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Abstract

Machine learning is the sub field of computer science that “gives computers the abil-
ity to learn without being explicitly programmed” (Arthur Samuel, 1959). Evolved
from the study of pattern recognition and computational learning theory in artificial
intelligence, machine learning explores the study and construction of algorithms that
can learn from and make predictions on data. Such algorithms overcome following
strictly static program instructions by making data driven predictions or decisions,
through building a model from sample inputs. Machine learning is employed in a
range of computing tasks where designing and programming explicit algorithms is
unfeasible. Examples of the most important areas covered are: finance, healthcare,
telecommunications, computer vision, automotive... This thesis is divided in three
parts.

The first part is a general overview of machine learning environment where is
explained its growing popularity in very different fields of knowledge and the main
steps to follow in order to accomplish good results and extract important informa-
tion. The general scheme of machine learning is proposed and exploited and some
concepts about technique and methodology used are explained (pre-processing, fea-
ture extraction, feature selection and building of a learning algorithm). The other
parts are two different case study, in both of them a different machine learning
framework for classification are shown.

In case study 1 are implemented the sub-methods of the general framework
used in the published paper “Topological Graph Kernel on Multiple Thresholded
Functional Connectivity Networks for Mild Cognitive Impairment Classification”[20]
written by Biao Jie et al. in 2013 and corrected in March 2014. The realization is
made by using the MATLAB environment and some functions from the LIBSVM
and STATISTICAL toolboxes. The topic of the paper is explained more in detail
and some recent technique used in the field of supervised learning for brain model
are discussed (Cluster Coefficient, ttest for feature extraction, RFE-GK, SVM, ker-
nels, multikernels). In the paper these techniques are used for detecting the “Mild
Cognitive Impairment”, a condition that is frequently observed before the Alzheimer
disease, so a little introduction of this disease is presented. Without loss of gener-
ality we can think that the methodologies presented can be applied at each kind
of brain illness that involves some anomalies in the functional connection between
ROIs (functional part of the brain); so a brief explanation on the modern ways of
modeling of the human brain and its connection is given. The implemented code is
the practical realization of the theoretical topics treated in this chapter and can be
seen as a little library of Matlab useful for further works that involves the same tech-
niques. The research was carried out in School of Automation Science and Electrical
Engineering department at the BUAA University, in Beijing, china.

In case study 2 a general framework for crop classification of high resolution
multispectral-multiteporal satellite images is implemented.The images were taken
by satellite Sentinel-2 lunched in 2015 by European Space Agency (ESA) and were
downloaded from Copernicus Open Access Hub website. Since two different data
set are considered, two ways of ground truth data acquisition were done. In the first
data set the ground truth was obtained by physically going in the fields and taking
the GPS coordinates by the help of a mobile-GPS device. In the second dataset the
ground truth was obtained from Land Use And Land Cover Survey (LUCAS) archive
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offered by ESA and visually analyzed with Quantum Geographic information sys-
tem (QGIS) application; then for both datasets the features involved are extracted
by using Sentinel Application Platform (SNAP) tool from European Space Agency
(ESA). The implementation is realized using Python with tensorflow library for deep
learning. More in detail are explained the problems concerning pixel-oriented mul-
ticlass classification, the extraction and processing of features from satellite image,
their selection and the building, training and test phase of Multilayer Perceptrons.
For each of the datasets a different framework with a different Multilayer Perceptron
architecture is used. The two data set differs significantly in dimension, composition
and life-cycle of crops involved, this forced to pursuit a multitemporal time wrapping
approach. The results obtained will be showed and commented. The research was
carried out in Interdepartmental Laboratory of Mechatronics (LIM) and in Polito
Interdepartmental Centre For Service Robotics (PIC4SeR) at Politecnico di Torino.

4





Acknowledgements

One part of the thesis was carried out in School of Automation Science and Electrical
Engineering department at the BUAA University, in Beijing. The other part was
carried out in Interdepartmental Mechatronics Laboratory (LIM) of Polito, in Turin.
I want to thank the two professors Marcello Chiaberge and Li Yang that gave me
the opportunity to work on this very interesting topic; and my instructor Yang Hao
that helped me and was always available for every doubts. Special thanks go to
Aleem Khaliq that was not only my supervisor, that always helped me whenever I
got stuck with the work, but also a friend. Finally I have to thank also my parents
for all the support that gave me.

6





Contents

Abstract 3

Acknowledgements 6

1 The general machine learning approach 16
1.1 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.1 General framework . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 Processing raw features . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.1 Feature selection methodologies . . . . . . . . . . . . . . . . . 22
1.5.1.1 Assessment method . . . . . . . . . . . . . . . . . . . 24

1.5.2 Problems not solved . . . . . . . . . . . . . . . . . . . . . . . 25
1.6 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6.1 Train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.6.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6.2.1 Confusion matrix . . . . . . . . . . . . . . . . . . . . 27
1.6.3 Overfitting and underfitting . . . . . . . . . . . . . . . . . . . 35
1.6.4 Assessment method . . . . . . . . . . . . . . . . . . . . . . . . 35

1.6.4.1 Holdout . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.6.4.2 K-fold cross-validation . . . . . . . . . . . . . . . . . 37

1.6.5 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.7 General structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Case study 1: methodologies involved in the paper “topological
graph kernel on multiple thresholded functional connectivity net-
works for mild cognitive impairment classification” 42
2.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.1 Symptoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.1.2 MCI Causes and evolution . . . . . . . . . . . . . . . . . . . . 43

2.2 Past related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.2 Processing raw features . . . . . . . . . . . . . . . . . . . . . . 46

2.3.2.1 Pearson correlation coefficient . . . . . . . . . . . . . 46
2.3.2.2 Fisher r to z transformation . . . . . . . . . . . . . . 47

2.3.3 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.3.1 threshold . . . . . . . . . . . . . . . . . . . . . . . . 49

8



2.3.3.2 clustering coefficient . . . . . . . . . . . . . . . . . . 50
2.3.3.3 Standardization . . . . . . . . . . . . . . . . . . . . . 51

2.3.4 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.4.1 T-test . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.4.2 Graph kernel . . . . . . . . . . . . . . . . . . . . . . 53
2.3.4.3 Rfe-gk . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3.5 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3.5.1 SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4 Summary of article’s results . . . . . . . . . . . . . . . . . . . . . . . 66

3 Case study 2: clustering of high resolution sentinel-2 images 70
3.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2 Past related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3.1.1 Ground truth dataset acquisition . . . . . . . . . . . 76

3.3.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.2.1 Basic . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3.2.2 NDVI . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3.2.3 Pca . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.2.4 Texture features . . . . . . . . . . . . . . . . . . . . 83
3.3.2.5 Multitemporal features . . . . . . . . . . . . . . . . . 84

3.3.3 Processing raw features . . . . . . . . . . . . . . . . . . . . . . 85
3.3.3.1 Normalization . . . . . . . . . . . . . . . . . . . . . . 85
3.3.3.2 Balancing . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.4 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.5 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.5.1 MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.3.6 Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.4.0.1 Dataset A . . . . . . . . . . . . . . . . . . . . . . . . 96
3.4.0.2 Dataset B . . . . . . . . . . . . . . . . . . . . . . . . 101

4 Conclusion 112

A Insights 119
A.1 From brain images to fRMI time series . . . . . . . . . . . . . . . . . 119
A.2 Connectivity matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.3 Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.4 Covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9





List of Figures

1.1 comparison feature extraction and feature selection . . . . . . . . . . 22

1.2 work-flow of filter selection approach . . . . . . . . . . . . . . . . . . 22

1.3 work-flow of wrapper selection approach . . . . . . . . . . . . . . . . 23

1.4 work-flow of embedded selection approach . . . . . . . . . . . . . . . 23

1.5 description map of the tree feature selection methods. The groups
are colored in gray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6 work-flow of training phase . . . . . . . . . . . . . . . . . . . . . . . . 27

1.7 Example of two confusion matrix, a) for multiclass classification and
b) for binary classification . . . . . . . . . . . . . . . . . . . . . . . . 27

1.8 representation of two opposite case: a)low sensitivity and high speci-
ficity b)high sensitivity and low specificity . . . . . . . . . . . . . . . 29

1.9 plots of the overlapping between true positive and true negative samples 30

1.10 comparison between two different cut off thresholds . . . . . . . . . . 31

1.11 example of ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.12 work-flow of training-prediction phase . . . . . . . . . . . . . . . . . . 32

1.13 Overfitting and underfitting in regression and classification . . . . . . 35

1.14 Bias-variance trade off . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.15 example of matrix of 4-fold. Here rounds are called iteration and the
chosen test data is shifted at each row . . . . . . . . . . . . . . . . . 38

1.16 Example of nested cross-validation . . . . . . . . . . . . . . . . . . . 39

1.17 work-flow of prediction phase . . . . . . . . . . . . . . . . . . . . . . 39

1.18 General detailed scheme of a supervised machine learning framework 40

2.1 General framework of the proposed method for detect the MCI . . . . 45

2.2 Characteristics of the subjects involved in the paper . . . . . . . . . . 45

2.3 Graphical representation of Pearson coefficient . . . . . . . . . . . . . 47

2.4 Distribution’s shape of Pearson correlation coefficient . . . . . . . . . 48

2.5 A graph of the transformation (in orange). The untransformed sam-
ple correlation coefficient is plotted on the horizontal axis, and the
transformed coefficient is plotted on the vertical axis. The identity
function (gray) is also shown for comparison. . . . . . . . . . . . . . . 48

2.6 Examples of multiple-thresholded connectivity networks for NC (green)
and MCI (blue) patients. (a) Original functional connectivity net-
works, (b) thresholded connectivity networks with T=0.3, and (c)
thresholded connectivity networks with T=0.5. . . . . . . . . . . . . . 49

2.7 unweighted (a) and weighted (b) graphs . . . . . . . . . . . . . . . . 50

2.8 graphical representation of the t value . . . . . . . . . . . . . . . . . 52

2.9 t-value distribution with a p-value=0.5% one-tailed test . . . . . . . . 53

11



2.10 A subtree pattern of height 2 rooted at the node 1. Note the repeti-
tions of nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.11 Example of walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.12 Weisfeiler-Lehman algorithm for isomorphism with the maximum num-
ber of iteration equals to one . . . . . . . . . . . . . . . . . . . . . . . 55

2.13 Illustration of the computation of the Weisfeiler-Lehman subtree ker-
nel with h=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.14 general scheme of RFE . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.15 Choosing best features in RFE-GK . . . . . . . . . . . . . . . . . . . 58

2.16 Example of training and test kernel matrix for 4 training subjects and
1 test subject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.17 scheme of the RFE-GK used in the paper . . . . . . . . . . . . . . . . 59

2.18 two different classes (p=2) . . . . . . . . . . . . . . . . . . . . . . . . 60

2.19 hyperplane and its parameters, the orthogonal vector w and the scalar
coefficient b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.20 : hyperplane and its margins. the maximum distance between the
two classes is equal to 2/||w|| . . . . . . . . . . . . . . . . . . . . . . 62

2.21 Graphical representation of hyperplane and the role of slack variables 62

2.22 Comparison between two SVM with different C parameter . . . . . . 63

2.23 On the right side a non linear separable classes, on the left the trans-
formation into a bigger space where that points are linearly separable 64

2.24 Kernel matrix structure . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.25 dot product in the space . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.26 ROC curves of the investigated method (RFE-GK) by using different
threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.27 comparison between average connectivity matrix of a healthy person
(on the left) and an MCI person (on the right). The colors express
how strong is a connection (ascending order from red to blue). . . . . 67

3.1 Schematizing of active and passive satellite remote sensing . . . . . . 71

3.2 Logo of Copernicus the new name for the Global Monitoring for Envi-
ronment and Security program, previously known as GMES, “It will
provide accurate, timely and easily accessible information to improve
the management of the environment, understand and mitigate the
effects of climate change and ensure civil security”[4] . . . . . . . . . 72

3.3 Salt and pepper effect . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Scheme of the proposed method . . . . . . . . . . . . . . . . . . . . . 75

3.5 Sentinel-2 bands detail . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 Dataset A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.7 Dataset B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.8 Zoom-in of the upper-right corner of dataset B . . . . . . . . . . . . . 78

3.9 Basic feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.10 Ndvi feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.11 pca features extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.12 Example of gray-scale image with 3 tones on the left and correspective
GLCM with operational position 1-dx and 1-down . . . . . . . . . . . 84

3.13 texture feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 84

12



3.14 Three crops: maize,cultivated maize and cabbage in different day of
the year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.15 Short-Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.16 multitemporal NDVI plot for each crop of dataset A . . . . . . . . . . 87
3.17 A cartoon drawing of a biological neuron (a) and its mathematical

model (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.18 (a): A 2-layer Neural Network (one hidden layer of 4 neurons (or

units) and one output layer with 2 neurons), and three inputs. (b):
A 3-layer neural network with three inputs, two hidden layers of 4
neurons each and one output layer. Notice that in both cases there
are connections (synapses) between neurons across layers, but not
within a layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.19 ANN dependency graph . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.20 forward and backward propagation . . . . . . . . . . . . . . . . . . . 92
3.21 typical behaviour of early stopping in the implementation. Red stand

for validation set, blue for training set . . . . . . . . . . . . . . . . . 94
3.22 example of calculation of median filter . . . . . . . . . . . . . . . . . 95
3.23 original clustered image in (a) and after the application of median

filter 5x5 in (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.24 temporal performance of scenario 1 . . . . . . . . . . . . . . . . . . . 96
3.25 confusion matrix of best individual temporal information (09/04) . . 96
3.26 final segmentation of the image considering best individual temporal

information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.27 temporal performance of scenario 2 . . . . . . . . . . . . . . . . . . . 97
3.28 confusion matrix of best two temporal information (09/04 05/27) . . 98
3.29 final segmentation of the image considering best two temporal infor-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.30 temporal performance of scenario 3 . . . . . . . . . . . . . . . . . . . 99
3.31 confusion matrix of best two temporal information (09/04 06/19 05/17) 99
3.32 final segmentation of the image considering best three temporal in-

formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.33 performance of combination of non temporal features . . . . . . . . . 100
3.34 confusion matrix of best non-temporal features (Pca1 Pca3 Txt) . . . 100
3.35 final segmentation of the image considering best non-temporal features100
3.36 plot accuracy vs features used . . . . . . . . . . . . . . . . . . . . . . 101
3.37 temporal performance of scenario 1 . . . . . . . . . . . . . . . . . . . 102
3.38 confusion matrix of best individual temporal information (07/04/15) . 102
3.39 Total segmented image in (a) and a zoom of 600x800 px in the upper

right corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.40 temporal performance of scenario 1 . . . . . . . . . . . . . . . . . . . 104
3.41 confusion matrix of best two temporal information (07/04/15 03/20/16)104
3.42 Total segmented image in (a) and a zoom of 600x800 px in the upper

right corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.43 temporal performance of scenario 1 . . . . . . . . . . . . . . . . . . . 106
3.44 confusion matrix of best two temporal information (07/04/15 09/04/15 03/20/16)106
3.45 Total segmented image in (a) and a zoom of 600x800 px in the upper

right corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.46 performance of combination of non temporal features . . . . . . . . . 108

13



3.47 confusion matrix of best non-temporal features (Pca1 Pca5 Txt) . . . 108
3.48 Total segmented image in (a) and a zoom of 600x800 px in the upper

right corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.49 plot accuracy vs features used . . . . . . . . . . . . . . . . . . . . . . 110

A.1 Example of preprocessing for time series extraction from fMRI data,
including atlas-based parcellation of the brain. . . . . . . . . . . . . . 120

A.2 Example adjacency matrix . . . . . . . . . . . . . . . . . . . . . . . . 120

14





Chapter 1

The general machine learning
approach

1.1 Machine learning

Machine learning is the subfield of computer science that “gives computers the ability
to learn without being explicitly programmed” (Arthur Samuel, 1959). Evolved
from the study of pattern recognition and computational learning theory in artificial
intelligence, machine learning explores the study and construction of algorithms that
can learn from and make predictions on data, such algorithms overcome following
strictly static program instructions by making data driven predictions or decisions,
through building a model from sample inputs. Machine learning is employed in
a range of computing tasks where designing and programming explicit algorithms
is unfeasible; example applications include: spam filtering, detection of network
intruders or malicious insiders working towards a data breach, optical character
recognition (OCR), search engines and computer vision. The process of machine
learning is similar to that of data mining. Both systems search through data to
look for patterns. However, instead of extracting data for human comprehension, as
is the case in data mining applications, machine learning uses that data to detect
patterns in data and adjust program actions accordingly. Machine learning tasks
are typically classified into three broad categories, depending on the nature of the
learning “signal” or “feedback” available to a learning system. These are:

• Supervised learning: The computer is presented with example inputs and
their desired outputs, given by a “teacher”, and the goal is to learn a general
rule that maps inputs to outputs.

• Unsupervised learning: No labels are given to the learning algorithm, leav-
ing it on its own to find structure in its input. Unsupervised learning can be a
goal in itself (discovering hidden patterns in data) or a means towards an end
(feature learning).

• Reinforcement learning: A computer program interacts with a dynamic
environment in which it must perform a certain goal (such as driving a vehicle),
without a teacher explicitly telling it whether it has come close to its goal.
Another example is learning to play a game by playing against an opponent.
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Between supervised and unsupervised learning is semi-supervised learning, where
the teacher gives an incomplete training signal: a training set with some (often
many) of the target outputs missing. Transduction is a special case of this prin-
ciple where the entire set of problem instances is known at learning time, except
that part of the targets are missing. There are also other different categories that
have a minority role compared to others. For example, Developmental learning,
elaborated for robot learning, generates its own sequences (also called curriculum)
of learning situations to cumulatively acquire repertoires of novel skills through
autonomous self-exploration and social interaction with human teachers and using
guidance mechanisms such as active learning, maturation, motor synergies, and im-
itation. Another categorization of machine learning tasks arises when one considers
the desired output of a machine-learned system:

• In classification, inputs are divided into two or more classes, and the learner
must produce a model that assigns unseen inputs to one or more (multi-label
classification) of these classes. This is typically tackled in a supervised way.
Spam filtering is an example of classification, where the inputs are email (or
other) messages and the classes are ”spam” and ”not spam”.

• In regression, also a supervised problem, the outputs are continuous rather
than discrete.

• In clustering, a set of inputs is to be divided into groups. Unlike in clas-
sification, the groups are not known beforehand, making this typically an
unsupervised task.

• Density estimation finds the distribution of inputs in some space.

• Dimensionality reduction simplifies inputs by mapping them into a lower-
dimensional space. Topic modeling is a related problem, where a program is
given a list of human language documents and is tasked to find out which
documents cover similar topics.

1.1.1 General framework

In the basic statistical learning setting, the learner has access to the following:

• Domain set: an arbitrary set, X. This is the set of objects that we may wish
to label. For example, in the illness classification problem, the domain set
will be the set of all people, for crop classification will be the set of all pixels.
Usually, these domain points will be represented by a vector of features. The
domain points are referred as instances and X as instance space.

• Label set: the label set con be a two element, usually {0, 1} or {-1, +1} if
refer to binary classification. If it refer to multiclass it can be a two,three or
more element. Let Y denote the set of possible labels. For illness classification,
let Y be {0, 1}, where 1 represents being sick and 0 stands for being healthy,
for satellite image let Y be {0,1,2,3,4}, where 0 is city, 1 maze, 2 cabbage, 3
vineyards, 4 water.
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• Training data: S = ((x1, y1)...(xm, ym)) is a finite sequence of pairs in X ×
Y : that is, a sequence of labeled domain points. This is the input that the
learner has access to. Such labeled examples are often called training examples.
Sometimes S is also referred as training set.

• The learner’s output: The learner is requested to output a prediction rule,
h : X → Y . This function is also called a predictor, a hypothesis, or a classifier.
The predictor can be used to predict the label of new domain points. In the
preceding examples, it is a rule that our learner will employ to predict whether
future people he examines are going to be sick or not or a new pixel is classify
as city,maze,cabbage,vineyards or water.

• The generation of data for the model: there are different ways to gen-
erate data for the model, but for the aim of this thesis the data was taken
from samples of a population of people and samples of pixel of a big image.
So different inferential statistics techniques could be adopted. (i.e. random
sampling, stratified random sampling. . . ) Of course the instances X obtained
are distributed with a distribution D. the learner knows nothing about this
distribution.

• Measures of success: We define the error of a classifier to be the probability
that it does not predict the correct label on a random data point generated
by the aforementioned underlying distribution. That is, the error of h is the
probability to draw a random instance x, according to the distribution D, such
that h(x) 6= f(x). Formally, given a domain subset, A ⊂ X , the probability
distribution, D, assigns a number, D(A), which determines how likely it is to
observe a point x ∈ A. In many cases, we refer to A as an event and express
it using a function π : X → {0, 1}, namely, A = {x ∈ X : π(x) = 1}. In
that case, we also use the notation Px∼D[π(x)] to express D(A). We define the

error of a prediction rule, h : X → Y , to be Ld,f (h)
def
= Px∼D[h(x) 6= f(x)]

def
=

D({x : h(x) 6= f(x)}). That is, the error of such h is the probability of
randomly choosing an example x for which h(x) 6= f(x). The subscript (D, f)
indicates that the error is measured with respect to the probability distribution
D and the correct labeling function f. L(d,f)(h) has several synonymous names
such as the generalization error, the risk, or the true error of h.

A note about the information available to the learner, the learner is blind to the
underlying distribution D over the world and to the labeling function f. The only
way the learner can interact with the environment is through observing the training
set.

1.2 Data acquisition

Every machine learning algorithm, in order to be trained or to extract useful infor-
mation, need data. The collection of an initial dataset is the basis for all the steps
that will follow. Of course the methods used to acquire data and some refinement of
them, strongly depends on the field in which the framework is applied. For exam-
ple in bio medical environment images are taken from a fRMI (functional magnetic
resonance) and than processed as signals in order to be compatible as input for the
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learning algorithm. In satellite classification, images of an area are captured by the
satellite and downloaded and then resampled and subsetted. For speech recognition
continuous signal are captured from a microphone and so on. So in order to have
a good framework is important to have a good quality of data, that is why the
acquisition step should be made by someone that:

• have a good knowledge of the field of application of ML procedures

• have a good knowledge of the ML algorithm used

• already have in mind, at least as an idea, the total structure of the framework
that will be adopted

1.3 Feature extraction

Feature extraction is that activity that starts from an initial set of measured data
(such as connectivity matrix and bands of satellite image) and builds derived values
in form of vector of features (that represent the characteristics of an observation)
intended to be informative and non-redundant, facilitating the subsequent learning
and generalization steps, and in some cases leading to better human interpretations.
Feature Extraction methods are transformative in the sense that it is applied a
transformation to data to project it into a new feature space. There are at least
three reasons why feature extraction is an important problem in predictive modeling
and modern data analysis:

• Dimension Reduction: in problems with a large number of variables, al-
most all prediction models suffer from the curse of dimensionality, some more
severely than others. Feature extraction can act as a powerful dimension re-
duction agent. We can understand the curse of dimensionality in very intuitive
terms: when a person (or, analogously, a machine learning program) is given
too many variables to consider, most of which are irrelevant or simply non-
informative, it is naturally much harder to make a good decision. It is therefore
desirable to select a much smaller number of relevant and important features.
High dimensional problems also pose problems for computation. Sometimes
two variables might be equally informative, but are highly correlated with
each other; this often causes ill behavior in numerical computation. Feature
extraction is, therefore, also an important computational technique.

• Automatic Exploratory Data Analysis: In many classical applications,
informative features are often selected a priori by field experts, i.e., investiga-
tors pick out what they believe are the important variables to build a model.
More and more often in modern data-mining applications, however, there is
a growing demand for fully automated “black-box” type of prediction models
that are capable of identifying the important features on their own. The need
for such automated systems arises for two reasons. On the one hand, there are
the economic needs to process large amounts of data in a short amount of time
with little manual supervision. On the other hand, it is often the case that the
problem and the data are so novel that there are simply no field experts who
understand the data well enough to be able to pick out the important variables
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prior to the analysis. Under such circumstances, automatic exploratory data
analysis becomes the key. Instead of relying on pre-conceived ideas, there is a
need (as well as interest) to let the data speak for itself.

• Data Visualization: Another application of feature extraction that shares
the flavor of exploratory data analysis is data visualization. The human eye
has an amazing ability in recognizing systematic patterns in the data. At the
same time, we are usually unable to make good sense of data if it is more
than three dimensional. To maximize the use of the highly developed human
faculty in visual identification, we often wish to identify two or three of the
most informative features in the data so that we can plot the data in a reduced
space. To produce such plots, feature extraction is the crucial analytic step.[37]

1.4 Processing raw features

The two main goal of feature extraction are: dimensionality reduction and improving
prediction accuracy. When the focus is on improving prediction accuracy a common
step is applied: the processing of features. To describe the processing step, some no-
tations are introduced. Let x be a pattern vector of dimension n, x = [x1, x2, ..., xn].
The components xi of this vector are the original features. We call x′ a vector of
transformed features of dimension n′. The processing transformations may include:

• Rescale data: The features may contain attributes with a mixtures of scales.
Many machine learning methods like data attributes to have the same scale.

– Standardization: features can have different scales although they refer
to comparable objects. Consider for instance, a pattern x = [x1, x2]
where x1 is a width measured in meters and x2 is a height measured in
centimeters. Both can be compared, added or subtracted but it would be
unreasonable to do it before appropriate standardization. The following
classical centering and scaling of the data is often used: x′ = (xi−µi)/σi,
where µi and σi are the mean and the standard deviation of feature xi
over training examples.

– Normalization: consider for example the case where x is an image and
the xi’s are the number of pixels with color i, it makes sense to normalize
x by dividing it by the total number of counts in order to encode the
distribution and remove the dependence on the size of the image. This
translates into the formula: x′ = x/ |x|.

– Scale to 0-1:it’s just an other kind of standardization but the formula
used is x′ = xi−min(x)

max(x)−min(x)
and it scale all the feature values from 0 to 1.

• Signal enhancement: the signal-to-noise ratio may be improved by applying
signal or image-processing filters. These operations include baseline or back-
ground removal, de-noising, smoothing, or sharpening. The Fourier transform
and wavelet transforms are popular methods.

• Extraction of local features: for sequential, spatial or other structured
data, specific techniques like convolutional methods using hand-crafted ker-
nels or syntactic and structural methods are used. These techniques encode
problem specific knowledge into the features.
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• Linear and non-linear space embedding methods: when the dimen-
sionality of the data is very high, some techniques might be used to project
or embed the data into a lower dimensional space while retaining as much
information as possible.

• Non-linear expansions: although dimensionality reduction is often sum-
moned when speaking about complex data, it is sometimes better to increase
the dimensionality. This happens when the problem is very complex and first
order interactions are not enough to derive good results. This consists for
instance in computing products of the original features xi to create monomials
xk1, xk2, ..., xkp.

• Feature discretization: some algorithms do no handle well continuous data.
It makes sense then to discretize continuous values into a finite discrete set.

This step not only facilitates the use of certain algorithms, it may simplify the data
description and improve data understanding. Some methods do not alter the space
dimensionality (e.g. signal enhancement, normalization, standardization), while
others enlarge it (non-linear expansions, feature discretization), reduce it (space
embedding methods) or can act in either direction (extraction of local features).[13]

1.5 Feature selection

Feature selection is a critical step in the feature construction process. Since the
transformed feature space FN (obtained from the feature extraction step) is large, we
need another step to select a subset FT of FN. The problem of selecting the optimal
subset is NP-hard, and the methods usually perform some sort of sub-optimal greedy
search. Frequently used criteria for measuring the utility of a feature space Fi include
information gain, correlation coefficient, prediction accuracy on some validation set
etc. A plethora of different selection methods have been presented in the literature.
selection techniques are used for three reasons:

• simplification of models to make them easier to interpret by researchers/users

• shorter training times

• enhanced generalization by reducing overfitting

The central premise when using a feature selection technique is that the data con-
tains many features that are either redundant or irrelevant, and can thus be removed
without incurring much loss of information. Redundant or irrelevant features are
two distinct notions, since one relevant feature may be redundant in the presence of
another relevant feature with which it is strongly correlated. A feature is useful if
it is correlated with or predictive of the class; otherwise it is irrelevant.[16] Empir-
ical evidence from the feature selection literature shows that, along with irrelevant
features, redundant information should be eliminated as well. A feature is said to
be redundant if one or more of the other features are highly correlated with it. The
above definitions for relevance and redundancy lead to the idea that best features
for a given classification are those that are highly correlated with one of the classes
and have an insignificant correlation with the rest of the features in the set. Feature
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selection techniques should be distinguished from feature extraction. Feature ex-
traction creates new features from functions of the original features, whereas feature
selection returns a subset of the features. Feature selection techniques are often used
in domains where there are many features and comparatively few samples (or data
points)

Figure 1.1: comparison feature extraction and feature selection

1.5.1 Feature selection methodologies

The feature selection strategy can be summarized in three aspects:

• feature subset generation (or search strategy);

• evaluation criterion definition (e.g. relevance index or predictive power);

• evaluation criterion estimation (or assessment method).

By the different way of using the aspects above we can subdivide the feature selection
methodologies in three categories:

• Filters: Filters select the feature subsets independent of the predictor. They
essentially operate as a data preprocessing step before a predictor is trained.
Variable ranking approaches, which involve ranking individual features using
information theoretic or correlation criteria, and then constructing a subset
of high scoring features, belong in this category. Filters have an advantage in
that they are faster than wrappers. Moreover, they tend to provide a generic
(and hence insightful) ordering of features not tuned for a specific learning
method. A disadvantage however is that the chosen subset may not be the
best suited for the predictor to be used in the next step.

Figure 1.2: work-flow of filter selection approach

• Wrappers: Wrappers are feature selection methods that use the learning
method to be used for prediction as a black box to select feature subsets.
These methods typically divide the training set into a train and validation set
(the test set is separate). For any given feature subset, the predictor is trained
on the train set and tested on the validation set. The prediction accuracy on
the validation set is considered as the score of the feature subset. Thus we
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would ultimately want to choose the highest scoring feature subset. Due to
repeated train and test cycles for every feature subset, wrappers tend to be
much more computationally intensive compared to filters. The goal usually is
to traverse the feature space such that the number of subsets to be tested is
minimized. An obvious advantage however is that the chosen subset is tuned
to the predictor.

Figure 1.3: work-flow of wrapper selection approach

• Embedded: Embedded methods combine the process of feature selection and
model learning. These methods are highly specific to the learning machine. For
example, we could modify the objective function of an SVM to also minimize
the number of features along with the error. Such methods are often fast and
lead to accurate predictors. They are however not directly generalizable to
any predictor.

Figure 1.4: work-flow of embedded selection approach

Synthesizing: filters and wrappers differ mostly by the evaluation criterion. It
is usually understood that filters use criteria not involving any learning machine,
e.g. a relevance index based on correlation coefficients or test statistics, whereas
wrappers use the performance of a learning machine trained using a given feature
subset. Among wrapper and embedded methods, greedy methods (forward selection
or backward elimination) are the most popular. In a forward selection method one
starts with an empty set and progressively add features yielding to the improvement
of a performance index. In a backward elimination procedure one starts with all
the features and progressively eliminate the least useful ones. Both procedures are
robust against overfitting.
The main characteristic of forward selection are:

• faster in early steps because fewer features to test

• fast for choosing a small subset of the features
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• misses features whose usefulness requires other features (feature synergy)

The main characteristic of backward selection are:

• fast for choosing all but a small subset of the features

• preserves features whose usefulness requires other features

Both procedures provide nested feature subsets. However they may lead to different
subsets and, depending on the application and the objectives, one approach may be
preferred over the other one.

Figure 1.5: description map of the tree feature selection methods. The groups are
colored in gray.

1.5.1.1 Assessment method

The difficulty to overcome is that a defined criterion (a relevance index or the perfor-
mance of a learning machine) must be estimated from a limited amount of training
data, so is necessary to use a strategy that permit to give to the chosen criterion
the most general validity as possible. In other words: follow a procedure that allow
the extension of results obtained from samples to the population. Two strategies
are possible: “in-sample” or “out-of-sample”.
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• The first one (in-sample) is the “classical statistics” approach. It refers to
using all the training data to compute an empirical estimate. That estimate
is then tested with a statistical test to assess its significance, or a performance
bound is used to give a guaranteed estimate.

• The second one (out-of-sample) is the “machine learning” approach. It refers
to splitting the training data into a training set used to estimate the parameters
of a predictive model (learning machine) and a validation set used to estimate
the learning machine predictive performance. Averaging the results of multiple
splitting (or “cross-validation”) is commonly used to decrease the variance of
the estimator.[13]

The focus is on the second strategy and it is also used to evaluate the generality of
classifier, so it has been exploited in the next section.

1.5.2 Problems not solved

Although the use of feature selection to improve the predictability of our classifier
some problems still remain:

• Overfitting: If we consider the task of feature construction as selecting an
optimal subset of features in a potentially infinite feature space, the possibility
of overfitting (in next section the concept is more investigated) becomes clearly
apparent. In a highly expressive feature space with a comparatively small
number of examples, there may be many hypotheses that are consistent with
the data. Choosing the right one becomes a problem. Most systems use some
sort of a heuristic search methodology and tend to prefer a sub-optimal subset
as it is less likely to overfit. To the best of knowledge, there is currently no
literature that specifically explores this problem to identify the best search
strategies.

• Difficulty in Comparison: While a large number of feature construction
methods have been proposed, there has been little or no comparison between
them. Most papers present methods that are either meant for specific problems
or are evaluated only in certain settings using specific predictors. There has
rarely been any evaluation across classifiers.

• Incorporating domain knowledge: Incorporating domain knowledge into
the feature construction has been and still remains a major challenge. Most
methods do this by choosing a set of operators and putting constraints on
the feature generation process. This has two major drawbacks. First it’s not
always easy to encode domain knowledge in terms of operators. Second, the
use of operators frequently results in a huge feature space which then needs to
be searched. Recent approaches deal with this problem by allowing users to
supply domain knowledge in the form of annotations which are then used for
constructing the feature space. More such methods need to be explored.[34]

1.6 Classifier

“A computer program is said to learn from experience E with respect to some class
of tasks T and a performance measure P if it improves performance on T (according
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to P) with more E.” (Tom Mitchell)[26].
This is the core of the machine learning subject: build and algorithm able to

predict the output of some input. It will be able to do that because we already
have trained it. The training procedure is operatively exploited by using the feature
vectors obtained from the previous step as input vectors (the experience E) for the
algorithm. Close to the concept of training there is also the concept of evaluating.
Evaluating an algorithm means measure how much is able to predict values. From
this evaluation step is possible to decide if we need to train more our algorithm or
if it is not suitable for our aim.
Every algorithm has three components:

• Hypothesis space-possible outputs (decision trees, instances, neural net-
works, SVM...)

• Search strategy-strategy for exploring space (greedy, exhaustive, opti-
mize objective function, branch and bound...)

• Evaluation (accuracy,precision,recall,likelihood...)

A Classifier is a particular example of learning algorithm which goal is identifying
to which of a set of categories (sub-populations) a new observation belongs, on the
basis of a training set of data containing observations (or instances) whose category
membership is known.
In the terminology of machine learning, classification is considered an instance of
supervised learning. The corresponding unsupervised procedure is known as cluster-
ing, and involves grouping data into categories based on some measure of inherent
similarity or distance.

1.6.1 Train

A classifier is essentially a mathematical structure able to associate a new observa-
tion to a class. Being a mathematical structure it is composed by some parameters,
for example the orientation W and the displacement b in svm, or the biases and
connection weights in neural networks. Train a classifier means teach to it which
values of the parameters are the best in order to minimize a defined cost function,
the minimization of the cost function lead to a better ability to classify the new
samples.
Practically in supervised learning the training procedure is done by giving to the
learning algorithm a set of observation of which the classes are known, so the algo-
rithm can learn (with different approach, i.e back-propagation for Neural Network
or support vectors for svm) the parameters.
From now on it is assumed that the dataset is splitted in two part: the train set and
test set, the former used to train the classifier and the latter to evaluate its quality.
In section “Assessment method” the details of the splitting of dataset are exploited.
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Figure 1.6: work-flow of training phase

1.6.2 Evaluation

Evaluate a classifier essentially means give a measure of quality to it.
The good quality con be evaluated by accounting two different aspects:

• Actual evaluation: use a metrics able to encapsulate how much the trained
classifier is good by using as input the test set

• Assessment of classifier: measure how much the evaluation metrics are general
or in other words how much the evaluation metrics of classifier is dependent
from the dataset used.

Both aspects are strictly correlated; in this section the former aspect is exploited by
analyzing the most used metrics in fields of binary and multiclass classification, the
latter is exploited in the next section “Assessment method”.

1.6.2.1 Confusion matrix

The confusion matrix as suggested by the name is a table able to give information
about the quality of a classifier.
Each row of the matrix represents the instances in a predicted class while each col-
umn represents the instances in an actual class (or vice versa).The name stems from
the fact that it makes it easy to see if the system is confusing two or more classes.
The number of rows and column are the same and all correct predictions are located
in the diagonal of the table, so it is easy to visually inspect the table for prediction
errors, as they will be represented by values outside the diagonal. It is used both
in binary and multiclass classification, but in binary ones the rows and columns are
2 and the instances in the table are called: “true positive”,“false positive”,“true
negative”,“false negative”.

(a) multiclass confusion matrix (b) binary confusion matrix

Figure 1.7: Example of two confusion matrix, a) for multiclass classification and b)
for binary classification
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From both confusion matrices different metrics can be extracted and in general they
are grouped in function of the kind of classification.

Binary classification

For defining the next metrics, especially for bio medical field, is necessary to de-
fine:

• True positive (TP): Sick people correctly identified as sick

• False positive (FP): Healthy people incorrectly identified as sick

• True negative (TN): Healthy people correctly identified as healthy

• False negative (FN): Sick people incorrectly identified as healthy

The most used parameters for evaluating the performance of a classifier are:

• ACC = TP+TN
TN+FN+TN+FP

• BAC = 1
2
× ( TP

TP+FN
+ TN

TN+FP
)

Where the accuracy (ACC) represents the ability of correctly identify a test subject.
The balanced accuracy has the same meaning but take care also for the imbalance
problem: a two-class data set is said to be imbalanced when one of the classes (the
minority one) is heavily under-represented as regards the other class (the majority
one). In this case the only accuracy is not significant for evaluating the performance
of the classifier.

Sensitivity and specificity

Sensitivity refers to the test’s ability to correctly detect patients who do have the
condition. In the example of a medical test used to identify a disease, the sensitivity
of the test is the proportion of people who test positive for the disease among those
who have the disease. Mathematically, this can be expressed as:

Sensitivity=
number of true positives

number of true positives + number of false negative
=

nr TP

nr sick people

=probability of a positive test given that the patient has the disease

A negative result in a test with high sensitivity is useful for ruling out disease. A
high sensitivity test is reliable when its result is negative, since it rarely misdiagnoses
those who have the disease. A test with 100% sensitivity will recognize all patients
with the disease by testing positive. A negative test result would definitively rule out
presence of the disease in a patient. A positive result in a test with high sensitivity is
not useful for ruling in disease. Suppose a ‘bogus’ test kit is designed to show only
one reading, positive. When used on diseased patients, all patients test positive,
giving the test 100% sensitivity. However, sensitivity by definition does not take
into account false positives. The bogus test also returns positive on all healthy
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patients, giving it a false positive rate of 100%, rendering it useless for detecting or
“ruling in” the disease.

Specificity relates to the test’s ability to correctly detect patients without a con-
dition. Consider the example of a medical test for diagnosing a disease. Specificity
of a test is the proportion of healthy patients known not to have the disease, who
will test negative for it. Mathematically, this can also be written as:

Specificity=
number of true negatives

number of true negative + number of false positive
=

nr TN

nr healthy people

=probability of a negative test given that the patient is healthy

A positive result in a test with high specificity is useful for ruling in disease. The
test rarely gives positive results in healthy patients. A test with 100% specificity will
read negative, and accurately exclude disease from all healthy patients. A positive
result signifies a high probability of the presence of disease. A negative result in a
test with high specificity is not useful for ruling out disease. Assume a ‘bogus’ test is
designed to read only negative. This is administered to healthy patients, and reads
negative on all of them. This will give the test a specificity of 100%. Specificity by
definition does not take into account false negatives. The same test will also read
negative on diseased patients, therefore it has a false negative rate of 100%, and will
be useless for ruling out disease.

(a) low sensitivity, high specificity (b) high sensitivity, low specificity

Figure 1.8: representation of two opposite case: a)low sensitivity and high specificity
b)high sensitivity and low specificity

trade off sensitivity-specificity

When the results of a particular test in two populations, one population with a
disease, the other population without the disease, are considered; it’s rarely ob-
served a perfect separation between the two groups. Indeed, the distribution of the
test results will overlap, as shown in figure 1.9.

For every possible cut-off point or criterion value you select to discriminate be-
tween the two populations (figure 1.10), there will be some cases with the disease
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(a)

(b)

Figure 1.9: plots of the overlapping between true positive and true negative samples

correctly classified as positive (TP = True Positive fraction), but some cases with
the disease will be classified negative (FN = False Negative fraction). On the other
hand, some cases without the disease will be correctly classified as negative (TN
= True Negative fraction), but some cases without the disease will be classified as
positive (FP = False Positive fraction). Percentage of sensitivity is the area under
the true positive curve and cut-off (red in figure 1.9 (b)). Percentage of specificity
is the area under the true negative curve and cut-off (black in figure 1.9 (b)). So by
moving the cut-off we are deciding if increasing the sensibility and decreasing the
specificity or the opposite. Move the cut-off to have very high value of specificity
or sensibility will give result that are worthless: imagine to have sensitivity of 10%
and specificity of 90%. Let’s say you have a positive result; you might think that
the disease is more likely, since the specificity is 90%. In fact, the specificity tells
you that 10% of healthy people will have a positive result - but by looking at the
sensitivity, we see that only 10% of diseased patients will have a positive result. In
other words, the rate of positive results is the same between diseased and healthy
people, which means that this positive result means you are no more or less likely
to be diseased, i.e. that the test is worthless.

ROC

To draw a ROC curve, only the true positive rate (TPR) and false positive rate
(FPR) are needed (as functions of some classifier parameter). The TPR defines
how many correct positive results occur among all positive samples available during
the test. FPR, on the other hand, defines how many incorrect positive results oc-
cur among all negative samples available during the test. A ROC space is defined
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Figure 1.10: comparison between two different cut off thresholds

by FPR and TPR as x and y axes respectively, which depicts relative trade-offs
between true positive (benefits) and false positive (costs). Since TPR is equiva-
lent to sensitivity and FPR is equal to 1 - specificity, the ROC graph is sometimes
called the sensitivity vs (1 - specificity) plot. Each prediction result or instance of a
confusion matrix represents one point in the ROC space. The best possible predic-
tion method would yield a point in the upper left corner or coordinate (0,1) of the
ROC space, representing 100% sensitivity (no false negatives) and 100% specificity
(no false positives). The (0,1) point is also called a perfect classification. A com-
pletely random guess would give a point along a diagonal line (the so-called line of
no-discrimination) from the left bottom to the top right corners (regardless of the
positive and negative base rates). In rough words ROC curves represent the relation
between sensitivity and (1-specificity) while varying the threshold line. From the

Figure 1.11: example of ROC curve

analysis of the Area Under the Curve (AUC) we are able to detect if a classifier is
good or not because the AUC is equal to the probability that a classifier will rank
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a randomly chosen positive instance higher than a randomly chosen negative one
(assuming ‘positive’ ranks higher than ‘negative’). More the curve look like a line
worst will be the classification capabilities of the classifier. In detail the values for
quantify the quality of a test:

• AUC 0.9-1: Excellent

• AUC 0.8-0.9: Good

• AUC 0.7-0.8: Fair

• AUC 0.6-0.7: Poor

• AUC 0.5-0.6: Fail

ROC analysis is part of a field called “Signal Detection Theory” developed during
World War II for the analysis of radar images. Radar operators had to decide
whether a blip on the screen represented an enemy target, a friendly ship, or just
noise. Signal detection theory measures the ability of radar receiver operators to
make these important distinctions. Their ability to do so was called the Receiver
Operating Characteristics. It was not until the 1970’s that signal detection theory
was recognized as useful for interpreting medical test results.

Figure 1.12: work-flow of training-prediction phase

Multiclass classification

Differently form the binary classification the confusion matrix is composed by more
than two rows and columns where on the diagonal there are the right classified ob-
servations and the misclassificatons on the other cells. The most used metric is the
Overall Accuracy, defined as:

overall accuracy =
total correct classified samples

total samples

it is represented in percentage and express the proportion of correctly classified
observations.
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kappa score

The Kappa statistic (or value) is a metric that compares an Observed Accuracy
with an Expected Accuracy (random chance). Taking into account random chance
(agreement with a random classifier), generally means it is less misleading than sim-
ply using accuracy as a metric (an Observed Accuracy of 80% is a lot less impressive
with an Expected Accuracy of 75% versus an Expected Accuracy of 50%). In few
words it compares how much better is the predictive ability of the developed classify
instead of a one that predict randomly. The formula is:

k =

N
n∑
i=1

mi,i −
n∑
i=1

(GiCi)

N2 −
n∑
i=1

(GiCi)

where:

• i is the class number

• N is the total number of classified values compared to truth values

• mi,i is the number of values belonging to the truth class i that have also
been classified as class i (i.e., values found along the diagonal of the confusion
matrix)

• Ci is the total number of predicted values belonging to class i

• Gi is the total number of truth values belonging to class i[17]

User accuracy

The User’s Accuracy (UA) is the accuracy from the point of view of a map user,
not the map maker. the User’s accuracy essentially tells how often the class on the
map will actually be present on the ground. This is referred to as reliability. The
User’s Accuracy is complement of the Commission Error, User’s Accuracy = 100%-
Commission Error. The User’s Accuracy is calculating by taking the total number
of correct classifications for a particular class and dividing it by the row total.
Errors of commission refer to sites that are classified as reference sites that were left
out (or omitted) from the correct class in the classified map. Commission errors
are calculated by reviewing the classified sites for incorrect classifications.[36] For
example in the multiclass confusion matrix of fig 1.7:

• Water:

– Correctly classified reference sites = 21

– Total nr of reference sites = 27

– Producer’s Accuracy = 21/33 = 78%

• Forest:

– Correctly classified reference sites = 31

33



– Total nr of reference sites = 37

– Producer’s Accuracy = 31/39 = 84%

• Urban:

– Correctly classified reference sites = 22

– Total nr of reference sites = 31

– Producer’s Accuracy = 22/23 =70%

Producer accuracy

Producer’s Accuracy (PA) is the map accuracy from the point of view of the map
maker (the producer). This is how often are real features on the ground correctly
shown on the classified map or the probability that a certain land cover of an area
on the ground is classified as such. The Producer’s Accuracy is complement of the
Omission Error, Producer’s Accuracy = 100%-Omission Error. It is also the number
of reference sites classified accurately divided by the total number of reference sites
for that class.
Errors of omission refer to reference sites that were left out (or omitted) from the
correct class in the classified map. The real land cover type was left out or omitted
from the classified map. Error of omission is sometime also referred to as a Type I
error. An error of omission in one category will be counted as an error in commission
in another category. Omission errors are calculated by reviewing the reference sites
for incorrect classifications. [36] For example in the multiclass confusion matrix of
fig 1.7:

• Water:

– Correctly classified reference sites = 21

– Total nr of reference sites = 33

– Producer’s Accuracy = 21/33 = 64%

• Forest:

– Correctly classified reference sites = 31

– Total nr of reference sites = 39

– Producer’s Accuracy = 31/39 = 80%

• Urban:

– Correctly classified reference sites = 22

– Total nr of reference sites = 23

– Producer’s Accuracy = 22/23 =96%
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1.6.3 Overfitting and underfitting

The main goal of machine learning is to build an algorithm that learned with some
data is able to predict the behavior of new data. The two main problems that can
be encountered after the training and testing phase are:

• overfitting: the error obtained from the model on the trained data is very small
and the error from the new unseen data is very big. This actually means that
the model is too complex (has to much parameters) and fit too well the trained
data, so instead of learning how to generalize a trend, the model memorize the
pattern. The three main cause of overfitting are:

– learning performed too long (especially for Neural Network)

– too few training samples

– use of a model with too much parameters (too complex)

• underfitting: the error obtained from the model on the trained data and on
the new unseen data is big. This means that the model is too simple (has not
enough parameters) to generalize the trend of the data set (for example when
fitting a linear model to non-linear data).

Figure 1.13: Overfitting and underfitting in regression and classification

Strongly related with overfitting and underfitting are the concepts of bias and vari-
ance of a learning algorithm. This two concepts are exploited in next section.

1.6.4 Assessment method

Assessing a machine learning result means evaluate how general its behaviour is.
For training is taken as data set a sample that came from a population. So the
evaluation of a learning algorithm may be sensitive to sampling error. As a result,
measurements of prediction error on the current data may not provide much in-
formation about predictive ability on new data. As consequence we would like to
know how is the algorithm’s behaviour for the entire population. In other words
the aim of assessing the machine learning framework is to minimize the expected
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generalization error (also known as the out of sample error) of the estimator (in this
case the classifier function).

Given a training set consisting of a set of points x1...xn and real values yi associ-
ated with each point xi. We assume that there is a function with noise y = f(x) + ε
where the noise, ε has zero mean and variance σ2, the classifier can be seen as a
function f̂(x) that approximates the true function f(x) as well as possible. Defining
the expected mean square error between y and f̂(x) as the expected generalization
error and by use some maths calculation we can decompose the error into three
terms[35]:

E[(y − f̂(x))2] = Bias[f̂(x)]2 + V ar[f̂(x)] + σ2

where:
Bias[f̂(x)] = E[f̂(x)− f(x)]

and
V ar[f̂(x)] = E[f̂(x)2]− E[f̂(x)]2

This decomposition show us that the generalization error is composed of three terms:

• the square of bias of model: it is the error due to the incapability of model to
understand the pattern to learn, in fewer word: the model is too simple and
can’t be able to predict well the new input given.

• the variance of model: it’s the sensitivity of the model, how much its predictive
ability change by changing the data set.

• an irreducible error due to noise.

It’s possible to tune just two of the three terms: bias and variance. Among them
exists an inversion relation, increase one means decrease the other and vice versa.
So the best model is the one that minimize the general expected error that means
the best compromise between variance and bias (this problem is called the bias-
variance trade off). The relation between bias-variance and overfitted-underfitted

Figure 1.14: Bias-variance trade off

model is strong: a model with low bias and high variance lead to overfitting because
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the model learn very well the training pattern but is not predictive for new data; a
model with high bias and low variance is underfitted because it has bad predictive
ability but almost the same for each dataset. The two most used ways of assess
a model in supervised machine learning are: the holdout and the cross validation,
both of them are of the class of “out of sample” that means that for evaluate the
model an unseen test set different from the training one is used.

1.6.4.1 Holdout

In the old out method the ground truth dataset is divided in three parts:

• training set: is a subset of the dataset used to build predictive model.

• validating set: is a subset of the dataset used to assess the performance of
model built in the training phase. It provides a test platform for fine tuning
model’s parameters and selecting the best-performing model. Not all modeling
algorithms need a validation set.

• test set: or unseen examples, is a subset of the dataset to assess the likely
future performance of a model. If a model fit to the training set much better
than it fits the test set, overfitting is probably the cause.

This method is valid only if there is a large representative sample to train the model
and another independent large representative sample to test the model, otherwise if
the data set is small or not representative it will lead to a bad generalization result.
And it doesn’t give a numerical quantification of the variance error. But in return
it is fast and doesn’t need big computational resources.

1.6.4.2 K-fold cross-validation

In k fold cross validation similarly to holdout method we divide the dataset in train
set and test set. But differently form the above method is how we divide. Given
the dataset the general approach is:

1. Split the dataset into k sub dataset called folds

2. Build the square matrix where at each round (rows) we use as test set a
different fold and as train set all the residual folds (columns)

3. follow the algorithm:

Data: square matrix of folds
Result: mean accuracy estimation,variance
for each round i do

validate the model with round i;
extract the accuracy of round i;

end
extract the mean value of accuracy;
extract the variance;

Algorithm 1: K-fold cross validation
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Figure 1.15: example of matrix of 4-fold. Here rounds are called iteration and the
chosen test data is shifted at each row

The obtained results with this method are function of k (the number of folds). For
large value of k there will be low Bias (The training set is almost the total) but big
Variance (highly dependent from the dataset). For low value of k, we will have high
Bias and low variance. From experience the recommended values of k are 5 or 10
and there is a big literature that explain how to choose the best k. One extreme
case is given by taking k equal to the number of samples. This is used in binary
classification with few samples, it is called Leave-one-out cross validation (LOOCV).
In general, the use of Cross validation (CV) allows to reduce the risk of incur in
overfitting and at the same time is able to give a pretty good evaluation of the
performance of a model also with a reduced number of dataset (this happen very
frequently in practical problem), and from it, is possible to extract a value for the
variance of the model. In the opposite it need a lot of calculus time.
Synthesizing when the computational time for evaluate the framework is not a prob-
lem a cross validation method is always preferred. When the dataset is small the
cross validation is compulsory. If the dataset is big and representative of all the
population and the computational time for CV is unreasonable the hold out method
is preferred.

Nested cross-validation

Nested CV estimates the generalization error of the underlying model and its (hy-
per)parameter search. Choosing the parameters that maximize non-nested CV bi-
ases the model to the dataset, yielding an overly-optimistic score. Model selection
without nested CV uses the same data to tune model parameters and evaluate model
performance. Information may thus “leak” into the model and overfit the data. The
magnitude of this effect is primarily dependent on the size of the dataset and the
stability of the model[11]. To avoid this problem, nested CV effectively uses a series
of train/validation/test set splits: once the dataset are divided in folds (train and
test) each training part is divided again in k folds where one fold is for validation
and the rest for training. The outer loop is used to evaluate the generalizability of
classifier model, and an inner loop is used to choose the best parameter to select
the best fitting model. So for each trial of the outer loop a best fitting model is
evaluate and at the end of the outer loop an average evaluation of all the best fitting
model is presented. And that is the evaluation of the general model. For lead such
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evaluation technique a big power of calculus is required.

Figure 1.16: Example of nested cross-validation

1.6.5 Prediction

Once the trained and evaluated model is obtained by following all the preceding
steps, it is ready to predict the class of total new unlabelled input with the proba-
bility, of correctly classify it, given by the accuracy.

Figure 1.17: work-flow of prediction phase
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1.7 General structure

Figure 1.18: General detailed scheme of a supervised machine learning framework
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Chapter 2

Case study 1: methodologies
involved in the paper “topological
graph kernel on multiple
thresholded functional
connectivity networks for mild
cognitive impairment
classification”

2.1 Problem definition

Mild cognitive impairment (MCI) is a condition in which someone has minor prob-
lems with cognition and their mental abilities such as memory or thinking. In MCI
these difficulties are worse than would normally be expected for a healthy person of
their age. However, the symptoms are not severe enough to interfere significantly
with daily life, and so are not defined as dementia. It is estimated that between 5
and 20 per cent of people aged over 65 have MCI. It is not a type of dementia, but
a person with MCI is more likely to go on to develop dementia.

2.1.1 Symptoms

The term MCI describes a set of symptoms, rather than a specific disease. A person
with MCI has mild problems with one or more of the following:

• memory - for example, forgetting recent events or repeating the same question

• reasoning, planning or problem-solving - for example, struggling with thinking
things through

• attention - for example, being very easily distracted

• language - for example, taking much longer than usual to find the right word
for something
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• visual depth perception - for example, struggling to interpret an object in three
dimensions, judge distances or navigate stairs.

These symptoms will have been noticed by the individual, or by those who know
them. For a person with MCI, these changes may cause them to experience minor
problems or need a little help with more demanding daily tasks (paying bills, man-
aging medication, driving). If there is a significant impact on everyday activities,
this may suggest dementia. Most healthy people experience a gradual decline in
mental abilities as part of aging. In someone with MCI, however, the decline in
mental abilities is greater than in normal aging.
If the person with MCI has seen a doctor and taken tests of mental abilities, their
problems will also be shown by a low test score or by falling test scores over time.
This decline in mental abilities is often caused by an underlying illness[1].

2.1.2 MCI Causes and evolution

MCI can have a number of different possible causes. Some of these are treatable
and some are not. In some people, MCI is a ’pre-dementia’ condition. This means
that the brain diseases that cause dementia are already established. These diseases
are not generally reversible and so, in time, these people’s symptoms will worsen
and their condition will progress from MCI to dementia. For example, some people
with MCI have mild memory loss that started gradually. These people are likely to
develop Alzheimer’s disease as their memory worsens. Some people with MCI will
turn out to have a different, often treatable, cause following assessment by a doctor.
This could include depression, anxiety or stress. The same symptoms could also
be caused by a physical illness (constipation, infection), poor eyesight or hearing,
vitamin or thyroid deficiencies, or the side effects of medication. Where this is
the case, the person will be diagnosed with this condition - a thyroid deficiency or
depression, for example - rather than MCI. A doctor will not always be able to say
what is causing MCI, even after a thorough assessment. It may be necessary to wait
a few months or more, to see how the person’s symptoms develop.

2.2 Past related works

So far, many methods have been developed to identify predictive biomarkers of AD
(Alzheimer disease) or MCI from different neuroimaging modalities.
In the past decade, modern magnetic resonance imaging (MRI) (e.g., functional MRI
(FMRI) and diffusion MRI), and neurophysiological [e.g., electroencephalograph
(EEG) and magnetoencephalography (MEG)] techniques have provided efficient and
non-invasive ways to map the patterns of structural and functional connectivity of
the human brain:

• Structural brain connectivity is referred to as the anatomical connection pat-
tern between different neuronal elements.

• functional brain connectivity is referred to as the functional association pat-
tern among brain regions, which can be obtained by measuring the temporal
correlations between spatially remote neurophysiological events from fMRI and
EEG/MEG data.
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Recent applications of brain connectivity networks include exploring the anatomical
and functional connectivity relationship between brain regions and also the connec-
tivity abnormality in neurodegenerative diseases (e.g., MCI and AD) for identifying
biomarkers for diagnosis.
It is reported that structural and functional abnormalities can be observed in the
brains of AD and MCI. Recent studies have suggested that, in addition to the re-
gional disturbance of brain structure and function, neurodegenerative diseases are
also associated with the abnormalities in connections between different brain re-
gions. Network analysis provides a new way for exploring the association between
brain functional deficits and the underlying structural disruption related to brain
disorders. Due to the increasing reliability of network characterization through
neurobiological meaningful and computationally efficient measures, learning con-
nectivity characteristics of network from neuroimaging data shows great promise
for identifying image-based biomarkers. Recently, connectivity networks have been
used for analysis of AD and MCI. Applications of network-based analysis tools in
neuroimaging can be divided into two categories:

• Studies focusing on specific hypothesis-driven tests, for example, on the small-
world network, default mode, and hippocampus network.

• Studies focusing on machine learning based methods for individual-based clas-
sification.

In the first category, studies mainly focus on network dysfunction perspective of neu-
rodegenerative diseases using graph theoretical analysis, to demonstrate the topolog-
ical differences of the brain networks between patients and NC. While these studies
in general support the hypothesis of disconnection syndrome in AD and MCI, they
cannot be automatically used to discriminate MCI and AD from NC at individual
level. However, in the second category, machine learning methods are used to train
classification models to identify diseased subjects from NC[20][7][15][18].

2.3 Proposed method

The method proposed in the article uses as dataset the functional connectivity ma-
trices associated to each subject. In order to take in account the different topology
structures of connectivity networks a threshold approach is applied. Specifically 5
different level of thresholds are applied. Subsequently, following the general ma-
chine learning procedures for connectivity network analysis the feature extraction
step followed by 2 different future selection methodologies are used. Specifically the
weighted clustering coefficient[23] is the algorithm used to extract the important
features: it permitted a dimensionality reduction of the original data and at the
same time it encapsulates the information of a single node as well as the weighted
information of adjacent edges. The two feature selection methods belong to two
different macro classes. The first one is the Ttest, that is a filter approach and the
second one the RFE-GK is from the family of wrapper approach. The last step is
the training of the classifier that in this case is a Multi-kernel SVM (Binary classi-
fication) since it showed in past literature a better classification accuracy.[8][9]. In
order to improve the framework’s generalizability and tuning the hyperparameters
for ttest and multikernels a LOOCV nested cross validation methods is used.
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Figure 2.1: General framework of the proposed method for detect the MCI

2.3.1 Data acquisition

In the study, 12 amnestic MCI patients and 25 NC were recruited. Demographic in-
formation of the participants is shown in fig 2.2. Informed consent was obtained from

Figure 2.2: Characteristics of the subjects involved in the paper

all participants, and the experimental protocols were approved by the institutional
ethics board. All the recruited subjects were diagnosed by expert consensus pan-
els. Data acquisition was performed using a 3.0-Tesla GE Signa EXCITE scanner.
FMRI images of each participant were acquired with the following parameters: flip
angle=77◦, TR/TE=2000/32 ms, imaging matrix=64X64, FOV=256 X 256 mm2,
34 slices, 150 volumes, and voxel thickness=4 mm. During scanning, all subjects
were instructed to keep their eyes open and stare at a fixation cross in the middle
of the screen, which lasted for 5 min.
The preprocessing steps of the fMRI images, which include slice timing correction
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and head-motion correction, were performed using Statistical Parametric Mapping
software package (SPM8, http://www.fil.ion.ucl.ac.uk.spm). The first 10 acquired
fMRI images of each subject were discarded to ensure magnetization equilibrium.
The remaining 140 images were first corrected for the acquisition time delay among
different slices before they were realigned to the first volume of the remaining images
for head motion correction. Since the regions of ventricles and WM (white matter)
contain a relatively high proportion of noise caused by the cardiac and respiratory
cycles, only BOLD signals were used, extracted from gray matter (GM) tissue to
construct functional connectivity network. Accordingly, the T1-weighted image of
each subject is firstly segmented into GM, WM, and cerebrospinal fluid (CSF). GM
tissue of each subject was then used to mask their corresponding fMRI images to
eliminate the possible effect from WM and CSF in the fMRI time series. The first
scan of fMRI time series was coregistered to the T1-weighted image of same subject.
The estimated transformation was then applied to other fMRI scans of the same
subject. The brain space of fMRI scans for each subject was then parcellated into
90 ROIs by warping the automated anatomical labeling template to the subject
space using the deformation fields estimated via a deformable registration method
called HAMMER. For each subject, the mean time series of each individual ROI was
then computed by averaging the GM-masked fMRI time series over all voxels in the
particular ROI. In this study, the GM-masked mean time series of each region was
band-pass filtered within frequency interval 0.025 =< f =< 0.100Hz since the fMRI
dynamics of neuronal activities are most salient within this frequency interval[20].

2.3.2 Processing raw features

From the mean time series of each individual ROI, the functional connectivity be-
tween each couple of ROIs is obtained by adopting the Pearson correlation coeffi-
cient. So for each subject a functional connectivity matrix is built (more details
about connectivity matrix in appendix A) and it is the mathematical representa-
tion of a graph where vertices corresponding to the ROIs and the weight of edges
corresponding to the correlation coefficients.

2.3.2.1 Pearson correlation coefficient

The Pearson correlation coefficients are adopted to compute the functional connec-
tivity between the ROI pairs. A correlation coefficient is a number that quantifies
some type of correlation and dependence, meaning statistical relationships between
two or more random variables or observed data values. Pearson’s correlation coef-
ficient is known as the best method of measuring the association between variables
of interest because it is based on the method of covariance. It gives information
about the magnitude of the association, or correlation, as well as the direction of
the relationship. The Pearson’s correlation coefficient for two samples X, Y is re-
ferred with the letter r (rho is for two or more populations). it is the covariance
of the two variables divided by the product of their standard deviations. The form
of the definition involves a ”product moment”, that is, the mean (the first moment
about the origin) of the product of the mean-adjusted random variables; hence the
modifier product-moment in the name. Given one dataset X = x1, ..., xn containing
n values and another dataset Y = y1, ..., yn containing n values then that formula
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for r is:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

where:

• n, xi, yi are defined as above

• x̄ = 1
n

∑n
i=1 xi(the sample mean); and analogously for ȳ = x̄ = 1

n

∑n
i=1 xi

The properties of the correlation coefficient are:

• Limit: Coefficient values can range from +1 to -1

• Pure number: It is independent of the unit of measurement. For example, if
one variable’s unit of measurement is in inches and the second variable is in
quintals, even then, Pearson’s correlation coefficient value does not change.

• Symmetric: Correlation of the coefficient between two variables is symmetric.
This means between X and Y or Y and X, the coefficient value of will remain
the same.

A value of 1 implies that a linear equation describes the relationship between X and
Y perfectly, with all data points lying on a line for which Y increases as X increases.
A value of -1 implies that all data points lie on a line for which Y decreases as
X increases. A value of 0 implies that there is no linear correlation between the
variables.

Figure 2.3: Graphical representation of Pearson coefficient

2.3.2.2 Fisher r to z transformation

Fisher’s r-to-z transformation was applied on the elements of the functional connec-
tivity network (matrix) to improve the normality of the correlation coefficients. As
the name suggest the Fisher R to Z transformation is a function f that transform
some data point xi to another point yi = f(xi). In statistics this transformations are
very useful to improve the interpretability or appearance of graphs and to obtain a
different set of data that are more easy to use. In particular, the fisher transforma-
tion is highly connected with the Pearson correlation coefficient because the Pearson
correlation coefficient r is not Normally distributed but its density function is more
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Figure 2.4: Distribution’s shape of Pearson correlation coefficient

likely a compressed bell. To improve the interpretability of r we would like to have a
Gaussian distribution. We reach this aim by using the Fisher r to z transformation
defined as:

z =
1

2
ln

(
1 + r

1− r

)
= tanh−1 r

Where r is the Pearson correlation coefficient. So now our variable z is normally
distributed with a well-known standard deviation of:

σz =
1√
n− 1

This transformation belongs to the class of Variance-stabilizing transformation
as possible to seen from the preceding formula. Its variance depends only on the
number of samples and not on some parameter (like the mean) correlated to the
population from the sample come.

Figure 2.5: A graph of the transformation (in orange). The untransformed sample
correlation coefficient is plotted on the horizontal axis, and the transformed coeffi-
cient is plotted on the vertical axis. The identity function (gray) is also shown for
comparison.

Moreover, to extract the meaningful network measures, all negative correlations have
been removed from the obtained functional connectivity networks.
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2.3.3 Feature extraction

2.3.3.1 threshold

The first step after the pre-processing is threshold the connectivity network using five
different thresholds to get different representation of different characteristics of the
brain. In functional connectivity networks, the connectivity describes frequency-
dependent correlation between spatially distinct brain regions. Some weak and
potentially insignificant connections for identifying patients from controls could ob-
scure the network topology, when considered together with strong and important
connections. Thus, it may be important to discard these connections by using a
thresholding approach. Moreover, the thresholded networks are often simpler to
characterize and thus have more easily defined models for statistical comparison.
However, the thresholds are often arbitrarily determined, and the optimal threshold
can only be determined after exploring the network properties over a broad range of
plausible thresholds. On the other hand, the network with different thresholds may
represent different level of topological properties, and these properties may be com-
plementary to each other in improving the classification performance[19]. Therefore,
in the current study, a multiple-threshold method is adopted to reflect the multiple
levels of network properties. Specifically, given a threshold Tm(m = 1, . . . ,M), the
connectivity network G = [τij]nxn is thresholded as:

τmij =

{
0, if τij ≤ Tm
τij, otherwise

}
where τij denotes the connection weight between the ith and jth network-nodes/ROIs.

Figure 2.6: Examples of multiple-thresholded connectivity networks for NC (green)
and MCI (blue) patients. (a) Original functional connectivity networks, (b) thresh-
olded connectivity networks with T=0.3, and (c) thresholded connectivity networks
with T=0.5.
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2.3.3.2 clustering coefficient

After thresholding the matrix, the next step is collect information into feature vec-
tors, a lot of different information can be extrapolated from the connectivity matrix,
each one representative of a different property of the brain. The analyzed paper used
the “local clustering coefficient”. As explained the brain of patience involved in the
paper is modelled by using a connectivity matrix that represent characteristics be-
tween the anatomical and functional connection of different brain area. If the aim is
to extrapolate a set of features from such connectivity networks is necessary to focus
the important characteristics that we want to extrapolate. An important measure of
brain capability is the functional segregation. Functional segregation in the brain is
the ability for specialized processing to occur within densely interconnected groups
of brain regions. Measures of segregation primarily quantify the presence of such
groups, known as clusters or modules, within the network. Measures of segregation
have straightforward interpretations: in anatomical networks suggests the poten-
tial of functional segregation, while the presence of clusters in functional networks
suggests an organization of statistical dependencies indicative of segregated neural
processing. Traditionally, the two versions of the clustering coefficient developed for
testing the tendency of nodes to cluster together into tightly knit groups are the
global clustering coefficient and the local clustering coefficient. The global version
was designed to give an overall indication of the clustering in the network, whereas
the local gives an indication of the embeddedness of single nodes. The focus in this
thesis is on the second kind. The clustering coefficient of a node νi quantifies its
ability to form a complete graph among its neighbors where all nodes are connected
to one another.
The common cluster coefficient doesn’t take in account the weights of a graph, so
the literature presents various attempts at developing or implementing a cluster-
ing coefficient measure designed for weighted networks[21][3][23]. In the paper the
used Clustering coefficient is the one proposed by Rubinov and Sporns (2010). The
formula is:

fi =
2

di(di − 1)

∑
j,k

(wm(i, j)wm(j, k)wm(k, i))1/3

where di is the number of neighboring node around node i wm is the weight of
edge and i, j, k represent the considered triplet of neighboring nodes.

(a) Clustering coefficient for unweighted graphs (b) Weighted graphs

Figure 2.7: unweighted (a) and weighted (b) graphs

considered the figure 2.7(b) we will have:

• A: Clustering coefficient=2 3
√

32
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• C: Clustering coefficient=2 3
√

32

• B: Clustering coefficient= 3
√

32/3

• E: Clustering coefficient=0

• F: Clustering coefficient=0

• D: Clustering coefficient=0

2.3.3.3 Standardization

After obtained the feature and collected into a feature vector for each subject, a
common feature normalization is adopted. For each extracted feature fi this stan-
dardization is applied:

fi =
fi − f̄i
σi

Where fi and σi are respectively the mean and standard deviation of the i-th feature
across all subjects.

2.3.4 Feature selection

For what concern the feature selection step, in the paper are applied two techniques:

• T-test for feature selection first (and 5 values of p are used as parameters for
cross validation)

• RFE-GK

The first one belong to the class of filter methods, so it is fast and independent from
the learning algorithm used, the second belong to wrapper method so it is compu-
tationally expensive and dependent from the classification algorithm employed.

2.3.4.1 T-test

In inferential statistics to prove a correlation or a dependency between two or more
groups two hypotheses are set up. H0: the null hypothesis: no difference between
groups H1: the alternative hypothesis: there is difference between groups It’s im-
possible to demonstrate mathematically the validity of one of the two hypothesis.
By default, the null hypothesis is considerate valid at the beginning. So the re-
search is focused on demonstrating under a certain probability if the null hypothesis
is rejected or not. If it is rejected the alternative hypothesis will be valid. Each
time you reject a hypothesis there is a chance you made a mistake. There are two
different errors: Type1: you incorrectly rejecting the null hypothesis, alpha is the
probability of such error Type2: you fail to reject the null when you should have
rejected the null hypothesis, beta is the probability of such error Another important
parameter is the p-Value: the probability of obtaining result at least as extreme as
the current one, assuming null is true. In other words, it is a measurement to tell
us how much the observed data disagrees with the null hypothesis. p-value small:
there is more disagreement of our data with the null hypothesis p-value big: there
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is less disagreement of our data with the null hypothesis The real T-test is a statis-
tical method also used to decide if a feature of two groups is discriminatory for the
groups (by confronting their mean value). The T-test can be applied on samples
of a population assumed to have a normal distribution. The two samples will have
a T-student distribution (which tend to be a Gaussian distribution if the number
of samples are infinite). By brutally confronting the two mean value of the sample
we’d not obtain a significant difference between the samples, so a kind of signal to
ratio parameter. Defined as:

t =
Signal

Noise
=

difference between group means

variability of groups
=
|x1 − x2|√
(
s21
n1

+
s22
n2

)

where

• x1 and x2 =average mean of samples of each group

• n1 and n2 =the number of samples for each group

• s2
1 and s2

2 =variance of samples of each group

The signal is the difference between groups, so the mean difference and is a measure
of signal meanwhile the variance of them represent a measure of noise. Once we

Figure 2.8: graphical representation of the t value

have the t value we should be able to determine if the two groups are different or
not (respect the samples considered) under a certain probability. This probability
is the p-value that represent the probability of non rejecting the null hypothesis if
two other samples of same population are considered. There could be statistically
connection with the two group by confronting the t-value obtained with t-critical
value obtained from the t-table. The t-table is a table where are explicated the
critical values of the t-test, function of p-value and degree of freedom.
The algorithm is: Chosen the p-value (it depends on how much we want that the
results be statistically relevant) and calculated the dof=(n1+n2)-2 we obtain the
t-critical value (we have also to choose double or single tailed). If t-value>t-critical
value then there is a statistically significant difference between the samples. From
figure 2.9 is possible to image the t-value as a t-student distribution, the p-value as
the area under the tails of that distribution and t-critical as the limiting points of
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Figure 2.9: t-value distribution with a p-value=0.5% one-tailed test

the p-value area. The white area represent the probability of non rejecting the null
hypothesis and the grey area the probability of rejecting. If we are sure of the sign
of our t-value, we can choose the one tailed test instead of a two tailed one. The
limitation of this approach are:

• The results of inferential statistics can only be applied to population that
resemble the sample that was tested

• The sample and population should be roughly normal in distribution. This
means most scores will be around the mean with fewer scores further out,
resembling a bell curve

• Each group should have about the same number of data points. Comparing
large and small groups together may give inaccurate results.

• All data should be independent. This means the scores should not be influ-
enced by each other

2.3.4.2 Graph kernel

Machine learning in domains such as bioinformatics, drug discovery, web data mining
and social networks involves the study of relationships between structured objects.
Graphs are natural data structures to model such structures, with nodes represent-
ing objects and edges the relations between them. Also in this study graph is the
perfect structure to represent ROIs and how are the links between them. Kernels
represent a function of similarity between two object (major details in section ”Ker-
nels”), so comparing nodes in a graph involves constructing a kernel between nodes,
while comparing graphs involves constructing a kernel between graphs. In both
cases, the challenge is to define a kernel that captures the semantics inherent in the
graph structure and is reasonably efficient to evaluate. There exist many graph sim-
ilarity measures based on graph isomorphism or related concepts such as subgraph
isomorphism or the largest common subgraph. Because the most natural measure
of similarity of graphs is to check whether the graphs are topologically identical,
i.e., isomorphic. The exact definition of isomorphism between two graph is: Find
a mapping f of the vertices of G1 to the vertices of G2 such that G1 and G2 are
identical; i.e. (x,y) is an edge of G1 if (f(x),f(y)) is an edge of G2. Then f is an
isomorphism, and G1 and G2 are called isomorphic.
The problem is that no polynomial-time algorithm is known for graph isomorphism,
neither is it known to be NP-complete. The concept of Subgraph isomorphism
asks if there is a subset of edges and vertices of G1 that is isomorphic to a smaller
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graph G2 but also in this case the Subgraph isomorphism is NP-complete. It is also
proven that computing a Graph Kernel is at least as hard to compute as deciding
if graphs are isomorphic. Therefore, one usually restricts graph kernels to compare
only specific types of subgraphs that are computable in polynomial runtime.

Some definitions

A graph G is defined as a triplet (V, E, l), where V is the set of vertices, E is
the set of undirected edges, and l : V → Σ is a function that assigns labels from
an alphabet Σ to nodes in the graph . The neighbourhood N (v) of a node v is
the set of nodes to which v is connected by an edge, that is N(v) = v′|(v, v′) ∈ E.
For simplicity, we assume that every graph has n nodes, m edges, and a maximum
degree of d. The size of G is defined as the cardinality of V. A walk is a sequence
of nodes in a graph, in which consecutive nodes are connected by an edge. A path
is a walk that consists of distinct nodes only. A (rooted) subtree is a subgraph of a
graph, which has no cycles, but a designated root node. A subtree of G can thus be
seen as a connected subset of distinct nodes of G with an underlying tree structure.
The height of a subtree is the maximum distance between the root and any other
node in the subtree. Just as the notion of walk is extending the notion of path
by allowing nodes to be equal, the notion of subtrees can be extended to subtree
patterns which can have nodes that are equal. These repetitions of the same node
are then treated as distinct nodes, such that the pattern is still a cycle-free tree. All
subtree kernels compare subtree patterns in two graphs, not (strict) subtrees.

Figure 2.10: A subtree pattern of height 2 rooted at the node 1. Note the repetitions
of nodes

Figure 2.11: Example of walks

Several different graph kernels have been defined in machine learning which can be
categorized into three classes:
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• graph kernels based on walks and paths: compute the number of matchings of
pairs of random walks in two graphs. The standard formulation of the random
walk kernel, based on the direct product graph of two graphs, is computable
in O(n6) for a pair of graphs.

• graph kernels based on limited-size subgraphs: also called graphlets, represent
graphs as counts of all types of subgraphs of size k ∈ 3, 4, 5.

• graph kernels based on subtree patterns: iteratively compares all matchings
between neighbors of two nodes v from G and v’ from G’.

The Weisfeiler-Lehman test of isomorphism

The graph kernel used in the analyzed paper is based on the concept of Weisfeiler-
Lehman test of isomorphism[28] in its 1-dimensional variant, also known as “naive
vertex refinement”, and the technique belongs to “graph kernels based on subtree
patterns”. The key idea of the algorithm is to augment the node labels by the sorted
set of node labels of neighboring nodes, and compress these augmented labels into
new, short labels. These steps are then repeated until the node label sets of G and
G’ differ, or the number of iterations reaches n. The algorithm works by execution
of 4 steps at each iteration i. The Weisfeiler-Lehman algorithm terminates after step
4 of iteration i if li(ν)|ν ∈ V 6= li(ν

′)|ν ′ ∈ V ′, that is, if the sets of newly created
labels are not identical in G and G’. The graphs are then not isomorphic. If the
sets are identical after n iterations, it means that either G and G’ are isomorphic,
or the algorithm has not been able to determine that they are not isomorphic. As
a side note, is mentioned that the 1-dimensional Weisfeiler-Lehman algorithm has
been shown to be a valid isomorphism test for almost all graphs.

Figure 2.12: Weisfeiler-Lehman algorithm for isomorphism with the maximum num-
ber of iteration equals to one

Algorithm explanation:

• Step 1: if it’s the first iteration for each node in the graph set a label with the
number of its neighbors, if it’s not the first iteration the number of the label
is already determined at step 4 of the iteration i-1

• Step 2: for each label associate a string that represent a decimal number where
the integer part is the value of the label and decimal part is the ascending order
of label of neighbors
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• Step 3: Ordinate each part of the string representative of decimal number and
map each string to a new value of the label. Such a map associate to each
string in ascendant order a number each time bigger of 1. The first value of
the number that you have to associate is equal to the biggest value +1 of the
label at step 1.

• Step 4: Relabel each node with the new values found in Step 3

Note that the compressed labels li(v) correspond to subtree patterns of height i
rooted at v. The runtime complexity of the 1-dimensional Weisfeiler-Lehman algo-
rithm with h iterations is O(hm).

The real graph kernel

Define the Weisfeiler-Lehman graph at height i of the graph G = (V,E, l) = (V,E, l0)
as the graph Gi = (V,E, li). We call the sequence of Weisfeiler-Lehman graphs
G0, G1, ..., Gh = (V,E, l0), (V,E, l1), ..., (V,E, lh), where G0 = G and l0 = l, the
Weisfeiler-Lehman sequence up to height h of G. G0 is the original graph, G1 = r(G0)
is the graph resulting from the first relabeling, and so on. Note that neither V, nor
E ever change in this sequence, but it is defined as a sequence of graphs rather
than a sequence of labeling functions for the sake of clarity of definitions that fol-
low. Let k be any kernel for graphs, that will be called the base kernel. Then
the Weisfeiler-Lehman kernel with h iterations with the base kernel k is defined
as k

(h)
WL(G,G′) = k(G0, G

′
0) + k(G1, G

′
1) + ... + k(Gh, G

′
h), where h is the number of

Weisfeiler-Lehman iterations andG0, ..., Gh andG′0, ..., G
′
h are the Weisfeiler-Lehman

sequences of G and G’ respectively. Let the base kernel k be any positive semidefinite
kernel on graphs. Then the corresponding Weisfeiler-Lehman kernel k

(h)
WL is positive

semidefinite. Let G and G’ be graphs. Define Σi ⊆ Σ as the set of letters that
occur as node labels at least once in G or G’ at the end of the i-th iteration of the
Weisfeiler-Lehman algorithm. Let Σ0 be the set of original node labels of G and G’.
Assume all Σi are pairwise disjoint. Without loss of generality, assume that every
Σi = σi1, ..., σΣi is ordered. Define a map ci : {G,G′} ×Σi → N such that ci(G, σij)
is the number of occurrences of the letter σij in the graph G. The Weisfeiler-Lehman
subtree kernel on two graphs G and G’ with h iterations is defined as:

k
(h)
WLsubtree(G,G

′) =< ϕ
(h)
WLsubtree(G), ϕ

(h)
WLsubtree(G

′) >

ϕ
(h)
WLsubtree(G) = (c0(G, σ01), ..., c0(G, σ0|Σ0|), ..., ch(G, σh1), ..., ch(G, σh|Σh|))

ϕ
(h)
WLsubtree(G

′) = (c0(G′, σ01), ..., c0(G′, σ0|Σ0|), ..., ch(G
′, σh1), ..., ch(G

′, σh|Σh|))

That is, the Weisfeiler-Lehman subtree kernel counts common original and com-
pressed labels in two graphs. The Weisfeiler-Lehman subtree kernel on a pair of
graphs G and G0 can be computed in time O(hm). For N graphs, the Weisfeiler-
Lehman subtree kernel with h iterations on all pairs of these graphs can be computed
in O(Nhm + N2hn). Figure 2.13 represents the Weisfeiler-Lehman test for isomor-
phism plus the calculus of the Weisfeiler-Lehman subtree kernel, that is the used
kernel in the paper. In rough words when finished the test for isomorphism we define
the transformation phi of each graph as a vector with the numbers of occurrence of
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Figure 2.13: Illustration of the computation of the Weisfeiler-Lehman subtree kernel
with h=1

the same label for each iteration i. The order of occurrence is follows the ascending
order of labels.

L = (1, 2, 3, 4, 5|6, 7, 8, 9, 10, 11, 12, 13|...)
ϕ(G) = (2, 1, 1, 1, 1|2, 0, 1, 0, 1, 1, 0, 1|...)
ϕ(G′) = (1, 2, 1, 1, 1|1, 1, 0, 1, 1, 0, 1, 1|...)

K =< ϕ(G), ϕ(G′) >

Where each | represent and iteration. Notice that the example in figure 2.13 doesn’t
need any iteration because the set of label for each graph is already different at the
beginning of algorithm.

2.3.4.3 Rfe-gk

The recursive features elimination is a technique used for features selection. RFE
belongs to the “Wrapper methods” consider the selection of a set of features as a
search problem, where different combinations are prepared, evaluated and compared
to other combinations. A predictive model is used to evaluate a combination of
features and assign a score based on model accuracy. When each feature has its
score then we are able to choose the best ones. The right number of feature could
be detected by using other method for classification (i.e. cross validation and so
on). The search process may be methodical, stochastic or it may use heuristics. In
figure 2.14 the general scheme of the RFE:

In the analyzed paper the model used is the SVM with graph-kernel and the
evaluation of the importance is the average of the accuracy.

Essentially the algorithm in figure 2.17 takes as input the sub-connectivity matrix
(generated from the survived ROIs of the preceding ttest-selection), then removes
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Figure 2.14: general scheme of RFE

one by one the remained features (represented by ROIs in matrix), build up the train
and test graph kernel matrix for each of connectivity networks without the removed
feature and then evaluate the classification accuracy using SVM with the graph
kernel matrix generated before. After that it confronts the classification accuracy of
each connectivity networks, finds the one with best accuracy and save the removed
feature of that connectivity matrix into a new array. This procedure is repeated
until the ROIs are all removed from the initial set. The selected best features are
the ones saved in the new array with best average accuracy.
Important details of the procedure:

• The criteria for choosing the right number of features is the average value of
the accuracy of features present in the Ranked feature list F until the current
step.

Figure 2.15: Choosing best features in RFE-GK

• An LOOCV for evaluate the accuracy of each built SVM

• The used predictive model is a SVM classifier with a Graph Kernel method
for training and testing

58



Figure 2.16: Example of training and test kernel matrix for 4 training subjects
and 1 test subject

• The use of connectivity trhesholded matrix and survived features at each step
for building the subnetworks for graph kernel

The two matrix are needed as input for the SVMtrain and SVMpredict function of
the SVM library to train and test a SVM.

Figure 2.17: scheme of the RFE-GK used in the paper
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2.3.5 Classifier

2.3.5.1 SVM

Hard margin

In machine learning, support vector machines (SVMs, also support vector networks)
are supervised learning models with associated learning algorithms that analyze data
used for classification and regression analysis. Given a set of training examples, each
marked as belonging to one or the other of two categories, an SVM training algo-
rithm builds a model that assigns new examples to one category or the other, making
it a non-probabilistic binary classifier. Suppose some given data points each belong
to one of two classes, and the goal is to decide which class a new data point will be
in. In the case of support vector machines, a data point is viewed as a p-dimensional
vector (a list of p numbers), and we want to know whether we can separate such
points with a p-1-dimensional hyperplane. This is called a linear classifier. If we
have different p-vector (feature vector) and each p-vector can belong only at one
of two classes, we can have the situation depicted in picture 2.19 (with p=2): The

Figure 2.18: two different classes (p=2)

main idea to separate this two class is to build a plane (hyperplane if p¿2) able to
discriminate if a vector belongs to one class or to another. Such hyperplane can be
written as the set of points x satisfying:

w̄ · x̄+ b = 0

Where x̄ is a point in the space and w̄ is a vector normal to the hyperplane. Geo-
metrically the w̄ represent the orientation of the hyperplane and b the displacement
in the space (respect to the origin) If the training data are linearly separable, we
can select two parallel hyperplanes that separate the two classes of data, so that
the distance between them is as large as possible. The region bounded by these
two hyperplanes is called the ”margin”, and the maximum-margin hyperplane is the
hyperplane that lies halfway between them. These hyperplanes can be described by
the equations:

w̄ · x̄− b = 1

and

w̄ · x̄− b = −1
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Figure 2.19: hyperplane and its parameters, the orthogonal vector w and the scalar
coefficient b

Geometrically, the distance between these two hyperplanes is 2
||w̄|| so to maximize the

distance between the planes we want to minimize ||w||. As we also have to prevent
data points from falling into the margin, we add the following constraint: for each
i either

w̄ · x̄− b ≥ 1 if yi = 1

or

w̄ · x̄− b ≤ 1 if yi = −1

These constraints state that each data point must lie on the correct side of the
margin. This can be rewritten as:

yi(w̄ · x̄− b) ≥ 1 for all 1 ≤ i ≤ n

Putting this together the optimization problem can be stated: “Minimize ||w̄|| sub-
ject to yi(w̄ · x̄− b) ≥ 1 for i=1,. . . ,n”
The w̄ and b that solve this problem determine our classifier: x̄→ sgn(w̄ · x̄− b)
Minimizing ||w̄|| is the same as minimizing 1

2
||w̄||2. In this form The above is an

optimization problem with a convex quadratic objective and only linear constraints
(this means that is solvable). Its solution gives us the optimal margin classifier.
This optimization problem can be solved using commercial quadratic programming
(QP) code. By using the Lagrange function we can state the equation:

w̄ =
n∑
1

αiyixi

where the ᾱ vector is the lagrangian multipliers.
The lagrangian problem is solvable and is possible to find the vector ᾱ and so also
the vector w̄. So the classifier is built up. As result is obtained that the only α
that are bigger than 0 are the α connected to the support vector: αi ≥ 0 → x̄i
support vector. Support vectors are such points that lie exactly in the boundary
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Figure 2.20: : hyperplane and its margins. the maximum distance between the two
classes is equal to 2/||w||

of the margin. Analyzing the results, we obtain that for determining the SVM is
sufficient to know only the value of alpha connected with support vectors. Other
points are useless.

Soft margin

In the previous analysis were analyzed only data points that are linearly separable
but it’s frequent to be in a situation where the data point overlaps the hypotheti-
cal perfect margin. In this case a soft margin is enforced and we “accept” to have
few point that are that cross-over, or are closer to the boundary than the margin
(outliers). To reach this aim slacks variable are introduced and the optimization
problem can be rewritten as:

minimize
w̄

1

2
||w̄||2

subject to yi − w̄ · x̄− b ≤ ε

− yi − w̄ · x̄+ b ≤ ε

and the situation is the one in figure 2.21. Only with this formulation we allow each

Figure 2.21: Graphical representation of hyperplane and the role of slack variables

point, also the ones with very big ε, to violate the margin so we introduce a penalty
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for the error εi. Such a penalty is described by the scalar C, and the optimization
problem can be rewritten as:

min
w̄,b

1

2
||w̄||2 + C

n∑
i=1

εi

subject to ∀i, yi · (w̄ · x̄+ b) ≤ 1− ε

The role of slack penalty C is:

• C=inf only want to w,b that separate the data

• C=0 can set εi to anything then w=0 (basically ignores the data)

Figure 2.22: Comparison between two SVM with different C parameter

So more C is big more are penalized the εi more C is little more εi are tolerated.

Kernels

Imagine to have a space in which the data are highly not linearly separable. The
main idea to solve the classification problem is to transform the non-linearly sepa-
rable set of point into a linearly separable one (by using a hyperplane). This can
be done in general by transforming the dataset D = (xi, . . . , xn) belongs to Rd to a
bigger space RD with D > d. Actually the necessary dimension of D to make the
dataset linearly separable is unknown and it could be very very big. This idea is rep-
resented in the next picture where the dataset belong to R2 space and are mapped
into R3 space by using a transformation ϕ. The most of the time the transformation
ϕ is very difficult to find and so very hard to apply for our purpose. The solution to
this inconvenient comes from dot product and kernel. In the construction of SVM
the only operation involved is a dot product of vectors (points):

Decision rule:
n∑
1

αiyixi · x+ b ≥ 0

∑n
1 αiyixi is the w̄ vector,given x if the preceiding disequation is true is a class

otherwise is the other
So to project this vectors into a higher space we apply the ϕ transformation:

Decision rule:
n∑
1

αiyiϕ(xi) · ϕ(x) + b ≥ 0
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Figure 2.23: On the right side a non linear separable classes, on the left the trans-
formation into a bigger space where that points are linearly separable

And we can notice that we are not really interested in the transformation function
but in the dot product result in the new transformation space. But if we define a
function K that:

K(x1, x2) = ϕ(x1)ϕ(x2)

We only need the original points and the function K, called Kernel function. At the
end the equation for building the linear SVM can be rewritten as:

Decision rule:
n∑
1

αiyiK(xi, x) + b ≥ 0

Where the final K is a matrix called Gram Matrix (o Kernel Matrix) and it is so
composed: Of course not every function is a kernel function. Two mainly approaches

Figure 2.24: Kernel matrix structure

are followed to build a kernel:

• By construction: you work in simple space so you are able to check if the find
function is a dot product of vector into another space

• By math properties:

– It has to be symmetric: K(x1, x2) = K(x2, x1)

– The Kernel Matrix has to be semi-positive definite (Mercer’s condition)

To check if a function is a real kernel function by using math properties is not trivial,
but luckily there are a lot of good working kernel that are already tested and that
respect the math condition. The most famous and used are:

• linear: K(xi, xj) = xTi xj

• polynomial: K(xi, xj) = (γxTi xj + r)d with γ > 0
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• radial basis function (RBF): K(xi, xj) = e

(
||xi−xj ||

2

2σ2

)
with σ > 0

• sigmoid: K(xi, xj) = tanh(γxTi xj + r)

Another way of consider the kernel function is a similarity function. If we consider
that it represents the dot product of two vector into another space we can imagine
that bigger is the result of the kernel function, bigger is the similarity between the
two vector in the new space after transformation. This is possible if we remember
that the dot product between two vector X Y is equal to: ||X||||Y || cos θ Where
theta is the angle between the two vectors. So ||X|| cos θ is the projection of X
vector over Y vector and then multiplied by the Y norm. The dot vector result is
zero if they are orthogonal or intuitively different it is maximum when the vectors
are overlapped or intuitively similar.

Figure 2.25: dot product in the space

Multikernel

In recent years, multiple kernel learning (MKL) methods have been proposed, where
we use multiple kernels instead of selecting one specific kernel function and its cor-
responding parameters:

kη(xi, xj) = fη(km(xmi , x
m
j )P

m=1
)

where the combination function, fη : RP → R, can be a linear or a nonlinear func-

tion. Kernel functions, km : RDm ×RDm× → R
P
m=1, take P feature representations

(not necessarily different) of data instances: xi = {xmi }Pm=1 where xmi ∈ RDm , and
Dm is the dimensionality of the corresponding feature representation. η parameter-
izes the combination function and the more common implementation is:

kη(xi, xj) = fη(km(xmi , x
m
j )P

m=1
|η)

where the parameters are used to combine a set of predefined kernels (i.e., we know
the kernel functions and corresponding kernel parameters before training). It is also
possible to view this as:

kη(xi, xj) = fη(km(xmi , x
m
j |η)P

m=1
)

65



where the parameters integrated into the kernel functions are optimized during train-
ing. Most of the existing MKL algorithms fall into the first category and try to com-
bine predefined kernels in an optimal way. The reasoning is similar to combining
different classifiers: Instead of choosing a single kernel function it is better to have
a set and let an algorithm do the picking or combination. There can be two uses of
MKL:

• Different kernels correspond to different notions of similarity and instead of
trying to find which works best, a learning method does the picking for us,
or may use a combination of them. Using a specific kernel may be a source
of bias, and in allowing a learner to choose among a set of kernels, a better
solution can be found.

• Different kernels may be using inputs coming from different representations
possibly from different sources or modalities. Since these are different repre-
sentations, they have different measures of similarity corresponding to different
kernels.

There are different ways in which the combination can be done and each has its own
combination parameter characteristics. The functional forms of the existing MKL
algorithms into three basic categories:

• Linear combination methods are the most popular and have two basic cate-
gories: unweighted sum (i.e., using sum or mean of the kernels as the combined
kernel) and weighted sum. In the weighted sum case, we can linearly param-
eterize the combination function:

kη(xi, xj) = fη({km(xmi , x
m
j )}Pm=1|η) =

P∑
m=1

ηmkm(xmi , x
m
j )

where η denotes the kernel weights.

• Nonlinear combination methods use nonlinear functions of kernels, namely,
multiplication, power, and exponentiation.

• Data-dependent combination methods assign specific kernel weights for each
data instance. By doing this, they can identify local distributions in the data
and learn proper kernel combination rules for each region[25].

2.4 Summary of article’s results

In the paper the model evaluation is compared with other model that uses different
technique, in particular:

• Use only t-test for feature extraction

• Use t-test plus RFE-LK

• Use t-test plus RFE-RBF
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And also two different way of feature selection by merging the feature vector of the
five threshold matrices are used. It is shown that the proposed method has the best
performance compared to others:

• Accuracy 91.9%

• BAC 94%

• AUC 0.94

• Sensitivity 100%

Sensitivity 100% means that it can successfully classified all the MCI patients. Dif-
ferent tests are conducted by using only one threshold instead of all five together
and the result is that using all five tresholded connectivity matrix is better. In figure
2.26 the ROC curves of the investigated method with different treshold. By selecting

Figure 2.26: ROC curves of the investigated method (RFE-GK) by using different
threshold

the best discriminative features (the ones with the highest occurrence frequency in
all LOO cross-validation) 19 ROIs are obtained. Two average connectivity network
based on all 19 ROIs is built. The vertexes are the ROIs and connections are the
average of weights of corresponding edge in connectivity networks for subjects in the
same group. So confronting the average connectivity matrix of MCI and a healthy
person a significant difference can be seen in connections (figure 2.27). Other sec-

Figure 2.27: comparison between average connectivity matrix of a healthy person
(on the left) and an MCI person (on the right). The colors express how strong is a
connection (ascending order from red to blue).

ondary tests are conducted on the effect of threshold, preprocessing step and effect
of feature extraction and selection, and each test suggest the fundamental impor-
tance of use each of that passage. It’s possible to conclude that this method is a
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valid proposal for detecting automatically the MCI patients with a high accuracy.
The main limitations of the paper are:

• The definition of nodes and edges changes sensibly the topological property of
connectivity networks

• Not analyzed the impact of different brain parcellation atlases on classifier
performance

• The framework a be affected by unbalanced data (gap between healthy and
MCI people)

• Not considered the distinction from AD to NC but only MCI and NC

• Limited sample size.
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Chapter 3

Case study 2: clustering of high
resolution sentinel-2 images

3.1 Problem definition

Land management and land planning requires a knowledge of the current state of the
landscape. Understanding current land cover and how it is being used, along with
an accurate means of monitoring change over time, is vital to any person responsible
for land management. Measuring current conditions and how they are changing can
be easily achieved through land cover mapping, a process that quantifies current
land resources into a series of thematic categories, such as forest, water, and paved
surfaces.
Changes in land use and land cover are pervasive, rapid, and can have significant
impacts for people, the economy, and the environment. Among the organizations
that will benefit from the information derived from land cover solutions are:

• governments and agribusiness who use them to assess demand, anticipate
prices and plan the use of resources.

• Environment and research organizations

• Water districts

• Engineering firms

• Private forestry organizations

• Big traders and companies, providing services for farmers (For example, agri-
cultural insurance companies, providers of fertilizers need to know what crops
are grown in their region of interest and what are the areas of these crops.)

• Farmers, which do have a considerable interest, in knowing about problems
in crops, and developments of the vegetation index concept could provide
valuable information in stress management, for example in assessing irrigation
demand, disease, pest and weed control, and crop nutrition.

This information must be delivered or made accessible in sufficient time for the user
to make professional sense and use these advisories appropriately in the manage-
ment process.
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This topic has received great interest in recent years thanks to the fast scientific
developments achieved by the two areas most correlated with land cover/land use
mapping:

• Machine learning

• Remote sensing

For the first point the knowledge of new learning algorithms from the family of neural
network, such as convolutional neural network or Unet, and the increasing efficiency
of already well know algorithms such as Random forest and multilayer perceptron,
brings great improvement in the managing and classification of big data. New
information in faster time are now reachable, the training phase has improved in
time and precision as well as their predictive ability. So nowadays became possible
the manipulation of data that belong to very big crop areas.

Remote sensing

For what concern the second point the term “remote sensing” generally refers to
the use of satellite or aircraft-based sensor technologies to detect and classify ob-
jects on Earth, including on the surface and in the atmosphere and oceans, based
on propagated signals (e.g. electromagnetic radiation). It may be split into ”ac-
tive” remote sensing (i.e., when a signal is emitted by a satellite or aircraft and
its reflection by the object is detected by the sensor) and ”passive” remote sensing
(i.e., when the reflection of sunlight is detected by the sensor) The most important

Figure 3.1: Schematizing of active and passive satellite remote sensing

applications of remote sensing in agrometeorological services are:

• Agriculture (crops): One basic information that remote sensing can provide to
agriculture is data related to crop identification and area measurement under
different types of crops, or acreage estimation. This enables to somewhat
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estimate the total production by understanding the yield per unit area. Such
information has far-reaching consequences in providing adequate food security.

• Forestry and vegetation mapping: Remote sensing can aid in providing a)
information about the extent of forest cover and give a general idea of the
types of forest cover; b) forest canopy density condition ; c) detection of forest
hazards like fire, disease and excessive felling.

• Water resources : Understanding water resources is important from agricul-
tural point of view. Water supply to agriculturally related sectors depends
upon the available resources, both in terms of quantity and quality. Remote
sensing data is useful in assessing water resources, irrigated area studies and
its monitoring and determining potential ground water zones.

Remote sensing can also provide data related to ocean and coastal zones like iden-
tifying potential area of fish concentration, environmental degradation that takes
place in coastal zones due to over exploitation, etc. Other promising areas of appli-
cations include, disaster assessment, drought monitoring, environmental monitoring,
etc. all of which have advanced significantly[14]
For the thesis porpoise the focus is on satellite device and the most useful facilities
connected to them:

• Hyperspectral cameras: Hyperspectral imaging produces an image where each
pixel has full spectral information with imaging narrow spectral bands over a
contiguous spectral range, so more features to give to learning algorithm

• The availability of large amount of “free and open” data images. Thanks to,
becomes feasible to develop a lot of cloud services for fast access to satellite
data and their products at high and medium spatial resolution scale.

• The availability of data images for different time

Figure 3.2: Logo of Copernicus the new name for the Global Monitoring for Environ-
ment and Security program, previously known as GMES, “It will provide accurate,
timely and easily accessible information to improve the management of the envi-
ronment, understand and mitigate the effects of climate change and ensure civil
security”[4]

3.2 Past related works

In past literature numerous attempt were done in ordered to make good classification
of land crop. The two mainly approach followed are:
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• Pixel-based

• Object-based

In the first case the samples used are the single pixels characterized by the hyper-
spectral feature vector connected to it.
In the second case the samples for the learning algorithm are not the single pixel
but a group of them. So in order to make a good object-based classification the
step of segmentation or parcellation that came before the real classification step is
fundamental.
Numerous attempt in comparison of the two categories were done[2][32][27][24]. Ac-
tually is not possible to state which one is better because it is extremely dependent
on the dataset used and on the remote sensing product used (Landsat, Sentinel,
Modis, Sar...). But in general what emerges from the literature is that if a good
object segmentation is done, the object-oriented classification outperforms a little
the pixel-based one. In particular the final mapping derived from object oriented is
more homogeneous compared to pixel-based that suffer from salt and pepper effect
and so in general it needs a postprocessing stage. On the other hand the pixel-based
framework are easier to implement and due to the increasing information resulting
from new hyperspectral camera it reaches very good performance. For example in
[33] due to the unavailability of good information about field boundaries a pixel-
based approach with features extracted from combination of Landsat and Sar image
was implemented and additional back-scattering intensity feature is added.

For what concerns the machine learning approach almost all the literature uses
a supervised approach because the ground truth information obtained by ground
survey gives a big improvement in results compared to unsupervised approach that
often fails in the detection of common features for each class. For what concerns
the specific supervised learning algorithm numerous comparison where made and
recently major importance have given to Neural Network based framework instead
of more classical Random Forest. For example in [27] MLP, 1-d CNN and 2-d
CNN algorithm trained with Landsat-8 and Sentinel-1 image have outperformed
RF. That still remains one of the most used due to its simplicity, good knowledge
and it is already implemented in various programming language. In addition it
embeds the ability to extract the most important features. For example in [30] a
Random Forest approach plus multitemporal information where used to select best
features extracted from Modis time series, and the relevance of the NDVI band is
underlined.

Another common point in literature is the increasing in accuracy by using multi-
temporal information. Each crop is characterized by is own phenology (represented
by its spectral signature) and this information can be exploited and carried out only
by augment the feature vector with information of different period of the year. In
all the cited works the multitemporal approach is exploited except in [2] where only
multispectral information of the same time were used.

The topic is very big and dynamic and the technologies involved are improv-
ing day by day and new technique and approaches are discovered. For example a
very recent paper of Belgiu and Csillik [24] compare Random Forest with a new ap-
proach called TWDTW that was firstly used for speech recognition and now is used
to recognize the spectral signature of crops. It still needs improvement since it out-
performs RF only in the dataset taken from Romania and Italy and is outperformed
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in the American dataset.

Figure 3.3: Salt and pepper effect

3.3 Proposed method

The proposed method is a pixel-oriented crop classification. The general scheme is
depicted in figure 3.4.
The main aim is to reach the best accuracy using as less features as possible. Since
a common wrapper approach for features selection is not suitable, due to the large
amount of data and high computational cost, a different approach is exploited.
The basic features (Red,Green,Blue,Nir band) for each time period are extracted
from the downloaded satellite images, the NDVI is then calculated. Since the clas-
sification accuracy is strongly dependent from the time phenology of crops different
time information are evaluated. Specifically due to the impossibility of evaluate the
a-priori importance of each time contributions, three scenarios are implemented:

• scenario 1: all monotemporal images of dataset (composed by R,G,B,Nir,NDVI
features) are individually evaluated and the best monotemporal image is found.

• scenario 2: a temporal window made of composition of 2 monotemporal
image (a multitemporal image of 2) is considered. All combinations of 2
monotemporal images are evaluated and the best multitemporal image is
found.

• scenario 3: a temporal window made of composition of 3 monotemporal
image (a multitemporal image of 3) is considered. All combinations of 3
monotemporal images are evaluated and the best multitemporal image is
found.

From the preceding steps the best temporal images are extracted and the increasing
performance due to the increase of number of features is analyzed.
In order to exploit also the importance of non-temporal features, all combination of
Pca and textural features are combined with the best monotemporal image and the
performances evaluated.
The learning alghoritm used is a Multilayer Perceptron preceded by balancing (only
for Dataset A) and normalization pre-processing steps. The final classified image is
then refined by using a median filter in order to remove the salt-and-pepper effect.
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Figure 3.4: Scheme of the proposed method

3.3.1 Data acquisition

The data used for the thesis were collected from the Copernicus website [4] where
is possible to download the images taken by the two Sentinel satellite. The only
input needed are the localization of the area and a time range in which the images
were taken. The proposed method used only the data from Sentinel-2, so some
characteristics of this satellite are exploited.

Sentinel-2

Sentinel-2 mission consists of twin polar-orbiting satellite launched by European
Space Agency (ESA) in 2015 and are used in various application areas such as land
cover change detection, natural disaster monitoring, forest monitoring and most im-
portantly in agricultural monitoring and management[5]. It is equipped with multi-
spectral optical sensors which captures 13 bands of different wavelengths shown in
table-1. It has also high revisit time (10days at the equator and 5 days with twin
satellites (Sentinel-2A, Sentinel-2B). It has gain more importance due to fact that
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it possesses various key features such as, free data products available at reasonable
spatial resolution (which is 10m for Red, Green, Blue and Near Infrared bands),
high revisit time and has very good spectral resolution among other available free
data sources.

Figure 3.5: Sentinel-2 bands detail

Postprocessing

Once the raw images are taken two are the next step:

• Resampling: in order to make a subset of the total image and since the spatial
resolution of all bands are different resampling uniform the pixel size for each
band.

• Make subset: take form a bigger area just the area of interest

The two procedures were made by using SNAP tool, A common architecture for all
Sentinel Toolboxes developed by Brockmann Consult, Array Systems Computing
and C-S called[6].

3.3.1.1 Ground truth dataset acquisition

By following the preceding steps two areas were selected:

• Dataset A: Racconigi, Piedmont region, situated in north part of Italy with
central coordinates 44◦48’26”N, 7◦37’37”E. Almost 46 Km2 area covered.

• Dataset B: central coordinates near Carpi, Emilia-Romagna region, situated in
center-north part of Italy with central coordinates 44◦47’01”N, 10◦59’37”E.Amost
2640 Km2 area covered.
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Figure 3.6: Dataset A

The next step is to collect the ground truth information necessaries for the super-
vising training algorithm.
For the Dataset A a ground survey was conducted by going physically in loco, ob-
serving the crops and saving thanks to GPS mobile device the geolocalization of the
area investigated. For the Dataset B a physical ground survey was impossible. So
information about ground truth were taken from LUCAS archive and than visual-
ized in QGIS, an Open-source software used for visualization, editing, analysis of
geographical data. In detail the LUCAS dataset just provided information about
the point location, the selection of pixel were made manually by overlapping images
and LUCAS data.
LUCAS (Land Use/Cover Area frame statistical Survey) is the name given to a se-
ries of ground survey decided by European Parliament and the European Statistical
Office (EUROSTAT) with the aim to gather information on land cover and land
use. In figure 3.6 and 3.7 the details of area selected and their ground truth data
with the selected classes.

3.3.2 Feature extraction

The feature extraction step mainly consisted in selection an manipulation of the
bands downloaded from Copernicus website.
This step was exploited using the already cited SNAP tool software for analysis and
processing of Sentinel images provided by ESA.
Synthesizing its charachteristics:

• Common architecture for all Toolboxes

• Very fast image display and navigation even of giga-pixel images

• Graph Processing Framework (GPF): for creating user-defined processing chains

• Advanced layer management allows adding and manipulation of new overlays
such as images of other bands, images from WMS servers or ESRI shapefiles

• Rich region-of-interest definitions for statistics and various plots
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Figure 3.7: Dataset B

Figure 3.8: Zoom-in of the upper-right corner of dataset B
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Class Pixels Percentage

build up 4269 26.03%
water 1075 6.56%

maze cultivated 2460 15%
maze 2946 17.97%

pearl millet 1192 7.27%
onion 271 1.65%

cabbage 326 1.99%
maze grown 3858 23.52%

Total 16397 100%

(a) Dataset A

Class Pixels Percentage

barley 739 2.44%
common wheat 7877 26%

lucern 5565 18.38%
maize 5198 17.16%

other cereals 202 0.67%
peer 326 1.07%
rye 499 1.66%
soya 931 3.07%

temporary grass 549 1.81%
vineyard 2204 7.28%

water 2936 9.69%
build up 3263 10.77%

Total 30289 100%

(b) Dataset B

Table 3.1: Composition of two dataset: dataset A on the left and dataset B on the
right

• Easy bitmask definition and overlay

• Flexible band arithmetic using arbitrary mathematical expressions

• Accurate reprojection and ortho-rectification to common map projections,

• Geo-coding and rectification using ground control points

• Automatic SRTM DEM download and tile selection

• Product library for scanning and cataloguing large archives efficiently

• Multithreading and Multi-core processor support

• Integrated WorldWind visualisation[6]

3.3.2.1 Basic

For this thesis work will be considered basic features the 4 10m high resolution bands
of Sentinel 2:

• B4 = the red band

• B3 = the green band

• B2 = the blue band

• NIR = the near infrared band

The first three bands essentially are used to build up the Natural RGB color image
and so they have the ability to capture the Color of the fields. The near infrared
is good for mapping shorelines and biomass content, as well as at detecting and
analyzing vegetation.
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Figure 3.9: Basic feature extraction

3.3.2.2 NDVI

The normalized difference vegetation index (NDVI) is a simple graphical indicator
that can be used to analyze remote sensing measurements and assess whether the
target being observed contains live green vegetation or not.
NDVI is calculated on a per-pixel basis as the normalized difference between the red
and near infrared bands from an image:

NDV I =
ρ(B8)− ρ(B4)

ρ(B8) + ρ(B4)

where ρ(B8) is the near infrared band value for a cell and ρ(B4) is the red
band value for the cell. NDVI can be calculated for any image that has a red
and a near infrared band. The biophysical interpretation of NDVI is the fraction of
absorbed photosynthetically active radiation, or simpler it measures the ”greenness”
of vegetation.

Many factors affect NDVI values like plant photosynthetic activity, total plant
cover, biomass, plant and soil moisture, and plant stress. Because of this, NDVI is
correlated with many ecosystem attributes that are of interest to researchers and
managers (e.g., net primary productivity, canopy cover, bare ground cover). Also,
because it is a ratio of two bands, NDVI helps compensate for differences both
in illumination within an image due to slope and aspect, and differences between
images due things like time of day or season when the images were acquired. Thus,
vegetation indices like NDVI make it possible to compare images over time to look
for ecologically significant changes.

The output of NDVI is a new image file/layer. Values of NDVI can range
from -1.0 to +1.0. Higher values signify a larger difference between the red and
near infrared radiation recorded by the sensor - a condition associated with highly
photosynthetically-active vegetation. Low NDVI values mean there is little differ-
ence between the red and NIR signals. This happens when there is little photo-
synthetic activity, or when there is just very little NIR light reflectance (i.e., water
reflects very little NIR light).
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A negative value of NDVI actually means presence of water so is a very important
feature for water resources detection.

Great importance has the NDVI plot over time. Where on the y axis there are
some average NDVI values for some pixels that belong to the same class and on
the x axis the multitemporal information. By looking at this spectral signature is
possible to detect the phenological life-cycle of each crop.

Figure 3.10: Ndvi feature extraction

3.3.2.3 Pca

Principal component analysis (PCA) is a statistical procedure that uses an orthog-
onal transformation to convert a set of observations of possibly correlated variables
into a set of values of linearly uncorrelated variables called principal components.
The PCA is mostly used as a dimensionality reduction technique in order to extract
the most important features of a feature vector. In crop classification is mainly
used in order to generate new features able to encapsulate important information
as showed in [29]. The key point of the transformation is to reproject the feature
vector associated to each observation into a new coordinate system which axis are
the so called principal analysis and they are ordered in function of their importance
that is evaluated as the variability of data. Imagine to be in the situation of figure
3.12 all the points are represented by 2 features. The major variability of the data
is on the blue line and the second major variability is on the purple line. Mathe-
matically speaking the two directions are represented by the eigenvectors associated
to the eigenvalues of the covariance matrix of the points (the observations). The
highest eigenvalue is connected to the eigenvector with the highest variability of
data. Given the eigenvectors and the original points it’s then possible to obtain the
final transformation as:

Final Data = RowfeatureVector × RowdataAdjust

where

• RowfeatureVector is the matrix with the eigenvectors in the columns trans-
posed so that the eigenvectors are now in the rows, with the most significant
eigenvector at the top

• RowdataAdjust is the mean-adjusted data transposed, ie. the data items are
in each column, with each row holding a separate dimension.
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The mean-adjust come out from the correlation matrix.
To reduce the final data we have to discard some eigenvectors from Rowfeaturevec-
tor. If a eigenvector associated with a low eigenvalue is removed the information loss
is little otherwise is bigger. So in the end we have transformed a vector of features
of dimension D to another that embed the major information of the original one but
of dimension d, with d < D.

In image field the generation of Pca means build up the images with transformed
value associated to each pixel. The number of images generated are the same of the
features of the original image (one for each principal component). The Pca extrac-
tion is made by using SNAP tool that automatically embed this option. Specifically
SNAP tool follow the procedure:

1. Average the pixels across the input images to compute a mean image.

2. Subtract the mean value of each input image (or image from step 1) from itself
to produce zero-mean images.

3. Compute covariance matrix from the zero-mean images 3. given in step 2.

4. Perform eigenvalue decomposition of the covariance matrix.

5. Compute PCA images by multiplying the eigenvector matrix by the zero-mean
images given in step2. The number of produced images are the same of the
Principal Components.

Figure 3.11: pca features extraction

In this thesis for both dataset the Pca is calculated on the best individual temporal
image considering the stack of Red,Green,Blue,Nir and NDVI.
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3.3.2.4 Texture features

Spatial information in the form of texture features can be useful for image classifica-
tion. Texture measures can produce new images by making use of spatial information
inherent in the image. Texture is the pattern of intensity variations in an image and
can be a valuable tool in improving land-cover classification accuracy. Texture in-
formation involves the information from neighbouring pixels which is important to
characterize the identified objects or regions of interest in an image.
The Gray Level Co-occurrence Matrix (GLCM) is one of the most widely used
methods to compute second order texture measures. Several texture features can
be computed from the GLCM matrix, e.g., angular second moment, contrast, cor-
relation, entropy, variance, inverse difference moment, difference average, difference
variance, difference entropy, sum average, sum variance and sum entropy[31]. Each
feature models different properties of the statistical relation of pixels co-occurrence
estimated within a given moving window and along predefined directions and inter-
pixel distances. Also in this case the resulting image is extracted by using SNAP
tool, which automatically execute the following steps:

1. Quantize the image data. Each sample on the original image is treated as a
single image pixel and the value of the sample is the intensity of that pixel.
These intensities are then further quantized into a specified number of discrete
gray levels.

2. Create the GLCM. It will be a square matrix N x N in size where N is the
Number of levels specified under Quantization. The matrix is created as fol-
lows:

(a) Let s be the sample under consideration for the calculation.

(b) Let W be the set of samples surrounding sample s which fall within a
window centered upon sample s of the size specified under Window Size.

(c) Considering only the samples in the set W, define each element i,j of the
GLCM as the number of times two samples of intensities i and j occur in
specified Spatial relationship (where i and j are intensities between 0 and
Number of levels-1)
. The sum of all the elements i, j of the GLCM will be the total number
of times the specified spatial relationship occurs in W.

(d) Normalize the GLCM:

• Divide each element by the sum of all elements.
The elements of the GLCM may now be considered probabilities of
finding the relationship i, j (or j, i) in W.

3. Calculate the selected Feature. This calculation uses only the values in the
GLCM. (i.e. homogenity, entropy, variance, correlation)
Then snap tool give the values of the calculated feature to all pixel belonging
to the chosen original window.

So the parameter to be selected by the user are:

• Window dimension
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• Directions taken in consideraton for building the co occurence matrix

• Quantization of gray level

• The displacement of the window

Figure 3.12: Example of gray-scale image with 3 tones on the left and correspective
GLCM with operational position 1-dx and 1-down

Figure 3.13: texture feature extraction

In this thesis the parameters used for building the textural feature are:

• Dataset A: Window dimension=5, Directions=ALL, Quantization=32, Win-
dow displacement=1

• Dataset B: Window dimension=7, Directions=ALL, Quantization=16, Win-
dow displacement=1

3.3.2.5 Multitemporal features

Each crop is characterized by its own phenology cycle. This information is for its
nature a temporal data, since the field change its property time-by-time.
Using the basic features with monotemporal information essentially means make a
classification based on color plus infrared of crop. Additional information is applied
by using NDVI, but in general the information given to the classifier are not so
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expressive of the property of crops.
In particular often happens that two different crops show a very similar spectral
signature if no-time information is added, this means that they are hard to classify.
In figure 3.14 is shown three different crops in three different period of the year. It’s
possible to see from visual analysis and by looking at the three different spectral
signature in figure 3.15 that in 08/05 the three crops are very similar (only the nir
component show a significant difference), so to increase accuracy is necessary to add
the spectral information of other period.
In this thesis the feature that are added in time are the basic ones (R,G,B,NIR)
and the NDVI. So adding the temporal information means adding 5 feature for each
temporal images used. In table 3.2 the detail of temporal data. In figure 3.16 the
plot of multitemporal NDVI values for each crop of dataset A. The plot shows the
different phenological phase of each crop and the different discriminatory power of
the NDVI feature in function of the different time period considered.

Figure 3.14: Three crops: maize,cultivated maize and cabbage in different day of
the year

3.3.3 Processing raw features

3.3.3.1 Normalization

Since the bands information values have different scales dependently from the band
itself a normalization preprocessing step was made. The preprocessing normalization
applied, has rescaled all the values between 0 and 1. The used formula is:

x′ =
xi −min(x)

max(x)−min(x)

3.3.3.2 Balancing

Imbalanced data refers to a situation where the number of observations is not the
same for all the classes in a classification dataset. Machine learning classifiers can fail
to cope with imbalanced training datasets as they are sensitive to the proportions of
the different classes. As a consequence, these algorithms tend to favor the class with
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(a) 08/05/2017

(b) 08/25/2017

(c) 09/04/2017

Figure 3.15: Spectral signature of crops in figure 3.14 considering basic bands

Date Doy

09/17/17 260
09/04/17 247
08/25/17 237
08/05/17 217
07/26/17 207
07/06/17 187
06/19/17 170
05/30/17 150
05/27/17 147
05/17/17 137
04/20/17 110

(a) Dataset A

Date Doy

07/04/15 185
08/03/15 215
09/02/15 245
09/12/15 255
10/22/15 295
02/19/16 50
03/20/16 80
04/29/16 120
06/18/16 170
07/18/16 200

(b) Dataset B

Table 3.2: Temporal data for dataset A (on the left) and dataset B (on the right)

the largest proportion of observations (known as majority class), which may lead
to misleading accuracies. This may be particularly problematic when the interest
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Figure 3.16: multitemporal NDVI plot for each crop of dataset A

is in the correct classification of a “rare” class (also known as minority class) but
high accuracies which are actually the product of the correct classification of the
majority class are found(ie, are the reflection of the underlying class distribution).
Given that these algorithms aim to minimize the overall error rate, instead of paying
special attention to the minority class, they may fail to make an accurate prediction
for this class if they don’t get the necessary amount of information about it.
In order to cope with imbalanced data some pixel from the majorities classes are
removed. This is done only for Dataset A which is representative of a smaller area
than the one of Dataset B, so a reduction of training samples don’t change the
performances of the classifier. For Dataset B this balancing step is avoided since the
area to classify is very big and a removal of pixel in training dataset can reduce the
performance of the classifier. In 3.3 the detail of dataset A pre and post balancing.

3.3.4 Feature selection

Looking at the general scheme in figure 3.4 it’s possible to see that it leads naturally
to choose best features. Actually it’s possible to imagine the feature selection step
as a forward wrapper method. The difference respect the classical forward feature
selection is that not all of possible combinations of features are exploited; instead
in the proposed method just some combinations of them are analyzed.
Using the classical forward selection step permits to analyze all the features space
since the algorithm is trained, at the starting point, with a few subset of features and
than each feature is added to the starting set and the result evaluate; this process
is iterative until all the features are used.
Obviously this process is computationally very expensive especially when integrated
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Class Pixels Percentage

build up 4269 26.03%
water 1075 6.56%

maze cultivated 2460 15%
maze 2946 17.97%

pearl millet 1192 7.27%
onion 271 1.65%

cabbage 326 1.99%
maze grown 3858 23.52%

Total 16397 100%

(a) unbalanced

Class Pixels Percentage

build up 539 16.50%
water 475 14.54%

maze cultivated 360 11.02%
maze 446 13.65%

pearl millet 392 12%
onion 271 8.30%

cabbage 326 9.98%
maze grown 458 14.01%

Total 3267 100%

(b) Balanced

Table 3.3: Composition of dataset A: unbalanced on the left and after balancing on
the right

with cross validation for choosing best hyperparameters of algorithm. Implementing
this step for this work is unfeasible.
The choice of subsets of features involved in the method is justified by a series of
experiments where other combinations of other features where exploited but didn’t
lead to sensible increment in accuracy.

3.3.5 Classifier

The implemented classifier for the Task is a Multilayer Perceptron which belong to
the class of feedforward artificial neural network.

A feedforward neural network is an artificial neural network wherein connections
between the units do not form a cycle. As such, it is different from recurrent neural
networks. The feedforward neural network was the first and simplest type of artificial
neural network devised. In this network, the information moves in only one direction,
forward, from the input nodes, through the hidden nodes (if any) and to the output
nodes. There are no cycles or loops in the network.

3.3.5.1 MLP

A multilayer perceptron (MLP) is a class of feedforward artificial neural network.
An MLP consists of at least three layers of nodes. Except for the input nodes, each
node is a neuron that uses a nonlinear activation function. MLP utilizes a supervised
learning technique called backpropagation for training. Its multiple layers and non-
linear activation distinguish MLP from a linear perceptron. It can distinguish data
that is not linearly separable.

Biological motivations and connections

The basic computational unit of the brain is a neuron. Approximately 86 billion
neurons can be found in the human nervous system and they are connected with
approximately 1014 - 1015 synapses. The figure 3.17 shows a cartoon drawing of a
biological neuron (left) and a common mathematical model (right). Each neuron

88



receives input signals from its dendrites and produces output signals along its (sin-
gle) axon. The axon eventually branches out and connects via synapses to dendrites
of other neurons. In the computational model of a neuron, the signals that travel
along the axons (e.g. x0) interact multiplicatively (e.g. w0x0) with the dendrites of
the other neuron based on the synaptic strength at that synapse (e.g. w0). The idea
is that the synaptic strengths (the weights w) are learnable and control the strength
of influence (and its direction: excitory (positive weight) or inhibitory (negative
weight)) of one neuron on another. In the basic model, the dendrites carry the sig-
nal to the cell body where they all get summed. If the final sum is above a certain
threshold, the neuron can fire, sending a spike along its axon. In the computational
model, we assume that the precise timings of the spikes do not matter, and that
only the frequency of the firing communicates information. Based on this rate code
interpretation, we model the firing rate of the neuron with an activation function f,
which represents the frequency of the spikes along the axon[12].

(a) neuron biological model (b) neuron mathematical model

Figure 3.17: A cartoon drawing of a biological neuron (a) and its mathematical
model (b).

Architecture

Neural Networks are modeled as collections of neurons that are connected in an
acyclic graph. In other words, the outputs of some neurons can become inputs to
other neurons. Cycles are not allowed since that would imply an infinite loop in the
forward pass of a network. Instead of an amorphous blobs of connected neurons,
Neural Network models are often organized into distinct layers of neurons. For reg-
ular neural networks, the most common layer type is the fully-connected layer in
which neurons between two adjacent layers are fully pairwise connected, but neurons
within a single layer share no connection[12]. In figure 3.18 are two example Neural
Network topologies that use a stack of fully-connected layers:

Mathematical interpretations

Neural network models can be viewed as simple mathematical models defining a
function f : X → Y or a distribution over X or both X and Y. Sometimes mod-
els are intimately associated with a particular learning rule. A common use of the
phrase ”ANN model” is really the definition of a class of such functions (where
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(a) 1 hidden layer, 2 output neurons (b) 2 hidden layer, 1 output neuron

Figure 3.18: (a): A 2-layer Neural Network (one hidden layer of 4 neurons (or
units) and one output layer with 2 neurons), and three inputs. (b): A 3-layer neural
network with three inputs, two hidden layers of 4 neurons each and one output layer.
Notice that in both cases there are connections (synapses) between neurons across
layers, but not within a layer.

members of the class are obtained by varying parameters, connection weights, or
specifics of the architecture such as the number of neurons or their connectivity).

Mathematically, a neuron’s network function f(x) is defined as a composition of
other functions gi(x), that can further be decomposed into other functions. This
can be conveniently represented as a network structure, with arrows depicting the
dependencies between functions. A widely used type of composition is the nonlinear
weighted sum, where f(x) = K(

∑
iwigi(x)), where K is some predefined activation

function, such as the hyperbolic tangent or sigmoid function or softmax function or
rectifier function. The important characteristic of the activation function is that it
provides a smooth transition as input values change, i.e. a small change in input
produces a small change in output. Figure 3.19 depicts such a decomposition of f,
with dependencies between variables indicated by arrows.
One way to see the figure is the functional one: the input x is transformed into a
3-dimensional vector h, which is then transformed into a 2-dimensional vector g,
which is finally transformed into f. This view is most commonly encountered in the
context of optimization.

Figure 3.19: ANN dependency graph
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Learning process

The parameters that the MLP has to learn are the weights that connect each neurons
to all the others of next layer and the bias for each neuron. It’s easy to understand
that increasing the number of neurons or the number of hidden layer brings to a big
increase in computational time need to learn the parameters that grows up in non
linear way.

The learning process of a MLP is composed by the following steps:

1. Pick the network architecture(initialize with random weights)

2. Do a forward pass (Forward propagation)

3. Calculate the total error(we need to minimize this error)

4. Back propagate the error and Update weights(Back propagation)

5. Repeat the process(2-4)for no of epochs/until error is minimum.

So the training phase is an iterative process which consist of two different phases:
Forward propagation and Backward propagation. One epoch is just one forward
pass and one backward pass of all the training examples.

Forward propagation In the forward step the features (that represent the sample
itself) of a sample is given to the net. This information is processed forwardly
following the the direction from input layer to output layer and calculating the
value of each node as:

aij = σ(
∑
k

(wijka
i−1
k ) + bij)

where:

• j is the node

• i is the layer

• σ is the activation function

• wijk is the weight from the kth neuron in the (i − 1)th layer to the jth neuron

in the ith layer

• bij is the bias of the jth neuron in the ith layer

• aij represents the activation value of the jth neuron in the ith layer.

Until the activation value of output nodes is reached.
Since this is training and labels of samples are known a cost function is defined,

in literature different measures of loss are analyzed. What is important is that
the cost function is a measure of how good is the output obtained after a forward
propagation phase of all the samples in the used batch (subset of samples used for
each forward-backward propagation).
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Backward propagation So now the network is capable of calculating the total
error for a given training set. The weights in the network are the only parameters
that can be modified to make the error E as low as possible. Because E is calculated
by the extended network exclusively through composition of the node functions, it is
a continuous and differentiable function of the ‘ weights w1, w2, ..., wl in the network.
We can thus minimize E by using an iterative process of gradient descent, for which
we need to calculate the gradient

∆E = (
∂E

∂w1

,
∂E

∂w2

, ...,
∂E

∂wl
)

Each weight is updated using the increment

∆wi = −λ ∂E
∂wi

for i = 1, . . .,l

where λ represents a learning constant, i.e., a proportionality parameter which de-
fines the step length of each iteration in the negative gradient direction. With
this extension of the original network the whole learning problem now reduces to
the question of calculating the gradient of a network function with respect to its
weights. Once we have a method to compute this gradient, we can adjust the net-
work weights iteratively. In this way we expect to find a minimum of the error
function, where ∆E ≈ 0.

In literature a plethora of method to adjust the weights are proposed, some
based just on first derivative of error, others use also the second, others use more
hyperparameters than just the learning rate. Since is known that an high learning
rate bring fast training but can miss the best minimum of the cost function (the
point jumps around) and a low learning rate make all the training very slow the best
practice is to anneal the learning rate over time. This is done by using a learning
rate decay approach (an other hyperparameter).

At the state of the art the best methods are the ones that adaptively tune the
learning rate (using a learning rate decay approach), and even do so per parameter.
The most known are: Adagard,RMSprop,Adam.

Figure 3.20: forward and backward propagation
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Implemented MLP

The MLP implemented for this thesis work has the next characteristics:

• Cost function: Cross entropy

• Backpropagation alghoritm: Adam optimizer

• nr hidden layer: 1 for dataset A, 2 for dataset B

• nr of neurons: cross validation grid search between 30,40,50,60 for dataset
A, cross validation grid search between 40,50,60,70 for first hidden layer and
second hidden layer with the half of the neurons of the first for dataset B.

• learning rate: 0.001 for dataset A, 0.01 for dataset B

• activation functions: sigmoid for hidden layer and softmax function for
output layer.

The cross entropy function is defined as

− 1

n

∑
x

∑
j

[yj ln aLj + (1− yj) ln 1− aLj ]

where aLj is the actual output value, j is the number of actual output neuron, n the
total training data. It showed good performance for multiclass classification and
avoid the learning slowrate. Adam optimizer belongs to the adaptive backpropaga-
tion methods and adopt also a learning decay approach, more detail in [10].
Two different architectures where utilized for each dataset. Since a 1 layer is enough
to reach good accuracy for Dataset A going into a deep structure is useless. A learn-
ing rate of 0.001 is the proposed one in [10] and has good convergence time and good
results. For Dataset B a deep structure with 2 layer is more suitable since it reaches
the convergence in less time and give best results, for the same reason a starting
learning rate of 0.01 is adopted. In both the architecture the only hyperparameters
tuned are: the number of hidden neurons using a grid search and 3-fold cross vali-
dation and the number of training epochs by using the early stopping criteria.
Adam optimizer has a learning decay approach that is useful for prevent overfitting
but also a early stopping strategy was adopted.

Early stopping Early stopping is a technique used in order to detect when to
stop the training process when it is done in iterative way as in neural network. The
procedure is:

1. Split the training data into a training set and a validation set (it can be
extended also with cross validation as in the case of this thesis)

2. Train only on the training set and evaluate the per-example error on the vali-
dation set once in a while

3. Stop training as soon as the error on the validation set is higher than it was
the last time it was checked.
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4. Use the weights the network had in that previous step as the result of the
training run.[22]

In case of this thesis instead of looking for error, the evaluation of validation set is
done on accuracy (that reflect the behaviour of the cost function); and the stopping
criterion is given by a patience range of 2500 epochs. This means that the MLP
stops to learn if after 2500 epochs the accuracy of validation set is not improved.
Example of early stopping in 3.21

(a) accuracy (b) loss

Figure 3.21: typical behaviour of early stopping in the implementation. Red stand
for validation set, blue for training set

3.3.6 Postprocessing

All the classification process is done by per pixel-level instead of object based. This
imply that the final classified image can suffer of salt and pepper noise.
Salt-and-pepper noise is a form of noise sometimes seen on images. It is also known
as impulse noise. This noise can be caused by sharp and sudden disturbances in the
image signal. It presents itself as sparsely occurring white and black pixels. In image
per pixel classification instead it presents as isolated pixels classified differently from
the majority of their neighboring pixels. This is a natural behaviour since not all
the pixels belonging to the same class have identical features.
In order to remove such noise a filter is generally applied. The two simplest and
most used ones are: the mean filter and the median filter. In particular for this
thesis a median filter is applied because of the following characteristics:

• The median is a more robust average than the mean and so a single very
unrepresentative pixel in a neighborhood will not affect the median value sig-
nificantly.

• Since the median value must actually be the value of one of the pixels in the
neighborhood, the median filter does not create new unrealistic pixel values
when the filter straddles an edge. For this reason the median filter is much
better at preserving sharp edges than the mean filter.
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The filter is already implemented in the cv2 library of python.
The median filter considers each pixel in the image in turn and looks at its nearby
neighbors to decide whether or not it is representative of its surroundings. Instead
of simply replacing the pixel value with the mean of neighboring pixel values, it re-
places it with the median of those values. The median is calculated by first sorting
all the pixel values from the surrounding neighborhood into numerical order and
then replacing the pixel being considered with the middle pixel value. (If the neigh-
borhood under consideration contains an even number of pixels, the average of the
two middle pixel values is used.) Figure 3.22 illustrates an example calculation.
The only parameter to specify is the dimension of window used to take in account
the neighboring pixels. For Dataset A a window of dimension 3 is considered and for
Dataset B a window of dimension 5. In figure 3.23 a comparison between original
and filtered image.

Figure 3.22: example of calculation of median filter

(a) original

(b) median filter 5x5

Figure 3.23: original clustered image in (a) and after the application of median filter
5x5 in (b)
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3.4 Results

3.4.0.1 Dataset A

Scenario 1
In figure 3.24 the plot accuracy/kappascore vs Doy for monotemporal images shows
that the maximum accuracy reached is 90.14% by the image of 09/04/2017. The
lowest is 76.99% reached by image of 07/06/2017. With a total range of 13.55%.
Same evaluations for kappascore with a maximum of 88.68% and a minimum of
73.52% with a total range of 13.16%.
In the figure 3.25 the best performances are reached by water class with 100% of PA
and UA. The lowest UA is 79.11%, the lowest PA is 76.68% both of cabbage class.
In figure 3.26 the clustered image. It reflects the performances shown in the relative
confusion matrix. So a perfect match of water is reached, instead by visual inspection
is possible to see some overlapping for the city class. As expected the majority of
fields are composed by maze with different life cycle (yellow,light blue and purple).

Figure 3.24: temporal performance of scenario 1

Figure 3.25: confusion matrix of best individual temporal information (09/04)
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Figure 3.26: final segmentation of the image considering best individual temporal
information

Scenario 2
In figure 3.27 the plot accuracy/kappascore vs Doy for multitemporal image shows
that the maximum accuracy reached is 97.98% by the multitemporal image of
09/17/17 08/25/17 but since there are clouds in the images they can lead to low pre-
dictive ability. So the chosen best multitemporal image is 09/04/17 05/27/17 with
an accuracy of 97.55%. The lowest is 89.66% reached by image of 07/26/17 07/06/17.
With a total range of 7.89%. Same evaluations for kappascore with a maximum of
97.25% and a minimum of 88.26% with a total range of 8.99%.
In the figure 3.28 the best performances are reached by water class with 100% of
PA and UA. The lowest UA is 95.18%, the lowest PA is 95.18% both of build up
class. Big increase in performance can be seen for the cabbage class compared to
monotemporal confusion matrix
In figure 3.29 the clustered image. It reflects the performances shown in the relative
confusion matrix. So a perfect match of water is reached, instead by visual inspec-
tion is possible to see an increase of onion fields and more homogeneity in cabbage
field if compared to monotemporal image. Some overlapping for the city class can
still be detected. As expected the majority of fields are composed by maze with
different life cycle (yellow,light blue and purple).

Figure 3.27: temporal performance of scenario 2
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Figure 3.28: confusion matrix of best two temporal information (09/04 05/27)

Figure 3.29: final segmentation of the image considering best two temporal infor-
mation

Scenario 3
In figure 3.30 the plot accuracy/kappascore vs Doy for multitemporal image shows
that the maximum accuracy reached is 98.83% by the multitemporal image of
09/04/17 06/19/17 05/17/17.
The lowest is 94.19% reached by image of 07/26/17 07/06/17 06/19/17. With a
total range of 4.64%. Same evaluations for kappascore with a maximum of 98.66%
and a minimum of 93.32% with a total range of 5.34%.
In the figure 3.31 the best performances are reached by water class with almost
100% of PA and UA. The lowest UA is 96.41% for build up class, the lowest PA is
97.44% for pearl millet class. Increase in performance can be seen for all the class
compared to scenario 2.
In figure 3.32 the clustered image. It reflects the performances shown in the rel-
ative confusion matrix. Some overlapping for the city class can still be detected.
As expected the majority of fields are composed by maze with different life cycle
(yellow,light blue and purple).
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Figure 3.30: temporal performance of scenario 3

Figure 3.31: confusion matrix of best two temporal information (09/04 06/19 05/17)

Figure 3.32: final segmentation of the image considering best three temporal infor-
mation

Non-temporal features
In figure 3.33 the plot accuracy/kappascore vs non-temporal features for monotem-
poral image shows that the maximum accuracy reached is 94.74% by the monotem-
poral image with Pca1 Pca3 Txt. The lowest is 89.35% reached by image with
Pca1 Pca2. With a total range of 5.35%. Same evaluations for kappascore with a
maximum of 93.95% and a minimum of 87.97% with a total range of 5.98%.
In the figure 3.34 the best performances are reached by water class with almost 100%
of PA and UA. The lowest UA is 86.06% for cabbage class, the lowest PA is 85.92%
for onion class. Increase in performance can be seen for all the class compared to
simple monotemporal image, especially the build up class have a big increase in
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performance as expected.
In figure 3.35 the clustered image. It reflects the performances shown in the relative
confusion matrix. By visual inspection the overlapping for the city class is reduced
compared to simple monotemporal image. As expected the majority of fields are
composed by maze with different life cycle (yellow,light blue and purple).

Figure 3.33: performance of combination of non temporal features

Figure 3.34: confusion matrix of best non-temporal features (Pca1 Pca3 Txt)

Figure 3.35: final segmentation of the image considering best non-temporal features
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Features comparison
In figure 3.36 is shown the accuracy/kappascore vs features. It’s possible to see that
an increase in the number of features lead to an increase of both scores. With total
range of 10% between monotemporal image and the multitemporal with window
of 3 Doy. The right choice of non-temporal features results in a good increase of
accuracy of 4% while the use of multitemporal features lead to a strongly increase
of accuracy. The graph show also that a multitemporal windows of dimension 3 is
enough since increasing the number of features lead to a plateau of the curve.

Figure 3.36: plot accuracy vs features used

3.4.0.2 Dataset B

Scenario 1
In figure 3.37 the plot accuracy/kappascore vs Doy for monotemporal images shows
that the maximum accuracy reached is 86.94% by the image of 07/04/2015. The
lowest is 77.83% reached by image of 10/22/2015. With a total range of 9.11%.
Same evaluations for kappascore with a maximum of 84.25% and a minimum of
73.54% with a total range of 9.11%.
In the figure 3.38 the best performances are reached by water class with 98% of PA
and UA. The lowest UA is 49.24%, the lowest PA is 35.63% both of temporary grass
class.
In figure 3.39 the clustered image. It reflects the performances shown in the relative
confusion matrix. So an almost perfect match of water is reached. The majority of
fields are composed by common wheat, maize and lucern.
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Figure 3.37: temporal performance of scenario 1

Figure 3.38: confusion matrix of best individual temporal information (07/04/15)

102



(a) total image

(b) zoom upper-right corner

Figure 3.39: Total segmented image in (a) and a zoom of 600x800 px in the upper
right corner

Scenario 2
In figure 3.40 the plot accuracy/kappascore vs Doy for multitemporal images shows
that the maximum accuracy reached is 97.21% by the image of 07/04/15 03/20/16.
The lowest is 92.70% reached by the temporal window image of 09/02/15 09/12/15
. With a total range of 4.51%. Same evaluations for kappascore with a maximum
of 96.75% and a minimum of 91.30% with a total range of 5.45%.
In the figure 3.41 the best performances are reached by water class with almost
100% of PA and UA. The lowest UA is 82.03%, the lowest PA is 84.04% both of
peer class.
In figure 3.42 the clustered image. It reflects the performances shown in the relative
confusion matrix. So what in ground truth is water is almost perfectly predicted
but by visual analysis also some overlap with this class is present. The majority of
fields are composed by common wheat, maize and lucern.
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Figure 3.40: temporal performance of scenario 1

Figure 3.41: confusion matrix of best two temporal information
(07/04/15 03/20/16)
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(a) total image

(b) zoom upper-right corner

Figure 3.42: Total segmented image in (a) and a zoom of 600x800 px in the upper
right corner

Scenario 3
In figure 3.43 the plot accuracy/kappascore vs Doy for multitemporal images shows
that the maximum accuracy reached by considering the not-cloudy combinations is
98.57% by the image of 07/04/15 09/04/15 03/20/16. The lowest is 96.59% reached
by the temporal window image of 09/02/15 09/12/15 10/22/15 . With a total range
of 2%. Same evaluations for kappascore with a maximum of 98.30% and a minimum
of 95.94% with a total range of 2.36%.
In the figure 3.44 the best performances are reached by water class with almost
100% of PA and UA but very good performances can be seen from all classes. The
lowest UA is 93.02% of peer class, the lowest PA is 96.34% of soya class.
In figure 3.45 the clustered image. It reflects the performances shown in the relative
confusion matrix. Less overlap in water class can be seen respect to multitemporal
image of window 2 and the reduction of other cereals crops. The majority of fields
are composed by common wheat, maize and lucern.
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Figure 3.43: temporal performance of scenario 1

Figure 3.44: confusion matrix of best two temporal information
(07/04/15 09/04/15 03/20/16)
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(a) total image

(b) zoom upper-right corner

Figure 3.45: Total segmented image in (a) and a zoom of 600x800 px in the upper
right corner

Non-temporal features
In figure 3.46 the plot accuracy/kappascore vs non-temporal features for monotem-
poral image shows that the maximum accuracy reached is 90.39% by the monotem-
poral image with Pca1 Pca5 Txt. The lowest is 85.72% reached by image with Pca2.
With a total range of 4.67%. Same evaluations for kappascore with a maximum of
88.55% and a minimum of 82.95% with a total range of 5.55%.
In the figure 3.47 the best performances are reached by water class and city class.
The lowest UA is 67.40% for peer class, the lowest PA is 47.81% for temporary
grass class. Increase in performance can be seen for all the class compared to simple
monotemporal image, especially the build up class have a big increase in perfor-
mance as expected.
In figure 3.48 the clustered image. It reflects the performances shown in the relative
confusion matrix. So what in ground truth is water is almost perfectly predicted
but by visual analysis also some overlap with this class is present. The majority
of fields are composed by common wheat, maize and lucern. Respect to the simple
monotemporal image the predicted lucern fields are less.

107



Figure 3.46: performance of combination of non temporal features

Figure 3.47: confusion matrix of best non-temporal features (Pca1 Pca5 Txt)
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(a) total image

(b) zoom upper-right corner

Figure 3.48: Total segmented image in (a) and a zoom of 600x800 px in the upper
right corner
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Features comparison
In figure 3.49 is shown the accuracy/kappascore vs features. It’s possible to see that
an increase in the number of features lead to an increase of both scores. With total
range of 11.63% between monotemporal image and the multitemporal with window
of 3 Doy. The right choice of non-temporal features results in a good increase of
accuracy of 3.45% while the use of multitemporal features lead to a strongly increase
of accuracy. The graph show also that a multitemporal windows of dimension 3 is
enough since increasing the number of features lead to a plateau of the curve.

Figure 3.49: plot accuracy vs features used
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Chapter 4

Conclusion

The thesis is composed by three main parts, each of them has a different aim.

• The aim of the first chapter is to give a general overview of machine learning
framework focused on a supervised approach, in particular the branch applied
to classification is exploited. The main steps of machine learning (data acquisi-
tion, pre-processing, feature extraction, feature selection, training algorithm)
are explained and for each of them the main concepts are investigated in a
general way. In the same section the most common problems connected to the
topic are exposed and at the same time a general overview of the best known
solutions is given. Big importance is given also to the different criteria of eval-
uation of a classifier; so the main measures for both binary (ROC, sensitivity,
specificity) and multiclass(confusion matrix, kappascore, producer and user
accuracy) classification are analyzed. Very important is also the assessment
methods section since contains information about underfitting and overfitting,
the two biggest problem in machine learning and also contains the description
of hold out and cross validation methods both used in the thesis implemen-
tations. Summarize, this chapter can be seen as a collection of procedures
for machine learning applied to classification that represent a theoretical basis
for the next chapters. I did not find during my research all these information
grouped in one file; but its main limitation is due to the general level of dis-
cussion; so I suggest to use this chapter just as an overview and then use other
sources to go deep in the topics.

• The aim of the second chapter is to explain in detail the paper “Topologi-
cal Graph Kernel on Multiple Thresholded Functional Connectivity Networks
for Mild Cognitive Impairment Classification” written by Biao Jie et al of
which I have implemented the sub-methods that compose the general struc-
ture. Analyzing in the detail the general framework and also the techniques
used for detection of MCI is possible to extrapolate useful methods applicable
in different fields covered by machine learning; especially the ones that has to
deal with connectivity matrix that are very common in bio-medical field for
study brain activity. I analyzed in detail each step of the first chapter from
the point of view of the paper. The most significant techniques analyzed are:
the Weisfeiler-Lehman graph kernel, the RFE-GK, the ttest for feature selec-
tion and the learning algorithm used is SVM with different kernel approach
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validated by a nested cross-validation. A general overview of the results and
limitations obtained by the paper is synthesized in the end of the chapter and
them demonstrate that the general framework that uses 5 threshold has a very
good capability of detection the MCI in subjects. Comparison between dif-
ferent and more classic techniques have shown that the best results are given
by the use of RFE-GK method combined with 5 thresholds. The presented
techniques in this chapter were implemented. The environment used is Matlab
with STATISTICAL toolbox and the libsvm library. The code is modularized
so for each step or sub-step I built a function able to give the correct output;
such functions have been tested by using random data. I was not able to test
the general framework because the total complexity of the code is too high
and it was not possible to obtain results in acceptable computational time
using commercial hardware. To solve this problem is necessary to use proper
hardware and optimize the software. Anyway the codes can represent a lit-
tle library composed of method such RFE-GK, the Weisfeiler-Lehman kernel,
Ttest. . . useful for further analysis that involves such methods.

• My major contribution is demonstrated in the third chapter of the thesis and
a new general method for crop classification using satellite image is exploited.
Information about the two dataset used were given and the structure of the
first chapter is followed in order to explain all the fundamental steps of the pro-
cedure. The learning algorithm used is a MLP with a different architecture
for each dataset. The used raw features are extracted from the Copernicus
website that give direct access to the products of Sentinel-2 satellite. The
results obtained confirm the fundamental importance of using multitemporal
features instead of a monotemporal one with an accuracy increased (from best
monotemporal to best 3 window multitemporal) of around 9% for dataset A
and around 11% for dataset B. Not only the importance of multitemporal
information is confirmed but it is shown that the different crop phenology
strongly influence the final accuracy, so the right choice of best multitempo-
ral features is of maximum importance. In this thesis the best choice derived
from combinations of multitemporal windows of dimension one,two and three.
Since the use of multitemporal features imply bigger effort in data acquisition
and more computational complexity due to adding more features; an analy-
sis of monotemporal information plus some non temporal features (Pca and
textural)is done. It showed a considerable increase in accuracy respect sim-
ple monotemporal image. The increase for dataset A is around 5% and for
dataset B is around 4%. Looking at image 3.36 and 3.49 is possible to see
that for both datasets the window range of 3 Doy (in 1 year) is enough to
obtain very good results since the trend of the graph shows that a plateau
is reached. The combination approach is very computational expensive and
the results (at least for Dataset B) are obtained by using the computational
resources provided by hpc@polito (http://www.hpc.polito.it). In particular
24 CPUs and 1 gpu were used and the computational time varied dependently
from number of combinations, number of features and dataset. This approach
limited the use of cross validation only for hyperparameters selection and an
outer cross validation for generality assessment wasn’t implemented. This im-
ply that the numerical results showed are consequence of a 50-50 hold out

113



method and they are subject to fluctuation, negligible for the treated topic,
when the experiments are repeated and the best chosen multitemporal image
can change; but the general methodology and extracted results are valid and
lead to good accuracies that outperform some literature’s approaches. A limit
of the machine learning approach in crop classification is that once a trained
network is obtained, cannot garantee the same results in terms of accuracy for
areas different from the considered dataset, this is due to the strong influence
of spatial location in crop phenology which lead to strong differences in intra-
spectral information that cause misleading predictions.
The main knowledge acquired in this chapter concern:

– The use of Python programming language and specifically Anaconda and
Spyder IDE

– The use of of tensorflow library that is the actual state of the art for
construction of machine learning algorithms

– The use of SNAP tool provided from ESA for elaboration of Sentinel-2
images

– The use of Qgis for construction of Dataset B

– The use of a linux-based cluster computer for running the most compu-
tational expensive programs.

Although good results and important evaluations are extracted from this the-
sis, some further improvements can be added in future work. In the following,
some suggestions are listed:

– Taking into account also the spatio-temporal crops information, that
means consider the different life-cycle for the same crop in the same
monotemporal image. Since same crops have different behaviour at the
same time, due to the presence of a lot of farmers with their own crop
life-cycle strategy.

– Reduce or remove the computational effort of using combinations, for
example by detection of important information of spectral signature of
crops.

– Implementation of a nested-cross validation as consequence of a reduced
computational cost.

– Make a comparison with object-based methods.
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Acronyms

ACC Accuracy. 24

AD Alzheimer disease. 40

ANN Artificial neural network. 86

AUC Area under the curve. 27

B Blue band. 81

BOLD Blood oxygenation level dependent. 42

CNN Convolutional neural network. 69

CSF Cerebrospinal fluid. 42

CV Cross validation. 33

EEG electroencephalograph. 39

ESA European Space Agency. 71, 73

EUROSTAT European Parliament and the European Statistical Office. 73

FMRI Functional Magnetic Resonance Imaging. 39

FN False negative. 24

FP False positive. 24

FPR False positive rate. 26

G Green band. 81

GK Graph kernel. 40

GLCM Gray level co-occurrence matrix. 79

GM Gray matter. 42

GPF Graph Processing Framework. 73

GPS Global positioning system. 73
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LOOCV Leave one-out cross validation. 33

LUCAS Land Use/Cover Area frame statistical Survey. 73

MCI Mild cognitive impairment. 38

MKL Multiple kernel learning. 61

MLP Multilayer Perceptron. 69

MRI magnetic resonance imaging. 39

NC Normal condition. 40

NDVI Normalized difference vegetation index. 69, 76

NIR Near infra red. 76, 81

OCR Optical character reconison. 12

PA Producer accuracy. 30

PCA Principal Component Analysis. 77

QGIS Quantum geographic information system. 73

R Red band. 81

RF Random Forest. 69

RFE Recursive features elimination. 40

ROC Receiver operating characteristic. 28

ROI Region of interest. 42

SNAP Sentinel application platform. 72

SVM Support vector machine. 22

TN True negative. 24

TP True positive. 24

TPR True positive rate. 26

TWDTW Time-Weighted Dynamic Time Warping. 69

UA User accuracy. 29

WM White matter. 42

117





Appendix A

Insights

A.1 From brain images to fRMI time series

Neuronal clusters involved in brain activity consume more oxygen compared to their
baseline state. Due to neurovascular coupling, blood flow and volume are increased
and lead to a significant overcompensation of the oxygen demands, i.e., the ratio
of oxygenated and deoxygenated hemoglobin is altered. Deoxygenated hemoglobin
is paramagnetic and acts as an endogenous contrast agent since it alters the T2*-
weighted MR images. This gives rise to the blood-oxygen-level-dependent (BOLD)
signal, discovered in the 1990s, which has allowed MRI to become functional (fMRI)
and to observe the brain at work. MRI allows sampling a three-dimensional (3-D)
volume of the brain at millimetric spatial resolution every 1–3 s (or faster with re-
cent sequences). In this way is obtained a multivariate time series of brain activity.
In particular from fMRI the resulting 3-D image is composed by voxels. The ex-
tension in 3-D of a pixel. And it is the minimum spatial unit which has a fMRI
time series. A voxel typically contains a few million neurons and tens of billions of
synapses, with the actual number depending on voxel size and the area of the brain
being imaged. So for each voxel a BOLD time series is associated. Raw fMRI signals
suffer from low signal-to-noise ratio and need to be processed heavily to be amenable
to analysis. Several preexisting open source software packages allow reliable results
to be obtained rapidly. The main preprocessing steps, illustrated in figure A.2, are
to realign the volumes to compensate for subject motion and ensure voxel-to-voxel
correspondence across time, coregister functional images to a high-resolution struc-
tural image, and normalize the data into a common reference space so that subjects
can be compared and existing anatomical knowledge can be leveraged. Once this
is achieved, representative time series can be extracted from different brain regions
(called ROIs) and serve as a basis for brain graph construction. In literature dif-
ferent ways of extracting brain region are analyzed (one of the most preferred is
Atlas-based).
Synthesizing, thanks to fMRI and parcellation techniques, a time series for each
individuated Region of interest is extracted.

A.2 Connectivity matrix

For a weighted graph with vertex set V, the connectivity matrix (also called adja-
cency matrix) is a square |V | × |V | matrix A such that its element Aij is the weight
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Figure A.1: Example of preprocessing for time series extraction from fMRI data,
including atlas-based parcellation of the brain.

of the edge from vertex i to vertex j, and zero when there is no edge. The diagonal
elements of the matrix are all zero, since edges from a vertex to itself (loops) are
not allowed in simple graphs.
For this thesis, given the fMRI time series for each ROI, the Pearson Correletion
Coefficient for each ROI is calculated. So the connectivity matrices considered rep-
resent as vertices the ROIs and as edges of graph the Pearson Coefficient between
each ROI. This imply that the values of entries in the matrices range between -1
and 1. Specifically the matrices are symmetric with ones on the diagonal.

Figure A.2: Example adjacency matrix

A.3 Combinations

a combination is a selection of items from a collection, such that the order of selection
does not matter. More formally, a k-combination of a set S is a subset of k distinct
elements of S. If the set has n elements, the number of k-combinations is equal to
the binomial coefficient (

n

k

)
=
n(n− 1) · · · (n− k + 1)

k(k − 1) · · · 1

which can be written using factorials as n!
k!(n−k)!

whenever k < n, and which is zero

when k > n. The set of all k-combinations of a set S is often denoted by
(
S
k

)
.
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A.4 Covariance matrix

Given the column vector

X =


X1

.

.

.
Xn


where X1 · · ·Xn are random variables, each with finite variance, then the covariance
matrix Σ is the matrix whose (i, j) entry is the covariance Σij = cov(Xi, Xj) =
E[(Xi−µi)(Xj −µj)] = E[XiXj]−µiµj where the operator E denotes the expected
(mean) value of its argument, and µi = E(Xi) is the expected value of the i th entry
in the vector X. In other words,

Σ =



E[(X1 − µ1)(X1 − µ1)] E[(X1 − µ1)(X2 − µ2)] · · · E[(X1 − µ1)(Xn − µn)]

E[(X2 − µ2)(X1 − µ1)] E[(X2 − µ2)(X2 − µ2)] · · · E[(X2 − µ2)(Xn − µn)]

...
...

. . .
...

E[(Xn − µn)(X1 − µ1)] E[(Xn − µn)(X2 − µ2)] · · · E[(Xn − µn)(Xn − µn)]


.

The covariance matrix generalizes the notion of variance to multiple dimensions. The
covariance is a measure used to indicate the extent to which two random variables
change in tandem. It can be positive or negative and its values can range between
−∞ and +∞. Because the covariance of the ith random variable with itself is
simply that random variable’s variance, each element on the principal diagonal of
the covariance matrix is the variance of one of the random variables. Because the
covariance of the ith random variable with the jth one is the same thing as the
covariance of the jth random variable with the ith one, every covariance matrix is
symmetric. In addition, every covariance matrix is positive semi-definite.
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