
POLITECNICO DI TORINO

Corso di Laurea in Ingegneria Informatica

Tesi di Laurea Magistrale

A Machine Learning approach to
Predictive Control:

study on a real industrial application

Relatore:
Prof.ssa Elena Maria Baralis

Abdeljalil Hajjoubi

Supervisori aziendali
Istituto Superio Mario Boella

Dott.ssa Sophie Marie Fosson
Dott.ssa Rosaria Rossini

Anno accademico 2016-2017

Summary

For many years, Model Predictive Control (MPC) has been used in industries.
MPC is a control methodology to predict the response of a system given a process
model [33]. MPC has had a great impact on industrial process control since 1980s.
This is due to the facts that its idea is easy to understand and its formulation
extends to multivariate plants.

In MPC, the control is based on a model which has quite stringent mathemat-
ical constraints; most of MPC literature is based on linear models, i.e., a linear
function is assumed to describe the relation between input and output of the con-
troled system. In many cases, this is a simplification of the real system, but has
the advantage to be mathematically tractable. Nowadays, we are surrounded by
cheap sensors that collect a lot of data (the so-called Big Data) and we are moving
towards industry 4.0, from model-driven control to data-driven control. We can
use this data to create the relation of the control system. The classic models, i.e.,
the linear model, often, are very restrictive for the big amount of available data.
Machine Learning (ML), and especially Deep Learning (DL), helps us to build
more complex relations between input and output of the system, taking better
advantage of Big Data. For this reason, we are moving to them. DL allows us
to build non-linear models, through Artificial Neural Networks (ANNs), which are
more complex and need more powerful CPUs and GPUs. At the same time, we
have more powerful computing resources (CPUs and GPUs) able to process Big
Data and build these models.

In this thesis, we have studied new solutions based on ML to perform Pre-
dictive Control (PC). In the past, PC was based on manual measurements that,
once reported in spreadsheets, allow to define a programmed intervention. The
advent more and more domineering of the Internet of Things (IoT) has changed
the way PC can be performed. With these devices, it is possible to have a low cost
and a real time monitoring of the industry equipments. Thanks to the continu-
ous sending of data to the algorithm, this one can monitor when an equipment is

ii

not working as it should, or make a prediction using ML. Predictive Maintenance
(PdM) is exactly going to this direction, and the mentioned solution can be defined
as "IoT PC". The advantages that derive from having sensors that detect data
in real time are remarkable. This real-time data is inserted into predictive models
to determine when something is going to break, or what is the residual life of a
machine. Based on this information, it will be possible to program maintenance.
In particular, it is effective for all manufacturing companies that want to provide
a PdM service along with the machinery they offer [24].

We have worked on a real application, namely on data coming from a machine
(called Buss Mixer) of an aluminium process industry. This data, acquired in the
framework of the MONSOON project1, is available through a network of sensors
that monitors different variables of this machine every five seconds and collects
data in files. The data is a time series; there are some measurments in which
the machine has had a failure (and the associated line in the file is labeled as
failure) and others in which the machine has worked regularly (the label in the file
is no-failure). These files have been processed by the classification ML algorithms
to implement PdM. We have used the standard classification algorithms and the
ANNs algorithms: amongst the first, we have used LR, SVM, DT and RF. A way
to do PdM has been to introduce the Predictive Horizon (PH) in the data: we have
labeled as failure also the previous m measurments. In this way, the classification
algorithms may extract some patterns which are used to predict future breakdowns.

With the studied schemes, we have been able to predict the failures of the Buss
Mixer successfully with some minutes of advance, and with this, we have reached
the objective of this thesis. The obtained results are similar to those obtained by
the experts of MONSOON project. This work can be enhanced; an open problem
is predicting failures with more advance to meet more the ability of intervention
of the industry. For this, we will need more accurate data.

The thesis has been carried out in Istituto Superiore Mario Boella (ISMB)2
and the main activities have been the following:

• Theoretical study of ML and DL techniques: we have analyzed the state of
the art of ML and DL algorithms, especially the classification, ANNs, and
classic ones;

1https://www.spire2030.eu/monsoon
2http://www.ismb.it/

iii

• Pre-processing of data: we have processed it using Pandas and Numpy li-
braries;

• Implementation of the classification algorithms in Python and Tensorflow
(TF): we have implemented the classic classification algorithms (mensioned
before) in Python, using Scikit-learn library. TF library has been used to
implement the ANNs;

• Analysis of the data;

• Study of the best strategies to make prediction: we have relied on some
indices to choose the best strategies;

• Comparison/validation of our results with the results obtained from the
MONSOON experts.

iv

Glossary

ANN Artificial Neural Network. iii, iv, 16, 20, 44, 68, 70, 71

CNN Convolutional Neural Network. 6, 67, 71

DL Deep Learning. ii, iii, 2, 70

DNN Deep Neural Network. 8, 16, 32, 66, 68, 71

DT Decision Tree. iii, 13–15, 20, 24, 30–32, 36, 37, 48, 54, 57, 60–62, 64, 65

GCML Google Cloud Machine Learning. 3

IoT Internet of Things. iii, 3

KNN K-Nearest Neighbors. 9, 20, 23, 24, 30

LR Logistic Regression. iii, 9–12, 15, 17, 18, 20, 23, 24, 30, 31, 37, 41, 54, 60,
63–65

LTU Linear Threshold Unit. 16

ML Machine Learning. ii, iii, 2–9, 11, 13, 15, 16, 21, 25, 29–33, 44, 47, 68, 70

MLP Multilayer Perceptron. 17, 31, 44, 60, 64–66

MPC Model Predictive Control. ii, 2

PC Predictive Control. ii, iii, 1, 4, 25, 26, 70

PdM Predictive Maintenance. iii, 1–4, 26, 29, 30

1

PH Predictive Horizon. 30, 33, 36, 37, 44, 47, 70

RF Random Forest. iii, 13, 15, 20, 24, 30, 31, 36, 37, 39, 54, 58, 60, 62, 64

RNN Recurrent Neural Network. 67, 71

SVM Support Vector Machine. iii, 11, 12, 14, 15, 18, 20, 23, 30, 31, 37, 42, 48,
54–56, 60, 64, 65, 68

TF TensorFlow. iv, 30, 32, 67, 68

2

Contents

Summary ii

1 Introduction 1

1.1 Predictive Control in process industries 1

1.2 Use of Machine Learning in industry: state of the art 2

1.2.1 Some industrial initiatives exploiting Machine Learning . . . 3

2 Machine Learning algorithms for classification 5

2.1 Introduction to Machine Learning 5

2.1.1 Supervised vs unsupervised learning 7

2.1.2 Data . 7

2.2 Focus on classification algorithms . 9

2.2.1 K-Nearest Neighbors . 9

2.2.2 Logistic Regression . 9

2.2.3 Support Vector Machine . 11

2.2.4 Decision Tree . 13

2.2.5 Random Forest . 15

2.3 Artificial Neural Networks . 16

2.3.1 Perceptron . 16

3

2.3.2 Multilayer Perceptron . 17

2.4 Preliminary tests on MNIST dataset 20

3 Classification for Predictive Maintenance: a real industrial appli-
cation 25

3.1 A real appliation . 25

3.2 Introduction to the real application 26

3.2.1 MONSOON project . 27

3.2.2 Aluminium smelting . 28

3.2.3 Classification for prediction: the Predictive Horizon 28

3.2.4 Used tools . 30

3.2.5 Variable selection . 30

3.3 Experiments . 31

3.3.1 Different Predictive Horizons 33

3.3.2 Position of faults and predictions 48

3.3.3 ℓ1 regularization . 55

3.3.4 Adding means and variances to the feature space 57

3.3.5 Trying all the 29 variables of the dataset 61

4 Deep Neural Networks 66

4.1 Learning rate scheduling . 66

4.2 Avoiding overfitting through regularization 66

4.2.1 Early stopping . 67

4.2.2 ℓ1 and ℓ2 regularizations . 67

4.2.3 Convolutional Neural Networks 67

4.2.4 TensorFlow and classification with neural networks 67

5 Conclusions 70

4

Bibliography 72

5

Chapter 1

Introduction

In this chapter, we introduce the problem of PC in process industries. Afterwards,
we introduce some possible solutions present in the market to face the PdM prob-
lem.

1.1 Predictive Control in process industries

The availability of data is changing the manner decisions are taken in industry [1],
in areas such as scheduling [2], maintenance management [3], and quality improve-
ment [4], [5]. Furthermore, the management of maintenance is becoming important
to decrease the costs associated with downtime [6], especially in manufacturing in-
dustries such as semiconductor manufacturing.

We can group the approaches to maintenance management into three cate-
gories [7]:

1. Run-to-failure - where maintenance is performed after the occurrence of fail-
ures. This is obviously the simplest approach and the most adopted one, but
it is also the least effective, as the cost of interventions and associated down-
time are much more higher than those associated with planned interventions.

2. Preventive maintenance - where maintenance is carried out based on a sched-
uled plan. With this approach, failures are usually prevented, but sometimes
unnecessary corrective actions are often performed.

3. Predictive Maintenance (PdM) - where maintenance is performed based on

1

1 – Introduction

the health status of a machine. PdM systems allow us to detect failures and
to make interventions before their occurrences. This is possible thanks to
historical data.

Among PdM methods, the classic one is MPC. Nowadays, the most used so-
lution is the combination of ML techniques and data collected by sensors. MPC,
like ML algorithms, has the objective to minimize a functional cost. The difference
is that it is based on more rigid models. The classic MPC is linear and the opti-
mization problem to solve is convex, and therefore resolvable; but the linear model
itself is rigid. ML techniques (and particularly DL ones) move from a model-based
approach to a data-based one. This is the relevant difference. Models that are
data-based are less rigid because they are constructed on a lot of data.

1.2 Use of Machine Learning in industry: state of
the art

In this section, we introduce the state of the art of the use of ML in industry.

In general, to do PdM, we add some sensors to the system that will monitor
and collect data. Data used for PdM is, in general, a time series collected with
a given frequency. The goal of PdM is to predict at the time "t", using the data
previous to this time, if the equipment will fail in future. There are two approaches:

• Classification approach - predicts if there ican be a failure in the next steps.

• Regression approach - predicts how much time is left before the next failure.
We call this remaining useful life.

The first approach provides a boolean result, and it can provide greater accuracy
with less data. The second approach use more data but it provides the information
about when the failure will occure. A brief example is shown below.

Turbofan engine degradation dataset. Turbofan engine is a gas turbine
engine used by the NASA space exploration agency. NASA has created a dataset to
predict the failures of Turbofan engines. The dataset is available at PCoE Datasets
1.

1http://ti.arc.nasa.gov/c/6/

2

1 – Introduction

In the dataset, there is a time series for each engine. Each engine starts with
different degrees of wear, which the user does not know. Each engine has 21 sensors
that collects different measurements related to the engine state. Collected data is
contaminated with sensor noise.

The engines develop some faults. Data includes engine number, time stamps,
some settings variables, and readings for 21 sensors. The objective is to predict
when the next failure will occur. This is not very different from our case study:
we need to predict the next failure 45 minutes before its occurrence.

1.2.1 Some industrial initiatives exploiting Machine Learn-
ing

In this section, we briefly present some outstanding industrial initiatives where ML
has been introduced.

IoT and ML for industrial PdM. We could combine IoT and ML together:
Attach sensors everywhere and extract infomation from the data collected by sen-
sors. A complete tool chain that can help us is Google Cloud ML (GCML) 2 and
the Losant IoT Platform3. GCML engine is a service that allow to build and de-
ploy ML models easily. Losant is an IoT industry that allows to create scalable
IoT solutions. The system provided by Google Cloud and Losant is a complete
system that take data in input, build and run a ML model, and predict what we
need (generating alerts and visualizing data). These combined tools provide many
benefits (quick time to production, increased efficiency, cost reductions, scalable,
flexible, and reusable IoT architecture). In this way, we can build a complete PdM
system.

Some implementations exploit the sound and the vibration analysis to know
when an equipment may be working outside of its normal condition.

ACME. ACME Industrial4 has launched an initiative to monitor the health
status of its equipment using a system that launch an alert if there is a problem.
This information will be used by the PdM.

As we have mentioned before, a possible solution to this problem is combining
the Losant IoT Platform and GCML engine.

2https://cloud.google.com/ml-engine/?hl=en
3https://www.losant.com/
4http://www.acmeindustrial.com/

3

1 – Introduction

Innovative testbed. The Industrial Internet Consortium (IIC) is the leading
organization that has transformed business and society accelerating the adoption
of the Industrial Internet of Things (IIoT). It has announced the Smart Factory
Machine Learning for Predictive Maintenance testbed, ledded by two companies,
Plethora IIoT and Xilinx.

This testbed explores ML techniques for time-critical PdM. This will help
industries to increase the availability, improve the efficiency and extend the life
time industrial equipments. Downtime costs are very high for an industry and
may reach a lot of millions of dollars per minute. Therefore, unexpected failures
are one of the main problems [21].

A Microsoft solution to Predictive Maintenance. Microsoft Azure ML
is a technique designed by Microsoft to enable computers to recognize and learn
from existing data in order to be able to predict future behavior. Devices and
applications are maked smarter by predictions based on ML data, supplied by
devices that break down as well as functioning properly. This data can be used by
ML to detect trends. The result provide an impression of the value, at which we
should receive a notification indicating that the device is about to break down and
therefore prevent failure before it occurs [22].

In Chapter 3, we will develop ML strategies for a specific industrial PC prob-
lem. Before that, in Chapter 2, we will review some basic principles of ML and the
algorithms that will be considered for our purpose.

4

Chapter 2

Machine Learning algorithms
for classification

In this chapter, we introduce ML, with special focus on the classification methods
which are of interest for our real application study. At the end of the chapter, we
will propose some preliminary tests, that will allow us to investigate the efficiency
of the different algorithms, and then to choose the algorithms suitable for our
purpose.

2.1 Introduction to Machine Learning

When we hear about ML, our mind immediately deeps on a picture of a robot
beeing ordered to do something by humans, or at least, this was what I tought the
first time. This has something of magic, but it is all about Mathematics. However,
ML is not just this; it surrounds us and perhaps we do not know it. It has been used
for many years in many applications, from filtering spam to other applications such
as optical character recognition (recognition of handwritten characters) [9], better
reccomendations (Amazon), or voice recognition (Siri, Cortana, Google Assistant,
etc).

Here, we propose definitions minted by some authors:

"Machine Learning is the science of programming computers so they can learn
from data." Aurélien Géron [10]

5

2 – Machine Learning algorithms for classification

"Machine Learning is the field of study that gives computers the ability to
learn without being explicitly programmed." Arthur Samuel, 1959 [11]

"Machine learning is about predicting the future based on the past." Hal
Daumé III [12]

The last definition gives us a clear idea of what is ML: we train our system
on many data (training data) and when a new data arrives (a new instance), the
system knows to tell us something about them. A famous example is the spam
filter that recognize if an email is spam or not (also called "ham"). It is curious
how ML can solve some tasks that are complex or impossible to aolve through a
traditional program written in some computer languages.

Why not simply write the spam filter by using traditional programming tech-
niques? We should proceed in this way: when an email arrives, checking if it
contains, in the fields or in its body, the most frequently used words by spammers;
if it contains them, classifying the new email as ham.

However, this job will becomes tedious because spammers are always at work,
trying new words; hence, we always need to update the traditional program. Fur-
thermore, the program will become difficult to maintain because of the big list of
written rules.

A ML algorithm can detect automatically new spam emails. The trick is that
it learns from the big amount of emails we feed it: it tries to find how new emails
are similar to spam emails and as a result, it classifies them.

The spam filter is a simple application of ML. A complex one is the voice
recognition. How can we solve it? The best solution, again, is to write an algorithm
that learns by itslef, giving many recordings example for each word.

An incredible task, difficult for humans, is finding patterns not immediatily
apparent and extracting useful information from a large amount of data. This
process is called data mining.

ML is used when:

• we write a traditional program and this involves many complex rules and
difficult maintenance

• we face a complicated problem like voice or image recognition solvable with
ML techniques (see CNN in chapter 4)

• we need to understand the data by finding patterns not immediately visible
into a large amount of data.

6

2 – Machine Learning algorithms for classification

2.1.1 Supervised vs unsupervised learning

In ML, we distinguish two main categories of approach, the supervised and the
unsupervised learning.

Supervised learning. The data that we give to the ML algorithm have the
desired solutions (labels). A supervised learning task is the classification and an
example of it is the spam filter: giving to the classifier the emails and telling it if
they are spam or ham, it will classify (predict) the new emails based on what it
have learned.

Another supervised learning task is regression that provides a numeric value
instead of a label.

The most popular supervised learning algorithms are:

• K-Nearest neighbors (KNN);

• Logistic Regression (LR);

• Support Vector Machines (SVM);

• Decision Tree (DT);

• Random Forest (RF);

• Artificial Neural Networks (ANNs).

These supervised learning algorithms will be studied in depth in the next chapters.

Unsupervised learning. The training data is unlabeled. So the system
learns by examining the data and seeing if it can find some patterns on the data
itself. An unsupervised learning algorithm is clustering (k-Means is one of them);
it is used when we want to organize some individuals into groups with similar
features.

2.1.2 Data

ML is data. If we do not have a lot of good data, even the best algorithm will not
generalize well.

Differently from a toddler, ML algorithms need a lot of data to work well: a
famous paper [28] shows how different ML algorithms have almost the same per-
formances on a complex problem of natural language disambiguation when they

7

2 – Machine Learning algorithms for classification

are fed with enough data. We need to consider the tradeoff between spending
energy on algorithm development versus spending it on corpus development. An-
other paper [29] has emphasized the idea that data matters more than algorithms.
However, nowadays, since we still deal with small- and medium-sized datasets, we
can not abandon algorithms yet.

A relevant part in a ML project is the choice of a good set of features to train
on. Select well the features is very important.

This process is called feature engineering and it involves:

• Feature selection: choosing the most useful features to train

• Feature extraction: combining existing features to produce a more useful one.
Dimentionality reduction algorithms can do this.

• Creating new features by gathering new data

Overfitting the training data. In ML, overfitting means that the model
performs well on the training data, but it does not generalize properly on new data.

Complex models such as DNNs (that we will introduce later) can detect thin
patterns in the data, but if the training set is noisy, the model will probably detect
patterns in the noise and, as a result, the model will not generalize well.

Overfitting happens when the model is complex relative to the amount and
noisiness of the training data. Then possible solutions to solve the problem are:

• choosing a simple model, with fewer parameter to tune,

• reducing the number of features in the training data, through dimentionality
reduction algorithms,

• reducing the noise.

Regularization. Constraining the model to make it simpler and reduce the
risk of overfitting is called .

Suppose we use a linear model y = mx + b, we need to fit the model to our
dataset. The free parameters to tune are m and b; if we want to simplify the
algorithm, we can try to constraint m to have low value and allow the algorithm
to modify the height b. It is required to find a balance between fitting the data
and keeping the model simple enough to generalize well.

8

2 – Machine Learning algorithms for classification

The amount of regularization can be controlled by a hyperparameter of the
learning algorithm. Tuning hyperparameters is an important part of building a
ML algorithm and may take time.

2.2 Focus on classification algorithms

In this section, we present the main classification algorithms, that will be used
later for our purpose. We will see the Mathematics behind supervised learning
algorithms mentioned before and the difference between them. We will also present
the famous handwritten digits dataset and some results obtained by applying these
ML algorithms. Finally, based on comparison between them, we will select the best
supervised learning algorithm for this dataset.

2.2.1 K-Nearest Neighbors

The KNN algorithm is a simple algorithm used for the classification of objects
based on features of the objects near the considered one. It is the easiest one
amongst ML algorithms.

For the sake of simplicity, we will not explain it in detail because it is very
slow in predicting, for large dataset, such as the handwritten digits dataset.

It has a complexity that grows with the number of instances: when a label of
a new instance has to be predicted, the KNN algorithm has to find the k nearest
labeled instances and then it assigns the tag to the new one based on the majority
vote, namely it counts the number of neighbors of each class and it assigns to the
new instance the label of the majority class. k is the hyperparameter to tune.

2.2.2 Logistic Regression

The LR classifier is used to estimate the probability that an instance belongs to a
particular class. If the estimated probability is greater than 50%, then the model
predicts that the instance belongs to that class.

Suppose we have K classes. LR model arises from the desire to pattern the
posterior probabilities of the K classes via linear functions in x, and ensuring that
they sum to one and remain in the interval [0,1], as they are probabilities. x is a
vector that contains the values associated to the features of the new instance. We
want a linear model because it is the simplest one, and it has the form

9

2 – Machine Learning algorithms for classification

log Pr(G=1|X=x)
Pr(G=K|X=x) = β10 + βT

1 x

log Pr(G=2|X=x)
Pr(G=K|X=x) = β20 + βT

2 x

...

log Pr(G=K−1|X=x)
Pr(G=K|X=x) = β(K−1)0 + βT

K−1x.

βi are the coefficients of the model and the entire parameter set is θ =
{β10, β

T
1 , · · · , β(K−1)0, β

T
K−1} The model is specified in terms of K - 1 log-odds

or logit transformations. This is a way to reflect the constraint that the probabili-
ties sum to one. Although the model uses the last class as the denominator in the
odd-ratios, the choise of denominator is arbitraty. A simple calculation shows that

Pr(G = k|X = x) = eβk0+βT
k x, k = 1, · · · ,K − 1

Pr(G = K|X = x) = 1

1+
∑K−1

l=1 eβl0+βT
l

x

LR models are fit by maximizing the conditional likelihood of G given X. The
log-likelihood for N observations (our instances) is

ℓ(θ) =
∑N

i=1 log pgi(xi; θ)

where pgi(xi; θ) = Pr(G = k|X = xi; θ).

Let us talk about the two-classes case, since the algorithm simplify consid-
erably and we will experiment a test about a binary classification problem. It is
convenient to code the two classes gi via a 0/1 response yi, where yi = 1 when
gi = 1, and yi = 0 when gi = 2. Let pi(x, θ) = p(x, θ), and p2(x, θ) = 1 − p(x; θ).
The log-likelihood can be written as

ℓ(β) =
∑N

i=1{yi log p(xi;β) + (1− yi)log1− p(xi;β)}

=
∑N

i=1{yiβTxi − log1 + eβ
Txi}

We need to find the β parameters that maximize the log-likelihood, so we set its
derivatives to zero. We obtain p + 1 non-linear equations in β.

∂ℓ(β)
∂β =

∑N
i=1 xi(yi − p(xi;β))

10

2 – Machine Learning algorithms for classification

There are many ways to solve the equations and one is the Newton-Raphson algo-
rithm: it starts by a small β and than it tries to adjust it. Typically the algorithm
converges, since the log-likelihood is concave, that means that there is only a max-
imum and we can find it.

Typically many models are fit in a search for a parsimonious model involving a
subset of the variables. A parsimonius model is a model with a high sparsity, that
means a model with many coefficents to zero or very close to zero. Computationally,
few coefficients are easy to store in memory and when an instance arrives, the
prediction is fast.

ℓ1 regularized Logistic Regression. In general, we try the ML algorithm
witout penalization and see if it fits well the data. if not, we introduce this pe-
nalization that could help us to fit well the data. We can introduce an ℓ1 penalty,
corresponding to the definition of absolute value, or we can introduce an ℓ2 penalty
(not much used).

Using ℓ1 penalty with LR model, we would maximize this log-likelihood:

maxβ0,β{
∑N

i=1[yi(β0 + βTxi)− log 1 + eβ0+βT xi]− λ
∑p

j=1 |βj |}

where λ is the hyperparameter used to tune the model.

2.2.3 Support Vector Machine

SVM is a ML model able of performing linear or non-linear classification, regression,
and outlier detection. We will focus only on classification (two-classes case) as we
mentioned before.

Linear Support Vector Machine Classification. SVM classifier traces a
line that separates the two classes and stays as far away from the closest training
instances as possible. It tries to fit the widest street between the classes. This is
called margin classification. The decision boundary is determined by the instances
located on the edge of the street. These instances are called the support vectors.
SVM is sensitive to the feature scales: changing the scale of features can affect
changing in the decision boundary.

If we impose that all instances be outside the street and on the right side,
this is called hard margin classification and in many cases it is difficult to obtain
because there are always some instances that stay outside the street or even on the
wrong side.
There are two problems with hard margin classification: it works only if the data is

11

2 – Machine Learning algorithms for classification

linearly separable and it is sensitive to outliers. The objective is to find a tradeoff
between keeping the street as large as possible and limiting the margin violations.
This is the soft margin classification. We can control this balance using the C
hyperparameter.

Unlike LR classifier, SVM classifier does not output a probability for each
class, but it gives us directly the label based on the decision boundary.

Non-linear Support Vector Machine classification. We can handle non-
linear datasets by adding more features, such as polynomial features; in some cases
this can result in a linearly separable dataset. At a low polynomial degree, this
aproach can not deal with very complex datasets, and with a high polynomial
degree, it creates a great number of features, making the model slow.

To solve this problem, SVM can use the kernel trick: it allows to get the same
result as if we added many polynomial features. As a result, there is no explosion
of the number of features since we do not add any features. In literature, there are
few kernel function able to run this trick.

Mathematics behind Support Vector Machine. Our training data con-
sists of N pairs
(x1, y1), (x2, y2), · · · , (xN , yN), with xi ∈ IRp and yi ∈ {−1, 1}. We want to sepa-
rate the classes (linearly separable) by hyperplanes that have this equation

{x : f(x) = xTβ + β0 = 0},

where β is a unit vector: ||β|| = 1.

The equation of hyperplane gives the signed distance from a point x to the
hyperplane f(x) = xTβ + β0 = 0. The optimization problem

maxβ,β0,||β||=1 M
subject to yi(x

T
i β + β0) ≥ M, i = 1, · · · , N ,

captures the concept. M is the margin from the hyperplane, so 2M is the "street"
that SVM has to maximize. The optimization problem can be rephrased as

minβ,β0
||β||

subject to yi(x
T
i β + β0) ≥ 1, i = 1, · · · , N ,

Suppose now that classes overlap in the feature space. A way to deal with this
case is to maximize M and allow for some points to be on the wrong side of the
margin (the soft margin classification mentioned before). Let us define the slack
variables ξ = (ξ1, ξ2, · · · , ξN). The constaint can be modified in this way

12

2 – Machine Learning algorithms for classification

yi(x
T
i β + β0) ≥ M(1− ξi),

∀i, ξi ≥ 0,
∑N

i=1 ξi ≤ constant. The value ξi in the constant yi(x
T
i β + β0) ≥

M(1− ξi) is the amount by which the prediction f(xi) = xT
i β+β0 is on the wrong

side of its margin. The sum
∑

ξi is the total amount by which predictions fall on
the wrong side of their margin. Misclassifications occur when ξi > 1, so bounding∑

ξi at a value K, bounds the total number of training misclassifications at K. The
optimization problem becomes

min ||β|| subject to
yi(x

T
i β + β0) ≥ 1− ξi∀i,

ξi ≥ 0,
∑

ξi ≤ constant.

Computing the support vector classifier. This is a convex optimization
problem. We describe a quadratic programming solution using Lagrange multipli-
ers. Computationally it is convenient to rephrase the problem in the equivalent
form

minβ,β0

1
1 ||β||

2 + C
∑N

i=1 ξi
subject to ξi ≥ 0, yi(x

T
i β + β0) ≥ 1− ξi∀i,

where the cost parameter C replaces the constant K. We can solve the primal or
the dual problem. The Lagrange primal function is

LP = 1
2 ||β||

2 + C
∑N

i=1 ξi −
∑N

i=1 αi[yi(x
T
i β + β0))− (1− ξi)]−

∑N
i=1 µiξi

which we minimize with respect to β, β0 and ξi by setting their derivatives to zero.
We find that the solution for β has the form

β̂ =
∑N

i=2 α̂iyixi.

Given the solutions β̂0 and β̂, the decision function can be written as

Ĝ(x) = sign[f̂(x)] = sign[xT β̂ + β̂0].

2.2.4 Decision Tree

DT is an other ML algorithm able to perform classification in a different way. DT is
a fundamental component of RF which is among the most powerful ML algorithms

13

2 – Machine Learning algorithms for classification

available today.
DT classifier requires very little data preparation. In particular, it does not require
feature scaling or centering (like SVM).

Figure 2.1. Example of a DT for the Iris dataset

How does it make prediction. Let us consider the Iris dataset1. It contains
3 classes of 50 instances each, where each class refers to a type of an iris plant. The
DT classifier builds a binary tree: when a new instance comes, we need to traverse
the tree to decide the class of the instance.

A samples attribute of a node counts how many training instances it applies
to. A value attribute of a node tells us how many training instances of each class
this node applies to. Finally, a gini attribute of a node measures its impurity: a
node is ”pure” (gini = 0) if all training instances it applies to belong to the same
class.

The gini index is calculated as

Gi = 1−
∑N

k=1 p
2
i,k

where pi,k is the ratio of class k instances among the training instances in the ith

node.

How a Decision Tree is built. The most used implementation is CART
(Classification And Regression decision Tree): the algorithm splits the training set

1https://archive.ics.uci.edu/ml/datasets/iris

14

2 – Machine Learning algorithms for classification

in two subsets using a feature k and a threshold tk. It searches for the pair (k, tk)
that produces the purest subsets. After, it splits the subsets recursively using the
same logic until it can not find a split that will reduce impurity. Hyperparame-
ters. DT makes few assumptions about the training set. If left unconstrained, the
tree structure will adapt itself to the training set, fitting it closely. This model is
called a non-parametric model, because the number of parameters is not determined
before starting the training. A parametric model has a predetermined number of
parameters reducing the risk of overfitting. To avoid overfitting the training data,
we need to restrict the freedom of DT during training.

Decision Tree instability. Decision boundaries created by DT are ortogonal
(all splits are perpendicular to an axis), which makes it sensitive to training set
rotation.

2.2.5 Random Forest

In ML, we can also use different classifiers together to predict. Suppose we ask a
question to thousands of random people, then aggregate their answers. In many
cases, we will find that this aggregated answer is better than an answer of an
expert. This is called the wisdom of the crowd. If we aggregate the predictions
of a group of classifiers, we will often get better predictions than with the best
individual classifier. A group of classifiers (predictors or estimaros) is called an
ensemble; this technique is called ensemble learning. For example, we can train a
group of DT classifiers, each on a different random subset of the training set. To
make predictions, we get the predictions of all individual trees, then predict the
class that gets the most votes. This ensemble of DTs is called RF.

A RF classifier has all the hyperparameters of a DT classifier (to control how
trees are grown) and all the hyperparameters to control the ensemble itself. The RF
algorithm introduces extra randomness; instead of searching for the best feature
when splitting a node, it searches for the best feature among a random subset of
features. This results in a greater tree diversity that lead to a better model and a
saving of time.

Feature importance. If we look at a DT, important features appears closer
to the root of the tree, while less relevant features appears closer to the leaves; it is
possible to estimate the importance of a feature by computing the average depth at
which it appears in the forest. RF allows us to have a quick understanding of which
features actually matter, in particular if we need to perform feature selection. This
remember us the ℓ1 regulatization of SVM and LR model that shrinks to zero some
coefficients.

15

2 – Machine Learning algorithms for classification

2.3 Artificial Neural Networks

If we look at the architecture of the brain, we could inspired on how to build an
intelligent machine. This is the idea that inspired ANNs. ANNs have gradually
become different from their biological cousins. In this chapter, we will introduce
ANNs, starting from the first ANN architecture. Then we will present MultiLayer
Perceptron (MLP) and its evolution to DNNs.

2.3.1 Perceptron

The perceptron is a simple form of ANNs. It is based on a Linear Threshold Unit
(LTU): the inputs and outputs are numbers and each input connection is associated
with a weight. The LTU applies a step function to the weighted sum of its inputs:

Z = w1x1 + w2x2 + · · ·+ wnxn = WT ·X),
hw(X) = step(Z) = step(WTX)

The most used step function in perceptron is the Heaviside function (sometimes
the sign function is used).

LTU computes a linear combination of the inputs and if the result exceeds a
threshold, it outputs the positive class otherwise it outputs the negative class (like
the standard ML algorithms). Training a LTU means finding the right values for
the weights.

Perceptrons are trained in this way: it is fed one training instance at a time,
and for each instance it makes its predictions. For every output neuron that pro-
duced a wrong prediction, it reinforces the connection weights from the inputs that
would have contributed to the correct prediction.

wt+1
i,j = wi,j + γ(ŷj − yj)xi

where wi,j is the connection weight between ith input neuron and the jth output
neuron,
xi is the ith input value of the current training instance,
ŷj is the output of the jth output neuron for the current training instance,
yj is the target output of the jth output neuron for the current training instance,
γ is the learning rate.

Since the decision boundary of each unit is linear, perceptron can not learn

16

2 – Machine Learning algorithms for classification

complex patterns (like LR classifiers). If the training instances are linearly sepa-
rable, Rosenblatt demonstrated that this algorithm would converge to a solution.
This is called the perceptron convergence theorem.

2.3.2 Multilayer Perceptron

Now we will show the Mathematics under MLP with a single hidden layer. We
deal with the general case where the number of classes is K.

Figure 2.2. Schematic of a MLP with a singe hidden layer. This a feed-
forward neural netowork

With reference to Figure 2.2, for K-class classification, there are K units at
the top, with the kth unit representing the probability of class k. There are K
target measurements Yk, k = 1, · · · ,K, coded as a 0 - 1 variable. Zm are derived
features and are created from linear combinations of the inputs. The target Yk is
a function of linear combinations of the Zm,

Zm = σ(α0m + αT
mX),m = 1, · · · ,M ,

Tk = β0k + βT
k Z, k = 1, · · · ,K,

fk(X) = gk(T), k = 1, · · · ,K,

17

2 – Machine Learning algorithms for classification

where Z = (Z1, Z2, · · · , ZM), andT = (T1, T2, · · · , TK).

The activation function σ(ν) is usually the sigmoid σ(ν) = 1
1+e−ν . Sometimes

Gaussian radial basis functions are used for the σ(ν).

Other two famous functions are: hyperbolic tangent function tanh(ν) = 2σ(2ν)−
1 and ReLU function. The first is like the logistic function, but its output value
ranges from –1 to 1 (instead of 0 to 1), and this tends to make each output of layer
more or less normalized (centered around 0). This helps speed up convergence.
The second, ReLU(ν) = max(0, ν), is continuous but not differentiable at ν = 0.
However, it works well and has the advantage of being fast to compute. Further-
more, the fact that it does not have a maximum output value also helps reduce
some issues during gradient descent (it will be explained momentarily).

Neural networks are sometimes drawn with an additional bias unit in the
hidden and output layers. The bias unit captures the intercepts α0m and β0k in
the model. The output function gk(T) allows a final transformation of the vector of
outputs T . One of most used function for the final transformation is the softmax
function

gk(T) =
eTk∑K
ℓ=1 eTℓ

This function outputs positive estimates that sum to one and it is used in the LR
model. The units in the middle of the network, computing the derived features
Zm, are called hidden units because the values Zm are not directly observed. In
general there can be more than one hidden layer. Zm are a basis expansion of the
original inputs X as we have seen in SVM; the neural network become a standard
linear model using these transformations as inputs. Here, the parameters of the
basis functions are learned from the data. If σ is the identity function, then the
model collapses to a linear model in the inputs. As a result, a neural network can
be thought as a nonlinear generalization of the linear model. The rate of activation
of the sigmoid depends on the norm of αm , and if ||αm|| is very small, the unit
will operate in the linear part of its activation function.

Gradient descent. It is an iterative optimization algorithm for finding the
minimum of a function. To find a local minimum of a function using gradient
descent, we make steps proportional to the negative of the gradient of the function
at the current point. Instead, if we make steps proportional to the positive of the
gradient, we approaches a local maximum of that function; the procedure is then
known as gradient ascent.

Suppose we want to minimize the function f(x1, x2, x3) = x2
1−x2+x3 choosing

as initial solution the vector x0 = [1,2,3]T . We have that f(x0) = 2 and, in a circle
of x0 the function assumes different values similar to f(x0). These values suggest

18

2 – Machine Learning algorithms for classification

us that to locate points, near x0, where the function assumes a value lower than
f(x0), it is convenient to move along some directions. Furthermore, there are
some preferential directions along which the function decreases more rapidly. The
procedure can be iterated starting from a new point (near x0) for which we got a
value lower than f(x0), until reaching a minimum for f . This is a procedure that
updates the solution in an iterative way based on information locally available
and could locate a minimum point for the assigned function. If the function is
not convex, the gradient descent technique can find a local minimum and not the
global one.

It is like a human that try to reach the valley from the mountains in a dark
night having only a torch.

Fitting the Multilayer Perceptron. The neural network model has un-
known parameters, called weights, and we need to give them values that make the
model fit the training data well. The set of weights are:

{α0m, αm;m = 1, 2, · · · ,M} M(p+ 1) weights,
{β0k, βk; k = 1, 2, · · · K} K(M + 1) weights.

For classification, we use sum of squared errors as our measure of fit (error func-
tion).

R(θ) = −
∑K

k=1

∑N
i=1(yik − fk(xi))

2

Typically we do not want to find the global minimum of R(θ), as this is likely
to be an overfit solution. Instead some regularization is needed: this is achieved
directly through a penalty term, or indirectly by early stopping. Details are given
in the next section. The approach to minimizing R(θ) is by gradient descent, called
back − propagation:

Let zmi = σ(α0m + αT
mxi), and let zi = (z1i, z2i, · · · , zMi). Then we have

R(θ) =
∑N

i=1 Ri =
∑N

i=1

∑K
k=1(yik − fk(xi))

2,

with derivatives

∂Ri

∂βkm
= −2(yik − fk(xi))g

′
k(β

T
k zi)zmi

∂Ri

∂αml
= −

∑K
k=1 2(yik − fk(xi))g

′
k(β

T
k zi)βkmσ′(αT

mxi)xil.

Given these derivatives, a gradient descent update at the (r + 1)st iteration has
the form

19

2 – Machine Learning algorithms for classification

β
(r+1)
km = β

(r)
km − γr

∑N
i=1

∂Ri

∂β
(r)
km

,

α
(r+1)
ml = α

(r)
ml − γr

∑N
i=1

∂Ri

∂α
(r)
ml

,

where γr is the learning rate.

Overfitting. Neural networks have many weights and risk to overfit the
data at the global minimum of R. An early stopping rule could be used to avoid
overfitting, that means that we train the model before we arrive to the global
minimum. We can exploit validation dataset to know when to stop, since we
expect the validation error to start increasing. A method for regularization is
weight decay. We add a penalty to the error function R(θ) + λJ(θ), where

J(θ) =
∑

km β2
km +

∑
ml α

2
ml

and λ ≥ 0 is a tuning parameter. Larger values of λ will tend to shrink the weights
toward zero: typically cross-validation is used to estimate λ. There are other types
of penalty, for example,

J(θ) =
∑

km
β2
km

1+β2
km

+
∑

ml
α2

ml

1+α2
ml

,

known as the weight elimination penalty. This shrink smaller weights more than
the previous penalty.

This concludes the introduction to ANNs.

2.4 Preliminary tests on MNIST dataset

In this section, we will introduce the MNIST dataset, see some definition and see
the results obtained by classification using some of the mentioned algorithms. In
particular, we will see SGD classifier, KNN classifier, LR classifier, DT classifier,
RF classifier and SVM classifier. We will understand which are the important
performance measures used to compare more classifiers. In this paragraph, we
propose a few preliminary tests on the MNIST dataset [16].

The MNIST database of handwritten digits has a training set of 60000 exam-
ples and a test set of 10000 examples. It is a subset of a larger set available from
NIST2. This set has been studied a lot that it is often called the "Hello World" of

2https://www.nist.gov/

20

2 – Machine Learning algorithms for classification

ML.

Some researchers have achieved near-human performance on the MNIST database,
using some neural networks [17]; The highest error rate listed [16] on the original
website of the database is 12 percent, which is achieved using a simple linear clas-
sifier with no preprocessing [18]. In 2013, an approach based on regularization of
neural networks using DropConnect has been claimed to achieve a 0.21 percent
error rate [19].

We have simplified the problem and have only tried to identify one digit, the
number 5. This "5-detector" will be an example of a binary classifier, capable of
distinguishing between just two classes, 5 and not-5. Stochastic Gradient Descent
classifier, as the name tells, uses the concept of gradient descent and it relies on
randomness during training.

There are many performance measures available.

Measuring accuracy using cross-validation Cross-validation is the pro-
cess of partitioning data into subsets, performing the analysis on one subset (the
training set), and validating the analysis on the other subset (the validation set
or testing set). This process is repeated several times using different partitions as
trainning set, and the validation results are averaged to estimate a final predictive
model. Cross-validation is useful when there is not enough data available to par-
tition it into separate training and test sets without losing significant modelling
or testing capability. In particular in k-fold cross-validation, the data is randomly
partitioned into k equal-sized subsamples. Of the k subsamples, a single subsam-
ple is used as test data, and the remaining k − 1 subsamples are used as training
data. The cross-validation process is then repeated k times, with each of the k
subsamples (folds) used exactly once as test data. When the order of the data is
important, cross-validation might be problematic for time series models (our real
case).

We have obtained above 95% of accuracy. Accuracy is not appropriate when
we are dealing with skewed datasets (when some classes are much more frequent
than others). A better way to evaluate the performance of a classifier is to look at
the confusion matrix. The idea is to count the number of times instances of class
A are classified as class B and viceversa.

21

2 – Machine Learning algorithms for classification

Figure 2.3. Confusion matrix showing the misclassifications

With reference to Figure 2.3, a perfect classifier has only true positives and
true negatives, so its confusion matrix would have nonzero values only on its main
diagonal (top left to bottom right).

A measure derived from the confusion matrix is the accuracy of the positive
predictions:

precision = TP
TP+FP

where TP is the number of true positives, and FP is the number of false positives
(false alarms). Precision is used along with the recall metric, also called sensitivity
or true positive rate (TPR): this is the ratio of positive instances that are correctly
detected by the classifier

recall = TP
TP+FN

where FN is the number of false negatives.

The F1 score combines precision and it allows to compare classifiers. The
classifier will get a high F1 score if both recall and precision are high.

F1score =
2

1
precision+ 1

recall

= 2 · precision·recall
precision+recall =

TP
TP+FN+FP

2

In some contexts we care about precision, and in other contexts we care about
recall.

22

2 – Machine Learning algorithms for classification

For example, if we train a classifier to detect videos that are safe for kids, we
prefer a classifier that rejects many good videos (low recall) but keeps only safe ones
(high precision). Instead, if we train a classifier to detect thieves on surveillance
images, we prefer a high recall; in this way, the security guards will get a few false
alerts, but almost all thieves will get caught). Unfortunately, increasing precision
reduces recall, and vice versa. This is called the precision/recall tradeoff.

The receiver operating characteristic (ROC) curve is similar to the preci-
sion/recall curve, but instead of plotting precision against recall, it plots the TP
rate (recall) against the FP rate. The FPR is the ratio of negative instances that
are incorrectly classified as positive. It is equal to 1 - TNR, which is the ratio of
negative instances that are correctly classified as negative. The TNR is also called
specificity. Hence the ROC curve plots sensitivity (recall versus 1 – specificity).
Once again there is a tradeoff: the higher the recall (TPR), the more false positives
(FPR) the classifier produce (because the precision is low). One way to compare
classifiers is to measure the Area Under the Curve (AUC) . A perfect classifier will
have a ROC AUC equal to 1, whereas a random classifier will have a ROC AUC
equal to 0.5.

Table 2.1. Comparing between different algorithms on MNIST dataset using
accuracy, training time and prediction time

Classifier Accuracy (%) Training time (sec) Prediction time (s)
KNN 99.24 18.6 775.8
LR 97.72 7.26 0.04

Linear SVM 96.82 101.4 0.031
DT 97.76 6.6 0.031
RF 98.85 32.4 0.26

The algorithms was running trying several combinations for the parameters
before trying the best combination to get the best score (accuracy).

As we see in Table 2.1, KNN has achievied the best accuracy but it have taken
a long time to give us the predictions. This is due to how the algorithms internally
predicts. We have shown at the beginning of this chapter that KNN computes the
distance between the new instance and all the others in the dataset to decide the
k neighbors of this instance. Finally it decides the class of the instance based on
the majority vote. This work takes a lot of time and it is done in the prediction
phase.

LR was very fast both in fitting the model and in predicting. It allows us
to make a simple model with the help of regularization ℓ1 that makes null some
weights. Hence, the prediction was very fast in this case. Also SVM has the ℓ1

23

2 – Machine Learning algorithms for classification

regularization parameter. However, the training time was very high. DT was the
best algorithm for this dataset as accuracy is comparable to that of KNN and LR
and both training time and prediction time are low. RF, as it is an ensemble of
DTs, has achieved a better result, but at the cost of an increase in training time
because we need to train the model with a multitude of DTs and this takes time.
These preliminary experiments showed us that KNN is definitely slower for large
datasets. For this motivation, we will discard it in next experiments.

24

Chapter 3

Classification for Predictive
Maintenance: a real industrial
application

In this chapter, we present the main contribution of this thesis, that is the appli-
cation of ML to a real industrial PC problem. After introducing the problem and
illustrating the used dataset, we will present our approach, and finally show the
obtained results.

3.1 A real appliation

Our case study is inserted into the MONSOON project 1. Between its objectives,
the MONSOON project aims to improve process industries by implementing new
PC systems. The industries that will use their equipments as pilote sites to imple-
ment the techniques developed by MONSOON project are Aluminium Pechiney
and GLNPlast.
This work thesis concentrates on the first one: specifically, we aim to develop a
strategy to predict breakdowns of a Buss Mixer present in the Aluminium Pechiney
industry.

1https://www.spire2030.eu/monsoon

25

3 – Classification for Predictive Maintenance: a real industrial application

The Buss Mixer [8] is a big equipement that mixes the various petrocarbon
fractions very gently, a critical requirement in the aluminium industry. It is used
for anode paste processing; it is extremely robust and made of special abrasion-
resistant materials. The Buss Mixer often breaks and leads to high process cost.
The undesired stops may involve the definitive failure of some components, which
has relevant economic consequences. We want to predict the breakdowns to im-
prove the process of aluminium production.

The experts in Aluminium Pechiney have evaluated an advance of 45 minutes
would be optimal in order to allow the personnel to reach the mixer and perform
the suitable intervention in order to prevent the breakdowns.

Figure 3.1. a BUSS Mixer

3.2 Introduction to the real application

The real industrial application that we consider in this thesis is a PC problem
studied in the framework of the MONSOON project.

The Buss Mixer. An anode change happens every 32 hours on a given pot.
An anode last 28 days. We want to apply PdM for paste plant equipments which
means trying to predict future breakdowns. We need to predict the stopping of
paste plant caused by degradation of anode quality and to identify their cause for
avoiding them if possible.

The paste plant is made of different chains, each of them having a different
role in the process. Each chain is composed of multiple equipments. For example,

26

3 – Classification for Predictive Maintenance: a real industrial application

the Buss Mixer, in which we are interested, is the J160 equipment from chain J.

By looking at the list of stops/faults occurring in the paste plant, we can
determine: which chain/equipment has the largest number of breakdowns and
which chain/equipment has the largest cumulative duration of breakdowns.

Looking at the list of stops occurring in the paste plant, from September 2016
to February 2017, experts informe us that the stops are as below:

• the J, K and H chains account for 81,5% of the time lost to faults

• J: Mixer (52,2%)

• K: Vibrocompactor (21,3%)

• H: Heater (8%)

The chain J, in particular the Buss Mixer J160, is responsible for most of the
breakdowns (occurrences and duration) and for this reason we want to optimize
its maintenance.

Dataset. The dataset is contained in a CSV file. There is a header composed
of a first column that is the timestamp of each acquired instance, 12 columns
associated to the variables in which we are interested, such us maximum current
intensity, minimum current intensity, mean current intensity of the Buss Mixer,
temperature, motor speed etc. and a last column (label) which indicates if there
was a breakdown or not at that timestamp. Label "1" means breakdown, while
label "0" means that the equipment works as usual.

As we can understand from this explanation, the dataset is a time series. Each
line is an instance taken with an acquisition frequency equal to 5 seconds. The
considered period of time goes from the 1st September of 2016 to 8 June 2017. The
CSV file has 4846680 lines and it is about 1 GB of space.

Our problem is particular because we do not want to predict the next value of
the timeseries, but we need to know if a breakdown will occure in the next minutes,
that is more complicated than the usual case where a data scientist try to predict
the label for the current instance. We need to predict a breakdown some minutes
before the breakdown itself.

3.2.1 MONSOON project

MOONSOON is a SPIRE project that aims to create an infrastucture in support
of the process industries. By monitoring and controlling the processes, the goal

27

3 – Classification for Predictive Maintenance: a real industrial application

of MONSOON is to identify a guided methodology from the output data, which
can improve both the energy consuption and also the reuse of waste material. To
test, validate and demonstrate the results of research, the project will use two real
environments: an aluminium plant and a plastic factory.

The main focus of this project is enabling shared "Process Excellence Cen-
ters" to analyze large volume of available data from multiple shared pot-lines at
supervision level.

Among the outcomes, MONSOON will provide early warnings or even predic-
tive signals on global or individual anomalies in the aluminium plant, which is the
topic of my thesis.

3.2.2 Aluminium smelting

Aluminium is produced following this reaction: 2Al2O3 + 3C + e− → 4Al+ 3CO2

at the temparature of 960 °C. The process to produce the aluminium is done in
an aluminium smelter. It consists of a large number of cells (pots) in which the
electrolysis takes place. A typical smelter contains from 300 to 720 pots, each of
which produces about a ton of aluminium a day. Smelting is run as a batch process,
with the aluminium metal deposited at the bottom of the pots and periodically
siphoned off.

The quality of anode affects technological, economical and environmental as-
pects of aluminium production. Energy efficiency is related to the nature of anode
materials, as well as the porosity of baked anodes. Inhomogeneous anode quality
due to the variation in raw materials and production parameters also affects its
performance and the cell stability.

The anode is now defined as the electrode at which electrons leave the cell
and oxidation occurs (indicated by a minus symbol, "-"), and the cathode as the
electrode at which electrons enter the cell and reduction occurs (indicated by a
plus symbol, "+"). Each electrode may become either the anode or the cathode
depending on the direction of current through the cell.

3.2.3 Classification for prediction: the Predictive Horizon

As we have seen in the introduction, approaches to maintenance management can
be grouped into three categories:

• Run-to-failure

28

3 – Classification for Predictive Maintenance: a real industrial application

• Preventive maintenance

• PdM

This last approch is the one we want to follow because it allows us to decrease
the industial costs.

A possible approach to implement PdM (explained in paper [32]) and, as a
result, prevent unexpected failures is to consider a different classification problem
where, instead of only labeling the last iteration of a maintenance cycle as F (fail-
ure), we label as F the last m iterations. From a PdM perspective, this approach
allows us to provide more conservative maintenance recommendations by choosing
larger values for the failure horizon m. Moreover, by assigning more samples to
the F class, we reduce the skewness of the dataset: Nm samples in class F and n -
Nm samples in class NF (NF stays for "No Failure"). This can be repeated for k
different values of the horizon m. The failure horizon m, called also the Predictive
Horizon (PH), is in minutes in our case. Following this approach, when an instance
is labeled as breakdown (1), we label as 1 also the measurmnet in the m minutes
before it. In this way, we bring back in the past a situation that could occur in
the furure. The ML algorithm learns this pattern and can predict if it will be a
breakdown in the next m minutes.

We have taken this idea from the paper "Machine Learning for Predictive
Maintenance: a Multiple Classifier Approach" [32]. In this paper, a new PdM
methodology based on multiple classifiers is introduced for integral type faults (the
most frequent in semiconductor manufacturing), a term which describes the fail-
ures that happen on a machine due to the accumulative effects of usage and stress
on equipment parts. The paper compares then Multiple Classifier PdM (MC Pdm)
with the Predictive Maintenance (PvM) methodology for a benchmark semicon-
ductor manufactoring maintenance problem, namely, changing of filaments in ion
implantation tools. The dataset is like ours: some iterations are faulty and others
are not faulty. Two metrics are defined, namely:

• Frequency of Unexpected Breaks (ϱUB) - percentage of failures not prevented;

• Amount of Unexploited Lifetime (ϱUL) - average number of process itera-
tions that could have been run before failure if the preventative maintenance
suggested by the maintenance management module had not been performed.

Different costs, cUB and cUL, can be associated with ϱUB and ϱUL; it is possible
minimize the total operating costs, as defined by the weighted sum: J = ϱUBcUB+
ϱULcUL. In the presented approach k classifiers work in parallel (in our customized
apporach, we have used one ML algorithm at a time and repeated the experiments

29

3 – Classification for Predictive Maintenance: a real industrial application

for k different value of PH) and a maintenance event is triggered by the decision
making logic based on an operating costs minimization philosophy. Performance
of the MC PdM methodology increases with the number of classifiers, k, since each
classifier provides more information on the health status of the process. In our
case, k is the number of different value of PH. In the paper, it has been considered
two classification techniques, namely: SVM and KNN. It can be appreciated how
PdM and MC PdM outperform PvM approaches for both metrics.

3.2.4 Used tools

Python. Python is simple, consistent, and math-like. The code is readable pseu-
docode. It comes with a huge amount of inbuilt libraries (mainly libraries for
ML). Some of the libraries are TF, Scikit-learn, Pandas, Numpy (that we have also
used). We can get into ML without knowing very well Python, differently from the
other programming languages. Furthermore, the time spent on debugging code in
python is way less when compared to other compiled languages.

Scikit-learn. Scikit-learn is a ML library for Python. It implements various
classification, regression and clustering algorithms including SVM, RF, gradient
boosting (technique used to enhance performance of DT), k-means and many oth-
ers, and is designed to interoperate with NumPy library. It allows also dimen-
sionality reduction, model selection and data preprocessing. Scikit-learn is largely
written in Python, with some core algorithms written in Cython to achieve perfor-
mance.

Pandas. Pandas is a Python library providing fast, flexible, and expres-
sive data structures designed to make working with "relational" or "labeled" data
both easy and intuitive. The two primary data structures of pandas, Series (1-
dimensional) and DataFrame (2-dimensional), handle the majority of use cases in
finance, statistics, social science, and many areas of engineering. Pandas is built
on top of NumPy.

Numpy. NumPy (Numeric Python) is an extension module for Python, which
provides fast precompiled functions for mathematical and numerical routines. Fur-
thermore, NumPy enriches Python with powerful data structures for efficient com-
putation of multi-dimensional arrays and matrices.

3.2.5 Variable selection

RF, SVM and LR give us an idea about the important features of the dataset. They
can perform a feature selection, a way to highlight the most important features of

30

3 – Classification for Predictive Maintenance: a real industrial application

the dataset. Such non-relevant features can then be neglected, which provides a
more parsimonious model. Industries, often, put a lot of sensors around, because
of their cheapness, that acquire measurements of many variables, without bein sure
that these variables are connected to the actual purpose. For this reason, it is also
important to make feature selection in the industry domain. In this way,we have
few features and the model computed by the algorithm is simplier and faster to
compute. We will see some results about this. SVM uses the ℓ1 regularization to
obtain a "sparse solution", that is to nullify some weights of features [27], while RF
gives us an index of the importance of a feature based on its position in the "forest".
The node (feature) located near the root are more important than others. SVM
can use also the ℓ2 regularization but it does not null weights as ℓ1 regularization
does. We can combine them and use the elastic regularization, that means that we
use both of them but giving them a weight. In this manner, we adjust the model
to fit well the data and null some weights, hence remove some features.

If we look to the "decision forest" created by RF algorithm, important features
are likely to appear closer to the root of the tree, while unimportant features will
often appear closer to the leaves (or not at all). It is therefore possible to get an
estimate of the importance of a feature by computing the average depth at which
it appears across all trees in the forest. RF give us a quick understanding of what
features actually matter, in particular if we need to perform feature selection.

DT gives us an idea for the most relevant features, but RF, as it uses many
DTs, gives us a better idea about relevant and irrelevant features.

Mathematically, the ℓ1 regularization is a term added to the equation of the
model that can be manipulated through a regularization parameter called λ.

3.3 Experiments

In this section, we present the experiments performed to predict the breakdowns
of the Buss Mixer (introduced in Section 3.1)

We have divided the dataset into a training set and a test set, in a cronolog-
ically manner. This means that the first part was used for train the algorithms,
while the last part was used for testing them. The training set is 70% of the whole
dataset and the test set is the last remaining 30%. The algorithms used was LR,
DT, RF, SVM and MLP. We have chosen these algorithms because, for an intial
approach to ML, they are different between each other and some of them are used
very often in practice. Furthermore, they are easily to understand. RF and SVM
are very popular and perform well in many cases. MLP was used to compare a

31

3 – Classification for Predictive Maintenance: a real industrial application

small neural network to the traditional ML algorithms. In the next chapter, we
will see the results obtained by using DNN with TF.
Let us take a look to the dataset.

Figure 3.2. In the dataset, different faults are labeled with different natural num-
bers in the range [0, ...] (as shown on the y-axis). We label by -1 (and green color)
the instants of normal activity.

In Figure 3.2, we have a graphical representation of the dataset. As we see, we
have many faults. These faults are not only the faults of the Buss Mixer discussed
previously but include also the faults of the other chains. The green points at
level -1 indicate normal (non-faulty) activity. The initial nearly 9000 value have
fault 0 that is not documented, so we have removed them later from the dataset;
they are not so many against about 4800000 instances, hence they will not affect
predictions at all. All the other points are faults relatives to the range of chains
we have previously talked about.

Since we do not want to predict also the type of faults, we consider all these
faults as faults of one type only and try to predict the breakdowns (faults) using
the different ML algorithms mentioned. Let us start with DT.

32

3 – Classification for Predictive Maintenance: a real industrial application

3.3.1 Different Predictive Horizons

After the ML algorithms has decided the label for the new instances, we predict
in this way: we launch the "alarm" when we encounter the first 1 (failure) in the
new instances and then we compute the temporal distance between the first 1 in
the test set and the 1 that we have encountered (Another approach is to launch
the alarm after encountering in series a certain number of 1s). The idea has been
taken by a scientific article ([32]).

The industrial experts evaluated that 45 minutes would be the optimal advance
to perform an intervention and prevent breakdown. We have tried different PHs:
5 minutes, 20 minutes, 45 minutes and also 60 minutes, to see how the algorithms
behave in different situations.

Table 3.1. Results for predictions with DT at different PHs
Prediction
Horizon(min)

Dataset
balancement(%) Accuracy (%) Faults Detected

faults
False
alarms

5 98.47 99.03 148 99 80
20 94.54 95.78 134 91 17
45 88.73 90.74 127 88 18
60 85.44 87.84 123 86 17

Precision(%) Recall(%) AUC(%) tabular Training
time(sec)

69.03 55.80 77.72 1.74
82.88 21.75 60.75 1.54
88.20 13.39 56.59 1.58
90.95 11.72 55.77 1.61

In Table 3.1, we show the results. Dataset balancement is the percentage of
instances labelled as -1 against instances labeled as 1, and we can see clearly that
the dataset is always unbalanced. For a PH of 45 minutes, which we are interested
in, the accuracy is 2% above the dataset balancement and this is good becasue
it tells us that the algorithm actually does not classify randomly. The number of
false alarms is low. The training time is about 1 second and a half. The number of
faults decreases because there are some overlapping of "1" safter the introduction
of the preditive horizon. In the next figures we see that we are able to predict the
breakdowns 10 minutes of advance. These figures shows minutes in the x-axis and
number of predicted faults in the y-axis. Each bar tell us how many faults has

33

3 – Classification for Predictive Maintenance: a real industrial application

been detected and how much time before.

Figure 3.3. Number of predicted faults by DT for PH equal to 5 minutes.

In Figure 3.3, we see that the majority of faults detected (70 faults) was
detected 4 minutes before.

34

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.4. Number of predicted faults by DT for PH equal to 20 minutes.

Figure 3.5. Number of predicted faults by DT for PH equal to 45 minutes.

35

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.6. Number of predicted faults by DT for PH equal to 60 minutes.

A part the Figure 3.3 (5 minutes of PH), the other figures show us clearly that
for most times, we were able to predict the faults 10 minutes before the breakdown
and sometimes we were able to predict some faults 45 minutes before (see the
Figures). Even with PH set to 60 minutes, we were not able to surpass 10 minutes.
Now let us see the results obtained by using RF.

Table 3.2. Results for predictions with RF at different PHs
Prediction
Horizon(min)

Dataset
balancement(%) Accuracy (%) Faults Detected

faults
False
alarms

5 98.47 99.02 148 97 71
20 94.54 95.75 134 91 15
45 88.73 90.72 127 88 16
60 85.44 87.81 123 86 15

In Table 3.2, we clearly see that there is no so much difference between using
DT classifier or RF classifier, since they give us the same results. The only dif-
ference is the training time which is higher for RF. This is obvious since RF use
a higher number of DT estimators. The traning time is not so interesting for our
case.

Remember that RF gives us an idea of the relevant features, but we think

36

3 – Classification for Predictive Maintenance: a real industrial application

Precision(%) Recall(%) AUC(%) Training
time(sec)

69.49 52.57 77.93 5.75
82.90 20.95 60.95 6.02
88.39 13.05 56.44 6.92
91.13 11.45 55.88 5.29

that SVM gives us this idea in a clearer way since it shrinks to zero the weights of
irrelevant features and we can see directly the coefficients of the model. RF does
not allow us to see them. Momentarily, we will also see the results obtained by
applying the LR classifier that uses ℓ1 and ℓ2 regularization like SVM.

Figure 3.7. Number of predicted faults by RF for PH equal to 5 minutes.

Also using RF with a PH of 5 minutes we have obtained the same information
obtained with DT.

37

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.8. Number of predicted faults by RF for PH equal to 20 minutes.

Figure 3.9. Number of predicted faults by RF for PH equal to 45 minutes.

38

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.10. Number of predicted faults by RF for PH equal to 60 minutes.

Again, also with RF classifier, we were only able to classify within 10 minutes
instead of 45 minutes.

Table 3.3. Results for predictions with LR at different PHs
Prediction
Horizon(min)

Dataset
balancement(%) Accuracy (%) Faults Detected

faults
False
alarms

5 98.47 99.14 148 85 68
20 94.54 95.71 134 89 18
45 88.73 90.69 127 86 15
60 85.44 87.79 123 83 15

Precision(%) Recall(%) AUC(%) Training
time(sec)

90.38 42.26 81.03 15.47
82.29 20.25 64.19 18.35
88.04 12.77 57.74 21.44
90.91 11.28 56.24 17.06

39

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.11. Number of predicted faults by LR for PH equal to 5 minutes.

Figure 3.12. Number of predicted faults by LR for PH equal to 20 minutes.

40

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.13. Number of predicted faults by LR for PH equal to 45 minutes.

Figure 3.14. Number of predicted faults by LR for PH equal to 60 minutes.

Also LR behaves in the same way as the previous classifiers. Remember that

41

3 – Classification for Predictive Maintenance: a real industrial application

we are interested in predicting breakdowns 45 minutes before, but again we have
been able to predict the breakdowns only 10 minutes before.
Under the Table 3.4 below, we find the results obtained by running the SVM
classifier.

Table 3.4. Results for predictions with LR at different PHs
Prediction
Horizon(min)

Dataset
balancement(%) Accuracy (%) Faults Detected

faults
Faults
alarms

5 98.47 98.53 148 37 25
20 94.54 95.04 134 38 14
45 88.73 90.69 127 87 13
60 85.44 87.80 123 84 16

Precision(%) Recall(%) AUC(%) Training
time(sec)

40.37 12.61 82.42 47.08
61.58 6.89 61.54 81.12
88.25 12.77 55.82 11.39
90.94 11.41 54.60 21.23

Figure 3.15. Number of predicted faults by SVM for PH equal to 5 minutes.

42

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.16. Number of predicted faults by SVM for PH equal to 20 minutes.

Figure 3.17. Number of predicted faults by SVM for PH equal to 45 minutes.

43

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.18. Number of predicted faults by SVM for PH equal to 60 minutes.

We have decided to use a PH of 60 minutes to see if we could obtain better
results, but as we can see from the figures associated with a PH of 60 minutes, we
were able only to predict within 10 minutes.

Now, let us try a shallow neural network (a MLP with one hidden layer and two
units) to see if neural networks performss better than standard ML algorithms
since ANNs are able to "generate" every type of non-linear function and as a re-
sult, they are able to face a lot of classification problem. The problem is that,
in general, the training time is greater than the training time of traditional ML
algorithms. In this case, since we have a small neural network, the training time
is low.

Table 3.5. Results for predictions with neural network (one hidden layer
and 2 units) at different PHs

Prediction
Horizon(min)

Dataset
balancement(%) Accuracy (%) Faults Detected

faults
False
alarms

5 98.47 99.00 148 97 86
20 94.54 95.75 134 91 17
45 88.73 90.72 127 88 17
60 85.44 87.82 123 86 18

44

3 – Classification for Predictive Maintenance: a real industrial application

Precision(%) Recall(%) AUC(%) Training
time(sec)

67.94 53.32 78.06 12
82.74 20.91 60.98 31.35
88.14 13.11 57.02 25.47
90.92 11.55 55.72 20.05

Figure 3.19. Number of predicted faults by MLP for PH equal to 5 minutes.

45

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.20. Number of predicted faults by MLP for PH equal to 20 minutes.

Figure 3.21. Number of predicted faults by MLP for PH equal to 45 minutes.

46

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.22. Number of predicted faults by MLP for PH equal to 60 minutes.

We can observe that also with neural networks we obtain prediction within 10
minutes of advance, similarly to previous techniques.

Let us aggregate these results in one table for PH equal to 45 minutes to
compare the ML algorithms and see which one has the best performances for our
use case. The dataset balancement is 88.73 %, that means that the label -1 (no
fault) is noumerous with respect to the label 1 (fault). The number of detected
faults is 127.

Table 3.6. Results of classifiers for PH equal to 45 minutes where Clas. = Classi-
fiers, Acc. = Accuracy, Prec. = Precision, Rec. = Recall, Det. faults = Detected
faults, False al. = False alarms, Tr. time = Training time

Clas. Acc, (%) Prec.(%) Rec.(%) AUC(%) Det.
faults

False
al.

Tr.
time(sec)

DT 90.74 88.20 13.39 56.59 88 18 1.58
RF 90.72 88.39 13.05 56.44 88 16 6.92
LR 90.69 88.04 12.77 57.74 86 15 21.4

SVM 90.69 88.25 12.77 55.82 87 13 11.39
MLP 90.72 88.14 13.11 57.02 88 17 25.47

We will focus only on the PH of 45 minutes from now on. We are interested

47

3 – Classification for Predictive Maintenance: a real industrial application

in having a high accuracy with a high number of faults detected and few false
alarms. SVM seems to be a good choice: The accuracy is similar to the other
classifiers; there is no difference in the number of detected faults (88 against 87 or
86) and the number of false alarms is the lowest. Furthermore, the model computed
by SVM using ℓ1 regularization is simplier and faster because it shrinks to zero
the majority of weights. We will see momentarily the coefficients of the model
computed by SVM.

3.3.2 Position of faults and predictions

Having a high accuracy is not sufficient to claim that a certain classifier is the best;
We need to know the position of the faults and the predictions, i.e launching the
alarm when the classification pass from 0 to 1, made by the algorithms. In this
paragraph, we only have some figures in which we show some situations that we
have observed during esperiments.

In Figure 3.23, we show the position of faults, false alarms and predictions
made by DT classifier. The other classifiers give us the same result or a very sim-
ilar result.

Figures 3.23, 3.24, 3.25, 3.26, 3.27 show us the interval before a faults and tell
us if we have predicted well the faults. We can also see the false alarms in Figure
3.29.

48

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.23. This faults was not predicted

We have plotted the labels obtained by running the classifier and the labels
of the test set to see if they match. In this way, we can see if the classfier has
predicted well, if there was a false alarm or how much before the classifier has
predicted the fault. In the x-axis, we have the instances, while in the y-axix we
have the predictions made the classifiers and the label of the test set. In this case,
the classifier has not predicted the fault at all: in fact, after the 17500th instance,
we have a series of faults (in blue), but the classifier has labeled them with label
-1 and this is clearly a mismatch.

49

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.24. Fault not predicted 45 minutes before

In Figure 3.24, the fault was predicted well, but only at the end of the interval
of time. This matches with the histogram we have shown before in which we have
seen that the classifier is able to predict only 10 minutes before in the most cases.

The predictions were right for different instances at the end of the interval of
breakdowns, but it is enough for us only one right prediction within this interval
to tell that this breakdown (a sequence of labels 1) was predicted.

50

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.25. Fault predicted at the end of 45 minutes preceded with a false alarm

In Figure 3.25, the fault was predicted, but a false alarm preceded it. Looking
closely, this false alarm is not important as the series of breakdowns is far from it.

51

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.26. Fault predicted with advance

Figure 3.26 shows a fault that was predicted with a little of advance with
respect to the 45 minutes. As said, the first prediction, made at the 900th instance,
is sufficient to tell that the fault was predicted. To know how much time before we
have predicted the fault, we need to start from this instance to the last instance of
the blue line. Passing from an instance to the other is 5 seconds.

52

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.27. A clear false alarm

Figure 3.27 is a false alarm. Fortunately, false alarms are few with respect to
the detected faults.

Let us have a look to the position of detected faults and false alarms for the
different classifier.

53

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.28. Positions of faults detected by classifiers for PH of 45 minutes

Figure 3.28 shows the positions of the detected faults by each classifier. In the
x-axis, we see the faults, while in the y-axis we have the position in the dataset.
Over the 127 faults, none of the classifiers have detected all of them. The majority
of the classifiers have detected 88. The faults not detected was labeled with the
value 0.

All classifiers detect 88 faults over the 127 present in the dataset, except SVM
classifier that detects 87 faults and LR classifier that detects 86 faults. We can see
this in the graph: already at the beginning, SVM classifier misses a fault and LR
classifier misses two faults (see the blue dot associated to SVM classifier and the
two yellow right-arrow associated to LR classifier)

One thing not visible in the graph is that in most cases, DT classfier and RF
classifier detect the faults from 5 second to 50 seconds before the other classifiers.

54

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.29. Positions of false alarms detected by classifiers

Here instead, we see false alarms detected by classifiers. On average, the
number of false alarms is 15 and they are almost all detected in the same position.
The classifiers who have detected a higher number of false alarms, in reality, they
have detected a unique false alarm because they are too close.

We can conclude after this detailed analysis that the classifiers behave in the
same way in front of this dataset even if they are different and they use different
approaches to classify. We have seen that there is only one important feature and
this can tell us that we have a lot or irrelevant features.

3.3.3 ℓ1 regularization

Using the ℓ1 regularization of the SVM classifier, we have found an interesting
result. These are the coefficients of the model computed by SVM classifier:

β =
[−0.0014, -0.15,−0.011,−0.0013, 0, 0, 0.0032, 0.015,−0.00088, 0.0071,−0.046, 0]

55

3 – Classification for Predictive Maintenance: a real industrial application

We notice immediately that the second coefficient −0.15 (associated with maximum
current intensity of the Buss Mixer) has an order of magnitude greater than other
coefficients. We therefore ask ourselves what happens if we put all the coefficients
to zero except -0.15. We have removed all the features from the feature space
and used only this feature to see if we would obtain the same result that we have
obtained considering all the 12 features. The result is shown in Figure 3.30.

Figure 3.30. Number of predicted faults by SVM for PH equal to 45 minutes
using only the most important feature

As we see, this plot that shows that the SVM classfier predict the faults only
10 minutes before is similar to the plot that we have seen in the Figure 3.17

The traning time is lower (about 1 second) because the feature space is very
small now. The performance measures are: accuracy is 90.70 %, precision is 88.08
%, recall is 12.93 % and AUC is 57.09 %. Over the 127 faults, the classifier has
detected 87 as expected and 16 false alarms, namely 3 more false alarms with
respect to the previous case. This confirms that there is only one relevant feature;
hence, the other features could be dropped because they have not given us useful
information.

Let us try to add some "derived" features to see if we are able to enhance the
results got until now.

56

3 – Classification for Predictive Maintenance: a real industrial application

3.3.4 Adding means and variances to the feature space

For each feature, we have added two other features: the variance and the mean.
These variancces and means are computed over a windows of n instances. Than we
have slided this window to the next instance and have computed the variance and
the mean over the n previous instances. For the first n instances of the dataset,
the mean is the value itself of the variable and the variance is zero. Totally, the
dataset has 36 features. Let us see the result for the different classifiers.

Figure 3.31. Number of predicted faults by DT for PH equal to 45 minutes adding
means and variances to the initial 12 variables of the dataset

With respect to Figure 3.5, we note that DT algorithm has predicted many
times the breakdowns 6 minutes before. Also the number of breakdowns predicted
45 minutes before has increased. Again, we notice two breakdowns predicted with
11 and 12 minutes of advance.

Even if the general trend is similar to the previous figures (the majority of
breakdowns was predicted nearly 10 minutes of advance), here we pass from 1 to
9 predictions with an avance of 45 minutes.

57

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.32. Number of predicted faults by RF for PH equal to 45 minutes adding
means and variances to the initial 12 variables of the dataset

For RF algorithm, we do not see big differences with respect to Figure 3.9: a
breakdown, that was predicted 12 minutes before, has not been predicted at all.

58

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.33. Number of predicted faults by LR for PH equal to 45 minutes adding
means and variances to the initial 12 variables of the dataset

Figure 3.34. Number of predicted faults by SVM for PH equal to 45 minutes
adding means and variances to the initial 12 variables of the dataset

59

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.35. Number of predicted faults by MLP for PH equal to 45 minutes
adding means and variances to the initial 12 variables of the dataset

With respect to Figure 3.21, the graph is slightly different: 4 breakdowns
was predicted with an advance of 45 minutes and the majority of breakdowns was
predicted 3 minutes before instead of 6 minutes.

Even if there was some changes in the graph, the situation is almost the same
because most predictions are concentrated in the interval of time between 1 minutes
and 10 minutes.

Below, we find the comparison between the classifiers based on some perfor-
mance measures. The number of faults is 127 and the dataset balancement is 88.73
as seen with the previous results.

With respect to table 3.6, we immediatily notice the bad performances of DT,
with a lower accuracy and precision and a higher number of false alarms. Also
the training time has worsened; it is even higher than that of RF. RF has slighly
improved. LR has slightly improced in some measures and slightly worsened in
others; the traning time is very high. SVM has detected 86 faults instead of 87
and the number of false alarms has increased by 2 units. MLP has had the worst
performances, especially for the number of detected faults that was 42 against the
previous 88. Overall, it seems that SVM was the best.

60

3 – Classification for Predictive Maintenance: a real industrial application

Table 3.7. Results of classifiers for PH = 45 minutes (Class. = Classifiers, Acc.
= Accuracy, Prec. = Precision, Rec. = Recall, Det. faults = Detected faults,
False al. = False alarms, Tr. time = Training time

Class. Acc. (%) Prec.(%) Rec.(%) AUC(%) Det.
faults

False
al.

Tr.
time(sec)

DT 85.89 25.55 18.18 57.03 88 47 98.58
RF 90.72 88.43 13.08 57.58 88 16 13.05
LR 90.76 87.90 13.65 56.88 86 17 138.44

SVM 90.72 87.64 13.28 56.41 86 15 50.38
MLP 89.29 45.58 11.80 55.08 42 17 35.29

3.3.5 Trying all the 29 variables of the dataset

Until now, we have used only 12 variables of the original feature space. These
variables were related to the Buss Mixer. Let us use all the 29 variables present
in the original dataset and see if we can improve our results. These variables are
related also to the other equipment of the J chain.

Figure 3.36. Number of predicted faults by DT for PH equal to 45 minutes using
all the 29 variables of the dataset
Differently from the case in which we have used only 12 variables, using all the

29 variables changes the distribution of the number of faults predicted by DT; we
have zero or few faults between 1 minute and 4 minutes and a high concentration

61

3 – Classification for Predictive Maintenance: a real industrial application

at 5-6 minutes. Furtheremore, this time we have not been able to predict a fault
with 12 minutes of advance as in Figure 3.5, but we have been able to predict one
time a fault with 45 minutes of advance.

Figure 3.37. Number of predicted faults by RF for PH equal to 45 minutes using
all the 29 variables of the dataset

Instead, RF has given us the same distribution. This is because RF uses
different DTs that decide together and this has improved the results.

62

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.38. Number of predicted faults by LR for PH equal to 45 minutes using
all the 29 variables of the dataset

Figure 3.39. Number of predicted faults by SVM for PH equal to 45 minutes
using all the 29 variables of the dataset

63

3 – Classification for Predictive Maintenance: a real industrial application

Figure 3.40. Number of predicted faults by MLP for PH equal to 45 minutes
using all the 29 variables of the dataset

LR, SVM and MLP like RF give us the same results as before. In all the
previous graphs, we see that all classifiers have been able to predict faults with 10
minutes of advance.

The table below shows the comparison between the algorithms and how the
measures have changed with respect to the case of 12 variables.

Table 3.8. Results of classifiers for PH equal to 45 minutes using all 29
variablese of the dataset where Clas. = Classifiers, Acc. = Accuracy, Prec.
= Precision, Rec. = Recall, Det. faults = Detected faults, False al. = False
alarms, Tr. time = Training time

Clas. Acc. (%) Prec.(%) Rec.(%) AUC(%) Det.
faults

False
al.

Tr.
time(sec)

DT 90.53 85.19 11.60 55.57 59 9 2.97
RF 90.74 87.61 13.44 57.36 88 16 6.66
LR 90.67 87.83 12.64 56.03 87 18 49.76

SVM 90.75 88.28 13.40 56.42 88 15 20.78
MLP 90.78 88.23 13.75 56.81 88 18 33.12

In bold we have the best value for each performance measure. The first thing
we notice is that DT has detected only 59 faults against 88 of the previous case.

64

3 – Classification for Predictive Maintenance: a real industrial application

The second thing that we notice is that the training time of all algorithms has
doubled. This is obvious because of the new variables introduced. The accuracy
of DT has slightly worsened together with the rest of measures. For the other
classifiers, some measures have worsened, while others have improved. In both
cases, the improvement or the worsening was lightweight. LR has detected 87
faults, one plus the previous case, while SVM has reached the 88 detected faults
(they was 87). SVM has still the lowest number of false alarms. For the ratio
false alarms/detected faults, SVM is the winner. This time, MLP had the highest
accuracy and the best recall. However, there was not so much difference with SVM.

65

Chapter 4

Deep Neural Networks

We have already introduced DNNs in chapter 2 when we have talked about the
MLP. Let us continue our discussion about them introducing some parameters to
regularize the network and some techniques to enhance results.

4.1 Learning rate scheduling

Finding a good learning rate can be difficult. If we set it too high, training may
diverge. If we set it too low, training will eventually converge to the optimum, but
it will take a very long time. If we have a limited computing resources, we may
have to interrupt training before it has converged, yielding a suboptimal solution.
We can be able to find a good learning rate by training our network several times
using various learning rates and comparing the learning curves. The ideal learning
rate will learn quickly and converge to good solution. There are many different
strategies to reduce the learning rate during training.

4.2 Avoiding overfitting through regularization

DNNs typically have a lot of parameters. As a result, the network has an big
amount of freedom and can fit a variety of datasets. But this great flexibility
also means that it is prone to overfitting the training set. In this section we will
present some of the most popular regularization techniques for neural networks:
early stopping, l1 and l2 regularization.

66

4 – Deep Neural Networks

4.2.1 Early stopping

To avoid overfitting the training set, a first solution is early stopping: interrupt
training when its performance on the validation set starts dropping. Although
early stopping works well in practice, we can usually get higher performance by
combining it with other regularization techniques.

4.2.2 ℓ1 and ℓ2 regularizations

We have already introduced this in chapter 2. Like we have done for simple linear
models, we can use l1 and l2 regularization to constrain a connection weights of
a neural network. One way to do this using TF is to simply add the appropriate
regularization terms to our cost function.

4.2.3 Convolutional Neural Networks

This is a small degression to complete the discusion about the type of neural
networks. We will give a small space also to RNN.

CNNs emerged from the study of the visual cortex of brain, and they have
been used in image recognition since the 1980s. In the last few years, thanks to
the increase in computational power, the amount of available training data, CNNs
have managed to achieve superhuman performance on some complex visual tasks.
They power image search services, self-driving cars, automatic video classification
systems, and more. Moreover, CNNs are not restricted to visual perception: they
are also successful at other tasks, such as voice recognition or Natural Language
Processing (NLP); however, we will focus on visual applications for now.

4.2.4 TensorFlow and classification with neural networks

About TensorFlow

TF is an open source software library for numerical computation using data flow
graphs. Nodes in the graph represent mathematical operations, while the graph
edges represent the multidimensional data arrays (tensors) communicated between
them. The architecture is flexible and allows us to deploy computation to one or
more CPUs or GPUs in a desktop, server, or mobile device with a single API. TF
was originally developed by researchers and engineers working on the Google Brain
Team within Google’s Machine Intelligence research organization for the purposes

67

4 – Deep Neural Networks

of conducting ML and DNNs research, but the system is general enough to be
applicable in a wide variety of other domains as well.

Results for the industrial case

Table 4.1 shows the number of layers used in the ANN, the number of units per layer
and the performance measures which we have tried to get a longer prediction time.
We have started from shallow ANNs to arrive to DNNs (10 layers). The number
of units forms a sort of funnel, from the bottom layer to the top one. Moreover,
the results are, in the majority of cases, similar to those obtained using classic ML
algorithms.In fact, moving from a shallow ANN of one layer (the second row of the
Table 4.1) to a DNN of 10 layers (the last row), the peformance measures are not too
different. In the middle, there are ANNs with different depths, number of nodes per
layer and different learning rates, that give similar results or bad ones (an example
is the fourth row). A DNN should give us better results because incrementing
the number of layers, the model becomes more complicated and sophisticated. By
incrementing therefore the number of layers, we would expect better results. If we
do not get better results, it is possibile that the cause are the data. From this fact,
we observe that the data must be improved because they seem not to be relied to
failures of the Buss Mixer. In the previous tests carried out with the classic ML
algorithms, we have shown, using SVM, that one variable is more relevant than
the others (see Subsection 3.3.3). The classifiers lean only on this variable to give
the label to the measurements and this seems to be not sufficient. To improve the
results, it would be advisable to study together with the industrial experiments if
other data can be acquired from the sensors present actually in the industry or if
new sensors can be installed, after having studied on a physical level which could
be the variables to be monitored.

To carry out the tests, we have used the version of TF that uses also the GPU,
to go faster. The GPU used was Nvidia GeForce GTX 950M, with 4 GB of memory
dedicated. In the Table 4.1, we do not see layers with 1024 units because of the
"ResourceExausted" error. The computer used for the experiments was not able to
allocate the structure for 1024 units. In future, we can think about implementing
our techniques on more powerful GPUs and using a cluster of machines.

68

4 – Deep Neural Networks

Table 4.1. Results of predictions using ANN with different values for parameters.
PH = 45 minutes and the number of faults is 127 (L. = Number of layers, L.R.
= Learning rate, A. = Accuracy, P. = Precision, R. = Recall, D.F. = Detected
faults, F.A. = False alarms, T.T. = Training time)
L. Units L.R. A. (%) P. (%) R. (%) D.F. F.A. T.T. (sec)
1 8 1e-2 90.65 88.08 12.44 86 20 39.59
1 8 1e-3 90.76 88.04 13.61 88 20 33.01
1 8 1e-4 90.62 87.74 12.12 87 20 37.67
1 16 1e-3 89.99 77.84 6.27 39 22 31.9
1 16 1e-4 90.77 87.69 13.78 88 70 32.33
1 32 1e-2 90.01 78.22 6.38 39 19 30.56
1 32 1e-3 90.76 88.27 13.55 88 21 30.73
1 32 1e-4 90.72 87.71 13.19 89 47 29
1 64 1e-2 90.01 78.28 6.40 39 16 33.48
1 64 1e-3 90.74 87.93 13.43 88 23 36.50
1 64 1e-4 90.77 88.04 13.66 89 25 33.37
1 128 1e-3 90.74 87.77 13.39 89 44 32.53
1 128 1e-4 90.74 87.76 13.46 88 82 35.60
1 256 1e-3 90.76 88.04 13.56 88 22 43.35
1 256 1e-4 90.75 87.70 13.51 89 82 39.03
1 512 1e-2 90.01 78.27 6.38 39 16 149.4
1 512 1e-3 90.76 88.14 13.63 88 22 146.11
1 1024 1e-3 90.77 88.16 13.63 88 26 236.87

2 512
256 1e-3 90.75 87.73 13.59 88 66 151.01

2 512
256 1e-4 90.76 88.14 13.59 88 34 150.70

3
512
256
128

1e-3 90.77 88.06 13.69 88 28 164.02

10

512
512
512
256
128
64
32
16
8
4

1e-3 90.75 88.08 13.64 88 19 413.32

69

Chapter 5

Conclusions

In this thesis, we have studied a ML approach to PC for industrial processes.
Specifically, we have faced a real application namely predicting failures of a Buss
Mixer, a machine used in aluminium production. The used data has been acquired
in the framework of the MONSOON project. It is a time series of 29 variables.
Initially, we have only used the 12 variables related to the chain of Buss Mixer
in the aluminium production process, and then we have extended the experiments
to 29 variables. The dataset has been modified introducing the concept of PH:
when a measurement is labeled as failure, we have labeled as failure also the m
previous measurement. The new modified dataset has been given to different ML
classification algorithm. We have obtained predictions of failures of 10 minutes of
advance. This is in line with results obtained by MONSOON analysts.

ℓ1 penalty reveals that one variable is more significant than all the others
and through it, the algorithms decide the label for a specific measurement. The
fact that there is only one relevant variable suggests us to think that all the other
variables are not associated with breakdowns of the Buss Mixer. We have enough
data to process, but this data are not meaningful for this case.

To make the ML algorithms learn patterns better, we have added means and
variances as variables of the dataset. The results have not changed. We have then
considered the whole dataset which contains 29 variables and the obtained results
have not substantially changed.

Finally, we have applied DL using an ANN with 10 layers; We have expected
the results to improve with the increment of the number of layers; it has not been
possible probably because of data; in fact, only one varibale is relevant.

70

5 – Conclusions

Moreover, all the algorithms have predicted the breakdowns of 6 minutes of
advance in the majority of times with a variable range between 1 and 10 minutes.
They have also predicted a failure with an advance of 12 minutes and 45 minutes.

In order to improve our results, i.e., to increase the prediction advance in the
future, we could undertake different actions:

• to acquire new data from the industrial partner that are more closely related
to the breakdowns, which might require the installation of new sensors;

• to combine the actual variables to extract new features (for example, use:
mean, variance, bunches of measurements). We could combine various vari-
ables to obtain other variables that could help us to predict better.

• to try DNNs: we could use DNNs trying more combinations of their param-
eters or use CNNs and RNNs.

• in this work, we have used one GPU that has allowed us to build ANNs with
10 layers. In the future, we could extend the work using a greater number of
GPUs more powerful and build more deeper ANNs.

71

Bibliography

[1] General Electrics Intelligent Platforms, "The Rise of Industrial Big Data:
Leveraging large time-series data sets to drive innovation, competitiveness
and growth—capitalizing on the big data opportunity" Aug. 2012

[2] L. Monch, J. W. Fowler, S Dauzère-Pérès, S. J. Mason, and O. Rose, "A
survey of problems, solution techniques, and future challenges in scheduling
semiconductor manufacturing operations", J. Sched, vol. 4, no. 6, pp. 575-
599, 2011

[3] G. A. Susto et al., "A predictive maintenance system for integral type faults
based on support vector machines: An application to ion implantation", Proc.
IEEE Int. Conf. Autom. Sci. Eng. (CASE), pp. 195-200, 2013

[4] G. Koksal, I. Batmaz, and M. C. Testik, "A review of data mining applications
form quality improvementin manufactoring industry", Expert Syst. Appl., vol.
38, no. 10, pp. 13448-13467, 2011

[5] G. A. Susto, S. Pampuri, A. Schirru, A. Beghi, and G. De Nicolao, "Multistep
virtual metrology for semiconductor manufactoring: A multilevel and regular-
ization methods-bases approach", Computers and Operations Research, vol.
53, pp. 328-337 January 2015

[6] R. K. Mobley, "An Introduction to Predictive Maintenance", London, U.K,
Butterworth-Heinemann, 2002

[7] G. A. Susto, A. Beghi, and C. De Luca, "A predictive maintenance system for
epitaxy processes based on filtering and predictions techniques", IEEE Trans.
Semicond. Manuf. vol. 25, pp. 638-649, 2012

[8] http://www.busscorp.com/en/anodepaste.htm
[9] A. Coates, B. Carpenter, C. Case, S Satheesh, B. Suresh, T. Wang, D. J.

Wu, A. T. Ng, "Text Detection and Character Recognition in Scene Images
with Unsupervised Feature Learning", International Conference on Document
Analysis and Recognition, pp. 1, 2011

[10] Aurélie Géron, "Hands-On Machine Learning with Scikit-Learn and Tensor-
Flow Concepts, Tools, and Techniques to Build Intelligent Systems", 2017

72

http://www.busscorp.com/en/anodepaste.htm

Bibliography

[11] J. McCarthy, E. Feigenbaum "In Memoriam Arthur Samuel: Pioneer in Ma-
chine Learning", AI Magazine, vol. 11, no. 3, 1990

[12] https://www.umiacs.umd.edu/~hal/
[13] Johns Hopkins University Press, "Perspectives in Biology and Medicine", vo.

43, no. 2, pp. 193-216, 2000
[14] Guang-Bin Huang, "Cognitive Computation", vol. 7, no. 3, pp. 263–278

June 2015
[15] D. H. Hebb, "The organization of behaviour a neuropsychological theory",

New York, John Willey and sons, Inc. 1949
[16] http://yann.lecun.com/exdb/mnist/
[17] C. Dan, U. Meier, J. Schmidhuber, "Multi-column deep neural networks for

image classification" IEEE Conference on Computer Vision and Pattern, 2012
[18] L. Yann, L. Bottou, Y. Bengio, P. Haffner, "Gradient-Based Learning Applied

to Document Recognition" Proceedings of the IEEE, vol 86, pp. 2278-2324,
November 1998

[19] W. Li, M. Zeiler, S. Zhang, Y. LeCun, R. Fergus, "Regularization of Neural
Network using DropConnect", International Conference on Machine Learning
(ICML), 2013

[20] T. Wuest, D. Weimer, C. Irgens, K. D. Thoben, Machine learning in manu-
facturing: advantages, challenges, and applications, Production and Manufac-
turing Research, 4:1, 23-45,

[21] http://www.iiconsortium.org/press-room/09-18-17.htm
[22] https://docs.microsoft.com/en-us/azure/iot-suite/

iot-suite-predictive-overview
[23] J. M. Maciejowski, Predictive Control: with Constraints, Pearson Education,

2002
[24] https://www.sysman.it/processi/iot-predictive-maintenance.html
[25] Warren S. M., W. Pitts, "A logical calculus of the ideas immanent in nervous

activity", Journal The bulletin of mathematical biophysics, Springer, vol. 5,
pp. 115–133, December 1943

[26] M. Minsky, S. A. Papert, Perceptrons, MIT Press, 1969
[27] Andrew Y. Ng Feature selection, L1 vs. L2 regularization, and rotational in-

variance, Computer Science Department, Stanford University, Stanford, USA
[28] Michele Banko, Eric Brill, "Scaling to Very Very Large Corpora for Natural

Language Disambiguation", Microsoft Research, 2001
[29] A. Halevy, P. Norvig, F. Pereira, "The unreasonable effectiveness of data",

IEEE Intelligent Systems, vol. 4, pp. 8-12, 2009
[30] https://magenta.tensorflow.org/
[31] Karl J. Astrom, T. Hagglund, Advanced PID Control, ISA - The Instrumen-

tation, Systems and Automation Society, 2006

73

https://www.umiacs.umd.edu/~hal/
http://yann.lecun.com/exdb/mnist/
http://www.iiconsortium.org/press-room/09-18-17.htm
https://docs.microsoft.com/en-us/azure/iot-suite/iot-suite-predictive-overview
https://docs.microsoft.com/en-us/azure/iot-suite/iot-suite-predictive-overview
https://www.sysman.it/processi/iot-predictive-maintenance.html
https://magenta.tensorflow.org/

Bibliography

[32] G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, A. Beghi, "Machine Learn-
ing for Predictive Maintenance: A Multiple Classifiers Approach", IEEE
Transactions on Industrial Informatics, vol. 11, pp. 812 - 820 2015

[33] M. G. Forbes, R. S. Patwardhan, H. Hamadah, R. B. Gopaluni, "Model
Predictive Control in Industry: Challenges and Opportunities", IFAC-
PapersOnLine, vol. 48, pp. 531 - 538, 2015

74

	Summary
	Introduction
	Predictive Control in process industries
	Use of Machine Learning in industry: state of the art
	Some industrial initiatives exploiting Machine Learning

	Machine Learning algorithms for classification
	Introduction to Machine Learning
	Supervised vs unsupervised learning
	Data

	Focus on classification algorithms
	K-Nearest Neighbors
	Logistic Regression
	Support Vector Machine
	Decision Tree
	Random Forest

	Artificial Neural Networks
	Perceptron
	Multilayer Perceptron

	Preliminary tests on MNIST dataset

	Classification for Predictive Maintenance: a real industrial application
	A real appliation
	Introduction to the real application
	MONSOON project
	Aluminium smelting
	Classification for prediction: the Predictive Horizon
	Used tools
	Variable selection

	Experiments
	Different Predictive Horizons
	Position of faults and predictions
	ℓ1 regularization
	Adding means and variances to the feature space
	Trying all the 29 variables of the dataset

	Deep Neural Networks
	Learning rate scheduling
	Avoiding overfitting through regularization
	Early stopping
	ℓ1 and ℓ2 regularizations
	Convolutional Neural Networks
	TensorFlow and classification with neural networks

	Conclusions
	Bibliography

		Politecnico di Torino
	2018-04-08T14:43:06+0000
	Politecnico di Torino
	Elena Maria Baralis
	S

