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Société: Lastline

Encadrant dans l’entreprise: Ingénieur Corrado Leita

Encadrant académique: Professeur Davide Balzarotti
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“I believe that at the end of the century the use of words and general educated

opinion will have altered so much that one will be able to speak of machines thinking

without expecting to be contradicted.”

Alan Turing
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Abstract

Intrusion Detection Systems and Intrusion Prevention Systems have been for a

long time an essential component of network security, especially in enterprise en-

vironments, where a data breach can be catastrophic. Unfortunately, breaches are

still happening despite the efforts on the defenders side, hence the need of Breach

Detection Systems.

Once a breach has occurred, it is important to be able to react as soon as possible

to investigate the incident, in order to be able to avoid further compromises. This

task is still considered as an art by many, where it is the duty of a skilled incident

responder to produce a report of the breach and to suggest mitigation and recovery

actions. A Breach Detection System is an automated engine that should be able

to detect malicious activities once an entity in the network has been compromised,

but at the same time it should collect enough data for the incident responder to

effectively investigate the breach.

With MANTIS, we present a possible approach to the development of part of

a BDS, exploiting machine learning techniques to categorize hosts in a network

based on their behaviour, while identifying singular hosts and tracking the be-

havioural dynamics of each entity. We choose an unsupervised training model

that works on aggregated Netflow data. The use of Netflows is justified by the

enormous advantages in terms of scalability that this format provides, while keep-

ing enough information to effectively categorize traffic. We consider as features

the distributions of different Netflow fields, and effectively apply this system on

real data captured on different networks.

Our conclusion is that this approach can give very good insights about what is

happening in a large network, being able to identify suspicious behaviours and

giving the incident response team the ability to effectively investigate a breach.
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Abstract (french version)

Les Systèmes de Détection d’Intrusion et les Systèmes de Prévention d’Intrusion

ont été essentiel pendant longtemps pour la sécurité des réseaux. Malhureusement,

on observe toujours des violations des données, donc il pousse la nécessité des

Systèmes de Détection des Violations des Données (BDS).

Après une violation des données, il faut réagir tout de suite pour éviter autres

dangers. Ce tâche est très complexe pour le répondeur d’incident, et un Système

de Détection des Violations des Données doit aider dans cette direction.

Avec MANTIS, on va suggérer une possible solution pour le développement d’un

BDS, avec l’utilisation de techniques de machine learning pour catégorizer les

ordinateurs entre plusiers groupes de comportement.

On a choisi un modèle unsipervised qui marche avec Netflows et on a appliqué

cette système avec des données real arrivant de different reseaux.

Nôtre conclusion est que est possible utiliser cette système pendant l’investigation

d’une violation pour avoir une vue mellieure dans la situation du réseau.

iii
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Chapter 1

Introduction and motivation

1.1 Breaches and Breach Detection Systems

In the systems security industry, the term data breach identifies a security incident

that involves any unauthorized access to protected data. Breaches represent a se-

rious threat to an organization, especially nowadays, as companies start collecting

more and more data for analysis.

Figure 1.1 shows the summary of the Verizon Data Breach Investigation Report

20171. From the picture, we can see that 62% of the breaches included some

sort of hacking, meaning actions performed (either from the outside or from the

inside of a corporate network) to exploit security holes and access data in an

unauthorized manner. Moreover, 75% of the breaches were perpetrated from the

outside, meaning that no one inside the organization helped get access to the data.

Disclosure of confidential and potentially sensitive data is catastrophic for an or-

ganization, but often affects also end users, that can experience identity theft and

violation of their privacy. As an example, we can consider the Equifax data breach,

which as per their last report on October 2, 2017 affected 145.5 million customers

in the United States 2.
1http://www.verizonenterprise.com/verizon-insights-lab/dbir/2017/
2http://www.bbc.co.uk/news/business-41474329

1

http://www.verizonenterprise.com/verizon-insights-lab/dbir/2017/
http://www.bbc.co.uk/news/business-41474329
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Figure 1.1: Summary of the Verizon Data Breach Investigation Report 2017

Over time, many security tools have been designed and adopted to prevent these

breaches, such as Intrusion Prevention Systems, Intrusion Detection Sys-

tems and Next Generation Firewalls. Despite the large number of systems

that work together to prevent them from happening, we still count many breaches

every year. Moreover, many companies do not disclose incidents if possible. We

see from Figure 1.1 that 27% of breaches are reported by third parties: this means

that there are potentially many undisclosed breaches that organizations hide in

order to protect their market value. Sometimes we even learn that companies paid

in order to keep the breach hidden, like in the case of Uber 3.

3http://www.bbc.co.uk/news/technology-42075306

http://www.bbc.co.uk/news/technology-42075306
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Figure 1.2: Microsoft’s ATA kill-chain

Given the partial failure of the aforementioned tools, there has been an increasing

need for a new way to defend against breaches. We observed the birth of a new

activity in the security industry: hunting for anomalies. The hunter is a new

figure that is meant to actively search for anomalies in the network in order to

spot the early stages of a breach and take actions to prevent or mitigate it. Figure

1.2 shows Microsoft’s version of a breach kill-chain4. Ideally, the hunting process

should detect a breach before the Asset access step.

A Breach Detection System is a security device designed to help the hunter in

performing this activity. BDSs differ from the aforementioned perimetral security

tools, because they are designed to also look for suspicious activity within the

monitored network, rather than just scanning incoming traffic. This distinction

is important when choosing the techniques to apply in order to detect anomalies,

and even more relevant when interpreting the output of the system: when an IPS

achieves a detection, it means that an intrusion attempt has been identified and

blocked, while a detection from a BDS could mean that a breach is in progress or

has already occurred. It is important to notice that BDSs still aim at preventing

intrusion in a network, but the underlying assumption is that they should also

provide as many tools as possible to the hunter, because they will not always

succeed in the prevention process.

4https://docs.microsoft.com/en-us/advanced-threat-analytics/ata-threats

https://docs.microsoft.com/en-us/advanced-threat-analytics/ata-threats
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1.1.1 Types of Detection Systems

Many earlier works, such as “Intrusion detection: a brief history and overview”

[11] detail the concept of Intrusion Detection System. According to the taxonomy

provided by Debar et al. [6], we can distinguish two different types of systems:

• Knowledge-based (or misuse-based)

• Behaviour-based (or anomaly-based)

Provided that the difference between Intrusion Detection Systems and Breach

Detection Systems has already been detailed above, the considerations made on

the aforementioned works apply also in the case of BDSs.

Misuse-based IDS/BDS rely on a set of definitions of malicious activity to identify

evidences of compromise in a network. This is done by checking the network

traffic patterns against these definitions. As a specific example of misuse-based

system, we can take a signature-based IDS such as Suricata5. The process of

specifying signatures can be done at different abstraction levels and on different

data types, and the results can be more or less specific to compromise between

detection rate and false positive rate. More generally, we can say that the misuse-

based category comprehends any mean of detection based on knowledge, where

the network analyst can characterize what a malicious behaviour looks like and

produce a signature for it. For known malicious behaviours, this approach works

really well in terms of performance and false positive rate (depending of course on

the quality of the signature). The obvious pitfall is that the system cannot match

on unknown malicious behaviour, as no signature is defined for it.

Anomaly-based systems work by trying to understand and remember what is nor-

mal and alerting about activities that differ from this definition of normality. One

consideration could be that a knowledge-based model could be used to achieve

this, by defining a rule for normal traffic and letting the system run on the net-

work to find behaviours that do not match the rule. This approach is unfeasible

because of the complexity of the resulting signature: there are simply too many

5https://suricata-ids.org/

https://suricata-ids.org/
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legit behaviours for a system to be able to create and match signatures for all of

them. Machine learning approaches, on the other hand, can be trained with real

world traffic and extract a model of normality that can then be applied on the

network to spot anomalies form that model. Training and maintaining a machine

learning model is a far easier task than maintaining a handwritten rule that defines

what normal traffic looks like.

1.2 Goal and Context

The goal of the internship was to develop part of a BDS to gather useful infor-

mation about the network and providing them to the hunter. The main outcome

of this work is MANTIS, a machine learning mechanism to cluster hosts into

communities based on their behaviour and unveil the evolution of these clusters

throughout time. The system is able to spot singular hosts as outliers in the net-

work. It was out of scope of this research to provide complete automated alerts

for anomalous activities: MANTIS has been designed to be interactively queried

by the hunter. Moreover, the system had to be deployed in a real scenario, for

customers with different sized networks. The main big advantage was the access

to network data from real networks, that allowed to test the system on up-to-date

traffic from different customers.

The present work has been entirely done in the context of an internship at Lastline

Inc6. The Company offers a comprehensive malware protection system that inte-

grates different components, such as an advanced sandbox for dynamic malware

analysis and a sophisticated network traffic analysis component for both perimetral

intrusion prevention and internal network security monitoring.

The traffic analysis is achieved by means of ad hoc hardware appliances, called

sensors, positioned in strategic points of a network in order to sniff the traffic and

perform various IDS activities. The sensors collect a variety of security information

out of the network they analyze. Particularly relevant to this work are three data

feeds:
6https://www.lastline.com/

https://www.lastline.com/
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Figure 1.3: High level overview of the context

• Netflow records

• Passive DNS records

• Web request records

Whilst the details of these data formats will be given in the following pages, it is

important to note that we did not have access to the packet captures themselves

(pcap files), but only to these three feeds. Through a set of API calls, it was

possible to interface the component with the preexisting system, obtaining real-

time records for each of the listed data types.

Figure 1.3 shows the high level scenario in which MANTIS had to be put in place.

Note the bi-directional arrow between the system and the hunter, representing the

possibility for the latter to query the former, for example during an investigation.

While the inputs of the systems were fixed and well defined, the design phase

needed to address not only the internals of the system, but also the outputs to be

exposed to the user.

1.3 Why machine learning?

While machine learning techniques are an active research topic since the middle

of 19007, the market expectation in artificial intelligence is extremely high still at

the time of writing, as shown in Figure 1.4 8. Companies are applying machine

learning to solve new problems, or to find new solutions to known ones.

7See https://en.wikipedia.org/wiki/Timeline_of_machine_learning for a complete timeline
8Source https://www.gartner.com/

https://en.wikipedia.org/wiki/Timeline_of_machine_learning
https://www.gartner.com/
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Figure 1.4: Gartner top trends in emerging technologies

In the context of network analysis and intrusion detection, machine learning tech-

niques have been widely applied in literature, and their effectiveness has already

been argued by Sommer et al. [18]: their conclusion is that it is possible to effec-

tively apply machine learning to intrusion detection and, more generally, to traffic

analysis, but it is important to define features with a high domain knowledge in

order to obtain meaningful results.

Lastline has been active for several years in the field of advanced threat protection

and a sophisticated knowledge-based system was already in place: from there the

need of having a different point of view, that was possible to achieve using machine

learning. Machine learning, applied on the huge amount of data that the company

has, can give unforeseen insights on potentially anomalous activities on a network.

The decision to apply an unsupervised model was forced by the absence of a ground

truth to train the model on, while DBSCAN was the chosen clustering algorithm

because it is able to identify clusters with arbitrary shapes and effectively spot

outliers.



Chapter 2

Input types and machine learning

algorithms

In the following pages we will go into the details of the main theoretic aspects of

our work, providing useful vocabulary and explaining the basic concepts needed

to understand the choices we made with respect to our approach. We will also

give an idea of the type of networks we tested MANTIS on, giving some examples

of the amount of data that the system processes.

2.1 Input types

As stated in Chapter 1, MANTIS is one of the components that get data from the

existing infrastructure in order to monitor a network. We call these components

plugins, because the operator can decide which of them are enabled and which are

not.

We will now go into the details of each data type, i.e. Netflows, Passive DNS, Web

requests.

8
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2.1.1 Netflows

Firstly introduced by CISCO around 1996, Netflows are a mean of traffic aggre-

gation now widely adopted in the industry. The protocol has now reached version

9 [4] and has been standardized by the IETF in the IPFIX protocol [2, 5]. The

basic idea of the protocol is to aggregate information about an exchange between

two hosts in a flow record, which is collected by a central server in the network.

Lastline defined its own proprietary version of Netflows, which contains the fol-

lowing fields:

• Protocol: supports TCP, UDP, ICMP

• Source IP address

• Source port

• Destination IP address

• Destination port

• Timestamp of the first packet of the flow

• Timestamp of the last packet of the flow

• Set of observed TCP flags

• Number of packets out

• Number of packets in

• Number of bytes out

• Number of bytes in

• Sizes of the first 10 packets exchanged

An example is shown in the JSON listing below:
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{

"payload_bytes_signature": [

78,

10,

21,

11,

20,

6,

77,

14,

35,

5

],

"packets_out": 24,

"bytes_in": 491,

"packets_in": 14,

"rsts_out": 0,

"fins_out": 1,

"source": "REDACTED(sensor ID)",

"dst_ip": "192.168.1.1",

"tags": [],

"src_ip": "192.168.1.24",

"src_port": 17828,

"fins_in": 1,

"syns_in": 1,

"bytes_out": 116,

"syns_out": 1,

"proto": "TCP",

"dst_port": 21,

"rsts_in": 0,

"ts_start": 1515431230000

}

From Netflow data, we can extract meaningful features to characterize the be-

haviour of the hosts. For example, the destination port should help in identifying

the type of application that has been contacted, the number of bytes helps define

the volume of data that has been exchanged, the destination IP and its geolocation

should give information on the location of the contacted server and the TCP flags

should give insights about the result of the connection attempt and how it has

been terminated. We focused mainly on destination ports and destination IPs, as

we will discuss while detailing our approach.
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2.1.2 Passive DNS

Passive DNS are data structures constructed from the DNS requests extracted

from the traffic.

A single passive DNS record is composed of:

• Queried resource

• Type of the queried resource

• Class of the queried resource

• Response code from the server

• Data associated to the response

• IP of the querying host

• Source port used by the host

• Destination IP of the query

• Destination port of the query

• Timestamp of the beginning of the query

• Timestamp of the end of the query

An example can be seen in the JSON listing below:

{

"rrname": "googleapis.l.google.com",

"rdata": [

(MODIFIED)

"1.2.3.4",

"1.2.3.5",

"1.2.3.6",

"1.2.3.7",

"1.2.3.8"

],

"source": "REDACTED(sensor ID)",

"rrclass": 1,

"error": null,

"ttl": [



12

57,

57,

57,

57,

57

],

"dst_ip": REDACTED(DNS SERVER IP),

"n": 1,

"tags": [],

"src_ip": 10.0.0.1(MODIFIED),

"src_port": 0,

"dst_port": 53,

"ts_start": 1515433015000,

"rrtype": 1

}

Passive DNS data are heavily filtered in Lastline appliances, therefore we preferred

to focus on Netflow records during the design of MANTIS. The integration of the

pDNS feed will be considered as part of future work.

2.1.3 Web Requests

This data type is designed to capture the fields of a web request as well as the

end points involved in the request itself. It acts as a log of the whole HTTP

transaction. A web request record is composed of:

• Hostname of the contacted server

• Path to the resource requested

• HTTP version

• Protocol

• HTTP method

• Referer

• User agent string

• Response code
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• Response redirect: Location HTTP header in case of redirect

• Content type: the MIME type of the response body declared in the HTTP

headers

• Body type: the MIME type of the response body derived from the analysis

of the actual body

• Source IP address

• Source port

• Destination IP address

• Destination port

• Timestamp of the first packet of the request

• Timestamp of the last packet of the request

An example of a Web request record is provided below:

{

"referer": "http://www.example.com/example/path",

"response_code": 0,

"method": "GET",

"http_version": "HTTP/1.1",

"response_body_type": null,

"source": "REDACTED(sensor ID)",

"dst_ip": "1.2.3.4(MODIFIED)",

"src_ip": "10.0.0.1(MODIFIED)",

"src_port": 65520,

"path": "http:// example2.com/example/path2",

"hostname": "example2.com",

"response_content_type": null,

"response_body_earlyhash": null,

"proto": "TCP",

"resource_path": "/ track",

"dst_port": 8080,

"response_redirect": null,

"ts_start": 1515434363000,

"user_agent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36"

}
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A good candidate for characterizing a host is the user agent string, especially

nowadays, because most applications use a custom user agent string to perform

web requests. By collecting statistics about the user agent strings used by a host,

we should be gathering information about the applications that run on that host:

this should intuitively help the behavioural classification that we want to perform.

The use of user agents as distributions to further characterize hosts is part of

future work and preliminary considerations on this possibility will be given in the

final Chapter.

2.2 Traffic amount

Since we focused the present work on features extracted from Netflow data, we

will present statistics about three different networks that we worked on, specifically

regarding the number of hosts and the number of Netflow data that the system

processed.

Network Hosts/h (peak) Netflows/h (peak)

Network A 97 32800

Network B 6035 1283050

Network C 25400 600000

Table 2.1: Three different network types we worked with

For Network A and B, the data was gathered on different days in November 2017,

on a per hour basis. Network C contains Netflows captured over one hour of traffic

in September 2016. As we can see in Table 2.1, it is possible that a lower number

of hosts generate more Netflows than a bigger network.

2.3 Machine learning algorithms

Our entire work is based on a machine learning approach for designing an investi-

gation tool. Although the algorithms and statistical tools that are used have been
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long discussed in literature, it is important to know how they work in order to

make important considerations afterwards.

A very high level view of the decisions that have to be taken when choosing a

machine learning model can be obtained from Figure 2.1, which shows an overview

of the model selection process from SAS blog1.

Figure 2.1: Machine learning cheat sheet from SAS

Although this is just an overview and not a precise algorithm to follow when

choosing a model, it can give an idea about the considerations needed for a proper

tool selection. In our case we are dealing with unlabeled data, so this should

exclude the supervised learning models. Moreover, we want to model communities,

which may be well defined by clusters. Finally, we have no knowledge about the

number of clusters that we expect a particular network to show, so we cannot

specify k. One important aspect that the image does not show is the ability of

DBSCAN to identify outliers in the data, that we will later start calling singular

hosts.
1https://blogs.sas.com/content/subconsciousmusings/2017/04/12/

machine-learning-algorithm-use/

https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/
https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/
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2.3.1 DBSCAN

Density-based spatial clustering of applications with noise, or DBSCAN,

is a clustering algorithm discussed by Ester et al. [8].

The algorithm is meant to run on datasets that present clusters of arbitrary shape

and it is designed to be able to follow the shape of the clusters and identify noise

as outliers. It gets as input two parameters:

• A distance ε

• A number of points minPoints

The algorithm gives the following definitions:

• The ε-neighbourhood of a point p, Nε(p), is the set of points that are closer

than ε from p.

• A point p is said to be directly density-reachable from a point q wrt min-

Points, ε if:

– p ∈ Nε(q): p has to be in the ε-neighbourhood of q

– |Nε(q)| ≥ minPoints: any point for which this holds is called core point

• A point p is density reachable from q if there are p1, ..., pn points such that

p1 = q, pn = p and pi+1 is directly density-reachable from pi

• Points p and q are density-connected if there is a point o such that p and q

are density-reachable from o

Figure 2.2: The three different type of points in the DBSCAN algorithm
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Figure 2.2 shows the three types of points identified by the algorithm. In partic-

ular, we see that for the represented ε and minPoints :

• x is a core point

• y is directly density-reachable from x, but |Nε(y)| < 6. y is then called border

point

• z is not a core points and is not density-reachable from any core point. z is

said to be a noise point

Given these definitions, the authors of the algorithm proceed to define a cluster:

A cluster C is a non-empty subset of the dataset for which:

• ∀p, q : if p ∈ C and q is density-reachable from p, then q ∈ C

• ∀p, q : p and q are density-connected

The algorithm starts by selecting a random point in the dataset and expanding

the cluster according to the definition given above, until the two conditions of

maximality and connectivity are satisfied. In the end, each point of the dataset is

identified as core, border or noise point. In the first two cases a label is assigned

to the point (such that the same label is assigned to points belonging to the same

cluster and different labels are assigned to points belonging to different clusters),

while noise points are left without a label.



Chapter 3

Preliminary work: OS and

application fingerprinting

As discussed in Chapter 1, we worked on developing part of Lastline’s Breach

Detection System. The main outcome of this work is MANTIS, an investigation

tool based on behaviour-based clustering of hosts in a corporate network.

We use this chapter to discuss some of the preliminary work that has been done

before designing MANTIS.

The first attempt to profile a host on the network has been through passive fin-

gerprinting. The proposed solution to OS and application fingerprinting is based

on passive DNS data.

The first step was to build a component that acted as a DNS cache and was able

to answer to queries based on the traffic that was observed in the network.

An overview of the DNS cache is presented in Figure 3.1.

The DNS cache implements a circular buffer in which we store all the resolutions

observed in the network. The time to live of a single entry corresponds to the

TTL value of the DNS record. Upon insertion, if the cache is full, we delete the

entry which is the closest to its expiration time.

The basic concept behind the passive fingerprinting is that some servers are con-

tacted only by specific applications or Operating Systems. For instance, we argue

18
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Figure 3.1: High level context for the DNS cache development

that the hostname archive.ubuntu.com is contacted by hosts running the Ubuntu

Operating System, while update.microsoft.com can be a good indication of a

host running Microsoft Windows.

It is important to notice that while in general there can be many exceptions to

this heuristic, the context of a controlled enterprise network environment makes

it easier to isolate and ignore these exceptions, if they are benign. For example,

a server running several virtual machines can be easily put into a whitelist by the

network administrator.

The DNS cache component can be queried for direct and reverse resolutions, and

returns an answer based on the records it observed in the network. As Figure

3.1 shows, many plugins can interact with it and query for domain names or IP

addresses.

We then proceeded to develop two plugins that, like MANTIS, process Netflow

records one by one. For each destination IP address observed, the plugins query

the DNS cache to obtain the domain name. If the domain name matches one of

the servers that are defined in a configuration structure, they mark the host as

running that particular Operating System and/or application. A flow chart of the

process is shown in Figure 3.2.

Although not directly related to MANTIS, this type of passive fingerprinting is

essential to get insights on a network during an investigation. For instance, know-

ing that some hosts were running a specific Operating System during an attack is

helpful to fucus the attention of the incident responder on specific portions of the

network.
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Figure 3.2: Flow chart of the OS/app fingerprinting process



Chapter 4

Host clustering

We will now go into the details of the approach that we propose in this document,

stressing the intuition behind it, describing our experiments and our setup.

As discussed in Chapter 1, we wanted to design an investigation tool system based

on machine learning techniques. It is important to note that Sommer et al. al-

ready warned us [18] about the use of machine learning with improvised feature

selections. Specifically, they state that it is extremely important to design the

features for the algorithm such that they can easily be justified with real case

network traffic examples.

We will now try to express the rationale behind the choice that we propose for the

features, but we stress that this approach can be extended and adapted to any

attribute that can be expressed as a frequency distribution.

4.1 Feature Selection

From Chapter 2 we see the set of attributes that we can access in the input data.

We focused initially on Netflows, because intuitively they carry the biggest amount

of information about the network activity of a host.

Different solutions have been proposed in literature, some of them (such as the

entropy of the destination IP addresses and ports, the total volume of data ex-

changed and the average number of bytes per flow) were tested with our approach,
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but a manual inspection of the results did not seem to spot a meaningful clustering

of hosts. We then decided to adopt a distribution-based solution, because it is the

one that should keep track of the activity without losing granularity, unlike with

aggregated measured such as the entropy. Moreover, such measures can easily be

computed staring from the distribution themselves, if needed.

We propose here a set of distributions that we decided to use with our approach:

• Distribution of the destination countries

• Distribution of the destination ports, enriched with the PCR value

The rationale behind the choice of the destination country as a feature is simple:

we expect the majority of hosts to communicate with servers located in the same

country as the client. More generally, we expect more than a single outlier to reach

to the same country in a given time bin. This is enough to put these hosts in the

same cluster, based on the set of destination countries, and mark the destination

country as commonly visited.

We then chose the destination ports because it is clear that they play an essential

role in defining the type of traffic. Especially in a controlled enterprise environ-

ment, it is easy to identify the set of services used in the network and the ports they

rely on. Moreover, without the packet payload, we cannot rely on Deep Packet

Inspection techniques to identify the type of traffic that is captured. We then

decided to enrich the destination ports distribution with the Producer-Consumer

Ratio. The PCR is defined as the amount of bytes sent divided by the amount of

bytes received in the flow. Again the rationale behind this choice is related to the

fact that we want to differentiate traffic with different PCR values on the same

port. A possible use case is to differentiate an interactive session (for example on

port 22 for ssh with balanced PCR) from a data exfiltration (still port 22, but way

more bytes consumed than produced).

Therefore, we defined a method to extract these features from the netflows, sim-

ply counting the occurrences of these features in a single time bin (we used 1

hour) while processing netflows online, before normalizing them to a discrete dis-

tribution. We then proceeded to concatenate these distributions into a single one,



23

because we wanted to consider both countries and ports together. Clearly many

ssh connections to a host belonging to the company’s intranet are less suspicious

than many ssh connections to a server located in another country. Concatenating

the distributions had of course to yield another distribution, therefore we sim-

ply divide each point of the distribution by the number of distributions we are

considering, as described in the formula below:

Dfinal =
1

2
Dcountries | 1

2
Dports+PCR

where | is the concatenation operator.

It is clear that the underlying approach based on distributions is not dependent

on the particular choice for the attributes and can be generalized and extended to

an arbitrary number of distributions, with some performance constraints that will

be further discussed in Chapter 5. The generalized formula for N distribution is

the following:

Dfinal = c1D1 | c2D2 | ... | cNDN

By tuning the parameters c1...cN we can give different weights to the single dis-

tributions, in case we want to assign different importance to each of them. It is

clear that the requirement for the coefficients c1...cN is that
P

i ci = 1.

The single resulting distribution constitutes our data point. We can now proceed

and apply DBSCAN.

The algorithm is applied as is, with no major modifications to it, if not the defi-

nition of a custom metric to use instead of the defined Euclidean distance.

4.2 Distance Metric

Although the Euclidean distance can be used to compute the distance between two

arrays, it yields a result that is dependent on the length of the arrays themselves.
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As anticipated, we worked with distributions of traffic attributes such as destina-

tion countries and destination ports. This means that for us a single data point

is represented by an array, in which each element represents the frequency count

of an observed traffic attribute. A promising distance metric that handles distri-

butions is the Jensen-Shannon Divergence. In order to define it we first need to

define the Kullback-Leibler Divergence or relative entropy.

4.2.1 Kullback-Leibler Divergence

Presented in [14], the Kullback-Leibler divergence is a metric to measure the dis-

tance between two distributions. The formulation is the following:

DKL(P ||Q) = −
X
i

P (i) log
Q(i)

P (i)

The aforementioned definition is valid only if ∀i, Q(i) = 0 =⇒ P (i) = 0.

One big drawback of this metric is its non-symmetry, this means that we cannot

use it as is as a distance measure.

4.2.2 Jensen-Shannon Divergence

This distance metric is a symmetric version of the Kullback-Leibler divergence. It

is defined as follows:

DJS(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M), with M =

1

2
(P +Q)

Which is the sum of the Kullback-Leibler divergence from both distributions to the

mean distribution M . One important property is that 0 ≤ DJS ≤ 1, which means

that it can be used for arbitrary long distributions, yielding a result that varies

from 0 to 1 each time. As a result, we can tune the ε parameter of the DBSCAN

a priori, without requiring further tuning after deployment. This means that the

user of this system is required to select a reasonable value just for the minPoints
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value, without having to run several experiments to optimize the ε parameter. We

stress that this is an important achievement, since parameter tuning is one of the

most difficult parts of defining a machine learning approach.

4.3 Applying DBSCAN

The application of the DBSCAN algorithm yields two important results:

• Being a noise-aware algorithm, DBSCAN is able to effectively identify outliers

in the single time bin. We call these outliers singular hosts

• Being a clustering algorithm, DBSCAN is able to group similar hosts, cate-

gorizing them based on their behaviour

The first thing to notice is that singular hosts are not necessarily a security issue.

For instance, in an enterprise network with a single internal file server, this will be

categorized as singular, without any malicious activity performed by the server.

More interesting are the migrations of hosts between clusters. For example, in an

enterprise network with a cluster of web servers, if one of them becomes singular

it may be worth investigating. The system is useful during an investigation after a

data breach, when the incident responder can query for hosts that had a behaviour

that is similar to the compromised machine.

4.4 Host dynamics

To track the migrations of hosts between different hours, we take our system a

step further and define a method to map the clusters identified between consec-

utive independent runs of DBSCAN. This method is based on distances between

centroids of the clusters. The centroid of a cluster is, by definition, the meta-point

for which every coordinate is the mean of the coordinate of the points belonging

to the cluster. In our scenario this translates to computing the mean distribution

of the cluster and considering it as the cluster’s centroid. This point becomes the
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only representation of the cluster, and we can use it to map the clusters yielded

by consecutive runs of the clustering algorithm.

The steps we defined in order to do so are the following:

• Compute DBSCAN in a time bin t

• Compute the centroids of the clusters: Ct
1, ..., C

t
N

• Compute DBSCAN in the following time bin t+ 1

• Compute the centroids of the clusters: Ct+1
1 , ..., Ct+1

M

• Define Ct+1
i as the evolution of Ct

j if and only if:

– Ct
j is the closest centroid to Ct+1

i and

– dist(Ct
j , C

t+1
i ) ≤ θ, where θ is the minimum distance between the cen-

troids Ct+1
1 , ..., Ct+1

M

If a cluster Ct+1
i is associated to Ct

j and there is a host h such that h ∈ Ct
j in time

bin t and h ∈ Ct+1
i in time bin t+1, we say that h stayed in the same cluster, we

say that h migrated to cluster Ct+1
k otherwise.

4.5 Visualizing results

4.5.1 Graphlets

To visualize the behaviour of a host in a single time bin we propose the use of

graphlets.

Graphlets were first introduced by Karagiannis et al. [10]. They are a graph in

which nodes are divided into rows (or columns). Nodes belonging to a single row

represent different observed attributes of the connections performed by the host.

Figure 4.1 shows an example graphlet. The host that is described by the graphlet

is the source IP, in this example 10.0.0.1.
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Figure 4.1: An example of a graphlet

The figure should be read as follows:

Host 10.0.0.1 contacted three different hosts: 1.2.3.4 , 1.2.3.5 and

10.0.0.253.

Host 1.2.3.4 was contacted on both TCP ports 80 and 443, while host 1.2.3.5

was contacted only on TCP port 443.

Host 10.0.0.253 was contacted on UDP port 53.

From the figure, one can get a clear idea of what was the behaviour of host

10.0.0.1.

One important consideration about graphlets is that, as per the description given

by Karagiannis et al. in their work, an edge should be considered as ”at least one

packet is observed”; therefore we lose the information about the number of packets

that correspond to a single path from the root of the leaf to the tree.

Extracting features directly from the graphlets and performing clustering on these

features is possible and has been already done by Himura et al. [9]. In our scenario,
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the lack of information about the count associated to a single connection would be

too heavy when performing the clustering, and it would yield an extremely high

number of different clusters, because we would not associate hosts for which the

majority of connections are similar.

4.5.2 Evolution graph

Having identified a way to model the evolution of the clusters throughout time,

we propose a mean of visualization of such evolution, that we call the evolution

graph.

An example of such graph can be see in Figure 4.2. The presented example has

to be read as follows:

In time bin number 1 there are two clusters , labelled respectively 1 and 6,

for which the closest cluster in the previous time bin is the one

labelled 1.

The distances between these two cluster and the preceding one are 0.005 and

0.007 respectively.

In time bin number 1, cluster 1 has 120 members , while cluster 6 has 50

members.

Of cluster 1 in time bin 0, 90 hosts are in cluster 1 of time bin 1, while 5

hosts are in cluster 6 of time bin 1.

Figure 4.2: An example of the evolution graph
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In this example, we see that it is possible that a cluster splits into two clusters in

the following time bin. Some interesting questions that the system can be queried

for, given this example, are:

• If 90 hosts of C0
1 are in C1

1 and 5 hosts are in C1
6 , what happened to the

remaining 5 hosts? Are they still in the network? Did they migrate to a

cluster C1
k , with k 6= 1, 6 (possibly in cluster -1)?

• Cluster C1
1 has 120 hosts, of which 90 come from C0

1 . Where do the remaining

30 hosts come from? Did they appear in time bin 1 or do they come from

C0
k , with k 6= 1?

All of these queries can be performed by the hunter to the system, because we

keep track of the centroid of each cluster and the set of hosts that belong to each

cluster in a given time bin.

Some of these migrations can be interesting, while others can easily be due to

new hosts connecting to the network or normal connection patterns. It is out of

scope of this research to define heuristics aiming at discriminating between these

categories, as is part of the hunting activity to decide what is interesting and what

is not.



Chapter 5

Implementation and evaluation of

the algorithm

Since this document is also meant to be the report of an engineering internship,

in the following chapter we will go beyond the simple research problem that we

analyzed and we will discuss some of the steps that we took in implementing the

system, together with some of the issues that we encountered and the considera-

tions that we had to make about the performance of the system before starting to

deploy it.

We will follow the steps that led to the final formulation of the solution that we

proposed in Chapter 4.

5.1 Host statistics aggregation

Moving towards MANTIS and our final approach, we then developed a component

that is able to extract statistics about the hosts by processing Netflow data. The

component is implemented in Python, by means of a class that contains counters

for each feature value that we are interested in.

The code for this class is shown in Appendix A. The main method that the class

exposes is the process method, which performs the actions needed to aggregate

30
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the data and construct the graphlet by means of the networkx Python package.

The class also exposes all the properties needed to extract the distributions.

5.2 Clustering with DBSCAN

Appendix A presents also the Python code that we propose for the actual clustering

and the definition of the cluster evolution as described in Chapter 4. As the listing

shows, we relied on the sklearn implementation of DBSCAN, while the Jensen-

Shannon Divergence metric is provided by the js package. As specified in Chapter

3 and 4, the use of a metric that is bounded between 0 and 1, despite the length

of the distribution, allowed us to experiment different values for the ε parameter

of the DBSCAN algorithm, and we decided that 0.01 provided a good separation

of the distributions, while keeping the number of clusters reasonable.

5.3 Performance evaluation

One of the most important parts of the feasibility study was to evaluate the per-

formance of the system and possibly try to find some means of boosting the per-

formance to achieve an acceptable computation time of the algorithm. As stated

in Chapter 4, we picked 1 hour as time unit to aggregate statistics and compute

the clustering of the hosts. Although this particular choice was somehow arbi-

trary, we argue that it is a reasonable compromise between having enough data

(picking a smaller time bin could lead to too few Netflows per host to obtain a

meaningful distribution) and dynamicity of the hosts (a bin that is too big would

fail to provide insights about the migrations of the hosts).

Given the choice of 1 hour time bins, the hard constraint on the computation time

is equal to the time bin itself: if the computation time is higher than the time

bin, the system would accumulate delays and eventually stop working properly.

In order to estimate the time taken for a single run of the system, we took data

from Network C presented in Chapter 2 and recorded the computation times of



32

Figure 5.1: Computation times as a function of the number of hosts

the DBSCAN algorithm as a function of number of data points and length of the

distributions.

Figure 5.1 shows the dependency of the computation time of the DBSCAN algo-

rithm as a function of the number of hosts.

Besides the sudden drop of the computation time between 17000 and 18000 hosts,

which is most likely due to some internal optimizations of the DBSCAN imple-

mentation, we see that overall we confirm the theoretical O(n log n) computation

time of the DBSCAN algorithm.

We then fixed the number of hosts at 1000 and plotted the computation time as

a function of the length of Dfinal. We can clearly infer a linear dependence of the

time on it. Figure 5.2 shows the linear dependence that we observed.

All the plotted times come from experiments run on a laptop relying on an Intel

Core i5 processor and 8 GB of RAM.

By considering the worst case scenario of a network with around 25000 hosts as

Network C, we clearly need to find a way to reduce the length of the distribution,

because the worst case scenario for the number of different destination ports ob-

served can reach 393210 values. This upper bound is computed as follows: there

are 65535 ports for the TCP protocol and the same amount for the UDP protocol;



33

Figure 5.2: Computation times as a function of the number of hosts

as stated in Chapter 4, we enrich the single value of the destination port with the

PCR value, which itself can assume the values low, balanced and high.

The strategy that we propose as a solution to the possible explosion of the desti-

nation ports values is to identify two set of ports as follows:

• We call significant ports the ports that we observe more frequently in the

network overall.

• We call other ports the ports that we observe less frequently in the network

overall.

All the ports observed for a single host that belong to the other ports bin will be

grouped together in a single point of Dfinal.

Here follows an example of this strategy, applied on the values of the ports with-

out the PCR values, for readability reasons. Figure 5.3 shows all the observed

destination ports in Network B in a single time bin.

We can see that the ports follow a clear heavy-tail distribution, where the first

value, which represents the aggregation of the ports 80 and 443, dominates the

statistic. Given a threshold θ, that we set after running some some experiments,

we consider all the ports for which the distribution value is less than θ as other



34

Figure 5.3: Distribution of the overall observed destination ports in a medium network

ports, aggregating them and adding the value of the distribution for each of them

to obtain a single point in the distribution. While the tuning of the θ parameter

requires some action from the user of the system, it guarantees that the length

of Dfinal does not make the computation time explode. Moreover, with more

computation power, we could loosen this constraint and allow a longer Dfinal.

Note that we did not make the same consideration for the distribution of the

countries, because the number of different countries has an upper bound of 195

at the time of writing, which is a reasonable amount and does not justify any

aggregation of country values.

5.4 Cluster evaluation

Finally, we proceeded in evaluating the quality of the clusters by applying two

different quality measures: the two different applied measures are detailed below.
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5.4.1 Silhouette coefficient

The silhouette coefficient [17] measures how much a data point is similar to the

data points in the same cluster, compared to the data points belonging to the

closest different cluster.

s(i) =
b(i) − a(i)

max{a(i), b(i)}

Where a(i) is the average distance from data point i to all the points of the cluster

it belongs to, while b(i) is the distance from data point i to the closest data point

in a different cluster.

It is clear that −1 ≤ s(i) ≤ 1, where 1 is to be intended as the best possible score

and -1 as the worst possible score.

5.4.2 Calinski-Harabasz score

The CH score [3] is another metric to define cluster quality. It compares the

between cluster variance to the within cluster variance.

The formulation is the following:

CH =
SSB

SSW

× N − k

k − 1

In the formula, SSW , or within cluster variance, is calculated as:

SSW =
kX

i=0

X
x∈Ci

||x−mi||2

And represents the sum over all the clusters of the sum of squares inside the

cluster.

In order to compute SSB, we need to first compute the total sum of squares TSS,

which is defined as
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TSS =
X
x

||x−M ||2

Where M represent the mean point over the entire dataset. Now SSB = TSS −

SSW .

This metric presents a global maximum when there is a balance between the

number of clusters and the variance inside the clusters themselves.

With these definitions in mind, we proceeded to evaluate the quality of the clusters

over the medium sized network already discussed in the previous pages.

Figure 5.4 shows the plot of the scores over three days of captured traffic on

Network B : the peaks in number of different clusters and the drop of the quality

measures correspond to peaks of activity on the network, where because of the

higher number of observations, we have smoother transitions between the points,

which brings the algorithm to join clusters that were well separated with less

hosts on the network. Part of the future work is to try to implement an adaptive

clustering, where the distance threshold depends on the density of the data points.
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Figure 5.4: The silhouette score (blue) and CH-score (orange) over three days, along
with the number of different clusters

It is important to notice that in our scenario these results cannot be taken in

an absolute manner. For example, we often see the silhouette score drop under

0, which means that some data points may be closer to the closest point in a

different cluster w.r.t. the centroid of the cluster they belong to. Lets us take as

an example the situation depicted in Figure 5.5. DBSCAN successfully separates

the clusters, but some points of the red cluster are indeed closer to the clue points

compared to the centroid of the red clusters (represented by the black square);

same thing happens for the blue cluster, where the centroid is represented by

a black circle. This would make the overall silhouette score drop, even if the

algorithm has correctly separated the clusters.
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Figure 5.5: An example of failure of the silhouette score

These misevaluation cases, which are more common during peak activities of the

network, happen because of the higher density of points in the dataset, which

brings to more widespread clusters. One possible solution to this problem is to

find a local optimum of the CH score by modifying the distance threshold ε of the

DBSCAN algorithm in an automated manner. Decreasing ε and re-computing the

algorithm has some important consequences:

• The number of different cluster would increase even more with a lower ε

• We would need to recompute the algorithm, which is an expensive procedure

It is part of future work to find a solution to this issue. For our concept of cluster,

which should represent a community of similar hosts, it is enough to follow the

density-based definition of clusters obtained by running DBSCAN.

Having described some of the implementation aspects that we had to consider

while working on MANTIS, we can now provide a use case example of use of the

system during an investigation process.
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An example scenario

We now proceed to present a use case of MANTIS during an investigation. We

took data from Network B of our dataset during 6 hours of activity of November

2017. Instead of looking for attacks already present in the data, which is a task

that would have required many different experiments on all the historic data that

Lastline keeps, we decided to inject a possible breach scenario that summarizes

the breach steps shown in Figure 1.2.

Let us examine the behaviours that we injected in the network:

• Host A is downloading data over HTTP from a server in the US

• In the subsequent time bin, it starts downloading data from a server in China

(initial compromise)

• It then starts brute forcing ssh credentials over the internal network (lateral

movement)

• It then downloads many GB of data from an internal server over scp (asset

access)

• It uploads the data over HTTPS to the same server located in China (exfil-

tration)

• It goes back to downloading data over HTTP from the US server

39
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This toy example might be slightly unrealistic, but it shows us different stages of

a breach and how the system classifies the host over time.

Figure 6.1 shows the labels assigned to Host A during the whole attack scenario.

As expected, in time bin 1 the host has a defined label, which means that its

behaviour is common in the network.

Figure 6.1: First compromise and how it affects the overall network traffic

In Figure 6.1 we also show the impact of the compromise phase on the overall

traffic of the network. We see a sudden growth of Netflows towards China w.r.t.

the ones seen in time bin 1. This corresponds to the migration of Host A from a

defined cluster to cluster -1, which represents singular hosts.

We see in Figure 6.2 how the lateral movement phase affects the overall network

traffic on the ports side, showing a sudden increase of the connections on port 22.
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Figure 6.2: Lateral movement and how it affects the overall network traffic

The following two steps do not have a visible impact on the cumulative traffic

distribution for the whole network, but we see from the previous pictures that the

system still succeeds at labelling the host as singular.

Let us examine now the evolution graph for cluster 6 during the 6 examined time

bins (from 10 to 15) in Figure 6.3. We see that cluster 6, that represents the hosts

downloading over HTTP from US servers, stayed quite stable in terms of position

in the hyperspace over the 6 time bins. Moreover, the system changed the labels

of the cluster multiple times, ending up with label 7, which is coherent with the

label assigned to Host A when it went back to its normal activity.

Finally, we gathered the following statistics during the experiments we made:

• Average number of active hosts per time bin: 2043.5

• Singular hosts in time bin 10: 797

• Average cluster size in time bin 10: 34.3

• Number of hosts that became singular in time bin 11: 78

• Number of hosts with the same set of labels as Host A over all time bins: 0

With these statistics in mind, here are some use case of usage of the system during

an investigation:
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Figure 6.3: The evolution of Cluster 6

• Query for all the hosts that were labelled as belonging to cluster 6 in time

bin 10: 19 hosts

– These 19 hosts have been more in danger of the same compromise given

that they were performing the same activity as Host A

• Query for all the hosts in other clusters that stayed singular over time bin

11, 12, 13, 14: 3 hosts

– 2 other hosts may have been performing the same anomalous activities

(compromise, lateral movement, asset access, exfiltration) as Host A

during these time bins

• Query for all the hosts that had the same behavioural path as Host A: 0

– No other host has been compromised in the same way of Host A, per-

formed the same malicious activities and came back to cluster 7 over

the examined time frame
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We strongly believe that by answering to these question, the hunter could have a

huge advantage in investigating the incident. For example, in this case, the hunter

could focus her attention to the 3 hosts that started from a defined cluster, stayed

singular for the following 4 time bins, and came back to a defined cluster in the

last time bin, in order to see if the same threat actor compromised also the other

2 hosts.

We can proceed now to analyze the related work and underline the differences

with the present research.



Chapter 7

Related work

In this chapter we proceed to analyze the existing academic work related to traffic

analysis based on machine learning techniques, underlining the differences with

the present work.

Li et al. [16] used two different supervised machine learning approaches to classify

network traffic: On-Line Support Vector Machines and Decision Trees. The model

was trained with data crawled from a Microsoft Active Directory server, which

constituted a ground truth for the supervised models. Similarly, Shubair et al. [1]

discussed an SVM based method to detect the network scan behaviour of worms.

Both these works used supervised models, while it is clear that in our scenario

the system has to be deployed in a network where no ground truth is provided,

therefore a supervised model is not applicable. Instead we apply a clustering al-

gorithm to separate hosts into different categories, without prior knowledge about

how many different categories are present in a network.

Wei et al. [19] discussed the possibility to use a bottom-up clustering strategy to

separate the hosts into different categories. The use of an unsupervised model

brings this research closer to our scenario. The main differences between [19] and

the present work are:

• Clustering strategy: we chose a clustering algorithm that is noise-aware,

i.e. that is able to effectively identify outliers in our dataset. The necessity of

44
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being able to spot singular hosts in a network is essential in an investigation

after an incident.

• Feature selection: although our approach was tested with aggregate met-

rics such as the number of sent and received bytes over a defined time bin, we

argue that the use of distributions provides a more comprehensive overview

of the host behaviour, maintaining a high sensitivity to behavioural changes.

For the aforementioned reasons, we claim that our approach does not overlap with

the work of Wei et al.

Xu et al. [21] discussed about the opportunity to model host communities by

means of bipartite graphs and aggregate them into one-mode projection graphs.

The resulting weighted adjacency matrix gives an overview of communities, where

by community the authors meant a series of hosts that happen to contact the

same set of destination hosts. They then applied a spectral clustering algorithm

to categorize the hosts, by using the weights of the adjacency matrix as a mea-

sure of distance between two data points. We argue that our approach, based

on distributions of selected attributes of the traffic data, is capable of capturing

more information than counting the common destinations between hosts. This is

because our approach considers the distribution as a whole, allowing the distance

metric to consider also the differences between the feature values.

Himura et al. [9] described a clustering approach based on graphlets. Since the use

of graphlets is also part of our work (although mostly for visualization purposes),

we will go into the details of how a graphlet is constructed in Chapter 3. By

extracting features from graphlets, the authors applied clustering techniques to

group similar hosts together, extracting a mean of visualization which they called

synoptic graphlet.

Similar work has been done by Dewaele et al. [7], where they again use aggregated

features such as entropy calculated on specific bytes of the destination IP addresses

to categorize hosts. They applied MST clustering to divide hosts into categories.

Lakhina et al. [15] discussed the possibility of mining anomalies based on entropy

values. They applied two different clustering techniques: k-means and bottom-up
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clustering to categorize the hosts. They argue that their system is capable of

spotting traffic anomalies even when they constitute a small portion of the data,

differently from volume-based anomaly detection.

In the aforementioned works, aggregated measures have been used. After attempt-

ing the same type of measures with our DBSCAN algorithm, we concluded that

a feature set based on distributions is more reliable in providing a meaningful

grouping of hosts.

Winter et al. [20] discussed about an inductive IDS, i.e. a model trained exclu-

sively with malicious data. They trained a One class Support Vector Machine to

separate benign traffic from malicious one. One class SVMs are capable of divid-

ing the data in two classes: either similar to the training set or different from it.

In our scenario, where the categorization of hosts is important for network secu-

rity monitoring purposes, the possibility of clustering hosts into more than two

categories is essential.

Kruegel et al. [13] suggested the use of distributions to perform detection. They

studied the character distribution of the user agent string in web requests to

detect suspicious activities. The distribution they derived was though sorted in

descending order, they considered the shape of the curve, while our distributions

consider also the value of the feature that we are using.

Finally, Kind et al. [12] described an histogram based approach to anomaly detec-

tion. The use of an histogram based model was the main starting point of our

work. While their suggestion was to consider the hamming distance between two

bitmaps that represented the shape of the histograms, we chose to use the Jensen-

Shannon Divergence as a distance metric to cluster hosts. More details about this

metric will be given in Chapter 3.

To the best of our knowledge, the use of distributions as features and the Jensen-

Shannon Divergence as metric to perform clustering of data points has never been

applied in the field of network anomaly detection to categorize hosts, and this

motivated the continuation of our work in this direction.
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Having discussed the related work, we can now move to the conclusion of the

document, summarizing the contribution of this thesis and providing insights on

future work.



Chapter 8

Conclusions and future work

8.1 Conclusions

This work envisions and describes MANTIS, a machine learning approach to the

problem of host categorization in a network. MANTIS is a system that is appli-

cable on medium sized corporate networks and is capable not only of providing

useful insights to the network operator under normal condition, but also helping

an investigator during or after a so-called data breach.

MANTIS relies on an unsupervised machine learning technique, which is a density-

based clustering, exploiting the distribution of features as data points and the

Jensen-Shannon divergence as distance metric. We tested our method on real

world data and concluded that it is indeed possible to use MANTIS in a production

system for real customers for helping the so called threat hunting process, which

still relies on human intervention in any known system in the market.

8.2 Future work

Due to the lack of time, we had to compromise on the number of different experi-

ments that we did. We left as part of our future work to take this system one step

further and effectively apply it as an automated alerting system.
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Figure 8.1: Distribution of the user agent strings

8.2.1 Integration of other data feeds

One important aspect that we underlined in the previous Chapters is the amount

of data that Lastline has, which translates in an enormous amount of possibilities

for feature selection. The first data feed we plan to integrate is Web request records,

specifically extracting the user agent string. As stated before, we claim that the

user agent string plays an essential role in the characterization of the applications

running on a system. We extract the distribution of user-agent strings as we did

for countries and port with PCR value, subsequently extending the definition of

Dfinal given in Chapter 4.

As shown in Figure 8.1, the distribution follows a heavy-tailed shape, as hap-

pens with the destination ports. We expect to be applying the same aggregation

technique we did with for the ports for performance reasons.

8.2.2 MANTIS as an alerting system

Provided that the considerations in the previous Chapters are still valid and we

do not plan on substituting the existing system entirely with MANTIS, we are

convinced that our approach can be improved in order to alert on some of the

interesting migrations that we discussed in Chapter 4. This will require to:

• Define a way to rank these migrations by importance

• Apply a rate limiting algorithm on the number of alerts that can be generated

and alert only on the most important ones
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On the cluster quality side, we plan to improve our existing algorithm in order

to adapt to situations in which the disposition of the points in the len(Dfinal) −

dimensional space makes the quality measures drop. This can be done by simply

reducing the parameter ε of the DBSCAN algorithm in an adaptive way, finding a

(possibly only local) maximum of the Calinski-Harabasz score for that particular

time bin.



Appendix A

Listings

from __future__ import division

import collections

import geoip2.database

import geoip2.errors

import geopy.distance

import ipaddr

import networkx as nx

import scipy.stats

class HostStats(object):

"""

Class containing the statistics for a specific host.

Store all the informations needed to calculate the entropies and to

construct the graphlet of a host.

"""

def __init__(self , host):

self._host = host

# Store the graph

self._graph = nx.DiGraph ()

self._graph.add_node(self._host)

# Store all the different protocols used by the host

self._protocols = collections.defaultdict(int)

# Store all the different source ports used by the host

self._src_ports = collections.defaultdict(int)
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# Store all the different destination ports contacted by the host

self._dst_ports = collections.defaultdict(int)

# Store all the different IPs contacted by the host

self._dst_ips = collections.defaultdict(int)

# Store all the different IP networks contacted by the host

self._dst_nets = collections.defaultdict(int)

self._dst_countries = collections.defaultdict(int)

# Store the minimum timestamp

self._min_ts = None

# Store the maximum timestamp

self._max_ts = None

# Store the number of flows

self._flows = 0

# Store the number of established flows

self._established_flows = 0

# Store the total number of bytes

self._total_bytes = 0

@property

def protocols(self):

return self._protocols

@property

def src_ports(self):

return self._src_ports

@property

def dst_ports(self):

return self._dst_ports

@property

def dst_ips(self):

return self._dst_ips

@property

def dst_countries(self):

return self._dst_countries

@property

def dst_nets(self):

return self._dst_nets
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@property

def dst_ports_entropy(self):

return self._entropy(self._dst_ports)

@property

def dst_ips_entropy(self):

return self._entropy(self._dst_ips)

@property

def number_of_flows(self):

return self._flows

@property

def failed(self):

return 1 - (self._established_flows / self._flows)

@property

def avg_bytes(self):

return self._total_bytes / self._flows

@property

def non_web(self):

return sum([v for k, v in self._dst_ports.iteritems () if k not in {80,

443}]) / self._flows

@property

def dst_nets_entropy(self):

return self._entropy(self._dst_nets)

@property

def activity_time(self):

return 0 if not self._min_ts or not self._max_ts else (

self._max_ts - self._min_ts).total_seconds ()

def in_degree(self , nodes):

return self._graph.in_degree(nodes).values ()

def out_degree(self , nodes):

return self._graph.out_degree(nodes).values ()

def _entropy(self , items_numbers):

tot_number = sum(items_numbers.values ())

items_distr = {}

for item , number in items_numbers.iteritems ():

items_distr[item] = number / tot_number
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return scipy.stats.entropy(items_distr.values ())

def process(self ,

protocol ,

src_port ,

dst_port ,

dst_ip ,

packets ,

data ,

established ,

dst_country ,

start_ts):

"""

Process the stats of a packet/netflow and construct the graphlet.

"""

# add the protocol and connect

self._graph.add_node(protocol)

self._graph.add_edge(self._host , protocol)

# add the source port and connect

self._graph.add_node(src_port)

self._graph.add_edge(protocol , src_port)

# add the destination port and connect

self._graph.add_node(dst_port)

self._graph.add_edge(src_port , dst_port)

# self._graph.add_edge(protocol , dst_port)

# add the destination country

dst_net = ipaddr.IPNetwork ((dst_ip , 16)).masked ()

if dst_ip.is_private:

# for private addresses we want a higher granularity

self._graph.add_node(dst_ip)

self._graph.add_edge(dst_port , dst_ip)

else:

self._graph.add_node(dst_net)

self._graph.add_edge(dst_port , dst_net)

# gather statistics on the node:

# i.e. how many times did we see that particular item on the network

# number of flows++

self._flows += 1

# is the flow established?

if established:

self._established_flows += 1

# log the protocol
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self._protocols[protocol] += 1

# log the source port

self._src_ports[src_port] += 1

# log the destination port

self._dst_ports[dst_port] += 1

# log the destination ip

self._dst_ips[dst_ip] += 1

# log the destination network

self._dst_nets[dst_net] += 1

self._dst_countries[dst_country] += 1

# sum the bytes transferred to the total number of bytes

self._total_bytes += data [0] + data [1]

if not self._min_ts or self._min_ts > start_ts:

self._min_ts = start_ts

if not self._max_ts or self._max_ts < start_ts:

self._max_ts = start_ts

def save_graph(self , path):

try:

nx.drawing.nx_agraph.write_dot(self._graph , path + str(self._host))

except TypeError:

print "OUCH!, {} made me break!".format(str(self._host))

host statistics.py
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from __future__ import division

import collections

import js

import numpy as np

import simplejson

import sys

from sklearn.cluster import DBSCAN

from sklearn.metrics import calinski_harabaz_score

from sklearn.metrics import silhouette_score

from sklearn.metrics.pairwise import pairwise_distances

DIST_THRESHOLD = 0.1

def main():

iteration = int(sys.argv [1])

with open("stats/stats", "r") as f:

data = simplejson.loads(f.readline ())

columns = simplejson.loads(f.readline ())

X = np.array(

[list(np.concatenate ((np.array(hist["countries"]) / 2,

np.array(hist["ports"]) / 2)))

for hist in data.values ()])

silouhette = -1

ch_score = -1

eps = 0.01

db = DBSCAN(

eps=eps ,

min_samples =5,

metric=js.js_div ,

algorithm="ball_tree",

leaf_size=1,

n_jobs =4).fit(X)

labels = db.labels_

n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)

sys.stdout.write("Hour: {}\ nEstimated number of clusters: {}\n".format(

iteration , n_clusters_))

silouhette = silhouette_score(X[labels != -1], labels[labels != -1],

js.js_div)



57

ch_score = calinski_harabaz_score(X[labels != -1], labels[labels != -1])

sys.stdout.write("Silhouette coefficient: {}\n".format(silouhette))

sys.stdout.write("CH score: {}\n".format(ch_score))

host_map = {host: label for host , label in zip(data.keys(), labels)}

cluster_map = {}

for label in (set(labels) - set([-1])):

class_member_mask = (labels == label)

dists = X[class_member_mask]

cluster_map[label] = {str(column): value for column , value in zip(

columns , list(np.mean(dists , 0)))}

if iteration > 0:

# Let’s map the new clusters to the previous ones

associations = collections.defaultdict(dict)

distance_threshold = find_threshold(cluster_map.values ())

for label , mean in cluster_map.iteritems ():

hour = 1

closest_label , previous_hosts = find_closest(mean , iteration - 1,

distance_threshold)

if not closest_label and iteration > 1:

closest_label , previous_hosts = find_closest(

mean , iteration - 2, distance_threshold)

hour = 2

if closest_label:

associations[label ]["label"] = closest_label

associations[label ]["hosts"] = list(previous_hosts)

associations[label ]["hour"] = hour

with open("stats/associations_ {}".format(iteration), "w") as f:

f.write(simplejson.dumps(associations))

with open("stats/clusters_ {}".format(iteration), "w") as f:

f.write(simplejson.dumps(host_map))

f.write("\n")

f.write(simplejson.dumps(cluster_map))

return 0

def find_closest(mean , hour , threshold):

closest_label = None

min_dist = 1

with open("stats/clusters_ {}".format(hour), "r") as f:

previous_host_map = simplejson.loads(f.readline ())
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previous_cluster_map = simplejson.loads(f.readline ())

for prev_label , prev_mean in previous_cluster_map.iteritems ():

joint_columns = set(mean.keys() + prev_mean.keys())

mean_distr = [mean.get(key , 0.0000001) for key in joint_columns]

prev_mean_distr = [prev_mean.get(key , 0.000001) for key in joint_columns]

dist = js.js_div(np.array(mean_distr), np.array(prev_mean_distr))

if dist < min_dist:

closest_label = prev_label

min_dist = dist

if min_dist > threshold:

return None , None

previous_hosts = None

if closest_label:

previous_hosts = set(

[host for host , label in previous_host_map.iteritems () if str(label)

== str(

closest_label)])

return closest_label , previous_hosts

def find_threshold(means):

"""

Define a threshold based on the current status of the clusters.

Instead of defining a minimum threshold distance which is fixed , it is

better to inspect the current status of the clusters (i.e. the distances

between the current centroids) and define a distance based on that.

The threshold distance should be smaller than the minimum distance observed

in the current time bin. Clusters closer than this distance should be

considered associated , clusters further that this threshold should not be

associated.

"""

centroid_means = [x.values () for x in means]

X = np.array(centroid_means)

distances = pairwise_distances(X)

np.place(distances , distances == 0, 1)

return np.amin(distances , axis=(0, 1))

if __name__ == "__main__":

sys.exit(main())

cluster.py
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