structure Theorem
Let M be a graded module over a principal ideal domain A

M '

(

n
⊕

i=1

Σαi A

)

⊕

(

m
⊕

j=1

Σγj
A

γjA

)

The first term represents the free part, which is a vector space and is
made of the generators of M that can yield and infinite number of elements.
The second term is called the torsional part, and represents generators that
can only generate a finite number of elements. Notice that, if the module
is itself a vector space as in the case of the coefficient set being a field, the
second term vanishes and the decomposition becomes simply a direct sum
of orthogonal one-dimensional vector spaces, with as many entries as the
dimension of M .

Definition 2.29. Betti numbers
We call the kth Betti number βk the rank of the free part of Hk.

Notice that, if Hk is torsion-free, specifically if it is taken with coefficients
in a field, βk is simply the vector space dimension of Hk.
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2.30 Persistent Homology

Filtration of Simplicial Complexes

Let X be a simplicial complex. We say Y is a subcomplex of X if it is a
subset of X which is still a simplicial complex.

Definition 2.31. Filtration
Given a simplicial complex X, a filtration of a complex is a family X of
subcomplexes

0 = X0 ⊆ X1 ⊆ ... ⊆ Xm = X

From a metric point of view, one can build a filtration of complexes from
a point cloud by applying a scheme such as Vietoris-Rips repeatedly onto the
same data points, while increasing the threshold parameter ε. This yields a
nested family of simplicial complexes with growing connectivity, which entails
a growing number of cycles as well as a growing number of borders.

Property 2.32. Let {εi, 1 ≤ i ≤ m, εi > 0} be an increasing sequence of
positive real numbers, Q ⊂ R

n a discrete set. The sequence

{ VRεi(Q) }mi=1

is a filtration of simplicial complexes.

Persistence

Given a filtration of complexes X i, the associated groups and operators
are denoted as ∂i

k, Z
i
k, B

i
k, C

i
k and H i

k. In this case, intuitively, beside having
a ”vertical” mapping between decreasing-dimension chains of k-simplices, we
also have a ”horizontal” inclusion between more and more refined complexes.

Definition 2.33. We call the p-persistent kth homology group of X i the
group

H i,p
k =

Zi
k

Bi+p
k ∩ Zi

k

In this case, intuitively, we quotient with respect to borders that remain
such in the more refined complexes p steps ahead of i. Hence the name
persistence.
We define the persistent Betti numbers βi,p

k as the rank of the free subgroup
of H i,p

k . Again, if this is a vector space one can simply consider the rank of
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C0
2 C1

2 C2
2 · · ·

C0
1 C1

1 C2
1 · · ·

C0
0 C1

0 C2
0 · · ·

∂2

ϕ0
2

∂2

ϕ1
2

∂1

ϕ0
1

∂1

ϕ1
1

ϕ0
0 ϕ1

0

∂2

∂1

Figure 3: Persistence diagram of C i
k chains.

the whole group. Obviously, since Bi
k ⊆ Zi

k, if we set p = 0 we recover the
usual homology group

H i,0
k (X ) = Hk(X

i)

In our setting, the structure of persistence is represented by the diagram
in Figure 3, where we move horizontally through inclusion maps ϕi

k, and
vertically via the border operator ∂k. It is a known, but important, result,
that every square in the diagram of Figure 3 commutes, i.e. it is the same
to compute ϕi

k−1 ◦ ∂k or ∂k ◦ ϕ
i
k ([4]).
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3 Shortest Homology Basis

The Problem

Having given an overview of what homology is, we now proceed to stating
the problem we wish to address ([6]). Assuming we place ourselves in the
context of H1 homology with Z2 coefficients, we know that all groups Z1,
B1, C1 and H1 are finite-dimensional vector spaces, and therefore can be
given a basis. We denote by Z := dimZ1 the dimension of the cycle group,
B := dimB1 the dimension of the borders, and g := dimH1 is the first Betti
number of a fixed simplicial complex X.
Notice that, for any simplicial complex X, there exists a bijection between
the set of its k-simplices Xk and its group of k-chains. So if we call nk = |Xk|
the number of k-simplices in X, then Ck is isomorphic to (Z2)

nk , the vector
space of column vectors such that the jth entry is 1 if the jth simplex belongs
to the chain, and zero otherwise. Naturally a basis of Ck is the canonical
basis of (Z2)

nk , where each one-hot vector identifies a k-simplex.
Since Z1 is a vector space of dimension Z, there exist set(s)

{c1, ..., cZ} , ci ∈ Z1

which form a basis of Z1. We call such a set a cycle basis.
Recalling the definition of homology, we call [c] the homology class of cycle
c. It is formed by all cycles in Z1 which differ the one from the other by
elements of B1. In the light of what stated above, there must exist

{[c1], ..., [cg]} , [ci] ∈ H1

which form a basis of H1. We call such a set a homology basis.
Assume now there exists a function that assigns a non-negative weight to
each cycle c

µ : Z1 −→ [0,+∞)

One way to build a such function, and the one that will be employed in the
applications, is to think of the 0- and 1-skeleton ofX as a weighted graph with
non negative weights, (V,E). Weights can be thought of as lengths. Then a

1-cycle can be represented as a vector of Z
|E|
2 , which is a basis of Z1 as stated

above. The function that assigns to each cycle the sum of the weights of the
edges that belong to it is our weighting function for the following analysis.
We can now state our problem: given a simplicial complex X, find a set of
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cycles {c1, ..., cg} such that

{c1, ..., cg} = argmin

g
∑

i=1

µ(ci)

subject to {[c1], ..., [cg]} being a homology basis of H1(X).
In words, we aim at finding cycles of the shortest possible length, which
generate the whole homology group.
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3.1 Prior Work

In this section we examine known results from past works which turn out
useful in our analysis. Let us begin by stating that the choice to restrict
ourselves to the group H1 is somehow unavoidable, as the problem of com-
puting a minimal homology basis for dimension higher than one is proven to
be NP-hard (Chen and Freedman, [7]).

Property 3.2. [7], Corollary 6.1
For homology of dimension 2 or higher, the minimal homology basis is NP-
hard to approximate within any constant factor.

The meaning of this statement is two-fold: on the one hand, for k > 1 com-
puting exactly a minimal basis of Hk is NP-hard (we recall that a problem
Q is NP-hard if any problem in NP can be reduced to Q in polynomial time,
hence the intuition that Q is at least as hard as any problem in NP), and even
a polynomial-time algorithm that computes an approximate solution which
differs from the exact one by a constant multiplicative factor does not exist.
The class of problems with polynomial-time, constant factor approximation
is usually called APX. Then an alternative statement of the above theorem
is that computing a minimal homology basis in dimension 2 or higher does
not belong to APX.
As a consequence, we can shift our focus onto simplicial complexes of dimen-
sion at most two, so as to distinguish 1-cycles which are borders of triangles
from those which are not. It therefore appears only natural to examine
graph theory results, as our base structure is essentially a decorated graph,
possessing some cycles which are declared to be null, namely those coming
from borders of the 2-skeleton, and other which effectively contribute with a
non-trivial generator to the homology group.
The first algorithm to find a minimal cycle basis (MCB) of a weighted graph
dates back to 1987, with the work of Horton [18], who provided a O(m3n)
running-time procedure for a graph with m nodes and n edges. His approach
involved generating a superset of cycles guaranteed to contain a MCB, by
computing for every possible pair of source node and edge a cycle generated
by shortest path, and then reducing the obtained set by Gaussian elimina-
tion.
More recently, de Pina in [8] improved this result by applying a different ap-
proach, which yields a O(m3+mn2 log n) complexity. In his case, a spanning
tree T is computed over graph G, and the set of edges in G \ T is employed
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to represent each cycle. Then the MCB is obtained by representing cycles
as vectors of {0, 1}Z , maintaining a basis of the orthogonal subspace to the
set of MCB, and at each step computing the shortest cycle which is linearly
independent of the previous ones by enforcing a non-zero scalar product with
the orthogonal basis.
Both these algorithms were later improved by applying fast matrix multipli-
cation, the most recent incarnation of which is described in [20], [21], which
computes the product of two n× n matrices in O(nω) steps with ω < 2.376.
Yet more recently, Mehlhorn et al. ([9]) found a further improvement of de
Pina’s scheme by imposing a relaxed version of the maintenance of a basis of
the orthogonal complement while the cycle basis is extended. Their method
presents a recursive approach which extends both the cycles and the support
vectors at the same time while maintaining relative orthogonality. It results
in a time complexity of O(m2n+mn2 log n).
The computation of the MCB had yet to be lifted to the context of simplicial
homology, where one has to deal with the added complexity of having to gen-
erate a basis of a smaller space than Z1, as a consequence of different cycles
being identified by the border equivalence. On the other hand, if exploited
correctly, the smaller dimension can represent a computational advantage.
The recent work of Dey et al. ([5], [6]) moves in this direction, combining
the recursive approach of [9] with a cohomological technique called simplex
annotation [10] which allows for efficient computation of the homology basis.
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3.3 Cohomology and Simplex Annotation. Homology

Basis.

As we mentioned above, the problem we face has a different character than
those addressed in the previous section in that we not only search for a
cycle basis, but require the minimal set to form a homology basis, hence
taking into account the border equivalence. Notice that in general it is not
straightforward to obtain a solution of our problem from a solution of MCB,
since the quotient alters the structure of the vector space, modifying linear
dependence between cycles. In particular, our solution is in general not a
subset of the MCB.
A different approach to the problem is proposed in [10] and relies on a concept
arising from cohomology theory, called simplex annotation. Let us define, for
the homology group Hk(X) of simplicial complex X, with rank g

Definition 3.4. Simplex Annotation [10]
An annotation for a k-simplex is a function from the k-skeleton into 0-1
vectors of length g

a : Xk −→ (Z2)
g

such that any two k-cycles c1 and c2 are homologous if and only if

∑

σ∈c1

a(σ) =
∑

σinc2

a(σ)

The above sum is referred to as the annotation of the cycle ci.

Restricting ourselves to the one-dimensional case, we can compute the
annotation of the edges in X1 so that two cycles are homologous iff their an-
notation vectors coincide. As such, given any cycle, its annotation provides
a coordinate representation of its homology class in a given basis. Different
annotating function refer to different choices of a basis on H1(X).
Regarding the existence of such a function, it is worth noting what follows
([10]): if we denote by {φj}gj=1 the cocycles whose equivalence classes are gen-
erators of the cohomology group H1(X), then an annotation can be obtained
by assigning

a : σ 7−→ (φ1(σ), ..., φg(σ))

The procedure to obtain this coordinate representation of cycles is roughly
as follows ([10]):
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• First, a basis of the cycles group is obtained.

• Then, the cycle basis is reduced to obtain a homology basis. This step
naturally requires knowledge of the border structure, which shall be
expressed as a matrix representation of the border operator ∂2 in the
given basis.

• Finally, every cycle in Z1 can be assigned to its homology class, which
has a natural vector representation in the computed basis.

Step one relies on the computation of a spanning tree of graph G = (X0, X1),
which we call T . Consider the difference between the edges of G and those
of the spanning tree. These are called sentinel edges. The cycle obtained in
the spanning tree T by adding each sentinel edge is called a sentinel cycle.

Property 3.5. [10] The set of sentinel cycles is known to form a basis of
Z1.

Hence we can express any cycle in Z1 as a linear superposition of sentinel
cycles, each identified by its sentinel edge. Recalling we deal with Z2 coef-
ficients, any z ∈ Z1 coincides with the sum of the sentinel cycles for every
sentinel edge that belongs to z (notice that, for z to be a cycle, at least one
of its edges must be a sentinel).
For step two, we need as mentioned a description of the border structure.
Recall that the border operator ∂2 is a group homomorphism between C2

and C1 that associates 2-simplices (triangles) to their border 1-cycle. As
such, given the vector description of 1-cycles induced by the pair spanning
tree - sentinel edges, operator ∂2 can be cast in matrix form by writing side
by side the vectors describing the boundary cycles, for each 2-simplex in X.
The resulting matrix has as many rows as the dimension of Z1, and as many
columns as the cardinality of X2.
To its right, we add all column vectors of the cycles of Z1, as represented in
the sentinel basis (let us call this submatrix S). Recall that all said vectors
have Z2 elements. We obtain a matrix of the form

[∂2 | S]

The next step allows us to obtain a suitable homology basis: we compute
the so-called earliest basis of the above matrix, i.e. we proceed by columns,
from left to right, eliminating any column that can be expressed as a linear
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combination of those that precede it. The resulting matrix has full rank, and
is of the form

[B | H]

where submatrix B of columns which derived from ∂2 is a basis of the border
group B1 := Im ∂2 and submatrix H is a basis of H1. In particular the
number of columns of the two submatrices give us dimB1 and g, respectively.
Finally, we have to express each sentinel cycle in the basis of [B | H]. This
notoriously amounts to solving a linear system, in our case in Z2. If we solve
for z̃

[B | H] z̃ = z

where z is the vector representation of a cycle in the sentinel basis, its last
g entries form the annotation of cycle z, i.e. the homology representation zh
without the cyclic components deriving from borders.
If we consider the full matrix of cycles Z, one can globally solve system

[B | H] Z̃ = Z

The last g rows of Z̃ form the annotation vectors of the sentinel cycles. Then
each sentinel edge can be given the annotation of the sentinel cycle it gener-
ates. All other edges are given annotation 0 ∈ (Z2)

g.
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3.6 Methodology

In the light of the results mentioned in the previous sections, we now set
forth to tackle the optimization part of our problem: i.e., finding a minimal
basis. In the recent work of Dey [6], the approach of Mehlhorn [9], which
itself improved on de Pina’s [8], was combined with the annotation technique
[10] to yield a O(n3) worst-case complexity in the cardinality of the complex.
The method proceeds as follows: first, a candidate set of cycles is generated
by the shortest path tree method. For each node p, we compute the SPT
rooted in p and keep track of the non-tree edges. Each non-tree edge identifies
a cycle with respect to vertex p. The union of all cycles for all vertices p ∈ X0,
which we call G, is guaranteed to contain a shortest homology basis ([5], [6],
[19]).
Next, we move on to the annotation of edges to obtain a homology basis. As
described above, we must generate a basis of cycles by means of a spanning
tree and its sentinel edges. Notice that the SPT computed at the previous
step can be employed for the case, taking care to consider a root node for
each connected component of X, hence speeding the computation. Given
our vector representation of cycles in the sentinel edge basis, we can form
the matrix representation of the border operator ∂2 by placing side by side
the vectors describing borders, for each 2-simplex in X. Next to it, we can
place our cycle basis, and operate the left-to-right reduction, as described
above ([10]). From this step, we obtain the Betti number of X, and solving
the following linear system, a basis of H1(X) and the annotation vectors.
Finally, we proceed to produce the j-th minimal basis vector of H1 for j =
1, ..., g as follows:

1. Initialize a basis of (Z2)
g, for example with the canonical basis. We call

these support vectors Si.

2. At step j, generate the set of cycles, subset of G, whose annotation has
Z2-scalar product equal to 1 with Sj. These are cycles which are not
orthogonal to Sj. Of these, pick the shortest one in length, cj. Add
this vector to the minimal basis.

3. Update the support vectors Sj+1, ..., Sg so as to guarantee that they still
form a basis of Span{c1, ..., cj}

⊥, and that cj and Sj+1 are orthogonal.

Repeat steps 2 and 3 for j = 1, ..., g. Then
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Property 3.7. [6],[5]
The resulting set of cycles {c1, ..., cg} is the minimal homology basis of H1(X).

Node Labeling

The computation of the the subset of cycles which are non-orthogonal re-
quires to compute a possibly large number of scalar products. There exists
a technique called node labelling to expedite the task at its best possible
performance ([6]). It is in essence an application of linearity of both scalar
product and annotation: for each support vector Si and calling m the cardi-
nality of X0, one can build a m×m matrix of labels of nodes such that the
entry (h, k) is the Z2 sum of scalar products of Si with the annotation of the
edges that connect h to k, in the shortest path tree rooted in h. Hence, one
can follow the SPT from the root to the leaves, computing a scalar product
for every new edge that one encounters and summing it to the label of its
parent node. Therefore, all it takes to check orthogonality with respect to Si

of a cycle described by a pair (p, (v, w)) (where p is the root node and (v, w)
are the extremes of a sentinel edge) is to sum the labels of index (p, v) and
(p, w) with the scalar product between Si and the annotation of edge (v, w).
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3.8 Implementation

We now give a brief description of the Python 3 code we have implemented
for the algorithm described above.

Geometry

For testing applications, point clouds were usually random-sampled. Then
the 1-skeleton and its consequent clique simplicial complex were generated
by computing pairwise distances. In real-world applications, data is usually
given as weighted adjacency matrices, in the form of lists of triplets (node,
node, weight). This gives the 1-skeleton in a precomputed manner, and one
is left with the task of identifying triangles to tile in order to generate the ∂2
operator matrix (2.8).

def getTriangles(A):

’’’

returns set of triangles in a graph given its adjacency

matrix

’’’

n = len(A)

tri = []

for vertex in range(n):

vList = np.nonzero(A[vertex ,vertex :])

vList = [x for x in vList [1]]

vList = [i + vertex for i in vList] #list of vertices

adjacent to vertex

for i in range(len(vList) -1):

for j in range(i+1,len(vList)):

if A[vList[i],vList[j]] > 0:

tri.append ([vertex ,vList[i],vList[j]])

return tri

def getD2(A, edgesList):

’’’

returns 2-boundary matrix of the clique complex , given

the adjacency matrix of the graph

’’’

triangles = getTriangles(A)

# print(triangles)

d2 = []

n = len(edgesList)

#print(n)
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for row in triangles:

newTriangle = [0 for i in range(n)]

newTriangle[edgesList.index( (row[0],row [1] ) )] = 1

newTriangle[edgesList.index ((row[0],row [2]) )] = 1

newTriangle[edgesList.index( (row[1],row [2]) )] = 1

d2.append(newTriangle)

d2 = np.array(d2)

return d2

def points2adj(P, epsilon):

’’’

given a set of points and a threshold returns the weight

and adjacency matrix of the corresponding graph

points is a list where each element is the coordinates of

the point

’’’

def dist(p1 ,p2):

’’’

euclidean distance

p1 and p2 need to be list of the same length

’’’

return math.sqrt(sum ([(p1[i]-p2[i])**2 for i in range

(len(p1))]))

n = len(P)

W=np.zeros ((n,n))

for i in range(n):

for j in range(i,n):

W[i,j]= dist(P[i],P[j])

W = W + W.T #weight matrix

W[W >= epsilon] = 0

A = (W >0).astype(int)

return W , A

def getEL(A):

edgesList = []

for i in range(len(A)):

for j in range(i,len(A)):

if A[i,j] > 0:

edgesList.append ([i,j])

return edgesList
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Listing 1: Code for the generation of the simplicial structure

In the applications, as is standard procedure in topological data analysis,
we have built filtrations of simplicial complexes to analyze how the homo-
logical structure changes at different length scales. This requires computing
subsets of the full complex X, by restricting its 1-skeleton to those edges
having length smaller than a given threshold ε, and tiling the 2-skeleton
accordingly via the definition of clique complex (2.6, 2.32).

def filterMatrix(W,epsilon):

Wb = np.matrix(W)

Wb[Wb >= epsilon] = 0

return Wb

Listing 2: Code for the filtration of the 1-skeleton

Shortest Path Tree

The following describes the computation of the shortest path tree. Its
generation is necessary to obtain a candidate set of cycles among which to
find the optimal ones ([6], Proposition 3.1).

def computeShortestPath(self , withDistances=False):

(self.dist , self.pred) = csgraph.shortest_path(self.

Weights.tocsr(),directed=False ,return_predecessors

=True)

# Aggiungiamo il calcolo dei successori. Struttura di

lista ^3

for source in range(self.NVert): # per ogni sorgente

link = self.pred[source ,:] # predecessori

forward = [ [] for i in range(self.NVert) ] #

lista di liste vuote lunga NVert

for (foll , prev) in enumerate(link):

if (prev != -9999): # se è connesso e non è

source

forward[prev]. append(foll)

self.Followers.append(forward)

def shortestPathTree(self , source , withD=False , justEdges=

False):

# ...
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if (type(source) is not int or source <0 or source >=

self.NVert ):

raise Exception(’Indice del vertice non valido!’)

if withD:

if (self.dist is None or self.pred is None):

_ = self.computeShortestPath(withD)

else:

if self.pred is None:

_ = self.computeShortestPath(withD)

link = np.array(self.pred[source ,:])

data = []

rows = []

col = []

# ...

if withD:

data = np.array(data , dtype=float)

else:

data = np.array(data , dtype=int)

rows = np.array(rows)

col = np.array(col)

SPT = scipy.sparse.coo_matrix( (data ,(rows ,col)),

shape =(self.NVert ,self.NVert))

rw ,cl,_ = scipy.sparse.find(self.Weights)

edgeSPT = list( zip(list(rows),list(col)))

edgeW = list(zip( list(rw),list(cl)))

# Affinch è il metodo funzioni , è necessario che il

nodo source non abbia -9999 per distinguerlo da

quelli davvero disconnessi

link[source] = source # creiamo un "finto" self -loop

edgeW = [ x for x in edgeW if link[x[0]] != -9999 ]

NTE = list(set(edgeW) - set(edgeSPT)) # differenza

insiemistica tra i set di edges

NTE = [ x for x in NTE if (x[0]<x[1]) ]

if justEdges:

return NTE

else:
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return (SPT , NTE)

Listing 3: Code for the computation of the SPT

Basis of cycles

This piece of code computes a basis of the group of cycles from the sentinel
edge description ([10], Proposition 2)

def getCycleBase(self):

if (self.Sentinel is None):

_ = self.spanningTree ()

SC = [] # lista di sentinel cycles

for e in self.Sentinel:

SC.append( self.closeCycle(e) )

return SC

Listing 4: Code for the generation of a cycle basis

Annotation

The following piece of code computes the annotation matrix of sentinel
edges ([10])

def getAnnotation(self ,d2 ,Z):

def low(col):

l=-1;

for i in range(len(col)):

if col[i]>0:

l=i

return l

lowSet = {}; #dictionary with low indexes and

relative rows

if len(d2) == 0: # controlla se d2 è vuoto!

dimB1 = 0

i = 0

else:

i=0;

while i != len(d2):

lowRowi=low(d2[i])
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while lowRowi in lowSet.keys():

d2[i]=(d2[i]+d2[lowSet[lowRowi ]])%2

lowRowi=low(d2[i])

if lowRowi > -1 :

lowSet[lowRowi ]=i

i=i+1

else:

d2=np.delete(d2 ,(i),axis =0)

dimB1=i # dimensione dello spazio dei bordi

if (dimB1 != 0):

Z=np.concatenate ((d2,Z),axis =0)

else:

pass

totRow=len(Z)

reductionMatrix=np.identity(totRow ,dtype=int)

Id=np.identity(totRow ,dtype=int)

elementsToDelete =[]

while i != totRow:

lowRowi=low(Z[i])

while lowRowi in lowSet.keys():

Z[i]=(Z[i]+Z[lowSet[lowRowi ]])%2

reductionMatrix[i]=( reductionMatrix[i]+Id[

lowSet[lowRowi ]])%2

lowRowi=low(Z[i])

if lowRowi > -1:

lowSet[lowRowi ]=i

i=i+1

else:

elementsToDelete.append(i)

i=i+1

reductionMatrix=np.delete(reductionMatrix ,

elementsToDelete ,axis =1);

reductionMatrix=np.delete(reductionMatrix ,range(dimB1

),axis =1);

A=np.delete(reductionMatrix ,range(dimB1),axis =0);

self.dimB1 = dimB1

self.dimZ1 = np.shape(A)[0]

self.dimH1 = np.shape(A)[1]

self.Ann = np.matrix(A).transpose ()

self.AnnDict = {}
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for i,e in enumerate(self.Sentinel):

ann = self.Ann[:,i]

self.AnnDict[e] = ann

return (self.Ann , self.dimB1 , self.dimZ1 , self.dimH1)

Listing 5: Code to compute the annotation

Labeling

The following piece of code computes the labels of nodes with respect to
support vector Sup ([6], Base case).

def innerProd(self ,S,C):

if (len(S) != len(C)):

raise ValueError("Dimensioni non compatibili!")

return np.dot( np.array(S).transpose () , np.array(C)

) % 2

def computeLabels(self , Sup):

if (self.Ann is None):

raise ValueError("Non è stata calcolata l’

annotazione degli edges!")

for p in range(self.NVert):

forward = self.Followers[p]

self.Labels[p,p] = 0

driver = [] # lista di push/pop DI TUPLE (

PREVIOUS ,FOLLOWER)

add = [ (p,x) for x in forward[p] ]

driver.extend( add )

while ( len(driver) != 0):

(prev ,foll) = driver.pop(0)

lab = self.Labels[p,prev]

edge = (prev , foll) if prev <foll else (foll ,

prev)

try:

ann = self.AnnDict[edge]

except KeyError:

self.Labels[p,foll] = lab

else:

self.Labels[p,foll] = (lab + self.

innerProd(Sup ,ann))%2

add = [ (foll , x) for x in forward[foll] ]

driver.extend(add)
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Listing 6: Code to compute the labeling with respect to support vector Sup

Shortest New Cycle

The following piece of code finds the shortest cycle that is non-orthogonal
to support vector Sup ([6], Claim 3.1).

def findShortestNonOrtho(self , Sup , allDraws=False):

_ = self.computeLabels(Sup)

def checkOrt(s, e):

try:

ann = self.AnnDict[e]

except KeyError:

lab = 0

else:

lab = self.innerProd(Sup , ann) # calcola il

prodotto

return (self.Labels[s,e[0]] + self.Labels[s,e[1]]

+ lab ) %2

candidates = []

candidates = [ x for x in self.NTE if checkOrt(x[0],x

[1]) == 1 ]

candidates = [ self.closeCycle(x[1], force=x[0]) for

x in candidates ]

def lenCycle(C):

return np.dot( self.WEdges , C)

candidates = list(zip( candidates , map(lenCycle ,

candidates) ))

if allDraws:

shortest = candidates [0][1]

minList = []

for x in candidates:

if x[1] < shortest:

minList = [x]

shortest = x[1]

elif x[1] == shortest:

minList.append(x)

else:

pass

return minList

else:
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min_len = lambda x,y : x if x[1] <= y[1] else y

minCycle = functools.reduce( min_len , candidates

)

return minCycle

Listing 7: Code to find the new shortest basis vector with respect to support
vector Sup

Update of support vectors

The following piece of code updates the basis of the orthogonal complement
of the first basis vectors ([6], Theorem 3.1)

def updateSup(self , newC , index):

self.SHB.append( newC ) # aggiungi il nuovo ciclo

sup_i = self.Support[index] # support vector del

nuovo ciclo

AnnNewC = self.cycleAnnotation(newC)

for j in range(index+1,self.dimH1):

sup_j = self.Support[j]

self.Support[j] = (sup_j + sup_i * self.innerProd

( AnnNewC , sup_j )) % 2

Listing 8: Code to update the support vectors.
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4 Results and Applications

In this section we run the algorithm we have implemented. A series of test
will be shown, after which we move on to some actual data analysis on a
real-world dataset.

4.1 Testing

Erdős-Rényi

We begin by testing the code on some random-generated Erdős-Rényi
graph, through the python library networkx.

import numpy as np

import scipy

import networkx as nx

import matplotlib.pyplot as plt

%matplotlib inline

def getRandomGraph(nVert ,p):

G = nx.erdos_renyi_graph(nVert ,p)

flag = nx.is_connected(G)

A = nx.adjacency_matrix(G).todense ()

return (G,A,flag)

(G,A,f) = getRandomGraph (10 ,0.15)

nx.draw(G)

Listing 9: Networkx Example.

Plotting the output we obtain as in figure 4 :
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maximal = SimplexGraph.getEdgeList(W)

for eps in epsList:

Wstep = filterMatrix(W,eps)

Ws.append(Wstep)

G = SimplexGraph(nVert ,Wstep , maximal)

cycles = G.getCycleBase ()

d2 = getD2( Wstep , maximal [0] )

(An , B1, Z1, H1) = G.getAnnotation(d2,cycles)

sup = np.eye( H1 , dtype = int )

Sup = []

for i in range(H1):

Sup.append( sup[:,i] )

G.Support = Sup

for i in range(H1):

(mincycle , length) = G.findShortestNonOrtho( G.

Support[i] )

G.updateSup(mincycle , i)

SHB.append(np.matrix(G.SHB).transpose () )

return SHB , Ws , maximal

epsList = [3.0 ,4.0 ,5.0 ,6.0]

SHB ,Ws ,maximal = filtration_pipeline(W,epsList)

Listing 13: Shortest Homology Basis for a filtered complex.

Step 0:
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Figure 14: An adult specimen of C. Elegans. Courtesy of Penn State.

4.2 C. Elegans

Finally, we have applied the algorithm to a real dataset. The data in our
possession concerns time-averages of correlations between neuron firings in
the nematode worm Caenorhabditis elegans. This organism was the first
multicellular, albeit small, species whose genome was entirely sequenced,
and it features another interesting peculiarity: every single individual in this
species has the exact same nervous system, composed of 306 neurons. It
therefore represents the model organism for the study of connectomes, i.e.
the detailed mapping of connections between single neurons.

Dataset

The dataset consists of an edgelist describing the intensity of correlation
between pairs of neurons, intended as graph nodes. In principle, this could
yield a complete graph K306. In practice, this is not the case as several
correlation pairs are virtually zero, nonetheless the connectivity remains re-
markably high. As a consequence, it is practically impossible to give an un-
derstandable graphical representation of the dataset; some subsets extracted
from the whole aggregate are shown in Figures 15 and 16.
In order to perform a persistence analysis, it is useful to distinguish between
the different values of the edge weights. As evinced in Figure 17, there ex-
ist 31 different weights for the total 2148 edges, hence to perform a single
step persistence analysis we shall need to run 31 instances of the shortest
homology basis finder. One must notice, however, that the edge weights rep-
resent correlations between neurons. Therefore, in order for our analysis to
be meaningful (i.e. represent ”distances”) we need, as a preliminary step, to
invert the value of weights.

216 217 1.0

216 152 4.0
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216 155 2.0

216 198 4.0

216 157 1.0

216 195 2.0

216 264 5.0

216 265 3.0

216 193 5.0

216 133 2.0

216 234 1.0

216 117 1.0

216 179 1.0

216 82 2.0

216 174 2.0

Listing 14: An excerpt from the edge-list description of the dataset.

data = np.loadtxt("celegans_weighted_undirected.edges")

v1 = data [:,0]

v1 = np.array(v1, dtype=int)

v2 = data [:,1]

v2 = np.array(v2,dtype=int)

weights = data [:,2]

wmax = max(weights)

weights = [ float(wmax)/x for x in weights ]

weights = np.array(weights , dtype=float)

FullEpsList = list(set(weights))

print( "Min: ", min(weights), "Max: ", max(weights), "Total:

", len(weights), "Different: ", len(set(weights)))

plt.hist(weights , range(int(min(weights)), int(max(weights)))

)

>

Numero vertici: 306

Min: 1.0 Max: 70.0 Total: 2148 Different: 31

Listing 15: An overview of the input dataset.
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res = {}

maximal = SimplexGraph.getEdgeList(W)

stats = []

Wstep = filterMatrix(W,eps)

Ws.append(Wstep)

G = SimplexGraph(nVert ,Wstep , maximal)

cycles = G.getCycleBase ()

stats.append( ’NVert = ’ + str(G.NVert) + ’ NEdges = ’ +

str(G.NEdges) )

stats.append( ’Filtration Eps = ’ + str(eps) )

stats.append( ’Keep all Draws = ’ + str(GlobalOptions[’

Draws ’]) )

d2 = getD2( Wstep , maximal [0] )

(An, B1, Z1, H1) = G.getAnnotation(d2,cycles)

stats.append( ’H1= ’+ str(H1) + ’ B1= ’ + str(B1) + ’ Z1=

’ + str(Z1) )

sup = np.eye( H1 , dtype = int )

Sup = []

for i in range(H1):

Sup.append( sup[:,i] )

G.Support = Sup

G.fixNTE ()

t1 = time.time()

for i in range(H1):

if GlobalOptions[’Draws’]:

listMin = G.findShortestNonOrtho( G.Support[i] ,

allDraws=True)

mincycle = listMin [0][0]

SHB.append(listMin)

else:

(mincycle , length) = G.findShortestNonOrtho( G.

Support[i], allDraws=False )

G.updateSup(mincycle , i)

if GlobalOptions[’Draws ’]:

res[’SHB’] = SHB

else:

res[’SHB’]=np.matrix(G.SHB).transpose ()

res[’Draws’] = GlobalOptions[’Draws’]

res[’Filtration Eps’] = eps

if GlobalOptions[’ReturnMatrix ’]:

res[’Filtered Matrix ’] = Ws

else:

res[’Filtered Matrix ’] = None
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if GlobalOptions[’ReturnMaximal ’]:

res[’Max’] = maximal

else:

res[’Max’] = None

res[’stats’] = stats

return res

Listing 16: The parallel pipeline to analyze the filtration.

file_stream = open(filename ,’wb’)

FullThreshList = [ x + 0.05 for x in FullEpsList ]

epsList = FullThreshList

cut = 306

Wn = W[0:cut ,0: cut]

GlobalOptions[’Matrix ’] = Wn

pool = Pool(processes =4)

job = pool.map_async(parallel_pipeline , epsList)

result = job.get()

cPickle.dump(result , file_stream)

file_stream.close ()

Listing 17: The multithreaded instance of the C. Elegans analysis.

As mentioned above, it is hardly useful to give a graphical representation
of the resulting homology basis. The reason for this is twofold:

• The size and the sheer connectivity of the graph make it nearly impos-
sible to get any sense of the underlying structure.

• The input data is intrinsically non-geometrical: as said, edge weights
represent statistical correlations, and as such do not induce a metric on
the graph, in that they do not obey any triangular inequality. There-
fore, it is in general impossible to obtain a geometric realization of data
points which respect the pairwise distance relations defined by the edge
weights. At best one can dispose nodes according to a force-directed
layout, giving up on the concept of distance while still obtaining a
cluttered result (see Figure 18).
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HList.append( i[’SHB’].shape [1] )

else:

HList.append (0)

plt.plot(epsList ,HList , ’|r’)

Listing 18: Post-processing of the C. Elegans analysis.
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5 Appendix - Code

Repository available at https://github.com/marcoguerra192/PHScaffold ([25])

# -*- coding: utf -8 -*-

### TESI: CLASSE per il problema SHORTEST PATH TREE

import numpy as np

from scipy.sparse import csgraph

import scipy.sparse

import functools

#from line_profiler import LineProfiler

class SimplexGraph:

""" Classe che implementa un grafo come matrice

di adiacenza pesata , e fornisce metodi per

ottenere lo shortest path tree

a partire da un nodo arbitrario , pi ù l’

elenco dei non -tree edges.

Input costruttore: Il numero di vertici , o

il numero di vertici e la matrice dei

pesi

"""

def __init__(self , numVertices , weights , maximal

=None):

self.NVert = numVertices

self.Weights = scipy.sparse.coo_matrix(

weights)

## coo_matrix pu ò essere istanziata a

partire da una matrice densa di tipo np.

ndarray

self.Weights = self.Weights.tocsr ()

# al momento ci serve che sia csr per

accedere ai pesi

self.dist = None

self.pred = None
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self.Followers = []

self.Sentinel = None

self.CCC = None

self.CCV = None

self.Origins = None

self.Ann = None

self.dimH1 = None

self.dimB1 = None

self.dimZ1 = None

self.Labels = -1 * np.ones( (self.NVert ,self

.NVert), dtype=int )

self.Support = [] # vettori di supporto

self.SHB = [] # base minima di omologia

self.NTE = None # array di liste di NTE

self.closedCycles = {} # dizionario di cicli

gi à chiusi

# la chiave è la terna (source , v1 , v2)

# diversifichiamo il caso in cui abbiamo la

filtrazione dal caso

# singolo step

if (maximal == None):

rw ,cl ,_ = scipy.sparse.find(self.Weights

) # righe e colonne sparse

self.Edges = list(zip(list(rw), list(cl)

)) # lista di coppie di vertici

self.Edges = [x for x in self.Edges if x

[0]<x[1]] # scelgo solo quelli da un

vertice pi ù basso ad uno pi ù alto

# funziona perch è non ci sono self loops

def orderEdges( edgeList ):

""" Funzione che ordina la lista di

edge secondo qualche criterio.

Per ora il criterio è prima

rispetto al primo vertice ,

poi rispetto al secondo.

"""

return sorted(edgeList , key = lambda
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t: (t[0],t[1]) )

self.Edges = orderEdges(self.Edges) #

ora è una lista ordinata di edges ,

senza ripetizioni!

# pu ò essere usata per tenere traccia

dell’ordine degli edges

self.NEdges = len(self.Edges) # numero

di edges IN SENSO INDIRETTO

self.WEdges = [] # lista delle lunghezze

(pesi) degli edges

for e in self.Edges:

self.WEdges.append( self.Weights[e

[0] , e[1]] )

self.WEdges = np.array(self.WEdges) #

trasformo in array

else: # se ho definito la matrice pi ù fine

della filtrazione

# maximal è una tupla = (edgelist ,

weightlist)

# la edgelist deve gi à essere ordinata

self.Edges = maximal [0]

self.NEdges = len(self.Edges)

self.WEdges = maximal [1]

def getEdgeList(Weights):

""" Metodo Statico per ottenere l’edgelist

da una matrice massimale

In input solo la matrice dei pesi

"""

rw ,cl ,_ = scipy.sparse.find(Weights) # righe

e colonne sparse

edgelist = list(zip(list(rw), list(cl))) #

lista di coppie di vertici

edgelist = [x for x in edgelist if x[0]<x

[1]] # scelgo solo quelli da un vertice

pi ù basso ad uno pi ù alto

# funziona perch è non ci sono self loops
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def orderEdges( edgeList ):

""" Funzione che ordina la lista di edge

secondo l’ordine lessicografico

"""

return sorted(edgeList , key = lambda t:

(t[0],t[1]) )

edgelist = orderEdges(edgelist) # ora è una

lista ordinata di edges , senza

ripetizioni!

WEdges = [] # lista delle lunghezze (pesi)

degli edges

for e in edgelist:

WEdges.append( Weights[e[0] , e[1]] )

WEdges = np.array(WEdges) # trasformo in

array

return (edgelist ,WEdges)

def getEdgeVector(self): # ordinamento degli

archi

return self.Edges

def getHeatMap(self , edgeList):

""" Prende in input una lista di coppie di

vertici (v1 , v2), li ordina in modo che

v1 < v2 , e restituisce un vettore 0-1

lungo quanto la dimensione

dello spazio vettoriale delle 1-catene ,

che descrive la 1-catena corrispondente.

Se l’input contiene un edge inesistente

o un self -loop , solleva ValueError

"""

edgeList = [ x if (x[0] < x[1] ) else tuple(

reversed(x)) for x in edgeList ] # impone

v1 <= v2

# e se v1 == v2 ?

if ( any( [ x[0] == x[1] for x in edgeList ]

) ):
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raise ValueError(’La lista contiene un

self -loop!’) # eccezione

edgeList = list(set(edgeList)) # elimina i

duplicati

heatMap = np.zeros(self.NEdges , dtype=int) #

vettore di zeri

for val in edgeList:

try:

i = self.Edges.index(val)

except:

errstr = "L’edge ", val , " non

esiste!"

raise ValueError(errstr)

heatMap[i] = 1

return heatMap

def set_weights_by_coo(self , data , rows , col):

""" Istanzia la matrice dei pesi nel formato

sparso attraverso tre array data , rows e

col """

self.Weights = scipy.sparse.coo_matrix ((data

,(rows ,col)), shape =(self.NVert ,self.

NVert))

def computeShortestPath(self , withDistances=

False):

""" Restituisce la matrice dei predecessori

nello Shortest Path Tree. Ogni riga si

riferisce ad un nodo

di origine dello SPT. Se l’argomento

opzionale è vero ritorna anche la

matrice delle distanze

"""

# va convertito in un formato su cui pu ò

fare i calcoli
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(self.dist , self.pred) = csgraph.

shortest_path(self.Weights.tocsr (),

directed=False ,return_predecessors=True)

# Aggiungiamo il calcolo dei successori.

Utile da fare una volta invece di n

# Viene utile una struttura di lista ^3

for source in range(self.NVert): # per ogni

sorgente

link = self.pred[source ,:] #

predecessori

forward = [ [] for i in range(self.NVert

) ] # lista di liste vuote lunga

NVert

for (foll , prev) in enumerate(link):

if (prev != -9999): # se è connesso

e non è source

forward[prev]. append(foll)

self.Followers.append(forward)

# non c’è nessun bisogno di restituire una

matrice densa

# if withDistances:

# return (self.pred , self.dist)

# else:

# return self.pred

def shortestPathTree(self , source , withD=False ,

justEdges=False):

""" Restituisce la matrice dello shortest

path tree centrata nel vertice source. Se

withD è vero

la matrice è pesata , altrimenti è solo

0-1. Se source non è un vertice

valido solleva un’eccezione

I VERTICI VANNO DA 0 A N-1!!

Se justEdges == True restituisce solo i

non tree edges

Input: L’indice del nodo sorgente ,
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opzionale un bool per le distanze

Output: La matrice sparsa del grafo SPT

"""

if (type(source) is not int or source <0 or

source >=self.NVert ): ## da qui in poi

source è un valore affidabile

raise Exception(’Indice del vertice non

valido!’)

if withD:

if (self.dist is None or self.pred is

None):

_ = self.computeShortestPath(withD)

else:

if self.pred is None:

_ = self.computeShortestPath(withD)

# definiamo una matrice sparsa della giusta

dimensione che andr à in output

# SPT = scipy.sparse.coo_matrix(self.NVert ,

self.NVert) # NO , SPRECA SOLO TEMPO!

# estraiamo dalla matrice dei precedenti la

riga che ci serve

link = np.array(self.pred[source ,:])

# predisponiamo i vettori data , rows e col

per creare la matrice del SPT

data = []

rows = []

col = [] # man mano faremo append dei dati

in queste liste

# scorriamo il vettore e creiamo i link

for i in range(len(link)):

prev = link[i]

if (prev == -9999): # non appartiene

alla stessa componente connessa =>

non ha predecessori

pass

else:
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rows.append(prev)

col.append(i) # aggiungi un edge dal

predecessore del nodo i-esimo al

nodo i-esimo

rows.append(i) # devo aggiungere

anche il simmetrico!

col.append(prev)

if withD: # se devo aggiungere le

distanze le cerco in self.dist

data.append(self.dist[prev ,i])

data.append(self.dist[prev ,i]) #

aggiungo anche il simmetrico

(stessa distanza)

else: # se no inserisco solo 1 per

indicare l’edge fra prev e i

data.append (1)

data.append (1)

if withD:

data = np.array(data , dtype=float)

else:

data = np.array(data , dtype=int)

rows = np.array(rows)

col = np.array(col)

SPT = scipy.sparse.coo_matrix( (data ,(rows ,

col)), shape =(self.NVert ,self.NVert))

# crea matrice del grafo

#Per trovare i non -tree edge: trovare gli

elementi di Weights che NON SONO in SPT

rw ,cl ,_ = scipy.sparse.find(self.Weights) #

restituisce vettori di righe , colonne e

valori non nulli

# ignoro il vettore di dati , che non ci

interessa

edgeSPT = list( zip(list(rows),list(col))) #

creo una lista di edge per SPT

edgeW = list(zip( list(rw),list(cl))) #

stessa cosa per il grafo originale
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# MA CONTIENE ANCHE TUTTI GLI EDGES NELLE

COMPONENTI NON CONNESSE!

# Affinch è il metodo funzioni , è necessario

che il nodo source non abbia -9999 per

distinguerlo da quelli davvero

disconnessi

link[source] = source # creiamo un "finto"

self -loop

edgeW = [ x for x in edgeW if link[x[0]] !=

-9999 ]

# limito a solo gli edge fra nodi che sono

raggiungibili da source

NTE = list(set(edgeW) - set(edgeSPT)) #

differenza insiemistica tra i set di

edges

# contiene ancora entrambe le versioni dell’

edge (v1 ,v2 e v2 ,v1). Imponiamo solo

quella (v1 ,v2) con v1 <v2

NTE = [ x for x in NTE if (x[0]<x[1]) ]

if justEdges:

return NTE

else:

return (SPT , NTE)

def spanningTree(self):

""" Calcola uno spanning tree a partire

dalla stessa matrice dei predecesori di

SPT. Questa volta , oltre a lavorare su

tutte le componenti

connesse , restituisce tutti i sentinel

edges.

"""

if self.pred is None:

_ = self.computeShortestPath(True)

# prepariamo le liste per la matrice del

grafo

rows = []
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col = []

data = []

self.CCV = list(np.zeros(self.NVert , dtype=

int)) # lista indice delle componenti

connesse

self.CCC = 0 # contatore delle componenti

connesse

self.Origins = [] # lista lunga come il

numero di CC. In posizione k contiene l’

origine della componente connessa k+1-

esima

# che sar à necessario utilizzare per

calcolare i sentinel edges!

while (0 in self.CCV): # finch è non ho

assegnato ogni vertice ad una componente

self.CCC += 1

vert = self.CCV.index (0) # trova il

primo vertice non assegnato ad alcuna

componente

# Questo vertice diventer à l’origine

della CC!! Sar à necessario usare lui

per calcolare i sentinel edges!

self.Origins.append(vert) # questa CC

origina da vert

self.CCV[vert] = self.CCC # assegna

questo vertice alla nuova componente

link = np.array(self.pred[vert ,:]) #

estrai i predecessori connessi a vert

for i in range(len(link)):

prev = link[i]

if (prev == -9999): # se è

disconnesso fai nulla

pass

else:

self.CCV[i] = self.CCC # se è

connesso assegna lo stesso

indice di componente

rows.append(prev)
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col.append(i) # aggiungi un edge

dal predecessore del nodo i-

esimo al nodo i-esimo

rows.append(i) # devo aggiungere

anche il simmetrico!

col.append(prev)

data.append (1)

data.append (1)

data = np.array(data , dtype=int)

rows = np.array(rows)

col = np.array(col)

ST = scipy.sparse.coo_matrix( (data ,(rows ,

col)), shape =(self.NVert ,self.NVert))

# matrice del grafo Spanning Tree

# per trovare i sentinel edges. Questo

spanning tree è gi à generato a partire

dall’origine di ogni CC!

rw ,cl ,_ = scipy.sparse.find(self.Weights) #

tutti gli edge del grafo originale

edgeW = list(zip( list(rw),list(cl))) #

lista edge grafo originale

edgeST = list( zip(list(rows),list(col))) #

lista edge spanning tree

self.Sentinel = list(set(edgeW) - set(edgeST

)) # differenza insiemistica

# contiene ancora entrambe le versioni dell’

edge (v1 ,v2 e v2 ,v1). Imponiamo solo

quella (v1 ,v2) con v1 <v2

self.Sentinel = [ x for x in self.Sentinel

if (x[0]<x[1]) ]

return (ST ,self.Sentinel ,self.CCV)

def closeCycle(self , E, force=None):

"""

Funzione che prende in input un sentinel

edge E, e sfruttando la matrice

self.pred e l’ordinamento self.Edges ,

restituisce un vettore dello spazio
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delle 1-catene che descrive il ciclo

identificato da E nello Shortest Path

Tree.

Lo SPT è quello radicato nel nodo ORIGINE

DELLA CC DI E!

Se l’input non è quello atteso , solleva

ValueError.

SE E NON É UN SENTINEL EDGE NON SO BENE COSA

SUCCEDA!

Se è definito force , forza il nodo sorgente

ad essere quello. Utile per

generare il candidate set.

Sfrutta la struttura self.closedCycles per

verificare se una certa chiusura

è gi à stata calcolata

"""

if (force is not None): # se è fissata l’

origine

key = (force , E[0] , E[1] ) # la chiave

è (source , v1 ,v2)

try: # trova se è gi à stato calcolato

cycle = self.closedCycles[ key ]

return cycle

except:

pass

try:

cycle = self.getHeatMap ([E]) # trova l’

heatmap del sentinel edge. Gestisce l

’errore se E non è giusto

except Exception as ex:

raise ex

# ora cycle contiene l’heatmap del solo

sentinel edge.

# Proviamo a fare un controllino che sia un

sentinel edge. Se self.Sentinel non

esiste pu ò comunque far danni
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if ( self.Sentinel is not None and force is

None): # solo se non è definito force

#

(

in

quel

caso

ci

sta

che

non

siano

sentinel

edges

)

if (E not in self.Sentinel and tuple(

reversed(E)) not in self.Sentinel ):

raise ValueError("E non è un

sentinel edge!")

# fissiamo i bordi del sentinel edge

v1 = E[0]

v2 = E[1]

if (force is not None):

if (force <0 or force >= self.NVert):

raise ValueError("Parametro force

non valido!")
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else:

source = force

else:

# troviamo il NODO ORIGINE della CC di E

source = self.Origins[ self.CCV[ v1 ] -1

] # -1 perch è le CC partono da 1 ma

i vettori da 0. Sarebbe uguale usare

v2

key = (source , E[0] , E[1]) # calcoliamo

la chiave del ciclo da chiudere

# Calcoliamo i pred , se non è gi à stato

fatto

if (self.pred is None):

self.pred = self.computeShortestPath(

False)

link = self.pred[source ,:] # vettore dei

precedenti rispetto a source

pr = link[v2]

if (pr == -9999 and v2 != source ): #

significa che v2 è irraggiungibile da

source , ci deve essere stato un errore

raise ValueError(’Critical Error! Source

e v2 dovrebbero essere per

costruzione nella stessa CC’)

follow = v2

while (pr != -9999): # segue all’indietro i

precedenti verso source (che ha link

-9999)

cycle += self.getHeatMap( [ (pr , follow

) ] )

follow = pr

pr = link[pr]

# Ora stessa cosa per v1 , ma gli edge in

comune fra i due path vanno eliminati =>

SOMMA % 2
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pr = link[v1]

if (pr == -9999 and source != v1): #

significa che v1 è irraggiungibile da

source , sono in due componenti connesse

diverse

raise ValueError(’Critical Error! Source

e v1 dovrebbero essere per

costruzione nella stessa CC’)

follow = v1

while (pr != -9999): # finch è non torno a

source

cycle += self.getHeatMap( [ (pr , follow

) ] )

follow = pr

pr = link[pr]

# ora alcuni cicli saranno stati contati 2

volte. Quelli in comune vanno eliminati!

cycle = cycle % 2

# ora cycle contiene la descrizione

vettoriale del ciclo identificato dal

# sentinel edge E, rispetto all’ordinamento

self.Edges

# aggiorniamo il dizionario dei cicli chiusi

self.closedCycles[ key ] = cycle

return cycle

def getCycleBase(self):

""" Calcola una base dei cicli a partire dai

sentinel edges. Per ottenere l’

annotazione

"""

# se ancora non l’ha fatto calcola i

sentinel edges

if (self.Sentinel is None):

_ = self.spanningTree ()
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SC = [] # lista di sentinel cycles

for e in self.Sentinel:

SC.append( self.closeCycle(e) )

return SC

def getAnnotation(self ,d2 ,Z):

"""

d2: border matrix of the set of faces of the

simplicial complex , borders are written

as rows.

Z: basis of 1-dim -cycles. Each row is a

cycle obtained from a spanning tree and a

sentinel edge.

returns an annotation of sentinel edges. Non

sentinel edges have annotation equal to

0.

"""

def low(col):

"""

col: 1-dimensional array.

gets the index of the "lowest"

element in col different from 0.

if col=0 then low = -1

"""

l=-1;

for i in range(len(col)):

if col[i]>0:

l=i

return l

lowSet = {}; #dictionary with low indexes

and relative rows

if len(d2) == 0: # controlla se d2 è vuoto!

dimB1 = 0
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i = 0

else:

i=0;

while i != len(d2):

lowRowi=low(d2[i])

while lowRowi in lowSet.keys():

d2[i]=(d2[i]+d2[lowSet[

lowRowi ]])%2

lowRowi=low(d2[i])

if lowRowi > -1 :

lowSet[lowRowi ]=i

i=i+1

else:

d2=np.delete(d2 ,(i),axis =0)

dimB1=i # dimensione dello spazio dei

bordi

if (dimB1 != 0):

Z=np.concatenate ((d2 ,Z),axis =0)

else:

pass # lasciamo Z

#we start the reduction from row dimB1

totRow=len(Z)

reductionMatrix=np.identity(totRow ,dtype=int

)

Id=np.identity(totRow ,dtype=int)

elementsToDelete =[]

while i != totRow:

lowRowi=low(Z[i])

while lowRowi in lowSet.keys():

Z[i]=(Z[i]+Z[lowSet[lowRowi ]])%2

reductionMatrix[i]=( reductionMatrix[

i]+Id[lowSet[lowRowi ]])%2

lowRowi=low(Z[i])

if lowRowi > -1:

lowSet[lowRowi ]=i
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i=i+1

else:

elementsToDelete.append(i)

i=i+1

#eliminate coordinates of cycles that are

borders:

reductionMatrix=np.delete(reductionMatrix ,

elementsToDelete ,axis =1);

reductionMatrix=np.delete(reductionMatrix ,

range(dimB1),axis =1);

A=np.delete(reductionMatrix ,range(dimB1),

axis =0);

""" observation: the number of rows of A is

the dimension of the 1-dim -cycle group;

the number of columns is the dimension of

the 1st homology group

"""

self.dimB1 = dimB1

self.dimZ1 = np.shape(A)[0]

self.dimH1 = np.shape(A)[1]

self.Ann = np.matrix(A).transpose ()

# OTTIMIZZAZIONE!

# Qui verrebbe bene creare un dizionario di

coppie edge -annotazione

# per velocizzare la ricerca negli step

successivi. Edge nel formato

# (v1 , v2), con v1 <v2

self.AnnDict = {}

for i,e in enumerate(self.Sentinel):

ann = self.Ann[:,i]

self.AnnDict[e] = ann

return (self.Ann , self.dimB1 , self.dimZ1 ,

self.dimH1)

def innerProd(self ,S,C):
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""" Scalar Product over Z2 of support vector

S and the ANNOTATION of cycle C

"""

if (len(S) != len(C)):

raise ValueError("Dimensioni non

compatibili!")

return np.dot( np.array(S).transpose () , np.

array(C) ) % 2

def computeLabels(self , Sup):

""" Calcola i labels rispetto al support

vector S_i Sup

"""

if (self.Ann is None):

raise ValueError("Non è stata calcolata

l’annotazione degli edges!")

for p in range(self.NVert): # per ogni root

#link = self.pred[p,:]

forward = self.Followers[p]

""" Utilizziamo un metodo tipo push pop:

ad ogni nodo aggiungiamo la

lista dei successori in coda , poi pop di

uno e avanti cos ı̀ """

self.Labels[p,p] = 0 # il label di

source è 0

driver = [] # lista di push/pop DI TUPLE

(PREVIOUS ,FOLLOWER)

# iniziamo dai sucessori di source

add = [ (p,x) for x in forward[p] ]

driver.extend( add )

while ( len(driver) != 0): # finch è non

ho esaurito i successori

(prev ,foll) = driver.pop (0) # pop

del primo elemento (BREADTH FIRST

!)

lab = self.Labels[p,prev] # leggiamo

il label del nodo precedente
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edge = (prev , foll) if prev <foll

else (foll , prev) # scriviamo l’

edge

try: # leggiamo l’annotazione dell’

ege

ann = self.AnnDict[edge]

except KeyError:

self.Labels[p,foll] = lab # non

è un sentinel e quindi non

cambia

else:

# calcola il prodotto scalare in

Z2 e somma

self.Labels[p,foll] = (lab +

self.innerProd(Sup ,ann))%2

# Ora aggiungiamo alla lista driver

i successori di foll e avanti

add = [ (foll , x) for x in forward[

foll] ]

driver.extend(add)

#return self.Labels # inutile restituire una

struttura pesante

def fixNTE(self):

""" Calcola un array di NTE per ogni

sorgente p, e la salva in self.NTE

"""

self.NTE = []

for p in range(self.NVert):

nte = self.shortestPathTree(p,justEdges=

True)

for e in nte:

self.NTE.append( (p,e) )

# ora tutti i NTE sono calcolati una volta

per tutte

def resetLabels(self):
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""" Resetta i labels per poterli calcolare

rispetto al nuovo vettore di supporto

"""

self.Labels = -1 * np.ones( (self.NVert ,self

.NVert), dtype=int )

def findShortestNonOrtho(self , Sup , allDraws=

False):

""" Funzione che genera una lista di cicli

non -ortogonali (m = 1) a Sup

I NTE seguono la convenzione

lessicografica

If allDraws ritorna una lista di tutti i

cicli minimi a parit à!

"""

# bisogna controllare che sia stato generato

tutto il resto

# calcolare i labels

#self.resetLabels () # riporta i labels a -1

Con i followers non serve pi ù

_ = self.computeLabels(Sup)

def checkOrt(s, e):

""" In input una sorgente dello SPT e un

edge scritto giusto

"""

try:

ann = self.AnnDict[e] # trova l’

annotazione dal dizionario

except KeyError: # se non appartiene ai

sentinel vale 0

lab = 0

else:

lab = self.innerProd(Sup , ann) #

calcola il prodotto
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return (self.Labels[s,e[0]] + self.

Labels[s,e[1]] + lab ) %2

candidates = [] # lista di tuple (origine ,

NTE)

# selezioniamo solo quelli non ortogonali

candidates = [ x for x in self.NTE if

checkOrt(x[0],x[1]) == 1 ]

# generiamo i vettori dei cicli a partire da

(source , non -tree edge)

candidates = [ self.closeCycle(x[1], force=x

[0]) for x in candidates ]

# definiamo un metodo per calcolare la

lunghezza di un ciclo

def lenCycle(C):

""" Calcola la lunghezza di un ciclo

come prodotto scalare tra il

vettore dei pesi self.WEdges e la

descrizione del ciclo nella

base self.Edges

"""

return np.dot( self.WEdges , C)

# list of tuples (ciclo , lunghezza)

candidates = list(zip( candidates , map(

lenCycle , candidates) ))

if allDraws: # restituisce tutti i pareggi

shortest = candidates [0][1]

minList = []

for x in candidates:

if x[1] < shortest:

minList = [x]

shortest = x[1]

elif x[1] == shortest:
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minList.append(x)

else:

pass

return minList

else: # trovane solo uno

min_len = lambda x,y : x if x[1] <= y[1]

else y

minCycle = functools.reduce( min_len ,

candidates )

return minCycle

def cycleAnnotation(self , C):

""" Calcola l’annotazione del ciclo C (somma

delle ann degli edges)

"""

# seleziona gli edges del ciclo

C = map( lambda x: bool(x) , C) # rendilo

bool

edges = [ e for (e , filt) in zip(self.Edges

, C) if filt ]

ann = np.zeros( (self.dimH1 ,1), dtype = int

)

for e in edges:

try:

a = self.AnnDict[e]

ann = (ann + a) % 2

except KeyError:

pass # se non è un sentinel fai

nulla

return ann

def updateSup(self , newC , index):

""" Funzione che aggiorna i support vector

per ogni nuovo ciclo minimo

della base di omologia. Fa in pratica un

Grahm -Schmidt in Z2

Deve calcolare l’annotazione del ciclo.
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index deve andare da 0 a g-1

"""

#print (" Ciclo della SHB numero (i) = ",

index)

self.SHB.append( newC ) # aggiungi il nuovo

ciclo

#print( "Il nuovo ciclo è ", newC)

#index = len(self.SHB) # indice del nuovo

ciclo

sup_i = self.Support[index] # support vector

del nuovo ciclo

#print( "Il support vector relativo è ",

sup_i)

AnnNewC = self.cycleAnnotation(newC) #

annotazione del nuovo ciclo

#print( "L’annotazione del nuovo ciclo è ",

AnnNewC)

for j in range(index+1,self.dimH1) : # per

S_j da i+1 a g

#print( "scorri su (j) = ", j)

sup_j = self.Support[j]

#print( "Sup_j = ", sup_j)

#print( "Prodotto scalare = ", self.

innerProd( AnnNewC , sup_j ))

#print( "S_i * <C,S_j > = ", sup_i * self

.innerProd( AnnNewC , sup_j ))

#print( "S_j + S_i * <C,S_j > = ", ((

sup_j + sup_i * self.innerProd(

AnnNewC , sup_j )) % 2))

self.Support[j] = (sup_j + sup_i * self.

innerProd( AnnNewC , sup_j )) % 2 #

somma ( =sottrae) la proiezione

#print ("Fine ciclo i = ",index)

def run(self):

""" Metodo che concatena tutti i passaggi e
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calcola la base minima di omologia

"""

pass
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import math

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.lines as lines

from math import sin , cos , pi

from random import random

from SPT import SimplexGraph

import scipy.sparse

import time

from multiprocessing import Pool

from datetime import datetime

import _pickle as cPickle

filename = ’CElegansDataDump ’

timestamp=str(datetime.now()).replace(" ", "h")

filename += timestamp

filename += ’.dat’

print(filename)

def getTriangles(A):

’’’

returns set of triangles in a graph given its

adjacency matrix

’’’

n = len(A)

tri = []

for vertex in range(n):

vList = np.nonzero(A[vertex ,vertex :])

vList = [x for x in vList [1]] #NB: qui c’era

uno zero che non faceva pi ù funzionare l

’algoritmo

vList = [i + vertex for i in vList] #list of

vertices adjacent to vertex

for i in range(len(vList) -1):

for j in range(i+1,len(vList)):

if A[vList[i],vList[j]] > 0:

tri.append ([vertex ,vList[i],

vList[j]])
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return tri

def getD2(A, edgesList):

’’’

returns 2-boundary matrix of the clique complex ,

given the adjacency matrix of the graph

’’’

triangles = getTriangles(A)

# print(triangles)

d2 = []

n = len(edgesList)

#print(n)

for row in triangles:

newTriangle = [0 for i in range(n)]

newTriangle[edgesList.index( (row[0],row [1]

) )] = 1

newTriangle[edgesList.index ((row[0],row [2])

)] = 1

newTriangle[edgesList.index( (row[1],row [2])

)] = 1

d2.append(newTriangle)

d2 = np.array(d2)

return d2

def points2adj(P, epsilon):

’’’

given a set of points and a threshold returns

the weight and adjacency matrix of the

corresponding graph

points is a list where each element is the

coordinates of the point

’’’

def dist(p1 ,p2):

’’’
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euclidean distance

p1 and p2 need to be list of the same length

’’’

return math.sqrt(sum ([(p1[i]-p2[i])**2 for i

in range(len(p1))]))

n = len(P)

W=np.zeros ((n,n))

for i in range(n):

for j in range(i,n):

W[i,j]= dist(P[i],P[j])

W = W + W.T #weight matrix

W[W >= epsilon] = 0

A = (W >0).astype(int)

return W , A

def filterMatrix(W,epsilon):

Wb = np.matrix(W)

Wb[Wb >= epsilon] = 0

return Wb

def plotCycle(ax ,cic ,edList ,P):

for i in range(len(cic)):

if cic[i] > 0:

edge = edList[i]

p1 = edge [0]

p2 = edge [1]

line = lines.Line2D ([P[p1][0],P[p2

][0]] ,[P[p1][1],P[p2][1]] , color=’r’)

#line = lines.Line2D ([P[edList[cic[i

]][0]][0] ,P[edList[cic[i]][1]][0]] ,[P

[edList[cic[i]][0]][1] ,P[edList[cic[i

]][1]][1]] , color=’r ’)

ax.add_line(line)

def sampleCircle(x0 ,y0 ,r,n, noise):

P = []
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for i in range(n):

theta = random ()*2*pi

R = r+noise*random ()

xp = x0 + R*cos(theta)

yp = y0 + R*sin(theta)

P.append ([xp ,yp])

return P

def getEL(A):

edgesList = []

for i in range(len(A)):

for j in range(i,len(A)):

if A[i,j] > 0:

edgesList.append ([i,j])

return edgesList

def plot_examples(SHBi ,Wi ,maximal , P):

fig , ax = plt.subplots ()

x = [i[0] for i in P]

y = [i[1] for i in P]

ax.scatter(x,y)

for row in getEL(Wi):

line = lines.Line2D ([P[row [0]][0] ,P[row

[1]][0]] ,[P[row [0]][1] ,P[row [1]][1]])

ax.add_line(line)

for row in SHBi.T:

row = row.tolist ()

row=row [0]

plotCycle(ax ,row ,maximal [0],P)

plt.show()

return

def plot_filtration(SHB ,Ws ,maximal ,data):

for index in range(len(SHB)):

plot_examples(SHB[index],Ws[index],maximal ,P

)
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return

def createRandomScatter(N, noise):

P = []

for i in range(N):

x = noise * random ()

y = noise * random ()

P.append ([x,y])

return P

def parallel_pipeline(eps):

W = GlobalOptions[’Matrix ’]

nVert = len(W)

SHB = []

Ws = []

res = {}

maximal = SimplexGraph.getEdgeList(W)

stats = []

Wstep = filterMatrix(W,eps)

Ws.append(Wstep)

G = SimplexGraph(nVert ,Wstep , maximal)

cycles = G.getCycleBase ()

stats.append( ’NVert = ’ + str(G.NVert) + ’

NEdges = ’ + str(G.NEdges) )

stats.append( ’Filtration Eps = ’ + str(eps) )

stats.append( ’Keep all Draws = ’ + str(

GlobalOptions[’Draws ’]) )

t = time.time()

d2 = getD2( Wstep , maximal [0] ) # ottiene d2 da

Wstep ed edgelist

(An , B1 , Z1 , H1) = G.getAnnotation(d2 ,cycles)

elapsed = time.time()-t

stats.append( ’H1= ’+ str(H1) + ’ B1= ’ + str(B1

) + ’ Z1= ’ + str(Z1) )

stats.append( ’Annotazione in sec ’ + str(

elapsed) )

sup = np.eye( H1 , dtype = int )
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Sup = []

for i in range(H1):

Sup.append( sup[:,i] )

G.Support = Sup

G.fixNTE () # precalcoliamo i non tree edges

t1 = time.time()

for i in range(H1):

if GlobalOptions[’Draws ’]:

listMin = G.findShortestNonOrtho( G.

Support[i] , allDraws=True)

# scegli il primo per l’update

mincycle = listMin [0][0]

SHB.append(listMin)

else:

(mincycle , length) = G.

findShortestNonOrtho( G.Support[i],

allDraws=False )

G.updateSup(mincycle , i)

elapsed = time.time() -t1

stats.append( ’Cicli minimi in sec ’ + str(

elapsed) )

if GlobalOptions[’Draws ’]:

res[’SHB’] = SHB

else:

res[’SHB’]=np.matrix(G.SHB).transpose ()

res[’Draws ’] = GlobalOptions[’Draws ’]

res[’Filtration Eps’] = eps

if GlobalOptions[’ReturnMatrix ’]:

res[’Filtered Matrix ’] = Ws

else:

res[’Filtered Matrix ’] = None

if GlobalOptions[’ReturnMaximal ’]:

res[’Max’] = maximal

else:

res[’Max’] = None

res[’stats ’] = stats

return res
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data = np.loadtxt("celegans_weighted_undirected.

edges")

v1 = data [:,0]

v1 = np.array(v1 , dtype=int)

v2 = data [:,1]

v2 = np.array(v2 ,dtype=int)

weights = data [:,2]

wmax = max(weights)

weights = [ float(wmax)/x for x in weights ]

weights = np.array(weights , dtype=float)

FullEpsList = list(set(weights))

NVert = max(max(v1),max(v2))

print("Numero vertici:",NVert)

print( "Min: ", min(weights), "Max: ", max(weights),

"Total: ", len(weights), "Different: ", len(set(

weights)))

plt.hist(weights , range(int(min(weights)), int(max(

weights))))

print(FullEpsList)

v1 = np.array ([x-1 for x in v1])

v2 = np.array ([x-1 for x in v2])

# matrice dei pesi

W = scipy.sparse.coo_matrix ((weights ,(v1 ,v2)), dtype

=float)

W = W.todense ()

# I dati non sono SIMMETRICI!

W = (W+W.T)

GlobalOptions = {}

GlobalOptions[’Matrix ’] = W

GlobalOptions[’Draws ’] = False

GlobalOptions[’ReturnMatrix ’] = True

GlobalOptions[’ReturnMaximal ’] = True

file_stream = open(filename ,’wb’)

FullThreshList = [ x + 0.05 for x in FullEpsList ]

epsList = FullThreshList

cut = 306
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Wn = W[0:cut ,0: cut]

GlobalOptions[’Matrix ’] = Wn

pool = Pool(processes =4)

job = pool.map_async(parallel_pipeline , epsList)

result = job.get()

cPickle.dump(result , file_stream)

file_stream.close ()

file_stream = open(filename ,’rb’)

restore = cPickle.load(file_stream)

file_stream.close ()

print(restore [0]. keys())
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