
POLITECNICO DI TORINO

EURECOM

Real-time automatic transport mode detection on

smartphones using Recurrent Neural Networks
Le réseau neuronal récurrent dans la détection en temps réel du

mode de transport sur smartphone

by

Arnaudo Valerio

Supervised by:

Pronello Cristina (Industrial Supervisor - UTC Compiègne)

Härri Jérôme (Academic Supervisor - Eurecom)

Malnati Giovanni (Industrial Supervisor - Politecnico di Torino)

in

Ict for Smart Societies

Double degree exchange in Data Science and Engineering

March 2018

University Web Site URL Here (include http://)
University Web Site URL Here (include http://)
University Web Site URL Here (include http://)
University Web Site URL Here (include http://)
University Web Site URL Here (include http://)

“Tout est possible quand tu sais qui tu es

Tout est possible quand t’assumes qui tu es”

Soprano feat. Marina Kaye - Mon Everest

POLITECNICO DI TORINO

EURECOM

Abstract

Ict for Smart Societies

Double degree exchange in Data Science and Engineering

Master Thesis

by Arnaudo Valerio

The design of an efficient public transport system depends on the users’ needs and

their travel patterns and, since mobility change over time, collecting up-to-date data

has become essential for local administrations. To this end, a smartphone application

has been developed to understand users’ travel behaviour. Nowadays, smartphones

are an integral part of people’s lives and their potential has been exploited to support

people in daily activities, such as calls, chat, entertainment as well as mobility. The

thesis work aims at improving the mode detection of the above application, identifying

the transport mode (walk, bike, car, etc.) used by the traveller. In order to perform

the mode detection, an algorithm using Recurrent Neural Network has been designed

and tested in real-life scenarios. Battery life conservation and real-time results have

been taken into account to improve the user experience. Compared to Google APIs,

the algorithm is able to better recognize the diverse motorized modes and with higher

accuracy.

University Web Site URL Here (include http://)
University Web Site URL Here (include http://)
University Web Site URL Here (include http://)
University Web Site URL Here (include http://)
University Web Site URL Here (include http://)

POLITECNICO DI TORINO

EURECOM

Résumé

TIC pour les sociéts intelligentes

Double diplôme en science et génie des données

Thèse de Master

par Arnaudo Valerio

Afin de concevoir efficacement un système de transport public, il faut prendre en con-

sidération les besoins des utilisateurs et leurs habitudes de déplacement et, étant donné

que ces informations évoluent dans le temps, les mettre à jour est devenu essentiel pour

les administrations locales. De ce fait, une application mobile nommée Mobilité Dy-

namique a été développée afin de comprendre les différents besoins de mobilité des util-

isateurs. De nos jours, les smartphones font une partie intégrante de la vie courante et

leurs utilisateurs dépendent sur eux pour effectuer des appels, envoyer des messages, tre

informé des dernières actualités, se divertir, avoir des informations sur le trafic et même

trouver leurs chemins. Cette thèse vise à améliorer les performance de l’application

Mobilité Dynamique en identifiant le mode de transport (marche, vélo, voiture, etc.)

du voyageur. Afin de réaliser la détection de mode, un algorithme utilisant Réseau de

Neurones Récurrents a été conçu et testé dans des scénarios réels. La prolongation de la

durée de vie de la batterie et la préservation de cette dernière ainsi que le besoin d’avoir

le mode de transport en tant réel ont été pris en compte pour améliorer l’expérience de

l’utilisateur et l’inciter à utiliser l’application. Comparé aux API Google, l’algorithme

est capable de reconnâıtre les différents modes de transport motorisés avec une plus

grande précision.

University Web Site URL Here (include http://)
University Web Site URL Here (include http://)
University Web Site URL Here (include http://)
University Web Site URL Here (include http://)
University Web Site URL Here (include http://)

Acknowledgements

Grazie/merci/thanks:

Ai Professori Pronello e Malnati per il sostegno e la professionalità dedicatami nel rag-

giungimento di questo traguardo

Au professeur Härri pour la disponibilité d’aide en cas de difficulté

Ai miei genitori, base di ogni mio sogno e successo senza la quale non si sarebbero mai

avverati

A mia Sorella, amica e faro della mia vita su cui posso sempre contare

Ai miei nonni, sostento di amore e energia per non mollare mai davanti alle difficoltà

A Nesrine, pezzo mancante del puzzle che ha reso la mia vita completa Nhebek

Ai miei zii e cugini, sostegno silenzioso ma fondamentale nella mia riuscita

Enrico, Santi, Alain, Fabio, Michele, Corrado e Matteo amici indispensabili

Manuela, Francesca e Chiara amiche sempre presenti

Au département GSU pour le séjour confortable à l’UTC de Compiégne

A tutti i miei amici che mi hanno sempre sostenuto

A mes cousins et amis français

To all my friends all around the world

A chi c’era, chi c’è e chi ci sarà

iv

Contents

Abstract ii

Acknowledgements iv

List of Figures vii

List of Tables viii

ix

1 Introduction 1

2 State-of-the-art literature 3

2.1 Mode detection methodology . 3

2.1.1 Fuzzy rules . 4

2.1.2 Machine learning methods . 5

2.1.2.1 Bayesian methods . 5

2.1.2.2 Decision tree and Random Forest classifier 7

2.1.2.3 Random Subspace Method 9

2.1.2.4 Hidden Markov Model . 10

2.1.2.5 Nearest Neighbour . 11

2.1.2.6 Support Vector Machines 13

2.1.2.7 Neural networks . 16

2.2 Sensors . 19

3 Objectives and Methodology 22

3.1 Methodology . 24

3.1.1 Sensor choice . 25

3.1.2 Selection of the data source . 25

3.1.3 Recurrent Neural Network . 26

3.1.4 The learning phase . 29

3.1.4.1 Python and TensorFlow 30

3.1.4.2 Experimental Settings . 30

3.1.5 Mode detection . 32

v

CONTENTS vi

4 Results 34

4.1 Classifier evaluation . 34

4.1.1 Input of size 1 . 34

4.1.2 Input of size 5 . 35

4.1.3 Input of size 10 . 37

4.2 Application evaluation . 39

4.2.1 Still . 39

4.2.2 Walk . 39

4.2.3 Bike . 40

4.2.4 Car . 41

4.2.5 Bus . 42

4.2.6 Train . 42

4.3 Discussion . 43

4.3.1 Classifier . 43

4.3.2 Application . 44

5 Conclusion 46

Bibliography 48

List of Figures

2.1 decision tree schema . 8

2.2 Hidden Markov Model example . 10

2.3 nearest neighbour example . 12

2.4 support vector machine best boundary . 13

2.5 support vector machines kernel trick . 14

2.6 single neuron of a neural network . 16

2.7 feed-forward neural network . 17

2.8 example of critical points . 17

3.1 application’s home page . 23

3.2 statistics of movements . 23

3.3 application’s trips map . 23

3.4 The application’s fail on mode detection 24

3.5 Basic structure of a RNN . 26

3.6 unrolled RNN with the example . 27

3.7 the forget gate . 28

3.8 the input gate . 28

3.9 the output gate . 28

3.10 the complete LSTM network . 28

3.11 the softmax block that needs to be trained 29

3.12 representation of the input of a RNN (Toan et al. (2016)) 31

4.1 Loss value over time for input size 5 and dimensionality 64 35

4.2 loss value over time for input size 10 and dimensionality 64 37

4.3 results of the still mode . 39

4.4 results of the walk mode . 40

4.5 Results of the bike mode . 41

4.6 Results of the car mode . 41

4.7 Results of the bus mode . 42

4.8 Results of the train mode . 43

vii

List of Tables

2.1 classifier comparison . 16

2.2 list of sensors and classifiers used by the authors 20

4.1 Input of size 5 and dimensionality 128 . 36

4.2 Input of size 5 and dimensionality 256 . 37

4.3 Input of size 10 and dimensionality 128 38

4.4 Input of size 10 and dimensionality 256 38

viii

Abbreviations

API Application Programming Interface

CPU Central Processing Unit

FFT Fast Fourier Transform

GIS Geographics Information System

GPS Global Positioning System

GPU Graphics Processing Unit

GSM Global System for Mobile Communications

GTFS General Transit Feed Specification

HMM Hidden Markov Model

LSTM Long Short Term Memory

MLP Multi Layer Perceptron

NN Nearest Neighbour

OTP Open Trip Planner

RNN Recurrent Neural Network

SVM Support Vector Machines

ix

A Nonna Franca

x

Chapter 1

Introduction

The transport planning aims at defining the most suitable facilities and services to

achieve the highest customer satisfaction since every person needs to travel from one

location to another one for multiple reasons (work, school, shopping, leisure, etc.). De-

signing the transport facilities depending on people’s needs is very crucial, thus transport

planning is the core of a functional territory. Indeed, a badly conceived transport sys-

tem is perceived as inefficient and, therefore, will never be used with high social and

economic impacts.

The most important information to carry out an accurate and effective transport plan

is people’s travel behaviour or mobility pattern. The simplest way to retrieve this infor-

mation is to carry out a survey and ask people questions about their travel habits. This

method has, however, a lot of weaknesses. In fact, the collection of data from a repre-

sentative sample is expensive and time consuming; in addition, following the continuous

evolution of mobility patterns requires periodical surveys that cannot be afforded by the

local administrations. The recent approaches using web-questionnaire to collect data are

less expensive but not everyone is willing to spend time to answer to a survey; the con-

sequence is that samples are quite biased and the efforts to balance the sample increase

the costs of the survey. Another problem related to the reduction of both survey costs

and the fatigue of the respondents is the trade-off between detailed information (long

survey) and response time. Collecting all daily travel routines of a person for more than

one day through a survey is not affordable and get a large sample is quite challenging.

To overcome all the problems stated above, a smartphone application, Mobilité Dy-

namique (Dynamic Mobility in English), has been developed. Exploiting the potential

1

Introduction 2

of today’s smartphones, the application aims at understanding the users’ travel patterns.

This innovative method has advantages for both the local administration/transport com-

panies and users. In fact, the above organizations will save many resources and, most

importantly, they will have the availability of continuous updated data. On the other

hand, users will be more aware of their travel patterns because the application suggests

to them ways to improve their mobility, considering the time, the cost and the environ-

mental footprint of their travels. The users become fully aware about the time spent

any day travelling using the different modes, understand which the related cost is as

well as how many pollutant emissions they produce according to the chosen mode. The

comparison with potential alternatives can help people to increase their awareness and

evaluate the best option, considering the diverse personal and collective effects of their

mobility.

The richness of the above information comes from the application’s ability to recognize

the transport mean used by the traveller. Thus, the mode detection is one of the most

important information we need in order to carry out more accurate and efficient trans-

port plan because it allows understanding people travel behaviour. To this end, such

information needs to be extremely accurate.

The thesis objective is to find the most suitable way to understand the transport mean

used by travellers, named Transport Mode Detection.

The thesis is articulated in four chapters. The first chapter 2 deals with the state-of-

the-art literature, showing the different approaches developed by researchers all over the

world to perform the mode detection. The second chapter 3 presents the objectives of

the thesis work and the methodology developed to reach the ambitious objectives. The

results are described in the third chapter 4 and the conclusive remarks are given in the

fourth and last chapter 5.

Chapter 2

State-of-the-art literature

The transport mode detection is a topic that has been the centre of many research

projects in the past decades. The continuous evolution of technology, specifically the

smartphones, has a major role in the research progresses. Nowadays, the number of

smartphone users worldwide overpasses the two billions Newzoo (2017). Researchers

followed different ways to achieve the highest accuracy in the mode’s assignment. In

this chapter, we rely on two different characteristics to compare the various research

papers covering this topic:

• the methodology used to perform the mode’s assignments.

• the sensors used to perform the study.

2.1 Mode detection methodology

The algorithms analysed in the following sections belong to the group of classification

algorithms. This category of algorithms aims at assigning a specific class based on the

characteristic of the input:

Y = f(X)

The classification algorithm f assign to the class Y the input X. The number and the

type of different classes are predefined.

As mentioned above, several methodologies have been investigated to perform the mode

detection. The classification methods can be divided in two categories: fuzzy rules and

machine learning.

3

State-of-the-art literature 4

2.1.1 Fuzzy rules

The fuzzy rules’ algorithms are the simplest method to perform classification. A pre-

defined number of questions are formulated based on the input’s type. The researcher

decides the questions and, therefore, no specific knowledge on information technology is

required to code the classifier. The input query the questions and, based on the answers,

a class is assigned. Three research projects have tried to perform mode detection using

fuzzy rules.

The work made by Sauerlnder-Biebl et al. (2017) provides three steps:

• in the first step, the data position of a tracked person is divided into smaller

segments;

• in the second steps the mode detection is performed using fuzzy rules (maximum

speed, mean speed, start acceleration, change of heading after stop, etc.). Those

variables are calculated using only the GPS position with a regular rate of at least

one position every 4 seconds. The detected modes are walk, bicycle, bus, car and

train;

• the last step consists of further logical checks about the detected mode.

Another example of using fuzzy rules is investigated by Schüssler and Axhausen (2009).

GPS points are used as data inputs and a post-processing procedure is implemented

(no real-time). After a cleaning and smoothing stage where some data are removed, a

trip and activity detection are performed. This step tries to recognize if the user have

stopped the trip for some reasons and, in this case, it labels this event as a new activity.

Finally, the mode detection is performed using the sequences which were recognized as

a trip. The fuzzy features are: the median of the speed distribution and the ninety-fifth

percentiles of the speed and acceleration distributions. The detected modes are walk,

bicycle, car, public transport and train.

The last paper using fuzzy rules is the work done by Shin et al. (2015). Both the

accelerometer and the position are used with a sampling rate of one per second. The

position is retrieved by the network estimate (including network use, default Android

data synchronizing service enabled, 3G network service, Wi-Fi, a messenger application,

a Google email application, and default media sync functions). The detection process

first consists of detecting the walking segments and using them to partition the overall

activities. Subsequently, if the speed is greater than 7 km/h, the travel mode detection

is performed by estimating the acceleration profile and comparing it to the one that is

State-of-the-art literature 5

calibrated by the authors. The detected modes are walk, trains, bus and car.

The above researches obtained good results in detecting walking and biking but they

had some difficulties in detecting the motorized means. Since the method uses basics

rules, it is difficult properly setting the selected features. More and more the computer

processing power increases, so it is more convenient to let the algorithms find the proper

features’ settings.

2.1.2 Machine learning methods

Machine learning methods are those type of algorithms able to perform tasks without

being explicitly programmed. The algorithm improve the performances by learning

from the data. Different approaches are present in literature. The following sections

investigates the methods listed below:

• Bayesian methods

• Decision tree / Random forest

• Random Subspace method

• Hidden Markov Model

• Support vector machines

• Nearest neighbor

• Neural networks

2.1.2.1 Bayesian methods

The Bayesian classifier is a statistical method that performs classification based on the

Bayes’ theorem:

P (Y |X) =
P (X|Y)P (Y)

P (X)

The results can be expressed as the probability of assigning the class Y observing the

input X and it is called the posterior probability. The probability of X belonging to each

class is calculated and then the class with the highest probability is selected and assigned

to X. The term P(Y) is called the prior probability and it depends on the distribution

of the training data on the respective class (very often represented by a uniform distri-

bution). The most important term in the formula is P(X—Y) called likelihood that is

State-of-the-art literature 6

the probability to assign X given the class Y. The difficulty is to find the features that

separates the classes in such a way that we have the lowest misclassification occurrences.

The Geurs et al. (2015) work applies the Bayesian approach based on the following

statistics: speed patterns, sensor data characteristics, infrastructure network and per-

sonal trip history. They designed an application to collect one GPS record every two

seconds once the application has detected the movement (using GPS, accelerometer,

Wi-Fi and cellular-ID information). When a trip ends, the data are uploaded to a back-

end server, processed and finally classified in one of the following modes: walk, bicycle,

trains, bus and car. Finally, the user is asked to complete a recall survey on the correct-

ness of the assigned mode.

The GoEco! application (Bucher et al., 2016) is one of the most complete suite for

transport mode detection available in both the iOS and Android stores. Unfortunately,

the application is no longer operational since the research project ended. The main

objective was to reduce the environmental impact and suggest everyday solutions to

increase sustainable mobility. The data collection is performed by another application,

named Moves. This fitness application is able to recognize Walk, Run and Bicycle while

all other transport modes are classified as Transport. Through the Moves APIs, the

GoEco! application queries the Open Trip Planner (OTP) to identify possible connec-

tions using the available transport systems. Moreover, thanks to the results from the

OTP, a list of 16 statistics are defined to instruct the Bayesian classifier and, more

specifically, the Nave one where all the features are considered as non-correlated. The

classifier is able to recognize foot (including both walking and running), bike, electric

bike, kick scooter, car, electric car, motorbike, scooter, bus, train, tram, plane and ship.

Finally, the user is requested to confirm the trip.

The work done by Montoya et al. (2015) is divided in two phases. The first phase,

named filtering, tries to derive the most likely itinerary from a transport network for

the modes walk, road vehicles, bike and rail. They use a probabilistic algorithm based

on a dynamic Bayesian network. The second phase, named smoothing, infer the exact

transport mode of road vehicles i.e. car and bus and the transport mode of rail i.e.

metro and tram. To this end, the researchers determine the possible matching with

GTFS (General Transit Feed Specification) routes. All the details of the methodology

and the steps of the research are explained in Pluto (2014). The used sensors are the

GPS (1 Hz rate), Wi-Fi and Cellular network for the location observations. For the

dynamic observations, an accelerometer with a sampling rate of 20 Hz is used. The

State-of-the-art literature 7

Bluetooth, Wi-Fi and cellular network are used to infer the user’s environment.

All the above works got good results on the walk and bike modes. Geurs et al. (2015)

had problem to detect the motorize modes (notably the bus) for short trips, while the car

and trains accuracy improve with longer trips. The GoEco! application (Bucher et al.,

2016) got overall good accuracy but it was not well performant concerning car, bus and

train. Instead Montoya et al. (2015) got very impressive results in bus detection, but

also the train, tram and car are good enough.

The above researches show how GTFS can makes the difference for the results correct-

ness. The only disadvantage is that GTFS are limited to the analysed cities and not

valid everywhere. About the Bucher et al. (2016) work, is interesting the decision of

using an existing application, already optimized, to record the data (even if sometimes

the application lacks some important GPS points). They also pretend to recognize lot of

different modes that made the detection even more difficult. To make Bayesian method

working, the features’ choice is very important. The features should have a likelihood

clearly separated among all the modes, thus allowing very high accuracy.

2.1.2.2 Decision tree and Random Forest classifier

Decision tree is a powerful mechanism to analyse large amounts of data. The goal is

to build a tree based structure where the nodes represent the questions used to classify

the input. It is based on an idea similar to the Fuzzy rules’ approach, but the questions

are automatically prepared by the algorithm. The questions are chosen in a way that

maximizes the distinction between classes and are based on the features of the input

data. The figure 2.1 shows a decision tree schema.

Random forests is a method that classifies the input data based on multiple decision trees

(ensemble learning) that merge their results into one. The several classifiers (trees) are

created by randomly sampling the training data. This approach is an example of the

application of the bootstrap aggregation methods (to merge different classifiers’ results)

and its major advantage is the reduction of the over-fitting 1 problem of single decision

tree. However, its major disadvantages are the higher computational and time complex-

ity.

The proposed work by Manzoni et al. (2011) uses the accelerometer with a rate of 25 Hz

to perform mode detection. Moreover, GPS data at a rate of 1 Hz and a wireless internet

1The tendency of a machine learning algorithm of being too much precise on a specific data set and
not able to generalize to all the data.

State-of-the-art literature 8

Figure 2.1: decision tree schema

connection is optionally required for the computation of the travelled distance. After

a pre-processing step, the magnitude of the acceleration is estimated. Subsequently 32

FFT 2 coefficients are computed and used as input features to the decision tree algo-

rithm. Another input feature is the signal variance computed as the sum of the FFT

coefficients. The detected modes are Still, Walk, Bike, Car, Motorcycle, Train, Bus and

Metro.

Montini et al. (2015) work uses random forest classifier. fuzzy rules are also used but

subsequently replaced. The sensors used by the smartphones are GPS with a rate of

1Hz, Wi-Fi for location (helping the GPS) and accelerometer with a rate of 5Hz. A

travel diary generation is performed in three steps. First the raw data is filtered to drop

non accurate measurements. Second, activities and trips are mainly identified based on

point clouds, signal gaps and changes in the accelerometer signal. Finally, the mode

is detected by the random forest classifier using the speed, accelerometer variables and

also the corrections made by the users. Unfortunately, the technical part was not too

much detailed. The detected modes are Walk, Bike, Car, Bus, Rail and Metro. Battery

drain is depicted as a huge problem.

A Random Forest classifier was employed by Wang et al. (2017). Only the GPS with a

rate of one record per second was used. Some particular rules are applied to recognize

the subway trips. These rules were applied because in the subway the GPS signal is not

reliable (at least for satellites in view). These rules rely on a small number of reliable

2Fast Fourier Transform.

State-of-the-art literature 9

GPS points to determine when the subject enters or leaves the subway. The random

forest classifier is employed using 22 different features that can be divided in four main

categories which are Speed, Acceleration, Orientation and Distance/Duration. The dif-

ferent steps of the random forest classifier and the mentioned attributes are detailed in

the paper. The detected modes are Walk, Bike, e-Bike, Car, Bus and Subway.

Xiao et al. (2012) presentes a decision tree approach which uses the GPS and GSM

along with the accelerometer data to perform mode detection. The sensors’ sampling

rate however is not specified. After a pre-processing step, traces of the positions are

generated using GPS. The traces are also identified by detecting the stops which are

identified as the absence of movements within a fixed amount of time. The detected

modes are limited to Bus, Mass rapid transit, Taxi and Running. The features that

have been used to train the decision tree are the standard deviation of the magnitude

of force, the maximum moving speed and the average moving speed. Unfortunately, the

work did not present any results.

As mentioned above Xiao et al. (2012) did not present any results. Montini et al.

(2015) presented some results but through a plot and it is not detailed which mode were

correctly detected or not. There is only the accuracy related to single users. The others

two works got good results in detecting Walk and Bike. Wang et al. (2017) got some

problems in detecting the Bus and the e-Bike, on the other hand the others modes got

over 80% of accuracy. Finally, the work done by Manzoni et al. (2011) got very promising

results for motorcycle, car and bus with over 80% accuracy. Instead the metro and still

had some misclassification. For example the mode still had been classified as car for

more than 10% of cases.

The decision tree approach is very promising. It is compared also with others methods in

the next mode detections approaches. The capability of merging more decision trees in

one classifier, with random forest, let the approach go one step further. Both they need

an accurate selection of features because they are essentials in the creations of trees.

2.1.2.3 Random Subspace Method

The random subspace method belongs to those type of algorithms that try to merge

different classifiers into one. This approach is an example of applying the bootstrap

aggregating or bagging methods (like the random forest algorithms). The peculiarity of

this method is that the features used to train the classifiers are also randomly sampled.

Nitsche et al. (2012) applies the random subspace method but it is not specified which

type of classifier has been used. It only states that statistical classifiers are employed.

An accelerometer with a rate of 100 Hz and the GPS with a rate of 1 Hz are used.

State-of-the-art literature 10

Figure 2.2: Hidden Markov Model example

The extracted features are numerous. In fact, seven features are extracted from the

GPS, 64 features are extracted from the accelerometer and one features represents the

detected motion. The complete list can be found in the paper. Considering the high

features’ dimensionality in comparison to the small size of the training data the authors

decided to use this method. The detected modes are Still, Walk, Bike, Motorcycle,

Car, Bus, Electric tramway, Metro and Train. The results are very good only for the

modes walk and bike. For all the others modes the accuracy is lower than 80% with

lot of misclassification for the modes tramway, metro and train. Only few works used

this method (Widhalm et al., 2012) explained next chapter. The results are not very

promising even lots of features are used. High dimensionality, if is not supported by

large datasets, is not convenient as demonstrated by these results. For mode detection

the random subspace method is not appropriate.

2.1.2.4 Hidden Markov Model

Markov model is a stochastic model used to represent the changing states of a system.

The transition between the states depends on defined probabilities that are not affected

by the previous transitions and are independent for each state. The transitions between

one state and another are defined a priori. Though the Hidden Markov Model has the

same ideology, the states and the respective transitions are hidden. The outputs of the

states that correspond to the final classes are visible. In the figure 2.2, the weather’s

conditions are the hidden states and the activities are the outputs of the hidden states.

State-of-the-art literature 11

Widhalm et al. (2012) suggests a method composed by two steps. The first step trains an

ensemble of 100 different classifiers on randomly selected subspaces of the feature space.

The ensemble method is the random subspace method explained in the previous chapter

where the base learners are the decision trees. The averaged posterior class probabilities

from the previous step are used as input to the discrete Hidden Markov Model. The

hidden states correspond to the classification categories i.e. the mode detected. The

used sensors are the accelerometer with a rate of 50 Hz and the GPS with a rate of 1

Hz which was used along with the cellular network to determine the location. A set of

77 different features is extracted from the collected data. The categories of features can

be grouped in different statistics: velocity, acceleration, deceleration, angular velocity,

standard deviation and the power spectrum. The detected modes are Walk, Bike, Car,

Bus, Subway, Train, Motorcycle and Tram.

The work done by Reddy et al. (2008) is divided in two steps. In fact, a decision tree is

followed by a Hidden Markov Model. The approach is not provided with as much details

as the one of Widhalm et al. (2012). The employed sensors are the GPS with a rate

of 1 Hz and the accelerometer with a rate of 35 Hz. The period of classification is one

second with an overlap of 0.5 seconds. The extracted features are the variance, energy,

the sum of FFT coefficients from the accelerometer and the speed from the GPS. The

detected modes are Still, Walk, Run, Bike and Motor (no subcategories).

The two works just analysed present different results. The work done by Widhalm et al.

(2012) has impressive results for bike and good results for walk, bus and motorcycle. The

others mode got results under 72% of accuracy. As explained in the previous chapter

the random subspace method gives no good results. Instead the work done by Reddy

et al. (2008) got very impressive results for all the modes and for all the classifier they

tested. The only problem is given by the bike for the naive Bayes classifier. All the

others results got in average 90% of accuracy. The best classifier is the one they choose:

decision tree followed by a discrete Hidden Markov Model. It is important to notice

that the dataset is very little and the classifier are trained singularly per each user and

subsequently tested on the respective user.

Few works used Hidden Markov Model as mode detection. The difficulty stays in the

definition of the hidden states and their respective training. Standing on the work

proposed by Reddy et al. (2008),this approach can give very promising results.

2.1.2.5 Nearest Neighbour

The nearest neighbour approach is one of the simplest methods to perform classification.

Based on the features’ data, the new input search the K (arbitrary positive integer

greater than zero) closest training data and counts which is the most representative

State-of-the-art literature 12

class i.e. the most similar class based on the features. The figure below shows how the

algorithm work. In the figure 2.3, image A, the assigned class will be a minus, in the

second image B the class will be unknown and the third image C the assigned class will

be a plus.

Figure 2.3: nearest neighbour example

Sonderen (2016)’s work uses the accelerometer data with a sampling rate of roughly 140

Hz. Since the rate is not perfectly timed, a subsampling is performed (reduced rate as

pre-processing) and different rates are tested. Moreover, different time frames are tested

and the time periods are 1, 5, 10, 20 and 30 seconds. The used features are the average

value, the median value, the minimum value, the maximum value and the interquartile

range. The expectation is that the nearest neighbour will have the highest accuracy in

comparison to the decision tree and the random forest approaches that were also tested.

The detected modes are Walk, Bike, Run and driving a Car.

Martin et al. (2017) also tried different approaches to perform mode detection such

as the nearest neighbour, the Movelet approach and the random forest. The Movelet

approach, in the literature, is usually applied to predict human movements and not to

perform mode detection. It consists of a machine learning technique based on matching

time series sequences. The used sensors are the GPS with a rate of one sample per second

and the accelerometer with a rate of 5 Hz. From the GPS data, a vector of speed values

is created. The Movelet method creates partitions of both the accelerometer and speed

time series data into segments (Movelets) then clusters the segments that are known

to be from the same mode. The nearest neighbour and the random forest approaches

use as features the mean, median, variance, minimum, maximum, interquartile range,

20th percentile and 80th percentile of the acceleration and the speed data. The detected

modes are Walk, Bike, Car, Bus and Rail.

The two works present different results. Sonderen (2016) claims that nearest neighbour

is better than decision tree and random forest approaches. Instead Martin et al. (2017)

state the opposite. In both works the accuracies are very high (over 90%). It is important

State-of-the-art literature 13

to notice that the data set are very small and the classifier are trained and tested per

single user. This type of training it is not convenient if there will be lots of users.

Because to create one model for every user will rapidly exhaust all the resources (memory,

processing, storage, etc.).

The nearest neighbour approach seems able to provide also good results. It is very

important to define the concept of distances between one record and another. Increasing

the features, will increase the difficulty of this task. The major problem of nearest

neighbour approach is the time to process new inputs that is very large as presented by

Sonderen (2016).

2.1.2.6 Support Vector Machines

Support vector machines is a machine learning method. The basic idea is to find an

hyperplane able to separate the classes. The method’s strength is the ability to find

not only a simple hyperplane but the best one, named decision boundary, among the

training data. The best hyperplane is decided based on the distance between the decision

boundary and the training points among all the classes which the algorithm tries to

maximize. The figure 2.4 shows the best decision boundary for those sets of points.

Figure 2.4: support vector machine best boundary

In order to classify new points, the algorithm follows a very simple rule. Using the

figure as example, if the points are above the optimal hyperplane they belong to the

circle class otherwise to the square class. Lots of cases have to deals with non-linearly

State-of-the-art literature 14

separable data. In these cases, the kernel trick technique is implemented. Indeed, the

kernel trick transforms the training data to a new feature space that becomes linearly

separable (figure 2.5).

Figure 2.5: support vector machines kernel trick

Cardoso et al. (2016) testes different classifiers. Along with the support vector ma-

chines, the Naive Bayes and the decision tree are also used. To do so, an accelerometer

with a rate of 33 Hz is used. The Wi-Fi information are also considered to differen-

tiate transportation modes that would have been difficult to distinguish by only using

accelerometer-based features. Moreover, 21 different signals (magnitude, x y and z val-

ues, angle between the acceleration vector and each of the phone axes) are extracted

from the accelerometer data. For all these signals, 17 different features (the reader may

refer to the paper for the detailed list) are calculated. However, many of the features are

redundant or irrelevant and have thus been discarded. The final number of features is

40. The classifiers are tested and trained using a 10-fold cross-validation 3. The detected

modes are Inactive, Walk, Metro, Train, Car and Bus.

Yu et al. (2014)’s work introduces the usage of new sensors to perform mode detection.

The new sensors are the gyroscope (measure of the angular velocity) and the magne-

tometer (measure of the terrestrial magnetic field). The sampling rate is fixed to 30

Hz for all the sensors. The following features are extracted from the sensors mentioned

above: the standard deviation of the magnitude for all the sensors, the mean of the

magnitude measured by both the accelerometer and the gyroscope, the FFT peak deter-

mined by the accelerometer and the ration between the largest and the second largest

FFT coefficient calculated by the accelerometer. Furthermore, the data, is divided in

time windows of 512 samples, meaning 16 seconds of data is used as single input record

for the classifier. As first mode detection, if the standard deviation of the accelerometer

is lower than a predefined threshold, the predicted mode will be Still. The rest of the

3The cross-validation technique consist of dividing the training set in N different parts where N-1
parts will be used as training data and 1 as validation data (not test data). The parts are rotated to
enrich the knowledge of the method.

State-of-the-art literature 15

data will be sent and classified by the following classifiers: decision tree, Adaboost and

Support Vector Machines. Adaboost is an ensemble method that belongs to the boost-

ing family (not as random forest and random subsequence methods). The principle of

the boosting algorithms is to convert weak learners (classifiers with accuracy just above

the random guessing) into strong learners that classify with high accuracy. Yu et al.

(2014) uses the decision trees as weak learner for Adaboost. Finally, after the Adaboost

classification, a voting scheme is added to correct eventual errors due to change of mode

inside the time window. The predicted modes are Still, Walk, Run, Bike and Vehicle.

Fang et al. (2016) proposes new features to the dataset created by Yu et al. (2014). Since

the dataset is the same in both works, the sensors and their sampling rate are the same

as well. The enhancement they gave is the addition of new features calculated from the

sensors. The added features are mostly calculated from the accelerometer. A list of 14

different features will be used to perform mode detection (the reader may refer to the

paper for the complete list). As the previous work, the classifiers are the Support Vec-

tor Machines, the decision tree and the nearest neighbour (which replaces the Adaboost

classifier). These classifiers perform two type of mode detection: the transportation

mode classification which includes Still, Walk, Run, Bike and Vehicle and the vehicle

mode classification which includes Car, Metro, Bus, Train and HSR (High Speed Rail).

The new features added a higher accuracy in comparison to the work done by Yu et al.

(2014) regarding the transportation mode detection.

Shafique and Hato (2015) proposes an approach based on the accelerometer where the

device was an on purpose instrument. The accelerometer device was also able to record

the minimum, maximum and average acceleration in movement, crosswise, vertical di-

rections, resultant acceleration and average resultant acceleration. The accelerometer’s

sampling rate is set to 16 Hz. Although the GPS data is recorded, it is not used. After

the pre-processing steps, the features were as follow: maximum, minimum and aver-

age acceleration along the three directions, differences between maximum and minimum

and their differences, differences between average accelerations, resultant acceleration

and average resultant acceleration. The classifiers that perform mode detection are

Support Vector Machines, Decision Tree, Random Forest and Adaboost. The detected

modes are Walk, Bike, Car and Train.

All the works compared lot of classifier and there are different opinions. The results are

resumed in the table 2.1.

The above table (2.1) aims to let the reader understand that all the classifiers are very

good. The features affect a lot the final results. In fact, it is possible to see how Support

Vector Machine and Decision Tree exchanges their positions as best classifiers. It is

important to notice that the works done by Yu et al. (2014) and Fang et al. (2016) are

State-of-the-art literature 16

Authors Best classifier Second classifier Third classifier Fourth classifier

Cardoso et al. (2016) Decision tree SVN Naive Bayes

Fang et al. (2016) SVN Nearest Neighbour Decision Tree

Shafique and Hato (2015) Random Forest Decision Tree Adaboost SVN

Yu et al. (2014) SVN Adaboost Decision Tree

Table 2.1: classifier comparison

tested on a very large dataset which makes a good accuracy really hard to achieve and

thus having an overall accuracy higher than 86% is very impressive.

The Support Vector Machines are one of the most promising approaches along with

the decision trees and the random forest. The definition of the features is again very

important, since the approach tries to find an optimal hyperplane able to distinguish

all the modes. Thus, the features should be able to separate the modes. This always

remains a very difficult task.

2.1.2.7 Neural networks

Although the neural network’s theory was first developed in the forties, it has only been

used since the last decades thanks to the increasing processing power of computers. The

basic idea is to simulate the brain’s neurons and their proper connections. The network

is composed of layers and each layer can contain several neurons, called Perceptron. The

layers inside the network are called hidden layers. One layer’s neuron output becomes the

input of some other neurons in the network. All these links have their proper weights

with which their respective inputs are multiplied. In the figure 2.7, a feed-forward

network where the connections never form a loop nor return back to layers. In the figure

2.6, a single neuron taking 3 different inputs is represented.

Figure 2.6: single neuron of a neural network

State-of-the-art literature 17

Figure 2.7: feed-forward neural network

The function F, called activation function, is an arbitrary function (preferably a deriv-

able function for mathematical aspects) that calculates the output from all the inputs

as shown in the figure 2.6. A possible neuron’s bias can be part of the input. Regarding

the learning phase, an algorithm called back propagation trains the network by changing

the weights and the biases of the various connection accordingly to reduce the global

error. The error, called cost function, is related to the predicted output of the network

and to the real output of the training data. It is possible to define different types of

errors, the most common is the mean square error.

The work proposed by González et al. (2008) uses a Multilayer Perceptron classifier on

GPS data; if the GPS is not available an approximate location is calculated using the

Cellular Network ID. The Multilayer Perceptron is a feedforward type neural network

with at least one hidden layer. González et al. (2008) introduces an interesting approach

to the data analysis. Indeed, it only saves the critical GPS points. A GPS point is

considered critical if there is a change of the user’s movement direction,i.e. the user’s

direction is not the same before and after the critical point (Figure 2.8).

Figure 2.8: example of critical points

State-of-the-art literature 18

Unfortunately, the critical point approach is performed as post processing step. Thus

the device records all the GPS points every four seconds. Finally, in the classification

step, the authors’ selected features such as the neural network input only changed if all

the GPS points were used (6 different features) or if only the critical points were used

(8 different features). In conclusion, the classifier was only able to detect Walk, Car and

Bus.

Vu et al. (2016) proposes a new class of neural networks to cope with the mode detec-

tion problem. The classifier is called Recurrent Neural Network. The difference with the

Multilayer Perceptron is the presence of cyclic loops of the neuron itself. In fact, one of

the neuron’s input is the output of the neuron itself. These types of connections let the

hidden layers having memory allowing analysing time-sequences of data (handwriting

recognition or speech recognition). Moreover, the dataset is the same as in Yu et al.

(2014) work but only the accelerometer has been taken as input data. In contrast to all

previous work, only the accelerometer magnitude is used. Despite the use of only one

feature, the results are as good as all the previous works. The detected modes are the

same of Yu et al. (2014): Still, Walk, Run, Bike and Vehicle.

Stenneth et al. (2011) use GPS data with a sampling rate of one sample every 15 seconds

along with the buses real-time location data refreshed every 20 30 seconds. Indeed, the

transport data led the authors to inspect new features as follow: average bus location

closeness, candidate bus location closeness, average rail line trajectory closeness and bus

stop closeness rate. In addition, the following GPS related features are used: average

accuracy of GPS coordinates, average speed, average heading change and average accel-

eration. It can be referred to Stenneth et al. (2011) for more details. The used classifiers

are: Naive Bayes, Bayesian Network, Decision Trees, Random Forest and Multilayer

Perceptron. The classifiers are first tested with and without the transport data and

finally after deletion of the unnecessary features, i.e. the ones considered as less pre-

dictive. The elimination process is performed by two different algorithms: Chi Squared

and Information gain. The detected modes are: Still, Walk, Bike, Car, Bus and Train.

Stenneth et al. (2011) compare various classifiers which all proved to have an overall ac-

curacy of 90%, except for the Multilayer perceptron which has an accuracy of 83%. The

classifier with the highest accuracy is the Random Forest approach (few points compared

to the others). González et al. (2008) show good results for the Multilayer Perceptron

with the critical points reaching an accuracy of 90%. Using all the GPS points gives

State-of-the-art literature 19

lower results, proving that the critical points technique is very interesting. It is unfortu-

nate however that, for the moment, it is only a post processing step. Finally, Vu et al.

(2016) work is very impressive; just using one feature they got over 90% accuracy over

a very large dataset, obtaining the same results as Fang et al. (2016) and Yu et al. (2014).

The neural network technique is also very promising. The major advantage is that it

is able to find some information that is not visible to humans (González et al., 2008).

Vu et al. (2016) show that only one feature is enough to provide impressive results;

although, it is important for this approach to define the good features.

2.2 Sensors

Choosing the right sensor is extremely important in mode detection. Thus, several

variables should be considered before selecting the sensors. The table 2.2 summarises

all the investigated sensors and the classifiers used to perform mode detection.

Looking at table 2.2,it is possible to notice that the accelerometer and the GPS are the

most used sensors. The accelerometer sensor calculates the device’s acceleration along

the three axes. The GPS sensor is able to retrieve the user’s location in terms of longi-

tude and latitude.

Analysing the literature, it is possible to observe that the accelerometer has no common

sampling rate; each research work defined its own sampling rate. On the contrary, the

GPS has a tendency for one sample every second. The accelerometer’s rate needs to

be sufficiently high to recognize the mode. For example, the steps while walking or the

legs movement while biking. Regarding the GPS, the rate should be suitable to obtain

reliable data to calculate the features (in most cases the speed). Low sampling rate, in

both sensors, will results in high misclassification due to lack of data.

Occasionally, the above sensors are supported by others sensors, Wi-Fi, Cellular Net-

work, Bluetooth and GTFS applications, that are never used alone to perform mode

detection. Those supporting sensors are used to improve the user position when the

GPS is not properly working (no sufficient satellites in sight). GTFS information play

an important role in classification activities (Bucher et al. (2016) and Stenneth et al.

(2011)) but they are related to specific cities; thus, GTFS, to correctly work everywhere,

it is mandatory to have information from each city. This constraint is the major dis-

advantage of GTFS information. A similar problem is encountered by the Bluetooth

State-of-the-art literature 20

Authors Classifier Accelerometer GPS Other sensors

Nitsche et al. (2012) Random Sub-
space Method

100 Hz 1 Hz

Geurs et al. (2015) Bayesian X 2 Hz Wi-Fi and Cell id
info

Bucher et al. (2016) Bayesian Moves app Moves app. Open street map

Montoya et al. (2015) Bayesian 20 Hz 1 Hz Wi-Fi, Bluetooth
and Cell ID info

Manzoni et al. (2011) Decision Tree 25 Hz 1 Hz Occasionally
WIFI

Montini et al. (2015) Decision Tree 5 Hz 1 Hz For location also
WIFI

Xiao et al. (2012) Decision Tree N.A N.A GSM

Wang et al. (2017) Decision
Tree/Rnd. forest

X 1 Hz X

Sauerlnder-Biebl
et al. (2017)

Fuzzy X 0.25 Hz X

Schüssler and Ax-
hausen (2009)

Fuzzy X X

Shin et al. (2015) Fuzzy 1 Hz X Network based lo-
cation

Widhalm et al.
(2012)

Decision tree fol-
lowed by HMM

50 Hz 1 Hz Cell. Net for loca-
tion

Sonderen (2016) Decision tree,
random forest
and Nearest
Neighbour

140 Hz. X X

Reddy et al. (2008) Decision tree fol-
lowed by HMM

35 Hz 1 Hz X

Martin et al. (2017) Movelet ap-
proach, k-NN and
random forest

5 Hz 1 Hz X

Cardoso et al. (2016) Naive Bayes,
SVM and deci-
sion tree

33 Hz X X

Stenneth et al. (2011) Bayesian net, De-
cision Tree, Ran-
dom forest, Naive
Bayes and MLP

X 1 every 15 Sec-
onds

GIS info regard-
ing bus stops

Fang et al. (2016) Decision tree, k-
NN and SVM

30 Hz X Gyroscope and
magnetometer
(30 Hz)

Shafique and Hato
(2015)

SVM, Adaboost,
Random forest
and decision tree

16 Hz collected but not
used

X

Yu et al. (2014) Adaboost, de-
cision tree and
SVM

30 Hz X Gyroscope and
magnetometer
(30 Hz)

González et al.
(2008)

Neural network X 0.25 Hz Cell ID (when
there is no GPS)

Vu et al. (2016) RNN 30 Hz X X

Table 2.2: list of sensors and classifiers used by the authors

sensor; to properly work, the Bluetooth needs to communicate with beacons that should

be spread all over the city. Others sensors like the gyroscope and the magnetometer

have been tested by Yu et al. (2014), Fang et al. (2016) and Vu et al. (2016) and allow

improving the accelerometer classification. The disadvantage is that such sensors are

not always available in smartphones, while the accelerometer is almost always available.

Another important aspect is the device’s battery life. Montini et al. (2015) compare the

State-of-the-art literature 21

battery drain issue of a smartphone using the GPS or the accelerometer. The GPS sen-

sors needs lots of energy to calculate the user’s position, while the accelerometer sensors

need much less energy to collect the data. In conclusion, if the battery life is important,

the GPS is not recommended, while the accelerometer is battery friendly.

Chapter 3

Objectives and Methodology

The thesis has been carried out within the research work of the Chair MIDT (Mobilité In-

telligente et Dynamiques Territoriales) in which a smartphone app, Mobilité Dynamique,

has been developed. The app is an Android application (the iOS version will be soon

released) that allows the users to keep track of their mobility patterns. Several statistics

let the users understand their travel behaviours such as the number of daily trips and

the means used for travelling. Moreover, a heat map shows the most visited or favourite

places. The application is user friendly as it only requires the GPS sensor to work in

the background (the smartphone’s screen is off or another application is running in fore-

ground). Furthermore, a section where the users can chat and share news about the

traffic, car accidents or buses delay is also available. Users are allowed to register the

trips by themselves, by selecting the transport mode they are going to use. The trip is

stored in memory, by simply clicking on the check in button to start the trip and on the

check out button once arrived at destination. This action confirms to the application

the used mode. The figures 3.1, 3.2 and 3.3 show some of the application’s screens.

22

Objectives and Methodology 23

Figure 3.1: applica-
tion’s home page

Figure 3.2: statis-
tics of movements

Figure 3.3: applica-
tion’s trips map

The application is able to recognize the following modes: Still (no movement), Walk,

Bike and Vehicle (car, bus, train etc.). In order to perform the mode detection, the

Google APIs (Google APIs 2017) are used.

Only low power sensors (not specified by Google) are used to retrieve the mode in order

to save battery. Cardoso et al. (2016) performed a test on the APIs and showed that the

on vehicle method does not have a good accuracy. The same problem is related to the

Mobilité Dynamique application. In the figure 3.4, a train trip (from Paris to Bruxelles)

has not been recognized and, thus, classified as unknown. This is a problem that needs

to be solved.

Objectives and Methodology 24

Figure 3.4: The application’s fail on mode detection

The objective of the thesis is to design a smartphone API able to perform transport

mode detection. The API which will be integrated in Mobilité Dynamique, will have to

rely on smartphone sensors to recognize in real-time the user’s mode. The most impor-

tant requirements are: high accuracy in mode detection and low energy consumption.

Both requests are essential if we want the application is actually used. Moreover, since

we want all users to take advantage of the application features, the API should run on

all smartphones models or as much as possible.

3.1 Methodology

In order to perform mode detection, a classification algorithm has been designed. As al-

ready mentioned in section 2.1, a classification algorithm F tries to assign to a predefined

set of classes or categories Y a new input data X:

y = f(x)

The classification algorithm F needs to be instructed in order to be able to assign the

new input to the correct class. To do so, a training dataset is necessary. To verify the

correctness of the trained classifier, a test dataset is needed as well.

Objectives and Methodology 25

To this end, a methodology has been defined, articulated in five steps: a) choice of the

sensor used to perform mode detection; b) the selection of the data source (training and

test data) to train the classifier; c) the definition of classifier; d) the learning phase and

e) the definition of the algorithm to detect the modes.

3.1.1 Sensor choice

The state of the art section presented various sensors that have been used to perform

mode detection. As mentioned, the most used sensors are the accelerometer and the

GPS. Both sensors, whether used together or separately, reach very good scores in overall

accuracy. Since the condition on the accuracy can be satisfied by both sensors, the final

decision is based on the energy consumption. In section 1.2 the battery problem is

analysed and thanks to the considerations made by Montini et al. (2015) the final choice

is the accelerometer. The accelerometer sampling rate will be discussed in the next

subsection.

The accelerometer will not be supported by other sensors for the following reasons (refer

also to section 2.1):

• the Wi-Fi, the Bluetooth and the Cellular network are almost always used as

support to the GPS in order to improve the estimation of the user’s location.

Since the GPS will not be used to perform mode detection, the other sensors will

not be used as well;

• the Gyroscope and the Magnetometer are not as common in smartphones as the

accelerometer, thus they will not be used;

• the GTFS and GIS information are related to the specific city. The large amount

of data needed to take advantage of this information and to be operational every-

where, makes the use of GTFS and GIS unpractical.

3.1.2 Selection of the data source

The data source selected for the training is the dataset created by Yu et al. (2014). 1

The dataset is a complete set of training and test data. The data was recorded with

the HTC One mobile phone and was provided by users with different demographics

characteristics (gender and age). The collected transport modes are: Still, Walk, Run,

Bike, Motorcycle, Car, Bus, Metro, Train, and high speed rail (HSR). For each mode,

1Sir. MengChieh Yu kindly provided me with the rights to download the dataset for research purpose
only.

Objectives and Methodology 26

the smartphone that collected the data was located in different positions pockets, bag

or hands etc. The data were recorded by the accelerometer, the gyroscope and the

magnetometer sensors, each with a sampling rate of 30 Hz. More than 20 Gigabyte of

log files were used to train the classifier.

The source data permits to perform supervisioned learning as the data had already been

assigned labels i.e. it is known the mean of transportation which the data belongs to.

3.1.3 Recurrent Neural Network

Several classifiers are presented in the state of the art. Most of them proved to have good

results such as Support Vector Machines, Decision Tree or Neural Networks. Previous

projects proposed different features with which the classifiers are trained.

Since the classifier will be used on a smartphone, it is convenient not to overwhelm

the mobile with several calculations in order to retrieve the features as this will quickly

drain the battery. The work done by Vu et al. (2016) solves this issue. In fact, only the

accelerometer is used and only one feature is calculated. The suggested classifier was

tested on the data source described above and achieved satisfying results.

The classifier selected for this work is a Recurrent Neural Network (RNN). As already

explained in the state of the art (2.1.2.7), the RNN is an application of the Neural

Network which peculiarity is the presence of back loops; for more details see Olah (2015).

The figure 3.5 shows the basic structure of a RNN: the block A is the Neural Network

where the output ht will become the new input along with a new input record xt.

Figure 3.5: Basic structure of a RNN

The back loops are the strength of the RNN. In fact, the algorithm will be able to

interpret the new input based on the past records already treated by the network. Let’s

take as an example the following phrase:

I come from Italy so I can speak Italian.

Objectives and Methodology 27

Based on the first words the network will be able to suggest the correct final word. In

this example, each word feed the input of the RNN step by step. Figure 3.6 shows the

unrolled version of a RNN adapted to the example:

Figure 3.6: unrolled RNN with the example

Looking at Figure 3.6, it is possible to understand that RNN is designed for time-series or

sequences of data. The different numbers of block A represent the maximum number of

elements in a sequence among all the sequences used in the training phase. It represents

one of the most important parameters of a RNN (it will be discussed later). An incurring

problem is the length of the sequences. In fact, if the sequence is too long the RNN is no

longer able to correlate distant inputs. In such situation, one possible solution are the

LSTM (Long Short Term Memory) networks. They replace the A block with a Cell state

Ct (figure 3.5). Thus each LSTM network is able to add or remove information that will

affect the output and the following LSTMs network (figure 3.10). The input provided to

the Cell state is controlled by structures called Gates. There are three different Gates:

the forget gate (figure 3.7), the input gate (figure 3.8) and the output gate (figure 3.9).

The Gates take as input the new input record Xt and the output of the previous layer

ht-1. The forget gate defines how much information should be kept from the Cell state

Ct-1 coming from a previous layer. The input gate defines how much information should

be added to the Cell state already processed by the forget state. The output gate defines

the output ht of the LSTM cell which also uses the results of the Cell state Ct which

was processed by the two previous Gates.

Objectives and Methodology 28

Figure 3.7: the for-
get gate

Figure 3.8: the in-
put gate

Figure 3.9: the out-
put gate

Figure 3.10: the complete LSTM network

In the figure 3.10, the yellow squares are pre-trained neural network layers that imple-

ment the sigmoid and the hyperbolic tangent. One of the parameters of the RNN is

the dimensionality of these neural networks, i.e. the number of neurons. The output’s

dimensionality of the LSTM network will have the same order of magnitude. Higher

dimensionality means higher RNN complexity.

Objectives and Methodology 29

To resume, the LSTM network is a predefined module with which it is possible to define

the dimensionality. The RNN is a concatenation of LSTMs network where the cardinality

depends on the number of elements of an input sequence. Each element of the sequence

is the input of the appropriate LSTM network (figure 3.6).

3.1.4 The learning phase

Regarding the training phase, the algorithm looks to the output of interest, that is the

LSTM network output with an input coinciding with the last input of the sequence. The

output of interest will become the input of a neural network that needs to be trained, for

example learning the appropriate weights and biases. In figure 3.11 it is possible to see

that the Softmax block represents the neural network that will be trained to calculate

the correct output.

Figure 3.11: the softmax block that needs to be trained

Softmax is the Cost function that calculate the loss that needs to be minimized. The

algorithm will train the weights and the biases of the neural network in order to minimize

the Cost function. The Cost function takes the predicted output and compares it to the

correct output for all the sequences. The loss decreases if the RNN is able to predict the

correct output. This computation is performed multiple times in order to reach a good

prediction accuracy, that is a suitable loss threshold.

Objectives and Methodology 30

3.1.4.1 Python and TensorFlow

The programming language used to implement the RNN is Python, version 3.6, through

the open-source machine learning framework TensorFlow (version 1.4). TensorFlow is a

suite developed by Google which provides all the tools to implement most of the machine

learning algorithms. TensorFlow runs on CPU (Central Processing Unit), but it is also

able to exploit the GPU (Graphics Processing Unit) which makes the training phase

faster since because of the higher computational capacity.

The workstation details are:

• HP Z440 Workstation;

• Processor Intel Xeon 3.5 Ghz 4 cores;

• Ram 32 Gb;

• GPU Nvidia Quadro M4000.

3.1.4.2 Experimental Settings

The source data, as discussed in the subsection 3.1.2, provides various log files for all

the transport modes. The first important step is to define the length of the sequences

that will be the input to the RNN. According to the work done by Vu et al. (2016),

each sequence is composed of 350 accelerometer magnitude values. Since the sampling

rate is set to 30 Hz, the series of elements in the sequence corresponds approximately

to 12 seconds. This timing is a tradeoff between the necessity of performing real-time

prediction and accurately recognizing the mode of transport.

As explained in the previous section, the number of concatenated LSTM networks de-

pends on the number of elements in a sequence. The input of a LSTM networks is the

arbitrary element in a sequence which can be grouped together to create a single input

element for the LSTM networks. Figure 3.12 shows an example of how a sequence can

be divided.

Objectives and Methodology 31

Figure 3.12: representation of the input of a RNN (Toan et al. (2016))

The following LSTM network inputs are tested:

• 1 accelerometer sample per group, meaning 350 LSTM networks concatenated;

• 5 accelerometer samples per group, meaning 70 LSTM networks concatenated;

• 10 accelerometer samples per group, meaning 35 LSTM networks concatenated.

Another parameter to be tested is the LSTM network dimensionality or hidden layers.

Higher dimensionality means higher computation and complexity, thus it is not always

the best choice. The tested values are the following:

• 64;

• 128;

• 256.

One parameter that was not mentioned in 3.1.3 is the batch size. The batch size is not

related to the RNN theory, but is related to the computation of the Cost function in

terms of programming aspects. It represents the number of sequences used to perform

a training phase. When all the sequences are used, an epoch has been completed. After

that, the sequences are reused to train again the classifier. This parameter must be

considered because otherwise the resources in terms of memory will be immediately

exhausted due to the size of the dataset. The selected batch size for this work is set to

380 sequences for each step of the training phase.

Objectives and Methodology 32

3.1.5 Mode detection

The modes of transport that the algorithm is able to classify are the following:

• Still;

• Walk;

• Bike;

• Motorcycle;

• Car;

• Bus;

• Train.

Once the training phase is complete, the algorithm, is able to recognize the mode of

transport given a sequence of the accelerometer sample data. To test the algorithm on

real data, an Android application has been developed.

The TensorFlow framework trains a RNN model to perform the mode detection. After

the training phase, the model is ready to be deployed. The TensorFlow suite allows

to save the model and use it on an Android application. Through the Android Studio

software environment, an application has been developed to perform mode detection.

The application collects enough accelerometer data to construct a sequence then it per-

forms mode detection through the model trained by the RNN. Since the model is already

trained, the classification is instantaneous. The data flows in the LSTMs and the last

LSTM output pass through the trained neural network (Softmax block) which prints

the recognized mode.

The modes that are tested using a smartphone (Samsung Galaxy S3 GT-I9300 with

android 4.3) are the following:

• Still;

• Walk;

• Bike;

• Car;

Objectives and Methodology 33

• Bus;

• Train.

The mode detected is printed on the smartphone screen.

Chapter 4

Results

This section aims at evaluating the training performance of the classifier, thus its effec-

tiveness to accurately perform mode classification with real data. The RNN’s training

phase results are presented in the Classifier evaluation section. Both a confusion matrix

1 and an accuracy result are used as performance metrics of the classifier. The Applica-

tion evaluation shows the smartphone’s classification for each mode of transport (except

for the motorcycle). Finally, the section Discussion comments and explains the results.

4.1 Classifier evaluation

The classifier is tested with the experimental settings presented in section 3.1.4.2. The

different input size parameters are 1, 5 and 10. Each input size paramenter is tested

with different dimensionality corresponding to 64, 128, and 256.

4.1.1 Input of size 1

As provided in the list of experimental settings, the first tested input has a size equal

to 1. Unfortunately, if the LSTM’s dimensionality setting is equal to 64, 128 or 256,the

GPU runs out of memory due to the large allocation requirements, thus it was not

possible to test the classifier’s performance.

1The confusion matrix is a tool used to visualize the performance of a classifier. The rows correspond
to the predicted class and the columns to the correct ones.

34

Results 35

4.1.2 Input of size 5

The second input size tested is that proposed by Vu et al. (2016). Since the RNN, with

LSTM dimensionality set to 64, was not able to converge, it was not possible to find a

suitable model to perform the mode detection on the training data. Figure 4.1 shows

how the classifier was not able to find a suitable minimum. The classifier tried to restart

from scratch several times but the loss never reached the loss threshold which was set

to stop the training phase.

Figure 4.1: Loss value over time for input size 5 and dimensionality 64

The second LSTM dimensionality is set to 128. The overall accuracy is equal to 0.658

and the confusion matrix is represented in Table 4.1.

Results 36

Correct class

Still Walk Bike MotCyc Car Bus Train

P
re

d
ic

te
d

cl
as

s
Still 360 0 0 7 176 39 127

Walk 5 447 0 7 18 9 1

Bike 1 33 409 81 10 32 10

MotCyc 0 2 68 328 14 35 3

Car 62 0 7 89 453 87 125

Bus 0 0 1 10 5 2 0

Train 67 1 11 19 84 128 648

Table 4.1: Input of size 5 and dimensionality 128

The confusion matrix can be read as follow: the units inside the table are the sequences

generated by the test dataset. Each sequence had passed through the classifier which

predicted a class (rows). Based on the sequence correct class (columns), the sequence

is placed inside the matrix. For instance, if the classifier predicts the class Bike, but

the correct class of that specific sequence is Bus, the cell [Bike, Bus] is increased by one

unit. The objective is to have the highest possibles values in the cells corresponding to

the same class.

The third dimensionality is set to 256. The overall accuracy is equal to 0.677 and the

confusion matrix is represented in Table 4.2.

Results 37

Correct class

Still Walk Bike MotCyc Car Bus Train

P
re

d
ic

te
d

cl
as

s
Still 303 0 3 9 201 56 137

Walk 1 461 0 6 2 17 0

Bike 1 12 474 48 14 18 9

MotCyc 3 8 56 334 19 28 2

Car 68 1 6 101 497 69 81

Bus 4 0 2 19 18 1 0

Train 61 0 13 26 90 97 671

Table 4.2: Input of size 5 and dimensionality 256

4.1.3 Input of size 10

The RNN, with LSTM dimensionality set to 64, was not able to converge, it was not

possible to find a suitable model to perform mode detection on the training data (as

happened to the input size set to 5). Figure 4.2 shows how the classifier was not able to

find a suitable minimum and stopped after the limit of 30000 epochs was reached.

Figure 4.2: loss value over time for input size 10 and dimensionality 64

The second dimensionality is set to 128. The overall accuracy is equal to 0.625 and the

confusion matrix is represented in the Table 4.3.

Results 38

Correct class

Still Walk Bike MotCyc Car Bus Train

P
re

d
ic

te
d

cl
as

s
Still 369 0 1 7 117 80 135

Walk 1 437 0 14 8 25 2

Bike 3 46 391 91 12 24 9

MotCyc 0 12 87 285 35 30 1

Car 81 1 18 69 430 91 133

Bus 2 1 3 17 15 3 3

Train 65 1 3 22 100 152 615

Table 4.3: Input of size 10 and dimensionality 128

The third dimensionality is set to 256. The overall accuracy is equal to 0.655 and the

confusion matrix is represented in Table 4.4.

Correct class

Still Walk Bike MotCyc Car Bus Train

P
re

d
ic

te
d

cl
a
ss

Still 398 0 0 11 152 58 90

Walk 1 411 0 11 32 31 1

Bike 4 32 450 57 9 18 6

MotCyc 1 5 79 313 24 28 0

Car 57 1 11 89 433 107 125

Bus 3 0 3 13 22 2 1

Train 67 1 5 27 100 112 646

Table 4.4: Input of size 10 and dimensionality 256

Results 39

4.2 Application evaluation

To evaluate the application, the chosen model was the one with input data of size equal

to 5 and dimensionality equal to 256 (see section 4.3 for further details). The results

are presented through the smartphone’s screenshots. The screenshots show a list of the

detected modes. Each line represents the detected mode once enough accelerometer

data (12 seconds) had been collected. The value beside the detected mode represents

the model confidence in its prediction. If the model does not have enough confidence

(less than 1) for each class, a question mark is printed stating that the model is not able

to recognize a mode.

4.2.1 Still

From the figure 4.3, it is possible to observe that the still mode is classified either as

Still or as Train. The car mode is rarely suggested.

Figure 4.3: results of the still mode

4.2.2 Walk

From Figure 4.4 shows that the classifier has no doubt about the recognized mode except

for few misclassifications. It is important to mention that the smartphone was held in

the pocket of the jacket while walking.

Results 40

Figure 4.4: results of the walk mode

4.2.3 Bike

In Figure 4.5, the classifier tries to recognize a bike session. Both the start and the end

of the list are misclassified because they represent the phase of either getting on or off

the bike and there was no real movement yet. During the bike session the classifier has

no doubt about the mode. The smartphone was carried inside the trouser pocket.

Results 41

Figure 4.5: Results of the bike mode

4.2.4 Car

Figure 4.6 shows that the classifier is trying to recognize a Car session. It is possible to

notice that there is a confusion with the bus because the acceleration profiles of the car

and the bus are very similar. The car is also misclassified with the train mode. This

misclassification occurs when the car does not move, for instance when the car stops

because of traffic lights, traffic congestion or the car’s speed is constant.

Figure 4.6: Results of the car mode

Results 42

4.2.5 Bus

Figure 4.7 represents the classifier trying to recognize a Bus session. Unfortunately,

since the task is very complicated, there are several misclassifications. The presence of

the Still and Train classes is due to the fact that the bus has to stop to let passenger

get on and off. The Car and Motorcycle are also suggested instead of the bus from

time to time because of their similar acceleration profiles. In Figure 4.7, it is possible

to conclude that the bus is the actual detected mode because it is suggested more often

than the other modes. The bus stops complicate the bus classification procedure.

Figure 4.7: Results of the bus mode

4.2.6 Train

Figure 4.8 shows the classifier results of a Train’s session. When the train runs smoothly

(no excessive vibrations), the classifier perfectly detects the class. However, when the

vibrations become stronger, the classifier has troubles detecting the right class. On

the right side of Figure 3.8, the first set of misclassifications happened when the train

stopped at the train station. The second set of misclassifications is due to the fact that

the passenger was walking while the train was moving.

Results 43

Figure 4.8: Results of the train mode

4.3 Discussion

In this sections are reported the comments on the results of the classifier and the Android

application just presented.

4.3.1 Classifier

Analysing Tables 4.1, 4.2, 4.3 and 4.4 of section 4.1, it is possible to observe that there

are numerous misclassifications and that the trend of the various experimental settings

is very similar.

The Still mode is confused several times with the Car and Train. The reason is that,

when the motorized vehicle reaches a constant velocity, there is no acceleration, thus

the classifier has some difficulty to distinguish the three modes. To better distinguish

the Still mode from the motorized modes, the accelerometer should be very sensitive to

detect the engine vibrations of the car/train. The input of size 10 has better results in

still’s classification, especially if the LSTM has a dimensionality equal to 256 (table 4.4).

The Walk mode had only few misclassifications. An input of size equal to 5 is much

more precise than an input of size equal to 10 and has the highest accuracy for a dimen-

sionality equal to 256 (table 4.2).

The classification of the Bike mode was quite good even if the motorcycle mode was sug-

gested for a couple of times. This is due to the similitude of the two transport modes.

An input of size equal to 5 and a 256 dimensionality proved to be the best experimental

setting (table 4.2).

Results 44

The Motorcycle class has misclassifications with the Bike mode due to the similarity

of the two modes of transport. Few misclassification occur with the other motorized

modes but they are negligible. This is due to the fact that the acceleration profile of

these mode is sometimes similar.

The Car class was misclassified several times and all other motorized modes were wrong-

fully suggested, even the still class. The same trend of misclassification is similar for

the Bus and Train modes. The reason is that, unlike the walk and bike modes, the mo-

torized modes do not have an acceleration pattern and, thus, the Bus and Car tend to

have a similar behaviour. The misclassification with the train probably happens when

the car and the bus reach constant velocity, that is acceleration equal to zero. This

situation makes the acceleration sequence of the two modes of transport very similar.

The best experimental settings for all the classes is an input of size equal to 5 and a

LSTM dimensionality equal to 256 (table 4.2).

Unfortunately, the test data for the Bus class were not sufficient. The reason is that the

log files do not contain enough data to create sequences of 350 samples. However, the

training data is sufficient and the bus was correctly detected, as it was mentioned in the

subsection 4.2.5.

In comparison to the previous works, presented in the state of the art analysis (section

2), the overall accuracy is lower. The main reason for this result is attributed to the

fact that, within this thesis work, the misclassification of the still class is taken into

account. However, the misclassification of the motorized modes is still a current issue

and no reliable solutions have been provided yet.

The classifier was also tested by creating two sets of classes:

• Still, Walk, Bike and On Vehicle;

• Motorcycle, Car, Bus and Train.

Since the configuration did not generated better results compared to the discussed ex-

perimental settings, no further investigation has been made. Another test was also

performed by adding the Gyroscope samples in addition to the acceleration samples.

Even if more information was provided to the classifier, the accuracy was lower in com-

parison to the accuracy obtained by only using the accelerometer data. Therefore, no

further investigation has been made.

4.3.2 Application

The model used to test the application is characterised by an input of size equal to 5 and

a LSTM dimensionality equal to 256. The reason behind this choice is that this model

Results 45

proved to have the highest overall accuracy and it correctly classified the highest number

of sequences (except for the still class) for all the classes. The reason to prefer a higher

classification accuracy for the motorized modes despite the Still mode is explained in

the conclusion chapter.

Although the classifier does not generate excellent results, the application is still able to

distinguish some classes. For certain modes, however, it does not have a good accuracy

(notably Car and Bus).

It is not enough to rely on one sequence to accurately detect a class. Instead, it is

necessary to rely on several sequences. For instance, if a car stops because of a red light

and only one sequence is used, the classifier will probably wrongfully suggest the train

mode. At least 8 to 10 sequences are needed in order to accurately assign a mode. Thus

one minute and a half to two minutes of acceleration measurements are required.

Chapter 5

Conclusion

The thesis work aims at finding a method to perform mode detection with high accuracy

while saving the battery life. The use of the accelerometer sensor alone is the best

choice to perform mode detection, while keeping in mind the battery life. Unfortunately,

the accuracy is affected by this choice and it is not sufficient to rely on this type of

configuration to properly define the transport mode. This work ought to be the first

step to construct a better classifier by improving the classification. The main challenge

is to reduce the number of misclassification. To do so, it is important to understand the

major causes which lower the overall accuracy:

• The misclassifications between the Still class and the motorized modes;

• The misclassifications between the motorized modes (mostly car and bus).

Since the Mobilité Dynamique already uses the GPS sensor to track the user’s travel

patterns, it could be very interesting in the future to rely on both the GPS sensor and the

accelerometer to increase the overall accuracy of the classifier. For instance, in order to

distinguish the Still and the motorized modes (notably the train), it is simply necessary

to check if the user has moved during two GPS records. If there is no movement, the

assigned class should be Still. On the other hand, if a movement is detected then the

assigned class should be a motorized mode.

Regarding the motorized modes, the classifier does not confuse these classes with the

Walk and Bike modes which are detected with high confidence. To increase the accuracy

of detecting the motorized modes, an idea could be to increment the accelerometer

sampling rate in order to have more details about the different acceleration profiles of

the modes. It is important to keep in mind that this decision will affect the battery life.

To conclude, I am really satisfied with this work because I believe that we are closer

than ever to successfully perform mode classification with reliable accuracy. Moreover,

46

Conclusions 47

this research gave me the possibility to learn more about the transport world and to

understand its complexity. Besides, I had the possibility to improve and fine-tune my

knowledge of Artificial Intelligence, TensorFlow and Android applications.

Bibliography

Bucher, D., Cellina, F., Mangili, F., Raubal, M., Rudel, R., Rizzoli, A. E., and Elabed,

O. (2016). Exploiting fitness apps for sustainable mobility - challenges deploying the

goeco! app. In Proceedings of the 4th International Conference on ICT for Sustainabil-

ity (ICT4S), Advances in Computer Science Research, pages 89 – 98. Atlantis Press.

4th International Conference on ICT for Sustainability (ICT4S); Conference Location:

Amsterdam, Netherlands; Conference Date: August 29 - September 1, 2016; .

Cardoso, N., Madureira, J., and Pereira, N. (2016). Smartphone-based transport mode

detection for elderly care. In 2016 IEEE 18th International Conference on e-Health

Networking, Applications and Services (Healthcom), pages 1–6.

Fang, S.-H., Liao, H.-H., Fei, Y.-X., Chen, K.-H., Huang, J.-W., Lu, Y.-D., and Tsao, Y.

(2016). Transportation modes classification using sensors on smartphones. Sensors,

16(8).

Geurs, K. T., Thomas, T., Bijlsma, M., and Douhou, S. (2015). Automatic trip and

mode detection with move smarter: First results from the dutch mobile mobility

panel. Transportation Research Procedia, 11:247 – 262. Transport Survey Methods:

Embracing Behavioural and Technological Changes Selected contributions from the

10th International Conference on Transport Survey Methods 16-21 November 2014,

Leura, Australia.

González, P. A., Weinstein, J. S., Barbeau, S. J., Labrador, M. A., Winters, P. L.,

Georggi, N. L., and Perez, R. (2008). Automating mode detection using neural net-

works and assisted gps data collected using gps-enabled mobile phones. In 15th World

Congress on Intelligent Transport Systems and ITS America’s 2008 Annual Meeting,

pages 1–12.

Manzoni, V., Maniloff, D., Kloeckl, K., and Ratti, C. (2011). Transporta-

tion mode identification and real-time co2 emission estimation using smartphones

how co2go works. Technical report, Massachusetts Institute of Technology.

http://senseable.mit.edu/co2go/images/co2go-technical-report.pdf.

48

Bibliography 49

Martin, B., Addona, V., Wolfson, J., Adomavicius, G., and Fan, Y. (2017). Meth-

ods for real-time prediction of the mode of travel using smartphone-based gps and

accelerometer data. Sensors, 17(9).

Montini, L., Prost, S., Schrammel, J., Rieser-Schssler, N., and Axhausen, K. W. (2015).

Comparison of travel diaries generated from smartphone data and dedicated gps de-

vices. Transportation Research Procedia, 11:227 – 241. Transport Survey Methods:

Embracing Behavioural and Technological Changes Selected contributions from the

10th International Conference on Transport Survey Methods 16-21 November 2014,

Leura, Australia.

Montoya, D., Abiteboul, S., and Senellart, P. (2015). Hup-me: Inferring and reconciling

a timeline of user activity from rich smartphone data. In ACM SIGSPATIAL, In-

ternational Conference on Advances in Geographic Information Systems, pages 1–4,

Seattle, WA, United States.

Newzoo (2017). Top 50 countries by smartphone users and penetration.

https://newzoo.com/insights/rankings/top-50-countries-by-smartphone-penetration-

and-users/ Visited 2/02/2018.

Nitsche, P., Widhalm, P., Breuss, S., and Maurer, P. (2012). A strategy on how to

utilize smartphones for automatically reconstructing trips in travel surveys. Procedia

- Social and Behavioral Sciences, 48:1033 – 1046. Transport Research Arena 2012.

Olah, C. (2015). Understanding lstm networks. https://colah.github.io/posts/2015-08-

Understanding-LSTMs/ Visited 20/02/2018.

Reddy, S., Burke, J., Estrin, D., Hansen, M., and Srivastava, M. (2008). Determining

transportation mode on mobile phones. In 2008 12th IEEE International Symposium

on Wearable Computers, pages 25–28.

Sauerlnder-Biebl, A., Brockfeld, E., Suske, D., and Melde, E. (2017). Evaluation of a

transport mode detection using fuzzy rules. Transportation Research Procedia, 25:591

– 602. World Conference on Transport Research - WCTR 2016 Shanghai. 10-15 July

2016.

Schüssler, N. and Axhausen, K. W. (2009). Processing gps raw data without additional

information. Transportation Research Record, 2105:28 – 36.

Shafique, M. A. and Hato, E. (2015). Use of acceleration data for transportation mode

prediction. Transportation, 42(1):163–188.

Shin, D., Aliaga, D., Tuner, B., Arisona, S. M., Kim, S., Znd, D., and Schmitt, G. (2015).

Urban sensing: Using smartphones for transportation mode classification. Computers,

Bibliography 50

Environment and Urban Systems, 53:76 – 86. Special Issue on Volunteered Geographic

Information.

Sonderen, T. (2016). Detection of transportation mode solely us-

ing smartphones. Technical report, University of Twente, Fac-

ulty of Electrical Engineering, Mathematics and Computer Science.

http://referaat.cs.utwente.nl/conference/25/paper/7555/detection-of-transportation-

mode-solely-using-smartphones.pdf.

Stenneth, L., Wolfson, O., Yu, P. S., and Xu, B. (2011). Transportation mode detection

using mobile phones and gis information. In Proceedings of the 19th ACM SIGSPA-

TIAL International Conference on Advances in Geographic Information Systems, GIS

’11, pages 54–63, New York, NY, USA. ACM.

Vu, T. H., Dung, L., and Wang, J.-C. (2016). Transportation mode detection on mo-

bile devices using recurrent nets. In Proceedings of the 2016 ACM on Multimedia

Conference, MM ’16, pages 392–396, New York, NY, USA. ACM.

Wang, B., Gao, L., and Juan, Z. (2017). Travel mode detection using gps data and

socioeconomic attributes based on a random forest classifier. IEEE Transactions on

Intelligent Transportation Systems, PP(99):1–12.

Widhalm, P., Nitsche, P., and Brndie, N. (2012). Transport mode detection with real-

istic smartphone sensor data. In Proceedings of the 21st International Conference on

Pattern Recognition (ICPR2012), pages 573–576.

Xiao, Y., Low, D., Bandara, T., Pathak, P., Lim, H. B., Goyal, D., Santos, J., Cottrill,

C., Pereira, F., Zegras, C., and Ben-Akiva, M. (2012). Transportation activity anal-

ysis using smartphones. In 2012 IEEE Consumer Communications and Networking

Conference (CCNC), pages 60–61.

Yu, M.-C., Yu, T., Wang, S.-C., Lin, C.-J., and Chang, E. Y. (2014). Big data small

footprint: The design of a low-power classifier for detecting transportation modes.

PVLDB, 7(13):1429–1440.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	2 State-of-the-art literature
	2.1 Mode detection methodology
	2.1.1 Fuzzy rules
	2.1.2 Machine learning methods
	2.1.2.1 Bayesian methods
	2.1.2.2 Decision tree and Random Forest classifier
	2.1.2.3 Random Subspace Method
	2.1.2.4 Hidden Markov Model
	2.1.2.5 Nearest Neighbour
	2.1.2.6 Support Vector Machines
	2.1.2.7 Neural networks

	2.2 Sensors

	3 Objectives and Methodology
	3.1 Methodology
	3.1.1 Sensor choice
	3.1.2 Selection of the data source
	3.1.3 Recurrent Neural Network
	3.1.4 The learning phase
	3.1.4.1 Python and TensorFlow
	3.1.4.2 Experimental Settings

	3.1.5 Mode detection

	4 Results
	4.1 Classifier evaluation
	4.1.1 Input of size 1
	4.1.2 Input of size 5
	4.1.3 Input of size 10

	4.2 Application evaluation
	4.2.1 Still
	4.2.2 Walk
	4.2.3 Bike
	4.2.4 Car
	4.2.5 Bus
	4.2.6 Train

	4.3 Discussion
	4.3.1 Classifier
	4.3.2 Application

	5 Conclusion
	Bibliography

		Politecnico di Torino
	2018-03-05T21:20:05+0000
	Politecnico di Torino
	Cristina Pronello
	S

